3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by Larry Wall
7 * You may distribute under the terms of either the GNU General Public
8 * License or the Artistic License, as specified in the README file.
13 * 'I wonder what the Entish is for "yes" and "no",' he thought.
16 * [p.480 of _The Lord of the Rings_, III/iv: "Treebeard"]
22 * This file contains the code that creates, manipulates and destroys
23 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
24 * structure of an SV, so their creation and destruction is handled
25 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
26 * level functions (eg. substr, split, join) for each of the types are
39 /* Missing proto on LynxOS */
40 char *gconvert(double, int, int, char *);
44 # define SNPRINTF_G(nv, buffer, size, ndig) \
45 quadmath_snprintf(buffer, size, "%.*Qg", (int)ndig, (NV)(nv))
47 # define SNPRINTF_G(nv, buffer, size, ndig) \
48 PERL_UNUSED_RESULT(Gconvert((NV)(nv), (int)ndig, 0, buffer))
51 #ifdef PERL_NEW_COPY_ON_WRITE
52 # ifndef SV_COW_THRESHOLD
53 # define SV_COW_THRESHOLD 0 /* COW iff len > K */
55 # ifndef SV_COWBUF_THRESHOLD
56 # define SV_COWBUF_THRESHOLD 1250 /* COW iff len > K */
58 # ifndef SV_COW_MAX_WASTE_THRESHOLD
59 # define SV_COW_MAX_WASTE_THRESHOLD 80 /* COW iff (len - cur) < K */
61 # ifndef SV_COWBUF_WASTE_THRESHOLD
62 # define SV_COWBUF_WASTE_THRESHOLD 80 /* COW iff (len - cur) < K */
64 # ifndef SV_COW_MAX_WASTE_FACTOR_THRESHOLD
65 # define SV_COW_MAX_WASTE_FACTOR_THRESHOLD 2 /* COW iff len < (cur * K) */
67 # ifndef SV_COWBUF_WASTE_FACTOR_THRESHOLD
68 # define SV_COWBUF_WASTE_FACTOR_THRESHOLD 2 /* COW iff len < (cur * K) */
71 /* Work around compiler warnings about unsigned >= THRESHOLD when thres-
74 # define GE_COW_THRESHOLD(cur) ((cur) >= SV_COW_THRESHOLD)
76 # define GE_COW_THRESHOLD(cur) 1
78 #if SV_COWBUF_THRESHOLD
79 # define GE_COWBUF_THRESHOLD(cur) ((cur) >= SV_COWBUF_THRESHOLD)
81 # define GE_COWBUF_THRESHOLD(cur) 1
83 #if SV_COW_MAX_WASTE_THRESHOLD
84 # define GE_COW_MAX_WASTE_THRESHOLD(cur,len) (((len)-(cur)) < SV_COW_MAX_WASTE_THRESHOLD)
86 # define GE_COW_MAX_WASTE_THRESHOLD(cur,len) 1
88 #if SV_COWBUF_WASTE_THRESHOLD
89 # define GE_COWBUF_WASTE_THRESHOLD(cur,len) (((len)-(cur)) < SV_COWBUF_WASTE_THRESHOLD)
91 # define GE_COWBUF_WASTE_THRESHOLD(cur,len) 1
93 #if SV_COW_MAX_WASTE_FACTOR_THRESHOLD
94 # define GE_COW_MAX_WASTE_FACTOR_THRESHOLD(cur,len) ((len) < SV_COW_MAX_WASTE_FACTOR_THRESHOLD * (cur))
96 # define GE_COW_MAX_WASTE_FACTOR_THRESHOLD(cur,len) 1
98 #if SV_COWBUF_WASTE_FACTOR_THRESHOLD
99 # define GE_COWBUF_WASTE_FACTOR_THRESHOLD(cur,len) ((len) < SV_COWBUF_WASTE_FACTOR_THRESHOLD * (cur))
101 # define GE_COWBUF_WASTE_FACTOR_THRESHOLD(cur,len) 1
104 #define CHECK_COW_THRESHOLD(cur,len) (\
105 GE_COW_THRESHOLD((cur)) && \
106 GE_COW_MAX_WASTE_THRESHOLD((cur),(len)) && \
107 GE_COW_MAX_WASTE_FACTOR_THRESHOLD((cur),(len)) \
109 #define CHECK_COWBUF_THRESHOLD(cur,len) (\
110 GE_COWBUF_THRESHOLD((cur)) && \
111 GE_COWBUF_WASTE_THRESHOLD((cur),(len)) && \
112 GE_COWBUF_WASTE_FACTOR_THRESHOLD((cur),(len)) \
115 #ifdef PERL_UTF8_CACHE_ASSERT
116 /* if adding more checks watch out for the following tests:
117 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
118 * lib/utf8.t lib/Unicode/Collate/t/index.t
121 # define ASSERT_UTF8_CACHE(cache) \
122 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
123 assert((cache)[2] <= (cache)[3]); \
124 assert((cache)[3] <= (cache)[1]);} \
127 # define ASSERT_UTF8_CACHE(cache) NOOP
130 #ifdef PERL_OLD_COPY_ON_WRITE
131 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
132 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
135 /* ============================================================================
137 =head1 Allocation and deallocation of SVs.
138 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
139 sv, av, hv...) contains type and reference count information, and for
140 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
141 contains fields specific to each type. Some types store all they need
142 in the head, so don't have a body.
144 In all but the most memory-paranoid configurations (ex: PURIFY), heads
145 and bodies are allocated out of arenas, which by default are
146 approximately 4K chunks of memory parcelled up into N heads or bodies.
147 Sv-bodies are allocated by their sv-type, guaranteeing size
148 consistency needed to allocate safely from arrays.
150 For SV-heads, the first slot in each arena is reserved, and holds a
151 link to the next arena, some flags, and a note of the number of slots.
152 Snaked through each arena chain is a linked list of free items; when
153 this becomes empty, an extra arena is allocated and divided up into N
154 items which are threaded into the free list.
156 SV-bodies are similar, but they use arena-sets by default, which
157 separate the link and info from the arena itself, and reclaim the 1st
158 slot in the arena. SV-bodies are further described later.
160 The following global variables are associated with arenas:
162 PL_sv_arenaroot pointer to list of SV arenas
163 PL_sv_root pointer to list of free SV structures
165 PL_body_arenas head of linked-list of body arenas
166 PL_body_roots[] array of pointers to list of free bodies of svtype
167 arrays are indexed by the svtype needed
169 A few special SV heads are not allocated from an arena, but are
170 instead directly created in the interpreter structure, eg PL_sv_undef.
171 The size of arenas can be changed from the default by setting
172 PERL_ARENA_SIZE appropriately at compile time.
174 The SV arena serves the secondary purpose of allowing still-live SVs
175 to be located and destroyed during final cleanup.
177 At the lowest level, the macros new_SV() and del_SV() grab and free
178 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
179 to return the SV to the free list with error checking.) new_SV() calls
180 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
181 SVs in the free list have their SvTYPE field set to all ones.
183 At the time of very final cleanup, sv_free_arenas() is called from
184 perl_destruct() to physically free all the arenas allocated since the
185 start of the interpreter.
187 The function visit() scans the SV arenas list, and calls a specified
188 function for each SV it finds which is still live - ie which has an SvTYPE
189 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
190 following functions (specified as [function that calls visit()] / [function
191 called by visit() for each SV]):
193 sv_report_used() / do_report_used()
194 dump all remaining SVs (debugging aid)
196 sv_clean_objs() / do_clean_objs(),do_clean_named_objs(),
197 do_clean_named_io_objs(),do_curse()
198 Attempt to free all objects pointed to by RVs,
199 try to do the same for all objects indir-
200 ectly referenced by typeglobs too, and
201 then do a final sweep, cursing any
202 objects that remain. Called once from
203 perl_destruct(), prior to calling sv_clean_all()
206 sv_clean_all() / do_clean_all()
207 SvREFCNT_dec(sv) each remaining SV, possibly
208 triggering an sv_free(). It also sets the
209 SVf_BREAK flag on the SV to indicate that the
210 refcnt has been artificially lowered, and thus
211 stopping sv_free() from giving spurious warnings
212 about SVs which unexpectedly have a refcnt
213 of zero. called repeatedly from perl_destruct()
214 until there are no SVs left.
216 =head2 Arena allocator API Summary
218 Private API to rest of sv.c
222 new_XPVNV(), del_XPVGV(),
227 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
231 * ========================================================================= */
234 * "A time to plant, and a time to uproot what was planted..."
238 # define MEM_LOG_NEW_SV(sv, file, line, func) \
239 Perl_mem_log_new_sv(sv, file, line, func)
240 # define MEM_LOG_DEL_SV(sv, file, line, func) \
241 Perl_mem_log_del_sv(sv, file, line, func)
243 # define MEM_LOG_NEW_SV(sv, file, line, func) NOOP
244 # define MEM_LOG_DEL_SV(sv, file, line, func) NOOP
247 #ifdef DEBUG_LEAKING_SCALARS
248 # define FREE_SV_DEBUG_FILE(sv) STMT_START { \
249 if ((sv)->sv_debug_file) PerlMemShared_free((sv)->sv_debug_file); \
251 # define DEBUG_SV_SERIAL(sv) \
252 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) del_SV\n", \
253 PTR2UV(sv), (long)(sv)->sv_debug_serial))
255 # define FREE_SV_DEBUG_FILE(sv)
256 # define DEBUG_SV_SERIAL(sv) NOOP
260 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
261 # define SvARENA_CHAIN_SET(sv,val) (sv)->sv_u.svu_rv = MUTABLE_SV((val))
262 /* Whilst I'd love to do this, it seems that things like to check on
264 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
266 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
267 PoisonNew(&SvREFCNT(sv), 1, U32)
269 # define SvARENA_CHAIN(sv) SvANY(sv)
270 # define SvARENA_CHAIN_SET(sv,val) SvANY(sv) = (void *)(val)
271 # define POSION_SV_HEAD(sv)
274 /* Mark an SV head as unused, and add to free list.
276 * If SVf_BREAK is set, skip adding it to the free list, as this SV had
277 * its refcount artificially decremented during global destruction, so
278 * there may be dangling pointers to it. The last thing we want in that
279 * case is for it to be reused. */
281 #define plant_SV(p) \
283 const U32 old_flags = SvFLAGS(p); \
284 MEM_LOG_DEL_SV(p, __FILE__, __LINE__, FUNCTION__); \
285 DEBUG_SV_SERIAL(p); \
286 FREE_SV_DEBUG_FILE(p); \
288 SvFLAGS(p) = SVTYPEMASK; \
289 if (!(old_flags & SVf_BREAK)) { \
290 SvARENA_CHAIN_SET(p, PL_sv_root); \
296 #define uproot_SV(p) \
299 PL_sv_root = MUTABLE_SV(SvARENA_CHAIN(p)); \
304 /* make some more SVs by adding another arena */
310 char *chunk; /* must use New here to match call to */
311 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
312 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
317 /* new_SV(): return a new, empty SV head */
319 #ifdef DEBUG_LEAKING_SCALARS
320 /* provide a real function for a debugger to play with */
322 S_new_SV(pTHX_ const char *file, int line, const char *func)
329 sv = S_more_sv(aTHX);
333 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
334 sv->sv_debug_line = (U16) (PL_parser && PL_parser->copline != NOLINE
340 sv->sv_debug_inpad = 0;
341 sv->sv_debug_parent = NULL;
342 sv->sv_debug_file = PL_curcop ? savesharedpv(CopFILE(PL_curcop)): NULL;
344 sv->sv_debug_serial = PL_sv_serial++;
346 MEM_LOG_NEW_SV(sv, file, line, func);
347 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) new_SV (from %s:%d [%s])\n",
348 PTR2UV(sv), (long)sv->sv_debug_serial, file, line, func));
352 # define new_SV(p) (p)=S_new_SV(aTHX_ __FILE__, __LINE__, FUNCTION__)
360 (p) = S_more_sv(aTHX); \
364 MEM_LOG_NEW_SV(p, __FILE__, __LINE__, FUNCTION__); \
369 /* del_SV(): return an empty SV head to the free list */
382 S_del_sv(pTHX_ SV *p)
384 PERL_ARGS_ASSERT_DEL_SV;
389 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
390 const SV * const sv = sva + 1;
391 const SV * const svend = &sva[SvREFCNT(sva)];
392 if (p >= sv && p < svend) {
398 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
399 "Attempt to free non-arena SV: 0x%"UVxf
400 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
407 #else /* ! DEBUGGING */
409 #define del_SV(p) plant_SV(p)
411 #endif /* DEBUGGING */
415 =head1 SV Manipulation Functions
417 =for apidoc sv_add_arena
419 Given a chunk of memory, link it to the head of the list of arenas,
420 and split it into a list of free SVs.
426 S_sv_add_arena(pTHX_ char *const ptr, const U32 size, const U32 flags)
428 SV *const sva = MUTABLE_SV(ptr);
432 PERL_ARGS_ASSERT_SV_ADD_ARENA;
434 /* The first SV in an arena isn't an SV. */
435 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
436 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
437 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
439 PL_sv_arenaroot = sva;
440 PL_sv_root = sva + 1;
442 svend = &sva[SvREFCNT(sva) - 1];
445 SvARENA_CHAIN_SET(sv, (sv + 1));
449 /* Must always set typemask because it's always checked in on cleanup
450 when the arenas are walked looking for objects. */
451 SvFLAGS(sv) = SVTYPEMASK;
454 SvARENA_CHAIN_SET(sv, 0);
458 SvFLAGS(sv) = SVTYPEMASK;
461 /* visit(): call the named function for each non-free SV in the arenas
462 * whose flags field matches the flags/mask args. */
465 S_visit(pTHX_ SVFUNC_t f, const U32 flags, const U32 mask)
470 PERL_ARGS_ASSERT_VISIT;
472 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
473 const SV * const svend = &sva[SvREFCNT(sva)];
475 for (sv = sva + 1; sv < svend; ++sv) {
476 if (SvTYPE(sv) != (svtype)SVTYPEMASK
477 && (sv->sv_flags & mask) == flags
490 /* called by sv_report_used() for each live SV */
493 do_report_used(pTHX_ SV *const sv)
495 if (SvTYPE(sv) != (svtype)SVTYPEMASK) {
496 PerlIO_printf(Perl_debug_log, "****\n");
503 =for apidoc sv_report_used
505 Dump the contents of all SVs not yet freed (debugging aid).
511 Perl_sv_report_used(pTHX)
514 visit(do_report_used, 0, 0);
520 /* called by sv_clean_objs() for each live SV */
523 do_clean_objs(pTHX_ SV *const ref)
527 SV * const target = SvRV(ref);
528 if (SvOBJECT(target)) {
529 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
530 if (SvWEAKREF(ref)) {
531 sv_del_backref(target, ref);
537 SvREFCNT_dec_NN(target);
544 /* clear any slots in a GV which hold objects - except IO;
545 * called by sv_clean_objs() for each live GV */
548 do_clean_named_objs(pTHX_ SV *const sv)
551 assert(SvTYPE(sv) == SVt_PVGV);
552 assert(isGV_with_GP(sv));
556 /* freeing GP entries may indirectly free the current GV;
557 * hold onto it while we mess with the GP slots */
560 if ( ((obj = GvSV(sv) )) && SvOBJECT(obj)) {
561 DEBUG_D((PerlIO_printf(Perl_debug_log,
562 "Cleaning named glob SV object:\n "), sv_dump(obj)));
564 SvREFCNT_dec_NN(obj);
566 if ( ((obj = MUTABLE_SV(GvAV(sv)) )) && SvOBJECT(obj)) {
567 DEBUG_D((PerlIO_printf(Perl_debug_log,
568 "Cleaning named glob AV object:\n "), sv_dump(obj)));
570 SvREFCNT_dec_NN(obj);
572 if ( ((obj = MUTABLE_SV(GvHV(sv)) )) && SvOBJECT(obj)) {
573 DEBUG_D((PerlIO_printf(Perl_debug_log,
574 "Cleaning named glob HV object:\n "), sv_dump(obj)));
576 SvREFCNT_dec_NN(obj);
578 if ( ((obj = MUTABLE_SV(GvCV(sv)) )) && SvOBJECT(obj)) {
579 DEBUG_D((PerlIO_printf(Perl_debug_log,
580 "Cleaning named glob CV object:\n "), sv_dump(obj)));
582 SvREFCNT_dec_NN(obj);
584 SvREFCNT_dec_NN(sv); /* undo the inc above */
587 /* clear any IO slots in a GV which hold objects (except stderr, defout);
588 * called by sv_clean_objs() for each live GV */
591 do_clean_named_io_objs(pTHX_ SV *const sv)
594 assert(SvTYPE(sv) == SVt_PVGV);
595 assert(isGV_with_GP(sv));
596 if (!GvGP(sv) || sv == (SV*)PL_stderrgv || sv == (SV*)PL_defoutgv)
600 if ( ((obj = MUTABLE_SV(GvIO(sv)) )) && SvOBJECT(obj)) {
601 DEBUG_D((PerlIO_printf(Perl_debug_log,
602 "Cleaning named glob IO object:\n "), sv_dump(obj)));
604 SvREFCNT_dec_NN(obj);
606 SvREFCNT_dec_NN(sv); /* undo the inc above */
609 /* Void wrapper to pass to visit() */
611 do_curse(pTHX_ SV * const sv) {
612 if ((PL_stderrgv && GvGP(PL_stderrgv) && (SV*)GvIO(PL_stderrgv) == sv)
613 || (PL_defoutgv && GvGP(PL_defoutgv) && (SV*)GvIO(PL_defoutgv) == sv))
619 =for apidoc sv_clean_objs
621 Attempt to destroy all objects not yet freed.
627 Perl_sv_clean_objs(pTHX)
630 PL_in_clean_objs = TRUE;
631 visit(do_clean_objs, SVf_ROK, SVf_ROK);
632 /* Some barnacles may yet remain, clinging to typeglobs.
