5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
77 #ifndef PERL_IN_XSUB_RE
82 #ifdef PERL_IN_XSUB_RE
84 extern const struct regexp_engine my_reg_engine;
89 #include "dquote_static.c"
90 #include "charclass_invlists.h"
91 #include "inline_invlist.c"
92 #include "unicode_constants.h"
94 #define HAS_NONLATIN1_FOLD_CLOSURE(i) _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
95 #define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
96 #define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
103 # if defined(BUGGY_MSC6)
104 /* MSC 6.00A breaks on op/regexp.t test 85 unless we turn this off */
105 # pragma optimize("a",off)
106 /* But MSC 6.00A is happy with 'w', for aliases only across function calls*/
107 # pragma optimize("w",on )
108 # endif /* BUGGY_MSC6 */
112 #define STATIC static
116 typedef struct RExC_state_t {
117 U32 flags; /* RXf_* are we folding, multilining? */
118 U32 pm_flags; /* PMf_* stuff from the calling PMOP */
119 char *precomp; /* uncompiled string. */
120 REGEXP *rx_sv; /* The SV that is the regexp. */
121 regexp *rx; /* perl core regexp structure */
122 regexp_internal *rxi; /* internal data for regexp object pprivate field */
123 char *start; /* Start of input for compile */
124 char *end; /* End of input for compile */
125 char *parse; /* Input-scan pointer. */
126 SSize_t whilem_seen; /* number of WHILEM in this expr */
127 regnode *emit_start; /* Start of emitted-code area */
128 regnode *emit_bound; /* First regnode outside of the allocated space */
129 regnode *emit; /* Code-emit pointer; if = &emit_dummy,
130 implies compiling, so don't emit */
131 regnode emit_dummy; /* placeholder for emit to point to */
132 I32 naughty; /* How bad is this pattern? */
133 I32 sawback; /* Did we see \1, ...? */
135 SSize_t size; /* Code size. */
136 I32 npar; /* Capture buffer count, (OPEN). */
137 I32 cpar; /* Capture buffer count, (CLOSE). */
138 I32 nestroot; /* root parens we are in - used by accept */
141 regnode **open_parens; /* pointers to open parens */
142 regnode **close_parens; /* pointers to close parens */
143 regnode *opend; /* END node in program */
144 I32 utf8; /* whether the pattern is utf8 or not */
145 I32 orig_utf8; /* whether the pattern was originally in utf8 */
146 /* XXX use this for future optimisation of case
147 * where pattern must be upgraded to utf8. */
148 I32 uni_semantics; /* If a d charset modifier should use unicode
149 rules, even if the pattern is not in
151 HV *paren_names; /* Paren names */
153 regnode **recurse; /* Recurse regops */
154 I32 recurse_count; /* Number of recurse regops */
157 I32 override_recoding;
158 I32 in_multi_char_class;
159 struct reg_code_block *code_blocks; /* positions of literal (?{})
161 int num_code_blocks; /* size of code_blocks[] */
162 int code_index; /* next code_blocks[] slot */
164 char *starttry; /* -Dr: where regtry was called. */
165 #define RExC_starttry (pRExC_state->starttry)
167 SV *runtime_code_qr; /* qr with the runtime code blocks */
169 const char *lastparse;
171 AV *paren_name_list; /* idx -> name */
172 #define RExC_lastparse (pRExC_state->lastparse)
173 #define RExC_lastnum (pRExC_state->lastnum)
174 #define RExC_paren_name_list (pRExC_state->paren_name_list)
178 #define RExC_flags (pRExC_state->flags)
179 #define RExC_pm_flags (pRExC_state->pm_flags)
180 #define RExC_precomp (pRExC_state->precomp)
181 #define RExC_rx_sv (pRExC_state->rx_sv)
182 #define RExC_rx (pRExC_state->rx)
183 #define RExC_rxi (pRExC_state->rxi)
184 #define RExC_start (pRExC_state->start)
185 #define RExC_end (pRExC_state->end)
186 #define RExC_parse (pRExC_state->parse)
187 #define RExC_whilem_seen (pRExC_state->whilem_seen)
188 #ifdef RE_TRACK_PATTERN_OFFSETS
189 #define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the others */
191 #define RExC_emit (pRExC_state->emit)
192 #define RExC_emit_dummy (pRExC_state->emit_dummy)
193 #define RExC_emit_start (pRExC_state->emit_start)
194 #define RExC_emit_bound (pRExC_state->emit_bound)
195 #define RExC_naughty (pRExC_state->naughty)
196 #define RExC_sawback (pRExC_state->sawback)
197 #define RExC_seen (pRExC_state->seen)
198 #define RExC_size (pRExC_state->size)
199 #define RExC_npar (pRExC_state->npar)
200 #define RExC_nestroot (pRExC_state->nestroot)
201 #define RExC_extralen (pRExC_state->extralen)
202 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
203 #define RExC_utf8 (pRExC_state->utf8)
204 #define RExC_uni_semantics (pRExC_state->uni_semantics)
205 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
206 #define RExC_open_parens (pRExC_state->open_parens)
207 #define RExC_close_parens (pRExC_state->close_parens)
208 #define RExC_opend (pRExC_state->opend)
209 #define RExC_paren_names (pRExC_state->paren_names)
210 #define RExC_recurse (pRExC_state->recurse)
211 #define RExC_recurse_count (pRExC_state->recurse_count)
212 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
213 #define RExC_contains_locale (pRExC_state->contains_locale)
214 #define RExC_override_recoding (pRExC_state->override_recoding)
215 #define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
218 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
219 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
220 ((*s) == '{' && regcurly(s, FALSE)))
223 #undef SPSTART /* dratted cpp namespace... */
226 * Flags to be passed up and down.
228 #define WORST 0 /* Worst case. */
229 #define HASWIDTH 0x01 /* Known to match non-null strings. */
231 /* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
232 * character. (There needs to be a case: in the switch statement in regexec.c
233 * for any node marked SIMPLE.) Note that this is not the same thing as
236 #define SPSTART 0x04 /* Starts with * or + */
237 #define POSTPONED 0x08 /* (?1),(?&name), (??{...}) or similar */
238 #define TRYAGAIN 0x10 /* Weeded out a declaration. */
239 #define RESTART_UTF8 0x20 /* Restart, need to calcuate sizes as UTF-8 */
241 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
243 /* whether trie related optimizations are enabled */
244 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
245 #define TRIE_STUDY_OPT
246 #define FULL_TRIE_STUDY
252 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
253 #define PBITVAL(paren) (1 << ((paren) & 7))
254 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
255 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
256 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
258 #define REQUIRE_UTF8 STMT_START { \
260 *flagp = RESTART_UTF8; \
265 /* This converts the named class defined in regcomp.h to its equivalent class
266 * number defined in handy.h. */
267 #define namedclass_to_classnum(class) ((int) ((class) / 2))
268 #define classnum_to_namedclass(classnum) ((classnum) * 2)
270 /* About scan_data_t.
272 During optimisation we recurse through the regexp program performing
273 various inplace (keyhole style) optimisations. In addition study_chunk
274 and scan_commit populate this data structure with information about
275 what strings MUST appear in the pattern. We look for the longest
276 string that must appear at a fixed location, and we look for the
277 longest string that may appear at a floating location. So for instance
282 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
283 strings (because they follow a .* construct). study_chunk will identify
284 both FOO and BAR as being the longest fixed and floating strings respectively.
286 The strings can be composites, for instance
290 will result in a composite fixed substring 'foo'.
292 For each string some basic information is maintained:
294 - offset or min_offset
295 This is the position the string must appear at, or not before.
296 It also implicitly (when combined with minlenp) tells us how many
297 characters must match before the string we are searching for.
298 Likewise when combined with minlenp and the length of the string it
299 tells us how many characters must appear after the string we have
303 Only used for floating strings. This is the rightmost point that
304 the string can appear at. If set to SSize_t_MAX it indicates that the
305 string can occur infinitely far to the right.
308 A pointer to the minimum number of characters of the pattern that the
309 string was found inside. This is important as in the case of positive
310 lookahead or positive lookbehind we can have multiple patterns
315 The minimum length of the pattern overall is 3, the minimum length
316 of the lookahead part is 3, but the minimum length of the part that
317 will actually match is 1. So 'FOO's minimum length is 3, but the
318 minimum length for the F is 1. This is important as the minimum length
319 is used to determine offsets in front of and behind the string being
320 looked for. Since strings can be composites this is the length of the
321 pattern at the time it was committed with a scan_commit. Note that
322 the length is calculated by study_chunk, so that the minimum lengths
323 are not known until the full pattern has been compiled, thus the
324 pointer to the value.
328 In the case of lookbehind the string being searched for can be
329 offset past the start point of the final matching string.
330 If this value was just blithely removed from the min_offset it would
331 invalidate some of the calculations for how many chars must match
332 before or after (as they are derived from min_offset and minlen and
333 the length of the string being searched for).
334 When the final pattern is compiled and the data is moved from the
335 scan_data_t structure into the regexp structure the information
336 about lookbehind is factored in, with the information that would
337 have been lost precalculated in the end_shift field for the
340 The fields pos_min and pos_delta are used to store the minimum offset
341 and the delta to the maximum offset at the current point in the pattern.
345 typedef struct scan_data_t {
346 /*I32 len_min; unused */
347 /*I32 len_delta; unused */
351 SSize_t last_end; /* min value, <0 unless valid. */
352 SSize_t last_start_min;
353 SSize_t last_start_max;
354 SV **longest; /* Either &l_fixed, or &l_float. */
355 SV *longest_fixed; /* longest fixed string found in pattern */
356 SSize_t offset_fixed; /* offset where it starts */
357 SSize_t *minlen_fixed; /* pointer to the minlen relevant to the string */
358 I32 lookbehind_fixed; /* is the position of the string modfied by LB */
359 SV *longest_float; /* longest floating string found in pattern */
360 SSize_t offset_float_min; /* earliest point in string it can appear */
361 SSize_t offset_float_max; /* latest point in string it can appear */
362 SSize_t *minlen_float; /* pointer to the minlen relevant to the string */
363 SSize_t lookbehind_float; /* is the pos of the string modified by LB */
366 SSize_t *last_closep;
367 struct regnode_charclass_class *start_class;
370 /* The below is perhaps overboard, but this allows us to save a test at the
371 * expense of a mask. This is because on both EBCDIC and ASCII machines, 'A'
372 * and 'a' differ by a single bit; the same with the upper and lower case of
373 * all other ASCII-range alphabetics. On ASCII platforms, they are 32 apart;
374 * on EBCDIC, they are 64. This uses an exclusive 'or' to find that bit and
375 * then inverts it to form a mask, with just a single 0, in the bit position
376 * where the upper- and lowercase differ. XXX There are about 40 other
377 * instances in the Perl core where this micro-optimization could be used.
378 * Should decide if maintenance cost is worse, before changing those
380 * Returns a boolean as to whether or not 'v' is either a lowercase or
381 * uppercase instance of 'c', where 'c' is in [A-Za-z]. If 'c' is a
382 * compile-time constant, the generated code is better than some optimizing
383 * compilers figure out, amounting to a mask and test. The results are
384 * meaningless if 'c' is not one of [A-Za-z] */
385 #define isARG2_lower_or_UPPER_ARG1(c, v) \
386 (((v) & ~('A' ^ 'a')) == ((c) & ~('A' ^ 'a')))
389 * Forward declarations for pregcomp()'s friends.
392 static const scan_data_t zero_scan_data =
393 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
395 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
396 #define SF_BEFORE_SEOL 0x0001
397 #define SF_BEFORE_MEOL 0x0002
398 #define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
399 #define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
402 # define SF_FIX_SHIFT_EOL (0+2)
403 # define SF_FL_SHIFT_EOL (0+4)
405 # define SF_FIX_SHIFT_EOL (+2)
406 # define SF_FL_SHIFT_EOL (+4)
409 #define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
410 #define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
412 #define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
413 #define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
414 #define SF_IS_INF 0x0040
415 #define SF_HAS_PAR 0x0080
416 #define SF_IN_PAR 0x0100
417 #define SF_HAS_EVAL 0x0200
418 #define SCF_DO_SUBSTR 0x0400
419 #define SCF_DO_STCLASS_AND 0x0800
420 #define SCF_DO_STCLASS_OR 0x1000
421 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
422 #define SCF_WHILEM_VISITED_POS 0x2000
424 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
425 #define SCF_SEEN_ACCEPT 0x8000
426 #define SCF_TRIE_DOING_RESTUDY 0x10000
428 #define UTF cBOOL(RExC_utf8)
430 /* The enums for all these are ordered so things work out correctly */
431 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
432 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_DEPENDS_CHARSET)
433 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
434 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) >= REGEX_UNICODE_CHARSET)
435 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_RESTRICTED_CHARSET)
436 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) >= REGEX_ASCII_RESTRICTED_CHARSET)
437 #define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
439 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
441 #define OOB_NAMEDCLASS -1
443 /* There is no code point that is out-of-bounds, so this is problematic. But
444 * its only current use is to initialize a variable that is always set before
446 #define OOB_UNICODE 0xDEADBEEF
448 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
449 #define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
452 /* length of regex to show in messages that don't mark a position within */
453 #define RegexLengthToShowInErrorMessages 127
456 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
457 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
458 * op/pragma/warn/regcomp.
460 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
461 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
463 #define REPORT_LOCATION " in regex; marked by " MARKER1 " in m/%.*s" MARKER2 "%s/"
466 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
467 * arg. Show regex, up to a maximum length. If it's too long, chop and add
470 #define _FAIL(code) STMT_START { \
471 const char *ellipses = ""; \
472 IV len = RExC_end - RExC_precomp; \
475 SAVEFREESV(RExC_rx_sv); \
476 if (len > RegexLengthToShowInErrorMessages) { \
477 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
478 len = RegexLengthToShowInErrorMessages - 10; \
484 #define FAIL(msg) _FAIL( \
485 Perl_croak(aTHX_ "%s in regex m/%.*s%s/", \
486 msg, (int)len, RExC_precomp, ellipses))
488 #define FAIL2(msg,arg) _FAIL( \
489 Perl_croak(aTHX_ msg " in regex m/%.*s%s/", \
490 arg, (int)len, RExC_precomp, ellipses))
493 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
495 #define Simple_vFAIL(m) STMT_START { \
496 const IV offset = RExC_parse - RExC_precomp; \
497 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
498 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
502 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
504 #define vFAIL(m) STMT_START { \
506 SAVEFREESV(RExC_rx_sv); \
511 * Like Simple_vFAIL(), but accepts two arguments.
