3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by Larry Wall
7 * You may distribute under the terms of either the GNU General Public
8 * License or the Artistic License, as specified in the README file.
13 * 'I wonder what the Entish is for "yes" and "no",' he thought.
16 * [p.480 of _The Lord of the Rings_, III/iv: "Treebeard"]
22 * This file contains the code that creates, manipulates and destroys
23 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
24 * structure of an SV, so their creation and destruction is handled
25 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
26 * level functions (eg. substr, split, join) for each of the types are
38 /* Missing proto on LynxOS */
39 char *gconvert(double, int, int, char *);
42 #ifdef PERL_UTF8_CACHE_ASSERT
43 /* if adding more checks watch out for the following tests:
44 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
45 * lib/utf8.t lib/Unicode/Collate/t/index.t
48 # define ASSERT_UTF8_CACHE(cache) \
49 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
50 assert((cache)[2] <= (cache)[3]); \
51 assert((cache)[3] <= (cache)[1]);} \
54 # define ASSERT_UTF8_CACHE(cache) NOOP
57 #ifdef PERL_OLD_COPY_ON_WRITE
58 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
59 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
60 /* This is a pessimistic view. Scalar must be purely a read-write PV to copy-
64 /* ============================================================================
66 =head1 Allocation and deallocation of SVs.
68 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
69 sv, av, hv...) contains type and reference count information, and for
70 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
71 contains fields specific to each type. Some types store all they need
72 in the head, so don't have a body.
74 In all but the most memory-paranoid configuations (ex: PURIFY), heads
75 and bodies are allocated out of arenas, which by default are
76 approximately 4K chunks of memory parcelled up into N heads or bodies.
77 Sv-bodies are allocated by their sv-type, guaranteeing size
78 consistency needed to allocate safely from arrays.
80 For SV-heads, the first slot in each arena is reserved, and holds a
81 link to the next arena, some flags, and a note of the number of slots.
82 Snaked through each arena chain is a linked list of free items; when
83 this becomes empty, an extra arena is allocated and divided up into N
84 items which are threaded into the free list.
86 SV-bodies are similar, but they use arena-sets by default, which
87 separate the link and info from the arena itself, and reclaim the 1st
88 slot in the arena. SV-bodies are further described later.
90 The following global variables are associated with arenas:
92 PL_sv_arenaroot pointer to list of SV arenas
93 PL_sv_root pointer to list of free SV structures
95 PL_body_arenas head of linked-list of body arenas
96 PL_body_roots[] array of pointers to list of free bodies of svtype
97 arrays are indexed by the svtype needed
99 A few special SV heads are not allocated from an arena, but are
100 instead directly created in the interpreter structure, eg PL_sv_undef.
101 The size of arenas can be changed from the default by setting
102 PERL_ARENA_SIZE appropriately at compile time.
104 The SV arena serves the secondary purpose of allowing still-live SVs
105 to be located and destroyed during final cleanup.
107 At the lowest level, the macros new_SV() and del_SV() grab and free
108 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
109 to return the SV to the free list with error checking.) new_SV() calls
110 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
111 SVs in the free list have their SvTYPE field set to all ones.
113 At the time of very final cleanup, sv_free_arenas() is called from
114 perl_destruct() to physically free all the arenas allocated since the
115 start of the interpreter.
117 The function visit() scans the SV arenas list, and calls a specified
118 function for each SV it finds which is still live - ie which has an SvTYPE
119 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
120 following functions (specified as [function that calls visit()] / [function
121 called by visit() for each SV]):
123 sv_report_used() / do_report_used()
124 dump all remaining SVs (debugging aid)
126 sv_clean_objs() / do_clean_objs(),do_clean_named_objs(),
127 do_clean_named_io_objs()
128 Attempt to free all objects pointed to by RVs,
129 and try to do the same for all objects indirectly
130 referenced by typeglobs too. Called once from
131 perl_destruct(), prior to calling sv_clean_all()
134 sv_clean_all() / do_clean_all()
135 SvREFCNT_dec(sv) each remaining SV, possibly
136 triggering an sv_free(). It also sets the
137 SVf_BREAK flag on the SV to indicate that the
138 refcnt has been artificially lowered, and thus
139 stopping sv_free() from giving spurious warnings
140 about SVs which unexpectedly have a refcnt
141 of zero. called repeatedly from perl_destruct()
142 until there are no SVs left.
144 =head2 Arena allocator API Summary
146 Private API to rest of sv.c
150 new_XPVNV(), del_XPVGV(),
155 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
159 * ========================================================================= */
162 * "A time to plant, and a time to uproot what was planted..."
166 # define MEM_LOG_NEW_SV(sv, file, line, func) \
167 Perl_mem_log_new_sv(sv, file, line, func)
168 # define MEM_LOG_DEL_SV(sv, file, line, func) \
169 Perl_mem_log_del_sv(sv, file, line, func)
171 # define MEM_LOG_NEW_SV(sv, file, line, func) NOOP
172 # define MEM_LOG_DEL_SV(sv, file, line, func) NOOP
175 #ifdef DEBUG_LEAKING_SCALARS
176 # define FREE_SV_DEBUG_FILE(sv) Safefree((sv)->sv_debug_file)
177 # define DEBUG_SV_SERIAL(sv) \
178 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) del_SV\n", \
179 PTR2UV(sv), (long)(sv)->sv_debug_serial))
181 # define FREE_SV_DEBUG_FILE(sv)
182 # define DEBUG_SV_SERIAL(sv) NOOP
186 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
187 # define SvARENA_CHAIN_SET(sv,val) (sv)->sv_u.svu_rv = MUTABLE_SV((val))
188 /* Whilst I'd love to do this, it seems that things like to check on
190 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
192 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
193 PoisonNew(&SvREFCNT(sv), 1, U32)
195 # define SvARENA_CHAIN(sv) SvANY(sv)
196 # define SvARENA_CHAIN_SET(sv,val) SvANY(sv) = (void *)(val)
197 # define POSION_SV_HEAD(sv)
200 /* Mark an SV head as unused, and add to free list.
202 * If SVf_BREAK is set, skip adding it to the free list, as this SV had
203 * its refcount artificially decremented during global destruction, so
204 * there may be dangling pointers to it. The last thing we want in that
205 * case is for it to be reused. */
207 #define plant_SV(p) \
209 const U32 old_flags = SvFLAGS(p); \
210 MEM_LOG_DEL_SV(p, __FILE__, __LINE__, FUNCTION__); \
211 DEBUG_SV_SERIAL(p); \
212 FREE_SV_DEBUG_FILE(p); \
214 SvFLAGS(p) = SVTYPEMASK; \
215 if (!(old_flags & SVf_BREAK)) { \
216 SvARENA_CHAIN_SET(p, PL_sv_root); \
222 #define uproot_SV(p) \
225 PL_sv_root = MUTABLE_SV(SvARENA_CHAIN(p)); \
230 /* make some more SVs by adding another arena */
237 char *chunk; /* must use New here to match call to */
238 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
239 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
244 /* new_SV(): return a new, empty SV head */
246 #ifdef DEBUG_LEAKING_SCALARS
247 /* provide a real function for a debugger to play with */
249 S_new_SV(pTHX_ const char *file, int line, const char *func)
256 sv = S_more_sv(aTHX);
260 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
261 sv->sv_debug_line = (U16) (PL_parser && PL_parser->copline != NOLINE
267 sv->sv_debug_inpad = 0;
268 sv->sv_debug_parent = NULL;
269 sv->sv_debug_file = PL_curcop ? savepv(CopFILE(PL_curcop)): NULL;
271 sv->sv_debug_serial = PL_sv_serial++;
273 MEM_LOG_NEW_SV(sv, file, line, func);
274 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) new_SV (from %s:%d [%s])\n",
275 PTR2UV(sv), (long)sv->sv_debug_serial, file, line, func));
279 # define new_SV(p) (p)=S_new_SV(aTHX_ __FILE__, __LINE__, FUNCTION__)
287 (p) = S_more_sv(aTHX); \
291 MEM_LOG_NEW_SV(p, __FILE__, __LINE__, FUNCTION__); \
296 /* del_SV(): return an empty SV head to the free list */
309 S_del_sv(pTHX_ SV *p)
313 PERL_ARGS_ASSERT_DEL_SV;
318 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
319 const SV * const sv = sva + 1;
320 const SV * const svend = &sva[SvREFCNT(sva)];
321 if (p >= sv && p < svend) {
327 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
328 "Attempt to free non-arena SV: 0x%"UVxf
329 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
336 #else /* ! DEBUGGING */
338 #define del_SV(p) plant_SV(p)
340 #endif /* DEBUGGING */
344 =head1 SV Manipulation Functions
346 =for apidoc sv_add_arena
348 Given a chunk of memory, link it to the head of the list of arenas,
349 and split it into a list of free SVs.
355 S_sv_add_arena(pTHX_ char *const ptr, const U32 size, const U32 flags)
358 SV *const sva = MUTABLE_SV(ptr);
362 PERL_ARGS_ASSERT_SV_ADD_ARENA;
364 /* The first SV in an arena isn't an SV. */
365 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
366 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
367 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
369 PL_sv_arenaroot = sva;
370 PL_sv_root = sva + 1;
372 svend = &sva[SvREFCNT(sva) - 1];
375 SvARENA_CHAIN_SET(sv, (sv + 1));
379 /* Must always set typemask because it's always checked in on cleanup
380 when the arenas are walked looking for objects. */
381 SvFLAGS(sv) = SVTYPEMASK;
384 SvARENA_CHAIN_SET(sv, 0);
388 SvFLAGS(sv) = SVTYPEMASK;
391 /* visit(): call the named function for each non-free SV in the arenas
392 * whose flags field matches the flags/mask args. */
395 S_visit(pTHX_ SVFUNC_t f, const U32 flags, const U32 mask)
401 PERL_ARGS_ASSERT_VISIT;
403 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
404 register const SV * const svend = &sva[SvREFCNT(sva)];
406 for (sv = sva + 1; sv < svend; ++sv) {
407 if (SvTYPE(sv) != SVTYPEMASK
408 && (sv->sv_flags & mask) == flags
421 /* called by sv_report_used() for each live SV */
424 do_report_used(pTHX_ SV *const sv)
426 if (SvTYPE(sv) != SVTYPEMASK) {
427 PerlIO_printf(Perl_debug_log, "****\n");
434 =for apidoc sv_report_used
436 Dump the contents of all SVs not yet freed. (Debugging aid).
442 Perl_sv_report_used(pTHX)
445 visit(do_report_used, 0, 0);
451 /* called by sv_clean_objs() for each live SV */
454 do_clean_objs(pTHX_ SV *const ref)
459 SV * const target = SvRV(ref);
460 if (SvOBJECT(target)) {
461 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
462 if (SvWEAKREF(ref)) {
463 sv_del_backref(target, ref);
469 SvREFCNT_dec(target);
474 /* XXX Might want to check arrays, etc. */
478 /* clear any slots in a GV which hold objects - except IO;
479 * called by sv_clean_objs() for each live GV */
482 do_clean_named_objs(pTHX_ SV *const sv)
486 assert(SvTYPE(sv) == SVt_PVGV);
487 assert(isGV_with_GP(sv));
491 /* freeing GP entries may indirectly free the current GV;
492 * hold onto it while we mess with the GP slots */
495 if ( ((obj = GvSV(sv) )) && SvOBJECT(obj)) {
496 DEBUG_D((PerlIO_printf(Perl_debug_log,
497 "Cleaning named glob SV object:\n "), sv_dump(obj)));
501 if ( ((obj = MUTABLE_SV(GvAV(sv)) )) && SvOBJECT(obj)) {
502 DEBUG_D((PerlIO_printf(Perl_debug_log,
503 "Cleaning named glob AV object:\n "), sv_dump(obj)));
507 if ( ((obj = MUTABLE_SV(GvHV(sv)) )) && SvOBJECT(obj)) {
508 DEBUG_D((PerlIO_printf(Perl_debug_log,
509 "Cleaning named glob HV object:\n "), sv_dump(obj)));
513 if ( ((obj = MUTABLE_SV(GvCV(sv)) )) && SvOBJECT(obj)) {
514 DEBUG_D((PerlIO_printf(Perl_debug_log,
515 "Cleaning named glob CV object:\n "), sv_dump(obj)));
519 SvREFCNT_dec(sv); /* undo the inc above */
522 /* clear any IO slots in a GV which hold objects (except stderr, defout);
523 * called by sv_clean_objs() for each live GV */
526 do_clean_named_io_objs(pTHX_ SV *const sv)
530 assert(SvTYPE(sv) == SVt_PVGV);
531 assert(isGV_with_GP(sv));
532 if (!GvGP(sv) || sv == (SV*)PL_stderrgv || sv == (SV*)PL_defoutgv)
536 if ( ((obj = MUTABLE_SV(GvIO(sv)) )) && SvOBJECT(obj)) {
537 DEBUG_D((PerlIO_printf(Perl_debug_log,
538 "Cleaning named glob IO object:\n "), sv_dump(obj)));
542 SvREFCNT_dec(sv); /* undo the inc above */
546 =for apidoc sv_clean_objs
548 Attempt to destroy all objects not yet freed
554 Perl_sv_clean_objs(pTHX)
558 PL_in_clean_objs = TRUE;
559 visit(do_clean_objs, SVf_ROK, SVf_ROK);
560 /* Some barnacles may yet remain, clinging to typeglobs.
561 * Run the non-IO destructors first: they may want to output
562 * error messages, close files etc */
563 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
564 visit(do_clean_named_io_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
565 olddef = PL_defoutgv;
566 PL_defoutgv = NULL; /* disable skip of PL_defoutgv */
567 if (olddef && isGV_with_GP(olddef))
568 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olddef));
569 olderr = PL_stderrgv;
570 PL_stderrgv = NULL; /* disable skip of PL_stderrgv */
571 if (olderr && isGV_with_GP(olderr))
572 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olderr));
573 SvREFCNT_dec(olddef);
574 PL_in_clean_objs = FALSE;
577 /* called by sv_clean_all() for each live SV */
580 do_clean_all(pTHX_ SV *const sv)
583 if (sv == (const SV *) PL_fdpid || sv == (const SV *)PL_strtab) {
584 /* don't clean pid table and strtab */
587 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
588 SvFLAGS(sv) |= SVf_BREAK;
593 =for apidoc sv_clean_all
595 Decrement the refcnt of each remaining SV, possibly triggering a
596 cleanup. This function may have to be called multiple times to free
597 SVs which are in complex self-referential hierarchies.
603 Perl_sv_clean_all(pTHX)
607 PL_in_clean_all = TRUE;
608 cleaned = visit(do_clean_all, 0,0);
613 ARENASETS: a meta-arena implementation which separates arena-info
614 into struct arena_set, which contains an array of struct
615 arena_descs, each holding info for a single arena. By separating
616 the meta-info from the arena, we recover the 1st slot, formerly
617 borrowed for list management. The arena_set is about the size of an
618 arena, avoiding the needless malloc overhead of a naive linked-list.
620 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
621 memory in the last arena-set (1/2 on average). In trade, we get
622 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
623 smaller types). The recovery of the wasted space allows use of
624 small arenas for large, rare body types, by changing array* fields
625 in body_details_by_type[] below.
