This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
Add test for experimental::builtin warnings
[perl5.git] / utf8.h
1 /*    utf8.h
2  *
3  * This file contains definitions for use with the UTF-8 encoding.  It
4  * actually also works with the variant UTF-8 encoding called UTF-EBCDIC, and
5  * hides almost all of the differences between these from the caller.  In other
6  * words, someone should #include this file, and if the code is being compiled
7  * on an EBCDIC platform, things should mostly just work.
8  *
9  *    Copyright (C) 2000, 2001, 2002, 2005, 2006, 2007, 2009,
10  *    2010, 2011 by Larry Wall and others
11  *
12  *    You may distribute under the terms of either the GNU General Public
13  *    License or the Artistic License, as specified in the README file.
14  *
15  * A note on nomenclature:  The term UTF-8 is used loosely and inconsistently
16  * in Perl documentation.  For one, perl uses an extension of UTF-8 to
17  * represent code points that Unicode considers illegal.  For another, ASCII
18  * platform UTF-8 is usually conflated with EBCDIC platform UTF-EBCDIC, because
19  * outside some of the macros in this this file, the differences are hopefully
20  * invisible at the semantic level.
21  *
22  * UTF-EBCDIC has an isomorphic translation named I8 (for "Intermediate eight")
23  * which differs from UTF-8 only in a few details.  It is often useful to
24  * translate UTF-EBCDIC into this form for processing.  In general, macros and
25  * functions that are expecting their inputs to be either in I8 or UTF-8 are
26  * named UTF_foo (without an '8'), to indicate this.
27  *
28  * Unfortunately there are inconsistencies.
29  *
30  */
31
32 #ifndef PERL_UTF8_H_      /* Guard against recursive inclusion */
33 #define PERL_UTF8_H_ 1
34
35 /* Use UTF-8 as the default script encoding?
36  * Turning this on will break scripts having non-UTF-8 binary
37  * data (such as Latin-1) in string literals. */
38 #ifdef USE_UTF8_SCRIPTS
39 #    define USE_UTF8_IN_NAMES (!IN_BYTES)
40 #else
41 #    define USE_UTF8_IN_NAMES (PL_hints & HINT_UTF8)
42 #endif
43
44 #include "regcharclass.h"
45 #include "unicode_constants.h"
46
47 /* For to_utf8_fold_flags, q.v. */
48 #define FOLD_FLAGS_LOCALE       0x1
49 #define FOLD_FLAGS_FULL         0x2
50 #define FOLD_FLAGS_NOMIX_ASCII  0x4
51
52 /*
53 =for apidoc is_ascii_string
54
55 This is a misleadingly-named synonym for L</is_utf8_invariant_string>.
56 On ASCII-ish platforms, the name isn't misleading: the ASCII-range characters
57 are exactly the UTF-8 invariants.  But EBCDIC machines have more invariants
58 than just the ASCII characters, so C<is_utf8_invariant_string> is preferred.
59
60 =for apidoc is_invariant_string
61
62 This is a somewhat misleadingly-named synonym for L</is_utf8_invariant_string>.
63 C<is_utf8_invariant_string> is preferred, as it indicates under what conditions
64 the string is invariant.
65
66 =cut
67 */
68 #define is_ascii_string(s, len)     is_utf8_invariant_string(s, len)
69 #define is_invariant_string(s, len) is_utf8_invariant_string(s, len)
70
71 #define uvoffuni_to_utf8_flags(d,uv,flags)                                     \
72                                uvoffuni_to_utf8_flags_msgs(d, uv, flags, 0)
73 #define uvchr_to_utf8(a,b)          uvchr_to_utf8_flags(a,b,0)
74 #define uvchr_to_utf8_flags(d,uv,flags)                                        \
75                                     uvchr_to_utf8_flags_msgs(d,uv,flags, 0)
76 #define uvchr_to_utf8_flags_msgs(d,uv,flags,msgs)                              \
77                 uvoffuni_to_utf8_flags_msgs(d,NATIVE_TO_UNI(uv),flags, msgs)
78 #define utf8_to_uvchr_buf(s, e, lenp)                                          \
79             utf8_to_uvchr_buf_helper((const U8 *) (s), (const U8 *) e, lenp)
80 #define utf8n_to_uvchr(s, len, lenp, flags)                                    \
81                                 utf8n_to_uvchr_error(s, len, lenp, flags, 0)
82 #define utf8n_to_uvchr_error(s, len, lenp, flags, errors)                      \
83                         utf8n_to_uvchr_msgs(s, len, lenp, flags, errors, 0)
84
85 #define utf16_to_utf8(p, d, bytelen, newlen)                                \
86                             utf16_to_utf8_base(p, d, bytelen, newlen, 0, 1)
87 #define utf16_to_utf8_reversed(p, d, bytelen, newlen)                       \
88                             utf16_to_utf8_base(p, d, bytelen, newlen, 1, 0)
89 #define utf8_to_utf16(p, d, bytelen, newlen)                                \
90                             utf8_to_utf16_base(p, d, bytelen, newlen, 0, 1)
91 #define utf8_to_utf16_reversed(p, d, bytelen, newlen)                       \
92                             utf8_to_utf16_base(p, d, bytelen, newlen, 1, 0)
93
94 #define to_uni_fold(c, p, lenp) _to_uni_fold_flags(c, p, lenp, FOLD_FLAGS_FULL)
95
96 #define foldEQ_utf8(s1, pe1, l1, u1, s2, pe2, l2, u2) \
97                     foldEQ_utf8_flags(s1, pe1, l1, u1, s2, pe2, l2, u2, 0)
98 #define FOLDEQ_UTF8_NOMIX_ASCII   (1 << 0)
99 #define FOLDEQ_LOCALE             (1 << 1)
100 #define FOLDEQ_S1_ALREADY_FOLDED  (1 << 2)
101 #define FOLDEQ_S2_ALREADY_FOLDED  (1 << 3)
102 #define FOLDEQ_S1_FOLDS_SANE      (1 << 4)
103 #define FOLDEQ_S2_FOLDS_SANE      (1 << 5)
104
105 /* This will be described more fully below, but it turns out that the
106  * fundamental difference between UTF-8 and UTF-EBCDIC is that the former has
107  * the upper 2 bits of a continuation byte be '10', and the latter has the
108  * upper 3 bits be '101', leaving 6 and 5 significant bits respectively.
109  *
110  * It is helpful to know the EBCDIC value on ASCII platforms, mainly to avoid
111  * some #ifdef's */
112 #define UTF_EBCDIC_CONTINUATION_BYTE_INFO_BITS 5
113
114 /* See explanation below at 'UTF8_MAXBYTES' */
115 #define ASCII_PLATFORM_UTF8_MAXBYTES 13
116
117 #ifdef EBCDIC
118
119 /* The equivalent of the next few macros but implementing UTF-EBCDIC are in the
120  * following header file: */
121 #  include "utfebcdic.h"
122
123 #  else /* ! EBCDIC */
124
125 START_EXTERN_C
126
127 #  ifndef DOINIT
128 EXTCONST unsigned char PL_utf8skip[];
129 #  else
130 EXTCONST unsigned char PL_utf8skip[] = {
131 /* 0x00 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ascii */
132 /* 0x10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ascii */
133 /* 0x20 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ascii */
134 /* 0x30 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ascii */
135 /* 0x40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ascii */
136 /* 0x50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ascii */
137 /* 0x60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ascii */
138 /* 0x70 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ascii */
139 /* 0x80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* bogus: continuation byte */
140 /* 0x90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* bogus: continuation byte */
141 /* 0xA0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* bogus: continuation byte */
142 /* 0xB0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* bogus: continuation byte */
143 /* 0xC0 */ 2,2,                             /* overlong */
144 /* 0xC2 */     2,2,2,2,2,2,2,2,2,2,2,2,2,2, /* U+0080 to U+03FF */
145 /* 0xD0 */ 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, /* U+0400 to U+07FF */
146 /* 0xE0 */ 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, /* U+0800 to U+FFFF */
147 /* 0xF0 */ 4,4,4,4,4,4,4,4,5,5,5,5,6,6,     /* above BMP to 2**31 - 1 */
148            /* Perl extended (never was official UTF-8).  Up to 36 bit */
149 /* 0xFE */                             7,
150            /* More extended, Up to 72 bits (64-bit + reserved) */
151 /* 0xFF */                               ASCII_PLATFORM_UTF8_MAXBYTES
152 };
153 #  endif
154
155 END_EXTERN_C
156
157 /*
158
159 =for apidoc Am|U8|NATIVE_TO_LATIN1|U8 ch
160
161 Returns the Latin-1 (including ASCII and control characters) equivalent of the
162 input native code point given by C<ch>.  Thus, C<NATIVE_TO_LATIN1(193)> on
163 EBCDIC platforms returns 65.  These each represent the character C<"A"> on
164 their respective platforms.  On ASCII platforms no conversion is needed, so
165 this macro expands to just its input, adding no time nor space requirements to
166 the implementation.
167
168 For conversion of code points potentially larger than will fit in a character,
169 use L</NATIVE_TO_UNI>.