513 #define Simple_vFAIL2(m,a1) STMT_START { \
514 const IV offset = RExC_parse - RExC_precomp; \
515 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, \
516 (int)offset, RExC_precomp, RExC_precomp + offset); \
520 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
522 #define vFAIL2(m,a1) STMT_START { \
524 SAVEFREESV(RExC_rx_sv); \
525 Simple_vFAIL2(m, a1); \
530 * Like Simple_vFAIL(), but accepts three arguments.
532 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
533 const IV offset = RExC_parse - RExC_precomp; \
534 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, \
535 (int)offset, RExC_precomp, RExC_precomp + offset); \
539 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
541 #define vFAIL3(m,a1,a2) STMT_START { \
543 SAVEFREESV(RExC_rx_sv); \
544 Simple_vFAIL3(m, a1, a2); \
548 * Like Simple_vFAIL(), but accepts four arguments.
550 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
551 const IV offset = RExC_parse - RExC_precomp; \
552 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, a3, \
553 (int)offset, RExC_precomp, RExC_precomp + offset); \
556 #define vFAIL4(m,a1,a2,a3) STMT_START { \
558 SAVEFREESV(RExC_rx_sv); \
559 Simple_vFAIL4(m, a1, a2, a3); \
562 /* m is not necessarily a "literal string", in this macro */
563 #define reg_warn_non_literal_string(loc, m) STMT_START { \
564 const IV offset = loc - RExC_precomp; \
565 Perl_warner(aTHX_ packWARN(WARN_REGEXP), "%s" REPORT_LOCATION, \
566 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
569 #define ckWARNreg(loc,m) STMT_START { \
570 const IV offset = loc - RExC_precomp; \
571 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
572 (int)offset, RExC_precomp, RExC_precomp + offset); \
575 #define vWARN_dep(loc, m) STMT_START { \
576 const IV offset = loc - RExC_precomp; \
577 Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), m REPORT_LOCATION, \
578 (int)offset, RExC_precomp, RExC_precomp + offset); \
581 #define ckWARNdep(loc,m) STMT_START { \
582 const IV offset = loc - RExC_precomp; \
583 Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
585 (int)offset, RExC_precomp, RExC_precomp + offset); \
588 #define ckWARNregdep(loc,m) STMT_START { \
589 const IV offset = loc - RExC_precomp; \
590 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
592 (int)offset, RExC_precomp, RExC_precomp + offset); \
595 #define ckWARN2reg_d(loc,m, a1) STMT_START { \
596 const IV offset = loc - RExC_precomp; \
597 Perl_ck_warner_d(aTHX_ packWARN(WARN_REGEXP), \
599 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
602 #define ckWARN2reg(loc, m, a1) STMT_START { \
603 const IV offset = loc - RExC_precomp; \
604 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
605 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
608 #define vWARN3(loc, m, a1, a2) STMT_START { \
609 const IV offset = loc - RExC_precomp; \
610 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
611 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
614 #define ckWARN3reg(loc, m, a1, a2) STMT_START { \
615 const IV offset = loc - RExC_precomp; \
616 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
617 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
620 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \
621 const IV offset = loc - RExC_precomp; \
622 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
623 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
626 #define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
627 const IV offset = loc - RExC_precomp; \
628 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
629 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
632 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
633 const IV offset = loc - RExC_precomp; \
634 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
635 a1, a2, a3, a4, (int)offset, RExC_precomp, RExC_precomp + offset); \
639 /* Allow for side effects in s */
640 #define REGC(c,s) STMT_START { \
641 if (!SIZE_ONLY) *(s) = (c); else (void)(s); \
644 /* Macros for recording node offsets. 20001227 mjd@plover.com
645 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
646 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
647 * Element 0 holds the number n.
648 * Position is 1 indexed.
650 #ifndef RE_TRACK_PATTERN_OFFSETS
651 #define Set_Node_Offset_To_R(node,byte)
652 #define Set_Node_Offset(node,byte)
653 #define Set_Cur_Node_Offset
654 #define Set_Node_Length_To_R(node,len)
655 #define Set_Node_Length(node,len)
656 #define Set_Node_Cur_Length(node,start)
657 #define Node_Offset(n)
658 #define Node_Length(n)
659 #define Set_Node_Offset_Length(node,offset,len)
660 #define ProgLen(ri) ri->u.proglen
661 #define SetProgLen(ri,x) ri->u.proglen = x
663 #define ProgLen(ri) ri->u.offsets[0]
664 #define SetProgLen(ri,x) ri->u.offsets[0] = x
665 #define Set_Node_Offset_To_R(node,byte) STMT_START { \
667 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
668 __LINE__, (int)(node), (int)(byte))); \
670 Perl_croak(aTHX_ "value of node is %d in Offset macro", (int)(node)); \
672 RExC_offsets[2*(node)-1] = (byte); \
677 #define Set_Node_Offset(node,byte) \
678 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
679 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
681 #define Set_Node_Length_To_R(node,len) STMT_START { \
683 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
684 __LINE__, (int)(node), (int)(len))); \
686 Perl_croak(aTHX_ "value of node is %d in Length macro", (int)(node)); \
688 RExC_offsets[2*(node)] = (len); \
693 #define Set_Node_Length(node,len) \
694 Set_Node_Length_To_R((node)-RExC_emit_start, len)
695 #define Set_Node_Cur_Length(node, start) \
696 Set_Node_Length(node, RExC_parse - start)
698 /* Get offsets and lengths */
699 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
700 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
702 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
703 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
704 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
708 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
709 #define EXPERIMENTAL_INPLACESCAN
710 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
712 #define DEBUG_STUDYDATA(str,data,depth) \
713 DEBUG_OPTIMISE_MORE_r(if(data){ \
714 PerlIO_printf(Perl_debug_log, \
715 "%*s" str "Pos:%"IVdf"/%"IVdf \
716 " Flags: 0x%"UVXf" Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
717 (int)(depth)*2, "", \
718 (IV)((data)->pos_min), \
719 (IV)((data)->pos_delta), \
720 (UV)((data)->flags), \
721 (IV)((data)->whilem_c), \
722 (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
723 is_inf ? "INF " : "" \
725 if ((data)->last_found) \
726 PerlIO_printf(Perl_debug_log, \
727 "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
728 " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
729 SvPVX_const((data)->last_found), \
730 (IV)((data)->last_end), \
731 (IV)((data)->last_start_min), \
732 (IV)((data)->last_start_max), \
733 ((data)->longest && \
734 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
735 SvPVX_const((data)->longest_fixed), \
736 (IV)((data)->offset_fixed), \
737 ((data)->longest && \
738 (data)->longest==&((data)->longest_float)) ? "*" : "", \
739 SvPVX_const((data)->longest_float), \
740 (IV)((data)->offset_float_min), \
741 (IV)((data)->offset_float_max) \
743 PerlIO_printf(Perl_debug_log,"\n"); \
746 /* Mark that we cannot extend a found fixed substring at this point.
747 Update the longest found anchored substring and the longest found
748 floating substrings if needed. */
751 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data,
752 SSize_t *minlenp, int is_inf)
754 const STRLEN l = CHR_SVLEN(data->last_found);
755 const STRLEN old_l = CHR_SVLEN(*data->longest);
756 GET_RE_DEBUG_FLAGS_DECL;
758 PERL_ARGS_ASSERT_SCAN_COMMIT;
760 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
761 SvSetMagicSV(*data->longest, data->last_found);
762 if (*data->longest == data->longest_fixed) {
763 data->offset_fixed = l ? data->last_start_min : data->pos_min;
764 if (data->flags & SF_BEFORE_EOL)
766 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
768 data->flags &= ~SF_FIX_BEFORE_EOL;
769 data->minlen_fixed=minlenp;
770 data->lookbehind_fixed=0;
772 else { /* *data->longest == data->longest_float */
773 data->offset_float_min = l ? data->last_start_min : data->pos_min;
774 data->offset_float_max = (l
775 ? data->last_start_max
776 : (data->pos_delta == SSize_t_MAX
778 : data->pos_min + data->pos_delta));
780 || (STRLEN)data->offset_float_max > (STRLEN)SSize_t_MAX)
781 data->offset_float_max = SSize_t_MAX;
782 if (data->flags & SF_BEFORE_EOL)
784 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
786 data->flags &= ~SF_FL_BEFORE_EOL;
787 data->minlen_float=minlenp;
788 data->lookbehind_float=0;
791 SvCUR_set(data->last_found, 0);
793 SV * const sv = data->last_found;
794 if (SvUTF8(sv) && SvMAGICAL(sv)) {
795 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
801 data->flags &= ~SF_BEFORE_EOL;
802 DEBUG_STUDYDATA("commit: ",data,0);
805 /* These macros set, clear and test whether the synthetic start class ('ssc',
806 * given by the parameter) matches an empty string (EOS). This uses the
807 * 'next_off' field in the node, to save a bit in the flags field. The ssc
808 * stands alone, so there is never a next_off, so this field is otherwise
809 * unused. The EOS information is used only for compilation, but theoretically
810 * it could be passed on to the execution code. This could be used to store
811 * more than one bit of information, but only this one is currently used. */
812 #define SET_SSC_EOS(node) STMT_START { (node)->next_off = TRUE; } STMT_END
813 #define CLEAR_SSC_EOS(node) STMT_START { (node)->next_off = FALSE; } STMT_END
814 #define TEST_SSC_EOS(node) cBOOL((node)->next_off)
816 /* Can match anything (initialization) */
818 S_cl_anything(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
820 PERL_ARGS_ASSERT_CL_ANYTHING;
822 ANYOF_BITMAP_SETALL(cl);
823 cl->flags = ANYOF_UNICODE_ALL;
826 /* If any portion of the regex is to operate under locale rules,
827 * initialization includes it. The reason this isn't done for all regexes
828 * is that the optimizer was written under the assumption that locale was
829 * all-or-nothing. Given the complexity and lack of documentation in the
830 * optimizer, and that there are inadequate test cases for locale, so many
831 * parts of it may not work properly, it is safest to avoid locale unless
833 if (RExC_contains_locale) {
834 ANYOF_CLASS_SETALL(cl); /* /l uses class */
835 cl->flags |= ANYOF_LOCALE|ANYOF_CLASS|ANYOF_LOC_FOLD;
838 ANYOF_CLASS_ZERO(cl); /* Only /l uses class now */
842 /* Can match anything (initialization) */
844 S_cl_is_anything(const struct regnode_charclass_class *cl)
848 PERL_ARGS_ASSERT_CL_IS_ANYTHING;
850 for (value = 0; value < ANYOF_MAX; value += 2)
851 if (ANYOF_CLASS_TEST(cl, value) && ANYOF_CLASS_TEST(cl, value + 1))
853 if (!(cl->flags & ANYOF_UNICODE_ALL))
855 if (!ANYOF_BITMAP_TESTALLSET((const void*)cl))
860 /* Can match anything (initialization) */
862 S_cl_init(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
864 PERL_ARGS_ASSERT_CL_INIT;
866 Zero(cl, 1, struct regnode_charclass_class);
868 cl_anything(pRExC_state, cl);
869 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
872 /* These two functions currently do the exact same thing */
873 #define cl_init_zero cl_init
875 /* 'AND' a given class with another one. Can create false positives. 'cl'
876 * should not be inverted. 'and_with->flags & ANYOF_CLASS' should be 0 if
877 * 'and_with' is a regnode_charclass instead of a regnode_charclass_class. */
879 S_cl_and(struct regnode_charclass_class *cl,
880 const struct regnode_charclass_class *and_with)
882 PERL_ARGS_ASSERT_CL_AND;
884 assert(PL_regkind[and_with->type] == ANYOF);
886 /* I (khw) am not sure all these restrictions are necessary XXX */
887 if (!(ANYOF_CLASS_TEST_ANY_SET(and_with))
888 && !(ANYOF_CLASS_TEST_ANY_SET(cl))
889 && (and_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
890 && !(and_with->flags & ANYOF_LOC_FOLD)
891 && !(cl->flags & ANYOF_LOC_FOLD)) {
894 if (and_with->flags & ANYOF_INVERT)
895 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
896 cl->bitmap[i] &= ~and_with->bitmap[i];
898 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
899 cl->bitmap[i] &= and_with->bitmap[i];
900 } /* XXXX: logic is complicated otherwise, leave it along for a moment. */
902 if (and_with->flags & ANYOF_INVERT) {
904 /* Here, the and'ed node is inverted. Get the AND of the flags that
905 * aren't affected by the inversion. Those that are affected are
906 * handled individually below */
907 U8 affected_flags = cl->flags & ~INVERSION_UNAFFECTED_FLAGS;
908 cl->flags &= (and_with->flags & INVERSION_UNAFFECTED_FLAGS);
909 cl->flags |= affected_flags;
911 /* We currently don't know how to deal with things that aren't in the
912 * bitmap, but we know that the intersection is no greater than what
913 * is already in cl, so let there be false positives that get sorted
914 * out after the synthetic start class succeeds, and the node is
915 * matched for real. */
917 /* The inversion of these two flags indicate that the resulting
918 * intersection doesn't have them */
919 if (and_with->flags & ANYOF_UNICODE_ALL) {
920 cl->flags &= ~ANYOF_UNICODE_ALL;
922 if (and_with->flags & ANYOF_NON_UTF8_LATIN1_ALL) {
923 cl->flags &= ~ANYOF_NON_UTF8_LATIN1_ALL;
926 else { /* and'd node is not inverted */
927 U8 outside_bitmap_but_not_utf8; /* Temp variable */
929 if (! ANYOF_NONBITMAP(and_with)) {
931 /* Here 'and_with' doesn't match anything outside the bitmap
932 * (except possibly ANYOF_UNICODE_ALL), which means the
933 * intersection can't either, except for ANYOF_UNICODE_ALL, in
934 * which case we don't know what the intersection is, but it's no
935 * greater than what cl already has, so can just leave it alone,
936 * with possible false positives */
937 if (! (and_with->flags & ANYOF_UNICODE_ALL)) {
938 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
939 cl->flags &= ~ANYOF_NONBITMAP_NON_UTF8;
942 else if (! ANYOF_NONBITMAP(cl)) {
944 /* Here, 'and_with' does match something outside the bitmap, and cl
945 * doesn't have a list of things to match outside the bitmap. If
946 * cl can match all code points above 255, the intersection will
947 * be those above-255 code points that 'and_with' matches. If cl
948 * can't match all Unicode code points, it means that it can't
949 * match anything outside the bitmap (since the 'if' that got us
950 * into this block tested for that), so we leave the bitmap empty.