628 char *arena; /* the raw storage, allocated aligned */
629 size_t size; /* its size ~4k typ */
630 svtype utype; /* bodytype stored in arena */
635 /* Get the maximum number of elements in set[] such that struct arena_set
636 will fit within PERL_ARENA_SIZE, which is probably just under 4K, and
637 therefore likely to be 1 aligned memory page. */
639 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
640 - 2 * sizeof(int)) / sizeof (struct arena_desc))
643 struct arena_set* next;
644 unsigned int set_size; /* ie ARENAS_PER_SET */
645 unsigned int curr; /* index of next available arena-desc */
646 struct arena_desc set[ARENAS_PER_SET];
650 =for apidoc sv_free_arenas
652 Deallocate the memory used by all arenas. Note that all the individual SV
653 heads and bodies within the arenas must already have been freed.
658 Perl_sv_free_arenas(pTHX)
665 /* Free arenas here, but be careful about fake ones. (We assume
666 contiguity of the fake ones with the corresponding real ones.) */
668 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
669 svanext = MUTABLE_SV(SvANY(sva));
670 while (svanext && SvFAKE(svanext))
671 svanext = MUTABLE_SV(SvANY(svanext));
678 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
681 struct arena_set *current = aroot;
684 assert(aroot->set[i].arena);
685 Safefree(aroot->set[i].arena);
693 i = PERL_ARENA_ROOTS_SIZE;
695 PL_body_roots[i] = 0;
702 Here are mid-level routines that manage the allocation of bodies out
703 of the various arenas. There are 5 kinds of arenas:
705 1. SV-head arenas, which are discussed and handled above
706 2. regular body arenas
707 3. arenas for reduced-size bodies
710 Arena types 2 & 3 are chained by body-type off an array of
711 arena-root pointers, which is indexed by svtype. Some of the
712 larger/less used body types are malloced singly, since a large
713 unused block of them is wasteful. Also, several svtypes dont have
714 bodies; the data fits into the sv-head itself. The arena-root
715 pointer thus has a few unused root-pointers (which may be hijacked
716 later for arena types 4,5)
718 3 differs from 2 as an optimization; some body types have several
719 unused fields in the front of the structure (which are kept in-place
720 for consistency). These bodies can be allocated in smaller chunks,
721 because the leading fields arent accessed. Pointers to such bodies
722 are decremented to point at the unused 'ghost' memory, knowing that
723 the pointers are used with offsets to the real memory.
726 =head1 SV-Body Allocation
728 Allocation of SV-bodies is similar to SV-heads, differing as follows;
729 the allocation mechanism is used for many body types, so is somewhat
730 more complicated, it uses arena-sets, and has no need for still-live
733 At the outermost level, (new|del)_X*V macros return bodies of the
734 appropriate type. These macros call either (new|del)_body_type or
735 (new|del)_body_allocated macro pairs, depending on specifics of the
736 type. Most body types use the former pair, the latter pair is used to
737 allocate body types with "ghost fields".
739 "ghost fields" are fields that are unused in certain types, and
740 consequently don't need to actually exist. They are declared because
741 they're part of a "base type", which allows use of functions as
742 methods. The simplest examples are AVs and HVs, 2 aggregate types
743 which don't use the fields which support SCALAR semantics.
745 For these types, the arenas are carved up into appropriately sized
746 chunks, we thus avoid wasted memory for those unaccessed members.
747 When bodies are allocated, we adjust the pointer back in memory by the
748 size of the part not allocated, so it's as if we allocated the full
749 structure. (But things will all go boom if you write to the part that
750 is "not there", because you'll be overwriting the last members of the
751 preceding structure in memory.)
753 We calculate the correction using the STRUCT_OFFSET macro on the first
754 member present. If the allocated structure is smaller (no initial NV
755 actually allocated) then the net effect is to subtract the size of the NV
756 from the pointer, to return a new pointer as if an initial NV were actually
757 allocated. (We were using structures named *_allocated for this, but
758 this turned out to be a subtle bug, because a structure without an NV
759 could have a lower alignment constraint, but the compiler is allowed to
760 optimised accesses based on the alignment constraint of the actual pointer
761 to the full structure, for example, using a single 64 bit load instruction
762 because it "knows" that two adjacent 32 bit members will be 8-byte aligned.)
764 This is the same trick as was used for NV and IV bodies. Ironically it
765 doesn't need to be used for NV bodies any more, because NV is now at
766 the start of the structure. IV bodies don't need it either, because
767 they are no longer allocated.
769 In turn, the new_body_* allocators call S_new_body(), which invokes
770 new_body_inline macro, which takes a lock, and takes a body off the
771 linked list at PL_body_roots[sv_type], calling Perl_more_bodies() if
772 necessary to refresh an empty list. Then the lock is released, and
773 the body is returned.
775 Perl_more_bodies allocates a new arena, and carves it up into an array of N
776 bodies, which it strings into a linked list. It looks up arena-size
777 and body-size from the body_details table described below, thus
778 supporting the multiple body-types.
780 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
781 the (new|del)_X*V macros are mapped directly to malloc/free.
783 For each sv-type, struct body_details bodies_by_type[] carries
784 parameters which control these aspects of SV handling:
786 Arena_size determines whether arenas are used for this body type, and if
787 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
788 zero, forcing individual mallocs and frees.
790 Body_size determines how big a body is, and therefore how many fit into
791 each arena. Offset carries the body-pointer adjustment needed for
792 "ghost fields", and is used in *_allocated macros.
794 But its main purpose is to parameterize info needed in
795 Perl_sv_upgrade(). The info here dramatically simplifies the function
796 vs the implementation in 5.8.8, making it table-driven. All fields
797 are used for this, except for arena_size.
799 For the sv-types that have no bodies, arenas are not used, so those
800 PL_body_roots[sv_type] are unused, and can be overloaded. In
801 something of a special case, SVt_NULL is borrowed for HE arenas;
802 PL_body_roots[HE_SVSLOT=SVt_NULL] is filled by S_more_he, but the
803 bodies_by_type[SVt_NULL] slot is not used, as the table is not
808 struct body_details {
809 U8 body_size; /* Size to allocate */
810 U8 copy; /* Size of structure to copy (may be shorter) */
812 unsigned int type : 4; /* We have space for a sanity check. */
813 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
814 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
815 unsigned int arena : 1; /* Allocated from an arena */
816 size_t arena_size; /* Size of arena to allocate */
824 /* With -DPURFIY we allocate everything directly, and don't use arenas.
825 This seems a rather elegant way to simplify some of the code below. */
826 #define HASARENA FALSE
828 #define HASARENA TRUE
830 #define NOARENA FALSE
832 /* Size the arenas to exactly fit a given number of bodies. A count
833 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
834 simplifying the default. If count > 0, the arena is sized to fit
835 only that many bodies, allowing arenas to be used for large, rare
836 bodies (XPVFM, XPVIO) without undue waste. The arena size is
837 limited by PERL_ARENA_SIZE, so we can safely oversize the
840 #define FIT_ARENA0(body_size) \
841 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
842 #define FIT_ARENAn(count,body_size) \
843 ( count * body_size <= PERL_ARENA_SIZE) \
844 ? count * body_size \
845 : FIT_ARENA0 (body_size)
846 #define FIT_ARENA(count,body_size) \
848 ? FIT_ARENAn (count, body_size) \
849 : FIT_ARENA0 (body_size)
851 /* Calculate the length to copy. Specifically work out the length less any
852 final padding the compiler needed to add. See the comment in sv_upgrade
853 for why copying the padding proved to be a bug. */
855 #define copy_length(type, last_member) \
856 STRUCT_OFFSET(type, last_member) \
857 + sizeof (((type*)SvANY((const SV *)0))->last_member)
859 static const struct body_details bodies_by_type[] = {
860 /* HEs use this offset for their arena. */
861 { 0, 0, 0, SVt_NULL, FALSE, NONV, NOARENA, 0 },
863 /* The bind placeholder pretends to be an RV for now.
864 Also it's marked as "can't upgrade" to stop anyone using it before it's
866 { 0, 0, 0, SVt_BIND, TRUE, NONV, NOARENA, 0 },
868 /* IVs are in the head, so the allocation size is 0. */
870 sizeof(IV), /* This is used to copy out the IV body. */
871 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
872 NOARENA /* IVS don't need an arena */, 0
875 /* 8 bytes on most ILP32 with IEEE doubles */
876 { sizeof(NV), sizeof(NV),
877 STRUCT_OFFSET(XPVNV, xnv_u),
878 SVt_NV, FALSE, HADNV, HASARENA, FIT_ARENA(0, sizeof(NV)) },
880 /* 8 bytes on most ILP32 with IEEE doubles */
881 { sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur),
882 copy_length(XPV, xpv_len) - STRUCT_OFFSET(XPV, xpv_cur),
883 + STRUCT_OFFSET(XPV, xpv_cur),
884 SVt_PV, FALSE, NONV, HASARENA,
885 FIT_ARENA(0, sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur)) },
888 { sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur),
889 copy_length(XPVIV, xiv_u) - STRUCT_OFFSET(XPV, xpv_cur),
890 + STRUCT_OFFSET(XPV, xpv_cur),
891 SVt_PVIV, FALSE, NONV, HASARENA,
892 FIT_ARENA(0, sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur)) },
895 { sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur),
896 copy_length(XPVNV, xnv_u) - STRUCT_OFFSET(XPV, xpv_cur),
897 + STRUCT_OFFSET(XPV, xpv_cur),
898 SVt_PVNV, FALSE, HADNV, HASARENA,
899 FIT_ARENA(0, sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur)) },
902 { sizeof(XPVMG), copy_length(XPVMG, xnv_u), 0, SVt_PVMG, FALSE, HADNV,
903 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
909 SVt_REGEXP, FALSE, NONV, HASARENA,
910 FIT_ARENA(0, sizeof(regexp))
914 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
915 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
918 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
919 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
922 copy_length(XPVAV, xav_alloc),
924 SVt_PVAV, TRUE, NONV, HASARENA,
925 FIT_ARENA(0, sizeof(XPVAV)) },
928 copy_length(XPVHV, xhv_max),
930 SVt_PVHV, TRUE, NONV, HASARENA,
931 FIT_ARENA(0, sizeof(XPVHV)) },
937 SVt_PVCV, TRUE, NONV, HASARENA,
938 FIT_ARENA(0, sizeof(XPVCV)) },
943 SVt_PVFM, TRUE, NONV, NOARENA,
944 FIT_ARENA(20, sizeof(XPVFM)) },
946 /* XPVIO is 84 bytes, fits 48x */
950 SVt_PVIO, TRUE, NONV, HASARENA,
951 FIT_ARENA(24, sizeof(XPVIO)) },
954 #define new_body_allocated(sv_type) \
955 (void *)((char *)S_new_body(aTHX_ sv_type) \
956 - bodies_by_type[sv_type].offset)
958 /* return a thing to the free list */
960 #define del_body(thing, root) \
962 void ** const thing_copy = (void **)thing; \
963 *thing_copy = *root; \
964 *root = (void*)thing_copy; \
969 #define new_XNV() safemalloc(sizeof(XPVNV))
970 #define new_XPVNV() safemalloc(sizeof(XPVNV))
971 #define new_XPVMG() safemalloc(sizeof(XPVMG))
973 #define del_XPVGV(p) safefree(p)
977 #define new_XNV() new_body_allocated(SVt_NV)
978 #define new_XPVNV() new_body_allocated(SVt_PVNV)
979 #define new_XPVMG() new_body_allocated(SVt_PVMG)
981 #define del_XPVGV(p) del_body(p + bodies_by_type[SVt_PVGV].offset, \
982 &PL_body_roots[SVt_PVGV])
986 /* no arena for you! */
988 #define new_NOARENA(details) \
989 safemalloc((details)->body_size + (details)->offset)
990 #define new_NOARENAZ(details) \
991 safecalloc((details)->body_size + (details)->offset, 1)
994 Perl_more_bodies (pTHX_ const svtype sv_type, const size_t body_size,
995 const size_t arena_size)
998 void ** const root = &PL_body_roots[sv_type];
999 struct arena_desc *adesc;
1000 struct arena_set *aroot = (struct arena_set *) PL_body_arenas;
1004 const size_t good_arena_size = Perl_malloc_good_size(arena_size);
1005 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1006 static bool done_sanity_check;
1008 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1009 * variables like done_sanity_check. */
1010 if (!done_sanity_check) {
1011 unsigned int i = SVt_LAST;
1013 done_sanity_check = TRUE;
1016 assert (bodies_by_type[i].type == i);
1022 /* may need new arena-set to hold new arena */
1023 if (!aroot || aroot->curr >= aroot->set_size) {
1024 struct arena_set *newroot;
1025 Newxz(newroot, 1, struct arena_set);
1026 newroot->set_size = ARENAS_PER_SET;
1027 newroot->next = aroot;
1029 PL_body_arenas = (void *) newroot;
1030 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
1033 /* ok, now have arena-set with at least 1 empty/available arena-desc */
1034 curr = aroot->curr++;
1035 adesc = &(aroot->set[curr]);
1036 assert(!adesc->arena);
1038 Newx(adesc->arena, good_arena_size, char);
1039 adesc->size = good_arena_size;
1040 adesc->utype = sv_type;
1041 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %"UVuf"\n",
1042 curr, (void*)adesc->arena, (UV)good_arena_size));
1044 start = (char *) adesc->arena;
1046 /* Get the address of the byte after the end of the last body we can fit.
1047 Remember, this is integer division: */
1048 end = start + good_arena_size / body_size * body_size;
1050 /* computed count doesnt reflect the 1st slot reservation */
1051 #if defined(MYMALLOC) || defined(HAS_MALLOC_GOOD_SIZE)
1052 DEBUG_m(PerlIO_printf(Perl_debug_log,
1053 "arena %p end %p arena-size %d (from %d) type %d "
1055 (void*)start, (void*)end, (int)good_arena_size,
1056 (int)arena_size, sv_type, (int)body_size,
1057 (int)good_arena_size / (int)body_size));
1059 DEBUG_m(PerlIO_printf(Perl_debug_log,
1060 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1061 (void*)start, (void*)end,
1062 (int)arena_size, sv_type, (int)body_size,
1063 (int)good_arena_size / (int)body_size));
1065 *root = (void *)start;
1068 /* Where the next body would start: */
1069 char * const next = start + body_size;
1072 /* This is the last body: */
1073 assert(next == end);
1075 *(void **)start = 0;
1079 *(void**) start = (void *)next;
1084 /* grab a new thing from the free list, allocating more if necessary.
1085 The inline version is used for speed in hot routines, and the
1086 function using it serves the rest (unless PURIFY).