633 * Run the non-IO destructors first: they may want to output
634 * error messages, close files etc */
635 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
636 visit(do_clean_named_io_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
637 /* And if there are some very tenacious barnacles clinging to arrays,
638 closures, or what have you.... */
639 visit(do_curse, SVs_OBJECT, SVs_OBJECT);
640 olddef = PL_defoutgv;
641 PL_defoutgv = NULL; /* disable skip of PL_defoutgv */
642 if (olddef && isGV_with_GP(olddef))
643 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olddef));
644 olderr = PL_stderrgv;
645 PL_stderrgv = NULL; /* disable skip of PL_stderrgv */
646 if (olderr && isGV_with_GP(olderr))
647 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olderr));
648 SvREFCNT_dec(olddef);
649 PL_in_clean_objs = FALSE;
652 /* called by sv_clean_all() for each live SV */
655 do_clean_all(pTHX_ SV *const sv)
657 if (sv == (const SV *) PL_fdpid || sv == (const SV *)PL_strtab) {
658 /* don't clean pid table and strtab */
661 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
662 SvFLAGS(sv) |= SVf_BREAK;
667 =for apidoc sv_clean_all
669 Decrement the refcnt of each remaining SV, possibly triggering a
670 cleanup. This function may have to be called multiple times to free
671 SVs which are in complex self-referential hierarchies.
677 Perl_sv_clean_all(pTHX)
680 PL_in_clean_all = TRUE;
681 cleaned = visit(do_clean_all, 0,0);
686 ARENASETS: a meta-arena implementation which separates arena-info
687 into struct arena_set, which contains an array of struct
688 arena_descs, each holding info for a single arena. By separating
689 the meta-info from the arena, we recover the 1st slot, formerly
690 borrowed for list management. The arena_set is about the size of an
691 arena, avoiding the needless malloc overhead of a naive linked-list.
693 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
694 memory in the last arena-set (1/2 on average). In trade, we get
695 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
696 smaller types). The recovery of the wasted space allows use of
697 small arenas for large, rare body types, by changing array* fields
698 in body_details_by_type[] below.
701 char *arena; /* the raw storage, allocated aligned */
702 size_t size; /* its size ~4k typ */
703 svtype utype; /* bodytype stored in arena */
708 /* Get the maximum number of elements in set[] such that struct arena_set
709 will fit within PERL_ARENA_SIZE, which is probably just under 4K, and
710 therefore likely to be 1 aligned memory page. */
712 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
713 - 2 * sizeof(int)) / sizeof (struct arena_desc))
716 struct arena_set* next;
717 unsigned int set_size; /* ie ARENAS_PER_SET */
718 unsigned int curr; /* index of next available arena-desc */
719 struct arena_desc set[ARENAS_PER_SET];
723 =for apidoc sv_free_arenas
725 Deallocate the memory used by all arenas. Note that all the individual SV
726 heads and bodies within the arenas must already have been freed.
732 Perl_sv_free_arenas(pTHX)
738 /* Free arenas here, but be careful about fake ones. (We assume
739 contiguity of the fake ones with the corresponding real ones.) */
741 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
742 svanext = MUTABLE_SV(SvANY(sva));
743 while (svanext && SvFAKE(svanext))
744 svanext = MUTABLE_SV(SvANY(svanext));
751 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
754 struct arena_set *current = aroot;
757 assert(aroot->set[i].arena);
758 Safefree(aroot->set[i].arena);
766 i = PERL_ARENA_ROOTS_SIZE;
768 PL_body_roots[i] = 0;
775 Here are mid-level routines that manage the allocation of bodies out
776 of the various arenas. There are 5 kinds of arenas:
778 1. SV-head arenas, which are discussed and handled above
779 2. regular body arenas
780 3. arenas for reduced-size bodies
783 Arena types 2 & 3 are chained by body-type off an array of
784 arena-root pointers, which is indexed by svtype. Some of the
785 larger/less used body types are malloced singly, since a large
786 unused block of them is wasteful. Also, several svtypes dont have
787 bodies; the data fits into the sv-head itself. The arena-root
788 pointer thus has a few unused root-pointers (which may be hijacked
789 later for arena types 4,5)
791 3 differs from 2 as an optimization; some body types have several
792 unused fields in the front of the structure (which are kept in-place
793 for consistency). These bodies can be allocated in smaller chunks,
794 because the leading fields arent accessed. Pointers to such bodies
795 are decremented to point at the unused 'ghost' memory, knowing that
796 the pointers are used with offsets to the real memory.
799 =head1 SV-Body Allocation
803 Allocation of SV-bodies is similar to SV-heads, differing as follows;
804 the allocation mechanism is used for many body types, so is somewhat
805 more complicated, it uses arena-sets, and has no need for still-live
808 At the outermost level, (new|del)_X*V macros return bodies of the
809 appropriate type. These macros call either (new|del)_body_type or
810 (new|del)_body_allocated macro pairs, depending on specifics of the
811 type. Most body types use the former pair, the latter pair is used to
812 allocate body types with "ghost fields".
814 "ghost fields" are fields that are unused in certain types, and
815 consequently don't need to actually exist. They are declared because
816 they're part of a "base type", which allows use of functions as
817 methods. The simplest examples are AVs and HVs, 2 aggregate types
818 which don't use the fields which support SCALAR semantics.
820 For these types, the arenas are carved up into appropriately sized
821 chunks, we thus avoid wasted memory for those unaccessed members.
822 When bodies are allocated, we adjust the pointer back in memory by the
823 size of the part not allocated, so it's as if we allocated the full
824 structure. (But things will all go boom if you write to the part that
825 is "not there", because you'll be overwriting the last members of the
826 preceding structure in memory.)
828 We calculate the correction using the STRUCT_OFFSET macro on the first
829 member present. If the allocated structure is smaller (no initial NV
830 actually allocated) then the net effect is to subtract the size of the NV
831 from the pointer, to return a new pointer as if an initial NV were actually
832 allocated. (We were using structures named *_allocated for this, but
833 this turned out to be a subtle bug, because a structure without an NV
834 could have a lower alignment constraint, but the compiler is allowed to
835 optimised accesses based on the alignment constraint of the actual pointer
836 to the full structure, for example, using a single 64 bit load instruction
837 because it "knows" that two adjacent 32 bit members will be 8-byte aligned.)
839 This is the same trick as was used for NV and IV bodies. Ironically it
840 doesn't need to be used for NV bodies any more, because NV is now at
841 the start of the structure. IV bodies, and also in some builds NV bodies,
842 don't need it either, because they are no longer allocated.
844 In turn, the new_body_* allocators call S_new_body(), which invokes
845 new_body_inline macro, which takes a lock, and takes a body off the
846 linked list at PL_body_roots[sv_type], calling Perl_more_bodies() if
847 necessary to refresh an empty list. Then the lock is released, and
848 the body is returned.
850 Perl_more_bodies allocates a new arena, and carves it up into an array of N
851 bodies, which it strings into a linked list. It looks up arena-size
852 and body-size from the body_details table described below, thus
853 supporting the multiple body-types.
855 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
856 the (new|del)_X*V macros are mapped directly to malloc/free.
858 For each sv-type, struct body_details bodies_by_type[] carries
859 parameters which control these aspects of SV handling:
861 Arena_size determines whether arenas are used for this body type, and if
862 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
863 zero, forcing individual mallocs and frees.
865 Body_size determines how big a body is, and therefore how many fit into
866 each arena. Offset carries the body-pointer adjustment needed for
867 "ghost fields", and is used in *_allocated macros.
869 But its main purpose is to parameterize info needed in
870 Perl_sv_upgrade(). The info here dramatically simplifies the function
871 vs the implementation in 5.8.8, making it table-driven. All fields
872 are used for this, except for arena_size.
874 For the sv-types that have no bodies, arenas are not used, so those
875 PL_body_roots[sv_type] are unused, and can be overloaded. In
876 something of a special case, SVt_NULL is borrowed for HE arenas;
877 PL_body_roots[HE_SVSLOT=SVt_NULL] is filled by S_more_he, but the
878 bodies_by_type[SVt_NULL] slot is not used, as the table is not
883 struct body_details {
884 U8 body_size; /* Size to allocate */
885 U8 copy; /* Size of structure to copy (may be shorter) */
886 U8 offset; /* Size of unalloced ghost fields to first alloced field*/
887 PERL_BITFIELD8 type : 4; /* We have space for a sanity check. */
888 PERL_BITFIELD8 cant_upgrade : 1;/* Cannot upgrade this type */
889 PERL_BITFIELD8 zero_nv : 1; /* zero the NV when upgrading from this */
890 PERL_BITFIELD8 arena : 1; /* Allocated from an arena */
891 U32 arena_size; /* Size of arena to allocate */
899 /* With -DPURFIY we allocate everything directly, and don't use arenas.
900 This seems a rather elegant way to simplify some of the code below. */
901 #define HASARENA FALSE
903 #define HASARENA TRUE
905 #define NOARENA FALSE
907 /* Size the arenas to exactly fit a given number of bodies. A count
908 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
909 simplifying the default. If count > 0, the arena is sized to fit
910 only that many bodies, allowing arenas to be used for large, rare
911 bodies (XPVFM, XPVIO) without undue waste. The arena size is
912 limited by PERL_ARENA_SIZE, so we can safely oversize the
915 #define FIT_ARENA0(body_size) \
916 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
917 #define FIT_ARENAn(count,body_size) \
918 ( count * body_size <= PERL_ARENA_SIZE) \
919 ? count * body_size \
920 : FIT_ARENA0 (body_size)
921 #define FIT_ARENA(count,body_size) \
923 ? FIT_ARENAn (count, body_size) \
924 : FIT_ARENA0 (body_size))
926 /* Calculate the length to copy. Specifically work out the length less any
927 final padding the compiler needed to add. See the comment in sv_upgrade
928 for why copying the padding proved to be a bug. */
930 #define copy_length(type, last_member) \
931 STRUCT_OFFSET(type, last_member) \
932 + sizeof (((type*)SvANY((const SV *)0))->last_member)
934 static const struct body_details bodies_by_type[] = {
935 /* HEs use this offset for their arena. */
936 { 0, 0, 0, SVt_NULL, FALSE, NONV, NOARENA, 0 },
938 /* IVs are in the head, so the allocation size is 0. */
940 sizeof(IV), /* This is used to copy out the IV body. */
941 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
942 NOARENA /* IVS don't need an arena */, 0
947 STRUCT_OFFSET(XPVNV, xnv_u),
948 SVt_NV, FALSE, HADNV, NOARENA, 0 },
950 { sizeof(NV), sizeof(NV),
951 STRUCT_OFFSET(XPVNV, xnv_u),
952 SVt_NV, FALSE, HADNV, HASARENA, FIT_ARENA(0, sizeof(NV)) },
955 { sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur),
956 copy_length(XPV, xpv_len) - STRUCT_OFFSET(XPV, xpv_cur),
957 + STRUCT_OFFSET(XPV, xpv_cur),
958 SVt_PV, FALSE, NONV, HASARENA,
959 FIT_ARENA(0, sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur)) },
961 { sizeof(XINVLIST) - STRUCT_OFFSET(XPV, xpv_cur),
962 copy_length(XINVLIST, is_offset) - STRUCT_OFFSET(XPV, xpv_cur),
963 + STRUCT_OFFSET(XPV, xpv_cur),
964 SVt_INVLIST, TRUE, NONV, HASARENA,
965 FIT_ARENA(0, sizeof(XINVLIST) - STRUCT_OFFSET(XPV, xpv_cur)) },
967 { sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur),
968 copy_length(XPVIV, xiv_u) - STRUCT_OFFSET(XPV, xpv_cur),
969 + STRUCT_OFFSET(XPV, xpv_cur),
970 SVt_PVIV, FALSE, NONV, HASARENA,
971 FIT_ARENA(0, sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur)) },
973 { sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur),
974 copy_length(XPVNV, xnv_u) - STRUCT_OFFSET(XPV, xpv_cur),
975 + STRUCT_OFFSET(XPV, xpv_cur),
976 SVt_PVNV, FALSE, HADNV, HASARENA,
977 FIT_ARENA(0, sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur)) },
979 { sizeof(XPVMG), copy_length(XPVMG, xnv_u), 0, SVt_PVMG, FALSE, HADNV,
980 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
985 SVt_REGEXP, TRUE, NONV, HASARENA,
986 FIT_ARENA(0, sizeof(regexp))
989 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
990 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
992 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
993 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
996 copy_length(XPVAV, xav_alloc),
998 SVt_PVAV, TRUE, NONV, HASARENA,
999 FIT_ARENA(0, sizeof(XPVAV)) },
1002 copy_length(XPVHV, xhv_max),
1004 SVt_PVHV, TRUE, NONV, HASARENA,
1005 FIT_ARENA(0, sizeof(XPVHV)) },
1010 SVt_PVCV, TRUE, NONV, HASARENA,
1011 FIT_ARENA(0, sizeof(XPVCV)) },
1016 SVt_PVFM, TRUE, NONV, NOARENA,
1017 FIT_ARENA(20, sizeof(XPVFM)) },
1022 SVt_PVIO, TRUE, NONV, HASARENA,
1023 FIT_ARENA(24, sizeof(XPVIO)) },
1026 #define new_body_allocated(sv_type) \
1027 (void *)((char *)S_new_body(aTHX_ sv_type) \
1028 - bodies_by_type[sv_type].offset)
1030 /* return a thing to the free list */
1032 #define del_body(thing, root) \
1034 void ** const thing_copy = (void **)thing; \
1035 *thing_copy = *root; \
1036 *root = (void*)thing_copy; \
1040 #if !(NVSIZE <= IVSIZE)
1041 # define new_XNV() safemalloc(sizeof(XPVNV))
1043 #define new_XPVNV() safemalloc(sizeof(XPVNV))
1044 #define new_XPVMG() safemalloc(sizeof(XPVMG))
1046 #define del_XPVGV(p) safefree(p)
1050 #if !(NVSIZE <= IVSIZE)
1051 # define new_XNV() new_body_allocated(SVt_NV)
1053 #define new_XPVNV() new_body_allocated(SVt_PVNV)
1054 #define new_XPVMG() new_body_allocated(SVt_PVMG)
1056 #define del_XPVGV(p) del_body(p + bodies_by_type[SVt_PVGV].offset, \
1057 &PL_body_roots[SVt_PVGV])
1061 /* no arena for you! */
1063 #define new_NOARENA(details) \
1064 safemalloc((details)->body_size + (details)->offset)
1065 #define new_NOARENAZ(details) \
1066 safecalloc((details)->body_size + (details)->offset, 1)
1069 Perl_more_bodies (pTHX_ const svtype sv_type, const size_t body_size,
1070 const size_t arena_size)
1072 void ** const root = &PL_body_roots[sv_type];
1073 struct arena_desc *adesc;
1074 struct arena_set *aroot = (struct arena_set *) PL_body_arenas;
1078 const size_t good_arena_size = Perl_malloc_good_size(arena_size);
1079 #if defined(DEBUGGING) && defined(PERL_GLOBAL_STRUCT)
1082 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1083 static bool done_sanity_check;
1085 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1086 * variables like done_sanity_check. */
1087 if (!done_sanity_check) {
1088 unsigned int i = SVt_LAST;
1090 done_sanity_check = TRUE;
1093 assert (bodies_by_type[i].type == i);
1099 /* may need new arena-set to hold new arena */
1100 if (!aroot || aroot->curr >= aroot->set_size) {
1101 struct arena_set *newroot;
1102 Newxz(newroot, 1, struct arena_set);
1103 newroot->set_size = ARENAS_PER_SET;
1104 newroot->next = aroot;
1106 PL_body_arenas = (void *) newroot;
1107 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
1110 /* ok, now have arena-set with at least 1 empty/available arena-desc */
1111 curr = aroot->curr++;
1112 adesc = &(aroot->set[curr]);
1113 assert(!adesc->arena);
1115 Newx(adesc->arena, good_arena_size, char);
1116 adesc->size = good_arena_size;
1117 adesc->utype = sv_type;
1118 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %"UVuf"\n",
1119 curr, (void*)adesc->arena, (UV)good_arena_size));
1121 start = (char *) adesc->arena;
1123 /* Get the address of the byte after the end of the last body we can fit.
