5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
77 #ifndef PERL_IN_XSUB_RE
82 #ifdef PERL_IN_XSUB_RE
88 #include "dquote_static.c"
95 # if defined(BUGGY_MSC6)
96 /* MSC 6.00A breaks on op/regexp.t test 85 unless we turn this off */
97 # pragma optimize("a",off)
98 /* But MSC 6.00A is happy with 'w', for aliases only across function calls*/
99 # pragma optimize("w",on )
100 # endif /* BUGGY_MSC6 */
104 #define STATIC static
107 typedef struct RExC_state_t {
108 U32 flags; /* are we folding, multilining? */
109 char *precomp; /* uncompiled string. */
110 REGEXP *rx_sv; /* The SV that is the regexp. */
111 regexp *rx; /* perl core regexp structure */
112 regexp_internal *rxi; /* internal data for regexp object pprivate field */
113 char *start; /* Start of input for compile */
114 char *end; /* End of input for compile */
115 char *parse; /* Input-scan pointer. */
116 I32 whilem_seen; /* number of WHILEM in this expr */
117 regnode *emit_start; /* Start of emitted-code area */
118 regnode *emit_bound; /* First regnode outside of the allocated space */
119 regnode *emit; /* Code-emit pointer; ®dummy = don't = compiling */
120 I32 naughty; /* How bad is this pattern? */
121 I32 sawback; /* Did we see \1, ...? */
123 I32 size; /* Code size. */
124 I32 npar; /* Capture buffer count, (OPEN). */
125 I32 cpar; /* Capture buffer count, (CLOSE). */
126 I32 nestroot; /* root parens we are in - used by accept */
130 regnode **open_parens; /* pointers to open parens */
131 regnode **close_parens; /* pointers to close parens */
132 regnode *opend; /* END node in program */
133 I32 utf8; /* whether the pattern is utf8 or not */
134 I32 orig_utf8; /* whether the pattern was originally in utf8 */
135 /* XXX use this for future optimisation of case
136 * where pattern must be upgraded to utf8. */
137 I32 uni_semantics; /* If a d charset modifier should use unicode
138 rules, even if the pattern is not in
140 HV *paren_names; /* Paren names */
142 regnode **recurse; /* Recurse regops */
143 I32 recurse_count; /* Number of recurse regops */
146 I32 override_recoding;
148 char *starttry; /* -Dr: where regtry was called. */
149 #define RExC_starttry (pRExC_state->starttry)
152 const char *lastparse;
154 AV *paren_name_list; /* idx -> name */
155 #define RExC_lastparse (pRExC_state->lastparse)
156 #define RExC_lastnum (pRExC_state->lastnum)
157 #define RExC_paren_name_list (pRExC_state->paren_name_list)
161 #define RExC_flags (pRExC_state->flags)
162 #define RExC_precomp (pRExC_state->precomp)
163 #define RExC_rx_sv (pRExC_state->rx_sv)
164 #define RExC_rx (pRExC_state->rx)
165 #define RExC_rxi (pRExC_state->rxi)
166 #define RExC_start (pRExC_state->start)
167 #define RExC_end (pRExC_state->end)
168 #define RExC_parse (pRExC_state->parse)
169 #define RExC_whilem_seen (pRExC_state->whilem_seen)
170 #ifdef RE_TRACK_PATTERN_OFFSETS
171 #define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the others */
173 #define RExC_emit (pRExC_state->emit)
174 #define RExC_emit_start (pRExC_state->emit_start)
175 #define RExC_emit_bound (pRExC_state->emit_bound)
176 #define RExC_naughty (pRExC_state->naughty)
177 #define RExC_sawback (pRExC_state->sawback)
178 #define RExC_seen (pRExC_state->seen)
179 #define RExC_size (pRExC_state->size)
180 #define RExC_npar (pRExC_state->npar)
181 #define RExC_nestroot (pRExC_state->nestroot)
182 #define RExC_extralen (pRExC_state->extralen)
183 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
184 #define RExC_seen_evals (pRExC_state->seen_evals)
185 #define RExC_utf8 (pRExC_state->utf8)
186 #define RExC_uni_semantics (pRExC_state->uni_semantics)
187 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
188 #define RExC_open_parens (pRExC_state->open_parens)
189 #define RExC_close_parens (pRExC_state->close_parens)
190 #define RExC_opend (pRExC_state->opend)
191 #define RExC_paren_names (pRExC_state->paren_names)
192 #define RExC_recurse (pRExC_state->recurse)
193 #define RExC_recurse_count (pRExC_state->recurse_count)
194 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
195 #define RExC_contains_locale (pRExC_state->contains_locale)
196 #define RExC_override_recoding (pRExC_state->override_recoding)
199 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
200 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
201 ((*s) == '{' && regcurly(s)))
204 #undef SPSTART /* dratted cpp namespace... */
207 * Flags to be passed up and down.
209 #define WORST 0 /* Worst case. */
210 #define HASWIDTH 0x01 /* Known to match non-null strings. */
212 /* Simple enough to be STAR/PLUS operand, in an EXACT node must be a single
213 * character, and if utf8, must be invariant. Note that this is not the same thing as REGNODE_SIMPLE */
215 #define SPSTART 0x04 /* Starts with * or +. */
216 #define TRYAGAIN 0x08 /* Weeded out a declaration. */
217 #define POSTPONED 0x10 /* (?1),(?&name), (??{...}) or similar */
219 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
221 /* whether trie related optimizations are enabled */
222 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
223 #define TRIE_STUDY_OPT
224 #define FULL_TRIE_STUDY
230 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
231 #define PBITVAL(paren) (1 << ((paren) & 7))
232 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
233 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
234 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
236 /* If not already in utf8, do a longjmp back to the beginning */
237 #define UTF8_LONGJMP 42 /* Choose a value not likely to ever conflict */
238 #define REQUIRE_UTF8 STMT_START { \
239 if (! UTF) JMPENV_JUMP(UTF8_LONGJMP); \
242 /* About scan_data_t.
244 During optimisation we recurse through the regexp program performing
245 various inplace (keyhole style) optimisations. In addition study_chunk
246 and scan_commit populate this data structure with information about
247 what strings MUST appear in the pattern. We look for the longest
248 string that must appear at a fixed location, and we look for the
249 longest string that may appear at a floating location. So for instance
254 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
255 strings (because they follow a .* construct). study_chunk will identify
256 both FOO and BAR as being the longest fixed and floating strings respectively.
258 The strings can be composites, for instance
262 will result in a composite fixed substring 'foo'.
264 For each string some basic information is maintained:
266 - offset or min_offset
267 This is the position the string must appear at, or not before.
268 It also implicitly (when combined with minlenp) tells us how many
269 characters must match before the string we are searching for.
270 Likewise when combined with minlenp and the length of the string it
271 tells us how many characters must appear after the string we have
275 Only used for floating strings. This is the rightmost point that
276 the string can appear at. If set to I32 max it indicates that the
277 string can occur infinitely far to the right.
280 A pointer to the minimum length of the pattern that the string
281 was found inside. This is important as in the case of positive
282 lookahead or positive lookbehind we can have multiple patterns
287 The minimum length of the pattern overall is 3, the minimum length
288 of the lookahead part is 3, but the minimum length of the part that
289 will actually match is 1. So 'FOO's minimum length is 3, but the
290 minimum length for the F is 1. This is important as the minimum length
291 is used to determine offsets in front of and behind the string being
292 looked for. Since strings can be composites this is the length of the
293 pattern at the time it was committed with a scan_commit. Note that
294 the length is calculated by study_chunk, so that the minimum lengths
295 are not known until the full pattern has been compiled, thus the
296 pointer to the value.
300 In the case of lookbehind the string being searched for can be
301 offset past the start point of the final matching string.
302 If this value was just blithely removed from the min_offset it would
303 invalidate some of the calculations for how many chars must match
304 before or after (as they are derived from min_offset and minlen and
305 the length of the string being searched for).
306 When the final pattern is compiled and the data is moved from the
307 scan_data_t structure into the regexp structure the information
308 about lookbehind is factored in, with the information that would
309 have been lost precalculated in the end_shift field for the
312 The fields pos_min and pos_delta are used to store the minimum offset
313 and the delta to the maximum offset at the current point in the pattern.