1088 #define new_body_inline(xpv, sv_type) \
1090 void ** const r3wt = &PL_body_roots[sv_type]; \
1091 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1092 ? *((void **)(r3wt)) : Perl_more_bodies(aTHX_ sv_type, \
1093 bodies_by_type[sv_type].body_size,\
1094 bodies_by_type[sv_type].arena_size)); \
1095 *(r3wt) = *(void**)(xpv); \
1101 S_new_body(pTHX_ const svtype sv_type)
1105 new_body_inline(xpv, sv_type);
1111 static const struct body_details fake_rv =
1112 { 0, 0, 0, SVt_IV, FALSE, NONV, NOARENA, 0 };
1115 =for apidoc sv_upgrade
1117 Upgrade an SV to a more complex form. Generally adds a new body type to the
1118 SV, then copies across as much information as possible from the old body.
1119 You generally want to use the C<SvUPGRADE> macro wrapper. See also C<svtype>.
1125 Perl_sv_upgrade(pTHX_ register SV *const sv, svtype new_type)
1130 const svtype old_type = SvTYPE(sv);
1131 const struct body_details *new_type_details;
1132 const struct body_details *old_type_details
1133 = bodies_by_type + old_type;
1134 SV *referant = NULL;
1136 PERL_ARGS_ASSERT_SV_UPGRADE;
1138 if (old_type == new_type)
1141 /* This clause was purposefully added ahead of the early return above to
1142 the shared string hackery for (sort {$a <=> $b} keys %hash), with the
1143 inference by Nick I-S that it would fix other troublesome cases. See
1144 changes 7162, 7163 (f130fd4589cf5fbb24149cd4db4137c8326f49c1 and parent)
1146 Given that shared hash key scalars are no longer PVIV, but PV, there is
1147 no longer need to unshare so as to free up the IVX slot for its proper
1148 purpose. So it's safe to move the early return earlier. */
1150 if (new_type != SVt_PV && SvIsCOW(sv)) {
1151 sv_force_normal_flags(sv, 0);
1154 old_body = SvANY(sv);
1156 /* Copying structures onto other structures that have been neatly zeroed
1157 has a subtle gotcha. Consider XPVMG
1159 +------+------+------+------+------+-------+-------+
1160 | NV | CUR | LEN | IV | MAGIC | STASH |
1161 +------+------+------+------+------+-------+-------+
1162 0 4 8 12 16 20 24 28
1164 where NVs are aligned to 8 bytes, so that sizeof that structure is
1165 actually 32 bytes long, with 4 bytes of padding at the end:
1167 +------+------+------+------+------+-------+-------+------+
1168 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1169 +------+------+------+------+------+-------+-------+------+
1170 0 4 8 12 16 20 24 28 32
1172 so what happens if you allocate memory for this structure:
1174 +------+------+------+------+------+-------+-------+------+------+...
1175 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1176 +------+------+------+------+------+-------+-------+------+------+...
1177 0 4 8 12 16 20 24 28 32 36
1179 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1180 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1181 started out as zero once, but it's quite possible that it isn't. So now,
1182 rather than a nicely zeroed GP, you have it pointing somewhere random.
1185 (In fact, GP ends up pointing at a previous GP structure, because the
1186 principle cause of the padding in XPVMG getting garbage is a copy of
1187 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1188 this happens to be moot because XPVGV has been re-ordered, with GP
1189 no longer after STASH)
1191 So we are careful and work out the size of used parts of all the
1199 referant = SvRV(sv);
1200 old_type_details = &fake_rv;
1201 if (new_type == SVt_NV)
1202 new_type = SVt_PVNV;
1204 if (new_type < SVt_PVIV) {
1205 new_type = (new_type == SVt_NV)
1206 ? SVt_PVNV : SVt_PVIV;
1211 if (new_type < SVt_PVNV) {
1212 new_type = SVt_PVNV;
1216 assert(new_type > SVt_PV);
1217 assert(SVt_IV < SVt_PV);
1218 assert(SVt_NV < SVt_PV);
1225 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1226 there's no way that it can be safely upgraded, because perl.c
1227 expects to Safefree(SvANY(PL_mess_sv)) */
1228 assert(sv != PL_mess_sv);
1229 /* This flag bit is used to mean other things in other scalar types.
1230 Given that it only has meaning inside the pad, it shouldn't be set
1231 on anything that can get upgraded. */
1232 assert(!SvPAD_TYPED(sv));
1235 if (old_type_details->cant_upgrade)
1236 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1237 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1240 if (old_type > new_type)
1241 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1242 (int)old_type, (int)new_type);
1244 new_type_details = bodies_by_type + new_type;
1246 SvFLAGS(sv) &= ~SVTYPEMASK;
1247 SvFLAGS(sv) |= new_type;
1249 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1250 the return statements above will have triggered. */
1251 assert (new_type != SVt_NULL);
1254 assert(old_type == SVt_NULL);
1255 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1259 assert(old_type == SVt_NULL);
1260 SvANY(sv) = new_XNV();
1265 assert(new_type_details->body_size);
1268 assert(new_type_details->arena);
1269 assert(new_type_details->arena_size);
1270 /* This points to the start of the allocated area. */
1271 new_body_inline(new_body, new_type);
1272 Zero(new_body, new_type_details->body_size, char);
1273 new_body = ((char *)new_body) - new_type_details->offset;
1275 /* We always allocated the full length item with PURIFY. To do this
1276 we fake things so that arena is false for all 16 types.. */
1277 new_body = new_NOARENAZ(new_type_details);
1279 SvANY(sv) = new_body;
1280 if (new_type == SVt_PVAV) {
1284 if (old_type_details->body_size) {
1287 /* It will have been zeroed when the new body was allocated.
1288 Lets not write to it, in case it confuses a write-back
1294 #ifndef NODEFAULT_SHAREKEYS
1295 HvSHAREKEYS_on(sv); /* key-sharing on by default */
1297 HvMAX(sv) = 7; /* (start with 8 buckets) */
1300 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1301 The target created by newSVrv also is, and it can have magic.
1302 However, it never has SvPVX set.
1304 if (old_type == SVt_IV) {
1306 } else if (old_type >= SVt_PV) {
1307 assert(SvPVX_const(sv) == 0);
1310 if (old_type >= SVt_PVMG) {
1311 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1312 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1314 sv->sv_u.svu_array = NULL; /* or svu_hash */
1320 /* This ensures that SvTHINKFIRST(sv) is true, and hence that
1321 sv_force_normal_flags(sv) is called. */
1324 /* XXX Is this still needed? Was it ever needed? Surely as there is
1325 no route from NV to PVIV, NOK can never be true */
1326 assert(!SvNOKp(sv));
1337 assert(new_type_details->body_size);
1338 /* We always allocated the full length item with PURIFY. To do this
1339 we fake things so that arena is false for all 16 types.. */
1340 if(new_type_details->arena) {
1341 /* This points to the start of the allocated area. */
1342 new_body_inline(new_body, new_type);
1343 Zero(new_body, new_type_details->body_size, char);
1344 new_body = ((char *)new_body) - new_type_details->offset;
1346 new_body = new_NOARENAZ(new_type_details);
1348 SvANY(sv) = new_body;
1350 if (old_type_details->copy) {
1351 /* There is now the potential for an upgrade from something without
1352 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1353 int offset = old_type_details->offset;
1354 int length = old_type_details->copy;
1356 if (new_type_details->offset > old_type_details->offset) {
1357 const int difference
1358 = new_type_details->offset - old_type_details->offset;
1359 offset += difference;
1360 length -= difference;
1362 assert (length >= 0);
1364 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1368 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1369 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1370 * correct 0.0 for us. Otherwise, if the old body didn't have an
1371 * NV slot, but the new one does, then we need to initialise the
1372 * freshly created NV slot with whatever the correct bit pattern is
1374 if (old_type_details->zero_nv && !new_type_details->zero_nv
1375 && !isGV_with_GP(sv))
1379 if (new_type == SVt_PVIO) {
1380 IO * const io = MUTABLE_IO(sv);
1381 GV *iogv = gv_fetchpvs("IO::File::", GV_ADD, SVt_PVHV);
1384 /* Clear the stashcache because a new IO could overrule a package
1386 hv_clear(PL_stashcache);
1388 SvSTASH_set(io, MUTABLE_HV(SvREFCNT_inc(GvHV(iogv))));
1389 IoPAGE_LEN(sv) = 60;
1391 if (old_type < SVt_PV) {
1392 /* referant will be NULL unless the old type was SVt_IV emulating
1394 sv->sv_u.svu_rv = referant;
1398 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1399 (unsigned long)new_type);
1402 if (old_type > SVt_IV) {
1406 /* Note that there is an assumption that all bodies of types that
1407 can be upgraded came from arenas. Only the more complex non-
1408 upgradable types are allowed to be directly malloc()ed. */
1409 assert(old_type_details->arena);
1410 del_body((void*)((char*)old_body + old_type_details->offset),
1411 &PL_body_roots[old_type]);
1417 =for apidoc sv_backoff
1419 Remove any string offset. You should normally use the C<SvOOK_off> macro
1426 Perl_sv_backoff(pTHX_ register SV *const sv)
1429 const char * const s = SvPVX_const(sv);
1431 PERL_ARGS_ASSERT_SV_BACKOFF;
1432 PERL_UNUSED_CONTEXT;
1435 assert(SvTYPE(sv) != SVt_PVHV);
1436 assert(SvTYPE(sv) != SVt_PVAV);
1438 SvOOK_offset(sv, delta);
1440 SvLEN_set(sv, SvLEN(sv) + delta);
1441 SvPV_set(sv, SvPVX(sv) - delta);
1442 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1443 SvFLAGS(sv) &= ~SVf_OOK;
1450 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1451 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1452 Use the C<SvGROW> wrapper instead.
1458 Perl_sv_grow(pTHX_ register SV *const sv, register STRLEN newlen)
1462 PERL_ARGS_ASSERT_SV_GROW;
1464 if (PL_madskills && newlen >= 0x100000) {
1465 PerlIO_printf(Perl_debug_log,
1466 "Allocation too large: %"UVxf"\n", (UV)newlen);
1468 #ifdef HAS_64K_LIMIT
1469 if (newlen >= 0x10000) {
1470 PerlIO_printf(Perl_debug_log,
1471 "Allocation too large: %"UVxf"\n", (UV)newlen);
1474 #endif /* HAS_64K_LIMIT */
1477 if (SvTYPE(sv) < SVt_PV) {
1478 sv_upgrade(sv, SVt_PV);
1479 s = SvPVX_mutable(sv);
1481 else if (SvOOK(sv)) { /* pv is offset? */
1483 s = SvPVX_mutable(sv);
1484 if (newlen > SvLEN(sv))
1485 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1486 #ifdef HAS_64K_LIMIT
1487 if (newlen >= 0x10000)
1492 s = SvPVX_mutable(sv);
1494 if (newlen > SvLEN(sv)) { /* need more room? */
1495 STRLEN minlen = SvCUR(sv);
1496 minlen += (minlen >> PERL_STRLEN_EXPAND_SHIFT) + 10;
1497 if (newlen < minlen)
1499 #ifndef Perl_safesysmalloc_size
1500 newlen = PERL_STRLEN_ROUNDUP(newlen);
1502 if (SvLEN(sv) && s) {
1503 s = (char*)saferealloc(s, newlen);
1506 s = (char*)safemalloc(newlen);
1507 if (SvPVX_const(sv) && SvCUR(sv)) {
1508 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1512 #ifdef Perl_safesysmalloc_size
1513 /* Do this here, do it once, do it right, and then we will never get
1514 called back into sv_grow() unless there really is some growing
1516 SvLEN_set(sv, Perl_safesysmalloc_size(s));
1518 SvLEN_set(sv, newlen);
1525 =for apidoc sv_setiv
1527 Copies an integer into the given SV, upgrading first if necessary.
1528 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1534 Perl_sv_setiv(pTHX_ register SV *const sv, const IV i)
1538 PERL_ARGS_ASSERT_SV_SETIV;
1540 SV_CHECK_THINKFIRST_COW_DROP(sv);
1541 switch (SvTYPE(sv)) {
1544 sv_upgrade(sv, SVt_IV);
1547 sv_upgrade(sv, SVt_PVIV);
1551 if (!isGV_with_GP(sv))
1558 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1562 (void)SvIOK_only(sv); /* validate number */
1568 =for apidoc sv_setiv_mg
1570 Like C<sv_setiv>, but also handles 'set' magic.
1576 Perl_sv_setiv_mg(pTHX_ register SV *const sv, const IV i)
1578 PERL_ARGS_ASSERT_SV_SETIV_MG;
1585 =for apidoc sv_setuv
1587 Copies an unsigned integer into the given SV, upgrading first if necessary.
1588 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1594 Perl_sv_setuv(pTHX_ register SV *const sv, const UV u)
1596 PERL_ARGS_ASSERT_SV_SETUV;
1598 /* With these two if statements:
1599 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1602 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1604 If you wish to remove them, please benchmark to see what the effect is
1606 if (u <= (UV)IV_MAX) {
1607 sv_setiv(sv, (IV)u);
1616 =for apidoc sv_setuv_mg
1618 Like C<sv_setuv>, but also handles 'set' magic.
1624 Perl_sv_setuv_mg(pTHX_ register SV *const sv, const UV u)
1626 PERL_ARGS_ASSERT_SV_SETUV_MG;
1633 =for apidoc sv_setnv
1635 Copies a double into the given SV, upgrading first if necessary.
1636 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1642 Perl_sv_setnv(pTHX_ register SV *const sv, const NV num)
1646 PERL_ARGS_ASSERT_SV_SETNV;
1648 SV_CHECK_THINKFIRST_COW_DROP(sv);
1649 switch (SvTYPE(sv)) {
1652 sv_upgrade(sv, SVt_NV);
1656 sv_upgrade(sv, SVt_PVNV);
1660 if (!isGV_with_GP(sv))
1667 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1672 (void)SvNOK_only(sv); /* validate number */
1677 =for apidoc sv_setnv_mg
1679 Like C<sv_setnv>, but also handles 'set' magic.
1685 Perl_sv_setnv_mg(pTHX_ register SV *const sv, const NV num)
1687 PERL_ARGS_ASSERT_SV_SETNV_MG;
1693 /* Print an "isn't numeric" warning, using a cleaned-up,
1694 * printable version of the offending string
1698 S_not_a_number(pTHX_ SV *const sv)
1705 PERL_ARGS_ASSERT_NOT_A_NUMBER;
1708 dsv = newSVpvs_flags("", SVs_TEMP);
1709 pv = sv_uni_display(dsv, sv, 10, 0);
1712 const char * const limit = tmpbuf + sizeof(tmpbuf) - 8;
1713 /* each *s can expand to 4 chars + "...\0",
1714 i.e. need room for 8 chars */
1716 const char *s = SvPVX_const(sv);
1717 const char * const end = s + SvCUR(sv);
1718 for ( ; s < end && d < limit; s++ ) {
1720 if (ch & 128 && !isPRINT_LC(ch)) {
1729 else if (ch == '\r') {
1733 else if (ch == '\f') {
1737 else if (ch == '\\') {
1741 else if (ch == '\0') {
1745 else if (isPRINT_LC(ch))
1762 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1763 "Argument \"%s\" isn't numeric in %s", pv,
1766 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1767 "Argument \"%s\" isn't numeric", pv);
1771 =for apidoc looks_like_number
1773 Test if the content of an SV looks like a number (or is a number).
1774 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1775 non-numeric warning), even if your atof() doesn't grok them.