1124 Remember, this is integer division: */
1125 end = start + good_arena_size / body_size * body_size;
1127 /* computed count doesn't reflect the 1st slot reservation */
1128 #if defined(MYMALLOC) || defined(HAS_MALLOC_GOOD_SIZE)
1129 DEBUG_m(PerlIO_printf(Perl_debug_log,
1130 "arena %p end %p arena-size %d (from %d) type %d "
1132 (void*)start, (void*)end, (int)good_arena_size,
1133 (int)arena_size, sv_type, (int)body_size,
1134 (int)good_arena_size / (int)body_size));
1136 DEBUG_m(PerlIO_printf(Perl_debug_log,
1137 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1138 (void*)start, (void*)end,
1139 (int)arena_size, sv_type, (int)body_size,
1140 (int)good_arena_size / (int)body_size));
1142 *root = (void *)start;
1145 /* Where the next body would start: */
1146 char * const next = start + body_size;
1149 /* This is the last body: */
1150 assert(next == end);
1152 *(void **)start = 0;
1156 *(void**) start = (void *)next;
1161 /* grab a new thing from the free list, allocating more if necessary.
1162 The inline version is used for speed in hot routines, and the
1163 function using it serves the rest (unless PURIFY).
1165 #define new_body_inline(xpv, sv_type) \
1167 void ** const r3wt = &PL_body_roots[sv_type]; \
1168 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1169 ? *((void **)(r3wt)) : Perl_more_bodies(aTHX_ sv_type, \
1170 bodies_by_type[sv_type].body_size,\
1171 bodies_by_type[sv_type].arena_size)); \
1172 *(r3wt) = *(void**)(xpv); \
1178 S_new_body(pTHX_ const svtype sv_type)
1181 new_body_inline(xpv, sv_type);
1187 static const struct body_details fake_rv =
1188 { 0, 0, 0, SVt_IV, FALSE, NONV, NOARENA, 0 };
1191 =for apidoc sv_upgrade
1193 Upgrade an SV to a more complex form. Generally adds a new body type to the
1194 SV, then copies across as much information as possible from the old body.
1195 It croaks if the SV is already in a more complex form than requested. You
1196 generally want to use the C<SvUPGRADE> macro wrapper, which checks the type
1197 before calling C<sv_upgrade>, and hence does not croak. See also
1204 Perl_sv_upgrade(pTHX_ SV *const sv, svtype new_type)
1208 const svtype old_type = SvTYPE(sv);
1209 const struct body_details *new_type_details;
1210 const struct body_details *old_type_details
1211 = bodies_by_type + old_type;
1212 SV *referant = NULL;
1214 PERL_ARGS_ASSERT_SV_UPGRADE;
1216 if (old_type == new_type)
1219 /* This clause was purposefully added ahead of the early return above to
1220 the shared string hackery for (sort {$a <=> $b} keys %hash), with the
1221 inference by Nick I-S that it would fix other troublesome cases. See
1222 changes 7162, 7163 (f130fd4589cf5fbb24149cd4db4137c8326f49c1 and parent)
1224 Given that shared hash key scalars are no longer PVIV, but PV, there is
1225 no longer need to unshare so as to free up the IVX slot for its proper
1226 purpose. So it's safe to move the early return earlier. */
1228 if (new_type > SVt_PVMG && SvIsCOW(sv)) {
1229 sv_force_normal_flags(sv, 0);
1232 old_body = SvANY(sv);
1234 /* Copying structures onto other structures that have been neatly zeroed
1235 has a subtle gotcha. Consider XPVMG
1237 +------+------+------+------+------+-------+-------+
1238 | NV | CUR | LEN | IV | MAGIC | STASH |
1239 +------+------+------+------+------+-------+-------+
1240 0 4 8 12 16 20 24 28
1242 where NVs are aligned to 8 bytes, so that sizeof that structure is
1243 actually 32 bytes long, with 4 bytes of padding at the end:
1245 +------+------+------+------+------+-------+-------+------+
1246 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1247 +------+------+------+------+------+-------+-------+------+
1248 0 4 8 12 16 20 24 28 32
1250 so what happens if you allocate memory for this structure:
1252 +------+------+------+------+------+-------+-------+------+------+...
1253 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1254 +------+------+------+------+------+-------+-------+------+------+...
1255 0 4 8 12 16 20 24 28 32 36
1257 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1258 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1259 started out as zero once, but it's quite possible that it isn't. So now,
1260 rather than a nicely zeroed GP, you have it pointing somewhere random.
1263 (In fact, GP ends up pointing at a previous GP structure, because the
1264 principle cause of the padding in XPVMG getting garbage is a copy of
1265 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1266 this happens to be moot because XPVGV has been re-ordered, with GP
1267 no longer after STASH)
1269 So we are careful and work out the size of used parts of all the
1277 referant = SvRV(sv);
1278 old_type_details = &fake_rv;
1279 if (new_type == SVt_NV)
1280 new_type = SVt_PVNV;
1282 if (new_type < SVt_PVIV) {
1283 new_type = (new_type == SVt_NV)
1284 ? SVt_PVNV : SVt_PVIV;
1289 if (new_type < SVt_PVNV) {
1290 new_type = SVt_PVNV;
1294 assert(new_type > SVt_PV);
1295 assert(SVt_IV < SVt_PV);
1296 assert(SVt_NV < SVt_PV);
1303 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1304 there's no way that it can be safely upgraded, because perl.c
1305 expects to Safefree(SvANY(PL_mess_sv)) */
1306 assert(sv != PL_mess_sv);
1307 /* This flag bit is used to mean other things in other scalar types.
1308 Given that it only has meaning inside the pad, it shouldn't be set
1309 on anything that can get upgraded. */
1310 assert(!SvPAD_TYPED(sv));
1313 if (UNLIKELY(old_type_details->cant_upgrade))
1314 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1315 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1318 if (UNLIKELY(old_type > new_type))
1319 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1320 (int)old_type, (int)new_type);
1322 new_type_details = bodies_by_type + new_type;
1324 SvFLAGS(sv) &= ~SVTYPEMASK;
1325 SvFLAGS(sv) |= new_type;
1327 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1328 the return statements above will have triggered. */
1329 assert (new_type != SVt_NULL);
1332 assert(old_type == SVt_NULL);
1333 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1337 assert(old_type == SVt_NULL);
1338 #if NVSIZE <= IVSIZE
1339 SvANY(sv) = (XPVNV*)((char*)&(sv->sv_u.svu_nv) - STRUCT_OFFSET(XPVNV, xnv_u.xnv_nv));
1341 SvANY(sv) = new_XNV();
1347 assert(new_type_details->body_size);
1350 assert(new_type_details->arena);
1351 assert(new_type_details->arena_size);
1352 /* This points to the start of the allocated area. */
1353 new_body_inline(new_body, new_type);
1354 Zero(new_body, new_type_details->body_size, char);
1355 new_body = ((char *)new_body) - new_type_details->offset;
1357 /* We always allocated the full length item with PURIFY. To do this
1358 we fake things so that arena is false for all 16 types.. */
1359 new_body = new_NOARENAZ(new_type_details);
1361 SvANY(sv) = new_body;
1362 if (new_type == SVt_PVAV) {
1366 if (old_type_details->body_size) {
1369 /* It will have been zeroed when the new body was allocated.
1370 Lets not write to it, in case it confuses a write-back
1376 #ifndef NODEFAULT_SHAREKEYS
1377 HvSHAREKEYS_on(sv); /* key-sharing on by default */
1379 /* start with PERL_HASH_DEFAULT_HvMAX+1 buckets: */
1380 HvMAX(sv) = PERL_HASH_DEFAULT_HvMAX;
1383 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1384 The target created by newSVrv also is, and it can have magic.
1385 However, it never has SvPVX set.
1387 if (old_type == SVt_IV) {
1389 } else if (old_type >= SVt_PV) {
1390 assert(SvPVX_const(sv) == 0);
1393 if (old_type >= SVt_PVMG) {
1394 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1395 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1397 sv->sv_u.svu_array = NULL; /* or svu_hash */
1402 /* XXX Is this still needed? Was it ever needed? Surely as there is
1403 no route from NV to PVIV, NOK can never be true */
1404 assert(!SvNOKp(sv));
1417 assert(new_type_details->body_size);
1418 /* We always allocated the full length item with PURIFY. To do this
1419 we fake things so that arena is false for all 16 types.. */
1420 if(new_type_details->arena) {
1421 /* This points to the start of the allocated area. */
1422 new_body_inline(new_body, new_type);
1423 Zero(new_body, new_type_details->body_size, char);
1424 new_body = ((char *)new_body) - new_type_details->offset;
1426 new_body = new_NOARENAZ(new_type_details);
1428 SvANY(sv) = new_body;
1430 if (old_type_details->copy) {
1431 /* There is now the potential for an upgrade from something without
1432 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1433 int offset = old_type_details->offset;
1434 int length = old_type_details->copy;
1436 if (new_type_details->offset > old_type_details->offset) {
1437 const int difference
1438 = new_type_details->offset - old_type_details->offset;
1439 offset += difference;
1440 length -= difference;
1442 assert (length >= 0);
1444 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1448 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1449 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1450 * correct 0.0 for us. Otherwise, if the old body didn't have an
1451 * NV slot, but the new one does, then we need to initialise the
1452 * freshly created NV slot with whatever the correct bit pattern is
1454 if (old_type_details->zero_nv && !new_type_details->zero_nv
1455 && !isGV_with_GP(sv))
1459 if (UNLIKELY(new_type == SVt_PVIO)) {
1460 IO * const io = MUTABLE_IO(sv);
1461 GV *iogv = gv_fetchpvs("IO::File::", GV_ADD, SVt_PVHV);
1464 /* Clear the stashcache because a new IO could overrule a package
1466 DEBUG_o(Perl_deb(aTHX_ "sv_upgrade clearing PL_stashcache\n"));
1467 hv_clear(PL_stashcache);
1469 SvSTASH_set(io, MUTABLE_HV(SvREFCNT_inc(GvHV(iogv))));
1470 IoPAGE_LEN(sv) = 60;
1472 if (UNLIKELY(new_type == SVt_REGEXP))
1473 sv->sv_u.svu_rx = (regexp *)new_body;
1474 else if (old_type < SVt_PV) {
1475 /* referant will be NULL unless the old type was SVt_IV emulating
1477 sv->sv_u.svu_rv = referant;
1481 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1482 (unsigned long)new_type);
1485 /* if this is zero, this is a body-less SVt_NULL, SVt_IV/SVt_RV,
1486 and sometimes SVt_NV */
1487 if (old_type_details->body_size) {
1491 /* Note that there is an assumption that all bodies of types that
1492 can be upgraded came from arenas. Only the more complex non-
1493 upgradable types are allowed to be directly malloc()ed. */
1494 assert(old_type_details->arena);
1495 del_body((void*)((char*)old_body + old_type_details->offset),
1496 &PL_body_roots[old_type]);
1502 =for apidoc sv_backoff
1504 Remove any string offset. You should normally use the C<SvOOK_off> macro
1511 Perl_sv_backoff(SV *const sv)
1514 const char * const s = SvPVX_const(sv);
1516 PERL_ARGS_ASSERT_SV_BACKOFF;
1519 assert(SvTYPE(sv) != SVt_PVHV);
1520 assert(SvTYPE(sv) != SVt_PVAV);
1522 SvOOK_offset(sv, delta);
1524 SvLEN_set(sv, SvLEN(sv) + delta);
1525 SvPV_set(sv, SvPVX(sv) - delta);
1526 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1527 SvFLAGS(sv) &= ~SVf_OOK;
1534 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1535 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1536 Use the C<SvGROW> wrapper instead.
1541 static void S_sv_uncow(pTHX_ SV * const sv, const U32 flags);
1544 Perl_sv_grow(pTHX_ SV *const sv, STRLEN newlen)
1548 PERL_ARGS_ASSERT_SV_GROW;
1552 if (SvTYPE(sv) < SVt_PV) {
1553 sv_upgrade(sv, SVt_PV);
1554 s = SvPVX_mutable(sv);
1556 else if (SvOOK(sv)) { /* pv is offset? */
1558 s = SvPVX_mutable(sv);
1559 if (newlen > SvLEN(sv))
1560 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1564 if (SvIsCOW(sv)) S_sv_uncow(aTHX_ sv, 0);
1565 s = SvPVX_mutable(sv);
1568 #ifdef PERL_NEW_COPY_ON_WRITE
1569 /* the new COW scheme uses SvPVX(sv)[SvLEN(sv)-1] (if spare)
1570 * to store the COW count. So in general, allocate one more byte than
1571 * asked for, to make it likely this byte is always spare: and thus
1572 * make more strings COW-able.