170
171 =for apidoc Am|U8|LATIN1_TO_NATIVE|U8 ch
172
173 Returns the native  equivalent of the input Latin-1 code point (including ASCII
174 and control characters) given by C<ch>.  Thus, C<LATIN1_TO_NATIVE(66)> on
175 EBCDIC platforms returns 194.  These each represent the character C<"B"> on
176 their respective platforms.  On ASCII platforms no conversion is needed, so
177 this macro expands to just its input, adding no time nor space requirements to
178 the implementation.
179
180 For conversion of code points potentially larger than will fit in a character,
181 use L</UNI_TO_NATIVE>.
182
183 =for apidoc Am|UV|NATIVE_TO_UNI|UV ch
184
185 Returns the Unicode  equivalent of the input native code point given by C<ch>.
186 Thus, C<NATIVE_TO_UNI(195)> on EBCDIC platforms returns 67.  These each
187 represent the character C<"C"> on their respective platforms.  On ASCII
188 platforms no conversion is needed, so this macro expands to just its input,
189 adding no time nor space requirements to the implementation.
190
191 =for apidoc Am|UV|UNI_TO_NATIVE|UV ch
192
193 Returns the native  equivalent of the input Unicode code point  given by C<ch>.
194 Thus, C<UNI_TO_NATIVE(68)> on EBCDIC platforms returns 196.  These each
195 represent the character C<"D"> on their respective platforms.  On ASCII
196 platforms no conversion is needed, so this macro expands to just its input,
197 adding no time nor space requirements to the implementation.
198
199 =cut
200 */
201
202 #define NATIVE_TO_LATIN1(ch)  (__ASSERT_(FITS_IN_8_BITS(ch)) ((U8) (ch)))
203 #define LATIN1_TO_NATIVE(ch)  (__ASSERT_(FITS_IN_8_BITS(ch)) ((U8) (ch)))
204
205 /* I8 is an intermediate version of UTF-8 used only in UTF-EBCDIC.  We thus
206  * consider it to be identical to UTF-8 on ASCII platforms.  Strictly speaking
207  * UTF-8 and UTF-EBCDIC are two different things, but we often conflate them
208  * because they are 8-bit encodings that serve the same purpose in Perl, and
209  * rarely do we need to distinguish them.  The term "NATIVE_UTF8" applies to
210  * whichever one is applicable on the current platform */
211 #define NATIVE_UTF8_TO_I8(ch)  (__ASSERT_(FITS_IN_8_BITS(ch)) ((U8) (ch)))
212 #define I8_TO_NATIVE_UTF8(ch)  (__ASSERT_(FITS_IN_8_BITS(ch)) ((U8) (ch)))
213
214 #define UNI_TO_NATIVE(ch)        ((UV) ASSERT_NOT_PTR(ch))
215 #define NATIVE_TO_UNI(ch)        ((UV) ASSERT_NOT_PTR(ch))
216
217 /*
218
219  The following table is from Unicode 3.2, plus the Perl extensions for above
220  U+10FFFF
221
222  Code Points            1st Byte  2nd Byte  3rd    4th     5th     6th       7th   8th-13th
223
224    U+0000..U+007F       00..7F
225    U+0080..U+07FF     * C2..DF    80..BF
226    U+0800..U+0FFF       E0      * A0..BF  80..BF
227    U+1000..U+CFFF       E1..EC    80..BF  80..BF
228    U+D000..U+D7FF       ED        80..9F  80..BF
229    U+D800..U+DFFF       ED        A0..BF  80..BF  (surrogates)
230    U+E000..U+FFFF       EE..EF    80..BF  80..BF
231   U+10000..U+3FFFF      F0      * 90..BF  80..BF  80..BF
232   U+40000..U+FFFFF      F1..F3    80..BF  80..BF  80..BF
233  U+100000..U+10FFFF     F4        80..8F  80..BF  80..BF
234     Below are above-Unicode code points
235  U+110000..U+13FFFF     F4        90..BF  80..BF  80..BF
236  U+110000..U+1FFFFF     F5..F7    80..BF  80..BF  80..BF
237  U+200000..U+FFFFFF     F8      * 88..BF  80..BF  80..BF  80..BF
238 U+1000000..U+3FFFFFF    F9..FB    80..BF  80..BF  80..BF  80..BF
239 U+4000000..U+3FFFFFFF    FC     * 84..BF  80..BF  80..BF  80..BF  80..BF
240 U+40000000..U+7FFFFFFF   FD       80..BF  80..BF  80..BF  80..BF  80..BF
241 U+80000000..U+FFFFFFFFF  FE     * 82..BF  80..BF  80..BF  80..BF  80..BF    80..BF
242 U+1000000000..           FF       80..BF  80..BF  80..BF  80..BF  80..BF  * 81..BF  80..BF
243
244 Note the gaps before several of the byte entries above marked by '*'.  These are
245 caused by legal UTF-8 avoiding non-shortest encodings: it is technically
246 possible to UTF-8-encode a single code point in different ways, but that is
247 explicitly forbidden, and the shortest possible encoding should always be used
248 (and that is what Perl does).  The non-shortest ones are called 'overlongs'.
249
250 Another way to look at it, as bits:
251
252                   Code Points      1st Byte   2nd Byte   3rd Byte   4th Byte
253
254                         0aaa aaaa  0aaa aaaa
255               0000 0bbb bbaa aaaa  110b bbbb  10aa aaaa
256               cccc bbbb bbaa aaaa  1110 cccc  10bb bbbb  10aa aaaa
257  00 000d ddcc cccc bbbb bbaa aaaa  1111 0ddd  10cc cccc  10bb bbbb  10aa aaaa
258
259 As you can see, the continuation bytes all begin with C<10>, and the
260 leading bits of the start byte tell how many bytes there are in the
261 encoded character.
262
263 Perl's extended UTF-8 means we can have start bytes up through FF, though any
264 beginning with FF yields a code point that is too large for 32-bit ASCII
265 platforms.  FF signals to use 13 bytes for the encoded character.  This breaks
266 the paradigm that the number of leading bits gives how many total bytes there
267 are in the character. */
268
269 /* This is the number of low-order bits a continuation byte in a UTF-8 encoded
270  * sequence contributes to the specification of the code point.  In the bit
271  * maps above, you see that the first 2 bits are a constant '10', leaving 6 of
272  * real information */
273 #  define UTF_CONTINUATION_BYTE_INFO_BITS 6
274
275 /* ^? is defined to be DEL on ASCII systems.  See the definition of toCTRL()
276  * for more */
277 #  define QUESTION_MARK_CTRL  DEL_NATIVE
278
279 #endif /* EBCDIC vs ASCII */
280
281 /* It turns out that in a number of cases, that handling ASCII vs EBCDIC is a
282  * matter of being off-by-one.  So this is a convenience macro, used to avoid
283  * some #ifdefs. */
284 #define ONE_IF_EBCDIC_ZERO_IF_NOT                                           \
285  (UTF_CONTINUATION_BYTE_INFO_BITS == UTF_EBCDIC_CONTINUATION_BYTE_INFO_BITS)
286
287 /* Since the significant bits in a continuation byte are stored in the
288  * least-significant positions, we often find ourselves shifting by that
289  * amount.  This is a clearer name in such situations */
290 #define UTF_ACCUMULATION_SHIFT  UTF_CONTINUATION_BYTE_INFO_BITS
291
292 /* 2**info_bits - 1.  This masks out all but the bits that carry real
293  * information in a continuation byte.  This turns out to be 0x3F in UTF-8,
294  * 0x1F in UTF-EBCDIC. */
295 #define UTF_CONTINUATION_MASK                                               \
296                         ((U8) nBIT_MASK(UTF_CONTINUATION_BYTE_INFO_BITS))
297
298 /* For use in UTF8_IS_CONTINUATION().  This turns out to be 0xC0 in UTF-8,
299  * E0 in UTF-EBCDIC */
300 #define UTF_IS_CONTINUATION_MASK    ((U8) (0xFF << UTF_ACCUMULATION_SHIFT))
301
302 /* This defines the bits that are to be in the continuation bytes of a
303  * multi-byte UTF-8 encoded character that mark it is a continuation byte.
304  * This turns out to be 0x80 in UTF-8, 0xA0 in UTF-EBCDIC.  (khw doesn't know
305  * the underlying reason that B0 works here, except it just happens to work.
306  * One could solve for two linear equations and come up with it.) */
307 #define UTF_CONTINUATION_MARK       (UTF_IS_CONTINUATION_MASK & 0xB0)
308
309 /* This value is clearer in some contexts */
310 #define UTF_MIN_CONTINUATION_BYTE  UTF_CONTINUATION_MARK
311
312 /* Is the byte 'c' part of a multi-byte UTF8-8 encoded sequence, and not the
313  * first byte thereof? */
314 #define UTF8_IS_CONTINUATION(c)     (__ASSERT_(FITS_IN_8_BITS(c))           \
315             (((NATIVE_UTF8_TO_I8(c) & UTF_IS_CONTINUATION_MASK)             \
316                                                 == UTF_CONTINUATION_MARK)))
317
318 /* Is the representation of the Unicode code point 'cp' the same regardless of
319  * being encoded in UTF-8 or not? This is a fundamental property of
320  * UTF-8,EBCDIC */
321 #define OFFUNI_IS_INVARIANT(c)                                              \
322                         (((WIDEST_UTYPE)(c)) < UTF_MIN_CONTINUATION_BYTE)
323
324 /*
325 =for apidoc Am|bool|UVCHR_IS_INVARIANT|UV cp
326
327 Evaluates to 1 if the representation of code point C<cp> is the same whether or
328 not it is encoded in UTF-8; otherwise evaluates to 0.  UTF-8 invariant
329 characters can be copied as-is when converting to/from UTF-8, saving time.