952 if (cl->flags & ANYOF_UNICODE_ALL) {
953 ARG_SET(cl, ARG(and_with));
955 /* and_with's ARG may match things that don't require UTF8.
956 * And now cl's will too, in spite of this being an 'and'. See
957 * the comments below about the kludge */
958 cl->flags |= and_with->flags & ANYOF_NONBITMAP_NON_UTF8;
962 /* Here, both 'and_with' and cl match something outside the
963 * bitmap. Currently we do not do the intersection, so just match
964 * whatever cl had at the beginning. */
968 /* Take the intersection of the two sets of flags. However, the
969 * ANYOF_NONBITMAP_NON_UTF8 flag is treated as an 'or'. This is a
970 * kludge around the fact that this flag is not treated like the others
971 * which are initialized in cl_anything(). The way the optimizer works
972 * is that the synthetic start class (SSC) is initialized to match
973 * anything, and then the first time a real node is encountered, its
974 * values are AND'd with the SSC's with the result being the values of
975 * the real node. However, there are paths through the optimizer where
976 * the AND never gets called, so those initialized bits are set
977 * inappropriately, which is not usually a big deal, as they just cause
978 * false positives in the SSC, which will just mean a probably
979 * imperceptible slow down in execution. However this bit has a
980 * higher false positive consequence in that it can cause utf8.pm,
981 * utf8_heavy.pl ... to be loaded when not necessary, which is a much
982 * bigger slowdown and also causes significant extra memory to be used.
983 * In order to prevent this, the code now takes a different tack. The
984 * bit isn't set unless some part of the regular expression needs it,
985 * but once set it won't get cleared. This means that these extra
986 * modules won't get loaded unless there was some path through the
987 * pattern that would have required them anyway, and so any false
988 * positives that occur by not ANDing them out when they could be
989 * aren't as severe as they would be if we treated this bit like all
991 outside_bitmap_but_not_utf8 = (cl->flags | and_with->flags)
992 & ANYOF_NONBITMAP_NON_UTF8;
993 cl->flags &= and_with->flags;
994 cl->flags |= outside_bitmap_but_not_utf8;
998 /* 'OR' a given class with another one. Can create false positives. 'cl'
999 * should not be inverted. 'or_with->flags & ANYOF_CLASS' should be 0 if
1000 * 'or_with' is a regnode_charclass instead of a regnode_charclass_class. */
1002 S_cl_or(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl, const struct regnode_charclass_class *or_with)
1004 PERL_ARGS_ASSERT_CL_OR;
1006 if (or_with->flags & ANYOF_INVERT) {
1008 /* Here, the or'd node is to be inverted. This means we take the
1009 * complement of everything not in the bitmap, but currently we don't
1010 * know what that is, so give up and match anything */
1011 if (ANYOF_NONBITMAP(or_with)) {
1012 cl_anything(pRExC_state, cl);
1015 * (B1 | CL1) | (!B2 & !CL2) = (B1 | !B2 & !CL2) | (CL1 | (!B2 & !CL2))
1016 * <= (B1 | !B2) | (CL1 | !CL2)
1017 * which is wasteful if CL2 is small, but we ignore CL2:
1018 * (B1 | CL1) | (!B2 & !CL2) <= (B1 | CL1) | !B2 = (B1 | !B2) | CL1
1019 * XXXX Can we handle case-fold? Unclear:
1020 * (OK1(i) | OK1(i')) | !(OK1(i) | OK1(i')) =
1021 * (OK1(i) | OK1(i')) | (!OK1(i) & !OK1(i'))
1023 else if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
1024 && !(or_with->flags & ANYOF_LOC_FOLD)
1025 && !(cl->flags & ANYOF_LOC_FOLD) ) {
1028 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
1029 cl->bitmap[i] |= ~or_with->bitmap[i];
1030 } /* XXXX: logic is complicated otherwise */
1032 cl_anything(pRExC_state, cl);
1035 /* And, we can just take the union of the flags that aren't affected
1036 * by the inversion */
1037 cl->flags |= or_with->flags & INVERSION_UNAFFECTED_FLAGS;
1039 /* For the remaining flags:
1040 ANYOF_UNICODE_ALL and inverted means to not match anything above
1041 255, which means that the union with cl should just be
1042 what cl has in it, so can ignore this flag
1043 ANYOF_NON_UTF8_LATIN1_ALL and inverted means if not utf8 and ord
1044 is (ASCII) 127-255 to match them, but then invert that, so
1045 the union with cl should just be what cl has in it, so can
1048 } else { /* 'or_with' is not inverted */
1049 /* (B1 | CL1) | (B2 | CL2) = (B1 | B2) | (CL1 | CL2)) */
1050 if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
1051 && (!(or_with->flags & ANYOF_LOC_FOLD)
1052 || (cl->flags & ANYOF_LOC_FOLD)) ) {
1055 /* OR char bitmap and class bitmap separately */
1056 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
1057 cl->bitmap[i] |= or_with->bitmap[i];
1058 if (or_with->flags & ANYOF_CLASS) {
1059 ANYOF_CLASS_OR(or_with, cl);
1062 else { /* XXXX: logic is complicated, leave it along for a moment. */
1063 cl_anything(pRExC_state, cl);
1066 if (ANYOF_NONBITMAP(or_with)) {
1068 /* Use the added node's outside-the-bit-map match if there isn't a
1069 * conflict. If there is a conflict (both nodes match something
1070 * outside the bitmap, but what they match outside is not the same
1071 * pointer, and hence not easily compared until XXX we extend
1072 * inversion lists this far), give up and allow the start class to
1073 * match everything outside the bitmap. If that stuff is all above
1074 * 255, can just set UNICODE_ALL, otherwise caould be anything. */
1075 if (! ANYOF_NONBITMAP(cl)) {
1076 ARG_SET(cl, ARG(or_with));
1078 else if (ARG(cl) != ARG(or_with)) {
1080 if ((or_with->flags & ANYOF_NONBITMAP_NON_UTF8)) {
1081 cl_anything(pRExC_state, cl);
1084 cl->flags |= ANYOF_UNICODE_ALL;
1089 /* Take the union */
1090 cl->flags |= or_with->flags;
1094 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
1095 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
1096 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
1097 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list ? (TRIE_LIST_CUR( idx ) - 1) : 0 )
1102 dump_trie(trie,widecharmap,revcharmap)
1103 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
1104 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
1106 These routines dump out a trie in a somewhat readable format.
1107 The _interim_ variants are used for debugging the interim
1108 tables that are used to generate the final compressed
1109 representation which is what dump_trie expects.
1111 Part of the reason for their existence is to provide a form
1112 of documentation as to how the different representations function.
1117 Dumps the final compressed table form of the trie to Perl_debug_log.
1118 Used for debugging make_trie().
1122 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
1123 AV *revcharmap, U32 depth)
1126 SV *sv=sv_newmortal();
1127 int colwidth= widecharmap ? 6 : 4;
1129 GET_RE_DEBUG_FLAGS_DECL;
1131 PERL_ARGS_ASSERT_DUMP_TRIE;
1133 PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
1134 (int)depth * 2 + 2,"",
1135 "Match","Base","Ofs" );
1137 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
1138 SV ** const tmp = av_fetch( revcharmap, state, 0);
1140 PerlIO_printf( Perl_debug_log, "%*s",
1142 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1143 PL_colors[0], PL_colors[1],
1144 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1145 PERL_PV_ESCAPE_FIRSTCHAR
1150 PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
1151 (int)depth * 2 + 2,"");
1153 for( state = 0 ; state < trie->uniquecharcount ; state++ )
1154 PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
1155 PerlIO_printf( Perl_debug_log, "\n");
1157 for( state = 1 ; state < trie->statecount ; state++ ) {
1158 const U32 base = trie->states[ state ].trans.base;
1160 PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|", (int)depth * 2 + 2,"", (UV)state);
1162 if ( trie->states[ state ].wordnum ) {
1163 PerlIO_printf( Perl_debug_log, " W%4X", trie->states[ state ].wordnum );
1165 PerlIO_printf( Perl_debug_log, "%6s", "" );
1168 PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
1173 while( ( base + ofs < trie->uniquecharcount ) ||
1174 ( base + ofs - trie->uniquecharcount < trie->lasttrans
1175 && trie->trans[ base + ofs - trie->uniquecharcount ].check != state))
1178 PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
1180 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
1181 if ( ( base + ofs >= trie->uniquecharcount ) &&
1182 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
1183 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
1185 PerlIO_printf( Perl_debug_log, "%*"UVXf,
1187 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next );
1189 PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
1193 PerlIO_printf( Perl_debug_log, "]");
1196 PerlIO_printf( Perl_debug_log, "\n" );
1198 PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=", (int)depth*2, "");
1199 for (word=1; word <= trie->wordcount; word++) {
1200 PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
1201 (int)word, (int)(trie->wordinfo[word].prev),
1202 (int)(trie->wordinfo[word].len));
1204 PerlIO_printf(Perl_debug_log, "\n" );
1207 Dumps a fully constructed but uncompressed trie in list form.
1208 List tries normally only are used for construction when the number of
1209 possible chars (trie->uniquecharcount) is very high.
1210 Used for debugging make_trie().
1213 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
1214 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1218 SV *sv=sv_newmortal();
1219 int colwidth= widecharmap ? 6 : 4;
1220 GET_RE_DEBUG_FLAGS_DECL;
1222 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
1224 /* print out the table precompression. */
1225 PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
1226 (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
1227 "------:-----+-----------------\n" );
1229 for( state=1 ; state < next_alloc ; state ++ ) {
1232 PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
1233 (int)depth * 2 + 2,"", (UV)state );
1234 if ( ! trie->states[ state ].wordnum ) {
1235 PerlIO_printf( Perl_debug_log, "%5s| ","");
1237 PerlIO_printf( Perl_debug_log, "W%4x| ",
1238 trie->states[ state ].wordnum
1241 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
1242 SV ** const tmp = av_fetch( revcharmap, TRIE_LIST_ITEM(state,charid).forid, 0);
1244 PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
1246 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1247 PL_colors[0], PL_colors[1],
1248 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1249 PERL_PV_ESCAPE_FIRSTCHAR
1251 TRIE_LIST_ITEM(state,charid).forid,
1252 (UV)TRIE_LIST_ITEM(state,charid).newstate
1255 PerlIO_printf(Perl_debug_log, "\n%*s| ",
1256 (int)((depth * 2) + 14), "");
1259 PerlIO_printf( Perl_debug_log, "\n");
1264 Dumps a fully constructed but uncompressed trie in table form.
1265 This is the normal DFA style state transition table, with a few
1266 twists to facilitate compression later.
1267 Used for debugging make_trie().
1270 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
1271 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1276 SV *sv=sv_newmortal();
1277 int colwidth= widecharmap ? 6 : 4;
1278 GET_RE_DEBUG_FLAGS_DECL;
1280 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
1283 print out the table precompression so that we can do a visual check
1284 that they are identical.
1287 PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
1289 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1290 SV ** const tmp = av_fetch( revcharmap, charid, 0);
1292 PerlIO_printf( Perl_debug_log, "%*s",
1294 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1295 PL_colors[0], PL_colors[1],
1296 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1297 PERL_PV_ESCAPE_FIRSTCHAR
1303 PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
1305 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
1306 PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
1309 PerlIO_printf( Perl_debug_log, "\n" );
1311 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
1313 PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
1314 (int)depth * 2 + 2,"",
1315 (UV)TRIE_NODENUM( state ) );
1317 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1318 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
1320 PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
1322 PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
1324 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
1325 PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n", (UV)trie->trans[ state ].check );
1327 PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n", (UV)trie->trans[ state ].check,
1328 trie->states[ TRIE_NODENUM( state ) ].wordnum );
1336 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
1337 startbranch: the first branch in the whole branch sequence
1338 first : start branch of sequence of branch-exact nodes.
1339 May be the same as startbranch
1340 last : Thing following the last branch.
1341 May be the same as tail.
1342 tail : item following the branch sequence
1343 count : words in the sequence
1344 flags : currently the OP() type we will be building one of /EXACT(|F|Fl)/
1345 depth : indent depth
1347 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
1349 A trie is an N'ary tree where the branches are determined by digital
1350 decomposition of the key. IE, at the root node you look up the 1st character and
1351 follow that branch repeat until you find the end of the branches. Nodes can be
1352 marked as "accepting" meaning they represent a complete word. Eg:
1356 would convert into the following structure. Numbers represent states, letters
1357 following numbers represent valid transitions on the letter from that state, if
1358 the number is in square brackets it represents an accepting state, otherwise it
1359 will be in parenthesis.
1361 +-h->+-e->[3]-+-r->(8)-+-s->[9]
1365 (1) +-i->(6)-+-s->[7]
1367 +-s->(3)-+-h->(4)-+-e->[5]
1369 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
1371 This shows that when matching against the string 'hers' we will begin at state 1
1372 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
1373 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
1374 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
1375 single traverse. We store a mapping from accepting to state to which word was
1376 matched, and then when we have multiple possibilities we try to complete the
1377 rest of the regex in the order in which they occured in the alternation.
1379 The only prior NFA like behaviour that would be changed by the TRIE support is
1380 the silent ignoring of duplicate alternations which are of the form:
1382 / (DUPE|DUPE) X? (?{ ... }) Y /x
1384 Thus EVAL blocks following a trie may be called a different number of times with
1385 and without the optimisation. With the optimisations dupes will be silently
1386 ignored. This inconsistent behaviour of EVAL type nodes is well established as
1387 the following demonstrates:
1389 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
1391 which prints out 'word' three times, but
1393 'words'=~/(word|word|word)(?{ print $1 })S/
1395 which doesnt print it out at all. This is due to other optimisations kicking in.