317 typedef struct scan_data_t {
318 /*I32 len_min; unused */
319 /*I32 len_delta; unused */
323 I32 last_end; /* min value, <0 unless valid. */
326 SV **longest; /* Either &l_fixed, or &l_float. */
327 SV *longest_fixed; /* longest fixed string found in pattern */
328 I32 offset_fixed; /* offset where it starts */
329 I32 *minlen_fixed; /* pointer to the minlen relevant to the string */
330 I32 lookbehind_fixed; /* is the position of the string modfied by LB */
331 SV *longest_float; /* longest floating string found in pattern */
332 I32 offset_float_min; /* earliest point in string it can appear */
333 I32 offset_float_max; /* latest point in string it can appear */
334 I32 *minlen_float; /* pointer to the minlen relevant to the string */
335 I32 lookbehind_float; /* is the position of the string modified by LB */
339 struct regnode_charclass_class *start_class;
343 * Forward declarations for pregcomp()'s friends.
346 static const scan_data_t zero_scan_data =
347 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
349 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
350 #define SF_BEFORE_SEOL 0x0001
351 #define SF_BEFORE_MEOL 0x0002
352 #define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
353 #define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
356 # define SF_FIX_SHIFT_EOL (0+2)
357 # define SF_FL_SHIFT_EOL (0+4)
359 # define SF_FIX_SHIFT_EOL (+2)
360 # define SF_FL_SHIFT_EOL (+4)
363 #define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
364 #define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
366 #define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
367 #define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
368 #define SF_IS_INF 0x0040
369 #define SF_HAS_PAR 0x0080
370 #define SF_IN_PAR 0x0100
371 #define SF_HAS_EVAL 0x0200
372 #define SCF_DO_SUBSTR 0x0400
373 #define SCF_DO_STCLASS_AND 0x0800
374 #define SCF_DO_STCLASS_OR 0x1000
375 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
376 #define SCF_WHILEM_VISITED_POS 0x2000
378 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
379 #define SCF_SEEN_ACCEPT 0x8000
381 #define UTF cBOOL(RExC_utf8)
382 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
383 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
384 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_DEPENDS_CHARSET)
385 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) >= REGEX_UNICODE_CHARSET)
386 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_RESTRICTED_CHARSET)
387 #define MORE_ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
388 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) >= REGEX_ASCII_RESTRICTED_CHARSET)
390 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
392 #define OOB_UNICODE 12345678
393 #define OOB_NAMEDCLASS -1
395 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
396 #define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
399 /* length of regex to show in messages that don't mark a position within */
400 #define RegexLengthToShowInErrorMessages 127
403 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
404 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
405 * op/pragma/warn/regcomp.
407 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
408 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
410 #define REPORT_LOCATION " in regex; marked by " MARKER1 " in m/%.*s" MARKER2 "%s/"
413 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
414 * arg. Show regex, up to a maximum length. If it's too long, chop and add
417 #define _FAIL(code) STMT_START { \
418 const char *ellipses = ""; \
419 IV len = RExC_end - RExC_precomp; \
422 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
423 if (len > RegexLengthToShowInErrorMessages) { \
424 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
425 len = RegexLengthToShowInErrorMessages - 10; \
431 #define FAIL(msg) _FAIL( \
432 Perl_croak(aTHX_ "%s in regex m/%.*s%s/", \
433 msg, (int)len, RExC_precomp, ellipses))
435 #define FAIL2(msg,arg) _FAIL( \
436 Perl_croak(aTHX_ msg " in regex m/%.*s%s/", \
437 arg, (int)len, RExC_precomp, ellipses))
440 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
442 #define Simple_vFAIL(m) STMT_START { \
443 const IV offset = RExC_parse - RExC_precomp; \
444 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
445 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
449 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
451 #define vFAIL(m) STMT_START { \
453 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
458 * Like Simple_vFAIL(), but accepts two arguments.
460 #define Simple_vFAIL2(m,a1) STMT_START { \
461 const IV offset = RExC_parse - RExC_precomp; \
462 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, \
463 (int)offset, RExC_precomp, RExC_precomp + offset); \
467 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
469 #define vFAIL2(m,a1) STMT_START { \
471 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
472 Simple_vFAIL2(m, a1); \
477 * Like Simple_vFAIL(), but accepts three arguments.
479 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
480 const IV offset = RExC_parse - RExC_precomp; \
481 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, \
482 (int)offset, RExC_precomp, RExC_precomp + offset); \
486 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
488 #define vFAIL3(m,a1,a2) STMT_START { \
490 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
491 Simple_vFAIL3(m, a1, a2); \
495 * Like Simple_vFAIL(), but accepts four arguments.
497 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
498 const IV offset = RExC_parse - RExC_precomp; \
499 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, a3, \
500 (int)offset, RExC_precomp, RExC_precomp + offset); \
503 #define ckWARNreg(loc,m) STMT_START { \
504 const IV offset = loc - RExC_precomp; \
505 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
506 (int)offset, RExC_precomp, RExC_precomp + offset); \
509 #define ckWARNregdep(loc,m) STMT_START { \
510 const IV offset = loc - RExC_precomp; \
511 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
513 (int)offset, RExC_precomp, RExC_precomp + offset); \
516 #define ckWARN2regdep(loc,m, a1) STMT_START { \
517 const IV offset = loc - RExC_precomp; \
518 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
520 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
523 #define ckWARN2reg(loc, m, a1) STMT_START { \
524 const IV offset = loc - RExC_precomp; \
525 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
526 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
529 #define vWARN3(loc, m, a1, a2) STMT_START { \
530 const IV offset = loc - RExC_precomp; \
531 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
532 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
535 #define ckWARN3reg(loc, m, a1, a2) STMT_START { \
536 const IV offset = loc - RExC_precomp; \
537 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
538 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
541 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \
542 const IV offset = loc - RExC_precomp; \
543 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
544 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
547 #define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
548 const IV offset = loc - RExC_precomp; \
549 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
550 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
553 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
554 const IV offset = loc - RExC_precomp; \
555 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
556 a1, a2, a3, a4, (int)offset, RExC_precomp, RExC_precomp + offset); \
560 /* Allow for side effects in s */
561 #define REGC(c,s) STMT_START { \
562 if (!SIZE_ONLY) *(s) = (c); else (void)(s); \
565 /* Macros for recording node offsets. 20001227 mjd@plover.com
566 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
567 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
568 * Element 0 holds the number n.
569 * Position is 1 indexed.
571 #ifndef RE_TRACK_PATTERN_OFFSETS
572 #define Set_Node_Offset_To_R(node,byte)
573 #define Set_Node_Offset(node,byte)
574 #define Set_Cur_Node_Offset
575 #define Set_Node_Length_To_R(node,len)
576 #define Set_Node_Length(node,len)
577 #define Set_Node_Cur_Length(node)
578 #define Node_Offset(n)
579 #define Node_Length(n)
580 #define Set_Node_Offset_Length(node,offset,len)
581 #define ProgLen(ri) ri->u.proglen
582 #define SetProgLen(ri,x) ri->u.proglen = x
584 #define ProgLen(ri) ri->u.offsets[0]
585 #define SetProgLen(ri,x) ri->u.offsets[0] = x
586 #define Set_Node_Offset_To_R(node,byte) STMT_START { \
588 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
589 __LINE__, (int)(node), (int)(byte))); \
591 Perl_croak(aTHX_ "value of node is %d in Offset macro", (int)(node)); \
593 RExC_offsets[2*(node)-1] = (byte); \
598 #define Set_Node_Offset(node,byte) \
599 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
600 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
602 #define Set_Node_Length_To_R(node,len) STMT_START { \
604 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
605 __LINE__, (int)(node), (int)(len))); \
607 Perl_croak(aTHX_ "value of node is %d in Length macro", (int)(node)); \
609 RExC_offsets[2*(node)] = (len); \
614 #define Set_Node_Length(node,len) \
615 Set_Node_Length_To_R((node)-RExC_emit_start, len)
616 #define Set_Cur_Node_Length(len) Set_Node_Length(RExC_emit, len)
617 #define Set_Node_Cur_Length(node) \
618 Set_Node_Length(node, RExC_parse - parse_start)
620 /* Get offsets and lengths */
621 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
622 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
624 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
625 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
626 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
630 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
631 #define EXPERIMENTAL_INPLACESCAN
632 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
634 #define DEBUG_STUDYDATA(str,data,depth) \
635 DEBUG_OPTIMISE_MORE_r(if(data){ \
636 PerlIO_printf(Perl_debug_log, \
637 "%*s" str "Pos:%"IVdf"/%"IVdf \
638 " Flags: 0x%"UVXf" Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
639 (int)(depth)*2, "", \
640 (IV)((data)->pos_min), \
641 (IV)((data)->pos_delta), \
642 (UV)((data)->flags), \
643 (IV)((data)->whilem_c), \
644 (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
645 is_inf ? "INF " : "" \
647 if ((data)->last_found) \
648 PerlIO_printf(Perl_debug_log, \
649 "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
650 " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
651 SvPVX_const((data)->last_found), \
652 (IV)((data)->last_end), \
653 (IV)((data)->last_start_min), \
654 (IV)((data)->last_start_max), \
655 ((data)->longest && \
656 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
657 SvPVX_const((data)->longest_fixed), \
658 (IV)((data)->offset_fixed), \
659 ((data)->longest && \
660 (data)->longest==&((data)->longest_float)) ? "*" : "", \
661 SvPVX_const((data)->longest_float), \
662 (IV)((data)->offset_float_min), \
663 (IV)((data)->offset_float_max) \
665 PerlIO_printf(Perl_debug_log,"\n"); \
668 static void clear_re(pTHX_ void *r);
670 /* Mark that we cannot extend a found fixed substring at this point.