1781 Perl_looks_like_number(pTHX_ SV *const sv)
1783 register const char *sbegin;
1786 PERL_ARGS_ASSERT_LOOKS_LIKE_NUMBER;
1789 sbegin = SvPVX_const(sv);
1792 else if (SvPOKp(sv))
1793 sbegin = SvPV_const(sv, len);
1795 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1796 return grok_number(sbegin, len, NULL);
1800 S_glob_2number(pTHX_ GV * const gv)
1802 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1803 SV *const buffer = sv_newmortal();
1805 PERL_ARGS_ASSERT_GLOB_2NUMBER;
1807 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1810 gv_efullname3(buffer, gv, "*");
1811 SvFLAGS(gv) |= wasfake;
1813 /* We know that all GVs stringify to something that is not-a-number,
1814 so no need to test that. */
1815 if (ckWARN(WARN_NUMERIC))
1816 not_a_number(buffer);
1817 /* We just want something true to return, so that S_sv_2iuv_common
1818 can tail call us and return true. */
1822 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1823 until proven guilty, assume that things are not that bad... */
1828 As 64 bit platforms often have an NV that doesn't preserve all bits of
1829 an IV (an assumption perl has been based on to date) it becomes necessary
1830 to remove the assumption that the NV always carries enough precision to
1831 recreate the IV whenever needed, and that the NV is the canonical form.
1832 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1833 precision as a side effect of conversion (which would lead to insanity
1834 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1835 1) to distinguish between IV/UV/NV slots that have cached a valid
1836 conversion where precision was lost and IV/UV/NV slots that have a
1837 valid conversion which has lost no precision
1838 2) to ensure that if a numeric conversion to one form is requested that
1839 would lose precision, the precise conversion (or differently
1840 imprecise conversion) is also performed and cached, to prevent
1841 requests for different numeric formats on the same SV causing
1842 lossy conversion chains. (lossless conversion chains are perfectly
1847 SvIOKp is true if the IV slot contains a valid value
1848 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1849 SvNOKp is true if the NV slot contains a valid value
1850 SvNOK is true only if the NV value is accurate
1853 while converting from PV to NV, check to see if converting that NV to an
1854 IV(or UV) would lose accuracy over a direct conversion from PV to
1855 IV(or UV). If it would, cache both conversions, return NV, but mark
1856 SV as IOK NOKp (ie not NOK).
1858 While converting from PV to IV, check to see if converting that IV to an
1859 NV would lose accuracy over a direct conversion from PV to NV. If it
1860 would, cache both conversions, flag similarly.
1862 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1863 correctly because if IV & NV were set NV *always* overruled.
1864 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1865 changes - now IV and NV together means that the two are interchangeable:
1866 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1868 The benefit of this is that operations such as pp_add know that if
1869 SvIOK is true for both left and right operands, then integer addition
1870 can be used instead of floating point (for cases where the result won't
1871 overflow). Before, floating point was always used, which could lead to
1872 loss of precision compared with integer addition.
1874 * making IV and NV equal status should make maths accurate on 64 bit
1876 * may speed up maths somewhat if pp_add and friends start to use
1877 integers when possible instead of fp. (Hopefully the overhead in
1878 looking for SvIOK and checking for overflow will not outweigh the
1879 fp to integer speedup)
1880 * will slow down integer operations (callers of SvIV) on "inaccurate"
1881 values, as the change from SvIOK to SvIOKp will cause a call into
1882 sv_2iv each time rather than a macro access direct to the IV slot
1883 * should speed up number->string conversion on integers as IV is
1884 favoured when IV and NV are equally accurate
1886 ####################################################################
1887 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1888 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1889 On the other hand, SvUOK is true iff UV.
1890 ####################################################################
1892 Your mileage will vary depending your CPU's relative fp to integer
1896 #ifndef NV_PRESERVES_UV
1897 # define IS_NUMBER_UNDERFLOW_IV 1
1898 # define IS_NUMBER_UNDERFLOW_UV 2
1899 # define IS_NUMBER_IV_AND_UV 2
1900 # define IS_NUMBER_OVERFLOW_IV 4
1901 # define IS_NUMBER_OVERFLOW_UV 5
1903 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1905 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1907 S_sv_2iuv_non_preserve(pTHX_ register SV *const sv
1915 PERL_ARGS_ASSERT_SV_2IUV_NON_PRESERVE;
1917 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1918 if (SvNVX(sv) < (NV)IV_MIN) {
1919 (void)SvIOKp_on(sv);
1921 SvIV_set(sv, IV_MIN);
1922 return IS_NUMBER_UNDERFLOW_IV;
1924 if (SvNVX(sv) > (NV)UV_MAX) {
1925 (void)SvIOKp_on(sv);
1928 SvUV_set(sv, UV_MAX);
1929 return IS_NUMBER_OVERFLOW_UV;
1931 (void)SvIOKp_on(sv);
1933 /* Can't use strtol etc to convert this string. (See truth table in
1935 if (SvNVX(sv) <= (UV)IV_MAX) {
1936 SvIV_set(sv, I_V(SvNVX(sv)));
1937 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1938 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1940 /* Integer is imprecise. NOK, IOKp */
1942 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
1945 SvUV_set(sv, U_V(SvNVX(sv)));
1946 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
1947 if (SvUVX(sv) == UV_MAX) {
1948 /* As we know that NVs don't preserve UVs, UV_MAX cannot
1949 possibly be preserved by NV. Hence, it must be overflow.
1951 return IS_NUMBER_OVERFLOW_UV;
1953 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
1955 /* Integer is imprecise. NOK, IOKp */
1957 return IS_NUMBER_OVERFLOW_IV;
1959 #endif /* !NV_PRESERVES_UV*/
1962 S_sv_2iuv_common(pTHX_ SV *const sv)
1966 PERL_ARGS_ASSERT_SV_2IUV_COMMON;
1969 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
1970 * without also getting a cached IV/UV from it at the same time
1971 * (ie PV->NV conversion should detect loss of accuracy and cache
1972 * IV or UV at same time to avoid this. */
1973 /* IV-over-UV optimisation - choose to cache IV if possible */
1975 if (SvTYPE(sv) == SVt_NV)
1976 sv_upgrade(sv, SVt_PVNV);
1978 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
1979 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
1980 certainly cast into the IV range at IV_MAX, whereas the correct
1981 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
1983 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
1984 if (Perl_isnan(SvNVX(sv))) {
1990 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
1991 SvIV_set(sv, I_V(SvNVX(sv)));
1992 if (SvNVX(sv) == (NV) SvIVX(sv)
1993 #ifndef NV_PRESERVES_UV
1994 && (((UV)1 << NV_PRESERVES_UV_BITS) >
1995 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
1996 /* Don't flag it as "accurately an integer" if the number
1997 came from a (by definition imprecise) NV operation, and
1998 we're outside the range of NV integer precision */
2002 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
2004 /* scalar has trailing garbage, eg "42a" */
2006 DEBUG_c(PerlIO_printf(Perl_debug_log,
2007 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
2013 /* IV not precise. No need to convert from PV, as NV
2014 conversion would already have cached IV if it detected
2015 that PV->IV would be better than PV->NV->IV
2016 flags already correct - don't set public IOK. */
2017 DEBUG_c(PerlIO_printf(Perl_debug_log,
2018 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
2023 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
2024 but the cast (NV)IV_MIN rounds to a the value less (more
2025 negative) than IV_MIN which happens to be equal to SvNVX ??
2026 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
2027 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
2028 (NV)UVX == NVX are both true, but the values differ. :-(
2029 Hopefully for 2s complement IV_MIN is something like
2030 0x8000000000000000 which will be exact. NWC */
2033 SvUV_set(sv, U_V(SvNVX(sv)));
2035 (SvNVX(sv) == (NV) SvUVX(sv))
2036 #ifndef NV_PRESERVES_UV
2037 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
2038 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
2039 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
2040 /* Don't flag it as "accurately an integer" if the number
2041 came from a (by definition imprecise) NV operation, and
2042 we're outside the range of NV integer precision */
2048 DEBUG_c(PerlIO_printf(Perl_debug_log,
2049 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
2055 else if (SvPOKp(sv) && SvLEN(sv)) {
2057 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2058 /* We want to avoid a possible problem when we cache an IV/ a UV which
2059 may be later translated to an NV, and the resulting NV is not
2060 the same as the direct translation of the initial string
2061 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
2062 be careful to ensure that the value with the .456 is around if the
2063 NV value is requested in the future).
2065 This means that if we cache such an IV/a UV, we need to cache the
2066 NV as well. Moreover, we trade speed for space, and do not
2067 cache the NV if we are sure it's not needed.
2070 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
2071 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2072 == IS_NUMBER_IN_UV) {
2073 /* It's definitely an integer, only upgrade to PVIV */
2074 if (SvTYPE(sv) < SVt_PVIV)
2075 sv_upgrade(sv, SVt_PVIV);
2077 } else if (SvTYPE(sv) < SVt_PVNV)
2078 sv_upgrade(sv, SVt_PVNV);
2080 /* If NVs preserve UVs then we only use the UV value if we know that
2081 we aren't going to call atof() below. If NVs don't preserve UVs
2082 then the value returned may have more precision than atof() will
2083 return, even though value isn't perfectly accurate. */
2084 if ((numtype & (IS_NUMBER_IN_UV
2085 #ifdef NV_PRESERVES_UV
2088 )) == IS_NUMBER_IN_UV) {
2089 /* This won't turn off the public IOK flag if it was set above */
2090 (void)SvIOKp_on(sv);
2092 if (!(numtype & IS_NUMBER_NEG)) {
2094 if (value <= (UV)IV_MAX) {
2095 SvIV_set(sv, (IV)value);
2097 /* it didn't overflow, and it was positive. */
2098 SvUV_set(sv, value);
2102 /* 2s complement assumption */
2103 if (value <= (UV)IV_MIN) {
2104 SvIV_set(sv, -(IV)value);
2106 /* Too negative for an IV. This is a double upgrade, but
2107 I'm assuming it will be rare. */
2108 if (SvTYPE(sv) < SVt_PVNV)
2109 sv_upgrade(sv, SVt_PVNV);
2113 SvNV_set(sv, -(NV)value);
2114 SvIV_set(sv, IV_MIN);
2118 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2119 will be in the previous block to set the IV slot, and the next
2120 block to set the NV slot. So no else here. */
2122 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2123 != IS_NUMBER_IN_UV) {
2124 /* It wasn't an (integer that doesn't overflow the UV). */
2125 SvNV_set(sv, Atof(SvPVX_const(sv)));
2127 if (! numtype && ckWARN(WARN_NUMERIC))
2130 #if defined(USE_LONG_DOUBLE)
2131 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2132 PTR2UV(sv), SvNVX(sv)));
2134 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2135 PTR2UV(sv), SvNVX(sv)));
2138 #ifdef NV_PRESERVES_UV
2139 (void)SvIOKp_on(sv);
2141 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2142 SvIV_set(sv, I_V(SvNVX(sv)));
2143 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2146 NOOP; /* Integer is imprecise. NOK, IOKp */
2148 /* UV will not work better than IV */
2150 if (SvNVX(sv) > (NV)UV_MAX) {
2152 /* Integer is inaccurate. NOK, IOKp, is UV */
2153 SvUV_set(sv, UV_MAX);
2155 SvUV_set(sv, U_V(SvNVX(sv)));
2156 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2157 NV preservse UV so can do correct comparison. */
2158 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2161 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2166 #else /* NV_PRESERVES_UV */
2167 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2168 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2169 /* The IV/UV slot will have been set from value returned by
2170 grok_number above. The NV slot has just been set using
2173 assert (SvIOKp(sv));
2175 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2176 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2177 /* Small enough to preserve all bits. */
2178 (void)SvIOKp_on(sv);
2180 SvIV_set(sv, I_V(SvNVX(sv)));
2181 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2183 /* Assumption: first non-preserved integer is < IV_MAX,
2184 this NV is in the preserved range, therefore: */
2185 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2187 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2191 0 0 already failed to read UV.
2192 0 1 already failed to read UV.
2193 1 0 you won't get here in this case. IV/UV
2194 slot set, public IOK, Atof() unneeded.
2195 1 1 already read UV.
2196 so there's no point in sv_2iuv_non_preserve() attempting
2197 to use atol, strtol, strtoul etc. */
2199 sv_2iuv_non_preserve (sv, numtype);
2201 sv_2iuv_non_preserve (sv);
2205 #endif /* NV_PRESERVES_UV */
2206 /* It might be more code efficient to go through the entire logic above
2207 and conditionally set with SvIOKp_on() rather than SvIOK(), but it
2208 gets complex and potentially buggy, so more programmer efficient
2209 to do it this way, by turning off the public flags: */
2211 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2215 if (isGV_with_GP(sv))
2216 return glob_2number(MUTABLE_GV(sv));
2218 if (!(SvFLAGS(sv) & SVs_PADTMP)) {
2219 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2222 if (SvTYPE(sv) < SVt_IV)
2223 /* Typically the caller expects that sv_any is not NULL now. */
2224 sv_upgrade(sv, SVt_IV);
2225 /* Return 0 from the caller. */
2232 =for apidoc sv_2iv_flags
2234 Return the integer value of an SV, doing any necessary string
2235 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2236 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2242 Perl_sv_2iv_flags(pTHX_ register SV *const sv, const I32 flags)
2247 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2248 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2249 cache IVs just in case. In practice it seems that they never
2250 actually anywhere accessible by user Perl code, let alone get used
2251 in anything other than a string context. */
2252 if (flags & SV_GMAGIC)
2257 return I_V(SvNVX(sv));
2259 if (SvPOKp(sv) && SvLEN(sv)) {
2262 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2264 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2265 == IS_NUMBER_IN_UV) {
2266 /* It's definitely an integer */
2267 if (numtype & IS_NUMBER_NEG) {
2268 if (value < (UV)IV_MIN)
2271 if (value < (UV)IV_MAX)
2276 if (ckWARN(WARN_NUMERIC))
2279 return I_V(Atof(SvPVX_const(sv)));
2284 assert(SvTYPE(sv) >= SVt_PVMG);
2285 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2286 } else if (SvTHINKFIRST(sv)) {
2291 if (flags & SV_SKIP_OVERLOAD)
2293 tmpstr=AMG_CALLun(sv,numer);
2294 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2295 return SvIV(tmpstr);
2298 return PTR2IV(SvRV(sv));
2301 sv_force_normal_flags(sv, 0);
2303 if (SvREADONLY(sv) && !SvOK(sv)) {
2304 if (ckWARN(WARN_UNINITIALIZED))
2310 if (S_sv_2iuv_common(aTHX_ sv))
2313 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2314 PTR2UV(sv),SvIVX(sv)));
2315 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2319 =for apidoc sv_2uv_flags
2321 Return the unsigned integer value of an SV, doing any necessary string
2322 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2323 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2329 Perl_sv_2uv_flags(pTHX_ register SV *const sv, const I32 flags)
2334 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2335 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2336 cache IVs just in case. */
2337 if (flags & SV_GMAGIC)
2342 return U_V(SvNVX(sv));
2343 if (SvPOKp(sv) && SvLEN(sv)) {
2346 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2348 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2349 == IS_NUMBER_IN_UV) {
2350 /* It's definitely an integer */
2351 if (!(numtype & IS_NUMBER_NEG))
2355 if (ckWARN(WARN_NUMERIC))
2358 return U_V(Atof(SvPVX_const(sv)));
2363 assert(SvTYPE(sv) >= SVt_PVMG);
2364 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2365 } else if (SvTHINKFIRST(sv)) {
2370 if (flags & SV_SKIP_OVERLOAD)
2372 tmpstr = AMG_CALLun(sv,numer);
2373 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2374 return SvUV(tmpstr);
2377 return PTR2UV(SvRV(sv));
2380 sv_force_normal_flags(sv, 0);
2382 if (SvREADONLY(sv) && !SvOK(sv)) {
2383 if (ckWARN(WARN_UNINITIALIZED))
2389 if (S_sv_2iuv_common(aTHX_ sv))
2393 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2394 PTR2UV(sv),SvUVX(sv)));
2395 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2399 =for apidoc sv_2nv_flags
2401 Return the num value of an SV, doing any necessary string or integer
2402 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2403 Normally used via the C<SvNV(sv)> and C<SvNVx(sv)> macros.