1397 Example of what happens on a structural level:
1399 The regexp /(ac|ad|ab)+/ will produce the following debug output:
1401 1: CURLYM[1] {1,32767}(18)
1412 This would be optimizable with startbranch=5, first=5, last=16, tail=16
1413 and should turn into:
1415 1: CURLYM[1] {1,32767}(18)
1417 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
1425 Cases where tail != last would be like /(?foo|bar)baz/:
1435 which would be optimizable with startbranch=1, first=1, last=7, tail=8
1436 and would end up looking like:
1439 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
1446 d = uvchr_to_utf8_flags(d, uv, 0);
1448 is the recommended Unicode-aware way of saying
1453 #define TRIE_STORE_REVCHAR(val) \
1456 SV *zlopp = newSV(7); /* XXX: optimize me */ \
1457 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
1458 unsigned const char *const kapow = uvchr_to_utf8(flrbbbbb, val); \
1459 SvCUR_set(zlopp, kapow - flrbbbbb); \
1462 av_push(revcharmap, zlopp); \
1464 char ooooff = (char)val; \
1465 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
1469 /* This gets the next character from the input, folding it if not already
1471 #define TRIE_READ_CHAR STMT_START { \
1474 /* if it is UTF then it is either already folded, or does not need \
1476 uvc = valid_utf8_to_uvchr( (const U8*) uc, &len); \
1478 else if (folder == PL_fold_latin1) { \
1479 /* This folder implies Unicode rules, which in the range expressible \
1480 * by not UTF is the lower case, with the two exceptions, one of \
1481 * which should have been taken care of before calling this */ \
1482 assert(*uc != LATIN_SMALL_LETTER_SHARP_S); \
1483 uvc = toLOWER_L1(*uc); \
1484 if (UNLIKELY(uvc == MICRO_SIGN)) uvc = GREEK_SMALL_LETTER_MU; \
1487 /* raw data, will be folded later if needed */ \
1495 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
1496 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
1497 U32 ging = TRIE_LIST_LEN( state ) *= 2; \
1498 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
1500 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
1501 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
1502 TRIE_LIST_CUR( state )++; \
1505 #define TRIE_LIST_NEW(state) STMT_START { \
1506 Newxz( trie->states[ state ].trans.list, \
1507 4, reg_trie_trans_le ); \
1508 TRIE_LIST_CUR( state ) = 1; \
1509 TRIE_LIST_LEN( state ) = 4; \
1512 #define TRIE_HANDLE_WORD(state) STMT_START { \
1513 U16 dupe= trie->states[ state ].wordnum; \
1514 regnode * const noper_next = regnext( noper ); \
1517 /* store the word for dumping */ \
1519 if (OP(noper) != NOTHING) \
1520 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
1522 tmp = newSVpvn_utf8( "", 0, UTF ); \
1523 av_push( trie_words, tmp ); \
1527 trie->wordinfo[curword].prev = 0; \
1528 trie->wordinfo[curword].len = wordlen; \
1529 trie->wordinfo[curword].accept = state; \
1531 if ( noper_next < tail ) { \
1533 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, sizeof(U16) ); \
1534 trie->jump[curword] = (U16)(noper_next - convert); \
1536 jumper = noper_next; \
1538 nextbranch= regnext(cur); \
1542 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
1543 /* chain, so that when the bits of chain are later */\
1544 /* linked together, the dups appear in the chain */\
1545 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
1546 trie->wordinfo[dupe].prev = curword; \
1548 /* we haven't inserted this word yet. */ \
1549 trie->states[ state ].wordnum = curword; \
1554 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
1555 ( ( base + charid >= ucharcount \
1556 && base + charid < ubound \
1557 && state == trie->trans[ base - ucharcount + charid ].check \
1558 && trie->trans[ base - ucharcount + charid ].next ) \
1559 ? trie->trans[ base - ucharcount + charid ].next \
1560 : ( state==1 ? special : 0 ) \
1564 #define MADE_JUMP_TRIE 2
1565 #define MADE_EXACT_TRIE 4
1568 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch, regnode *first, regnode *last, regnode *tail, U32 word_count, U32 flags, U32 depth)
1571 /* first pass, loop through and scan words */
1572 reg_trie_data *trie;
1573 HV *widecharmap = NULL;
1574 AV *revcharmap = newAV();
1580 regnode *jumper = NULL;
1581 regnode *nextbranch = NULL;
1582 regnode *convert = NULL;
1583 U32 *prev_states; /* temp array mapping each state to previous one */
1584 /* we just use folder as a flag in utf8 */
1585 const U8 * folder = NULL;
1588 const U32 data_slot = add_data( pRExC_state, 4, "tuuu" );
1589 AV *trie_words = NULL;
1590 /* along with revcharmap, this only used during construction but both are
1591 * useful during debugging so we store them in the struct when debugging.
1594 const U32 data_slot = add_data( pRExC_state, 2, "tu" );
1595 STRLEN trie_charcount=0;
1597 SV *re_trie_maxbuff;
1598 GET_RE_DEBUG_FLAGS_DECL;
1600 PERL_ARGS_ASSERT_MAKE_TRIE;
1602 PERL_UNUSED_ARG(depth);
1609 case EXACTFU: folder = PL_fold_latin1; break;
1610 case EXACTF: folder = PL_fold; break;
1611 case EXACTFL: folder = PL_fold_locale; break;
1612 default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
1615 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
1617 trie->startstate = 1;
1618 trie->wordcount = word_count;
1619 RExC_rxi->data->data[ data_slot ] = (void*)trie;
1620 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
1622 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
1623 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
1624 trie->wordcount+1, sizeof(reg_trie_wordinfo));
1627 trie_words = newAV();
1630 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
1631 if (!SvIOK(re_trie_maxbuff)) {
1632 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
1634 DEBUG_TRIE_COMPILE_r({
1635 PerlIO_printf( Perl_debug_log,
1636 "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
1637 (int)depth * 2 + 2, "",
1638 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
1639 REG_NODE_NUM(last), REG_NODE_NUM(tail),
1643 /* Find the node we are going to overwrite */
1644 if ( first == startbranch && OP( last ) != BRANCH ) {
1645 /* whole branch chain */
1648 /* branch sub-chain */
1649 convert = NEXTOPER( first );
1652 /* -- First loop and Setup --
1654 We first traverse the branches and scan each word to determine if it
1655 contains widechars, and how many unique chars there are, this is
1656 important as we have to build a table with at least as many columns as we
1659 We use an array of integers to represent the character codes 0..255
1660 (trie->charmap) and we use a an HV* to store Unicode characters. We use the
1661 native representation of the character value as the key and IV's for the
1664 *TODO* If we keep track of how many times each character is used we can
1665 remap the columns so that the table compression later on is more
1666 efficient in terms of memory by ensuring the most common value is in the
1667 middle and the least common are on the outside. IMO this would be better
1668 than a most to least common mapping as theres a decent chance the most
1669 common letter will share a node with the least common, meaning the node
1670 will not be compressible. With a middle is most common approach the worst
1671 case is when we have the least common nodes twice.
1675 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1676 regnode *noper = NEXTOPER( cur );
1677 const U8 *uc = (U8*)STRING( noper );
1678 const U8 *e = uc + STR_LEN( noper );
1680 U32 wordlen = 0; /* required init */
1681 STRLEN minbytes = 0;
1682 STRLEN maxbytes = 0;
1683 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the bitmap?*/
1685 if (OP(noper) == NOTHING) {
1686 regnode *noper_next= regnext(noper);
1687 if (noper_next != tail && OP(noper_next) == flags) {
1689 uc= (U8*)STRING(noper);
1690 e= uc + STR_LEN(noper);
1691 trie->minlen= STR_LEN(noper);
1698 if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
1699 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
1700 regardless of encoding */
1701 if (OP( noper ) == EXACTFU_SS) {
1702 /* false positives are ok, so just set this */
1703 TRIE_BITMAP_SET(trie, LATIN_SMALL_LETTER_SHARP_S);
1706 for ( ; uc < e ; uc += len ) {
1707 TRIE_CHARCOUNT(trie)++;
1710 /* Acummulate to the current values, the range in the number of
1711 * bytes that this character could match. The max is presumed to
1712 * be the same as the folded input (which TRIE_READ_CHAR returns),
1713 * except that when this is not in UTF-8, it could be matched
1714 * against a string which is UTF-8, and the variant characters
1715 * could be 2 bytes instead of the 1 here. Likewise, for the
1716 * minimum number of bytes when not folded. When folding, the min
1717 * is assumed to be 1 byte could fold to match the single character
1718 * here, or in the case of a multi-char fold, 1 byte can fold to
1719 * the whole sequence. 'foldlen' is used to denote whether we are
1720 * in such a sequence, skipping the min setting if so. XXX TODO
1721 * Use the exact list of what folds to each character, from
1722 * PL_utf8_foldclosures */
1724 maxbytes += UTF8SKIP(uc);
1726 /* A non-UTF-8 string could be 1 byte to match our 2 */
1727 minbytes += (UTF8_IS_DOWNGRADEABLE_START(*uc))
1733 foldlen -= UTF8SKIP(uc);
1736 foldlen = is_MULTI_CHAR_FOLD_utf8_safe(uc, e);
1742 maxbytes += (UNI_IS_INVARIANT(*uc))
1753 foldlen = is_MULTI_CHAR_FOLD_latin1_safe(uc, e);
1760 U8 folded= folder[ (U8) uvc ];
1761 if ( !trie->charmap[ folded ] ) {
1762 trie->charmap[ folded ]=( ++trie->uniquecharcount );
1763 TRIE_STORE_REVCHAR( folded );
1766 if ( !trie->charmap[ uvc ] ) {
1767 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
1768 TRIE_STORE_REVCHAR( uvc );
1771 /* store the codepoint in the bitmap, and its folded
1773 TRIE_BITMAP_SET(trie, uvc);
1775 /* store the folded codepoint */
1776 if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);
1779 /* store first byte of utf8 representation of
1780 variant codepoints */
1781 if (! NATIVE_IS_INVARIANT(uvc)) {
1782 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
1785 set_bit = 0; /* We've done our bit :-) */
1790 widecharmap = newHV();
1792 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
1795 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
1797 if ( !SvTRUE( *svpp ) ) {
1798 sv_setiv( *svpp, ++trie->uniquecharcount );
1799 TRIE_STORE_REVCHAR(uvc);
1803 if( cur == first ) {
1804 trie->minlen = minbytes;
1805 trie->maxlen = maxbytes;
1806 } else if (minbytes < trie->minlen) {
1807 trie->minlen = minbytes;
1808 } else if (maxbytes > trie->maxlen) {
1809 trie->maxlen = maxbytes;
1811 } /* end first pass */
1812 DEBUG_TRIE_COMPILE_r(
1813 PerlIO_printf( Perl_debug_log, "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
1814 (int)depth * 2 + 2,"",
1815 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
1816 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
1817 (int)trie->minlen, (int)trie->maxlen )
1821 We now know what we are dealing with in terms of unique chars and
1822 string sizes so we can calculate how much memory a naive
1823 representation using a flat table will take. If it's over a reasonable
1824 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
1825 conservative but potentially much slower representation using an array
1828 At the end we convert both representations into the same compressed
1829 form that will be used in regexec.c for matching with. The latter
1830 is a form that cannot be used to construct with but has memory
1831 properties similar to the list form and access properties similar
1832 to the table form making it both suitable for fast searches and
1833 small enough that its feasable to store for the duration of a program.
1835 See the comment in the code where the compressed table is produced
1836 inplace from the flat tabe representation for an explanation of how
1837 the compression works.
1842 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
1845 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1) > SvIV(re_trie_maxbuff) ) {
1847 Second Pass -- Array Of Lists Representation
1849 Each state will be represented by a list of charid:state records
1850 (reg_trie_trans_le) the first such element holds the CUR and LEN
1851 points of the allocated array. (See defines above).
1853 We build the initial structure using the lists, and then convert
1854 it into the compressed table form which allows faster lookups
1855 (but cant be modified once converted).
1858 STRLEN transcount = 1;
1860 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1861 "%*sCompiling trie using list compiler\n",
1862 (int)depth * 2 + 2, ""));
1864 trie->states = (reg_trie_state *)
1865 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1866 sizeof(reg_trie_state) );
1870 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1872 regnode *noper = NEXTOPER( cur );
1873 U8 *uc = (U8*)STRING( noper );
1874 const U8 *e = uc + STR_LEN( noper );
1875 U32 state = 1; /* required init */
1876 U16 charid = 0; /* sanity init */
1877 U32 wordlen = 0; /* required init */
1879 if (OP(noper) == NOTHING) {
1880 regnode *noper_next= regnext(noper);
1881 if (noper_next != tail && OP(noper_next) == flags) {
1883 uc= (U8*)STRING(noper);
1884 e= uc + STR_LEN(noper);
1888 if (OP(noper) != NOTHING) {
1889 for ( ; uc < e ; uc += len ) {
1894 charid = trie->charmap[ uvc ];
1896 SV** const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1900 charid=(U16)SvIV( *svpp );
1903 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1910 if ( !trie->states[ state ].trans.list ) {
1911 TRIE_LIST_NEW( state );
1913 for ( check = 1; check <= TRIE_LIST_USED( state ); check++ ) {
1914 if ( TRIE_LIST_ITEM( state, check ).forid == charid ) {
1915 newstate = TRIE_LIST_ITEM( state, check ).newstate;
1920 newstate = next_alloc++;
1921 prev_states[newstate] = state;
1922 TRIE_LIST_PUSH( state, charid, newstate );
1927 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1931 TRIE_HANDLE_WORD(state);
1933 } /* end second pass */
1935 /* next alloc is the NEXT state to be allocated */
1936 trie->statecount = next_alloc;
1937 trie->states = (reg_trie_state *)
1938 PerlMemShared_realloc( trie->states,
1940 * sizeof(reg_trie_state) );
1942 /* and now dump it out before we compress it */
1943 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
1944 revcharmap, next_alloc,
1948 trie->trans = (reg_trie_trans *)
1949 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
1956 for( state=1 ; state < next_alloc ; state ++ ) {
1960 DEBUG_TRIE_COMPILE_MORE_r(
1961 PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
1965 if (trie->states[state].trans.list) {
1966 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
1970 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1971 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
1972 if ( forid < minid ) {
1974 } else if ( forid > maxid ) {
1978 if ( transcount < tp + maxid - minid + 1) {
1980 trie->trans = (reg_trie_trans *)
1981 PerlMemShared_realloc( trie->trans,
1983 * sizeof(reg_trie_trans) );
1984 Zero( trie->trans + (transcount / 2), transcount / 2 , reg_trie_trans );
1986 base = trie->uniquecharcount + tp - minid;
1987 if ( maxid == minid ) {
1989 for ( ; zp < tp ; zp++ ) {
1990 if ( ! trie->trans[ zp ].next ) {
1991 base = trie->uniquecharcount + zp - minid;
1992 trie->trans[ zp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1993 trie->trans[ zp ].check = state;
1999 trie->trans[ tp ].next = TRIE_LIST_ITEM( state, 1).newstate;
2000 trie->trans[ tp ].check = state;
2005 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
2006 const U32 tid = base - trie->uniquecharcount + TRIE_LIST_ITEM( state, idx ).forid;
2007 trie->trans[ tid ].next = TRIE_LIST_ITEM( state, idx ).newstate;
2008 trie->trans[ tid ].check = state;
2010 tp += ( maxid - minid + 1 );
2012 Safefree(trie->states[ state ].trans.list);
2015 DEBUG_TRIE_COMPILE_MORE_r(
2016 PerlIO_printf( Perl_debug_log, " base: %d\n",base);
2019 trie->states[ state ].trans.base=base;
2021 trie->lasttrans = tp + 1;
2025 Second Pass -- Flat Table Representation.
2027 we dont use the 0 slot of either trans[] or states[] so we add 1 to each.