671 Update the longest found anchored substring and the longest found
672 floating substrings if needed. */
675 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data, I32 *minlenp, int is_inf)
677 const STRLEN l = CHR_SVLEN(data->last_found);
678 const STRLEN old_l = CHR_SVLEN(*data->longest);
679 GET_RE_DEBUG_FLAGS_DECL;
681 PERL_ARGS_ASSERT_SCAN_COMMIT;
683 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
684 SvSetMagicSV(*data->longest, data->last_found);
685 if (*data->longest == data->longest_fixed) {
686 data->offset_fixed = l ? data->last_start_min : data->pos_min;
687 if (data->flags & SF_BEFORE_EOL)
689 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
691 data->flags &= ~SF_FIX_BEFORE_EOL;
692 data->minlen_fixed=minlenp;
693 data->lookbehind_fixed=0;
695 else { /* *data->longest == data->longest_float */
696 data->offset_float_min = l ? data->last_start_min : data->pos_min;
697 data->offset_float_max = (l
698 ? data->last_start_max
699 : data->pos_min + data->pos_delta);
700 if (is_inf || (U32)data->offset_float_max > (U32)I32_MAX)
701 data->offset_float_max = I32_MAX;
702 if (data->flags & SF_BEFORE_EOL)
704 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
706 data->flags &= ~SF_FL_BEFORE_EOL;
707 data->minlen_float=minlenp;
708 data->lookbehind_float=0;
711 SvCUR_set(data->last_found, 0);
713 SV * const sv = data->last_found;
714 if (SvUTF8(sv) && SvMAGICAL(sv)) {
715 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
721 data->flags &= ~SF_BEFORE_EOL;
722 DEBUG_STUDYDATA("commit: ",data,0);
725 /* Can match anything (initialization) */
727 S_cl_anything(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
729 PERL_ARGS_ASSERT_CL_ANYTHING;
731 ANYOF_BITMAP_SETALL(cl);
732 cl->flags = ANYOF_CLASS|ANYOF_EOS|ANYOF_UNICODE_ALL
733 |ANYOF_LOC_NONBITMAP_FOLD|ANYOF_NON_UTF8_LATIN1_ALL;
735 /* If any portion of the regex is to operate under locale rules,
736 * initialization includes it. The reason this isn't done for all regexes
737 * is that the optimizer was written under the assumption that locale was
738 * all-or-nothing. Given the complexity and lack of documentation in the
739 * optimizer, and that there are inadequate test cases for locale, so many
740 * parts of it may not work properly, it is safest to avoid locale unless
742 if (RExC_contains_locale) {
743 ANYOF_CLASS_SETALL(cl); /* /l uses class */
744 cl->flags |= ANYOF_LOCALE;
747 ANYOF_CLASS_ZERO(cl); /* Only /l uses class now */
751 /* Can match anything (initialization) */
753 S_cl_is_anything(const struct regnode_charclass_class *cl)
757 PERL_ARGS_ASSERT_CL_IS_ANYTHING;
759 for (value = 0; value <= ANYOF_MAX; value += 2)
760 if (ANYOF_CLASS_TEST(cl, value) && ANYOF_CLASS_TEST(cl, value + 1))
762 if (!(cl->flags & ANYOF_UNICODE_ALL))
764 if (!ANYOF_BITMAP_TESTALLSET((const void*)cl))
769 /* Can match anything (initialization) */
771 S_cl_init(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
773 PERL_ARGS_ASSERT_CL_INIT;
775 Zero(cl, 1, struct regnode_charclass_class);
777 cl_anything(pRExC_state, cl);
778 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
781 /* These two functions currently do the exact same thing */
782 #define cl_init_zero S_cl_init
784 /* 'AND' a given class with another one. Can create false positives. 'cl'
785 * should not be inverted. 'and_with->flags & ANYOF_CLASS' should be 0 if
786 * 'and_with' is a regnode_charclass instead of a regnode_charclass_class. */
788 S_cl_and(struct regnode_charclass_class *cl,
789 const struct regnode_charclass_class *and_with)
791 PERL_ARGS_ASSERT_CL_AND;
793 assert(and_with->type == ANYOF);
795 /* I (khw) am not sure all these restrictions are necessary XXX */
796 if (!(ANYOF_CLASS_TEST_ANY_SET(and_with))
797 && !(ANYOF_CLASS_TEST_ANY_SET(cl))
798 && (and_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
799 && !(and_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
800 && !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) {
803 if (and_with->flags & ANYOF_INVERT)
804 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
805 cl->bitmap[i] &= ~and_with->bitmap[i];
807 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
808 cl->bitmap[i] &= and_with->bitmap[i];
809 } /* XXXX: logic is complicated otherwise, leave it along for a moment. */
811 if (and_with->flags & ANYOF_INVERT) {
813 /* Here, the and'ed node is inverted. Get the AND of the flags that
814 * aren't affected by the inversion. Those that are affected are
815 * handled individually below */
816 U8 affected_flags = cl->flags & ~INVERSION_UNAFFECTED_FLAGS;
817 cl->flags &= (and_with->flags & INVERSION_UNAFFECTED_FLAGS);
818 cl->flags |= affected_flags;
820 /* We currently don't know how to deal with things that aren't in the
821 * bitmap, but we know that the intersection is no greater than what
822 * is already in cl, so let there be false positives that get sorted
823 * out after the synthetic start class succeeds, and the node is
824 * matched for real. */
826 /* The inversion of these two flags indicate that the resulting
827 * intersection doesn't have them */
828 if (and_with->flags & ANYOF_UNICODE_ALL) {
829 cl->flags &= ~ANYOF_UNICODE_ALL;
831 if (and_with->flags & ANYOF_NON_UTF8_LATIN1_ALL) {
832 cl->flags &= ~ANYOF_NON_UTF8_LATIN1_ALL;
835 else { /* and'd node is not inverted */
836 U8 outside_bitmap_but_not_utf8; /* Temp variable */
838 if (! ANYOF_NONBITMAP(and_with)) {
840 /* Here 'and_with' doesn't match anything outside the bitmap
841 * (except possibly ANYOF_UNICODE_ALL), which means the
842 * intersection can't either, except for ANYOF_UNICODE_ALL, in
843 * which case we don't know what the intersection is, but it's no
844 * greater than what cl already has, so can just leave it alone,
845 * with possible false positives */
846 if (! (and_with->flags & ANYOF_UNICODE_ALL)) {
847 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
848 cl->flags &= ~ANYOF_NONBITMAP_NON_UTF8;
851 else if (! ANYOF_NONBITMAP(cl)) {
853 /* Here, 'and_with' does match something outside the bitmap, and cl
854 * doesn't have a list of things to match outside the bitmap. If
855 * cl can match all code points above 255, the intersection will
856 * be those above-255 code points that 'and_with' matches. If cl
857 * can't match all Unicode code points, it means that it can't
858 * match anything outside the bitmap (since the 'if' that got us
859 * into this block tested for that), so we leave the bitmap empty.