2409 Perl_sv_2nv_flags(pTHX_ register SV *const sv, const I32 flags)
2414 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2415 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2416 cache IVs just in case. */
2417 if (flags & SV_GMAGIC)
2421 if ((SvPOKp(sv) && SvLEN(sv)) && !SvIOKp(sv)) {
2422 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2423 !grok_number(SvPVX_const(sv), SvCUR(sv), NULL))
2425 return Atof(SvPVX_const(sv));
2429 return (NV)SvUVX(sv);
2431 return (NV)SvIVX(sv);
2436 assert(SvTYPE(sv) >= SVt_PVMG);
2437 /* This falls through to the report_uninit near the end of the
2439 } else if (SvTHINKFIRST(sv)) {
2444 if (flags & SV_SKIP_OVERLOAD)
2446 tmpstr = AMG_CALLun(sv,numer);
2447 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2448 return SvNV(tmpstr);
2451 return PTR2NV(SvRV(sv));
2454 sv_force_normal_flags(sv, 0);
2456 if (SvREADONLY(sv) && !SvOK(sv)) {
2457 if (ckWARN(WARN_UNINITIALIZED))
2462 if (SvTYPE(sv) < SVt_NV) {
2463 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2464 sv_upgrade(sv, SVt_NV);
2465 #ifdef USE_LONG_DOUBLE
2467 STORE_NUMERIC_LOCAL_SET_STANDARD();
2468 PerlIO_printf(Perl_debug_log,
2469 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2470 PTR2UV(sv), SvNVX(sv));
2471 RESTORE_NUMERIC_LOCAL();
2475 STORE_NUMERIC_LOCAL_SET_STANDARD();
2476 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2477 PTR2UV(sv), SvNVX(sv));
2478 RESTORE_NUMERIC_LOCAL();
2482 else if (SvTYPE(sv) < SVt_PVNV)
2483 sv_upgrade(sv, SVt_PVNV);
2488 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2489 #ifdef NV_PRESERVES_UV
2495 /* Only set the public NV OK flag if this NV preserves the IV */
2496 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2498 SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2499 : (SvIVX(sv) == I_V(SvNVX(sv))))
2505 else if (SvPOKp(sv) && SvLEN(sv)) {
2507 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2508 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2510 #ifdef NV_PRESERVES_UV
2511 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2512 == IS_NUMBER_IN_UV) {
2513 /* It's definitely an integer */
2514 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2516 SvNV_set(sv, Atof(SvPVX_const(sv)));
2522 SvNV_set(sv, Atof(SvPVX_const(sv)));
2523 /* Only set the public NV OK flag if this NV preserves the value in
2524 the PV at least as well as an IV/UV would.
2525 Not sure how to do this 100% reliably. */
2526 /* if that shift count is out of range then Configure's test is
2527 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2529 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2530 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2531 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2532 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2533 /* Can't use strtol etc to convert this string, so don't try.
2534 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2537 /* value has been set. It may not be precise. */
2538 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2539 /* 2s complement assumption for (UV)IV_MIN */
2540 SvNOK_on(sv); /* Integer is too negative. */
2545 if (numtype & IS_NUMBER_NEG) {
2546 SvIV_set(sv, -(IV)value);
2547 } else if (value <= (UV)IV_MAX) {
2548 SvIV_set(sv, (IV)value);
2550 SvUV_set(sv, value);
2554 if (numtype & IS_NUMBER_NOT_INT) {
2555 /* I believe that even if the original PV had decimals,
2556 they are lost beyond the limit of the FP precision.
2557 However, neither is canonical, so both only get p
2558 flags. NWC, 2000/11/25 */
2559 /* Both already have p flags, so do nothing */
2561 const NV nv = SvNVX(sv);
2562 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2563 if (SvIVX(sv) == I_V(nv)) {
2566 /* It had no "." so it must be integer. */
2570 /* between IV_MAX and NV(UV_MAX).
2571 Could be slightly > UV_MAX */
2573 if (numtype & IS_NUMBER_NOT_INT) {
2574 /* UV and NV both imprecise. */
2576 const UV nv_as_uv = U_V(nv);
2578 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2587 /* It might be more code efficient to go through the entire logic above
2588 and conditionally set with SvNOKp_on() rather than SvNOK(), but it
2589 gets complex and potentially buggy, so more programmer efficient
2590 to do it this way, by turning off the public flags: */
2592 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2593 #endif /* NV_PRESERVES_UV */
2596 if (isGV_with_GP(sv)) {
2597 glob_2number(MUTABLE_GV(sv));
2601 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2603 assert (SvTYPE(sv) >= SVt_NV);
2604 /* Typically the caller expects that sv_any is not NULL now. */
2605 /* XXX Ilya implies that this is a bug in callers that assume this
2606 and ideally should be fixed. */
2609 #if defined(USE_LONG_DOUBLE)
2611 STORE_NUMERIC_LOCAL_SET_STANDARD();
2612 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2613 PTR2UV(sv), SvNVX(sv));
2614 RESTORE_NUMERIC_LOCAL();
2618 STORE_NUMERIC_LOCAL_SET_STANDARD();
2619 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2620 PTR2UV(sv), SvNVX(sv));
2621 RESTORE_NUMERIC_LOCAL();
2630 Return an SV with the numeric value of the source SV, doing any necessary
2631 reference or overload conversion. You must use the C<SvNUM(sv)> macro to
2632 access this function.
2638 Perl_sv_2num(pTHX_ register SV *const sv)
2640 PERL_ARGS_ASSERT_SV_2NUM;
2645 SV * const tmpsv = AMG_CALLun(sv,numer);
2646 TAINT_IF(tmpsv && SvTAINTED(tmpsv));
2647 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2648 return sv_2num(tmpsv);
2650 return sv_2mortal(newSVuv(PTR2UV(SvRV(sv))));
2653 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2654 * UV as a string towards the end of buf, and return pointers to start and
2657 * We assume that buf is at least TYPE_CHARS(UV) long.
2661 S_uiv_2buf(char *const buf, const IV iv, UV uv, const int is_uv, char **const peob)
2663 char *ptr = buf + TYPE_CHARS(UV);
2664 char * const ebuf = ptr;
2667 PERL_ARGS_ASSERT_UIV_2BUF;
2679 *--ptr = '0' + (char)(uv % 10);
2688 =for apidoc sv_2pv_flags
2690 Returns a pointer to the string value of an SV, and sets *lp to its length.
2691 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a string
2693 Normally invoked via the C<SvPV_flags> macro. C<sv_2pv()> and C<sv_2pv_nomg>
2694 usually end up here too.
2700 Perl_sv_2pv_flags(pTHX_ register SV *const sv, STRLEN *const lp, const I32 flags)
2710 if (SvGMAGICAL(sv)) {
2711 if (flags & SV_GMAGIC)
2716 if (flags & SV_MUTABLE_RETURN)
2717 return SvPVX_mutable(sv);
2718 if (flags & SV_CONST_RETURN)
2719 return (char *)SvPVX_const(sv);
2722 if (SvIOKp(sv) || SvNOKp(sv)) {
2723 char tbuf[64]; /* Must fit sprintf/Gconvert of longest IV/NV */
2728 ? my_snprintf(tbuf, sizeof(tbuf), "%"UVuf, (UV)SvUVX(sv))
2729 : my_snprintf(tbuf, sizeof(tbuf), "%"IVdf, (IV)SvIVX(sv));
2730 } else if(SvNVX(sv) == 0.0) {
2735 Gconvert(SvNVX(sv), NV_DIG, 0, tbuf);
2742 SvUPGRADE(sv, SVt_PV);
2745 s = SvGROW_mutable(sv, len + 1);
2748 return (char*)memcpy(s, tbuf, len + 1);
2754 assert(SvTYPE(sv) >= SVt_PVMG);
2755 /* This falls through to the report_uninit near the end of the
2757 } else if (SvTHINKFIRST(sv)) {
2762 if (flags & SV_SKIP_OVERLOAD)
2764 tmpstr = AMG_CALLun(sv,string);
2765 TAINT_IF(tmpstr && SvTAINTED(tmpstr));
2766 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2768 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2772 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2773 if (flags & SV_CONST_RETURN) {
2774 pv = (char *) SvPVX_const(tmpstr);
2776 pv = (flags & SV_MUTABLE_RETURN)
2777 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2780 *lp = SvCUR(tmpstr);
2782 pv = sv_2pv_flags(tmpstr, lp, flags);
2795 SV *const referent = SvRV(sv);
2799 retval = buffer = savepvn("NULLREF", len);
2800 } else if (SvTYPE(referent) == SVt_REGEXP) {
2801 REGEXP * const re = (REGEXP *)MUTABLE_PTR(referent);
2806 /* If the regex is UTF-8 we want the containing scalar to
2807 have an UTF-8 flag too */
2813 if ((seen_evals = RX_SEEN_EVALS(re)))
2814 PL_reginterp_cnt += seen_evals;
2817 *lp = RX_WRAPLEN(re);
2819 return RX_WRAPPED(re);
2821 const char *const typestr = sv_reftype(referent, 0);
2822 const STRLEN typelen = strlen(typestr);
2823 UV addr = PTR2UV(referent);
2824 const char *stashname = NULL;
2825 STRLEN stashnamelen = 0; /* hush, gcc */
2826 const char *buffer_end;
2828 if (SvOBJECT(referent)) {
2829 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2832 stashname = HEK_KEY(name);
2833 stashnamelen = HEK_LEN(name);
2835 if (HEK_UTF8(name)) {
2841 stashname = "__ANON__";
2844 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2845 + 2 * sizeof(UV) + 2 /* )\0 */;
2847 len = typelen + 3 /* (0x */
2848 + 2 * sizeof(UV) + 2 /* )\0 */;
2851 Newx(buffer, len, char);
2852 buffer_end = retval = buffer + len;
2854 /* Working backwards */
2858 *--retval = PL_hexdigit[addr & 15];
2859 } while (addr >>= 4);
2865 memcpy(retval, typestr, typelen);
2869 retval -= stashnamelen;
2870 memcpy(retval, stashname, stashnamelen);
2872 /* retval may not neccesarily have reached the start of the
2874 assert (retval >= buffer);
2876 len = buffer_end - retval - 1; /* -1 for that \0 */
2884 if (SvREADONLY(sv) && !SvOK(sv)) {
2887 if (flags & SV_UNDEF_RETURNS_NULL)
2889 if (ckWARN(WARN_UNINITIALIZED))
2894 if (SvIOK(sv) || ((SvIOKp(sv) && !SvNOKp(sv)))) {
2895 /* I'm assuming that if both IV and NV are equally valid then
2896 converting the IV is going to be more efficient */
2897 const U32 isUIOK = SvIsUV(sv);
2898 char buf[TYPE_CHARS(UV)];
2902 if (SvTYPE(sv) < SVt_PVIV)
2903 sv_upgrade(sv, SVt_PVIV);
2904 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2906 /* inlined from sv_setpvn */
2907 s = SvGROW_mutable(sv, len + 1);
2908 Move(ptr, s, len, char);
2912 else if (SvNOKp(sv)) {
2913 if (SvTYPE(sv) < SVt_PVNV)
2914 sv_upgrade(sv, SVt_PVNV);
2915 if (SvNVX(sv) == 0.0) {
2916 s = SvGROW_mutable(sv, 2);
2921 /* The +20 is pure guesswork. Configure test needed. --jhi */
2922 s = SvGROW_mutable(sv, NV_DIG + 20);
2923 /* some Xenix systems wipe out errno here */
2924 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2934 if (isGV_with_GP(sv)) {
2935 GV *const gv = MUTABLE_GV(sv);
2936 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
2937 SV *const buffer = sv_newmortal();
2939 /* FAKE globs can get coerced, so need to turn this off temporarily
2942 gv_efullname3(buffer, gv, "*");
2943 SvFLAGS(gv) |= wasfake;
2945 if (SvPOK(buffer)) {
2947 *lp = SvCUR(buffer);
2949 return SvPVX(buffer);
2960 if (flags & SV_UNDEF_RETURNS_NULL)
2962 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2964 if (SvTYPE(sv) < SVt_PV)
2965 /* Typically the caller expects that sv_any is not NULL now. */
2966 sv_upgrade(sv, SVt_PV);
2970 const STRLEN len = s - SvPVX_const(sv);
2976 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
2977 PTR2UV(sv),SvPVX_const(sv)));
2978 if (flags & SV_CONST_RETURN)
2979 return (char *)SvPVX_const(sv);
2980 if (flags & SV_MUTABLE_RETURN)
2981 return SvPVX_mutable(sv);
2986 =for apidoc sv_copypv
2988 Copies a stringified representation of the source SV into the
2989 destination SV. Automatically performs any necessary mg_get and
2990 coercion of numeric values into strings. Guaranteed to preserve
2991 UTF8 flag even from overloaded objects. Similar in nature to
2992 sv_2pv[_flags] but operates directly on an SV instead of just the
2993 string. Mostly uses sv_2pv_flags to do its work, except when that
2994 would lose the UTF-8'ness of the PV.
3000 Perl_sv_copypv(pTHX_ SV *const dsv, register SV *const ssv)
3003 const char * const s = SvPV_const(ssv,len);
3005 PERL_ARGS_ASSERT_SV_COPYPV;
3007 sv_setpvn(dsv,s,len);
3015 =for apidoc sv_2pvbyte
3017 Return a pointer to the byte-encoded representation of the SV, and set *lp
3018 to its length. May cause the SV to be downgraded from UTF-8 as a
3021 Usually accessed via the C<SvPVbyte> macro.
3027 Perl_sv_2pvbyte(pTHX_ register SV *const sv, STRLEN *const lp)
3029 PERL_ARGS_ASSERT_SV_2PVBYTE;
3031 sv_utf8_downgrade(sv,0);
3032 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
3036 =for apidoc sv_2pvutf8
3038 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
3039 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
3041 Usually accessed via the C<SvPVutf8> macro.
3047 Perl_sv_2pvutf8(pTHX_ register SV *const sv, STRLEN *const lp)
3049 PERL_ARGS_ASSERT_SV_2PVUTF8;
3051 sv_utf8_upgrade(sv);
3052 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
3057 =for apidoc sv_2bool
3059 This macro is only used by sv_true() or its macro equivalent, and only if
3060 the latter's argument is neither SvPOK, SvIOK nor SvNOK.
3061 It calls sv_2bool_flags with the SV_GMAGIC flag.
3063 =for apidoc sv_2bool_flags
3065 This function is only used by sv_true() and friends, and only if
3066 the latter's argument is neither SvPOK, SvIOK nor SvNOK. If the flags
3067 contain SV_GMAGIC, then it does an mg_get() first.