2028 We know that we will need Charcount+1 trans at most to store the data
2029 (one row per char at worst case) So we preallocate both structures
2030 assuming worst case.
2032 We then construct the trie using only the .next slots of the entry
2035 We use the .check field of the first entry of the node temporarily to
2036 make compression both faster and easier by keeping track of how many non
2037 zero fields are in the node.
2039 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
2042 There are two terms at use here: state as a TRIE_NODEIDX() which is a
2043 number representing the first entry of the node, and state as a
2044 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1) and
2045 TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3) if there
2046 are 2 entrys per node. eg:
2054 The table is internally in the right hand, idx form. However as we also
2055 have to deal with the states array which is indexed by nodenum we have to
2056 use TRIE_NODENUM() to convert.
2059 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
2060 "%*sCompiling trie using table compiler\n",
2061 (int)depth * 2 + 2, ""));
2063 trie->trans = (reg_trie_trans *)
2064 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
2065 * trie->uniquecharcount + 1,
2066 sizeof(reg_trie_trans) );
2067 trie->states = (reg_trie_state *)
2068 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2069 sizeof(reg_trie_state) );
2070 next_alloc = trie->uniquecharcount + 1;
2073 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2075 regnode *noper = NEXTOPER( cur );
2076 const U8 *uc = (U8*)STRING( noper );
2077 const U8 *e = uc + STR_LEN( noper );
2079 U32 state = 1; /* required init */
2081 U16 charid = 0; /* sanity init */
2082 U32 accept_state = 0; /* sanity init */
2084 U32 wordlen = 0; /* required init */
2086 if (OP(noper) == NOTHING) {
2087 regnode *noper_next= regnext(noper);
2088 if (noper_next != tail && OP(noper_next) == flags) {
2090 uc= (U8*)STRING(noper);
2091 e= uc + STR_LEN(noper);
2095 if ( OP(noper) != NOTHING ) {
2096 for ( ; uc < e ; uc += len ) {
2101 charid = trie->charmap[ uvc ];
2103 SV* const * const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
2104 charid = svpp ? (U16)SvIV(*svpp) : 0;
2108 if ( !trie->trans[ state + charid ].next ) {
2109 trie->trans[ state + charid ].next = next_alloc;
2110 trie->trans[ state ].check++;
2111 prev_states[TRIE_NODENUM(next_alloc)]
2112 = TRIE_NODENUM(state);
2113 next_alloc += trie->uniquecharcount;
2115 state = trie->trans[ state + charid ].next;
2117 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
2119 /* charid is now 0 if we dont know the char read, or nonzero if we do */
2122 accept_state = TRIE_NODENUM( state );
2123 TRIE_HANDLE_WORD(accept_state);
2125 } /* end second pass */
2127 /* and now dump it out before we compress it */
2128 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
2130 next_alloc, depth+1));
2134 * Inplace compress the table.*
2136 For sparse data sets the table constructed by the trie algorithm will
2137 be mostly 0/FAIL transitions or to put it another way mostly empty.
2138 (Note that leaf nodes will not contain any transitions.)
2140 This algorithm compresses the tables by eliminating most such
2141 transitions, at the cost of a modest bit of extra work during lookup:
2143 - Each states[] entry contains a .base field which indicates the
2144 index in the state[] array wheres its transition data is stored.
2146 - If .base is 0 there are no valid transitions from that node.
2148 - If .base is nonzero then charid is added to it to find an entry in
2151 -If trans[states[state].base+charid].check!=state then the
2152 transition is taken to be a 0/Fail transition. Thus if there are fail
2153 transitions at the front of the node then the .base offset will point
2154 somewhere inside the previous nodes data (or maybe even into a node
2155 even earlier), but the .check field determines if the transition is
2159 The following process inplace converts the table to the compressed
2160 table: We first do not compress the root node 1,and mark all its
2161 .check pointers as 1 and set its .base pointer as 1 as well. This
2162 allows us to do a DFA construction from the compressed table later,
2163 and ensures that any .base pointers we calculate later are greater
2166 - We set 'pos' to indicate the first entry of the second node.
2168 - We then iterate over the columns of the node, finding the first and
2169 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
2170 and set the .check pointers accordingly, and advance pos
2171 appropriately and repreat for the next node. Note that when we copy
2172 the next pointers we have to convert them from the original
2173 NODEIDX form to NODENUM form as the former is not valid post
2176 - If a node has no transitions used we mark its base as 0 and do not
2177 advance the pos pointer.
2179 - If a node only has one transition we use a second pointer into the
2180 structure to fill in allocated fail transitions from other states.
2181 This pointer is independent of the main pointer and scans forward
2182 looking for null transitions that are allocated to a state. When it
2183 finds one it writes the single transition into the "hole". If the
2184 pointer doesnt find one the single transition is appended as normal.
2186 - Once compressed we can Renew/realloc the structures to release the
2189 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
2190 specifically Fig 3.47 and the associated pseudocode.
2194 const U32 laststate = TRIE_NODENUM( next_alloc );
2197 trie->statecount = laststate;
2199 for ( state = 1 ; state < laststate ; state++ ) {
2201 const U32 stateidx = TRIE_NODEIDX( state );
2202 const U32 o_used = trie->trans[ stateidx ].check;
2203 U32 used = trie->trans[ stateidx ].check;
2204 trie->trans[ stateidx ].check = 0;
2206 for ( charid = 0 ; used && charid < trie->uniquecharcount ; charid++ ) {
2207 if ( flag || trie->trans[ stateidx + charid ].next ) {
2208 if ( trie->trans[ stateidx + charid ].next ) {
2210 for ( ; zp < pos ; zp++ ) {
2211 if ( ! trie->trans[ zp ].next ) {
2215 trie->states[ state ].trans.base = zp + trie->uniquecharcount - charid ;
2216 trie->trans[ zp ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2217 trie->trans[ zp ].check = state;
2218 if ( ++zp > pos ) pos = zp;
2225 trie->states[ state ].trans.base = pos + trie->uniquecharcount - charid ;
2227 trie->trans[ pos ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2228 trie->trans[ pos ].check = state;
2233 trie->lasttrans = pos + 1;
2234 trie->states = (reg_trie_state *)
2235 PerlMemShared_realloc( trie->states, laststate
2236 * sizeof(reg_trie_state) );
2237 DEBUG_TRIE_COMPILE_MORE_r(
2238 PerlIO_printf( Perl_debug_log,
2239 "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
2240 (int)depth * 2 + 2,"",
2241 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1 ),
2244 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
2247 } /* end table compress */
2249 DEBUG_TRIE_COMPILE_MORE_r(
2250 PerlIO_printf(Perl_debug_log, "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
2251 (int)depth * 2 + 2, "",
2252 (UV)trie->statecount,
2253 (UV)trie->lasttrans)
2255 /* resize the trans array to remove unused space */
2256 trie->trans = (reg_trie_trans *)
2257 PerlMemShared_realloc( trie->trans, trie->lasttrans
2258 * sizeof(reg_trie_trans) );
2260 { /* Modify the program and insert the new TRIE node */
2261 U8 nodetype =(U8)(flags & 0xFF);
2265 regnode *optimize = NULL;
2266 #ifdef RE_TRACK_PATTERN_OFFSETS
2269 U32 mjd_nodelen = 0;
2270 #endif /* RE_TRACK_PATTERN_OFFSETS */
2271 #endif /* DEBUGGING */
2273 This means we convert either the first branch or the first Exact,
2274 depending on whether the thing following (in 'last') is a branch
2275 or not and whther first is the startbranch (ie is it a sub part of
2276 the alternation or is it the whole thing.)
2277 Assuming its a sub part we convert the EXACT otherwise we convert
2278 the whole branch sequence, including the first.
2280 /* Find the node we are going to overwrite */
2281 if ( first != startbranch || OP( last ) == BRANCH ) {
2282 /* branch sub-chain */
2283 NEXT_OFF( first ) = (U16)(last - first);
2284 #ifdef RE_TRACK_PATTERN_OFFSETS
2286 mjd_offset= Node_Offset((convert));
2287 mjd_nodelen= Node_Length((convert));
2290 /* whole branch chain */
2292 #ifdef RE_TRACK_PATTERN_OFFSETS
2295 const regnode *nop = NEXTOPER( convert );
2296 mjd_offset= Node_Offset((nop));
2297 mjd_nodelen= Node_Length((nop));
2301 PerlIO_printf(Perl_debug_log, "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
2302 (int)depth * 2 + 2, "",
2303 (UV)mjd_offset, (UV)mjd_nodelen)
2306 /* But first we check to see if there is a common prefix we can
2307 split out as an EXACT and put in front of the TRIE node. */
2308 trie->startstate= 1;
2309 if ( trie->bitmap && !widecharmap && !trie->jump ) {
2311 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
2315 const U32 base = trie->states[ state ].trans.base;
2317 if ( trie->states[state].wordnum )
2320 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2321 if ( ( base + ofs >= trie->uniquecharcount ) &&
2322 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
2323 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
2325 if ( ++count > 1 ) {
2326 SV **tmp = av_fetch( revcharmap, ofs, 0);
2327 const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
2328 if ( state == 1 ) break;
2330 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
2332 PerlIO_printf(Perl_debug_log,
2333 "%*sNew Start State=%"UVuf" Class: [",
2334 (int)depth * 2 + 2, "",
2337 SV ** const tmp = av_fetch( revcharmap, idx, 0);
2338 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
2340 TRIE_BITMAP_SET(trie,*ch);
2342 TRIE_BITMAP_SET(trie, folder[ *ch ]);
2344 PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
2348 TRIE_BITMAP_SET(trie,*ch);
2350 TRIE_BITMAP_SET(trie,folder[ *ch ]);
2351 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
2357 SV **tmp = av_fetch( revcharmap, idx, 0);
2359 char *ch = SvPV( *tmp, len );
2361 SV *sv=sv_newmortal();
2362 PerlIO_printf( Perl_debug_log,
2363 "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
2364 (int)depth * 2 + 2, "",
2366 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
2367 PL_colors[0], PL_colors[1],
2368 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2369 PERL_PV_ESCAPE_FIRSTCHAR
2374 OP( convert ) = nodetype;
2375 str=STRING(convert);
2378 STR_LEN(convert) += len;
2384 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
2389 trie->prefixlen = (state-1);
2391 regnode *n = convert+NODE_SZ_STR(convert);
2392 NEXT_OFF(convert) = NODE_SZ_STR(convert);
2393 trie->startstate = state;
2394 trie->minlen -= (state - 1);
2395 trie->maxlen -= (state - 1);
2397 /* At least the UNICOS C compiler choked on this
2398 * being argument to DEBUG_r(), so let's just have
2401 #ifdef PERL_EXT_RE_BUILD
2407 regnode *fix = convert;
2408 U32 word = trie->wordcount;
2410 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
2411 while( ++fix < n ) {
2412 Set_Node_Offset_Length(fix, 0, 0);
2415 SV ** const tmp = av_fetch( trie_words, word, 0 );
2417 if ( STR_LEN(convert) <= SvCUR(*tmp) )
2418 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
2420 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
2428 NEXT_OFF(convert) = (U16)(tail - convert);
2429 DEBUG_r(optimize= n);
2435 if ( trie->maxlen ) {
2436 NEXT_OFF( convert ) = (U16)(tail - convert);
2437 ARG_SET( convert, data_slot );
2438 /* Store the offset to the first unabsorbed branch in
2439 jump[0], which is otherwise unused by the jump logic.
2440 We use this when dumping a trie and during optimisation. */
2442 trie->jump[0] = (U16)(nextbranch - convert);
2444 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
2445 * and there is a bitmap
2446 * and the first "jump target" node we found leaves enough room
2447 * then convert the TRIE node into a TRIEC node, with the bitmap
2448 * embedded inline in the opcode - this is hypothetically faster.
2450 if ( !trie->states[trie->startstate].wordnum
2452 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
2454 OP( convert ) = TRIEC;
2455 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
2456 PerlMemShared_free(trie->bitmap);
2459 OP( convert ) = TRIE;
2461 /* store the type in the flags */
2462 convert->flags = nodetype;
2466 + regarglen[ OP( convert ) ];
2468 /* XXX We really should free up the resource in trie now,
2469 as we won't use them - (which resources?) dmq */
2471 /* needed for dumping*/
2472 DEBUG_r(if (optimize) {
2473 regnode *opt = convert;
2475 while ( ++opt < optimize) {
2476 Set_Node_Offset_Length(opt,0,0);
2479 Try to clean up some of the debris left after the
2482 while( optimize < jumper ) {
2483 mjd_nodelen += Node_Length((optimize));
2484 OP( optimize ) = OPTIMIZED;
2485 Set_Node_Offset_Length(optimize,0,0);
2488 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
2490 } /* end node insert */
2492 /* Finish populating the prev field of the wordinfo array. Walk back
2493 * from each accept state until we find another accept state, and if
2494 * so, point the first word's .prev field at the second word. If the
2495 * second already has a .prev field set, stop now. This will be the
2496 * case either if we've already processed that word's accept state,
2497 * or that state had multiple words, and the overspill words were
2498 * already linked up earlier.
2505 for (word=1; word <= trie->wordcount; word++) {
2507 if (trie->wordinfo[word].prev)
2509 state = trie->wordinfo[word].accept;
2511 state = prev_states[state];
2514 prev = trie->states[state].wordnum;
2518 trie->wordinfo[word].prev = prev;
2520 Safefree(prev_states);
2524 /* and now dump out the compressed format */
2525 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
2527 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
2529 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
2530 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
2532 SvREFCNT_dec_NN(revcharmap);
2536 : trie->startstate>1
2542 S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source, regnode *stclass, U32 depth)
2544 /* The Trie is constructed and compressed now so we can build a fail array if it's needed
2546 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and 3.32 in the
2547 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi, Ullman 1985/88
2550 We find the fail state for each state in the trie, this state is the longest proper
2551 suffix of the current state's 'word' that is also a proper prefix of another word in our
2552 trie. State 1 represents the word '' and is thus the default fail state. This allows
2553 the DFA not to have to restart after its tried and failed a word at a given point, it
2554 simply continues as though it had been matching the other word in the first place.