861 if (cl->flags & ANYOF_UNICODE_ALL) {
862 ARG_SET(cl, ARG(and_with));
864 /* and_with's ARG may match things that don't require UTF8.
865 * And now cl's will too, in spite of this being an 'and'. See
866 * the comments below about the kludge */
867 cl->flags |= and_with->flags & ANYOF_NONBITMAP_NON_UTF8;
871 /* Here, both 'and_with' and cl match something outside the
872 * bitmap. Currently we do not do the intersection, so just match
873 * whatever cl had at the beginning. */
877 /* Take the intersection of the two sets of flags. However, the
878 * ANYOF_NONBITMAP_NON_UTF8 flag is treated as an 'or'. This is a
879 * kludge around the fact that this flag is not treated like the others
880 * which are initialized in cl_anything(). The way the optimizer works
881 * is that the synthetic start class (SSC) is initialized to match
882 * anything, and then the first time a real node is encountered, its
883 * values are AND'd with the SSC's with the result being the values of
884 * the real node. However, there are paths through the optimizer where
885 * the AND never gets called, so those initialized bits are set
886 * inappropriately, which is not usually a big deal, as they just cause
887 * false positives in the SSC, which will just mean a probably
888 * imperceptible slow down in execution. However this bit has a
889 * higher false positive consequence in that it can cause utf8.pm,
890 * utf8_heavy.pl ... to be loaded when not necessary, which is a much
891 * bigger slowdown and also causes significant extra memory to be used.
892 * In order to prevent this, the code now takes a different tack. The
893 * bit isn't set unless some part of the regular expression needs it,
894 * but once set it won't get cleared. This means that these extra
895 * modules won't get loaded unless there was some path through the
896 * pattern that would have required them anyway, and so any false
897 * positives that occur by not ANDing them out when they could be
898 * aren't as severe as they would be if we treated this bit like all
900 outside_bitmap_but_not_utf8 = (cl->flags | and_with->flags)
901 & ANYOF_NONBITMAP_NON_UTF8;
902 cl->flags &= and_with->flags;
903 cl->flags |= outside_bitmap_but_not_utf8;
907 /* 'OR' a given class with another one. Can create false positives. 'cl'
908 * should not be inverted. 'or_with->flags & ANYOF_CLASS' should be 0 if
909 * 'or_with' is a regnode_charclass instead of a regnode_charclass_class. */
911 S_cl_or(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl, const struct regnode_charclass_class *or_with)
913 PERL_ARGS_ASSERT_CL_OR;
915 if (or_with->flags & ANYOF_INVERT) {
917 /* Here, the or'd node is to be inverted. This means we take the
918 * complement of everything not in the bitmap, but currently we don't
919 * know what that is, so give up and match anything */
920 if (ANYOF_NONBITMAP(or_with)) {
921 cl_anything(pRExC_state, cl);
924 * (B1 | CL1) | (!B2 & !CL2) = (B1 | !B2 & !CL2) | (CL1 | (!B2 & !CL2))
925 * <= (B1 | !B2) | (CL1 | !CL2)
926 * which is wasteful if CL2 is small, but we ignore CL2:
927 * (B1 | CL1) | (!B2 & !CL2) <= (B1 | CL1) | !B2 = (B1 | !B2) | CL1
928 * XXXX Can we handle case-fold? Unclear:
929 * (OK1(i) | OK1(i')) | !(OK1(i) | OK1(i')) =
930 * (OK1(i) | OK1(i')) | (!OK1(i) & !OK1(i'))
932 else if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
933 && !(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
934 && !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD) ) {
937 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
938 cl->bitmap[i] |= ~or_with->bitmap[i];
939 } /* XXXX: logic is complicated otherwise */
941 cl_anything(pRExC_state, cl);
944 /* And, we can just take the union of the flags that aren't affected
945 * by the inversion */
946 cl->flags |= or_with->flags & INVERSION_UNAFFECTED_FLAGS;
948 /* For the remaining flags:
949 ANYOF_UNICODE_ALL and inverted means to not match anything above
950 255, which means that the union with cl should just be
951 what cl has in it, so can ignore this flag
952 ANYOF_NON_UTF8_LATIN1_ALL and inverted means if not utf8 and ord
953 is 127-255 to match them, but then invert that, so the
954 union with cl should just be what cl has in it, so can
957 } else { /* 'or_with' is not inverted */
958 /* (B1 | CL1) | (B2 | CL2) = (B1 | B2) | (CL1 | CL2)) */
959 if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
960 && (!(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
961 || (cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) ) {
964 /* OR char bitmap and class bitmap separately */
965 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
966 cl->bitmap[i] |= or_with->bitmap[i];
967 if (ANYOF_CLASS_TEST_ANY_SET(or_with)) {
968 for (i = 0; i < ANYOF_CLASSBITMAP_SIZE; i++)
969 cl->classflags[i] |= or_with->classflags[i];
970 cl->flags |= ANYOF_CLASS;
973 else { /* XXXX: logic is complicated, leave it along for a moment. */
974 cl_anything(pRExC_state, cl);
977 if (ANYOF_NONBITMAP(or_with)) {
979 /* Use the added node's outside-the-bit-map match if there isn't a
980 * conflict. If there is a conflict (both nodes match something
981 * outside the bitmap, but what they match outside is not the same
982 * pointer, and hence not easily compared until XXX we extend
983 * inversion lists this far), give up and allow the start class to
984 * match everything outside the bitmap. If that stuff is all above
985 * 255, can just set UNICODE_ALL, otherwise caould be anything. */
986 if (! ANYOF_NONBITMAP(cl)) {
987 ARG_SET(cl, ARG(or_with));
989 else if (ARG(cl) != ARG(or_with)) {
991 if ((or_with->flags & ANYOF_NONBITMAP_NON_UTF8)) {
992 cl_anything(pRExC_state, cl);
995 cl->flags |= ANYOF_UNICODE_ALL;
1000 /* Take the union */
1001 cl->flags |= or_with->flags;
1005 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
1006 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
1007 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
1008 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list ? (TRIE_LIST_CUR( idx ) - 1) : 0 )
1013 dump_trie(trie,widecharmap,revcharmap)
1014 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
1015 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
1017 These routines dump out a trie in a somewhat readable format.
1018 The _interim_ variants are used for debugging the interim
1019 tables that are used to generate the final compressed
1020 representation which is what dump_trie expects.
1022 Part of the reason for their existence is to provide a form
1023 of documentation as to how the different representations function.
1028 Dumps the final compressed table form of the trie to Perl_debug_log.
1029 Used for debugging make_trie().
1033 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
1034 AV *revcharmap, U32 depth)
1037 SV *sv=sv_newmortal();
1038 int colwidth= widecharmap ? 6 : 4;
1040 GET_RE_DEBUG_FLAGS_DECL;
1042 PERL_ARGS_ASSERT_DUMP_TRIE;
1044 PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
1045 (int)depth * 2 + 2,"",
1046 "Match","Base","Ofs" );
1048 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
1049 SV ** const tmp = av_fetch( revcharmap, state, 0);
1051 PerlIO_printf( Perl_debug_log, "%*s",
1053 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1054 PL_colors[0], PL_colors[1],
1055 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1056 PERL_PV_ESCAPE_FIRSTCHAR
1061 PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
1062 (int)depth * 2 + 2,"");
1064 for( state = 0 ; state < trie->uniquecharcount ; state++ )
1065 PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
1066 PerlIO_printf( Perl_debug_log, "\n");
1068 for( state = 1 ; state < trie->statecount ; state++ ) {
1069 const U32 base = trie->states[ state ].trans.base;
1071 PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|", (int)depth * 2 + 2,"", (UV)state);
1073 if ( trie->states[ state ].wordnum ) {
1074 PerlIO_printf( Perl_debug_log, " W%4X", trie->states[ state ].wordnum );
1076 PerlIO_printf( Perl_debug_log, "%6s", "" );
1079 PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
1084 while( ( base + ofs < trie->uniquecharcount ) ||
1085 ( base + ofs - trie->uniquecharcount < trie->lasttrans
1086 && trie->trans[ base + ofs - trie->uniquecharcount ].check != state))
1089 PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
1091 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
1092 if ( ( base + ofs >= trie->uniquecharcount ) &&
1093 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
1094 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
1096 PerlIO_printf( Perl_debug_log, "%*"UVXf,
1098 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next );
1100 PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
1104 PerlIO_printf( Perl_debug_log, "]");
1107 PerlIO_printf( Perl_debug_log, "\n" );
1109 PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=", (int)depth*2, "");
1110 for (word=1; word <= trie->wordcount; word++) {
1111 PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
1112 (int)word, (int)(trie->wordinfo[word].prev),
1113 (int)(trie->wordinfo[word].len));
1115 PerlIO_printf(Perl_debug_log, "\n" );
1118 Dumps a fully constructed but uncompressed trie in list form.
1119 List tries normally only are used for construction when the number of
1120 possible chars (trie->uniquecharcount) is very high.