1573 * If the new size is a big power of two, don't bother: we assume the
1574 * caller wanted a nice 2^N sized block and will be annoyed at getting
1580 #if defined(PERL_USE_MALLOC_SIZE) && defined(Perl_safesysmalloc_size)
1581 #define PERL_UNWARANTED_CHUMMINESS_WITH_MALLOC
1584 if (newlen > SvLEN(sv)) { /* need more room? */
1585 STRLEN minlen = SvCUR(sv);
1586 minlen += (minlen >> PERL_STRLEN_EXPAND_SHIFT) + 10;
1587 if (newlen < minlen)
1589 #ifndef PERL_UNWARANTED_CHUMMINESS_WITH_MALLOC
1591 /* Don't round up on the first allocation, as odds are pretty good that
1592 * the initial request is accurate as to what is really needed */
1594 newlen = PERL_STRLEN_ROUNDUP(newlen);
1597 if (SvLEN(sv) && s) {
1598 s = (char*)saferealloc(s, newlen);
1601 s = (char*)safemalloc(newlen);
1602 if (SvPVX_const(sv) && SvCUR(sv)) {
1603 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1607 #ifdef PERL_UNWARANTED_CHUMMINESS_WITH_MALLOC
1608 /* Do this here, do it once, do it right, and then we will never get
1609 called back into sv_grow() unless there really is some growing
1611 SvLEN_set(sv, Perl_safesysmalloc_size(s));
1613 SvLEN_set(sv, newlen);
1620 =for apidoc sv_setiv
1622 Copies an integer into the given SV, upgrading first if necessary.
1623 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1629 Perl_sv_setiv(pTHX_ SV *const sv, const IV i)
1631 PERL_ARGS_ASSERT_SV_SETIV;
1633 SV_CHECK_THINKFIRST_COW_DROP(sv);
1634 switch (SvTYPE(sv)) {
1637 sv_upgrade(sv, SVt_IV);
1640 sv_upgrade(sv, SVt_PVIV);
1644 if (!isGV_with_GP(sv))
1651 /* diag_listed_as: Can't coerce %s to %s in %s */
1652 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1656 (void)SvIOK_only(sv); /* validate number */
1662 =for apidoc sv_setiv_mg
1664 Like C<sv_setiv>, but also handles 'set' magic.
1670 Perl_sv_setiv_mg(pTHX_ SV *const sv, const IV i)
1672 PERL_ARGS_ASSERT_SV_SETIV_MG;
1679 =for apidoc sv_setuv
1681 Copies an unsigned integer into the given SV, upgrading first if necessary.
1682 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1688 Perl_sv_setuv(pTHX_ SV *const sv, const UV u)
1690 PERL_ARGS_ASSERT_SV_SETUV;
1692 /* With the if statement to ensure that integers are stored as IVs whenever
1694 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1697 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1699 If you wish to remove the following if statement, so that this routine
1700 (and its callers) always return UVs, please benchmark to see what the
1701 effect is. Modern CPUs may be different. Or may not :-)
1703 if (u <= (UV)IV_MAX) {
1704 sv_setiv(sv, (IV)u);
1713 =for apidoc sv_setuv_mg
1715 Like C<sv_setuv>, but also handles 'set' magic.
1721 Perl_sv_setuv_mg(pTHX_ SV *const sv, const UV u)
1723 PERL_ARGS_ASSERT_SV_SETUV_MG;
1730 =for apidoc sv_setnv
1732 Copies a double into the given SV, upgrading first if necessary.
1733 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1739 Perl_sv_setnv(pTHX_ SV *const sv, const NV num)
1741 PERL_ARGS_ASSERT_SV_SETNV;
1743 SV_CHECK_THINKFIRST_COW_DROP(sv);
1744 switch (SvTYPE(sv)) {
1747 sv_upgrade(sv, SVt_NV);
1751 sv_upgrade(sv, SVt_PVNV);
1755 if (!isGV_with_GP(sv))
1762 /* diag_listed_as: Can't coerce %s to %s in %s */
1763 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1768 (void)SvNOK_only(sv); /* validate number */
1773 =for apidoc sv_setnv_mg
1775 Like C<sv_setnv>, but also handles 'set' magic.
1781 Perl_sv_setnv_mg(pTHX_ SV *const sv, const NV num)
1783 PERL_ARGS_ASSERT_SV_SETNV_MG;
1789 /* Return a cleaned-up, printable version of sv, for non-numeric, or
1790 * not incrementable warning display.
1791 * Originally part of S_not_a_number().
1792 * The return value may be != tmpbuf.
1796 S_sv_display(pTHX_ SV *const sv, char *tmpbuf, STRLEN tmpbuf_size) {
1799 PERL_ARGS_ASSERT_SV_DISPLAY;
1802 SV *dsv = newSVpvs_flags("", SVs_TEMP);
1803 pv = sv_uni_display(dsv, sv, 10, UNI_DISPLAY_ISPRINT);
1806 const char * const limit = tmpbuf + tmpbuf_size - 8;
1807 /* each *s can expand to 4 chars + "...\0",
1808 i.e. need room for 8 chars */
1810 const char *s = SvPVX_const(sv);
1811 const char * const end = s + SvCUR(sv);
1812 for ( ; s < end && d < limit; s++ ) {
1814 if (! isASCII(ch) && !isPRINT_LC(ch)) {
1818 /* Map to ASCII "equivalent" of Latin1 */
1819 ch = LATIN1_TO_NATIVE(NATIVE_TO_LATIN1(ch) & 127);
1825 else if (ch == '\r') {
1829 else if (ch == '\f') {
1833 else if (ch == '\\') {
1837 else if (ch == '\0') {
1841 else if (isPRINT_LC(ch))
1860 /* Print an "isn't numeric" warning, using a cleaned-up,
1861 * printable version of the offending string
1865 S_not_a_number(pTHX_ SV *const sv)
1870 PERL_ARGS_ASSERT_NOT_A_NUMBER;
1872 pv = sv_display(sv, tmpbuf, sizeof(tmpbuf));
1875 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1876 /* diag_listed_as: Argument "%s" isn't numeric%s */
1877 "Argument \"%s\" isn't numeric in %s", pv,
1880 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1881 /* diag_listed_as: Argument "%s" isn't numeric%s */
1882 "Argument \"%s\" isn't numeric", pv);
1886 S_not_incrementable(pTHX_ SV *const sv) {
1890 PERL_ARGS_ASSERT_NOT_INCREMENTABLE;
1892 pv = sv_display(sv, tmpbuf, sizeof(tmpbuf));
1894 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1895 "Argument \"%s\" treated as 0 in increment (++)", pv);
1899 =for apidoc looks_like_number
1901 Test if the content of an SV looks like a number (or is a number).
1902 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1903 non-numeric warning), even if your atof() doesn't grok them. Get-magic is
1910 Perl_looks_like_number(pTHX_ SV *const sv)
1915 PERL_ARGS_ASSERT_LOOKS_LIKE_NUMBER;
1917 if (SvPOK(sv) || SvPOKp(sv)) {
1918 sbegin = SvPV_nomg_const(sv, len);
1921 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1922 return grok_number(sbegin, len, NULL);
1926 S_glob_2number(pTHX_ GV * const gv)
1928 PERL_ARGS_ASSERT_GLOB_2NUMBER;
1930 /* We know that all GVs stringify to something that is not-a-number,
1931 so no need to test that. */
1932 if (ckWARN(WARN_NUMERIC))
1934 SV *const buffer = sv_newmortal();
1935 gv_efullname3(buffer, gv, "*");
1936 not_a_number(buffer);
1938 /* We just want something true to return, so that S_sv_2iuv_common
1939 can tail call us and return true. */
1943 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1944 until proven guilty, assume that things are not that bad... */
1949 As 64 bit platforms often have an NV that doesn't preserve all bits of
1950 an IV (an assumption perl has been based on to date) it becomes necessary
1951 to remove the assumption that the NV always carries enough precision to
1952 recreate the IV whenever needed, and that the NV is the canonical form.
1953 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1954 precision as a side effect of conversion (which would lead to insanity
1955 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1956 1) to distinguish between IV/UV/NV slots that have a valid conversion cached
1957 where precision was lost, and IV/UV/NV slots that have a valid conversion
1958 which has lost no precision
1959 2) to ensure that if a numeric conversion to one form is requested that
1960 would lose precision, the precise conversion (or differently
1961 imprecise conversion) is also performed and cached, to prevent
1962 requests for different numeric formats on the same SV causing
1963 lossy conversion chains. (lossless conversion chains are perfectly
1968 SvIOKp is true if the IV slot contains a valid value
1969 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1970 SvNOKp is true if the NV slot contains a valid value
1971 SvNOK is true only if the NV value is accurate
1974 while converting from PV to NV, check to see if converting that NV to an
1975 IV(or UV) would lose accuracy over a direct conversion from PV to
1976 IV(or UV). If it would, cache both conversions, return NV, but mark
1977 SV as IOK NOKp (ie not NOK).
1979 While converting from PV to IV, check to see if converting that IV to an
1980 NV would lose accuracy over a direct conversion from PV to NV. If it
1981 would, cache both conversions, flag similarly.
1983 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1984 correctly because if IV & NV were set NV *always* overruled.
1985 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1986 changes - now IV and NV together means that the two are interchangeable:
1987 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1989 The benefit of this is that operations such as pp_add know that if
1990 SvIOK is true for both left and right operands, then integer addition
1991 can be used instead of floating point (for cases where the result won't
1992 overflow). Before, floating point was always used, which could lead to
1993 loss of precision compared with integer addition.
1995 * making IV and NV equal status should make maths accurate on 64 bit
1997 * may speed up maths somewhat if pp_add and friends start to use
1998 integers when possible instead of fp. (Hopefully the overhead in
1999 looking for SvIOK and checking for overflow will not outweigh the
2000 fp to integer speedup)
2001 * will slow down integer operations (callers of SvIV) on "inaccurate"
2002 values, as the change from SvIOK to SvIOKp will cause a call into
2003 sv_2iv each time rather than a macro access direct to the IV slot
2004 * should speed up number->string conversion on integers as IV is
2005 favoured when IV and NV are equally accurate
2007 ####################################################################
2008 You had better be using SvIOK_notUV if you want an IV for arithmetic:
2009 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
2010 On the other hand, SvUOK is true iff UV.
2011 ####################################################################
2013 Your mileage will vary depending your CPU's relative fp to integer
2017 #ifndef NV_PRESERVES_UV
2018 # define IS_NUMBER_UNDERFLOW_IV 1
2019 # define IS_NUMBER_UNDERFLOW_UV 2
2020 # define IS_NUMBER_IV_AND_UV 2
2021 # define IS_NUMBER_OVERFLOW_IV 4
2022 # define IS_NUMBER_OVERFLOW_UV 5
2024 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
2026 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
2028 S_sv_2iuv_non_preserve(pTHX_ SV *const sv
2034 PERL_ARGS_ASSERT_SV_2IUV_NON_PRESERVE;
2035 PERL_UNUSED_CONTEXT;
2037 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
2038 if (SvNVX(sv) < (NV)IV_MIN) {
2039 (void)SvIOKp_on(sv);
2041 SvIV_set(sv, IV_MIN);
2042 return IS_NUMBER_UNDERFLOW_IV;
2044 if (SvNVX(sv) > (NV)UV_MAX) {
2045 (void)SvIOKp_on(sv);
2048 SvUV_set(sv, UV_MAX);
2049 return IS_NUMBER_OVERFLOW_UV;
2051 (void)SvIOKp_on(sv);
2053 /* Can't use strtol etc to convert this string. (See truth table in
2055 if (SvNVX(sv) <= (UV)IV_MAX) {
2056 SvIV_set(sv, I_V(SvNVX(sv)));
2057 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2058 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
2060 /* Integer is imprecise. NOK, IOKp */
2062 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
2065 SvUV_set(sv, U_V(SvNVX(sv)));
2066 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2067 if (SvUVX(sv) == UV_MAX) {
2068 /* As we know that NVs don't preserve UVs, UV_MAX cannot
2069 possibly be preserved by NV. Hence, it must be overflow.
2071 return IS_NUMBER_OVERFLOW_UV;
2073 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
2075 /* Integer is imprecise. NOK, IOKp */
2077 return IS_NUMBER_OVERFLOW_IV;
2079 #endif /* !NV_PRESERVES_UV*/
2081 /* If numtype is infnan, set the NV of the sv accordingly.
2082 * If numtype is anything else, try setting the NV using Atof(PV). */
2084 S_sv_setnv(pTHX_ SV* sv, int numtype)
2086 bool pok = cBOOL(SvPOK(sv));
2088 if ((numtype & IS_NUMBER_INFINITY)) {
2089 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -NV_INF : NV_INF);
2092 else if ((numtype & IS_NUMBER_NAN)) {
2093 SvNV_set(sv, NV_NAN);
2097 SvNV_set(sv, Atof(SvPVX_const(sv)));
2098 /* Purposefully no true nok here, since we don't want to blow
2099 * away the possible IOK/UV of an existing sv. */
2102 SvNOK_only(sv); /* No IV or UV please, this is pure infnan. */
2104 SvPOK_on(sv); /* PV is okay, though. */
2109 S_sv_2iuv_common(pTHX_ SV *const sv)
2111 PERL_ARGS_ASSERT_SV_2IUV_COMMON;
2114 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
2115 * without also getting a cached IV/UV from it at the same time
2116 * (ie PV->NV conversion should detect loss of accuracy and cache
2117 * IV or UV at same time to avoid this. */
2118 /* IV-over-UV optimisation - choose to cache IV if possible */
2120 if (UNLIKELY(Perl_isinfnan(SvNVX(sv))))
2123 if (SvTYPE(sv) == SVt_NV)
2124 sv_upgrade(sv, SVt_PVNV);
2126 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
2127 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
2128 certainly cast into the IV range at IV_MAX, whereas the correct
2129 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
2131 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2132 SvIV_set(sv, I_V(SvNVX(sv)));
2133 if (SvNVX(sv) == (NV) SvIVX(sv)
2134 #ifndef NV_PRESERVES_UV
2135 && (((UV)1 << NV_PRESERVES_UV_BITS) >
2136 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
2137 /* Don't flag it as "accurately an integer" if the number
2138 came from a (by definition imprecise) NV operation, and
2139 we're outside the range of NV integer precision */
2143 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
2145 /* scalar has trailing garbage, eg "42a" */
2147 DEBUG_c(PerlIO_printf(Perl_debug_log,
2148 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
2154 /* IV not precise. No need to convert from PV, as NV
2155 conversion would already have cached IV if it detected
2156 that PV->IV would be better than PV->NV->IV
2157 flags already correct - don't set public IOK. */
2158 DEBUG_c(PerlIO_printf(Perl_debug_log,
2159 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
2164 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
2165 but the cast (NV)IV_MIN rounds to a the value less (more
2166 negative) than IV_MIN which happens to be equal to SvNVX ??
2167 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
2168 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
2169 (NV)UVX == NVX are both true, but the values differ. :-(
2170 Hopefully for 2s complement IV_MIN is something like
2171 0x8000000000000000 which will be exact. NWC */
2174 SvUV_set(sv, U_V(SvNVX(sv)));
2176 (SvNVX(sv) == (NV) SvUVX(sv))
2177 #ifndef NV_PRESERVES_UV
2178 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
2179 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
2180 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
2181 /* Don't flag it as "accurately an integer" if the number
2182 came from a (by definition imprecise) NV operation, and
2183 we're outside the range of NV integer precision */
2189 DEBUG_c(PerlIO_printf(Perl_debug_log,
2190 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
2196 else if (SvPOKp(sv)) {
2198 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2199 /* We want to avoid a possible problem when we cache an IV/ a UV which
2200 may be later translated to an NV, and the resulting NV is not
2201 the same as the direct translation of the initial string
2202 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
2203 be careful to ensure that the value with the .456 is around if the
2204 NV value is requested in the future).
2206 This means that if we cache such an IV/a UV, we need to cache the
2207 NV as well. Moreover, we trade speed for space, and do not
2208 cache the NV if we are sure it's not needed.
2211 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
2212 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2213 == IS_NUMBER_IN_UV) {
2214 /* It's definitely an integer, only upgrade to PVIV */
2215 if (SvTYPE(sv) < SVt_PVIV)
2216 sv_upgrade(sv, SVt_PVIV);
2218 } else if (SvTYPE(sv) < SVt_PVNV)
2219 sv_upgrade(sv, SVt_PVNV);
2221 if ((numtype & (IS_NUMBER_INFINITY | IS_NUMBER_NAN))) {
2222 S_sv_setnv(aTHX_ sv, numtype);
2226 /* If NVs preserve UVs then we only use the UV value if we know that
2227 we aren't going to call atof() below. If NVs don't preserve UVs
2228 then the value returned may have more precision than atof() will
2229 return, even though value isn't perfectly accurate. */
2230 if ((numtype & (IS_NUMBER_IN_UV
2231 #ifdef NV_PRESERVES_UV
2234 )) == IS_NUMBER_IN_UV) {
2235 /* This won't turn off the public IOK flag if it was set above */
2236 (void)SvIOKp_on(sv);
2238 if (!(numtype & IS_NUMBER_NEG)) {
2240 if (value <= (UV)IV_MAX) {
2241 SvIV_set(sv, (IV)value);
2243 /* it didn't overflow, and it was positive. */
2244 SvUV_set(sv, value);
2248 /* 2s complement assumption */
2249 if (value <= (UV)IV_MIN) {
2250 SvIV_set(sv, -(IV)value);
2252 /* Too negative for an IV. This is a double upgrade, but
2253 I'm assuming it will be rare. */
2254 if (SvTYPE(sv) < SVt_PVNV)
2255 sv_upgrade(sv, SVt_PVNV);
2259 SvNV_set(sv, -(NV)value);
2260 SvIV_set(sv, IV_MIN);
2264 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2265 will be in the previous block to set the IV slot, and the next
2266 block to set the NV slot. So no else here. */
2268 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2269 != IS_NUMBER_IN_UV) {
2270 /* It wasn't an (integer that doesn't overflow the UV). */
2271 S_sv_setnv(aTHX_ sv, numtype);
2273 if (! numtype && ckWARN(WARN_NUMERIC))
2276 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" NVgf ")\n",
2277 PTR2UV(sv), SvNVX(sv)));
2279 #ifdef NV_PRESERVES_UV
2280 (void)SvIOKp_on(sv);
2282 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2283 SvIV_set(sv, I_V(SvNVX(sv)));
2284 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2287 NOOP; /* Integer is imprecise. NOK, IOKp */
2289 /* UV will not work better than IV */
2291 if (SvNVX(sv) > (NV)UV_MAX) {
2293 /* Integer is inaccurate. NOK, IOKp, is UV */
2294 SvUV_set(sv, UV_MAX);
2296 SvUV_set(sv, U_V(SvNVX(sv)));
2297 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2298 NV preservse UV so can do correct comparison. */
2299 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2302 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2307 #else /* NV_PRESERVES_UV */
2308 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2309 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2310 /* The IV/UV slot will have been set from value returned by
2311 grok_number above. The NV slot has just been set using
2314 assert (SvIOKp(sv));
2316 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2317 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2318 /* Small enough to preserve all bits. */
2319 (void)SvIOKp_on(sv);
2321 SvIV_set(sv, I_V(SvNVX(sv)));
2322 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2324 /* Assumption: first non-preserved integer is < IV_MAX,
2325 this NV is in the preserved range, therefore: */
2326 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2328 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2332 0 0 already failed to read UV.