2556 'abcdgu'=~/abcdefg|cdgu/
2557 When we get to 'd' we are still matching the first word, we would encounter 'g' which would
2558 fail, which would bring us to the state representing 'd' in the second word where we would
2559 try 'g' and succeed, proceeding to match 'cdgu'.
2561 /* add a fail transition */
2562 const U32 trie_offset = ARG(source);
2563 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
2565 const U32 ucharcount = trie->uniquecharcount;
2566 const U32 numstates = trie->statecount;
2567 const U32 ubound = trie->lasttrans + ucharcount;
2571 U32 base = trie->states[ 1 ].trans.base;
2574 const U32 data_slot = add_data( pRExC_state, 1, "T" );
2575 GET_RE_DEBUG_FLAGS_DECL;
2577 PERL_ARGS_ASSERT_MAKE_TRIE_FAILTABLE;
2579 PERL_UNUSED_ARG(depth);
2583 ARG_SET( stclass, data_slot );
2584 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
2585 RExC_rxi->data->data[ data_slot ] = (void*)aho;
2586 aho->trie=trie_offset;
2587 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
2588 Copy( trie->states, aho->states, numstates, reg_trie_state );
2589 Newxz( q, numstates, U32);
2590 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
2593 /* initialize fail[0..1] to be 1 so that we always have
2594 a valid final fail state */
2595 fail[ 0 ] = fail[ 1 ] = 1;
2597 for ( charid = 0; charid < ucharcount ; charid++ ) {
2598 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
2600 q[ q_write ] = newstate;
2601 /* set to point at the root */
2602 fail[ q[ q_write++ ] ]=1;
2605 while ( q_read < q_write) {
2606 const U32 cur = q[ q_read++ % numstates ];
2607 base = trie->states[ cur ].trans.base;
2609 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
2610 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
2612 U32 fail_state = cur;
2615 fail_state = fail[ fail_state ];
2616 fail_base = aho->states[ fail_state ].trans.base;
2617 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
2619 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
2620 fail[ ch_state ] = fail_state;
2621 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
2623 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
2625 q[ q_write++ % numstates] = ch_state;
2629 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
2630 when we fail in state 1, this allows us to use the
2631 charclass scan to find a valid start char. This is based on the principle
2632 that theres a good chance the string being searched contains lots of stuff
2633 that cant be a start char.
2635 fail[ 0 ] = fail[ 1 ] = 0;
2636 DEBUG_TRIE_COMPILE_r({
2637 PerlIO_printf(Perl_debug_log,
2638 "%*sStclass Failtable (%"UVuf" states): 0",
2639 (int)(depth * 2), "", (UV)numstates
2641 for( q_read=1; q_read<numstates; q_read++ ) {
2642 PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
2644 PerlIO_printf(Perl_debug_log, "\n");
2647 /*RExC_seen |= REG_SEEN_TRIEDFA;*/
2652 * There are strange code-generation bugs caused on sparc64 by gcc-2.95.2.
2653 * These need to be revisited when a newer toolchain becomes available.
2655 #if defined(__sparc64__) && defined(__GNUC__)
2656 # if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 96)
2657 # undef SPARC64_GCC_WORKAROUND
2658 # define SPARC64_GCC_WORKAROUND 1
2662 #define DEBUG_PEEP(str,scan,depth) \
2663 DEBUG_OPTIMISE_r({if (scan){ \
2664 SV * const mysv=sv_newmortal(); \
2665 regnode *Next = regnext(scan); \
2666 regprop(RExC_rx, mysv, scan); \
2667 PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)\n", \
2668 (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\
2669 Next ? (REG_NODE_NUM(Next)) : 0 ); \
2673 /* The below joins as many adjacent EXACTish nodes as possible into a single
2674 * one. The regop may be changed if the node(s) contain certain sequences that
2675 * require special handling. The joining is only done if:
2676 * 1) there is room in the current conglomerated node to entirely contain the
2678 * 2) they are the exact same node type
2680 * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
2681 * these get optimized out
2683 * If a node is to match under /i (folded), the number of characters it matches
2684 * can be different than its character length if it contains a multi-character
2685 * fold. *min_subtract is set to the total delta of the input nodes.
2687 * And *has_exactf_sharp_s is set to indicate whether or not the node is EXACTF
2688 * and contains LATIN SMALL LETTER SHARP S
2690 * This is as good a place as any to discuss the design of handling these
2691 * multi-character fold sequences. It's been wrong in Perl for a very long
2692 * time. There are three code points in Unicode whose multi-character folds
2693 * were long ago discovered to mess things up. The previous designs for
2694 * dealing with these involved assigning a special node for them. This
2695 * approach doesn't work, as evidenced by this example:
2696 * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
2697 * Both these fold to "sss", but if the pattern is parsed to create a node that
2698 * would match just the \xDF, it won't be able to handle the case where a
2699 * successful match would have to cross the node's boundary. The new approach
2700 * that hopefully generally solves the problem generates an EXACTFU_SS node
2703 * It turns out that there are problems with all multi-character folds, and not
2704 * just these three. Now the code is general, for all such cases. The
2705 * approach taken is:
2706 * 1) This routine examines each EXACTFish node that could contain multi-
2707 * character fold sequences. It returns in *min_subtract how much to
2708 * subtract from the the actual length of the string to get a real minimum
2709 * match length; it is 0 if there are no multi-char folds. This delta is
2710 * used by the caller to adjust the min length of the match, and the delta
2711 * between min and max, so that the optimizer doesn't reject these
2712 * possibilities based on size constraints.
2713 * 2) For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS
2714 * is used for an EXACTFU node that contains at least one "ss" sequence in
2715 * it. For non-UTF-8 patterns and strings, this is the only case where
2716 * there is a possible fold length change. That means that a regular
2717 * EXACTFU node without UTF-8 involvement doesn't have to concern itself
2718 * with length changes, and so can be processed faster. regexec.c takes
2719 * advantage of this. Generally, an EXACTFish node that is in UTF-8 is
2720 * pre-folded by regcomp.c. This saves effort in regex matching.
2721 * However, the pre-folding isn't done for non-UTF8 patterns because the
2722 * fold of the MICRO SIGN requires UTF-8, and we don't want to slow things
2723 * down by forcing the pattern into UTF8 unless necessary. Also what
2724 * EXACTF and EXACTFL nodes fold to isn't known until runtime. The fold
2725 * possibilities for the non-UTF8 patterns are quite simple, except for
2726 * the sharp s. All the ones that don't involve a UTF-8 target string are
2727 * members of a fold-pair, and arrays are set up for all of them so that
2728 * the other member of the pair can be found quickly. Code elsewhere in
2729 * this file makes sure that in EXACTFU nodes, the sharp s gets folded to
2730 * 'ss', even if the pattern isn't UTF-8. This avoids the issues
2731 * described in the next item.
2732 * 3) A problem remains for the sharp s in EXACTF and EXACTFA nodes when the
2733 * pattern isn't in UTF-8. (BTW, there cannot be an EXACTF node with a
2734 * UTF-8 pattern.) An assumption that the optimizer part of regexec.c
2735 * (probably unwittingly, in Perl_regexec_flags()) makes is that a
2736 * character in the pattern corresponds to at most a single character in
2737 * the target string. (And I do mean character, and not byte here, unlike
2738 * other parts of the documentation that have never been updated to
2739 * account for multibyte Unicode.) sharp s in EXACTF nodes can match the
2740 * two character string 'ss'; in EXACTFA nodes it can match
2741 * "\x{17F}\x{17F}". These violate the assumption, and they are the only
2742 * instances where it is violated. I'm reluctant to try to change the
2743 * assumption, as the code involved is impenetrable to me (khw), so
2744 * instead the code here punts. This routine examines (when the pattern
2745 * isn't UTF-8) EXACTF and EXACTFA nodes for the sharp s, and returns a
2746 * boolean indicating whether or not the node contains a sharp s. When it
2747 * is true, the caller sets a flag that later causes the optimizer in this
2748 * file to not set values for the floating and fixed string lengths, and
2749 * thus avoids the optimizer code in regexec.c that makes the invalid
2750 * assumption. Thus, there is no optimization based on string lengths for
2751 * non-UTF8-pattern EXACTF and EXACTFA nodes that contain the sharp s.
2752 * (The reason the assumption is wrong only in these two cases is that all
2753 * other non-UTF-8 folds are 1-1; and, for UTF-8 patterns, we pre-fold all
2754 * other folds to their expanded versions. We can't prefold sharp s to
2755 * 'ss' in EXACTF nodes because we don't know at compile time if it
2756 * actually matches 'ss' or not. It will match iff the target string is
2757 * in UTF-8, unlike the EXACTFU nodes, where it always matches; and
2758 * EXACTFA and EXACTFL where it never does. In an EXACTFA node in a UTF-8
2759 * pattern, sharp s is folded to "\x{17F}\x{17F}, avoiding the problem;
2760 * but in a non-UTF8 pattern, folding it to that above-Latin1 string would
2761 * require the pattern to be forced into UTF-8, the overhead of which we
2764 * Similarly, the code that generates tries doesn't currently handle
2765 * not-already-folded multi-char folds, and it looks like a pain to change
2766 * that. Therefore, trie generation of EXACTFA nodes with the sharp s
2767 * doesn't work. Instead, such an EXACTFA is turned into a new regnode,
2768 * EXACTFA_NO_TRIE, which the trie code knows not to handle. Most people
2769 * using /iaa matching will be doing so almost entirely with ASCII
2770 * strings, so this should rarely be encountered in practice */
2772 #define JOIN_EXACT(scan,min_subtract,has_exactf_sharp_s, flags) \
2773 if (PL_regkind[OP(scan)] == EXACT) \
2774 join_exact(pRExC_state,(scan),(min_subtract),has_exactf_sharp_s, (flags),NULL,depth+1)
2777 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan, UV *min_subtract, bool *has_exactf_sharp_s, U32 flags,regnode *val, U32 depth) {
2778 /* Merge several consecutive EXACTish nodes into one. */
2779 regnode *n = regnext(scan);
2781 regnode *next = scan + NODE_SZ_STR(scan);
2785 regnode *stop = scan;
2786 GET_RE_DEBUG_FLAGS_DECL;
2788 PERL_UNUSED_ARG(depth);
2791 PERL_ARGS_ASSERT_JOIN_EXACT;
2792 #ifndef EXPERIMENTAL_INPLACESCAN
2793 PERL_UNUSED_ARG(flags);
2794 PERL_UNUSED_ARG(val);
2796 DEBUG_PEEP("join",scan,depth);
2798 /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
2799 * EXACT ones that are mergeable to the current one. */
2801 && (PL_regkind[OP(n)] == NOTHING
2802 || (stringok && OP(n) == OP(scan)))
2804 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
2807 if (OP(n) == TAIL || n > next)
2809 if (PL_regkind[OP(n)] == NOTHING) {
2810 DEBUG_PEEP("skip:",n,depth);
2811 NEXT_OFF(scan) += NEXT_OFF(n);
2812 next = n + NODE_STEP_REGNODE;
2819 else if (stringok) {
2820 const unsigned int oldl = STR_LEN(scan);
2821 regnode * const nnext = regnext(n);
2823 /* XXX I (khw) kind of doubt that this works on platforms where
2824 * U8_MAX is above 255 because of lots of other assumptions */
2825 /* Don't join if the sum can't fit into a single node */
2826 if (oldl + STR_LEN(n) > U8_MAX)
2829 DEBUG_PEEP("merg",n,depth);
2832 NEXT_OFF(scan) += NEXT_OFF(n);
2833 STR_LEN(scan) += STR_LEN(n);
2834 next = n + NODE_SZ_STR(n);
2835 /* Now we can overwrite *n : */
2836 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
2844 #ifdef EXPERIMENTAL_INPLACESCAN
2845 if (flags && !NEXT_OFF(n)) {
2846 DEBUG_PEEP("atch", val, depth);
2847 if (reg_off_by_arg[OP(n)]) {
2848 ARG_SET(n, val - n);
2851 NEXT_OFF(n) = val - n;
2859 *has_exactf_sharp_s = FALSE;
2861 /* Here, all the adjacent mergeable EXACTish nodes have been merged. We
2862 * can now analyze for sequences of problematic code points. (Prior to
2863 * this final joining, sequences could have been split over boundaries, and
2864 * hence missed). The sequences only happen in folding, hence for any
2865 * non-EXACT EXACTish node */
2866 if (OP(scan) != EXACT) {
2867 const U8 * const s0 = (U8*) STRING(scan);
2869 const U8 * const s_end = s0 + STR_LEN(scan);
2871 /* One pass is made over the node's string looking for all the
2872 * possibilities. to avoid some tests in the loop, there are two main
2873 * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
2877 /* Examine the string for a multi-character fold sequence. UTF-8
2878 * patterns have all characters pre-folded by the time this code is
2880 while (s < s_end - 1) /* Can stop 1 before the end, as minimum
2881 length sequence we are looking for is 2 */
2884 int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end);
2885 if (! len) { /* Not a multi-char fold: get next char */
2890 /* Nodes with 'ss' require special handling, except for EXACTFL
2891 * and EXACTFA-ish for which there is no multi-char fold to
2893 if (len == 2 && *s == 's' && *(s+1) == 's'
2894 && OP(scan) != EXACTFL
2895 && OP(scan) != EXACTFA
2896 && OP(scan) != EXACTFA_NO_TRIE)
2899 OP(scan) = EXACTFU_SS;
2902 else { /* Here is a generic multi-char fold. */
2903 const U8* multi_end = s + len;
2905 /* Count how many characters in it. In the case of /l and
2906 * /aa, no folds which contain ASCII code points are
2907 * allowed, so check for those, and skip if found. (In
2908 * EXACTFL, no folds are allowed to any Latin1 code point,
2909 * not just ASCII. But there aren't any of these
2910 * currently, nor ever likely, so don't take the time to
2911 * test for them. The code that generates the
2912 * is_MULTI_foo() macros croaks should one actually get put
2913 * into Unicode .) */
2914 if (OP(scan) != EXACTFL
2915 && OP(scan) != EXACTFA
2916 && OP(scan) != EXACTFA_NO_TRIE)
2918 count = utf8_length(s, multi_end);
2922 while (s < multi_end) {
2925 goto next_iteration;
2935 /* The delta is how long the sequence is minus 1 (1 is how long
2936 * the character that folds to the sequence is) */
2937 *min_subtract += count - 1;
2941 else if (OP(scan) == EXACTFA) {
2943 /* Non-UTF-8 pattern, EXACTFA node. There can't be a multi-char
2944 * fold to the ASCII range (and there are no existing ones in the
2945 * upper latin1 range). But, as outlined in the comments preceding
2946 * this function, we need to flag any occurrences of the sharp s.