3074 Perl_sv_2bool_flags(pTHX_ register SV *const sv, const I32 flags)
3078 PERL_ARGS_ASSERT_SV_2BOOL_FLAGS;
3080 if(flags & SV_GMAGIC) SvGETMAGIC(sv);
3086 SV * const tmpsv = AMG_CALLun(sv,bool_);
3087 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
3088 return cBOOL(SvTRUE(tmpsv));
3090 return SvRV(sv) != 0;
3093 register XPV* const Xpvtmp = (XPV*)SvANY(sv);
3095 (*sv->sv_u.svu_pv > '0' ||
3096 Xpvtmp->xpv_cur > 1 ||
3097 (Xpvtmp->xpv_cur && *sv->sv_u.svu_pv != '0')))
3104 return SvIVX(sv) != 0;
3107 return SvNVX(sv) != 0.0;
3109 if (isGV_with_GP(sv))
3119 =for apidoc sv_utf8_upgrade
3121 Converts the PV of an SV to its UTF-8-encoded form.
3122 Forces the SV to string form if it is not already.
3123 Will C<mg_get> on C<sv> if appropriate.
3124 Always sets the SvUTF8 flag to avoid future validity checks even
3125 if the whole string is the same in UTF-8 as not.
3126 Returns the number of bytes in the converted string
3128 This is not as a general purpose byte encoding to Unicode interface:
3129 use the Encode extension for that.
3131 =for apidoc sv_utf8_upgrade_nomg
3133 Like sv_utf8_upgrade, but doesn't do magic on C<sv>
3135 =for apidoc sv_utf8_upgrade_flags
3137 Converts the PV of an SV to its UTF-8-encoded form.
3138 Forces the SV to string form if it is not already.
3139 Always sets the SvUTF8 flag to avoid future validity checks even
3140 if all the bytes are invariant in UTF-8. If C<flags> has C<SV_GMAGIC> bit set,
3141 will C<mg_get> on C<sv> if appropriate, else not.
3142 Returns the number of bytes in the converted string
3143 C<sv_utf8_upgrade> and
3144 C<sv_utf8_upgrade_nomg> are implemented in terms of this function.
3146 This is not as a general purpose byte encoding to Unicode interface:
3147 use the Encode extension for that.
3151 The grow version is currently not externally documented. It adds a parameter,
3152 extra, which is the number of unused bytes the string of 'sv' is guaranteed to
3153 have free after it upon return. This allows the caller to reserve extra space
3154 that it intends to fill, to avoid extra grows.
3156 Also externally undocumented for the moment is the flag SV_FORCE_UTF8_UPGRADE,
3157 which can be used to tell this function to not first check to see if there are
3158 any characters that are different in UTF-8 (variant characters) which would
3159 force it to allocate a new string to sv, but to assume there are. Typically
3160 this flag is used by a routine that has already parsed the string to find that
3161 there are such characters, and passes this information on so that the work
3162 doesn't have to be repeated.
3164 (One might think that the calling routine could pass in the position of the
3165 first such variant, so it wouldn't have to be found again. But that is not the
3166 case, because typically when the caller is likely to use this flag, it won't be
3167 calling this routine unless it finds something that won't fit into a byte.
3168 Otherwise it tries to not upgrade and just use bytes. But some things that
3169 do fit into a byte are variants in utf8, and the caller may not have been
3170 keeping track of these.)
3172 If the routine itself changes the string, it adds a trailing NUL. Such a NUL
3173 isn't guaranteed due to having other routines do the work in some input cases,
3174 or if the input is already flagged as being in utf8.
3176 The speed of this could perhaps be improved for many cases if someone wanted to
3177 write a fast function that counts the number of variant characters in a string,
3178 especially if it could return the position of the first one.
3183 Perl_sv_utf8_upgrade_flags_grow(pTHX_ register SV *const sv, const I32 flags, STRLEN extra)
3187 PERL_ARGS_ASSERT_SV_UTF8_UPGRADE_FLAGS_GROW;
3189 if (sv == &PL_sv_undef)
3193 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
3194 (void) sv_2pv_flags(sv,&len, flags);
3196 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3200 (void) SvPV_force(sv,len);
3205 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3210 sv_force_normal_flags(sv, 0);
3213 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING)) {
3214 sv_recode_to_utf8(sv, PL_encoding);
3215 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3219 if (SvCUR(sv) == 0) {
3220 if (extra) SvGROW(sv, extra);
3221 } else { /* Assume Latin-1/EBCDIC */
3222 /* This function could be much more efficient if we
3223 * had a FLAG in SVs to signal if there are any variant
3224 * chars in the PV. Given that there isn't such a flag
3225 * make the loop as fast as possible (although there are certainly ways
3226 * to speed this up, eg. through vectorization) */
3227 U8 * s = (U8 *) SvPVX_const(sv);
3228 U8 * e = (U8 *) SvEND(sv);
3230 STRLEN two_byte_count = 0;
3232 if (flags & SV_FORCE_UTF8_UPGRADE) goto must_be_utf8;
3234 /* See if really will need to convert to utf8. We mustn't rely on our
3235 * incoming SV being well formed and having a trailing '\0', as certain
3236 * code in pp_formline can send us partially built SVs. */
3240 if (NATIVE_IS_INVARIANT(ch)) continue;
3242 t--; /* t already incremented; re-point to first variant */
3247 /* utf8 conversion not needed because all are invariants. Mark as
3248 * UTF-8 even if no variant - saves scanning loop */
3254 /* Here, the string should be converted to utf8, either because of an
3255 * input flag (two_byte_count = 0), or because a character that
3256 * requires 2 bytes was found (two_byte_count = 1). t points either to
3257 * the beginning of the string (if we didn't examine anything), or to
3258 * the first variant. In either case, everything from s to t - 1 will
3259 * occupy only 1 byte each on output.
3261 * There are two main ways to convert. One is to create a new string
3262 * and go through the input starting from the beginning, appending each
3263 * converted value onto the new string as we go along. It's probably
3264 * best to allocate enough space in the string for the worst possible
3265 * case rather than possibly running out of space and having to
3266 * reallocate and then copy what we've done so far. Since everything
3267 * from s to t - 1 is invariant, the destination can be initialized
3268 * with these using a fast memory copy
3270 * The other way is to figure out exactly how big the string should be
3271 * by parsing the entire input. Then you don't have to make it big
3272 * enough to handle the worst possible case, and more importantly, if
3273 * the string you already have is large enough, you don't have to
3274 * allocate a new string, you can copy the last character in the input
3275 * string to the final position(s) that will be occupied by the
3276 * converted string and go backwards, stopping at t, since everything
3277 * before that is invariant.
3279 * There are advantages and disadvantages to each method.
3281 * In the first method, we can allocate a new string, do the memory
3282 * copy from the s to t - 1, and then proceed through the rest of the
3283 * string byte-by-byte.
3285 * In the second method, we proceed through the rest of the input
3286 * string just calculating how big the converted string will be. Then
3287 * there are two cases:
3288 * 1) if the string has enough extra space to handle the converted
3289 * value. We go backwards through the string, converting until we
3290 * get to the position we are at now, and then stop. If this
3291 * position is far enough along in the string, this method is
3292 * faster than the other method. If the memory copy were the same
3293 * speed as the byte-by-byte loop, that position would be about
3294 * half-way, as at the half-way mark, parsing to the end and back
3295 * is one complete string's parse, the same amount as starting
3296 * over and going all the way through. Actually, it would be
3297 * somewhat less than half-way, as it's faster to just count bytes
3298 * than to also copy, and we don't have the overhead of allocating
3299 * a new string, changing the scalar to use it, and freeing the
3300 * existing one. But if the memory copy is fast, the break-even
3301 * point is somewhere after half way. The counting loop could be
3302 * sped up by vectorization, etc, to move the break-even point
3303 * further towards the beginning.
3304 * 2) if the string doesn't have enough space to handle the converted
3305 * value. A new string will have to be allocated, and one might
3306 * as well, given that, start from the beginning doing the first
3307 * method. We've spent extra time parsing the string and in
3308 * exchange all we've gotten is that we know precisely how big to
3309 * make the new one. Perl is more optimized for time than space,
3310 * so this case is a loser.
3311 * So what I've decided to do is not use the 2nd method unless it is
3312 * guaranteed that a new string won't have to be allocated, assuming
3313 * the worst case. I also decided not to put any more conditions on it
3314 * than this, for now. It seems likely that, since the worst case is
3315 * twice as big as the unknown portion of the string (plus 1), we won't
3316 * be guaranteed enough space, causing us to go to the first method,
3317 * unless the string is short, or the first variant character is near
3318 * the end of it. In either of these cases, it seems best to use the
3319 * 2nd method. The only circumstance I can think of where this would
3320 * be really slower is if the string had once had much more data in it
3321 * than it does now, but there is still a substantial amount in it */
3324 STRLEN invariant_head = t - s;
3325 STRLEN size = invariant_head + (e - t) * 2 + 1 + extra;
3326 if (SvLEN(sv) < size) {
3328 /* Here, have decided to allocate a new string */
3333 Newx(dst, size, U8);
3335 /* If no known invariants at the beginning of the input string,
3336 * set so starts from there. Otherwise, can use memory copy to
3337 * get up to where we are now, and then start from here */
3339 if (invariant_head <= 0) {
3342 Copy(s, dst, invariant_head, char);
3343 d = dst + invariant_head;
3347 const UV uv = NATIVE8_TO_UNI(*t++);
3348 if (UNI_IS_INVARIANT(uv))
3349 *d++ = (U8)UNI_TO_NATIVE(uv);
3351 *d++ = (U8)UTF8_EIGHT_BIT_HI(uv);
3352 *d++ = (U8)UTF8_EIGHT_BIT_LO(uv);
3356 SvPV_free(sv); /* No longer using pre-existing string */
3357 SvPV_set(sv, (char*)dst);
3358 SvCUR_set(sv, d - dst);
3359 SvLEN_set(sv, size);
3362 /* Here, have decided to get the exact size of the string.
3363 * Currently this happens only when we know that there is
3364 * guaranteed enough space to fit the converted string, so
3365 * don't have to worry about growing. If two_byte_count is 0,
3366 * then t points to the first byte of the string which hasn't
3367 * been examined yet. Otherwise two_byte_count is 1, and t
3368 * points to the first byte in the string that will expand to
3369 * two. Depending on this, start examining at t or 1 after t.
3372 U8 *d = t + two_byte_count;
3375 /* Count up the remaining bytes that expand to two */
3378 const U8 chr = *d++;
3379 if (! NATIVE_IS_INVARIANT(chr)) two_byte_count++;
3382 /* The string will expand by just the number of bytes that
3383 * occupy two positions. But we are one afterwards because of
3384 * the increment just above. This is the place to put the
3385 * trailing NUL, and to set the length before we decrement */
3387 d += two_byte_count;
3388 SvCUR_set(sv, d - s);
3392 /* Having decremented d, it points to the position to put the
3393 * very last byte of the expanded string. Go backwards through
3394 * the string, copying and expanding as we go, stopping when we
3395 * get to the part that is invariant the rest of the way down */
3399 const U8 ch = NATIVE8_TO_UNI(*e--);
3400 if (UNI_IS_INVARIANT(ch)) {
3401 *d-- = UNI_TO_NATIVE(ch);
3403 *d-- = (U8)UTF8_EIGHT_BIT_LO(ch);
3404 *d-- = (U8)UTF8_EIGHT_BIT_HI(ch);
3411 /* Mark as UTF-8 even if no variant - saves scanning loop */
3417 =for apidoc sv_utf8_downgrade
3419 Attempts to convert the PV of an SV from characters to bytes.
3420 If the PV contains a character that cannot fit
3421 in a byte, this conversion will fail;
3422 in this case, either returns false or, if C<fail_ok> is not
3425 This is not as a general purpose Unicode to byte encoding interface:
3426 use the Encode extension for that.
3432 Perl_sv_utf8_downgrade(pTHX_ register SV *const sv, const bool fail_ok)
3436 PERL_ARGS_ASSERT_SV_UTF8_DOWNGRADE;
3438 if (SvPOKp(sv) && SvUTF8(sv)) {
3444 sv_force_normal_flags(sv, 0);
3446 s = (U8 *) SvPV(sv, len);
3447 if (!utf8_to_bytes(s, &len)) {
3452 Perl_croak(aTHX_ "Wide character in %s",
3455 Perl_croak(aTHX_ "Wide character");
3466 =for apidoc sv_utf8_encode
3468 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3469 flag off so that it looks like octets again.
3475 Perl_sv_utf8_encode(pTHX_ register SV *const sv)
3477 PERL_ARGS_ASSERT_SV_UTF8_ENCODE;
3480 sv_force_normal_flags(sv, 0);
3482 if (SvREADONLY(sv)) {
3483 Perl_croak_no_modify(aTHX);
3485 (void) sv_utf8_upgrade(sv);
3490 =for apidoc sv_utf8_decode
3492 If the PV of the SV is an octet sequence in UTF-8
3493 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3494 so that it looks like a character. If the PV contains only single-byte
3495 characters, the C<SvUTF8> flag stays being off.
3496 Scans PV for validity and returns false if the PV is invalid UTF-8.
3502 Perl_sv_utf8_decode(pTHX_ register SV *const sv)
3504 PERL_ARGS_ASSERT_SV_UTF8_DECODE;
3510 /* The octets may have got themselves encoded - get them back as
3513 if (!sv_utf8_downgrade(sv, TRUE))
3516 /* it is actually just a matter of turning the utf8 flag on, but
3517 * we want to make sure everything inside is valid utf8 first.
3519 c = (const U8 *) SvPVX_const(sv);
3520 if (!is_utf8_string(c, SvCUR(sv)+1))
3522 e = (const U8 *) SvEND(sv);
3525 if (!UTF8_IS_INVARIANT(ch)) {
3535 =for apidoc sv_setsv
3537 Copies the contents of the source SV C<ssv> into the destination SV
3538 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3539 function if the source SV needs to be reused. Does not handle 'set' magic.
3540 Loosely speaking, it performs a copy-by-value, obliterating any previous
3541 content of the destination.
3543 You probably want to use one of the assortment of wrappers, such as
3544 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3545 C<SvSetMagicSV_nosteal>.
3547 =for apidoc sv_setsv_flags
3549 Copies the contents of the source SV C<ssv> into the destination SV
3550 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3551 function if the source SV needs to be reused. Does not handle 'set' magic.
3552 Loosely speaking, it performs a copy-by-value, obliterating any previous
3553 content of the destination.
3554 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3555 C<ssv> if appropriate, else not. If the C<flags> parameter has the
3556 C<NOSTEAL> bit set then the buffers of temps will not be stolen. <sv_setsv>
3557 and C<sv_setsv_nomg> are implemented in terms of this function.
3559 You probably want to use one of the assortment of wrappers, such as
3560 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3561 C<SvSetMagicSV_nosteal>.
3563 This is the primary function for copying scalars, and most other
3564 copy-ish functions and macros use this underneath.