2333 0 1 already failed to read UV.
2334 1 0 you won't get here in this case. IV/UV
2335 slot set, public IOK, Atof() unneeded.
2336 1 1 already read UV.
2337 so there's no point in sv_2iuv_non_preserve() attempting
2338 to use atol, strtol, strtoul etc. */
2340 sv_2iuv_non_preserve (sv, numtype);
2342 sv_2iuv_non_preserve (sv);
2346 #endif /* NV_PRESERVES_UV */
2347 /* It might be more code efficient to go through the entire logic above
2348 and conditionally set with SvIOKp_on() rather than SvIOK(), but it
2349 gets complex and potentially buggy, so more programmer efficient
2350 to do it this way, by turning off the public flags: */
2352 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2356 if (isGV_with_GP(sv))
2357 return glob_2number(MUTABLE_GV(sv));
2359 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2361 if (SvTYPE(sv) < SVt_IV)
2362 /* Typically the caller expects that sv_any is not NULL now. */
2363 sv_upgrade(sv, SVt_IV);
2364 /* Return 0 from the caller. */
2371 =for apidoc sv_2iv_flags
2373 Return the integer value of an SV, doing any necessary string
2374 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2375 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2381 Perl_sv_2iv_flags(pTHX_ SV *const sv, const I32 flags)
2383 PERL_ARGS_ASSERT_SV_2IV_FLAGS;
2385 assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV
2386 && SvTYPE(sv) != SVt_PVFM);
2388 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2391 if (SvNOK(sv) && UNLIKELY(Perl_isinfnan(SvNVX(sv))))
2392 return 0; /* So wrong but what can we do. */
2397 if (flags & SV_SKIP_OVERLOAD)
2399 tmpstr = AMG_CALLunary(sv, numer_amg);
2400 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2401 return SvIV(tmpstr);
2404 return PTR2IV(SvRV(sv));
2407 if (SvVALID(sv) || isREGEXP(sv)) {
2408 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2409 the same flag bit as SVf_IVisUV, so must not let them cache IVs.
2410 In practice they are extremely unlikely to actually get anywhere
2411 accessible by user Perl code - the only way that I'm aware of is when
2412 a constant subroutine which is used as the second argument to index.
2414 Regexps have no SvIVX and SvNVX fields.
2416 assert(isREGEXP(sv) || SvPOKp(sv));
2419 const char * const ptr =
2420 isREGEXP(sv) ? RX_WRAPPED((REGEXP*)sv) : SvPVX_const(sv);
2421 const int numtype = grok_number(ptr, SvCUR(sv), &value);
2423 assert((numtype & (IS_NUMBER_INFINITY | IS_NUMBER_NAN)) == 0);
2425 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2426 == IS_NUMBER_IN_UV) {
2427 /* It's definitely an integer */
2428 if (numtype & IS_NUMBER_NEG) {
2429 if (value < (UV)IV_MIN)
2432 if (value < (UV)IV_MAX)
2438 if (ckWARN(WARN_NUMERIC))
2441 return I_V(Atof(ptr));
2445 if (SvTHINKFIRST(sv)) {
2446 #ifdef PERL_OLD_COPY_ON_WRITE
2448 sv_force_normal_flags(sv, 0);
2451 if (SvREADONLY(sv) && !SvOK(sv)) {
2452 if (ckWARN(WARN_UNINITIALIZED))
2459 if (S_sv_2iuv_common(aTHX_ sv))
2463 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2464 PTR2UV(sv),SvIVX(sv)));
2465 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2469 =for apidoc sv_2uv_flags
2471 Return the unsigned integer value of an SV, doing any necessary string
2472 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2473 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2479 Perl_sv_2uv_flags(pTHX_ SV *const sv, const I32 flags)
2481 PERL_ARGS_ASSERT_SV_2UV_FLAGS;
2483 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2486 if (SvNOK(sv) && UNLIKELY(Perl_isinfnan(SvNVX(sv))))
2487 return 0; /* So wrong but what can we do. */
2492 if (flags & SV_SKIP_OVERLOAD)
2494 tmpstr = AMG_CALLunary(sv, numer_amg);
2495 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2496 return SvUV(tmpstr);
2499 return PTR2UV(SvRV(sv));
2502 if (SvVALID(sv) || isREGEXP(sv)) {
2503 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2504 the same flag bit as SVf_IVisUV, so must not let them cache IVs.
2505 Regexps have no SvIVX and SvNVX fields. */
2506 assert(isREGEXP(sv) || SvPOKp(sv));
2509 const char * const ptr =
2510 isREGEXP(sv) ? RX_WRAPPED((REGEXP*)sv) : SvPVX_const(sv);
2511 const int numtype = grok_number(ptr, SvCUR(sv), &value);
2513 assert((numtype & (IS_NUMBER_INFINITY | IS_NUMBER_NAN)) == 0);
2515 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2516 == IS_NUMBER_IN_UV) {
2517 /* It's definitely an integer */
2518 if (!(numtype & IS_NUMBER_NEG))
2523 if (ckWARN(WARN_NUMERIC))
2526 return U_V(Atof(ptr));
2530 if (SvTHINKFIRST(sv)) {
2531 #ifdef PERL_OLD_COPY_ON_WRITE
2533 sv_force_normal_flags(sv, 0);
2536 if (SvREADONLY(sv) && !SvOK(sv)) {
2537 if (ckWARN(WARN_UNINITIALIZED))
2544 if (S_sv_2iuv_common(aTHX_ sv))
2548 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2549 PTR2UV(sv),SvUVX(sv)));
2550 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2554 =for apidoc sv_2nv_flags
2556 Return the num value of an SV, doing any necessary string or integer
2557 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2558 Normally used via the C<SvNV(sv)> and C<SvNVx(sv)> macros.
2564 Perl_sv_2nv_flags(pTHX_ SV *const sv, const I32 flags)
2566 PERL_ARGS_ASSERT_SV_2NV_FLAGS;
2568 assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV
2569 && SvTYPE(sv) != SVt_PVFM);
2570 if (SvGMAGICAL(sv) || SvVALID(sv) || isREGEXP(sv)) {
2571 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2572 the same flag bit as SVf_IVisUV, so must not let them cache NVs.
2573 Regexps have no SvIVX and SvNVX fields. */
2575 if (flags & SV_GMAGIC)
2579 if (SvPOKp(sv) && !SvIOKp(sv)) {
2580 ptr = SvPVX_const(sv);
2582 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2583 !grok_number(ptr, SvCUR(sv), NULL))
2589 return (NV)SvUVX(sv);
2591 return (NV)SvIVX(sv);
2597 ptr = RX_WRAPPED((REGEXP *)sv);
2600 assert(SvTYPE(sv) >= SVt_PVMG);
2601 /* This falls through to the report_uninit near the end of the
2603 } else if (SvTHINKFIRST(sv)) {
2608 if (flags & SV_SKIP_OVERLOAD)
2610 tmpstr = AMG_CALLunary(sv, numer_amg);
2611 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2612 return SvNV(tmpstr);
2615 return PTR2NV(SvRV(sv));
2617 #ifdef PERL_OLD_COPY_ON_WRITE
2619 sv_force_normal_flags(sv, 0);
2622 if (SvREADONLY(sv) && !SvOK(sv)) {
2623 if (ckWARN(WARN_UNINITIALIZED))
2628 if (SvTYPE(sv) < SVt_NV) {
2629 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2630 sv_upgrade(sv, SVt_NV);
2632 STORE_NUMERIC_LOCAL_SET_STANDARD();
2633 PerlIO_printf(Perl_debug_log,
2634 "0x%"UVxf" num(%" NVgf ")\n",
2635 PTR2UV(sv), SvNVX(sv));
2636 RESTORE_NUMERIC_LOCAL();
2639 else if (SvTYPE(sv) < SVt_PVNV)
2640 sv_upgrade(sv, SVt_PVNV);
2645 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2646 #ifdef NV_PRESERVES_UV
2652 /* Only set the public NV OK flag if this NV preserves the IV */
2653 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2655 SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2656 : (SvIVX(sv) == I_V(SvNVX(sv))))
2662 else if (SvPOKp(sv)) {
2664 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2665 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2667 #ifdef NV_PRESERVES_UV
2668 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2669 == IS_NUMBER_IN_UV) {
2670 /* It's definitely an integer */
2671 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2673 S_sv_setnv(aTHX_ sv, numtype);
2680 if ((numtype & IS_NUMBER_INFINITY)) {
2681 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -NV_INF : NV_INF);
2683 } else if ((numtype & IS_NUMBER_NAN)) {
2684 SvNV_set(sv, NV_NAN);
2687 SvNV_set(sv, Atof(SvPVX_const(sv)));
2688 /* Only set the public NV OK flag if this NV preserves the value in
2689 the PV at least as well as an IV/UV would.
2690 Not sure how to do this 100% reliably. */
2691 /* if that shift count is out of range then Configure's test is
2692 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2694 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2695 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2696 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2697 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2698 /* Can't use strtol etc to convert this string, so don't try.
2699 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2702 /* value has been set. It may not be precise. */
2703 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2704 /* 2s complement assumption for (UV)IV_MIN */
2705 SvNOK_on(sv); /* Integer is too negative. */
2710 if (numtype & IS_NUMBER_NEG) {
2711 SvIV_set(sv, -(IV)value);
2712 } else if (value <= (UV)IV_MAX) {
2713 SvIV_set(sv, (IV)value);
2715 SvUV_set(sv, value);
2719 if (numtype & IS_NUMBER_NOT_INT) {
2720 /* I believe that even if the original PV had decimals,
2721 they are lost beyond the limit of the FP precision.
2722 However, neither is canonical, so both only get p
2723 flags. NWC, 2000/11/25 */
2724 /* Both already have p flags, so do nothing */
2726 const NV nv = SvNVX(sv);
2727 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2728 if (SvIVX(sv) == I_V(nv)) {
2731 /* It had no "." so it must be integer. */
2735 /* between IV_MAX and NV(UV_MAX).
2736 Could be slightly > UV_MAX */
2738 if (numtype & IS_NUMBER_NOT_INT) {
2739 /* UV and NV both imprecise. */
2741 const UV nv_as_uv = U_V(nv);
2743 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2752 /* It might be more code efficient to go through the entire logic above
2753 and conditionally set with SvNOKp_on() rather than SvNOK(), but it
2754 gets complex and potentially buggy, so more programmer efficient
2755 to do it this way, by turning off the public flags: */
2757 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2759 #endif /* NV_PRESERVES_UV */
2762 if (isGV_with_GP(sv)) {
2763 glob_2number(MUTABLE_GV(sv));
2767 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2769 assert (SvTYPE(sv) >= SVt_NV);
2770 /* Typically the caller expects that sv_any is not NULL now. */
2771 /* XXX Ilya implies that this is a bug in callers that assume this
2772 and ideally should be fixed. */
2776 STORE_NUMERIC_LOCAL_SET_STANDARD();
2777 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" NVgf ")\n",
2778 PTR2UV(sv), SvNVX(sv));
2779 RESTORE_NUMERIC_LOCAL();
2787 Return an SV with the numeric value of the source SV, doing any necessary
2788 reference or overload conversion. You must use the C<SvNUM(sv)> macro to
2789 access this function.
2795 Perl_sv_2num(pTHX_ SV *const sv)
2797 PERL_ARGS_ASSERT_SV_2NUM;
2802 SV * const tmpsv = AMG_CALLunary(sv, numer_amg);
2803 TAINT_IF(tmpsv && SvTAINTED(tmpsv));
2804 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2805 return sv_2num(tmpsv);
2807 return sv_2mortal(newSVuv(PTR2UV(SvRV(sv))));
2810 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2811 * UV as a string towards the end of buf, and return pointers to start and
2814 * We assume that buf is at least TYPE_CHARS(UV) long.
2818 S_uiv_2buf(char *const buf, const IV iv, UV uv, const int is_uv, char **const peob)
2820 char *ptr = buf + TYPE_CHARS(UV);
2821 char * const ebuf = ptr;
2824 PERL_ARGS_ASSERT_UIV_2BUF;
2836 *--ptr = '0' + (char)(uv % 10);
2844 /* Helper for sv_2pv_flags and sv_vcatpvfn_flags. If the NV is an
2845 * infinity or a not-a-number, writes the appropriate strings to the
2846 * buffer, including a zero byte. On success returns the written length,
2847 * excluding the zero byte, on failure (not an infinity, not a nan, or the
2848 * maxlen too small) returns zero.
2850 * XXX for "Inf", "-Inf", and "NaN", we could have three read-only
2851 * shared string constants we point to, instead of generating a new
2852 * string for each instance. */
2854 S_infnan_2pv(NV nv, char* buffer, size_t maxlen) {
2855 assert(maxlen >= 4);
2856 if (maxlen < 4) /* "Inf\0", "NaN\0" */
2860 if (Perl_isinf(nv)) {
2862 if (maxlen < 5) /* "-Inf\0" */
2869 } else if (Perl_isnan(nv)) {
2873 /* XXX optionally output the payload mantissa bits as
2874 * "(unsigned)" (to match the nan("...") C99 function,
2875 * or maybe as "(0xhhh...)" would make more sense...
2876 * provide a format string so that the user can decide?
2877 * NOTE: would affect the maxlen and assert() logic.*/
2882 assert((s == buffer + 3) || (s == buffer + 4));
2884 return s - buffer - 1; /* -1: excluding the zero byte */
2889 =for apidoc sv_2pv_flags
2891 Returns a pointer to the string value of an SV, and sets *lp to its length.
2892 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a
2893 string if necessary. Normally invoked via the C<SvPV_flags> macro.