1121 Used for debugging make_trie().
1124 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
1125 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1129 SV *sv=sv_newmortal();
1130 int colwidth= widecharmap ? 6 : 4;
1131 GET_RE_DEBUG_FLAGS_DECL;
1133 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
1135 /* print out the table precompression. */
1136 PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
1137 (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
1138 "------:-----+-----------------\n" );
1140 for( state=1 ; state < next_alloc ; state ++ ) {
1143 PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
1144 (int)depth * 2 + 2,"", (UV)state );
1145 if ( ! trie->states[ state ].wordnum ) {
1146 PerlIO_printf( Perl_debug_log, "%5s| ","");
1148 PerlIO_printf( Perl_debug_log, "W%4x| ",
1149 trie->states[ state ].wordnum
1152 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
1153 SV ** const tmp = av_fetch( revcharmap, TRIE_LIST_ITEM(state,charid).forid, 0);
1155 PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
1157 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1158 PL_colors[0], PL_colors[1],
1159 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1160 PERL_PV_ESCAPE_FIRSTCHAR
1162 TRIE_LIST_ITEM(state,charid).forid,
1163 (UV)TRIE_LIST_ITEM(state,charid).newstate
1166 PerlIO_printf(Perl_debug_log, "\n%*s| ",
1167 (int)((depth * 2) + 14), "");
1170 PerlIO_printf( Perl_debug_log, "\n");
1175 Dumps a fully constructed but uncompressed trie in table form.
1176 This is the normal DFA style state transition table, with a few
1177 twists to facilitate compression later.
1178 Used for debugging make_trie().
1181 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
1182 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1187 SV *sv=sv_newmortal();
1188 int colwidth= widecharmap ? 6 : 4;
1189 GET_RE_DEBUG_FLAGS_DECL;
1191 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
1194 print out the table precompression so that we can do a visual check
1195 that they are identical.
1198 PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
1200 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1201 SV ** const tmp = av_fetch( revcharmap, charid, 0);
1203 PerlIO_printf( Perl_debug_log, "%*s",
1205 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1206 PL_colors[0], PL_colors[1],
1207 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1208 PERL_PV_ESCAPE_FIRSTCHAR
1214 PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
1216 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
1217 PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
1220 PerlIO_printf( Perl_debug_log, "\n" );
1222 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
1224 PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
1225 (int)depth * 2 + 2,"",
1226 (UV)TRIE_NODENUM( state ) );
1228 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1229 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
1231 PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
1233 PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
1235 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
1236 PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n", (UV)trie->trans[ state ].check );
1238 PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n", (UV)trie->trans[ state ].check,
1239 trie->states[ TRIE_NODENUM( state ) ].wordnum );
1247 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
1248 startbranch: the first branch in the whole branch sequence
1249 first : start branch of sequence of branch-exact nodes.
1250 May be the same as startbranch
1251 last : Thing following the last branch.
1252 May be the same as tail.
1253 tail : item following the branch sequence
1254 count : words in the sequence
1255 flags : currently the OP() type we will be building one of /EXACT(|F|Fl)/
1256 depth : indent depth
1258 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
1260 A trie is an N'ary tree where the branches are determined by digital
1261 decomposition of the key. IE, at the root node you look up the 1st character and
1262 follow that branch repeat until you find the end of the branches. Nodes can be
1263 marked as "accepting" meaning they represent a complete word. Eg:
1267 would convert into the following structure. Numbers represent states, letters
1268 following numbers represent valid transitions on the letter from that state, if
1269 the number is in square brackets it represents an accepting state, otherwise it
1270 will be in parenthesis.
1272 +-h->+-e->[3]-+-r->(8)-+-s->[9]
1276 (1) +-i->(6)-+-s->[7]
1278 +-s->(3)-+-h->(4)-+-e->[5]
1280 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
1282 This shows that when matching against the string 'hers' we will begin at state 1
1283 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
1284 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
1285 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
1286 single traverse. We store a mapping from accepting to state to which word was
1287 matched, and then when we have multiple possibilities we try to complete the
1288 rest of the regex in the order in which they occured in the alternation.
1290 The only prior NFA like behaviour that would be changed by the TRIE support is
1291 the silent ignoring of duplicate alternations which are of the form:
1293 / (DUPE|DUPE) X? (?{ ... }) Y /x
1295 Thus EVAL blocks following a trie may be called a different number of times with
1296 and without the optimisation. With the optimisations dupes will be silently
1297 ignored. This inconsistent behaviour of EVAL type nodes is well established as
1298 the following demonstrates:
1300 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
1302 which prints out 'word' three times, but
1304 'words'=~/(word|word|word)(?{ print $1 })S/
1306 which doesnt print it out at all. This is due to other optimisations kicking in.
1308 Example of what happens on a structural level:
1310 The regexp /(ac|ad|ab)+/ will produce the following debug output:
1312 1: CURLYM[1] {1,32767}(18)
1323 This would be optimizable with startbranch=5, first=5, last=16, tail=16
1324 and should turn into:
1326 1: CURLYM[1] {1,32767}(18)
1328 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
1336 Cases where tail != last would be like /(?foo|bar)baz/:
1346 which would be optimizable with startbranch=1, first=1, last=7, tail=8
1347 and would end up looking like:
1350 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
1357 d = uvuni_to_utf8_flags(d, uv, 0);
1359 is the recommended Unicode-aware way of saying
1364 #define TRIE_STORE_REVCHAR \
1367 SV *zlopp = newSV(2); \
1368 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
1369 unsigned const char *const kapow = uvuni_to_utf8(flrbbbbb, uvc & 0xFF); \
1370 SvCUR_set(zlopp, kapow - flrbbbbb); \
1373 av_push(revcharmap, zlopp); \
1375 char ooooff = (char)uvc; \
1376 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
1380 #define TRIE_READ_CHAR STMT_START { \
1384 if ( foldlen > 0 ) { \
1385 uvc = utf8n_to_uvuni( scan, UTF8_MAXLEN, &len, uniflags ); \
1390 len = UTF8SKIP(uc);\
1391 uvc = to_utf8_fold( uc, foldbuf, &foldlen); \
1392 foldlen -= UNISKIP( uvc ); \
1393 scan = foldbuf + UNISKIP( uvc ); \
1396 uvc = utf8n_to_uvuni( (const U8*)uc, UTF8_MAXLEN, &len, uniflags);\
1406 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
1407 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
1408 U32 ging = TRIE_LIST_LEN( state ) *= 2; \
1409 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
1411 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
1412 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
1413 TRIE_LIST_CUR( state )++; \
1416 #define TRIE_LIST_NEW(state) STMT_START { \
1417 Newxz( trie->states[ state ].trans.list, \
1418 4, reg_trie_trans_le ); \
1419 TRIE_LIST_CUR( state ) = 1; \
1420 TRIE_LIST_LEN( state ) = 4; \
1423 #define TRIE_HANDLE_WORD(state) STMT_START { \
1424 U16 dupe= trie->states[ state ].wordnum; \
1425 regnode * const noper_next = regnext( noper ); \
1428 /* store the word for dumping */ \
1430 if (OP(noper) != NOTHING) \
1431 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
1433 tmp = newSVpvn_utf8( "", 0, UTF ); \
1434 av_push( trie_words, tmp ); \
1438 trie->wordinfo[curword].prev = 0; \
1439 trie->wordinfo[curword].len = wordlen; \
1440 trie->wordinfo[curword].accept = state; \
1442 if ( noper_next < tail ) { \
1444 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, sizeof(U16) ); \
1445 trie->jump[curword] = (U16)(noper_next - convert); \
1447 jumper = noper_next; \
1449 nextbranch= regnext(cur); \
1453 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
1454 /* chain, so that when the bits of chain are later */\
1455 /* linked together, the dups appear in the chain */\
1456 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
1457 trie->wordinfo[dupe].prev = curword; \
1459 /* we haven't inserted this word yet. */ \
1460 trie->states[ state ].wordnum = curword; \
1465 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
1466 ( ( base + charid >= ucharcount \
1467 && base + charid < ubound \
1468 && state == trie->trans[ base - ucharcount + charid ].check \
1469 && trie->trans[ base - ucharcount + charid ].next ) \
1470 ? trie->trans[ base - ucharcount + charid ].next \
1471 : ( state==1 ? special : 0 ) \
1475 #define MADE_JUMP_TRIE 2
1476 #define MADE_EXACT_TRIE 4
1479 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch, regnode *first, regnode *last, regnode *tail, U32 word_count, U32 flags, U32 depth)
1482 /* first pass, loop through and scan words */
1483 reg_trie_data *trie;
1484 HV *widecharmap = NULL;
1485 AV *revcharmap = newAV();
1487 const U32 uniflags = UTF8_ALLOW_DEFAULT;
1492 regnode *jumper = NULL;
1493 regnode *nextbranch = NULL;
1494 regnode *convert = NULL;
1495 U32 *prev_states; /* temp array mapping each state to previous one */
1496 /* we just use folder as a flag in utf8 */
1497 const U8 * folder = NULL;
1500 const U32 data_slot = add_data( pRExC_state, 4, "tuuu" );
1501 AV *trie_words = NULL;
1502 /* along with revcharmap, this only used during construction but both are
1503 * useful during debugging so we store them in the struct when debugging.