330 C<cp> is Unicode if above 255; otherwise is platform-native.
331
332 =cut
333  */
334 #define UVCHR_IS_INVARIANT(cp)  (OFFUNI_IS_INVARIANT(NATIVE_TO_UNI(cp)))
335
336 /* This defines the 1-bits that are to be in the first byte of a multi-byte
337  * UTF-8 encoded character that mark it as a start byte and give the number of
338  * bytes that comprise the character. 'len' is that number.
339  *
340  * To illustrate: len = 2 => ((U8) ~ 0b0011_1111) or 1100_0000
341  *                      7 => ((U8) ~ 0b0000_0001) or 1111_1110
342  *                    > 7 =>  0xFF
343  *
344  * This is not to be used on a single-byte character.  As in many places in
345  * perl, U8 must be 8 bits
346  */
347 #define UTF_START_MARK(len) ((U8) ~(0xFF >> (len)))
348
349 /* Masks out the initial one bits in a start byte, leaving the following 0 bit
350  * and the real data bits.  'len' is the number of bytes in the multi-byte
351  * sequence that comprises the character.
352  *
353  * To illustrate: len = 2 => 0b0011_1111 works on start byte 110xxxxx
354  *                      6 => 0b0000_0011 works on start byte 1111110x
355  *                   >= 7 => There are no data bits in the start byte
356  * Note that on ASCII platforms, this can be passed a len=1 byte; and all the
357  * real data bits will be returned:
358                   len = 1 => 0b0111_1111
359  * This isn't true on EBCDIC platforms, where some len=1 bytes are of the form
360  * 0b101x_xxxx, so this can't be used there on single-byte characters. */
361 #define UTF_START_MASK(len) (0xFF >> (len))
362
363 /*
364
365 =for apidoc AmnU|STRLEN|UTF8_MAXBYTES
366
367 The maximum width of a single UTF-8 encoded character, in bytes.
368
369 NOTE: Strictly speaking Perl's UTF-8 should not be called UTF-8 since UTF-8
370 is an encoding of Unicode, and Unicode's upper limit, 0x10FFFF, can be
371 expressed with 4 bytes.  However, Perl thinks of UTF-8 as a way to encode
372 non-negative integers in a binary format, even those above Unicode.
373
374 =cut
375
376 The start byte 0xFE, never used in any ASCII platform UTF-8 specification, has
377 an obvious meaning, namely it has its upper 7 bits set, so it should start a
378 sequence of 7 bytes.  And in fact, this is exactly what standard UTF-EBCDIC
379 does.
380
381 The start byte FF, on the other hand could have several different plausible
382 meanings:
383   1) The meaning in standard UTF-EBCDIC, namely as an FE start byte, with the
384      bottom bit that should be a fixed '0' to form FE, instead acting as an
385      info bit, 0 or 1.
386   2) That the sequence should have exactly 8 bytes.
387   3) That the next byte is to be treated as a sort of extended start byte,
388      which in combination with this one gives the total length of the sequence.
389      There are published UTF-8 extensions that do this, some string together
390      multiple initial FF start bytes to achieve arbitrary precision.
391   4) That the sequence has exactly n bytes, where n is what the implementation
392      chooses.
393
394 Perl has chosen 4).
395 The goal is to be able to represent 64-bit values in UTF-8 or UTF-EBCDIC.  That
396 rules out items 1) and 2).  Item 3) has the deal-breaking disadvantage of
397 requiring one to read more than one byte to determine the total length of the
398 sequence.  So in Perl, a start byte of FF indicates a UTF-8 string consisting
399 of the start byte, plus enough continuation bytes to encode a 64 bit value.
400 This turns out to be 13 total bytes in UTF-8 and 14 in UTF-EBCDIC.  This is
401 because we get zero info bits from the start byte, plus
402     12 * 6 bits of info per continuation byte (could encode 72-bit numbers) on
403                 UTF-8 (khw knows not why 11, which would encode 66 bits wasn't
404                 chosen instead); and
405     13 * 5 bits of info per byte (could encode 65-bit numbers) on UTF-EBCDIC
406
407 The disadvantages of this method are:
408   1) There's potentially a lot of wasted bytes for all but the largest values.
409      For example, something that could be represented by 7 continuation bytes,
410      instead requires the full 12 or 13.
411   2) There would be problems should larger values, 128-bit say, ever need to be
412      represented.
413
414 WARNING: This number must be in sync with the value in
415 regen/charset_translations.pl. */
416 #define UTF8_MAXBYTES                                                       \
417                 (ASCII_PLATFORM_UTF8_MAXBYTES + ONE_IF_EBCDIC_ZERO_IF_NOT)
418
419 /* Calculate how many bytes are necessary to represent a value whose most
420  * significant 1 bit is in bit position 'pos' of the word.  For 0x1, 'pos would
421  * be 0; and for 0x400, 'pos' would be 10, and the result would be:
422  *  EBCDIC floor((-1 + (10 + 5 - 1 - 1)) / (5 - 1))
423  *       = floor((-1 + (13)) / 4)
424  *       = floor(12 / 4)
425  *       = 3
426  *  ASCII  floor(( 0 + (10 + 6 - 1 - 1)) / (6 - 1))
427  *       = floor(14 / 5)
428  *       = 2
429  * The reason this works is because the number of bits needed to represent a
430  * value is proportional to (UTF_CONTINUATION_BYTE_INFO_BITS - 1).  The -1 is
431  * because each new continuation byte removes one bit of information from the
432  * start byte.
433  *
434  * This is a step function (we need to allocate a full extra byte if we
435  * overflow by just a single bit)
436  *
437  * The caller is responsible for making sure 'pos' is at least 8 (occupies 9
438  * bits), as it breaks down at the lower edge.  At the high end, if it returns
439  * 8 or more, Perl instead anomalously uses MAX_BYTES, so this would be wrong.
440  * */
441 #define UNISKIP_BY_MSB_(pos)                                                \
442   ( ( -ONE_IF_EBCDIC_ZERO_IF_NOT  /* platform break pos's are off-by-one */ \
443      + (pos) + ((UTF_CONTINUATION_BYTE_INFO_BITS - 1) - 1))  /* Step fcn */ \
444    / (UTF_CONTINUATION_BYTE_INFO_BITS - 1))             /* take floor of */
445
446 /* Compute the number of UTF-8 bytes required for representing the input uv,
447  * which must be a Unicode, not native value.
448  *
449  * This uses msbit_pos() which doesn't work on NUL, and UNISKIP_BY_MSB_ breaks
450  * down for small code points.  So first check if the input is invariant to get
451  * around that, and use a helper for high code points to accommodate the fact
452  * that above 7 btyes, the value is anomalous.  The helper is empty on
453  * platforms that don't go that high */
454 #define OFFUNISKIP(uv)                                                      \
455     ((OFFUNI_IS_INVARIANT(uv))                                              \
456      ? 1                                                                    \
457      : (OFFUNISKIP_helper_(uv) UNISKIP_BY_MSB_(msbit_pos(uv))))
458
459 /* We need to go to MAX_BYTES when we can't represent 'uv' by the number of
460  * information bits in 6 continuation bytes (when we get to 6, the start byte
461  * has no information bits to add to the total).  But on 32-bit ASCII
462  * platforms, that doesn't happen until 6*6 bits, so on those platforms, this
463  * will always be false */
464 #if UVSIZE * CHARBITS > (6 * UTF_CONTINUATION_BYTE_INFO_BITS)
465 #  define HAS_EXTRA_LONG_UTF8
466 #  define OFFUNISKIP_helper_(uv)                                            \
467      UNLIKELY(uv > nBIT_UMAX(6 * UTF_CONTINUATION_BYTE_INFO_BITS))          \
468       ? UTF8_MAXBYTES :
469 #else
470 #  define OFFUNISKIP_helper_(uv)
471 #endif
472
473 /*
474
475 =for apidoc Am|STRLEN|UVCHR_SKIP|UV cp
476 returns the number of bytes required to represent the code point C<cp> when
477 encoded as UTF-8.  C<cp> is a native (ASCII or EBCDIC) code point if less than
478 255; a Unicode code point otherwise.