2894 C<sv_2pv()> and C<sv_2pv_nomg> usually end up here too.
2900 Perl_sv_2pv_flags(pTHX_ SV *const sv, STRLEN *const lp, const I32 flags)
2904 PERL_ARGS_ASSERT_SV_2PV_FLAGS;
2906 assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV
2907 && SvTYPE(sv) != SVt_PVFM);
2908 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2913 if (flags & SV_SKIP_OVERLOAD)
2915 tmpstr = AMG_CALLunary(sv, string_amg);
2916 TAINT_IF(tmpstr && SvTAINTED(tmpstr));
2917 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2919 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2923 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2924 if (flags & SV_CONST_RETURN) {
2925 pv = (char *) SvPVX_const(tmpstr);
2927 pv = (flags & SV_MUTABLE_RETURN)
2928 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2931 *lp = SvCUR(tmpstr);
2933 pv = sv_2pv_flags(tmpstr, lp, flags);
2946 SV *const referent = SvRV(sv);
2950 retval = buffer = savepvn("NULLREF", len);
2951 } else if (SvTYPE(referent) == SVt_REGEXP &&
2952 (!(PL_curcop->cop_hints & HINT_NO_AMAGIC) ||
2953 amagic_is_enabled(string_amg))) {
2954 REGEXP * const re = (REGEXP *)MUTABLE_PTR(referent);
2958 /* If the regex is UTF-8 we want the containing scalar to
2959 have an UTF-8 flag too */
2966 *lp = RX_WRAPLEN(re);
2968 return RX_WRAPPED(re);
2970 const char *const typestr = sv_reftype(referent, 0);
2971 const STRLEN typelen = strlen(typestr);
2972 UV addr = PTR2UV(referent);
2973 const char *stashname = NULL;
2974 STRLEN stashnamelen = 0; /* hush, gcc */
2975 const char *buffer_end;
2977 if (SvOBJECT(referent)) {
2978 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2981 stashname = HEK_KEY(name);
2982 stashnamelen = HEK_LEN(name);
2984 if (HEK_UTF8(name)) {
2990 stashname = "__ANON__";
2993 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2994 + 2 * sizeof(UV) + 2 /* )\0 */;
2996 len = typelen + 3 /* (0x */
2997 + 2 * sizeof(UV) + 2 /* )\0 */;
3000 Newx(buffer, len, char);
3001 buffer_end = retval = buffer + len;
3003 /* Working backwards */
3007 *--retval = PL_hexdigit[addr & 15];
3008 } while (addr >>= 4);
3014 memcpy(retval, typestr, typelen);
3018 retval -= stashnamelen;
3019 memcpy(retval, stashname, stashnamelen);
3021 /* retval may not necessarily have reached the start of the
3023 assert (retval >= buffer);
3025 len = buffer_end - retval - 1; /* -1 for that \0 */
3037 if (flags & SV_MUTABLE_RETURN)
3038 return SvPVX_mutable(sv);
3039 if (flags & SV_CONST_RETURN)
3040 return (char *)SvPVX_const(sv);
3045 /* I'm assuming that if both IV and NV are equally valid then
3046 converting the IV is going to be more efficient */
3047 const U32 isUIOK = SvIsUV(sv);
3048 char buf[TYPE_CHARS(UV)];
3052 if (SvTYPE(sv) < SVt_PVIV)
3053 sv_upgrade(sv, SVt_PVIV);
3054 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
3056 /* inlined from sv_setpvn */
3057 s = SvGROW_mutable(sv, len + 1);
3058 Move(ptr, s, len, char);
3063 else if (SvNOK(sv)) {
3064 if (SvTYPE(sv) < SVt_PVNV)
3065 sv_upgrade(sv, SVt_PVNV);
3066 if (SvNVX(sv) == 0.0
3067 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
3068 /* XXX Create SvNVXeq(sv, x)? Or just SvNVXzero(sv)? */
3069 && !Perl_isnan(SvNVX(sv))
3072 s = SvGROW_mutable(sv, 2);
3077 STRLEN size = 5; /* "-Inf\0" */
3079 s = SvGROW_mutable(sv, size);
3080 len = S_infnan_2pv(SvNVX(sv), s, size);
3086 /* some Xenix systems wipe out errno here */
3095 5 + /* exponent digits */
3099 s = SvGROW_mutable(sv, size);
3100 #ifndef USE_LOCALE_NUMERIC
3101 SNPRINTF_G(SvNVX(sv), s, SvLEN(sv), NV_DIG);
3107 DECLARE_STORE_LC_NUMERIC_SET_TO_NEEDED();
3111 PL_numeric_radix_sv &&
3112 SvUTF8(PL_numeric_radix_sv);
3113 if (local_radix && SvLEN(PL_numeric_radix_sv) > 1) {
3114 size += SvLEN(PL_numeric_radix_sv) - 1;
3115 s = SvGROW_mutable(sv, size);
3118 SNPRINTF_G(SvNVX(sv), s, SvLEN(sv), NV_DIG);
3120 /* If the radix character is UTF-8, and actually is in the
3121 * output, turn on the UTF-8 flag for the scalar */
3123 instr(s, SvPVX_const(PL_numeric_radix_sv))) {
3127 RESTORE_LC_NUMERIC();
3130 /* We don't call SvPOK_on(), because it may come to
3131 * pass that the locale changes so that the
3132 * stringification we just did is no longer correct. We
3133 * will have to re-stringify every time it is needed */
3140 else if (isGV_with_GP(sv)) {
3141 GV *const gv = MUTABLE_GV(sv);
3142 SV *const buffer = sv_newmortal();
3144 gv_efullname3(buffer, gv, "*");
3146 assert(SvPOK(buffer));
3150 *lp = SvCUR(buffer);
3151 return SvPVX(buffer);
3153 else if (isREGEXP(sv)) {
3154 if (lp) *lp = RX_WRAPLEN((REGEXP *)sv);
3155 return RX_WRAPPED((REGEXP *)sv);
3160 if (flags & SV_UNDEF_RETURNS_NULL)
3162 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
3164 /* Typically the caller expects that sv_any is not NULL now. */
3165 if (!SvREADONLY(sv) && SvTYPE(sv) < SVt_PV)
3166 sv_upgrade(sv, SVt_PV);
3171 const STRLEN len = s - SvPVX_const(sv);
3176 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
3177 PTR2UV(sv),SvPVX_const(sv)));
3178 if (flags & SV_CONST_RETURN)
3179 return (char *)SvPVX_const(sv);
3180 if (flags & SV_MUTABLE_RETURN)
3181 return SvPVX_mutable(sv);
3186 =for apidoc sv_copypv
3188 Copies a stringified representation of the source SV into the
3189 destination SV. Automatically performs any necessary mg_get and
3190 coercion of numeric values into strings. Guaranteed to preserve
3191 UTF8 flag even from overloaded objects. Similar in nature to
3192 sv_2pv[_flags] but operates directly on an SV instead of just the
3193 string. Mostly uses sv_2pv_flags to do its work, except when that
3194 would lose the UTF-8'ness of the PV.
3196 =for apidoc sv_copypv_nomg
3198 Like sv_copypv, but doesn't invoke get magic first.
3200 =for apidoc sv_copypv_flags
3202 Implementation of sv_copypv and sv_copypv_nomg. Calls get magic iff flags
3209 Perl_sv_copypv(pTHX_ SV *const dsv, SV *const ssv)
3211 PERL_ARGS_ASSERT_SV_COPYPV;
3213 sv_copypv_flags(dsv, ssv, 0);
3217 Perl_sv_copypv_flags(pTHX_ SV *const dsv, SV *const ssv, const I32 flags)
3222 PERL_ARGS_ASSERT_SV_COPYPV_FLAGS;
3224 s = SvPV_flags_const(ssv,len,(flags & SV_GMAGIC));
3225 sv_setpvn(dsv,s,len);
3233 =for apidoc sv_2pvbyte
3235 Return a pointer to the byte-encoded representation of the SV, and set *lp
3236 to its length. May cause the SV to be downgraded from UTF-8 as a
3239 Usually accessed via the C<SvPVbyte> macro.
3245 Perl_sv_2pvbyte(pTHX_ SV *sv, STRLEN *const lp)
3247 PERL_ARGS_ASSERT_SV_2PVBYTE;
3250 if (((SvREADONLY(sv) || SvFAKE(sv)) && !SvIsCOW(sv))
3251 || isGV_with_GP(sv) || SvROK(sv)) {
3252 SV *sv2 = sv_newmortal();
3253 sv_copypv_nomg(sv2,sv);
3256 sv_utf8_downgrade(sv,0);
3257 return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv);
3261 =for apidoc sv_2pvutf8
3263 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
3264 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
3266 Usually accessed via the C<SvPVutf8> macro.
3272 Perl_sv_2pvutf8(pTHX_ SV *sv, STRLEN *const lp)
3274 PERL_ARGS_ASSERT_SV_2PVUTF8;
3276 if (((SvREADONLY(sv) || SvFAKE(sv)) && !SvIsCOW(sv))
3277 || isGV_with_GP(sv) || SvROK(sv))
3278 sv = sv_mortalcopy(sv);
3281 sv_utf8_upgrade_nomg(sv);
3282 return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv);
3287 =for apidoc sv_2bool
3289 This macro is only used by sv_true() or its macro equivalent, and only if
3290 the latter's argument is neither SvPOK, SvIOK nor SvNOK.
3291 It calls sv_2bool_flags with the SV_GMAGIC flag.
3293 =for apidoc sv_2bool_flags
3295 This function is only used by sv_true() and friends, and only if
3296 the latter's argument is neither SvPOK, SvIOK nor SvNOK. If the flags
3297 contain SV_GMAGIC, then it does an mg_get() first.
3304 Perl_sv_2bool_flags(pTHX_ SV *sv, I32 flags)
3306 PERL_ARGS_ASSERT_SV_2BOOL_FLAGS;
3309 if(flags & SV_GMAGIC) SvGETMAGIC(sv);
3315 SV * const tmpsv = AMG_CALLunary(sv, bool__amg);
3316 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv)))) {
3319 if(SvGMAGICAL(sv)) {
3321 goto restart; /* call sv_2bool */
3323 /* expanded SvTRUE_common(sv, (flags = 0, goto restart)) */
3324 else if(!SvOK(sv)) {
3327 else if(SvPOK(sv)) {
3328 svb = SvPVXtrue(sv);
3330 else if((SvFLAGS(sv) & (SVf_IOK|SVf_NOK))) {
3331 svb = (SvIOK(sv) && SvIVX(sv) != 0)
3332 || (SvNOK(sv) && SvNVX(sv) != 0.0);
3336 goto restart; /* call sv_2bool_nomg */
3341 return SvRV(sv) != 0;
3345 RX_WRAPLEN(sv) > 1 || (RX_WRAPLEN(sv) && *RX_WRAPPED(sv) != '0');
3346 return SvTRUE_common(sv, isGV_with_GP(sv) ? 1 : 0);
3350 =for apidoc sv_utf8_upgrade
3352 Converts the PV of an SV to its UTF-8-encoded form.
3353 Forces the SV to string form if it is not already.
3354 Will C<mg_get> on C<sv> if appropriate.
3355 Always sets the SvUTF8 flag to avoid future validity checks even
3356 if the whole string is the same in UTF-8 as not.
3357 Returns the number of bytes in the converted string
3359 This is not a general purpose byte encoding to Unicode interface:
3360 use the Encode extension for that.
3362 =for apidoc sv_utf8_upgrade_nomg
3364 Like sv_utf8_upgrade, but doesn't do magic on C<sv>.
3366 =for apidoc sv_utf8_upgrade_flags
3368 Converts the PV of an SV to its UTF-8-encoded form.
3369 Forces the SV to string form if it is not already.
3370 Always sets the SvUTF8 flag to avoid future validity checks even
3371 if all the bytes are invariant in UTF-8.
3372 If C<flags> has C<SV_GMAGIC> bit set,
3373 will C<mg_get> on C<sv> if appropriate, else not.
3375 If C<flags> has SV_FORCE_UTF8_UPGRADE set, this function assumes that the PV
3376 will expand when converted to UTF-8, and skips the extra work of checking for
3377 that. Typically this flag is used by a routine that has already parsed the
3378 string and found such characters, and passes this information on so that the
3379 work doesn't have to be repeated.
3381 Returns the number of bytes in the converted string.
3383 This is not a general purpose byte encoding to Unicode interface:
3384 use the Encode extension for that.
3386 =for apidoc sv_utf8_upgrade_flags_grow
3388 Like sv_utf8_upgrade_flags, but has an additional parameter C<extra>, which is
3389 the number of unused bytes the string of 'sv' is guaranteed to have free after
3390 it upon return. This allows the caller to reserve extra space that it intends
3391 to fill, to avoid extra grows.
3393 C<sv_utf8_upgrade>, C<sv_utf8_upgrade_nomg>, and C<sv_utf8_upgrade_flags>
3394 are implemented in terms of this function.
3396 Returns the number of bytes in the converted string (not including the spares).
3400 (One might think that the calling routine could pass in the position of the
3401 first variant character when it has set SV_FORCE_UTF8_UPGRADE, so it wouldn't
3402 have to be found again. But that is not the case, because typically when the
3403 caller is likely to use this flag, it won't be calling this routine unless it
3404 finds something that won't fit into a byte. Otherwise it tries to not upgrade
3405 and just use bytes. But some things that do fit into a byte are variants in
3406 utf8, and the caller may not have been keeping track of these.)
3408 If the routine itself changes the string, it adds a trailing C<NUL>. Such a
3409 C<NUL> isn't guaranteed due to having other routines do the work in some input
3410 cases, or if the input is already flagged as being in utf8.
3412 The speed of this could perhaps be improved for many cases if someone wanted to
3413 write a fast function that counts the number of variant characters in a string,
3414 especially if it could return the position of the first one.
3419 Perl_sv_utf8_upgrade_flags_grow(pTHX_ SV *const sv, const I32 flags, STRLEN extra)
3421 PERL_ARGS_ASSERT_SV_UTF8_UPGRADE_FLAGS_GROW;
3423 if (sv == &PL_sv_undef)
3425 if (!SvPOK_nog(sv)) {
3427 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
3428 (void) sv_2pv_flags(sv,&len, flags);
3430 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3434 (void) SvPV_force_flags(sv,len,flags & SV_GMAGIC);
3439 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3444 S_sv_uncow(aTHX_ sv, 0);
3447 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING)) {
3448 sv_recode_to_utf8(sv, PL_encoding);
3449 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3453 if (SvCUR(sv) == 0) {
3454 if (extra) SvGROW(sv, extra);
3455 } else { /* Assume Latin-1/EBCDIC */
3456 /* This function could be much more efficient if we
3457 * had a FLAG in SVs to signal if there are any variant
3458 * chars in the PV. Given that there isn't such a flag
3459 * make the loop as fast as possible (although there are certainly ways
3460 * to speed this up, eg. through vectorization) */
3461 U8 * s = (U8 *) SvPVX_const(sv);
3462 U8 * e = (U8 *) SvEND(sv);
3464 STRLEN two_byte_count = 0;
3466 if (flags & SV_FORCE_UTF8_UPGRADE) goto must_be_utf8;
3468 /* See if really will need to convert to utf8. We mustn't rely on our
3469 * incoming SV being well formed and having a trailing '\0', as certain
3470 * code in pp_formline can send us partially built SVs. */
3474 if (NATIVE_BYTE_IS_INVARIANT(ch)) continue;
3476 t--; /* t already incremented; re-point to first variant */
3481 /* utf8 conversion not needed because all are invariants. Mark as
3482 * UTF-8 even if no variant - saves scanning loop */
3484 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3489 /* Here, the string should be converted to utf8, either because of an
3490 * input flag (two_byte_count = 0), or because a character that
3491 * requires 2 bytes was found (two_byte_count = 1). t points either to
3492 * the beginning of the string (if we didn't examine anything), or to
3493 * the first variant. In either case, everything from s to t - 1 will
3494 * occupy only 1 byte each on output.
3496 * There are two main ways to convert. One is to create a new string
3497 * and go through the input starting from the beginning, appending each
3498 * converted value onto the new string as we go along. It's probably
3499 * best to allocate enough space in the string for the worst possible
3500 * case rather than possibly running out of space and having to
3501 * reallocate and then copy what we've done so far. Since everything
3502 * from s to t - 1 is invariant, the destination can be initialized
3503 * with these using a fast memory copy
3505 * The other way is to figure out exactly how big the string should be
3506 * by parsing the entire input. Then you don't have to make it big
3507 * enough to handle the worst possible case, and more importantly, if
3508 * the string you already have is large enough, you don't have to
3509 * allocate a new string, you can copy the last character in the input
3510 * string to the final position(s) that will be occupied by the
3511 * converted string and go backwards, stopping at t, since everything
3512 * before that is invariant.
3514 * There are advantages and disadvantages to each method.
3516 * In the first method, we can allocate a new string, do the memory
3517 * copy from the s to t - 1, and then proceed through the rest of the
3518 * string byte-by-byte.
3520 * In the second method, we proceed through the rest of the input
3521 * string just calculating how big the converted string will be. Then
3522 * there are two cases:
3523 * 1) if the string has enough extra space to handle the converted
3524 * value. We go backwards through the string, converting until we
3525 * get to the position we are at now, and then stop. If this
3526 * position is far enough along in the string, this method is
3527 * faster than the other method. If the memory copy were the same
3528 * speed as the byte-by-byte loop, that position would be about
3529 * half-way, as at the half-way mark, parsing to the end and back
3530 * is one complete string's parse, the same amount as starting
3531 * over and going all the way through. Actually, it would be
3532 * somewhat less than half-way, as it's faster to just count bytes
3533 * than to also copy, and we don't have the overhead of allocating
3534 * a new string, changing the scalar to use it, and freeing the
3535 * existing one. But if the memory copy is fast, the break-even
3536 * point is somewhere after half way. The counting loop could be
3537 * sped up by vectorization, etc, to move the break-even point
3538 * further towards the beginning.