1506 const U32 data_slot = add_data( pRExC_state, 2, "tu" );
1507 STRLEN trie_charcount=0;
1509 SV *re_trie_maxbuff;
1510 GET_RE_DEBUG_FLAGS_DECL;
1512 PERL_ARGS_ASSERT_MAKE_TRIE;
1514 PERL_UNUSED_ARG(depth);
1520 case EXACTFU: folder = PL_fold_latin1; break;
1521 case EXACTF: folder = PL_fold; break;
1522 case EXACTFL: folder = PL_fold_locale; break;
1523 default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u", (unsigned) flags );
1526 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
1528 trie->startstate = 1;
1529 trie->wordcount = word_count;
1530 RExC_rxi->data->data[ data_slot ] = (void*)trie;
1531 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
1532 if (!(UTF && folder))
1533 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
1534 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
1535 trie->wordcount+1, sizeof(reg_trie_wordinfo));
1538 trie_words = newAV();
1541 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
1542 if (!SvIOK(re_trie_maxbuff)) {
1543 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
1546 PerlIO_printf( Perl_debug_log,
1547 "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
1548 (int)depth * 2 + 2, "",
1549 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
1550 REG_NODE_NUM(last), REG_NODE_NUM(tail),
1554 /* Find the node we are going to overwrite */
1555 if ( first == startbranch && OP( last ) != BRANCH ) {
1556 /* whole branch chain */
1559 /* branch sub-chain */
1560 convert = NEXTOPER( first );
1563 /* -- First loop and Setup --
1565 We first traverse the branches and scan each word to determine if it
1566 contains widechars, and how many unique chars there are, this is
1567 important as we have to build a table with at least as many columns as we
1570 We use an array of integers to represent the character codes 0..255
1571 (trie->charmap) and we use a an HV* to store Unicode characters. We use the
1572 native representation of the character value as the key and IV's for the
1575 *TODO* If we keep track of how many times each character is used we can
1576 remap the columns so that the table compression later on is more
1577 efficient in terms of memory by ensuring the most common value is in the
1578 middle and the least common are on the outside. IMO this would be better
1579 than a most to least common mapping as theres a decent chance the most
1580 common letter will share a node with the least common, meaning the node
1581 will not be compressible. With a middle is most common approach the worst
1582 case is when we have the least common nodes twice.
1586 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1587 regnode * const noper = NEXTOPER( cur );
1588 const U8 *uc = (U8*)STRING( noper );
1589 const U8 * const e = uc + STR_LEN( noper );
1591 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1592 const U8 *scan = (U8*)NULL;
1593 U32 wordlen = 0; /* required init */
1595 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the bitmap?*/
1597 if (OP(noper) == NOTHING) {
1601 if ( set_bit ) /* bitmap only alloced when !(UTF&&Folding) */
1602 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
1603 regardless of encoding */
1605 for ( ; uc < e ; uc += len ) {
1606 TRIE_CHARCOUNT(trie)++;
1610 if ( !trie->charmap[ uvc ] ) {
1611 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
1613 trie->charmap[ folder[ uvc ] ] = trie->charmap[ uvc ];
1617 /* store the codepoint in the bitmap, and its folded
1619 TRIE_BITMAP_SET(trie,uvc);
1621 /* store the folded codepoint */
1622 if ( folder ) TRIE_BITMAP_SET(trie,folder[ uvc ]);
1625 /* store first byte of utf8 representation of
1626 variant codepoints */
1627 if (! UNI_IS_INVARIANT(uvc)) {
1628 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
1631 set_bit = 0; /* We've done our bit :-) */
1636 widecharmap = newHV();
1638 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
1641 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
1643 if ( !SvTRUE( *svpp ) ) {
1644 sv_setiv( *svpp, ++trie->uniquecharcount );
1649 if( cur == first ) {
1652 } else if (chars < trie->minlen) {
1654 } else if (chars > trie->maxlen) {
1658 } /* end first pass */
1659 DEBUG_TRIE_COMPILE_r(
1660 PerlIO_printf( Perl_debug_log, "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
1661 (int)depth * 2 + 2,"",
1662 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
1663 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
1664 (int)trie->minlen, (int)trie->maxlen )
1668 We now know what we are dealing with in terms of unique chars and
1669 string sizes so we can calculate how much memory a naive
1670 representation using a flat table will take. If it's over a reasonable
1671 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
1672 conservative but potentially much slower representation using an array
1675 At the end we convert both representations into the same compressed
1676 form that will be used in regexec.c for matching with. The latter
1677 is a form that cannot be used to construct with but has memory
1678 properties similar to the list form and access properties similar
1679 to the table form making it both suitable for fast searches and
1680 small enough that its feasable to store for the duration of a program.
1682 See the comment in the code where the compressed table is produced
1683 inplace from the flat tabe representation for an explanation of how
1684 the compression works.
1689 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
1692 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1) > SvIV(re_trie_maxbuff) ) {
1694 Second Pass -- Array Of Lists Representation
1696 Each state will be represented by a list of charid:state records
1697 (reg_trie_trans_le) the first such element holds the CUR and LEN
1698 points of the allocated array. (See defines above).
1700 We build the initial structure using the lists, and then convert
1701 it into the compressed table form which allows faster lookups
1702 (but cant be modified once converted).