2947 * This character forbids trie formation (because of added
2950 if (*s == LATIN_SMALL_LETTER_SHARP_S) {
2951 OP(scan) = EXACTFA_NO_TRIE;
2952 *has_exactf_sharp_s = TRUE;
2959 else if (OP(scan) != EXACTFL) {
2961 /* Non-UTF-8 pattern, not EXACTFA nor EXACTFL node. Look for the
2962 * multi-char folds that are all Latin1. (This code knows that
2963 * there are no current multi-char folds possible with EXACTFL,
2964 * relying on fold_grind.t to catch any errors if the very unlikely
2965 * event happens that some get added in future Unicode versions.)
2966 * As explained in the comments preceding this function, we look
2967 * also for the sharp s in EXACTF nodes; it can be in the final
2968 * position. Otherwise we can stop looking 1 byte earlier because
2969 * have to find at least two characters for a multi-fold */
2970 const U8* upper = (OP(scan) == EXACTF) ? s_end : s_end -1;
2973 int len = is_MULTI_CHAR_FOLD_latin1_safe(s, s_end);
2974 if (! len) { /* Not a multi-char fold. */
2975 if (*s == LATIN_SMALL_LETTER_SHARP_S && OP(scan) == EXACTF)
2977 *has_exactf_sharp_s = TRUE;
2984 && isARG2_lower_or_UPPER_ARG1('s', *s)
2985 && isARG2_lower_or_UPPER_ARG1('s', *(s+1)))
2988 /* EXACTF nodes need to know that the minimum length
2989 * changed so that a sharp s in the string can match this
2990 * ss in the pattern, but they remain EXACTF nodes, as they
2991 * won't match this unless the target string is is UTF-8,
2992 * which we don't know until runtime */
2993 if (OP(scan) != EXACTF) {
2994 OP(scan) = EXACTFU_SS;
2998 *min_subtract += len - 1;
3005 /* Allow dumping but overwriting the collection of skipped
3006 * ops and/or strings with fake optimized ops */
3007 n = scan + NODE_SZ_STR(scan);
3015 DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
3019 /* REx optimizer. Converts nodes into quicker variants "in place".
3020 Finds fixed substrings. */
3022 /* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
3023 to the position after last scanned or to NULL. */
3025 #define INIT_AND_WITHP \
3026 assert(!and_withp); \
3027 Newx(and_withp,1,struct regnode_charclass_class); \
3028 SAVEFREEPV(and_withp)
3030 /* this is a chain of data about sub patterns we are processing that
3031 need to be handled separately/specially in study_chunk. Its so
3032 we can simulate recursion without losing state. */
3034 typedef struct scan_frame {
3035 regnode *last; /* last node to process in this frame */
3036 regnode *next; /* next node to process when last is reached */
3037 struct scan_frame *prev; /*previous frame*/
3038 I32 stop; /* what stopparen do we use */
3042 #define SCAN_COMMIT(s, data, m) scan_commit(s, data, m, is_inf)
3045 S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
3046 SSize_t *minlenp, SSize_t *deltap,
3051 struct regnode_charclass_class *and_withp,
3052 U32 flags, U32 depth)
3053 /* scanp: Start here (read-write). */
3054 /* deltap: Write maxlen-minlen here. */
3055 /* last: Stop before this one. */
3056 /* data: string data about the pattern */
3057 /* stopparen: treat close N as END */
3058 /* recursed: which subroutines have we recursed into */
3059 /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
3062 /* There must be at least this number of characters to match */
3065 regnode *scan = *scanp, *next;
3067 int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
3068 int is_inf_internal = 0; /* The studied chunk is infinite */
3069 I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
3070 scan_data_t data_fake;
3071 SV *re_trie_maxbuff = NULL;
3072 regnode *first_non_open = scan;
3073 SSize_t stopmin = SSize_t_MAX;
3074 scan_frame *frame = NULL;
3075 GET_RE_DEBUG_FLAGS_DECL;
3077 PERL_ARGS_ASSERT_STUDY_CHUNK;
3080 StructCopy(&zero_scan_data, &data_fake, scan_data_t);
3084 while (first_non_open && OP(first_non_open) == OPEN)
3085 first_non_open=regnext(first_non_open);
3090 while ( scan && OP(scan) != END && scan < last ){
3091 UV min_subtract = 0; /* How mmany chars to subtract from the minimum
3092 node length to get a real minimum (because
3093 the folded version may be shorter) */
3094 bool has_exactf_sharp_s = FALSE;
3095 /* Peephole optimizer: */
3096 DEBUG_STUDYDATA("Peep:", data,depth);
3097 DEBUG_PEEP("Peep",scan,depth);
3099 /* Its not clear to khw or hv why this is done here, and not in the
3100 * clauses that deal with EXACT nodes. khw's guess is that it's
3101 * because of a previous design */
3102 JOIN_EXACT(scan,&min_subtract, &has_exactf_sharp_s, 0);
3104 /* Follow the next-chain of the current node and optimize
3105 away all the NOTHINGs from it. */
3106 if (OP(scan) != CURLYX) {
3107 const int max = (reg_off_by_arg[OP(scan)]
3109 /* I32 may be smaller than U16 on CRAYs! */
3110 : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
3111 int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
3115 /* Skip NOTHING and LONGJMP. */
3116 while ((n = regnext(n))
3117 && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
3118 || ((OP(n) == LONGJMP) && (noff = ARG(n))))
3119 && off + noff < max)
3121 if (reg_off_by_arg[OP(scan)])
3124 NEXT_OFF(scan) = off;
3129 /* The principal pseudo-switch. Cannot be a switch, since we
3130 look into several different things. */
3131 if (OP(scan) == BRANCH || OP(scan) == BRANCHJ
3132 || OP(scan) == IFTHEN) {
3133 next = regnext(scan);
3135 /* demq: the op(next)==code check is to see if we have "branch-branch" AFAICT */
3137 if (OP(next) == code || code == IFTHEN) {
3138 /* NOTE - There is similar code to this block below for handling
3139 TRIE nodes on a re-study. If you change stuff here check there
3141 SSize_t max1 = 0, min1 = SSize_t_MAX, num = 0;
3142 struct regnode_charclass_class accum;
3143 regnode * const startbranch=scan;
3145 if (flags & SCF_DO_SUBSTR)
3146 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot merge strings after this. */
3147 if (flags & SCF_DO_STCLASS)
3148 cl_init_zero(pRExC_state, &accum);
3150 while (OP(scan) == code) {
3151 SSize_t deltanext, minnext, fake;
3153 struct regnode_charclass_class this_class;
3156 data_fake.flags = 0;
3158 data_fake.whilem_c = data->whilem_c;
3159 data_fake.last_closep = data->last_closep;
3162 data_fake.last_closep = &fake;
3164 data_fake.pos_delta = delta;
3165 next = regnext(scan);
3166 scan = NEXTOPER(scan);
3168 scan = NEXTOPER(scan);
3169 if (flags & SCF_DO_STCLASS) {
3170 cl_init(pRExC_state, &this_class);
3171 data_fake.start_class = &this_class;
3172 f = SCF_DO_STCLASS_AND;
3174 if (flags & SCF_WHILEM_VISITED_POS)
3175 f |= SCF_WHILEM_VISITED_POS;
3177 /* we suppose the run is continuous, last=next...*/
3178 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
3180 stopparen, recursed, NULL, f,depth+1);
3183 if (deltanext == SSize_t_MAX) {
3184 is_inf = is_inf_internal = 1;
3186 } else if (max1 < minnext + deltanext)
3187 max1 = minnext + deltanext;
3189 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
3191 if (data_fake.flags & SCF_SEEN_ACCEPT) {
3192 if ( stopmin > minnext)
3193 stopmin = min + min1;
3194 flags &= ~SCF_DO_SUBSTR;
3196 data->flags |= SCF_SEEN_ACCEPT;
3199 if (data_fake.flags & SF_HAS_EVAL)
3200 data->flags |= SF_HAS_EVAL;
3201 data->whilem_c = data_fake.whilem_c;
3203 if (flags & SCF_DO_STCLASS)
3204 cl_or(pRExC_state, &accum, &this_class);
3206 if (code == IFTHEN && num < 2) /* Empty ELSE branch */
3208 if (flags & SCF_DO_SUBSTR) {
3209 data->pos_min += min1;
3210 if (data->pos_delta >= SSize_t_MAX - (max1 - min1))
3211 data->pos_delta = SSize_t_MAX;
3213 data->pos_delta += max1 - min1;
3214 if (max1 != min1 || is_inf)
3215 data->longest = &(data->longest_float);
3218 if (delta == SSize_t_MAX
3219 || SSize_t_MAX - delta - (max1 - min1) < 0)
3220 delta = SSize_t_MAX;
3222 delta += max1 - min1;
3223 if (flags & SCF_DO_STCLASS_OR) {
3224 cl_or(pRExC_state, data->start_class, &accum);
3226 cl_and(data->start_class, and_withp);
3227 flags &= ~SCF_DO_STCLASS;
3230 else if (flags & SCF_DO_STCLASS_AND) {
3232 cl_and(data->start_class, &accum);
3233 flags &= ~SCF_DO_STCLASS;
3236 /* Switch to OR mode: cache the old value of
3237 * data->start_class */
3239 StructCopy(data->start_class, and_withp,
3240 struct regnode_charclass_class);
3241 flags &= ~SCF_DO_STCLASS_AND;
3242 StructCopy(&accum, data->start_class,
3243 struct regnode_charclass_class);
3244 flags |= SCF_DO_STCLASS_OR;
3245 SET_SSC_EOS(data->start_class);
3249 if (PERL_ENABLE_TRIE_OPTIMISATION && OP( startbranch ) == BRANCH ) {
3252 Assuming this was/is a branch we are dealing with: 'scan' now
3253 points at the item that follows the branch sequence, whatever
3254 it is. We now start at the beginning of the sequence and look
3261 which would be constructed from a pattern like /A|LIST|OF|WORDS/
3263 If we can find such a subsequence we need to turn the first
3264 element into a trie and then add the subsequent branch exact
3265 strings to the trie.
3269 1. patterns where the whole set of branches can be converted.
3271 2. patterns where only a subset can be converted.
3273 In case 1 we can replace the whole set with a single regop
3274 for the trie. In case 2 we need to keep the start and end
3277 'BRANCH EXACT; BRANCH EXACT; BRANCH X'
3278 becomes BRANCH TRIE; BRANCH X;
3280 There is an additional case, that being where there is a
3281 common prefix, which gets split out into an EXACT like node
3282 preceding the TRIE node.
3284 If x(1..n)==tail then we can do a simple trie, if not we make
3285 a "jump" trie, such that when we match the appropriate word
3286 we "jump" to the appropriate tail node. Essentially we turn
3287 a nested if into a case structure of sorts.
3292 if (!re_trie_maxbuff) {
3293 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
3294 if (!SvIOK(re_trie_maxbuff))
3295 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
3297 if ( SvIV(re_trie_maxbuff)>=0 ) {
3299 regnode *first = (regnode *)NULL;
3300 regnode *last = (regnode *)NULL;
3301 regnode *tail = scan;
3306 SV * const mysv = sv_newmortal(); /* for dumping */
3308 /* var tail is used because there may be a TAIL
3309 regop in the way. Ie, the exacts will point to the
3310 thing following the TAIL, but the last branch will
3311 point at the TAIL. So we advance tail. If we
3312 have nested (?:) we may have to move through several
3316 while ( OP( tail ) == TAIL ) {
3317 /* this is the TAIL generated by (?:) */
3318 tail = regnext( tail );
3322 DEBUG_TRIE_COMPILE_r({
3323 regprop(RExC_rx, mysv, tail );
3324 PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
3325 (int)depth * 2 + 2, "",
3326 "Looking for TRIE'able sequences. Tail node is: ",
3327 SvPV_nolen_const( mysv )
3333 Step through the branches
3334 cur represents each branch,
3335 noper is the first thing to be matched as part of that branch
3336 noper_next is the regnext() of that node.
3338 We normally handle a case like this /FOO[xyz]|BAR[pqr]/
3339 via a "jump trie" but we also support building with NOJUMPTRIE,
3340 which restricts the trie logic to structures like /FOO|BAR/.
3342 If noper is a trieable nodetype then the branch is a possible optimization
3343 target. If we are building under NOJUMPTRIE then we require that noper_next
3344 is the same as scan (our current position in the regex program).
3346 Once we have two or more consecutive such branches we can create a
3347 trie of the EXACT's contents and stitch it in place into the program.
3349 If the sequence represents all of the branches in the alternation we
3350 replace the entire thing with a single TRIE node.
3352 Otherwise when it is a subsequence we need to stitch it in place and
3353 replace only the relevant branches. This means the first branch has
3354 to remain as it is used by the alternation logic, and its next pointer,
3355 and needs to be repointed at the item on the branch chain following
3356 the last branch we have optimized away.
3358 This could be either a BRANCH, in which case the subsequence is internal,
3359 or it could be the item following the branch sequence in which case the
3360 subsequence is at the end (which does not necessarily mean the first node
3361 is the start of the alternation).