3539 * 2) if the string doesn't have enough space to handle the converted
3540 * value. A new string will have to be allocated, and one might
3541 * as well, given that, start from the beginning doing the first
3542 * method. We've spent extra time parsing the string and in
3543 * exchange all we've gotten is that we know precisely how big to
3544 * make the new one. Perl is more optimized for time than space,
3545 * so this case is a loser.
3546 * So what I've decided to do is not use the 2nd method unless it is
3547 * guaranteed that a new string won't have to be allocated, assuming
3548 * the worst case. I also decided not to put any more conditions on it
3549 * than this, for now. It seems likely that, since the worst case is
3550 * twice as big as the unknown portion of the string (plus 1), we won't
3551 * be guaranteed enough space, causing us to go to the first method,
3552 * unless the string is short, or the first variant character is near
3553 * the end of it. In either of these cases, it seems best to use the
3554 * 2nd method. The only circumstance I can think of where this would
3555 * be really slower is if the string had once had much more data in it
3556 * than it does now, but there is still a substantial amount in it */
3559 STRLEN invariant_head = t - s;
3560 STRLEN size = invariant_head + (e - t) * 2 + 1 + extra;
3561 if (SvLEN(sv) < size) {
3563 /* Here, have decided to allocate a new string */
3568 Newx(dst, size, U8);
3570 /* If no known invariants at the beginning of the input string,
3571 * set so starts from there. Otherwise, can use memory copy to
3572 * get up to where we are now, and then start from here */
3574 if (invariant_head == 0) {
3577 Copy(s, dst, invariant_head, char);
3578 d = dst + invariant_head;
3582 append_utf8_from_native_byte(*t, &d);
3586 SvPV_free(sv); /* No longer using pre-existing string */
3587 SvPV_set(sv, (char*)dst);
3588 SvCUR_set(sv, d - dst);
3589 SvLEN_set(sv, size);
3592 /* Here, have decided to get the exact size of the string.
3593 * Currently this happens only when we know that there is
3594 * guaranteed enough space to fit the converted string, so
3595 * don't have to worry about growing. If two_byte_count is 0,
3596 * then t points to the first byte of the string which hasn't
3597 * been examined yet. Otherwise two_byte_count is 1, and t
3598 * points to the first byte in the string that will expand to
3599 * two. Depending on this, start examining at t or 1 after t.
3602 U8 *d = t + two_byte_count;
3605 /* Count up the remaining bytes that expand to two */
3608 const U8 chr = *d++;
3609 if (! NATIVE_BYTE_IS_INVARIANT(chr)) two_byte_count++;
3612 /* The string will expand by just the number of bytes that
3613 * occupy two positions. But we are one afterwards because of
3614 * the increment just above. This is the place to put the
3615 * trailing NUL, and to set the length before we decrement */
3617 d += two_byte_count;
3618 SvCUR_set(sv, d - s);
3622 /* Having decremented d, it points to the position to put the
3623 * very last byte of the expanded string. Go backwards through
3624 * the string, copying and expanding as we go, stopping when we
3625 * get to the part that is invariant the rest of the way down */
3629 if (NATIVE_BYTE_IS_INVARIANT(*e)) {
3632 *d-- = UTF8_EIGHT_BIT_LO(*e);
3633 *d-- = UTF8_EIGHT_BIT_HI(*e);
3639 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3640 /* Update pos. We do it at the end rather than during
3641 * the upgrade, to avoid slowing down the common case
3642 * (upgrade without pos).
3643 * pos can be stored as either bytes or characters. Since
3644 * this was previously a byte string we can just turn off
3645 * the bytes flag. */
3646 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3648 mg->mg_flags &= ~MGf_BYTES;
3650 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3651 magic_setutf8(sv,mg); /* clear UTF8 cache */
3656 /* Mark as UTF-8 even if no variant - saves scanning loop */
3662 =for apidoc sv_utf8_downgrade
3664 Attempts to convert the PV of an SV from characters to bytes.
3665 If the PV contains a character that cannot fit
3666 in a byte, this conversion will fail;
3667 in this case, either returns false or, if C<fail_ok> is not
3670 This is not a general purpose Unicode to byte encoding interface:
3671 use the Encode extension for that.
3677 Perl_sv_utf8_downgrade(pTHX_ SV *const sv, const bool fail_ok)
3679 PERL_ARGS_ASSERT_SV_UTF8_DOWNGRADE;
3681 if (SvPOKp(sv) && SvUTF8(sv)) {
3685 int mg_flags = SV_GMAGIC;
3688 S_sv_uncow(aTHX_ sv, 0);
3690 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3692 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3693 if (mg && mg->mg_len > 0 && mg->mg_flags & MGf_BYTES) {
3694 mg->mg_len = sv_pos_b2u_flags(sv, mg->mg_len,
3695 SV_GMAGIC|SV_CONST_RETURN);
3696 mg_flags = 0; /* sv_pos_b2u does get magic */
3698 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3699 magic_setutf8(sv,mg); /* clear UTF8 cache */
3702 s = (U8 *) SvPV_flags(sv, len, mg_flags);
3704 if (!utf8_to_bytes(s, &len)) {
3709 Perl_croak(aTHX_ "Wide character in %s",
3712 Perl_croak(aTHX_ "Wide character");
3723 =for apidoc sv_utf8_encode
3725 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3726 flag off so that it looks like octets again.
3732 Perl_sv_utf8_encode(pTHX_ SV *const sv)
3734 PERL_ARGS_ASSERT_SV_UTF8_ENCODE;
3736 if (SvREADONLY(sv)) {
3737 sv_force_normal_flags(sv, 0);
3739 (void) sv_utf8_upgrade(sv);
3744 =for apidoc sv_utf8_decode
3746 If the PV of the SV is an octet sequence in UTF-8
3747 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3748 so that it looks like a character. If the PV contains only single-byte
3749 characters, the C<SvUTF8> flag stays off.
3750 Scans PV for validity and returns false if the PV is invalid UTF-8.
3756 Perl_sv_utf8_decode(pTHX_ SV *const sv)
3758 PERL_ARGS_ASSERT_SV_UTF8_DECODE;
3761 const U8 *start, *c;
3764 /* The octets may have got themselves encoded - get them back as
3767 if (!sv_utf8_downgrade(sv, TRUE))
3770 /* it is actually just a matter of turning the utf8 flag on, but
3771 * we want to make sure everything inside is valid utf8 first.
3773 c = start = (const U8 *) SvPVX_const(sv);
3774 if (!is_utf8_string(c, SvCUR(sv)))
3776 e = (const U8 *) SvEND(sv);
3779 if (!UTF8_IS_INVARIANT(ch)) {
3784 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3785 /* XXX Is this dead code? XS_utf8_decode calls SvSETMAGIC
3786 after this, clearing pos. Does anything on CPAN
3788 /* adjust pos to the start of a UTF8 char sequence */
3789 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3791 I32 pos = mg->mg_len;
3793 for (c = start + pos; c > start; c--) {
3794 if (UTF8_IS_START(*c))
3797 mg->mg_len = c - start;
3800 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3801 magic_setutf8(sv,mg); /* clear UTF8 cache */
3808 =for apidoc sv_setsv
3810 Copies the contents of the source SV C<ssv> into the destination SV
3811 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3812 function if the source SV needs to be reused. Does not handle 'set' magic on
3813 destination SV. Calls 'get' magic on source SV. Loosely speaking, it
3814 performs a copy-by-value, obliterating any previous content of the
3817 You probably want to use one of the assortment of wrappers, such as
3818 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3819 C<SvSetMagicSV_nosteal>.
3821 =for apidoc sv_setsv_flags
3823 Copies the contents of the source SV C<ssv> into the destination SV
3824 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3825 function if the source SV needs to be reused. Does not handle 'set' magic.
3826 Loosely speaking, it performs a copy-by-value, obliterating any previous
3827 content of the destination.
3828 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3829 C<ssv> if appropriate, else not. If the C<flags>
3830 parameter has the C<SV_NOSTEAL> bit set then the
3831 buffers of temps will not be stolen. <sv_setsv>
3832 and C<sv_setsv_nomg> are implemented in terms of this function.
3834 You probably want to use one of the assortment of wrappers, such as
3835 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3836 C<SvSetMagicSV_nosteal>.
3838 This is the primary function for copying scalars, and most other
3839 copy-ish functions and macros use this underneath.
3845 S_glob_assign_glob(pTHX_ SV *const dstr, SV *const sstr, const int dtype)
3847 I32 mro_changes = 0; /* 1 = method, 2 = isa, 3 = recursive isa */
3848 HV *old_stash = NULL;
3850 PERL_ARGS_ASSERT_GLOB_ASSIGN_GLOB;
3852 if (dtype != SVt_PVGV && !isGV_with_GP(dstr)) {
3853 const char * const name = GvNAME(sstr);
3854 const STRLEN len = GvNAMELEN(sstr);
3856 if (dtype >= SVt_PV) {
3862 SvUPGRADE(dstr, SVt_PVGV);
3863 (void)SvOK_off(dstr);
3864 isGV_with_GP_on(dstr);
3866 GvSTASH(dstr) = GvSTASH(sstr);
3868 Perl_sv_add_backref(aTHX_ MUTABLE_SV(GvSTASH(dstr)), dstr);
3869 gv_name_set(MUTABLE_GV(dstr), name, len,
3870 GV_ADD | (GvNAMEUTF8(sstr) ? SVf_UTF8 : 0 ));
3871 SvFAKE_on(dstr); /* can coerce to non-glob */
3874 if(GvGP(MUTABLE_GV(sstr))) {
3875 /* If source has method cache entry, clear it */
3877 SvREFCNT_dec(GvCV(sstr));
3878 GvCV_set(sstr, NULL);
3881 /* If source has a real method, then a method is
3884 GvCV((const GV *)sstr) && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3890 /* If dest already had a real method, that's a change as well */
3892 !mro_changes && GvGP(MUTABLE_GV(dstr)) && GvCVu((const GV *)dstr)
3893 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3898 /* We don't need to check the name of the destination if it was not a
3899 glob to begin with. */
3900 if(dtype == SVt_PVGV) {
3901 const char * const name = GvNAME((const GV *)dstr);
3904 /* The stash may have been detached from the symbol table, so
3906 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3910 const STRLEN len = GvNAMELEN(dstr);
3911 if ((len > 1 && name[len-2] == ':' && name[len-1] == ':')
3912 || (len == 1 && name[0] == ':')) {
3915 /* Set aside the old stash, so we can reset isa caches on
3917 if((old_stash = GvHV(dstr)))
3918 /* Make sure we do not lose it early. */
3919 SvREFCNT_inc_simple_void_NN(
3920 sv_2mortal((SV *)old_stash)
3925 SvREFCNT_inc_simple_void_NN(sv_2mortal(dstr));
3928 gp_free(MUTABLE_GV(dstr));
3929 GvINTRO_off(dstr); /* one-shot flag */
3930 GvGP_set(dstr, gp_ref(GvGP(sstr)));
3931 if (SvTAINTED(sstr))
3933 if (GvIMPORTED(dstr) != GVf_IMPORTED
3934 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3936 GvIMPORTED_on(dstr);
3939 if(mro_changes == 2) {
3940 if (GvAV((const GV *)sstr)) {
3942 SV * const sref = (SV *)GvAV((const GV *)dstr);
3943 if (SvSMAGICAL(sref) && (mg = mg_find(sref, PERL_MAGIC_isa))) {
3944 if (SvTYPE(mg->mg_obj) != SVt_PVAV) {
3945 AV * const ary = newAV();
3946 av_push(ary, mg->mg_obj); /* takes the refcount */
3947 mg->mg_obj = (SV *)ary;
3949 av_push((AV *)mg->mg_obj, SvREFCNT_inc_simple_NN(dstr));
3951 else sv_magic(sref, dstr, PERL_MAGIC_isa, NULL, 0);
3953 mro_isa_changed_in(GvSTASH(dstr));
3955 else if(mro_changes == 3) {
3956 HV * const stash = GvHV(dstr);
3957 if(old_stash ? (HV *)HvENAME_get(old_stash) : stash)
3963 else if(mro_changes) mro_method_changed_in(GvSTASH(dstr));
3964 if (GvIO(dstr) && dtype == SVt_PVGV) {
3965 DEBUG_o(Perl_deb(aTHX_
3966 "glob_assign_glob clearing PL_stashcache\n"));
3967 /* It's a cache. It will rebuild itself quite happily.
3968 It's a lot of effort to work out exactly which key (or keys)
3969 might be invalidated by the creation of the this file handle.
3971 hv_clear(PL_stashcache);
3977 S_glob_assign_ref(pTHX_ SV *const dstr, SV *const sstr)
3979 SV * const sref = SvRV(sstr);
3981 const int intro = GvINTRO(dstr);
3984 const U32 stype = SvTYPE(sref);
3986 PERL_ARGS_ASSERT_GLOB_ASSIGN_REF;
3989 GvINTRO_off(dstr); /* one-shot flag */
3990 GvLINE(dstr) = CopLINE(PL_curcop);
3991 GvEGV(dstr) = MUTABLE_GV(dstr);
3996 location = (SV **) &(GvGP(dstr)->gp_cv); /* XXX bypassing GvCV_set */
3997 import_flag = GVf_IMPORTED_CV;
4000 location = (SV **) &GvHV(dstr);
4001 import_flag = GVf_IMPORTED_HV;
4004 location = (SV **) &GvAV(dstr);
4005 import_flag = GVf_IMPORTED_AV;
4008 location = (SV **) &GvIOp(dstr);
4011 location = (SV **) &GvFORM(dstr);
4014 location = &GvSV(dstr);
4015 import_flag = GVf_IMPORTED_SV;
4018 if (stype == SVt_PVCV) {
4019 /*if (GvCVGEN(dstr) && (GvCV(dstr) != (const CV *)sref || GvCVGEN(dstr))) {*/
4020 if (GvCVGEN(dstr)) {
4021 SvREFCNT_dec(GvCV(dstr));
4022 GvCV_set(dstr, NULL);
4023 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
4026 /* SAVEt_GVSLOT takes more room on the savestack and has more
4027 overhead in leave_scope than SAVEt_GENERIC_SV. But for CVs
4028 leave_scope needs access to the GV so it can reset method
4029 caches. We must use SAVEt_GVSLOT whenever the type is
4030 SVt_PVCV, even if the stash is anonymous, as the stash may
4031 gain a name somehow before leave_scope. */
4032 if (stype == SVt_PVCV) {
4033 /* There is no save_pushptrptrptr. Creating it for this
4034 one call site would be overkill. So inline the ss add
4038 SS_ADD_PTR(location);
4039 SS_ADD_PTR(SvREFCNT_inc(*location));
4040 SS_ADD_UV(SAVEt_GVSLOT);
4043 else SAVEGENERICSV(*location);
4046 if (stype == SVt_PVCV && (*location != sref || GvCVGEN(dstr))) {
4047 CV* const cv = MUTABLE_CV(*location);
4049 if (!GvCVGEN((const GV *)dstr) &&
4050 (CvROOT(cv) || CvXSUB(cv)) &&
4051 /* redundant check that avoids creating the extra SV
4052 most of the time: */
4053 (CvCONST(cv) || ckWARN(WARN_REDEFINE)))
4055 SV * const new_const_sv =
4056 CvCONST((const CV *)sref)
4057 ? cv_const_sv((const CV *)sref)
4059 report_redefined_cv(
4060 sv_2mortal(Perl_newSVpvf(aTHX_
4063 HvNAME_HEK(GvSTASH((const GV *)dstr))
4065 HEKfARG(GvENAME_HEK(MUTABLE_GV(dstr)))
4068 CvCONST((const CV *)sref) ? &new_const_sv : NULL
4072 cv_ckproto_len_flags(cv, (const GV *)dstr,
4073 SvPOK(sref) ? CvPROTO(sref) : NULL,
4074 SvPOK(sref) ? CvPROTOLEN(sref) : 0,
4075 SvPOK(sref) ? SvUTF8(sref) : 0);
4077 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
4078 GvASSUMECV_on(dstr);
4079 if(GvSTASH(dstr)) { /* sub foo { 1 } sub bar { 2 } *bar = \&foo */
4080 if (intro && GvREFCNT(dstr) > 1) {
4081 /* temporary remove extra savestack's ref */
4083 gv_method_changed(dstr);
4086 else gv_method_changed(dstr);
4089 *location = SvREFCNT_inc_simple_NN(sref);
4090 if (import_flag && !(GvFLAGS(dstr) & import_flag)
4091 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
4092 GvFLAGS(dstr) |= import_flag;
4094 if (import_flag == GVf_IMPORTED_SV) {
4096 save_aliased_sv((GV *)dstr);
4098 /* Turn off the flag if sref is not referenced elsewhere,
4099 even by weak refs. (SvRMAGICAL is a pessimistic check for
4101 if (SvREFCNT(sref) <= 2 && !SvRMAGICAL(sref))
4102 GvALIASED_SV_off(dstr);
4104 GvALIASED_SV_on(dstr);
4106 if (stype == SVt_PVHV) {
4107 const char * const name = GvNAME((GV*)dstr);
4108 const STRLEN len = GvNAMELEN(dstr);
4111 (len > 1 && name[len-2] == ':' && name[len-1] == ':')
4112 || (len == 1 && name[0] == ':')
4114 && (!dref || HvENAME_get(dref))
4117 (HV *)sref, (HV *)dref,
4123 stype == SVt_PVAV && sref != dref
4124 && strEQ(GvNAME((GV*)dstr), "ISA")
4125 /* The stash may have been detached from the symbol table, so
4126 check its name before doing anything. */
4127 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
4130 MAGIC * const omg = dref && SvSMAGICAL(dref)
4131 ? mg_find(dref, PERL_MAGIC_isa)
4133 if (SvSMAGICAL(sref) && (mg = mg_find(sref, PERL_MAGIC_isa))) {
4134 if (SvTYPE(mg->mg_obj) != SVt_PVAV) {
4135 AV * const ary = newAV();
4136 av_push(ary, mg->mg_obj); /* takes the refcount */
4137 mg->mg_obj = (SV *)ary;
4140 if (SvTYPE(omg->mg_obj) == SVt_PVAV) {
4141 SV **svp = AvARRAY((AV *)omg->mg_obj);
4142 I32 items = AvFILLp((AV *)omg->mg_obj) + 1;
4146 SvREFCNT_inc_simple_NN(*svp++)
4152 SvREFCNT_inc_simple_NN(omg->mg_obj)
4156 av_push((AV *)mg->mg_obj,SvREFCNT_inc_simple_NN(dstr));
4161 sref, omg ? omg->mg_obj : dstr, PERL_MAGIC_isa, NULL, 0
4163 mg = mg_find(sref, PERL_MAGIC_isa);
4165 /* Since the *ISA assignment could have affected more than
4166 one stash, don't call mro_isa_changed_in directly, but let
4167 magic_clearisa do it for us, as it already has the logic for
4168 dealing with globs vs arrays of globs. */
4170 Perl_magic_clearisa(aTHX_ NULL, mg);
4172 else if (stype == SVt_PVIO) {
4173 DEBUG_o(Perl_deb(aTHX_ "glob_assign_ref clearing PL_stashcache\n"));
4174 /* It's a cache. It will rebuild itself quite happily.