3570 S_glob_assign_glob(pTHX_ SV *const dstr, SV *const sstr, const int dtype)
3572 I32 mro_changes = 0; /* 1 = method, 2 = isa, 3 = recursive isa */
3573 HV *old_stash = NULL;
3575 PERL_ARGS_ASSERT_GLOB_ASSIGN_GLOB;
3577 if (dtype != SVt_PVGV && !isGV_with_GP(dstr)) {
3578 const char * const name = GvNAME(sstr);
3579 const STRLEN len = GvNAMELEN(sstr);
3581 if (dtype >= SVt_PV) {
3587 SvUPGRADE(dstr, SVt_PVGV);
3588 (void)SvOK_off(dstr);
3589 /* FIXME - why are we doing this, then turning it off and on again
3591 isGV_with_GP_on(dstr);
3593 GvSTASH(dstr) = GvSTASH(sstr);
3595 Perl_sv_add_backref(aTHX_ MUTABLE_SV(GvSTASH(dstr)), dstr);
3596 gv_name_set(MUTABLE_GV(dstr), name, len, GV_ADD);
3597 SvFAKE_on(dstr); /* can coerce to non-glob */
3600 if(GvGP(MUTABLE_GV(sstr))) {
3601 /* If source has method cache entry, clear it */
3603 SvREFCNT_dec(GvCV(sstr));
3607 /* If source has a real method, then a method is
3609 else if(GvCV((const GV *)sstr)) {
3614 /* If dest already had a real method, that's a change as well */
3615 if(!mro_changes && GvGP(MUTABLE_GV(dstr)) && GvCVu((const GV *)dstr)) {
3619 /* We don’t need to check the name of the destination if it was not a
3620 glob to begin with. */
3621 if(dtype == SVt_PVGV) {
3622 const char * const name = GvNAME((const GV *)dstr);
3623 if(strEQ(name,"ISA"))
3626 const STRLEN len = GvNAMELEN(dstr);
3627 if (len > 1 && name[len-2] == ':' && name[len-1] == ':') {
3630 /* Set aside the old stash, so we can reset isa caches on
3632 if((old_stash = GvHV(dstr)))
3633 /* Make sure we do not lose it early. */
3634 SvREFCNT_inc_simple_void_NN(
3635 sv_2mortal((SV *)old_stash)
3641 gp_free(MUTABLE_GV(dstr));
3642 isGV_with_GP_off(dstr);
3643 (void)SvOK_off(dstr);
3644 isGV_with_GP_on(dstr);
3645 GvINTRO_off(dstr); /* one-shot flag */
3646 GvGP(dstr) = gp_ref(GvGP(sstr));
3647 if (SvTAINTED(sstr))
3649 if (GvIMPORTED(dstr) != GVf_IMPORTED
3650 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3652 GvIMPORTED_on(dstr);
3655 if(mro_changes == 2) mro_isa_changed_in(GvSTASH(dstr));
3656 else if(mro_changes == 3) {
3657 HV * const stash = GvHV(dstr);
3658 if((stash && HvNAME(stash)) || (old_stash && HvNAME(old_stash)))
3660 stash && HvNAME(stash) ? stash : NULL,
3661 old_stash && HvNAME(old_stash) ? old_stash : NULL,
3665 else if(mro_changes) mro_method_changed_in(GvSTASH(dstr));
3670 S_glob_assign_ref(pTHX_ SV *const dstr, SV *const sstr)
3672 SV * const sref = SvREFCNT_inc(SvRV(sstr));
3674 const int intro = GvINTRO(dstr);
3677 const U32 stype = SvTYPE(sref);
3679 PERL_ARGS_ASSERT_GLOB_ASSIGN_REF;
3682 GvINTRO_off(dstr); /* one-shot flag */
3683 GvLINE(dstr) = CopLINE(PL_curcop);
3684 GvEGV(dstr) = MUTABLE_GV(dstr);
3689 location = (SV **) &GvCV(dstr);
3690 import_flag = GVf_IMPORTED_CV;
3693 location = (SV **) &GvHV(dstr);
3694 import_flag = GVf_IMPORTED_HV;
3697 location = (SV **) &GvAV(dstr);
3698 import_flag = GVf_IMPORTED_AV;
3701 location = (SV **) &GvIOp(dstr);
3704 location = (SV **) &GvFORM(dstr);
3707 location = &GvSV(dstr);
3708 import_flag = GVf_IMPORTED_SV;
3711 if (stype == SVt_PVCV) {
3712 /*if (GvCVGEN(dstr) && (GvCV(dstr) != (const CV *)sref || GvCVGEN(dstr))) {*/
3713 if (GvCVGEN(dstr)) {
3714 SvREFCNT_dec(GvCV(dstr));
3716 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3719 SAVEGENERICSV(*location);
3723 if (stype == SVt_PVCV && (*location != sref || GvCVGEN(dstr))) {
3724 CV* const cv = MUTABLE_CV(*location);
3726 if (!GvCVGEN((const GV *)dstr) &&
3727 (CvROOT(cv) || CvXSUB(cv)))
3729 /* Redefining a sub - warning is mandatory if
3730 it was a const and its value changed. */
3731 if (CvCONST(cv) && CvCONST((const CV *)sref)
3733 == cv_const_sv((const CV *)sref)) {
3735 /* They are 2 constant subroutines generated from
3736 the same constant. This probably means that
3737 they are really the "same" proxy subroutine
3738 instantiated in 2 places. Most likely this is
3739 when a constant is exported twice. Don't warn.
3742 else if (ckWARN(WARN_REDEFINE)
3744 && (!CvCONST((const CV *)sref)
3745 || sv_cmp(cv_const_sv(cv),
3746 cv_const_sv((const CV *)
3748 Perl_warner(aTHX_ packWARN(WARN_REDEFINE),
3751 ? "Constant subroutine %s::%s redefined"
3752 : "Subroutine %s::%s redefined"),
3753 HvNAME_get(GvSTASH((const GV *)dstr)),
3754 GvENAME(MUTABLE_GV(dstr)));
3758 cv_ckproto_len(cv, (const GV *)dstr,
3759 SvPOK(sref) ? SvPVX_const(sref) : NULL,
3760 SvPOK(sref) ? SvCUR(sref) : 0);
3762 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3763 GvASSUMECV_on(dstr);
3764 if(GvSTASH(dstr)) mro_method_changed_in(GvSTASH(dstr)); /* sub foo { 1 } sub bar { 2 } *bar = \&foo */
3767 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3768 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3769 GvFLAGS(dstr) |= import_flag;
3771 if (stype == SVt_PVHV) {
3772 const char * const name = GvNAME((GV*)dstr);
3773 const STRLEN len = GvNAMELEN(dstr);
3775 len > 1 && name[len-2] == ':' && name[len-1] == ':'
3776 && (HvNAME(dref) || HvNAME(sref))
3779 HvNAME(sref) ? (HV *)sref : NULL,
3780 HvNAME(dref) ? (HV *)dref : NULL,
3785 else if (stype == SVt_PVAV && strEQ(GvNAME((GV*)dstr), "ISA")) {
3786 sv_magic(sref, dstr, PERL_MAGIC_isa, NULL, 0);
3787 mro_isa_changed_in(GvSTASH(dstr));
3792 if (SvTAINTED(sstr))
3798 Perl_sv_setsv_flags(pTHX_ SV *dstr, register SV* sstr, const I32 flags)
3801 register U32 sflags;
3803 register svtype stype;
3805 PERL_ARGS_ASSERT_SV_SETSV_FLAGS;
3810 if (SvIS_FREED(dstr)) {
3811 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
3812 " to a freed scalar %p", SVfARG(sstr), (void *)dstr);
3814 SV_CHECK_THINKFIRST_COW_DROP(dstr);
3816 sstr = &PL_sv_undef;
3817 if (SvIS_FREED(sstr)) {
3818 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
3819 (void*)sstr, (void*)dstr);
3821 stype = SvTYPE(sstr);
3822 dtype = SvTYPE(dstr);
3824 (void)SvAMAGIC_off(dstr);
3827 /* need to nuke the magic */
3831 /* There's a lot of redundancy below but we're going for speed here */
3836 if (dtype != SVt_PVGV && dtype != SVt_PVLV) {
3837 (void)SvOK_off(dstr);
3845 sv_upgrade(dstr, SVt_IV);
3849 sv_upgrade(dstr, SVt_PVIV);
3853 goto end_of_first_switch;
3855 (void)SvIOK_only(dstr);
3856 SvIV_set(dstr, SvIVX(sstr));
3859 /* SvTAINTED can only be true if the SV has taint magic, which in
3860 turn means that the SV type is PVMG (or greater). This is the
3861 case statement for SVt_IV, so this cannot be true (whatever gcov
3863 assert(!SvTAINTED(sstr));
3868 if (dtype < SVt_PV && dtype != SVt_IV)
3869 sv_upgrade(dstr, SVt_IV);
3877 sv_upgrade(dstr, SVt_NV);
3881 sv_upgrade(dstr, SVt_PVNV);
3885 goto end_of_first_switch;
3887 SvNV_set(dstr, SvNVX(sstr));
3888 (void)SvNOK_only(dstr);
3889 /* SvTAINTED can only be true if the SV has taint magic, which in
3890 turn means that the SV type is PVMG (or greater). This is the
3891 case statement for SVt_NV, so this cannot be true (whatever gcov
3893 assert(!SvTAINTED(sstr));
3899 #ifdef PERL_OLD_COPY_ON_WRITE
3900 if ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS) {
3901 if (dtype < SVt_PVIV)
3902 sv_upgrade(dstr, SVt_PVIV);
3909 sv_upgrade(dstr, SVt_PV);
3912 if (dtype < SVt_PVIV)
3913 sv_upgrade(dstr, SVt_PVIV);
3916 if (dtype < SVt_PVNV)
3917 sv_upgrade(dstr, SVt_PVNV);
3921 const char * const type = sv_reftype(sstr,0);
3923 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_DESC(PL_op));
3925 Perl_croak(aTHX_ "Bizarre copy of %s", type);
3930 if (dtype < SVt_REGEXP)
3931 sv_upgrade(dstr, SVt_REGEXP);
3934 /* case SVt_BIND: */
3937 if (isGV_with_GP(sstr) && dtype <= SVt_PVLV) {
3938 glob_assign_glob(dstr, sstr, dtype);
3941 /* SvVALID means that this PVGV is playing at being an FBM. */
3945 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
3947 if (SvTYPE(sstr) != stype)
3948 stype = SvTYPE(sstr);
3949 if (isGV_with_GP(sstr) && dtype <= SVt_PVLV) {
3950 glob_assign_glob(dstr, sstr, dtype);
3954 if (stype == SVt_PVLV)
3955 SvUPGRADE(dstr, SVt_PVNV);
3957 SvUPGRADE(dstr, (svtype)stype);
3959 end_of_first_switch:
3961 /* dstr may have been upgraded. */
3962 dtype = SvTYPE(dstr);
3963 sflags = SvFLAGS(sstr);
3965 if (dtype == SVt_PVCV || dtype == SVt_PVFM) {
3966 /* Assigning to a subroutine sets the prototype. */
3969 const char *const ptr = SvPV_const(sstr, len);
3971 SvGROW(dstr, len + 1);
3972 Copy(ptr, SvPVX(dstr), len + 1, char);
3973 SvCUR_set(dstr, len);
3975 SvFLAGS(dstr) |= sflags & SVf_UTF8;
3979 } else if (dtype == SVt_PVAV || dtype == SVt_PVHV) {
3980 const char * const type = sv_reftype(dstr,0);
3982 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_DESC(PL_op));
3984 Perl_croak(aTHX_ "Cannot copy to %s", type);
3985 } else if (sflags & SVf_ROK) {
3986 if (isGV_with_GP(dstr)
3987 && SvTYPE(SvRV(sstr)) == SVt_PVGV && isGV_with_GP(SvRV(sstr))) {
3990 if (GvIMPORTED(dstr) != GVf_IMPORTED
3991 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3993 GvIMPORTED_on(dstr);
3998 glob_assign_glob(dstr, sstr, dtype);
4002 if (dtype >= SVt_PV) {
4003 if (isGV_with_GP(dstr)) {
4004 glob_assign_ref(dstr, sstr);
4007 if (SvPVX_const(dstr)) {
4013 (void)SvOK_off(dstr);
4014 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
4015 SvFLAGS(dstr) |= sflags & SVf_ROK;
4016 assert(!(sflags & SVp_NOK));
4017 assert(!(sflags & SVp_IOK));
4018 assert(!(sflags & SVf_NOK));
4019 assert(!(sflags & SVf_IOK));
4021 else if (isGV_with_GP(dstr)) {
4022 if (!(sflags & SVf_OK)) {
4023 Perl_ck_warner(aTHX_ packWARN(WARN_MISC),
4024 "Undefined value assigned to typeglob");
4027 GV *gv = gv_fetchsv(sstr, GV_ADD, SVt_PVGV);
4028 if (dstr != (const SV *)gv) {
4029 const char * const name = GvNAME((const GV *)dstr);
4030 const STRLEN len = GvNAMELEN(dstr);
4031 HV *old_stash = NULL;
4032 bool reset_isa = FALSE;
4033 if (len > 1 && name[len-2] == ':' && name[len-1] == ':') {
4034 /* Set aside the old stash, so we can reset isa caches
4035 on its subclasses. */
4036 old_stash = GvHV(dstr);
4041 gp_free(MUTABLE_GV(dstr));
4042 GvGP(dstr) = gp_ref(GvGP(gv));
4045 HV * const stash = GvHV(dstr);
4047 (stash && HvNAME(stash))
4048 || (old_stash && HvNAME(old_stash))
4051 stash && HvNAME(stash) ? stash : NULL,
4052 old_stash && HvNAME(old_stash) ? old_stash : NULL,
4059 else if (dtype == SVt_REGEXP && stype == SVt_REGEXP) {
4060 reg_temp_copy((REGEXP*)dstr, (REGEXP*)sstr);
4062 else if (sflags & SVp_POK) {
4066 * Check to see if we can just swipe the string. If so, it's a
4067 * possible small lose on short strings, but a big win on long ones.
4068 * It might even be a win on short strings if SvPVX_const(dstr)
4069 * has to be allocated and SvPVX_const(sstr) has to be freed.
4070 * Likewise if we can set up COW rather than doing an actual copy, we
4071 * drop to the else clause, as the swipe code and the COW setup code
4072 * have much in common.
4075 /* Whichever path we take through the next code, we want this true,
4076 and doing it now facilitates the COW check. */
4077 (void)SvPOK_only(dstr);
4080 /* If we're already COW then this clause is not true, and if COW
4081 is allowed then we drop down to the else and make dest COW
4082 with us. If caller hasn't said that we're allowed to COW
4083 shared hash keys then we don't do the COW setup, even if the
4084 source scalar is a shared hash key scalar. */
4085 (((flags & SV_COW_SHARED_HASH_KEYS)
4086 ? (sflags & (SVf_FAKE|SVf_READONLY)) != (SVf_FAKE|SVf_READONLY)
4087 : 1 /* If making a COW copy is forbidden then the behaviour we
4088 desire is as if the source SV isn't actually already
4089 COW, even if it is. So we act as if the source flags
4090 are not COW, rather than actually testing them. */
4092 #ifndef PERL_OLD_COPY_ON_WRITE
4093 /* The change that added SV_COW_SHARED_HASH_KEYS makes the logic
4094 when PERL_OLD_COPY_ON_WRITE is defined a little wrong.