479
480 =cut
481  */
482 #define UVCHR_SKIP(uv)  OFFUNISKIP(NATIVE_TO_UNI(uv))
483
484 #define NATIVE_SKIP(uv) UVCHR_SKIP(uv)  /* Old terminology */
485
486 /* Most code which says UNISKIP is really thinking in terms of native code
487  * points (0-255) plus all those beyond.  This is an imprecise term, but having
488  * it means existing code continues to work.  For precision, use UVCHR_SKIP,
489  * NATIVE_SKIP, or OFFUNISKIP */
490 #define UNISKIP(uv)   UVCHR_SKIP(uv)
491
492 /* Compute the start byte for a given code point.  This requires the log2 of
493  * the code point, which is hard to compute at compile time, which this macro
494  * wants to be.  (Perhaps deBruijn sequences could be used.)  So a parameter
495  * for the number of bits the value occupies is passed in, which the programmer
496  * has had to figure out to get compile-time effect.  And asserts are used to
497  * make sure the value is correct.
498  *
499  * Since we are interested only in the start byte, we ignore the lower bits
500  * accounted for by the continuation bytes.  Each continuation byte eats up
501  * UTF_CONTINUATION_BYTE_INFO_BITS bits, so the number of continuation bytes
502  * needed is floor(bits / UTF_CONTINUATION_BYTE_INFO_BITS).  That number is fed
503  * to UTF_START_MARK() to get the upper part of the start byte.  The left over
504  * bits form the lower part which is OR'd with the mark
505  *
506  * Note that on EBCDIC platforms, this is actually the I8 */
507 #define UTF_START_BYTE(uv, bits)                                            \
508            (__ASSERT_((uv) >> ((bits) - 1)) /* At least 'bits' */           \
509             __ASSERT_(((uv) & ~nBIT_MASK(bits)) == 0) /* No extra bits */   \
510               UTF_START_MARK(UNISKIP_BY_MSB_((bits) - 1))                   \
511             | ((uv) >> (((bits) / UTF_CONTINUATION_BYTE_INFO_BITS)          \
512                                 * UTF_CONTINUATION_BYTE_INFO_BITS)))
513
514 /* Compute the first continuation byte for a given code point.  This is mostly
515  * for compile-time, so how many bits it occupies is also passed in).
516  *
517  * We are interested in the first continuation byte, so we ignore the lower
518  * bits accounted for by the rest of the continuation bytes by right shifting
519  * out their info bit, and mask out the higher bits that will go into the start
520  * byte.
521  *
522  * Note that on EBCDIC platforms, this is actually the I8 */
523 #define UTF_FIRST_CONT_BYTE(uv, bits)                                       \
524    (__ASSERT_((uv) >> ((bits) - 1)) /* At least 'bits' */                   \
525     __ASSERT_(((uv) & ~nBIT_MASK(bits)) == 0) /* No extra bits */           \
526        UTF_CONTINUATION_MARK                                                \
527     | (   UTF_CONTINUATION_MASK                                             \
528        & ((uv) >> ((((bits) / UTF_CONTINUATION_BYTE_INFO_BITS) - 1)         \
529                             * UTF_CONTINUATION_BYTE_INFO_BITS))))
530
531 #define UTF_MIN_START_BYTE  UTF_START_BYTE(UTF_MIN_CONTINUATION_BYTE, 8)
532
533 /* Is the byte 'c' the first byte of a multi-byte UTF8-8 encoded sequence?
534  * This excludes invariants (they are single-byte).  It also excludes the
535  * illegal overlong sequences that begin with C0 and C1 on ASCII platforms, and
536  * C0-C4 I8 start bytes on EBCDIC ones.  On EBCDIC E0 can't start a
537  * non-overlong sequence, so we define a base macro and for those platforms,
538  * extend it to also exclude E0 */
539 #define UTF8_IS_START_base(c)    (__ASSERT_(FITS_IN_8_BITS(c))              \
540                              (NATIVE_UTF8_TO_I8(c) >= UTF_MIN_START_BYTE))
541 #ifdef EBCDIC
542 #  define UTF8_IS_START(c)                                                  \
543                 (UTF8_IS_START_base(c) && (c) != I8_TO_NATIVE_UTF8(0xE0))
544 #else
545 #  define UTF8_IS_START(c)  UTF8_IS_START_base(c)
546 #endif
547
548 #define UTF_MIN_ABOVE_LATIN1_BYTE  UTF_START_BYTE(0x100, 9)
549
550 /* Is the UTF8-encoded byte 'c' the first byte of a sequence of bytes that
551  * represent a code point > 255? */
552 #define UTF8_IS_ABOVE_LATIN1(c)     (__ASSERT_(FITS_IN_8_BITS(c))           \
553                         (NATIVE_UTF8_TO_I8(c) >= UTF_MIN_ABOVE_LATIN1_BYTE))
554
555 /* Is the UTF8-encoded byte 'c' the first byte of a two byte sequence?  Use
556  * UTF8_IS_NEXT_CHAR_DOWNGRADEABLE() instead if the input isn't known to
557  * be well-formed. */
558 #define UTF8_IS_DOWNGRADEABLE_START(c)  (__ASSERT_(FITS_IN_8_BITS(c))       \
559                 inRANGE_helper_(U8, NATIVE_UTF8_TO_I8(c),                   \
560                         UTF_MIN_START_BYTE, UTF_MIN_ABOVE_LATIN1_BYTE - 1))
561
562 /* The largest code point representable by two UTF-8 bytes on this platform.
563  * The binary for that code point is:
564  *      1101_1111 10xx_xxxx in UTF-8, and
565  *      1101_1111 101y_yyyy in UTF-EBCDIC I8.
566  * where both x and y are 1, and shown this way to indicate there is one more x
567  * than there is y.  The number of x and y bits are their platform's respective
568  * UTF_CONTINUATION_BYTE_INFO_BITS.  Squeezing out the bits that don't
569  * contribute to the value, these evaluate to:
570  *      1_1111 xx_xxxx in UTF-8, and
571  *      1_1111 y_yyyy in UTF-EBCDIC I8.
572  * or, the maximum value of an unsigned with (5 + info_bit_count) bits */
573 #define MAX_UTF8_TWO_BYTE  nBIT_UMAX(5 + UTF_CONTINUATION_BYTE_INFO_BITS)
574
575 /* The largest code point representable by two UTF-8 bytes on any platform that
576  * Perl runs on. */
577 #define MAX_PORTABLE_UTF8_TWO_BYTE                                          \
578                 nBIT_UMAX(5 + MIN(       UTF_CONTINUATION_BYTE_INFO_BITS,   \
579                                   UTF_EBCDIC_CONTINUATION_BYTE_INFO_BITS))
580
581 /*
582
583 =for apidoc AmnU|STRLEN|UTF8_MAXBYTES_CASE
584
585 The maximum number of UTF-8 bytes a single Unicode character can
586 uppercase/lowercase/titlecase/fold into.
587
588 =cut
589
590  * Unicode guarantees that the maximum expansion is UTF8_MAX_FOLD_CHAR_EXPAND
591  * characters, but any above-Unicode code point will fold to itself, so we only
592  * have to look at the expansion of the maximum Unicode code point.  But this
593  * number may be less than the space occupied by a very large code point under
594  * Perl's extended UTF-8.  We have to make it large enough to fit any single
595  * character.  (It turns out that ASCII and EBCDIC differ in which is larger)
596  *
597 =cut
598 */
599 #define UTF8_MAXBYTES_CASE                                                  \
600         MAX(UTF8_MAXBYTES, UTF8_MAX_FOLD_CHAR_EXPAND * UNISKIP_BY_MSB_(20))
601
602 /* Rest of these are attributes of Unicode and perl's internals rather than the
603  * encoding, or happen to be the same in both ASCII and EBCDIC (at least at
604  * this level; the macros that some of these call may have different
605  * definitions in the two encodings */
606
607 /* In domain restricted to ASCII, these may make more sense to the reader than
608  * the ones with Latin1 in the name */
609 #define NATIVE_TO_ASCII(ch)      NATIVE_TO_LATIN1(ch)
610 #define ASCII_TO_NATIVE(ch)      LATIN1_TO_NATIVE(ch)
611
612 /* More or less misleadingly-named defines, retained for back compat */
613 #define NATIVE_TO_UTF(ch)        NATIVE_UTF8_TO_I8(ch)
614 #define NATIVE_TO_I8(ch)         NATIVE_UTF8_TO_I8(ch)
615 #define UTF_TO_NATIVE(ch)        I8_TO_NATIVE_UTF8(ch)
616 #define I8_TO_NATIVE(ch)         I8_TO_NATIVE_UTF8(ch)
617 #define NATIVE8_TO_UNI(ch)       NATIVE_TO_LATIN1(ch)
618
619 /* Adds a UTF8 continuation byte 'new' of information to a running total code
620  * point 'old' of all the continuation bytes so far.  This is designed to be
621  * used in a loop to convert from UTF-8 to the code point represented.  Note
622  * that this is asymmetric on EBCDIC platforms, in that the 'new' parameter is
623  * the UTF-EBCDIC byte, whereas the 'old' parameter is a Unicode (not EBCDIC)
624  * code point in process of being generated */
625 #define UTF8_ACCUMULATE(old, new) (__ASSERT_(FITS_IN_8_BITS(new))              \
626                                    ((old) << UTF_ACCUMULATION_SHIFT)           \
627                                    | ((NATIVE_UTF8_TO_I8(new))                 \
628                                        & UTF_CONTINUATION_MASK))
629
630 /* This works in the face of malformed UTF-8. */
631 #define UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(s, e)                                 \
632                                        (   ( (e) - (s) > 1)                   \
633                                         && UTF8_IS_DOWNGRADEABLE_START(*(s))  \
634                                         && UTF8_IS_CONTINUATION(*((s)+1)))
635
636 /* Longer, but more accurate name */
637 #define UTF8_IS_ABOVE_LATIN1_START(c)     UTF8_IS_ABOVE_LATIN1(c)
638
639 /* Convert a UTF-8 variant Latin1 character to a native code point value.