1705 STRLEN transcount = 1;
1707 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1708 "%*sCompiling trie using list compiler\n",
1709 (int)depth * 2 + 2, ""));
1711 trie->states = (reg_trie_state *)
1712 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1713 sizeof(reg_trie_state) );
1717 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1719 regnode * const noper = NEXTOPER( cur );
1720 U8 *uc = (U8*)STRING( noper );
1721 const U8 * const e = uc + STR_LEN( noper );
1722 U32 state = 1; /* required init */
1723 U16 charid = 0; /* sanity init */
1724 U8 *scan = (U8*)NULL; /* sanity init */
1725 STRLEN foldlen = 0; /* required init */
1726 U32 wordlen = 0; /* required init */
1727 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1729 if (OP(noper) != NOTHING) {
1730 for ( ; uc < e ; uc += len ) {
1735 charid = trie->charmap[ uvc ];
1737 SV** const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1741 charid=(U16)SvIV( *svpp );
1744 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1751 if ( !trie->states[ state ].trans.list ) {
1752 TRIE_LIST_NEW( state );
1754 for ( check = 1; check <= TRIE_LIST_USED( state ); check++ ) {
1755 if ( TRIE_LIST_ITEM( state, check ).forid == charid ) {
1756 newstate = TRIE_LIST_ITEM( state, check ).newstate;
1761 newstate = next_alloc++;
1762 prev_states[newstate] = state;
1763 TRIE_LIST_PUSH( state, charid, newstate );
1768 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1772 TRIE_HANDLE_WORD(state);
1774 } /* end second pass */
1776 /* next alloc is the NEXT state to be allocated */
1777 trie->statecount = next_alloc;
1778 trie->states = (reg_trie_state *)
1779 PerlMemShared_realloc( trie->states,
1781 * sizeof(reg_trie_state) );
1783 /* and now dump it out before we compress it */
1784 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
1785 revcharmap, next_alloc,
1789 trie->trans = (reg_trie_trans *)
1790 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
1797 for( state=1 ; state < next_alloc ; state ++ ) {
1801 DEBUG_TRIE_COMPILE_MORE_r(
1802 PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
1806 if (trie->states[state].trans.list) {
1807 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
1811 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1812 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
1813 if ( forid < minid ) {
1815 } else if ( forid > maxid ) {
1819 if ( transcount < tp + maxid - minid + 1) {
1821 trie->trans = (reg_trie_trans *)
1822 PerlMemShared_realloc( trie->trans,
1824 * sizeof(reg_trie_trans) );
1825 Zero( trie->trans + (transcount / 2), transcount / 2 , reg_trie_trans );
1827 base = trie->uniquecharcount + tp - minid;
1828 if ( maxid == minid ) {
1830 for ( ; zp < tp ; zp++ ) {
1831 if ( ! trie->trans[ zp ].next ) {
1832 base = trie->uniquecharcount + zp - minid;
1833 trie->trans[ zp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1834 trie->trans[ zp ].check = state;
1840 trie->trans[ tp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1841 trie->trans[ tp ].check = state;
1846 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1847 const U32 tid = base - trie->uniquecharcount + TRIE_LIST_ITEM( state, idx ).forid;
1848 trie->trans[ tid ].next = TRIE_LIST_ITEM( state, idx ).newstate;
1849 trie->trans[ tid ].check = state;
1851 tp += ( maxid - minid + 1 );
1853 Safefree(trie->states[ state ].trans.list);
1856 DEBUG_TRIE_COMPILE_MORE_r(
1857 PerlIO_printf( Perl_debug_log, " base: %d\n",base);
1860 trie->states[ state ].trans.base=base;
1862 trie->lasttrans = tp + 1;
1866 Second Pass -- Flat Table Representation.
1868 we dont use the 0 slot of either trans[] or states[] so we add 1 to each.
1869 We know that we will need Charcount+1 trans at most to store the data
1870 (one row per char at worst case) So we preallocate both structures
1871 assuming worst case.
1873 We then construct the trie using only the .next slots of the entry
1876 We use the .check field of the first entry of the node temporarily to
1877 make compression both faster and easier by keeping track of how many non
1878 zero fields are in the node.
1880 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
1883 There are two terms at use here: state as a TRIE_NODEIDX() which is a
1884 number representing the first entry of the node, and state as a
1885 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1) and
1886 TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3) if there
1887 are 2 entrys per node. eg:
1895 The table is internally in the right hand, idx form. However as we also
1896 have to deal with the states array which is indexed by nodenum we have to
1897 use TRIE_NODENUM() to convert.
1900 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1901 "%*sCompiling trie using table compiler\n",
1902 (int)depth * 2 + 2, ""));
1904 trie->trans = (reg_trie_trans *)
1905 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
1906 * trie->uniquecharcount + 1,
1907 sizeof(reg_trie_trans) );
1908 trie->states = (reg_trie_state *)
1909 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1910 sizeof(reg_trie_state) );
1911 next_alloc = trie->uniquecharcount + 1;
1914 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1916 regnode * const noper = NEXTOPER( cur );
1917 const U8 *uc = (U8*)STRING( noper );
1918 const U8 * const e = uc + STR_LEN( noper );
1920 U32 state = 1; /* required init */
1922 U16 charid = 0; /* sanity init */
1923 U32 accept_state = 0; /* sanity init */
1924 U8 *scan = (U8*)NULL; /* sanity init */
1926 STRLEN foldlen = 0; /* required init */
1927 U32 wordlen = 0; /* required init */
1928 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1930 if ( OP(noper) != NOTHING ) {
1931 for ( ; uc < e ; uc += len ) {
1936 charid = trie->charmap[ uvc ];
1938 SV* const * const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1939 charid = svpp ? (U16)SvIV(*svpp) : 0;
1943 if ( !trie->trans[ state + charid ].next ) {
1944 trie->trans[ state + charid ].next = next_alloc;
1945 trie->trans[ state ].check++;
1946 prev_states[TRIE_NODENUM(next_alloc)]
1947 = TRIE_NODENUM(state);
1948 next_alloc += trie->uniquecharcount;
1950 state = trie->trans[ state + charid ].next;
1952 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1954 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1957 accept_state = TRIE_NODENUM( state );
1958 TRIE_HANDLE_WORD(accept_state);
1960 } /* end second pass */
1962 /* and now dump it out before we compress it */
1963 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
1965 next_alloc, depth+1));
1969 * Inplace compress the table.*
1971 For sparse data sets the table constructed by the trie algorithm will
1972 be mostly 0/FAIL transitions or to put it another way mostly empty.
1973 (Note that leaf nodes will not contain any transitions.)
1975 This algorithm compresses the tables by eliminating most such
1976 transitions, at the cost of a modest bit of extra work during lookup:
1978 - Each states[] entry contains a .base field which indicates the
1979 index in the state[] array wheres its transition data is stored.
1981 - If .base is 0 there are no valid transitions from that node.
1983 - If .base is nonzero then charid is added to it to find an entry in
1986 -If trans[states[state].base+charid].check!=state then the
1987 transition is taken to be a 0/Fail transition. Thus if there are fail
1988 transitions at the front of the node then the .base offset will point
1989 somewhere inside the previous nodes data (or maybe even into a node
1990 even earlier), but the .check field determines if the transition is
1994 The following process inplace converts the table to the compressed
1995 table: We first do not compress the root node 1,and mark all its
1996 .check pointers as 1 and set its .base pointer as 1 as well. This
1997 allows us to do a DFA construction from the compressed table later,
1998 and ensures that any .base pointers we calculate later are greater
2001 - We set 'pos' to indicate the first entry of the second node.
2003 - We then iterate over the columns of the node, finding the first and
2004 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
2005 and set the .check pointers accordingly, and advance pos
2006 appropriately and repreat for the next node. Note that when we copy
2007 the next pointers we have to convert them from the original
2008 NODEIDX form to NODENUM form as the former is not valid post
2011 - If a node has no transitions used we mark its base as 0 and do not
2012 advance the pos pointer.
2014 - If a node only has one transition we use a second pointer into the
2015 structure to fill in allocated fail transitions from other states.
2016 This pointer is independent of the main pointer and scans forward
2017 looking for null transitions that are allocated to a state. When it
2018 finds one it writes the single transition into the "hole". If the
2019 pointer doesnt find one the single transition is appended as normal.
2021 - Once compressed we can Renew/realloc the structures to release the
2024 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
2025 specifically Fig 3.47 and the associated pseudocode.
2029 const U32 laststate = TRIE_NODENUM( next_alloc );
2032 trie->statecount = laststate;
2034 for ( state = 1 ; state < laststate ; state++ ) {
2036 const U32 stateidx = TRIE_NODEIDX( state );
2037 const U32 o_used = trie->trans[ stateidx ].check;
2038 U32 used = trie->trans[ stateidx ].check;
2039 trie->trans[ stateidx ].check = 0;
2041 for ( charid = 0 ; used && charid < trie->uniquecharcount ; charid++ ) {
2042 if ( flag || trie->trans[ stateidx + charid ].next ) {
2043 if ( trie->trans[ stateidx + charid ].next ) {
2045 for ( ; zp < pos ; zp++ ) {
2046 if ( ! trie->trans[ zp ].next ) {
2050 trie->states[ state ].trans.base = zp + trie->uniquecharcount - charid ;
2051 trie->trans[ zp ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2052 trie->trans[ zp ].check = state;
2053 if ( ++zp > pos ) pos = zp;
2060 trie->states[ state ].trans.base = pos + trie->uniquecharcount - charid ;
2062 trie->trans[ pos ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2063 trie->trans[ pos ].check = state;
2068 trie->lasttrans = pos + 1;
2069 trie->states = (reg_trie_state *)
2070 PerlMemShared_realloc( trie->states, laststate
2071 * sizeof(reg_trie_state) );
2072 DEBUG_TRIE_COMPILE_MORE_r(
2073 PerlIO_printf( Perl_debug_log,
2074 "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
2075 (int)depth * 2 + 2,"",
2076 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1 ),
2079 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
2082 } /* end table compress */
2084 DEBUG_TRIE_COMPILE_MORE_r(
2085 PerlIO_printf(Perl_debug_log, "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
2086 (int)depth * 2 + 2, "",
2087 (UV)trie->statecount,
2088 (UV)trie->lasttrans)
2090 /* resize the trans array to remove unused space */
2091 trie->trans = (reg_trie_trans *)
2092 PerlMemShared_realloc( trie->trans, trie->lasttrans
2093 * sizeof(reg_trie_trans) );
2095 { /* Modify the program and insert the new TRIE node */
2096 U8 nodetype =(U8)(flags & 0xFF);
2100 regnode *optimize = NULL;
2101 #ifdef RE_TRACK_PATTERN_OFFSETS
2104 U32 mjd_nodelen = 0;
2105 #endif /* RE_TRACK_PATTERN_OFFSETS */
2106 #endif /* DEBUGGING */
2108 This means we convert either the first branch or the first Exact,
2109 depending on whether the thing following (in 'last') is a branch
2110 or not and whther first is the startbranch (ie is it a sub part of
2111 the alternation or is it the whole thing.)