4095 Conceptually PERL_OLD_COPY_ON_WRITE being defined should
4096 override SV_COW_SHARED_HASH_KEYS, because it means "always COW"
4097 but in turn, it's somewhat dead code, never expected to go
4098 live, but more kept as a placeholder on how to do it better
4099 in a newer implementation. */
4100 /* If we are COW and dstr is a suitable target then we drop down
4101 into the else and make dest a COW of us. */
4102 || (SvFLAGS(dstr) & CAN_COW_MASK) != CAN_COW_FLAGS
4107 (sflags & SVs_TEMP) && /* slated for free anyway? */
4108 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
4109 (!(flags & SV_NOSTEAL)) &&
4110 /* and we're allowed to steal temps */
4111 SvREFCNT(sstr) == 1 && /* and no other references to it? */
4112 SvLEN(sstr)) /* and really is a string */
4113 #ifdef PERL_OLD_COPY_ON_WRITE
4114 && ((flags & SV_COW_SHARED_HASH_KEYS)
4115 ? (!((sflags & CAN_COW_MASK) == CAN_COW_FLAGS
4116 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
4117 && SvTYPE(sstr) >= SVt_PVIV && SvTYPE(sstr) != SVt_PVFM))
4121 /* Failed the swipe test, and it's not a shared hash key either.
4122 Have to copy the string. */
4123 STRLEN len = SvCUR(sstr);
4124 SvGROW(dstr, len + 1); /* inlined from sv_setpvn */
4125 Move(SvPVX_const(sstr),SvPVX(dstr),len,char);
4126 SvCUR_set(dstr, len);
4127 *SvEND(dstr) = '\0';
4129 /* If PERL_OLD_COPY_ON_WRITE is not defined, then isSwipe will always
4131 /* Either it's a shared hash key, or it's suitable for
4132 copy-on-write or we can swipe the string. */
4134 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
4138 #ifdef PERL_OLD_COPY_ON_WRITE
4140 if ((sflags & (SVf_FAKE | SVf_READONLY))
4141 != (SVf_FAKE | SVf_READONLY)) {
4142 SvREADONLY_on(sstr);
4144 /* Make the source SV into a loop of 1.
4145 (about to become 2) */
4146 SV_COW_NEXT_SV_SET(sstr, sstr);
4150 /* Initial code is common. */
4151 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
4156 /* making another shared SV. */
4157 STRLEN cur = SvCUR(sstr);
4158 STRLEN len = SvLEN(sstr);
4159 #ifdef PERL_OLD_COPY_ON_WRITE
4161 assert (SvTYPE(dstr) >= SVt_PVIV);
4162 /* SvIsCOW_normal */
4163 /* splice us in between source and next-after-source. */
4164 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4165 SV_COW_NEXT_SV_SET(sstr, dstr);
4166 SvPV_set(dstr, SvPVX_mutable(sstr));
4170 /* SvIsCOW_shared_hash */
4171 DEBUG_C(PerlIO_printf(Perl_debug_log,
4172 "Copy on write: Sharing hash\n"));
4174 assert (SvTYPE(dstr) >= SVt_PV);
4176 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
4178 SvLEN_set(dstr, len);
4179 SvCUR_set(dstr, cur);
4180 SvREADONLY_on(dstr);
4184 { /* Passes the swipe test. */
4185 SvPV_set(dstr, SvPVX_mutable(sstr));
4186 SvLEN_set(dstr, SvLEN(sstr));
4187 SvCUR_set(dstr, SvCUR(sstr));
4190 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
4191 SvPV_set(sstr, NULL);
4197 if (sflags & SVp_NOK) {
4198 SvNV_set(dstr, SvNVX(sstr));
4200 if (sflags & SVp_IOK) {
4201 SvIV_set(dstr, SvIVX(sstr));
4202 /* Must do this otherwise some other overloaded use of 0x80000000
4203 gets confused. I guess SVpbm_VALID */
4204 if (sflags & SVf_IVisUV)
4207 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8);
4209 const MAGIC * const smg = SvVSTRING_mg(sstr);
4211 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
4212 smg->mg_ptr, smg->mg_len);
4213 SvRMAGICAL_on(dstr);
4217 else if (sflags & (SVp_IOK|SVp_NOK)) {
4218 (void)SvOK_off(dstr);
4219 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK);
4220 if (sflags & SVp_IOK) {
4221 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
4222 SvIV_set(dstr, SvIVX(sstr));
4224 if (sflags & SVp_NOK) {
4225 SvNV_set(dstr, SvNVX(sstr));
4229 if (isGV_with_GP(sstr)) {
4230 /* This stringification rule for globs is spread in 3 places.
4231 This feels bad. FIXME. */
4232 const U32 wasfake = sflags & SVf_FAKE;
4234 /* FAKE globs can get coerced, so need to turn this off
4235 temporarily if it is on. */
4237 gv_efullname3(dstr, MUTABLE_GV(sstr), "*");
4238 SvFLAGS(sstr) |= wasfake;
4241 (void)SvOK_off(dstr);
4243 if (SvTAINTED(sstr))
4248 =for apidoc sv_setsv_mg
4250 Like C<sv_setsv>, but also handles 'set' magic.
4256 Perl_sv_setsv_mg(pTHX_ SV *const dstr, register SV *const sstr)
4258 PERL_ARGS_ASSERT_SV_SETSV_MG;
4260 sv_setsv(dstr,sstr);
4264 #ifdef PERL_OLD_COPY_ON_WRITE
4266 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
4268 STRLEN cur = SvCUR(sstr);
4269 STRLEN len = SvLEN(sstr);
4270 register char *new_pv;
4272 PERL_ARGS_ASSERT_SV_SETSV_COW;
4275 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
4276 (void*)sstr, (void*)dstr);
4283 if (SvTHINKFIRST(dstr))
4284 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
4285 else if (SvPVX_const(dstr))
4286 Safefree(SvPVX_const(dstr));
4290 SvUPGRADE(dstr, SVt_PVIV);
4292 assert (SvPOK(sstr));
4293 assert (SvPOKp(sstr));
4294 assert (!SvIOK(sstr));
4295 assert (!SvIOKp(sstr));
4296 assert (!SvNOK(sstr));
4297 assert (!SvNOKp(sstr));
4299 if (SvIsCOW(sstr)) {
4301 if (SvLEN(sstr) == 0) {
4302 /* source is a COW shared hash key. */
4303 DEBUG_C(PerlIO_printf(Perl_debug_log,
4304 "Fast copy on write: Sharing hash\n"));
4305 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
4308 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4310 assert ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS);
4311 SvUPGRADE(sstr, SVt_PVIV);
4312 SvREADONLY_on(sstr);
4314 DEBUG_C(PerlIO_printf(Perl_debug_log,
4315 "Fast copy on write: Converting sstr to COW\n"));
4316 SV_COW_NEXT_SV_SET(dstr, sstr);
4318 SV_COW_NEXT_SV_SET(sstr, dstr);
4319 new_pv = SvPVX_mutable(sstr);
4322 SvPV_set(dstr, new_pv);
4323 SvFLAGS(dstr) = (SVt_PVIV|SVf_POK|SVp_POK|SVf_FAKE|SVf_READONLY);
4326 SvLEN_set(dstr, len);
4327 SvCUR_set(dstr, cur);
4336 =for apidoc sv_setpvn
4338 Copies a string into an SV. The C<len> parameter indicates the number of
4339 bytes to be copied. If the C<ptr> argument is NULL the SV will become
4340 undefined. Does not handle 'set' magic. See C<sv_setpvn_mg>.
4346 Perl_sv_setpvn(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4349 register char *dptr;
4351 PERL_ARGS_ASSERT_SV_SETPVN;
4353 SV_CHECK_THINKFIRST_COW_DROP(sv);
4359 /* len is STRLEN which is unsigned, need to copy to signed */
4362 Perl_croak(aTHX_ "panic: sv_setpvn called with negative strlen");
4364 SvUPGRADE(sv, SVt_PV);
4366 dptr = SvGROW(sv, len + 1);
4367 Move(ptr,dptr,len,char);
4370 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4375 =for apidoc sv_setpvn_mg
4377 Like C<sv_setpvn>, but also handles 'set' magic.
4383 Perl_sv_setpvn_mg(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4385 PERL_ARGS_ASSERT_SV_SETPVN_MG;
4387 sv_setpvn(sv,ptr,len);
4392 =for apidoc sv_setpv
4394 Copies a string into an SV. The string must be null-terminated. Does not
4395 handle 'set' magic. See C<sv_setpv_mg>.
4401 Perl_sv_setpv(pTHX_ register SV *const sv, register const char *const ptr)
4404 register STRLEN len;
4406 PERL_ARGS_ASSERT_SV_SETPV;
4408 SV_CHECK_THINKFIRST_COW_DROP(sv);
4414 SvUPGRADE(sv, SVt_PV);
4416 SvGROW(sv, len + 1);
4417 Move(ptr,SvPVX(sv),len+1,char);
4419 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4424 =for apidoc sv_setpv_mg
4426 Like C<sv_setpv>, but also handles 'set' magic.
4432 Perl_sv_setpv_mg(pTHX_ register SV *const sv, register const char *const ptr)
4434 PERL_ARGS_ASSERT_SV_SETPV_MG;
4441 =for apidoc sv_usepvn_flags
4443 Tells an SV to use C<ptr> to find its string value. Normally the
4444 string is stored inside the SV but sv_usepvn allows the SV to use an
4445 outside string. The C<ptr> should point to memory that was allocated
4446 by C<malloc>. The string length, C<len>, must be supplied. By default
4447 this function will realloc (i.e. move) the memory pointed to by C<ptr>,
4448 so that pointer should not be freed or used by the programmer after
4449 giving it to sv_usepvn, and neither should any pointers from "behind"
4450 that pointer (e.g. ptr + 1) be used.
4452 If C<flags> & SV_SMAGIC is true, will call SvSETMAGIC. If C<flags> &
4453 SV_HAS_TRAILING_NUL is true, then C<ptr[len]> must be NUL, and the realloc
4454 will be skipped. (i.e. the buffer is actually at least 1 byte longer than
4455 C<len>, and already meets the requirements for storing in C<SvPVX>)
4461 Perl_sv_usepvn_flags(pTHX_ SV *const sv, char *ptr, const STRLEN len, const U32 flags)
4466 PERL_ARGS_ASSERT_SV_USEPVN_FLAGS;
4468 SV_CHECK_THINKFIRST_COW_DROP(sv);
4469 SvUPGRADE(sv, SVt_PV);
4472 if (flags & SV_SMAGIC)
4476 if (SvPVX_const(sv))
4480 if (flags & SV_HAS_TRAILING_NUL)
4481 assert(ptr[len] == '\0');
4484 allocate = (flags & SV_HAS_TRAILING_NUL)
4486 #ifdef Perl_safesysmalloc_size
4489 PERL_STRLEN_ROUNDUP(len + 1);
4491 if (flags & SV_HAS_TRAILING_NUL) {
4492 /* It's long enough - do nothing.
4493 Specfically Perl_newCONSTSUB is relying on this. */
4496 /* Force a move to shake out bugs in callers. */
4497 char *new_ptr = (char*)safemalloc(allocate);
4498 Copy(ptr, new_ptr, len, char);
4499 PoisonFree(ptr,len,char);
4503 ptr = (char*) saferealloc (ptr, allocate);
4506 #ifdef Perl_safesysmalloc_size
4507 SvLEN_set(sv, Perl_safesysmalloc_size(ptr));
4509 SvLEN_set(sv, allocate);
4513 if (!(flags & SV_HAS_TRAILING_NUL)) {
4516 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4518 if (flags & SV_SMAGIC)
4522 #ifdef PERL_OLD_COPY_ON_WRITE
4523 /* Need to do this *after* making the SV normal, as we need the buffer
4524 pointer to remain valid until after we've copied it. If we let go too early,
4525 another thread could invalidate it by unsharing last of the same hash key
4526 (which it can do by means other than releasing copy-on-write Svs)
4527 or by changing the other copy-on-write SVs in the loop. */
4529 S_sv_release_COW(pTHX_ register SV *sv, const char *pvx, SV *after)
4531 PERL_ARGS_ASSERT_SV_RELEASE_COW;
4533 { /* this SV was SvIsCOW_normal(sv) */
4534 /* we need to find the SV pointing to us. */
4535 SV *current = SV_COW_NEXT_SV(after);
4537 if (current == sv) {
4538 /* The SV we point to points back to us (there were only two of us
4540 Hence other SV is no longer copy on write either. */
4542 SvREADONLY_off(after);
4544 /* We need to follow the pointers around the loop. */
4546 while ((next = SV_COW_NEXT_SV(current)) != sv) {
4549 /* don't loop forever if the structure is bust, and we have
4550 a pointer into a closed loop. */
4551 assert (current != after);
4552 assert (SvPVX_const(current) == pvx);
4554 /* Make the SV before us point to the SV after us. */
4555 SV_COW_NEXT_SV_SET(current, after);
4561 =for apidoc sv_force_normal_flags
4563 Undo various types of fakery on an SV: if the PV is a shared string, make
4564 a private copy; if we're a ref, stop refing; if we're a glob, downgrade to
4565 an xpvmg; if we're a copy-on-write scalar, this is the on-write time when
4566 we do the copy, and is also used locally. If C<SV_COW_DROP_PV> is set
4567 then a copy-on-write scalar drops its PV buffer (if any) and becomes
4568 SvPOK_off rather than making a copy. (Used where this scalar is about to be
4569 set to some other value.) In addition, the C<flags> parameter gets passed to
4570 C<sv_unref_flags()> when unrefing. C<sv_force_normal> calls this function
4571 with flags set to 0.
4577 Perl_sv_force_normal_flags(pTHX_ register SV *const sv, const U32 flags)
4581 PERL_ARGS_ASSERT_SV_FORCE_NORMAL_FLAGS;
4583 #ifdef PERL_OLD_COPY_ON_WRITE
4584 if (SvREADONLY(sv)) {
4586 const char * const pvx = SvPVX_const(sv);
4587 const STRLEN len = SvLEN(sv);
4588 const STRLEN cur = SvCUR(sv);
4589 /* next COW sv in the loop. If len is 0 then this is a shared-hash
4590 key scalar, so we mustn't attempt to call SV_COW_NEXT_SV(), as
4591 we'll fail an assertion. */
4592 SV * const next = len ? SV_COW_NEXT_SV(sv) : 0;
4595 PerlIO_printf(Perl_debug_log,
4596 "Copy on write: Force normal %ld\n",
4602 /* This SV doesn't own the buffer, so need to Newx() a new one: */
4605 if (flags & SV_COW_DROP_PV) {
4606 /* OK, so we don't need to copy our buffer. */
4609 SvGROW(sv, cur + 1);
4610 Move(pvx,SvPVX(sv),cur,char);
4615 sv_release_COW(sv, pvx, next);
4617 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4623 else if (IN_PERL_RUNTIME)
4624 Perl_croak_no_modify(aTHX);
4627 if (SvREADONLY(sv)) {
4629 const char * const pvx = SvPVX_const(sv);
4630 const STRLEN len = SvCUR(sv);