640  * Needs just one iteration of accumulate.  Should be used only if it is known
641  * that the code point is < 256, and is not UTF-8 invariant.  Use the slower
642  * but more general TWO_BYTE_UTF8_TO_NATIVE() which handles any code point
643  * representable by two bytes (which turns out to be up through
644  * MAX_PORTABLE_UTF8_TWO_BYTE).  The two parameters are:
645  *  HI: a downgradable start byte;
646  *  LO: continuation.
647  * */
648 #define EIGHT_BIT_UTF8_TO_NATIVE(HI, LO)                                        \
649     ( __ASSERT_(UTF8_IS_DOWNGRADEABLE_START(HI))                                \
650       __ASSERT_(UTF8_IS_CONTINUATION(LO))                                       \
651      LATIN1_TO_NATIVE(UTF8_ACCUMULATE((                                         \
652                             NATIVE_UTF8_TO_I8(HI) & UTF_START_MASK(2)), (LO))))
653
654 /* Convert a two (not one) byte utf8 character to a native code point value.
655  * Needs just one iteration of accumulate.  Should not be used unless it is
656  * known that the two bytes are legal: 1) two-byte start, and 2) continuation.
657  * Note that the result can be larger than 255 if the input character is not
658  * downgradable */
659 #define TWO_BYTE_UTF8_TO_NATIVE(HI, LO) \
660     (__ASSERT_(FITS_IN_8_BITS(HI))                                              \
661      __ASSERT_(FITS_IN_8_BITS(LO))                                              \
662      __ASSERT_(PL_utf8skip[HI] == 2)                                            \
663      __ASSERT_(UTF8_IS_CONTINUATION(LO))                                        \
664      UNI_TO_NATIVE(UTF8_ACCUMULATE((NATIVE_UTF8_TO_I8(HI) & UTF_START_MASK(2)), \
665                                    (LO))))
666
667 /* Should never be used, and be deprecated */
668 #define TWO_BYTE_UTF8_TO_UNI(HI, LO) NATIVE_TO_UNI(TWO_BYTE_UTF8_TO_NATIVE(HI, LO))
669
670 /*
671
672 =for apidoc Am|STRLEN|UTF8SKIP|char* s
673 returns the number of bytes a non-malformed UTF-8 encoded character whose first
674 (perhaps only) byte is pointed to by C<s>.
675
676 If there is a possibility of malformed input, use instead:
677
678 =over
679
680 =item C<L</UTF8_SAFE_SKIP>> if you know the maximum ending pointer in the
681 buffer pointed to by C<s>; or
682
683 =item C<L</UTF8_CHK_SKIP>> if you don't know it.
684
685 =back
686
687 It is better to restructure your code so the end pointer is passed down so that
688 you know what it actually is at the point of this call, but if that isn't
689 possible, C<L</UTF8_CHK_SKIP>> can minimize the chance of accessing beyond the end
690 of the input buffer.
691
692 =cut
693  */
694 #define UTF8SKIP(s)  PL_utf8skip[*(const U8*)(s)]
695
696 /*
697 =for apidoc Am|STRLEN|UTF8_SKIP|char* s
698 This is a synonym for C<L</UTF8SKIP>>
699
700 =cut
701 */
702
703 #define UTF8_SKIP(s) UTF8SKIP(s)
704
705 /*
706 =for apidoc Am|STRLEN|UTF8_CHK_SKIP|char* s
707
708 This is a safer version of C<L</UTF8SKIP>>, but still not as safe as
709 C<L</UTF8_SAFE_SKIP>>.  This version doesn't blindly assume that the input
710 string pointed to by C<s> is well-formed, but verifies that there isn't a NUL
711 terminating character before the expected end of the next character in C<s>.
712 The length C<UTF8_CHK_SKIP> returns stops just before any such NUL.
713
714 Perl tends to add NULs, as an insurance policy, after the end of strings in
715 SV's, so it is likely that using this macro will prevent inadvertent reading
716 beyond the end of the input buffer, even if it is malformed UTF-8.
717
718 This macro is intended to be used by XS modules where the inputs could be
719 malformed, and it isn't feasible to restructure to use the safer
720 C<L</UTF8_SAFE_SKIP>>, for example when interfacing with a C library.
721
722 =cut
723 */
724
725 #define UTF8_CHK_SKIP(s)                                                       \
726             (UNLIKELY(s[0] == '\0') ? 1 : MIN(UTF8SKIP(s),                     \
727                                     my_strnlen((char *) (s), UTF8SKIP(s))))
728 /*
729
730 =for apidoc Am|STRLEN|UTF8_SAFE_SKIP|char* s|char* e
731 returns 0 if S<C<s E<gt>= e>>; otherwise returns the number of bytes in the
732 UTF-8 encoded character whose first  byte is pointed to by C<s>.  But it never
733 returns beyond C<e>.  On DEBUGGING builds, it asserts that S<C<s E<lt>= e>>.
734
735 =cut
736  */
737 #define UTF8_SAFE_SKIP(s, e)  (__ASSERT_((e) >= (s))                \
738                               UNLIKELY(((e) - (s)) <= 0)            \
739                                ? 0                                  \
740                                : MIN(((e) - (s)), UTF8_SKIP(s)))
741
742 /* Most code that says 'UNI_' really means the native value for code points up
743  * through 255 */
744 #define UNI_IS_INVARIANT(cp)   UVCHR_IS_INVARIANT(cp)
745
746 /*
747 =for apidoc Am|bool|UTF8_IS_INVARIANT|char c
748
749 Evaluates to 1 if the byte C<c> represents the same character when encoded in
750 UTF-8 as when not; otherwise evaluates to 0.  UTF-8 invariant characters can be
751 copied as-is when converting to/from UTF-8, saving time.
752
753 In spite of the name, this macro gives the correct result if the input string
754 from which C<c> comes is not encoded in UTF-8.
755
756 See C<L</UVCHR_IS_INVARIANT>> for checking if a UV is invariant.
757
758 =cut
759
760 The reason it works on both UTF-8 encoded strings and non-UTF-8 encoded, is
761 that it returns TRUE in each for the exact same set of bit patterns.  It is
762 valid on a subset of what UVCHR_IS_INVARIANT is valid on, so can just use that;
763 and the compiler should optimize out anything extraneous given the
764 implementation of the latter. */
765 #define UTF8_IS_INVARIANT(c)    UVCHR_IS_INVARIANT(ASSERT_NOT_PTR(c))
766
767 /* Like the above, but its name implies a non-UTF8 input, which as the comments
768  * above show, doesn't matter as to its implementation */
769 #define NATIVE_BYTE_IS_INVARIANT(c)     UVCHR_IS_INVARIANT(c)
770
771 /* Misleadingly named: is the UTF8-encoded byte 'c' part of a variant sequence
772  * in UTF-8?  This is the inverse of UTF8_IS_INVARIANT. */
773 #define UTF8_IS_CONTINUED(c)  (__ASSERT_(FITS_IN_8_BITS(c))                 \
774                                (! UTF8_IS_INVARIANT(c)))
775
776 /* The macros in the next 4 sets are used to generate the two utf8 or utfebcdic
777  * bytes from an ordinal that is known to fit into exactly two (not one) bytes;
778  * it must be less than 0x3FF to work across both encodings. */
779
780 /* These two are helper macros for the other three sets, and should not be used
781  * directly anywhere else.  'translate_function' is either NATIVE_TO_LATIN1
782  * (which works for code points up through 0xFF) or NATIVE_TO_UNI which works
783  * for any code point */
784 #define __BASE_TWO_BYTE_HI(c, translate_function)                               \
785            (__ASSERT_(! UVCHR_IS_INVARIANT(c))                                  \
786             I8_TO_NATIVE_UTF8((translate_function(c) >> UTF_ACCUMULATION_SHIFT) \
787                               | UTF_START_MARK(2)))
788 #define __BASE_TWO_BYTE_LO(c, translate_function)                               \
789              (__ASSERT_(! UVCHR_IS_INVARIANT(c))                                \
790               I8_TO_NATIVE_UTF8((translate_function(c) & UTF_CONTINUATION_MASK) \
791                                  | UTF_CONTINUATION_MARK))
792
793 /* The next two macros should not be used.  They were designed to be usable as
794  * the case label of a switch statement, but this doesn't work for EBCDIC.  Use
795  * regen/unicode_constants.pl instead */
796 #define UTF8_TWO_BYTE_HI_nocast(c)  __BASE_TWO_BYTE_HI(c, NATIVE_TO_UNI)
797 #define UTF8_TWO_BYTE_LO_nocast(c)  __BASE_TWO_BYTE_LO(c, NATIVE_TO_UNI)
798
799 /* The next two macros are used when the source should be a single byte
800  * character; checked for under DEBUGGING */
801 #define UTF8_EIGHT_BIT_HI(c) (__ASSERT_(FITS_IN_8_BITS(c))                    \
802                              ( __BASE_TWO_BYTE_HI(c, NATIVE_TO_LATIN1)))
803 #define UTF8_EIGHT_BIT_LO(c) (__ASSERT_(FITS_IN_8_BITS(c))                    \
804                              (__BASE_TWO_BYTE_LO(c, NATIVE_TO_LATIN1)))
805
806 /* These final two macros in the series are used when the source can be any
807  * code point whose UTF-8 is known to occupy 2 bytes; they are less efficient
808  * than the EIGHT_BIT versions on EBCDIC platforms.  We use the logical '~'
809  * operator instead of "<=" to avoid getting compiler warnings.