3363 TRIE_TYPE(X) is a define which maps the optype to a trietype.
3366 ----------------+-----------
3370 EXACTFU_SS | EXACTFU
3375 #define TRIE_TYPE(X) ( ( NOTHING == (X) ) ? NOTHING : \
3376 ( EXACT == (X) ) ? EXACT : \
3377 ( EXACTFU == (X) || EXACTFU_SS == (X) ) ? EXACTFU : \
3378 ( EXACTFA == (X) ) ? EXACTFA : \
3381 /* dont use tail as the end marker for this traverse */
3382 for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
3383 regnode * const noper = NEXTOPER( cur );
3384 U8 noper_type = OP( noper );
3385 U8 noper_trietype = TRIE_TYPE( noper_type );
3386 #if defined(DEBUGGING) || defined(NOJUMPTRIE)
3387 regnode * const noper_next = regnext( noper );
3388 U8 noper_next_type = (noper_next && noper_next != tail) ? OP(noper_next) : 0;
3389 U8 noper_next_trietype = (noper_next && noper_next != tail) ? TRIE_TYPE( noper_next_type ) :0;
3392 DEBUG_TRIE_COMPILE_r({
3393 regprop(RExC_rx, mysv, cur);
3394 PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
3395 (int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) );
3397 regprop(RExC_rx, mysv, noper);
3398 PerlIO_printf( Perl_debug_log, " -> %s",
3399 SvPV_nolen_const(mysv));
3402 regprop(RExC_rx, mysv, noper_next );
3403 PerlIO_printf( Perl_debug_log,"\t=> %s\t",
3404 SvPV_nolen_const(mysv));
3406 PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d,tt==%s,nt==%s,nnt==%s)\n",
3407 REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur),
3408 PL_reg_name[trietype], PL_reg_name[noper_trietype], PL_reg_name[noper_next_trietype]
3412 /* Is noper a trieable nodetype that can be merged with the
3413 * current trie (if there is one)? */
3417 ( noper_trietype == NOTHING)
3418 || ( trietype == NOTHING )
3419 || ( trietype == noper_trietype )
3422 && noper_next == tail
3426 /* Handle mergable triable node
3427 * Either we are the first node in a new trieable sequence,
3428 * in which case we do some bookkeeping, otherwise we update
3429 * the end pointer. */
3432 if ( noper_trietype == NOTHING ) {
3433 #if !defined(DEBUGGING) && !defined(NOJUMPTRIE)
3434 regnode * const noper_next = regnext( noper );
3435 U8 noper_next_type = (noper_next && noper_next!=tail) ? OP(noper_next) : 0;
3436 U8 noper_next_trietype = noper_next_type ? TRIE_TYPE( noper_next_type ) :0;
3439 if ( noper_next_trietype ) {
3440 trietype = noper_next_trietype;
3441 } else if (noper_next_type) {
3442 /* a NOTHING regop is 1 regop wide. We need at least two
3443 * for a trie so we can't merge this in */
3447 trietype = noper_trietype;
3450 if ( trietype == NOTHING )
3451 trietype = noper_trietype;
3456 } /* end handle mergable triable node */
3458 /* handle unmergable node -
3459 * noper may either be a triable node which can not be tried
3460 * together with the current trie, or a non triable node */
3462 /* If last is set and trietype is not NOTHING then we have found
3463 * at least two triable branch sequences in a row of a similar
3464 * trietype so we can turn them into a trie. If/when we
3465 * allow NOTHING to start a trie sequence this condition will be
3466 * required, and it isn't expensive so we leave it in for now. */
3467 if ( trietype && trietype != NOTHING )
3468 make_trie( pRExC_state,
3469 startbranch, first, cur, tail, count,
3470 trietype, depth+1 );
3471 last = NULL; /* note: we clear/update first, trietype etc below, so we dont do it here */
3475 && noper_next == tail
3478 /* noper is triable, so we can start a new trie sequence */
3481 trietype = noper_trietype;
3483 /* if we already saw a first but the current node is not triable then we have
3484 * to reset the first information. */
3489 } /* end handle unmergable node */
3490 } /* loop over branches */
3491 DEBUG_TRIE_COMPILE_r({
3492 regprop(RExC_rx, mysv, cur);
3493 PerlIO_printf( Perl_debug_log,
3494 "%*s- %s (%d) <SCAN FINISHED>\n", (int)depth * 2 + 2,
3495 "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
3498 if ( last && trietype ) {
3499 if ( trietype != NOTHING ) {
3500 /* the last branch of the sequence was part of a trie,
3501 * so we have to construct it here outside of the loop
3503 made= make_trie( pRExC_state, startbranch, first, scan, tail, count, trietype, depth+1 );
3504 #ifdef TRIE_STUDY_OPT
3505 if ( ((made == MADE_EXACT_TRIE &&
3506 startbranch == first)
3507 || ( first_non_open == first )) &&
3509 flags |= SCF_TRIE_RESTUDY;
3510 if ( startbranch == first
3513 RExC_seen &=~REG_TOP_LEVEL_BRANCHES;
3518 /* at this point we know whatever we have is a NOTHING sequence/branch
3519 * AND if 'startbranch' is 'first' then we can turn the whole thing into a NOTHING
3521 if ( startbranch == first ) {
3523 /* the entire thing is a NOTHING sequence, something like this:
3524 * (?:|) So we can turn it into a plain NOTHING op. */
3525 DEBUG_TRIE_COMPILE_r({
3526 regprop(RExC_rx, mysv, cur);
3527 PerlIO_printf( Perl_debug_log,
3528 "%*s- %s (%d) <NOTHING BRANCH SEQUENCE>\n", (int)depth * 2 + 2,
3529 "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
3532 OP(startbranch)= NOTHING;
3533 NEXT_OFF(startbranch)= tail - startbranch;
3534 for ( opt= startbranch + 1; opt < tail ; opt++ )
3538 } /* end if ( last) */
3539 } /* TRIE_MAXBUF is non zero */
3544 else if ( code == BRANCHJ ) { /* single branch is optimized. */
3545 scan = NEXTOPER(NEXTOPER(scan));
3546 } else /* single branch is optimized. */
3547 scan = NEXTOPER(scan);
3549 } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
3550 scan_frame *newframe = NULL;
3555 if (OP(scan) != SUSPEND) {
3556 /* set the pointer */
3557 if (OP(scan) == GOSUB) {
3559 RExC_recurse[ARG2L(scan)] = scan;
3560 start = RExC_open_parens[paren-1];
3561 end = RExC_close_parens[paren-1];
3564 start = RExC_rxi->program + 1;
3568 Newxz(recursed, (((RExC_npar)>>3) +1), U8);
3569 SAVEFREEPV(recursed);
3571 if (!PAREN_TEST(recursed,paren+1)) {
3572 PAREN_SET(recursed,paren+1);
3573 Newx(newframe,1,scan_frame);
3575 if (flags & SCF_DO_SUBSTR) {
3576 SCAN_COMMIT(pRExC_state,data,minlenp);
3577 data->longest = &(data->longest_float);
3579 is_inf = is_inf_internal = 1;
3580 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3581 cl_anything(pRExC_state, data->start_class);
3582 flags &= ~SCF_DO_STCLASS;
3585 Newx(newframe,1,scan_frame);
3588 end = regnext(scan);
3593 SAVEFREEPV(newframe);
3594 newframe->next = regnext(scan);
3595 newframe->last = last;
3596 newframe->stop = stopparen;
3597 newframe->prev = frame;
3607 else if (OP(scan) == EXACT) {
3608 SSize_t l = STR_LEN(scan);
3611 const U8 * const s = (U8*)STRING(scan);
3612 uc = utf8_to_uvchr_buf(s, s + l, NULL);
3613 l = utf8_length(s, s + l);
3615 uc = *((U8*)STRING(scan));
3618 if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
3619 /* The code below prefers earlier match for fixed
3620 offset, later match for variable offset. */
3621 if (data->last_end == -1) { /* Update the start info. */
3622 data->last_start_min = data->pos_min;
3623 data->last_start_max = is_inf
3624 ? SSize_t_MAX : data->pos_min + data->pos_delta;
3626 sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
3628 SvUTF8_on(data->last_found);
3630 SV * const sv = data->last_found;
3631 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
3632 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3633 if (mg && mg->mg_len >= 0)
3634 mg->mg_len += utf8_length((U8*)STRING(scan),
3635 (U8*)STRING(scan)+STR_LEN(scan));
3637 data->last_end = data->pos_min + l;
3638 data->pos_min += l; /* As in the first entry. */
3639 data->flags &= ~SF_BEFORE_EOL;
3641 if (flags & SCF_DO_STCLASS_AND) {
3642 /* Check whether it is compatible with what we know already! */
3646 /* If compatible, we or it in below. It is compatible if is
3647 * in the bitmp and either 1) its bit or its fold is set, or 2)
3648 * it's for a locale. Even if there isn't unicode semantics
3649 * here, at runtime there may be because of matching against a
3650 * utf8 string, so accept a possible false positive for
3651 * latin1-range folds */
3653 (!(data->start_class->flags & ANYOF_LOCALE)
3654 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3655 && (!(data->start_class->flags & ANYOF_LOC_FOLD)
3656 || !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3661 ANYOF_CLASS_ZERO(data->start_class);
3662 ANYOF_BITMAP_ZERO(data->start_class);
3664 ANYOF_BITMAP_SET(data->start_class, uc);
3665 else if (uc >= 0x100) {
3668 /* Some Unicode code points fold to the Latin1 range; as
3669 * XXX temporary code, instead of figuring out if this is
3670 * one, just assume it is and set all the start class bits
3671 * that could be some such above 255 code point's fold
3672 * which will generate fals positives. As the code
3673 * elsewhere that does compute the fold settles down, it
3674 * can be extracted out and re-used here */
3675 for (i = 0; i < 256; i++){
3676 if (HAS_NONLATIN1_FOLD_CLOSURE(i)) {
3677 ANYOF_BITMAP_SET(data->start_class, i);
3681 CLEAR_SSC_EOS(data->start_class);
3683 data->start_class->flags &= ~ANYOF_UNICODE_ALL;
3685 else if (flags & SCF_DO_STCLASS_OR) {
3686 /* false positive possible if the class is case-folded */
3688 ANYOF_BITMAP_SET(data->start_class, uc);
3690 data->start_class->flags |= ANYOF_UNICODE_ALL;
3691 CLEAR_SSC_EOS(data->start_class);
3692 cl_and(data->start_class, and_withp);
3694 flags &= ~SCF_DO_STCLASS;
3696 else if (PL_regkind[OP(scan)] == EXACT) { /* But OP != EXACT! */
3697 SSize_t l = STR_LEN(scan);
3698 UV uc = *((U8*)STRING(scan));
3700 /* Search for fixed substrings supports EXACT only. */
3701 if (flags & SCF_DO_SUBSTR) {
3703 SCAN_COMMIT(pRExC_state, data, minlenp);
3706 const U8 * const s = (U8 *)STRING(scan);
3707 uc = utf8_to_uvchr_buf(s, s + l, NULL);
3708 l = utf8_length(s, s + l);
3710 if (has_exactf_sharp_s) {
3711 RExC_seen |= REG_SEEN_EXACTF_SHARP_S;
3713 min += l - min_subtract;
3715 delta += min_subtract;
3716 if (flags & SCF_DO_SUBSTR) {
3717 data->pos_min += l - min_subtract;
3718 if (data->pos_min < 0) {
3721 data->pos_delta += min_subtract;
3723 data->longest = &(data->longest_float);
3726 if (flags & SCF_DO_STCLASS_AND) {
3727 /* Check whether it is compatible with what we know already! */
3730 (!(data->start_class->flags & ANYOF_LOCALE)
3731 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3732 && !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3736 ANYOF_CLASS_ZERO(data->start_class);
3737 ANYOF_BITMAP_ZERO(data->start_class);
3739 ANYOF_BITMAP_SET(data->start_class, uc);
3740 CLEAR_SSC_EOS(data->start_class);
3741 if (OP(scan) == EXACTFL) {
3742 /* XXX This set is probably no longer necessary, and
3743 * probably wrong as LOCALE now is on in the initial
3745 data->start_class->flags |= ANYOF_LOCALE|ANYOF_LOC_FOLD;
3749 /* Also set the other member of the fold pair. In case
3750 * that unicode semantics is called for at runtime, use
3751 * the full latin1 fold. (Can't do this for locale,
3752 * because not known until runtime) */
3753 ANYOF_BITMAP_SET(data->start_class, PL_fold_latin1[uc]);
3755 /* All other (EXACTFL handled above) folds except under
3756 * /iaa that include s, S, and sharp_s also may include
3758 if (OP(scan) != EXACTFA && OP(scan) != EXACTFA_NO_TRIE)
3760 if (uc == 's' || uc == 'S') {
3761 ANYOF_BITMAP_SET(data->start_class,
3762 LATIN_SMALL_LETTER_SHARP_S);
3764 else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
3765 ANYOF_BITMAP_SET(data->start_class, 's');
3766 ANYOF_BITMAP_SET(data->start_class, 'S');
3771 else if (uc >= 0x100) {
3773 for (i = 0; i < 256; i++){
3774 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
3775 ANYOF_BITMAP_SET(data->start_class, i);
3780 else if (flags & SCF_DO_STCLASS_OR) {
3781 if (data->start_class->flags & ANYOF_LOC_FOLD) {
3782 /* false positive possible if the class is case-folded.
3783 Assume that the locale settings are the same... */
3785 ANYOF_BITMAP_SET(data->start_class, uc);
3786 if (OP(scan) != EXACTFL) {
3788 /* And set the other member of the fold pair, but
3789 * can't do that in locale because not known until
3791 ANYOF_BITMAP_SET(data->start_class,
3792 PL_fold_latin1[uc]);
3794 /* All folds except under /iaa that include s, S,
3795 * and sharp_s also may include the others */
3796 if (OP(scan) != EXACTFA
3797 && OP(scan) != EXACTFA_NO_TRIE)
3799 if (uc == 's' || uc == 'S') {
3800 ANYOF_BITMAP_SET(data->start_class,
3801 LATIN_SMALL_LETTER_SHARP_S);
3803 else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
3804 ANYOF_BITMAP_SET(data->start_class, 's');
3805 ANYOF_BITMAP_SET(data->start_class, 'S');
3810 CLEAR_SSC_EOS(data->start_class);
3812 cl_and(data->start_class, and_withp);
3814 flags &= ~SCF_DO_STCLASS;
3816 else if (REGNODE_VARIES(OP(scan))) {
3817 SSize_t mincount, maxcount, minnext, deltanext, pos_before = 0;
3818 I32 fl = 0, f = flags;
3819 regnode * const oscan = scan;
3820 struct regnode_charclass_class this_class;
3821 struct regnode_charclass_class *oclass = NULL;
3822 I32 next_is_eval = 0;
3824 switch (PL_regkind[OP(scan)]) {
3825 case WHILEM: /* End of (?:...)* . */
3826 scan = NEXTOPER(scan);
3829 if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
3830 next = NEXTOPER(scan);
3831 if (OP(next) == EXACT || (flags & SCF_DO_STCLASS)) {
3833 maxcount = REG_INFTY;
3834 next = regnext(scan);
3835 scan = NEXTOPER(scan);
3839 if (flags & SCF_DO_SUBSTR)
3844 if (flags & SCF_DO_STCLASS) {
3846 maxcount = REG_INFTY;
3847 next = regnext(scan);
3848 scan = NEXTOPER(scan);
3851 is_inf = is_inf_internal = 1;