4175 It's a lot of effort to work out exactly which key (or keys)
4176 might be invalidated by the creation of the this file handle.
4178 hv_clear(PL_stashcache);
4182 if (!intro) SvREFCNT_dec(dref);
4183 if (SvTAINTED(sstr))
4191 #ifdef PERL_DEBUG_READONLY_COW
4192 # include <sys/mman.h>
4194 # ifndef PERL_MEMORY_DEBUG_HEADER_SIZE
4195 # define PERL_MEMORY_DEBUG_HEADER_SIZE 0
4199 Perl_sv_buf_to_ro(pTHX_ SV *sv)
4201 struct perl_memory_debug_header * const header =
4202 (struct perl_memory_debug_header *)(SvPVX(sv)-PERL_MEMORY_DEBUG_HEADER_SIZE);
4203 const MEM_SIZE len = header->size;
4204 PERL_ARGS_ASSERT_SV_BUF_TO_RO;
4205 # ifdef PERL_TRACK_MEMPOOL
4206 if (!header->readonly) header->readonly = 1;
4208 if (mprotect(header, len, PROT_READ))
4209 Perl_warn(aTHX_ "mprotect RW for COW string %p %lu failed with %d",
4210 header, len, errno);
4214 S_sv_buf_to_rw(pTHX_ SV *sv)
4216 struct perl_memory_debug_header * const header =
4217 (struct perl_memory_debug_header *)(SvPVX(sv)-PERL_MEMORY_DEBUG_HEADER_SIZE);
4218 const MEM_SIZE len = header->size;
4219 PERL_ARGS_ASSERT_SV_BUF_TO_RW;
4220 if (mprotect(header, len, PROT_READ|PROT_WRITE))
4221 Perl_warn(aTHX_ "mprotect for COW string %p %lu failed with %d",
4222 header, len, errno);
4223 # ifdef PERL_TRACK_MEMPOOL
4224 header->readonly = 0;
4229 # define sv_buf_to_ro(sv) NOOP
4230 # define sv_buf_to_rw(sv) NOOP
4234 Perl_sv_setsv_flags(pTHX_ SV *dstr, SV* sstr, const I32 flags)
4240 PERL_ARGS_ASSERT_SV_SETSV_FLAGS;
4245 if (SvIS_FREED(dstr)) {
4246 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
4247 " to a freed scalar %p", SVfARG(sstr), (void *)dstr);
4249 SV_CHECK_THINKFIRST_COW_DROP(dstr);
4251 sstr = &PL_sv_undef;
4252 if (SvIS_FREED(sstr)) {
4253 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
4254 (void*)sstr, (void*)dstr);
4256 stype = SvTYPE(sstr);
4257 dtype = SvTYPE(dstr);
4259 /* There's a lot of redundancy below but we're going for speed here */
4264 if (dtype != SVt_PVGV && dtype != SVt_PVLV) {
4265 (void)SvOK_off(dstr);
4273 sv_upgrade(dstr, SVt_IV);
4277 sv_upgrade(dstr, SVt_PVIV);
4281 goto end_of_first_switch;
4283 (void)SvIOK_only(dstr);
4284 SvIV_set(dstr, SvIVX(sstr));
4287 /* SvTAINTED can only be true if the SV has taint magic, which in
4288 turn means that the SV type is PVMG (or greater). This is the
4289 case statement for SVt_IV, so this cannot be true (whatever gcov
4291 assert(!SvTAINTED(sstr));
4296 if (dtype < SVt_PV && dtype != SVt_IV)
4297 sv_upgrade(dstr, SVt_IV);
4305 sv_upgrade(dstr, SVt_NV);
4309 sv_upgrade(dstr, SVt_PVNV);
4313 goto end_of_first_switch;
4315 SvNV_set(dstr, SvNVX(sstr));
4316 (void)SvNOK_only(dstr);
4317 /* SvTAINTED can only be true if the SV has taint magic, which in
4318 turn means that the SV type is PVMG (or greater). This is the
4319 case statement for SVt_NV, so this cannot be true (whatever gcov
4321 assert(!SvTAINTED(sstr));
4328 sv_upgrade(dstr, SVt_PV);
4331 if (dtype < SVt_PVIV)
4332 sv_upgrade(dstr, SVt_PVIV);
4335 if (dtype < SVt_PVNV)
4336 sv_upgrade(dstr, SVt_PVNV);
4340 const char * const type = sv_reftype(sstr,0);
4342 /* diag_listed_as: Bizarre copy of %s */
4343 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_DESC(PL_op));
4345 Perl_croak(aTHX_ "Bizarre copy of %s", type);
4347 NOT_REACHED; /* NOTREACHED */
4351 if (dtype < SVt_REGEXP)
4353 if (dtype >= SVt_PV) {
4359 sv_upgrade(dstr, SVt_REGEXP);
4367 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
4369 if (SvTYPE(sstr) != stype)
4370 stype = SvTYPE(sstr);
4372 if (isGV_with_GP(sstr) && dtype <= SVt_PVLV) {
4373 glob_assign_glob(dstr, sstr, dtype);
4376 if (stype == SVt_PVLV)
4378 if (isREGEXP(sstr)) goto upgregexp;
4379 SvUPGRADE(dstr, SVt_PVNV);
4382 SvUPGRADE(dstr, (svtype)stype);
4384 end_of_first_switch:
4386 /* dstr may have been upgraded. */
4387 dtype = SvTYPE(dstr);
4388 sflags = SvFLAGS(sstr);
4390 if (dtype == SVt_PVCV) {
4391 /* Assigning to a subroutine sets the prototype. */
4394 const char *const ptr = SvPV_const(sstr, len);
4396 SvGROW(dstr, len + 1);
4397 Copy(ptr, SvPVX(dstr), len + 1, char);
4398 SvCUR_set(dstr, len);
4400 SvFLAGS(dstr) |= sflags & SVf_UTF8;
4401 CvAUTOLOAD_off(dstr);
4406 else if (dtype == SVt_PVAV || dtype == SVt_PVHV || dtype == SVt_PVFM) {
4407 const char * const type = sv_reftype(dstr,0);
4409 /* diag_listed_as: Cannot copy to %s */
4410 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_DESC(PL_op));
4412 Perl_croak(aTHX_ "Cannot copy to %s", type);
4413 } else if (sflags & SVf_ROK) {
4414 if (isGV_with_GP(dstr)
4415 && SvTYPE(SvRV(sstr)) == SVt_PVGV && isGV_with_GP(SvRV(sstr))) {
4418 if (GvIMPORTED(dstr) != GVf_IMPORTED
4419 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
4421 GvIMPORTED_on(dstr);
4426 glob_assign_glob(dstr, sstr, dtype);
4430 if (dtype >= SVt_PV) {
4431 if (isGV_with_GP(dstr)) {
4432 glob_assign_ref(dstr, sstr);
4435 if (SvPVX_const(dstr)) {
4441 (void)SvOK_off(dstr);
4442 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
4443 SvFLAGS(dstr) |= sflags & SVf_ROK;
4444 assert(!(sflags & SVp_NOK));
4445 assert(!(sflags & SVp_IOK));
4446 assert(!(sflags & SVf_NOK));
4447 assert(!(sflags & SVf_IOK));
4449 else if (isGV_with_GP(dstr)) {
4450 if (!(sflags & SVf_OK)) {
4451 Perl_ck_warner(aTHX_ packWARN(WARN_MISC),
4452 "Undefined value assigned to typeglob");
4455 GV *gv = gv_fetchsv_nomg(sstr, GV_ADD, SVt_PVGV);
4456 if (dstr != (const SV *)gv) {
4457 const char * const name = GvNAME((const GV *)dstr);
4458 const STRLEN len = GvNAMELEN(dstr);
4459 HV *old_stash = NULL;
4460 bool reset_isa = FALSE;
4461 if ((len > 1 && name[len-2] == ':' && name[len-1] == ':')
4462 || (len == 1 && name[0] == ':')) {
4463 /* Set aside the old stash, so we can reset isa caches
4464 on its subclasses. */
4465 if((old_stash = GvHV(dstr))) {
4466 /* Make sure we do not lose it early. */
4467 SvREFCNT_inc_simple_void_NN(
4468 sv_2mortal((SV *)old_stash)
4475 SvREFCNT_inc_simple_void_NN(sv_2mortal(dstr));
4476 gp_free(MUTABLE_GV(dstr));
4478 GvGP_set(dstr, gp_ref(GvGP(gv)));
4481 HV * const stash = GvHV(dstr);
4483 old_stash ? (HV *)HvENAME_get(old_stash) : stash
4493 else if ((dtype == SVt_REGEXP || dtype == SVt_PVLV)
4494 && (stype == SVt_REGEXP || isREGEXP(sstr))) {
4495 reg_temp_copy((REGEXP*)dstr, (REGEXP*)sstr);
4497 else if (sflags & SVp_POK) {
4498 const STRLEN cur = SvCUR(sstr);
4499 const STRLEN len = SvLEN(sstr);
4502 * We have three basic ways to copy the string:
4508 * Which we choose is based on various factors. The following
4509 * things are listed in order of speed, fastest to slowest:
4511 * - Copying a short string
4512 * - Copy-on-write bookkeeping
4514 * - Copying a long string
4516 * We swipe the string (steal the string buffer) if the SV on the
4517 * rhs is about to be freed anyway (TEMP and refcnt==1). This is a
4518 * big win on long strings. It should be a win on short strings if
4519 * SvPVX_const(dstr) has to be allocated. If not, it should not
4520 * slow things down, as SvPVX_const(sstr) would have been freed
4523 * We also steal the buffer from a PADTMP (operator target) if it
4524 * is ‘long enough’. For short strings, a swipe does not help
4525 * here, as it causes more malloc calls the next time the target
4526 * is used. Benchmarks show that even if SvPVX_const(dstr) has to
4527 * be allocated it is still not worth swiping PADTMPs for short
4528 * strings, as the savings here are small.
4530 * If swiping is not an option, then we see whether it is
4531 * worth using copy-on-write. If the lhs already has a buf-
4532 * fer big enough and the string is short, we skip it and fall back
4533 * to method 3, since memcpy is faster for short strings than the
4534 * later bookkeeping overhead that copy-on-write entails.
4536 * If the rhs is not a copy-on-write string yet, then we also
4537 * consider whether the buffer is too large relative to the string
4538 * it holds. Some operations such as readline allocate a large
4539 * buffer in the expectation of reusing it. But turning such into
4540 * a COW buffer is counter-productive because it increases memory
4541 * usage by making readline allocate a new large buffer the sec-
4542 * ond time round. So, if the buffer is too large, again, we use
4545 * Finally, if there is no buffer on the left, or the buffer is too
4546 * small, then we use copy-on-write and make both SVs share the
4551 /* Whichever path we take through the next code, we want this true,
4552 and doing it now facilitates the COW check. */
4553 (void)SvPOK_only(dstr);
4557 /* slated for free anyway (and not COW)? */
4558 (sflags & (SVs_TEMP|SVf_IsCOW)) == SVs_TEMP
4559 /* or a swipable TARG */
4561 (SVs_PADTMP|SVf_READONLY|SVf_PROTECT|SVf_IsCOW))
4563 /* whose buffer is worth stealing */
4564 && CHECK_COWBUF_THRESHOLD(cur,len)
4567 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
4568 (!(flags & SV_NOSTEAL)) &&
4569 /* and we're allowed to steal temps */
4570 SvREFCNT(sstr) == 1 && /* and no other references to it? */
4571 len) /* and really is a string */
4572 { /* Passes the swipe test. */
4573 if (SvPVX_const(dstr)) /* we know that dtype >= SVt_PV */
4575 SvPV_set(dstr, SvPVX_mutable(sstr));
4576 SvLEN_set(dstr, SvLEN(sstr));
4577 SvCUR_set(dstr, SvCUR(sstr));
4580 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
4581 SvPV_set(sstr, NULL);
4586 else if (flags & SV_COW_SHARED_HASH_KEYS
4588 #ifdef PERL_OLD_COPY_ON_WRITE
4589 ( sflags & SVf_IsCOW
4590 || ( (sflags & CAN_COW_MASK) == CAN_COW_FLAGS
4591 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
4592 && SvTYPE(sstr) >= SVt_PVIV && len
4595 #elif defined(PERL_NEW_COPY_ON_WRITE)
4598 ( (CHECK_COWBUF_THRESHOLD(cur,len) || SvLEN(dstr) < cur+1)
4599 /* If this is a regular (non-hek) COW, only so
4600 many COW "copies" are possible. */
4601 && CowREFCNT(sstr) != SV_COW_REFCNT_MAX ))
4602 : ( (sflags & CAN_COW_MASK) == CAN_COW_FLAGS
4603 && !(SvFLAGS(dstr) & SVf_BREAK)
4604 && CHECK_COW_THRESHOLD(cur,len) && cur+1 < len
4605 && (CHECK_COWBUF_THRESHOLD(cur,len) || SvLEN(dstr) < cur+1)
4609 && !(SvFLAGS(dstr) & SVf_BREAK)
4612 /* Either it's a shared hash key, or it's suitable for