810  * MAX_UTF8_TWO_BYTE should be exactly all one bits in the lower few
811  * places, so the ~ works */
812 #define UTF8_TWO_BYTE_HI(c)                                                    \
813        (__ASSERT_((sizeof(c) ==  1)                                            \
814                   || !(((WIDEST_UTYPE)(c)) & ~MAX_UTF8_TWO_BYTE))              \
815         (__BASE_TWO_BYTE_HI(c, NATIVE_TO_UNI)))
816 #define UTF8_TWO_BYTE_LO(c)                                                    \
817        (__ASSERT_((sizeof(c) ==  1)                                            \
818                   || !(((WIDEST_UTYPE)(c)) & ~MAX_UTF8_TWO_BYTE))              \
819         (__BASE_TWO_BYTE_LO(c, NATIVE_TO_UNI)))
820
821 /* This is illegal in any well-formed UTF-8 in both EBCDIC and ASCII
822  * as it is only in overlongs. */
823 #define ILLEGAL_UTF8_BYTE   I8_TO_NATIVE_UTF8(0xC1)
824
825 /*
826  * 'UTF' is whether or not p is encoded in UTF8.  The names 'foo_lazy_if' stem
827  * from an earlier version of these macros in which they didn't call the
828  * foo_utf8() macros (i.e. were 'lazy') unless they decided that *p is the
829  * beginning of a utf8 character.  Now that foo_utf8() determines that itself,
830  * no need to do it again here
831  */
832 #define isIDFIRST_lazy_if_safe(p, e, UTF)                                   \
833                    ((IN_BYTES || !UTF)                                      \
834                      ? isIDFIRST(*(p))                                      \
835                      : isIDFIRST_utf8_safe(p, e))
836 #define isWORDCHAR_lazy_if_safe(p, e, UTF)                                  \
837                    ((IN_BYTES || !UTF)                                      \
838                      ? isWORDCHAR(*(p))                                     \
839                      : isWORDCHAR_utf8_safe((U8 *) p, (U8 *) e))
840 #define isALNUM_lazy_if_safe(p, e, UTF) isWORDCHAR_lazy_if_safe(p, e, UTF)
841
842 #define UTF8_MAXLEN  UTF8_MAXBYTES
843
844 /* A Unicode character can fold to up to 3 characters */
845 #define UTF8_MAX_FOLD_CHAR_EXPAND  3
846
847 #define IN_BYTES  UNLIKELY(CopHINTS_get(PL_curcop) & HINT_BYTES)
848
849 /*
850
851 =for apidoc Am|bool|DO_UTF8|SV* sv
852 Returns a bool giving whether or not the PV in C<sv> is to be treated as being
853 encoded in UTF-8.
854
855 You should use this I<after> a call to C<SvPV()> or one of its variants, in
856 case any call to string overloading updates the internal UTF-8 encoding flag.
857
858 =cut
859 */
860 #define DO_UTF8(sv) (SvUTF8(sv) && !IN_BYTES)
861
862 /* Should all strings be treated as Unicode, and not just UTF-8 encoded ones?
863  * Is so within 'feature unicode_strings' or 'locale :not_characters', and not
864  * within 'use bytes'.  UTF-8 locales are not tested for here, but perhaps
865  * could be */
866 #define IN_UNI_8_BIT                                                    \
867             ((    (      (CopHINTS_get(PL_curcop) & HINT_UNI_8_BIT))    \
868                    || (   CopHINTS_get(PL_curcop) & HINT_LOCALE_PARTIAL \
869                             /* -1 below is for :not_characters */       \
870                        && _is_in_locale_category(FALSE, -1)))           \
871               && (! IN_BYTES))
872
873 #define UNICODE_SURROGATE_FIRST         0xD800
874 #define UNICODE_SURROGATE_LAST          0xDFFF
875
876 /*
877 =for apidoc Am|bool|UNICODE_IS_SURROGATE|const UV uv
878
879 Returns a boolean as to whether or not C<uv> is one of the Unicode surrogate
880 code points
881
882 =for apidoc Am|bool|UTF8_IS_SURROGATE|const U8 *s|const U8 *e
883
884 Evaluates to non-zero if the first few bytes of the string starting at C<s> and
885 looking no further than S<C<e - 1>> are well-formed UTF-8 that represents one
886 of the Unicode surrogate code points; otherwise it evaluates to 0.  If
887 non-zero, the value gives how many bytes starting at C<s> comprise the code
888 point's representation.
889
890 =cut
891  */
892
893 #define UNICODE_IS_SURROGATE(uv) UNLIKELY(inRANGE(uv, UNICODE_SURROGATE_FIRST,  \
894                                                       UNICODE_SURROGATE_LAST))
895 #define UTF8_IS_SURROGATE(s, e)      is_SURROGATE_utf8_safe(s, e)
896
897 /*
898
899 =for apidoc AmnU|UV|UNICODE_REPLACEMENT
900
901 Evaluates to 0xFFFD, the code point of the Unicode REPLACEMENT CHARACTER
902
903 =for apidoc Am|bool|UNICODE_IS_REPLACEMENT|const UV uv
904
905 Returns a boolean as to whether or not C<uv> is the Unicode REPLACEMENT
906 CHARACTER
907
908 =for apidoc Am|bool|UTF8_IS_REPLACEMENT|const U8 *s|const U8 *e
909
910 Evaluates to non-zero if the first few bytes of the string starting at C<s> and
911 looking no further than S<C<e - 1>> are well-formed UTF-8 that represents the
912 Unicode REPLACEMENT CHARACTER; otherwise it evaluates to 0.  If non-zero, the
913 value gives how many bytes starting at C<s> comprise the code point's
914 representation.
915
916 =cut
917  */
918 #define UNICODE_REPLACEMENT             0xFFFD
919 #define UNICODE_IS_REPLACEMENT(uv)  UNLIKELY((UV) (uv) == UNICODE_REPLACEMENT)
920 #define UTF8_IS_REPLACEMENT(s, send) is_REPLACEMENT_utf8_safe(s,send)
921
922 /* Max legal code point according to Unicode */
923 #define PERL_UNICODE_MAX        0x10FFFF
924
925 /*
926
927 =for apidoc Am|bool|UNICODE_IS_SUPER|const UV uv
928
929 Returns a boolean as to whether or not C<uv> is above the maximum legal Unicode
930 code point of U+10FFFF.
931
932 =cut
933 */
934
935 #define UNICODE_IS_SUPER(uv)  UNLIKELY((UV) (uv) > PERL_UNICODE_MAX)
936
937 /*
938 =for apidoc Am|bool|UTF8_IS_SUPER|const U8 *s|const U8 *e
939
940 Recall that Perl recognizes an extension to UTF-8 that can encode code
941 points larger than the ones defined by Unicode, which are 0..0x10FFFF.
942
943 This macro evaluates to non-zero if the first few bytes of the string starting
944 at C<s> and looking no further than S<C<e - 1>> are from this UTF-8 extension;
945 otherwise it evaluates to 0.  If non-zero, the return is how many bytes
946 starting at C<s> comprise the code point's representation.
947
948 0 is returned if the bytes are not well-formed extended UTF-8, or if they
949 represent a code point that cannot fit in a UV on the current platform.  Hence
950 this macro can give different results when run on a 64-bit word machine than on
951 one with a 32-bit word size.
952
953 Note that it is illegal in Perl to have code points that are larger than what can
954 fit in an IV on the current machine; and illegal in Unicode to have any that
955 this macro matches
956
957 =cut
958
959  *                ASCII              EBCDIC I8
960  * U+10FFFF: \xF4\x8F\xBF\xBF   \xF9\xA1\xBF\xBF\xBF    max legal Unicode
961  * U+110000: \xF4\x90\x80\x80   \xF9\xA2\xA0\xA0\xA0
962  * U+110001: \xF4\x90\x80\x81   \xF9\xA2\xA0\xA0\xA1
963  */
964 #define UTF_START_BYTE_110000_  UTF_START_BYTE(PERL_UNICODE_MAX + 1, 21)
965 #define UTF_FIRST_CONT_BYTE_110000_                                         \
966                           UTF_FIRST_CONT_BYTE(PERL_UNICODE_MAX + 1, 21)
967 #define UTF8_IS_SUPER(s, e)                                                 \
968     (   ((e) - (s)) >= UNISKIP_BY_MSB_(20)                                  \
969      && (       NATIVE_UTF8_TO_I8(s[0]) >= UTF_START_BYTE_110000_           \
970          && (   NATIVE_UTF8_TO_I8(s[0]) >  UTF_START_BYTE_110000_           \
971              || NATIVE_UTF8_TO_I8(s[1]) >= UTF_FIRST_CONT_BYTE_110000_)))   \
972      ? isUTF8_CHAR(s, e)                                                    \
973      : 0
974
975 /*
976 =for apidoc Am|bool|UNICODE_IS_NONCHAR|const UV uv
977
978 Returns a boolean as to whether or not C<uv> is one of the Unicode
979 non-character code points
980
981 =cut
982 */
983
984 /* Is 'uv' one of the 32 contiguous-range noncharacters? */
985 #define UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv)                               \
986                                     UNLIKELY(inRANGE(uv, 0xFDD0, 0xFDEF))
987
988 /* Is 'uv' one of the 34 plane-ending noncharacters 0xFFFE, 0xFFFF, 0x1FFFE,
989  * 0x1FFFF, ... 0x10FFFE, 0x10FFFF, given that we know that 'uv' is not above
990  * the Unicode legal max */
991 #define UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv)                    \
992                                   UNLIKELY(((UV) (uv) & 0xFFFE) == 0xFFFE)
993
994 #define UNICODE_IS_NONCHAR(uv)                                              \
995     (       UNLIKELY(UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv))                 \
996      || (   UNLIKELY(UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv))      \
997          && LIKELY(! UNICODE_IS_SUPER(uv))))
998
999 /*
1000 =for apidoc Am|bool|UTF8_IS_NONCHAR|const U8 *s|const U8 *e
1001
1002 Evaluates to non-zero if the first few bytes of the string starting at C<s> and
1003 looking no further than S<C<e - 1>> are well-formed UTF-8 that represents one
1004 of the Unicode non-character code points; otherwise it evaluates to 0.  If
1005 non-zero, the value gives how many bytes starting at C<s> comprise the code
1006 point's representation.
1007
1008 =cut
1009 */
1010 #define UTF8_IS_NONCHAR(s, e)  is_NONCHAR_utf8_safe(s,e)
1011
1012 /* This is now machine generated, and the 'given' clause is no longer
1013  * applicable */
1014 #define UTF8_IS_NONCHAR_GIVEN_THAT_NON_SUPER_AND_GE_PROBLEMATIC(s, e)       \
1015                                                 UTF8_IS_NONCHAR(s, e)
1016
1017 /* Surrogates, non-character code points and above-Unicode code points are
1018  * problematic in some contexts.  These macros allow code that needs to check
1019  * for those to quickly exclude the vast majority of code points it will
1020  * encounter.
1021  *
1022  * The lowest such code point is the smallest surrogate, U+D800.  We calculate
1023  * the start byte of that.  0xD800 occupies 16 bits. */
1024 #define isUNICODE_POSSIBLY_PROBLEMATIC(uv) ((uv) >= UNICODE_SURROGATE_FIRST)
1025 #define isUTF8_POSSIBLY_PROBLEMATIC(c)                                      \
1026     (NATIVE_UTF8_TO_I8(c) >= UTF_START_BYTE(UNICODE_SURROGATE_FIRST, 16))
1027
1028 /* Perl extends Unicode so that it is possible to encode (as extended UTF-8 or
1029  * UTF-EBCDIC) any 64-bit value.  No standard known to khw ever encoded higher
1030  * than a 31 bit value.  On ASCII platforms this just meant arbitrarily saying
1031  * nothing could be higher than this.  On these the start byte FD gets you to
1032  * 31 bits, and FE and FF are forbidden as start bytes.  On EBCDIC platforms,
1033  * FD gets you only to 26 bits; adding FE to mean 7 total bytes gets you to 30
1034  * bits.  To get to 31 bits, they treated an initial FF byte idiosyncratically.
1035  * It was considered to be the start byte FE meaning it had 7 total bytes, and
1036  * the final 1 was treated as an information bit, getting you to 31 bits.
1037  *
1038  * Perl used to accept this idiosyncratic interpretation of FF, but now rejects
1039  * it in order to get to being able to encode 64 bits.  The bottom line is that
1040  * it is a Perl extension to use the start bytes FE and FF on ASCII platforms,
1041  * and the start byte FF on EBCDIC ones.  That translates into that it is a
1042  * Perl extension to represent anything occupying more than 31 bits on ASCII
1043  * platforms; 30 bits on EBCDIC. */
1044 #define UNICODE_IS_PERL_EXTENDED(uv)                                        \
1045           UNLIKELY((UV) (uv) > nBIT_UMAX(31 - ONE_IF_EBCDIC_ZERO_IF_NOT))
1046 #define UTF8_IS_PERL_EXTENDED(s)                                            \
1047                            (UTF8SKIP(s) > 6 + ONE_IF_EBCDIC_ZERO_IF_NOT)
1048
1049 /* Largest code point we accept from external sources */
1050 #define MAX_LEGAL_CP  ((UV)IV_MAX)
1051
1052 #define UTF8_ALLOW_EMPTY                0x0001  /* Allow a zero length string */
1053 #define UTF8_GOT_EMPTY                  UTF8_ALLOW_EMPTY
1054
1055 /* Allow first byte to be a continuation byte */
1056 #define UTF8_ALLOW_CONTINUATION         0x0002
1057 #define UTF8_GOT_CONTINUATION           UTF8_ALLOW_CONTINUATION
1058
1059 /* Unexpected non-continuation byte */
1060 #define UTF8_ALLOW_NON_CONTINUATION     0x0004
1061 #define UTF8_GOT_NON_CONTINUATION       UTF8_ALLOW_NON_CONTINUATION
1062
1063 /* expecting more bytes than were available in the string */
1064 #define UTF8_ALLOW_SHORT                0x0008
1065 #define UTF8_GOT_SHORT                  UTF8_ALLOW_SHORT
1066
1067 /* Overlong sequence; i.e., the code point can be specified in fewer bytes.
1068  * First one will convert the overlong to the REPLACEMENT CHARACTER; second
1069  * will return what the overlong evaluates to */
1070 #define UTF8_ALLOW_LONG                 0x0010
1071 #define UTF8_ALLOW_LONG_AND_ITS_VALUE   (UTF8_ALLOW_LONG|0x0020)
1072 #define UTF8_GOT_LONG                   UTF8_ALLOW_LONG
1073
1074 #define UTF8_ALLOW_OVERFLOW             0x0080
1075 #define UTF8_GOT_OVERFLOW               UTF8_ALLOW_OVERFLOW
1076
1077 #define UTF8_DISALLOW_SURROGATE         0x0100  /* Unicode surrogates */
1078 #define UTF8_GOT_SURROGATE              UTF8_DISALLOW_SURROGATE
1079 #define UTF8_WARN_SURROGATE             0x0200
1080
1081 /* Unicode non-character  code points */
1082 #define UTF8_DISALLOW_NONCHAR           0x0400
1083 #define UTF8_GOT_NONCHAR                UTF8_DISALLOW_NONCHAR
1084 #define UTF8_WARN_NONCHAR               0x0800
1085
1086 /* Super-set of Unicode: code points above the legal max */
1087 #define UTF8_DISALLOW_SUPER             0x1000
1088 #define UTF8_GOT_SUPER                  UTF8_DISALLOW_SUPER
1089 #define UTF8_WARN_SUPER                 0x2000
1090
1091 /* The original UTF-8 standard did not define UTF-8 with start bytes of 0xFE or
1092  * 0xFF, though UTF-EBCDIC did.  This allowed both versions to represent code
1093  * points up to 2 ** 31 - 1.  Perl extends UTF-8 so that 0xFE and 0xFF are
1094  * usable on ASCII platforms, and 0xFF means something different than
1095  * UTF-EBCDIC defines.  These changes allow code points of 64 bits (actually
1096  * somewhat more) to be represented on both platforms.  But these are Perl
1097  * extensions, and not likely to be interchangeable with other languages.  Note
1098  * that on ASCII platforms, FE overflows a signed 32-bit word, and FF an
1099  * unsigned one. */
1100 #define UTF8_DISALLOW_PERL_EXTENDED     0x4000
1101 #define UTF8_GOT_PERL_EXTENDED          UTF8_DISALLOW_PERL_EXTENDED
1102 #define UTF8_WARN_PERL_EXTENDED         0x8000
1103
1104 /* For back compat, these old names are misleading for overlongs and
1105  * UTF_EBCDIC. */
1106 #define UTF8_DISALLOW_ABOVE_31_BIT      UTF8_DISALLOW_PERL_EXTENDED
1107 #define UTF8_GOT_ABOVE_31_BIT           UTF8_GOT_PERL_EXTENDED
1108 #define UTF8_WARN_ABOVE_31_BIT          UTF8_WARN_PERL_EXTENDED
1109 #define UTF8_DISALLOW_FE_FF             UTF8_DISALLOW_PERL_EXTENDED
1110 #define UTF8_WARN_FE_FF                 UTF8_WARN_PERL_EXTENDED
1111
1112 #define UTF8_CHECK_ONLY                 0x10000
1113 #define _UTF8_NO_CONFIDENCE_IN_CURLEN   0x20000  /* Internal core use only */
1114
1115 /* For backwards source compatibility.  They do nothing, as the default now
1116  * includes what they used to mean.  The first one's meaning was to allow the
1117  * just the single non-character 0xFFFF */
1118 #define UTF8_ALLOW_FFFF 0
1119 #define UTF8_ALLOW_FE_FF 0
1120 #define UTF8_ALLOW_SURROGATE 0
1121
1122 /* C9 refers to Unicode Corrigendum #9: allows but discourages non-chars */
1123 #define UTF8_DISALLOW_ILLEGAL_C9_INTERCHANGE                                    \
1124                                  (UTF8_DISALLOW_SUPER|UTF8_DISALLOW_SURROGATE)
1125 #define UTF8_WARN_ILLEGAL_C9_INTERCHANGE (UTF8_WARN_SUPER|UTF8_WARN_SURROGATE)
1126
1127 #define UTF8_DISALLOW_ILLEGAL_INTERCHANGE                                       \
1128                   (UTF8_DISALLOW_ILLEGAL_C9_INTERCHANGE|UTF8_DISALLOW_NONCHAR)
1129 #define UTF8_WARN_ILLEGAL_INTERCHANGE \
1130                           (UTF8_WARN_ILLEGAL_C9_INTERCHANGE|UTF8_WARN_NONCHAR)
1131
1132 /* This is typically used for code that processes UTF-8 input and doesn't want
1133  * to have to deal with any malformations that might be present.  All such will
1134  * be safely replaced by the REPLACEMENT CHARACTER, unless other flags
1135  * overriding this are also present. */
1136 #define UTF8_ALLOW_ANY ( UTF8_ALLOW_CONTINUATION                                \
1137                         |UTF8_ALLOW_NON_CONTINUATION                            \
1138                         |UTF8_ALLOW_SHORT                                       \
1139                         |UTF8_ALLOW_LONG                                        \
1140                         |UTF8_ALLOW_OVERFLOW)
1141
1142 /* Accept any Perl-extended UTF-8 that evaluates to any UV on the platform, but
1143  * not any malformed.  This is the default. */
1144 #define UTF8_ALLOW_ANYUV   0
1145 #define UTF8_ALLOW_DEFAULT UTF8_ALLOW_ANYUV
1146
1147 #define UNICODE_WARN_SURROGATE         0x0001   /* UTF-16 surrogates */
1148 #define UNICODE_WARN_NONCHAR           0x0002   /* Non-char code points */
1149 #define UNICODE_WARN_SUPER             0x0004   /* Above 0x10FFFF */
1150 #define UNICODE_WARN_PERL_EXTENDED     0x0008   /* Above 0x7FFF_FFFF */
1151 #define UNICODE_WARN_ABOVE_31_BIT      UNICODE_WARN_PERL_EXTENDED
1152 #define UNICODE_DISALLOW_SURROGATE     0x0010
1153 #define UNICODE_DISALLOW_NONCHAR       0x0020
1154 #define UNICODE_DISALLOW_SUPER         0x0040
1155 #define UNICODE_DISALLOW_PERL_EXTENDED 0x0080
1156
1157 #ifdef PERL_CORE
1158 #  define UNICODE_ALLOW_ABOVE_IV_MAX   0x0100
1159 #endif
1160 #define UNICODE_DISALLOW_ABOVE_31_BIT  UNICODE_DISALLOW_PERL_EXTENDED
1161
1162 #define UNICODE_GOT_SURROGATE       UNICODE_DISALLOW_SURROGATE
1163 #define UNICODE_GOT_NONCHAR         UNICODE_DISALLOW_NONCHAR
1164 #define UNICODE_GOT_SUPER           UNICODE_DISALLOW_SUPER
1165 #define UNICODE_GOT_PERL_EXTENDED   UNICODE_DISALLOW_PERL_EXTENDED
1166
1167 #define UNICODE_WARN_ILLEGAL_C9_INTERCHANGE                                   \
1168                                   (UNICODE_WARN_SURROGATE|UNICODE_WARN_SUPER)
1169 #define UNICODE_WARN_ILLEGAL_INTERCHANGE                                      \
1170                    (UNICODE_WARN_ILLEGAL_C9_INTERCHANGE|UNICODE_WARN_NONCHAR)
1171 #define UNICODE_DISALLOW_ILLEGAL_C9_INTERCHANGE                               \
1172                           (UNICODE_DISALLOW_SURROGATE|UNICODE_DISALLOW_SUPER)
1173 #define UNICODE_DISALLOW_ILLEGAL_INTERCHANGE                                  \
1174            (UNICODE_DISALLOW_ILLEGAL_C9_INTERCHANGE|UNICODE_DISALLOW_NONCHAR)
1175
1176 /* For backward source compatibility, as are now the default */
1177 #define UNICODE_ALLOW_SURROGATE 0
1178 #define UNICODE_ALLOW_SUPER     0
1179 #define UNICODE_ALLOW_ANY       0
1180
1181 #define UNICODE_BYTE_ORDER_MARK         0xFEFF
1182 #define UNICODE_IS_BYTE_ORDER_MARK(uv)  UNLIKELY((UV) (uv)                  \
1183                                                 == UNICODE_BYTE_ORDER_MARK)
1184
1185 #define LATIN_SMALL_LETTER_SHARP_S      LATIN_SMALL_LETTER_SHARP_S_NATIVE
1186 #define LATIN_SMALL_LETTER_Y_WITH_DIAERESIS                                  \
1187                                 LATIN_SMALL_LETTER_Y_WITH_DIAERESIS_NATIVE
1188 #define MICRO_SIGN      MICRO_SIGN_NATIVE
1189 #define LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE                               \
1190                             LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE_NATIVE
1191 #define LATIN_SMALL_LETTER_A_WITH_RING_ABOVE                                 \
1192                                 LATIN_SMALL_LETTER_A_WITH_RING_ABOVE_NATIVE
1193 #define UNICODE_GREEK_CAPITAL_LETTER_SIGMA      0x03A3
1194 #define UNICODE_GREEK_SMALL_LETTER_FINAL_SIGMA  0x03C2
1195 #define UNICODE_GREEK_SMALL_LETTER_SIGMA        0x03C3
1196 #define GREEK_SMALL_LETTER_MU                   0x03BC
1197 #define GREEK_CAPITAL_LETTER_MU                 0x039C  /* Upper and title case
1198                                                            of MICRON */
1199 #define LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS   0x0178  /* Also is title case */
1200 #ifdef LATIN_CAPITAL_LETTER_SHARP_S_UTF8
1201 #   define LATIN_CAPITAL_LETTER_SHARP_S         0x1E9E
1202 #endif
1203 #define LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE   0x130
1204 #define LATIN_SMALL_LETTER_DOTLESS_I            0x131
1205 #define LATIN_SMALL_LETTER_LONG_S               0x017F
1206 #define LATIN_SMALL_LIGATURE_LONG_S_T           0xFB05
1207 #define LATIN_SMALL_LIGATURE_ST                 0xFB06
1208 #define KELVIN_SIGN                             0x212A
1209 #define ANGSTROM_SIGN                           0x212B
1210
1211 #define UNI_DISPLAY_ISPRINT     0x0001
1212 #define UNI_DISPLAY_BACKSLASH   0x0002
1213 #define UNI_DISPLAY_BACKSPACE   0x0004  /* Allow \b when also
1214                                            UNI_DISPLAY_BACKSLASH */
1215 #define UNI_DISPLAY_QQ          (UNI_DISPLAY_ISPRINT                \
1216                                 |UNI_DISPLAY_BACKSLASH              \
1217                                 |UNI_DISPLAY_BACKSPACE)
1218
1219 /* Character classes could also allow \b, but not patterns in general */
1220 #define UNI_DISPLAY_REGEX       (UNI_DISPLAY_ISPRINT|UNI_DISPLAY_BACKSLASH)
1221
1222 /* Should be removed; maybe deprecated, but not used in CPAN */
1223 #define SHARP_S_SKIP 2
1224
1225 #define is_utf8_char_buf(buf, buf_end) isUTF8_CHAR(buf, buf_end)
1226 #define bytes_from_utf8(s, lenp, is_utf8p)                                  \
1227                             bytes_from_utf8_loc(s, lenp, is_utf8p, 0)
1228
1229 /* Do not use; should be deprecated.  Use isUTF8_CHAR() instead; this is
1230  * retained solely for backwards compatibility */
1231 #define IS_UTF8_CHAR(p, n)      (isUTF8_CHAR(p, (p) + (n)) == n)
1232
1233 #endif /* PERL_UTF8_H_ */
1234
1235 /*
1236  * ex: set ts=8 sts=4 sw=4 et:
1237  */