2112 Assuming its a sub part we convert the EXACT otherwise we convert
2113 the whole branch sequence, including the first.
2115 /* Find the node we are going to overwrite */
2116 if ( first != startbranch || OP( last ) == BRANCH ) {
2117 /* branch sub-chain */
2118 NEXT_OFF( first ) = (U16)(last - first);
2119 #ifdef RE_TRACK_PATTERN_OFFSETS
2121 mjd_offset= Node_Offset((convert));
2122 mjd_nodelen= Node_Length((convert));
2125 /* whole branch chain */
2127 #ifdef RE_TRACK_PATTERN_OFFSETS
2130 const regnode *nop = NEXTOPER( convert );
2131 mjd_offset= Node_Offset((nop));
2132 mjd_nodelen= Node_Length((nop));
2136 PerlIO_printf(Perl_debug_log, "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
2137 (int)depth * 2 + 2, "",
2138 (UV)mjd_offset, (UV)mjd_nodelen)
2141 /* But first we check to see if there is a common prefix we can
2142 split out as an EXACT and put in front of the TRIE node. */
2143 trie->startstate= 1;
2144 if ( trie->bitmap && !widecharmap && !trie->jump ) {
2146 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
2150 const U32 base = trie->states[ state ].trans.base;
2152 if ( trie->states[state].wordnum )
2155 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2156 if ( ( base + ofs >= trie->uniquecharcount ) &&
2157 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
2158 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
2160 if ( ++count > 1 ) {
2161 SV **tmp = av_fetch( revcharmap, ofs, 0);
2162 const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
2163 if ( state == 1 ) break;
2165 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
2167 PerlIO_printf(Perl_debug_log,
2168 "%*sNew Start State=%"UVuf" Class: [",
2169 (int)depth * 2 + 2, "",
2172 SV ** const tmp = av_fetch( revcharmap, idx, 0);
2173 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
2175 TRIE_BITMAP_SET(trie,*ch);
2177 TRIE_BITMAP_SET(trie, folder[ *ch ]);
2179 PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
2183 TRIE_BITMAP_SET(trie,*ch);
2185 TRIE_BITMAP_SET(trie,folder[ *ch ]);
2186 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
2192 SV **tmp = av_fetch( revcharmap, idx, 0);
2194 char *ch = SvPV( *tmp, len );
2196 SV *sv=sv_newmortal();
2197 PerlIO_printf( Perl_debug_log,
2198 "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
2199 (int)depth * 2 + 2, "",
2201 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
2202 PL_colors[0], PL_colors[1],
2203 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2204 PERL_PV_ESCAPE_FIRSTCHAR
2209 OP( convert ) = nodetype;
2210 str=STRING(convert);
2213 STR_LEN(convert) += len;
2219 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
2224 trie->prefixlen = (state-1);
2226 regnode *n = convert+NODE_SZ_STR(convert);
2227 NEXT_OFF(convert) = NODE_SZ_STR(convert);
2228 trie->startstate = state;
2229 trie->minlen -= (state - 1);
2230 trie->maxlen -= (state - 1);
2232 /* At least the UNICOS C compiler choked on this
2233 * being argument to DEBUG_r(), so let's just have
2236 #ifdef PERL_EXT_RE_BUILD
2242 regnode *fix = convert;
2243 U32 word = trie->wordcount;
2245 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
2246 while( ++fix < n ) {
2247 Set_Node_Offset_Length(fix, 0, 0);
2250 SV ** const tmp = av_fetch( trie_words, word, 0 );
2252 if ( STR_LEN(convert) <= SvCUR(*tmp) )
2253 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
2255 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
2263 NEXT_OFF(convert) = (U16)(tail - convert);
2264 DEBUG_r(optimize= n);
2270 if ( trie->maxlen ) {
2271 NEXT_OFF( convert ) = (U16)(tail - convert);
2272 ARG_SET( convert, data_slot );
2273 /* Store the offset to the first unabsorbed branch in
2274 jump[0], which is otherwise unused by the jump logic.
2275 We use this when dumping a trie and during optimisation. */
2277 trie->jump[0] = (U16)(nextbranch - convert);
2279 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
2280 * and there is a bitmap
2281 * and the first "jump target" node we found leaves enough room
2282 * then convert the TRIE node into a TRIEC node, with the bitmap
2283 * embedded inline in the opcode - this is hypothetically faster.
2285 if ( !trie->states[trie->startstate].wordnum
2287 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
2289 OP( convert ) = TRIEC;
2290 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
2291 PerlMemShared_free(trie->bitmap);
2294 OP( convert ) = TRIE;
2296 /* store the type in the flags */
2297 convert->flags = nodetype;
2301 + regarglen[ OP( convert ) ];
2303 /* XXX We really should free up the resource in trie now,
2304 as we won't use them - (which resources?) dmq */
2306 /* needed for dumping*/
2307 DEBUG_r(if (optimize) {
2308 regnode *opt = convert;
2310 while ( ++opt < optimize) {
2311 Set_Node_Offset_Length(opt,0,0);
2314 Try to clean up some of the debris left after the
2317 while( optimize < jumper ) {
2318 mjd_nodelen += Node_Length((optimize));
2319 OP( optimize ) = OPTIMIZED;
2320 Set_Node_Offset_Length(optimize,0,0);
2323 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
2325 } /* end node insert */
2327 /* Finish populating the prev field of the wordinfo array. Walk back
2328 * from each accept state until we find another accept state, and if
2329 * so, point the first word's .prev field at the second word. If the
2330 * second already has a .prev field set, stop now. This will be the
2331 * case either if we've already processed that word's accept state,
2332 * or that state had multiple words, and the overspill words were
2333 * already linked up earlier.
2340 for (word=1; word <= trie->wordcount; word++) {
2342 if (trie->wordinfo[word].prev)
2344 state = trie->wordinfo[word].accept;
2346 state = prev_states[state];
2349 prev = trie->states[state].wordnum;
2353 trie->wordinfo[word].prev = prev;
2355 Safefree(prev_states);
2359 /* and now dump out the compressed format */
2360 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
2362 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
2364 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
2365 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
2367 SvREFCNT_dec(revcharmap);
2371 : trie->startstate>1
2377 S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source, regnode *stclass, U32 depth)
2379 /* The Trie is constructed and compressed now so we can build a fail array if it's needed
2381 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and 3.32 in the
2382 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi, Ullman 1985/88
2385 We find the fail state for each state in the trie, this state is the longest proper
2386 suffix of the current state's 'word' that is also a proper prefix of another word in our
2387 trie. State 1 represents the word '' and is thus the default fail state. This allows
2388 the DFA not to have to restart after its tried and failed a word at a given point, it
2389 simply continues as though it had been matching the other word in the first place.
2391 'abcdgu'=~/abcdefg|cdgu/
2392 When we get to 'd' we are still matching the first word, we would encounter 'g' which would
2393 fail, which would bring us to the state representing 'd' in the second word where we would
2394 try 'g' and succeed, proceeding to match 'cdgu'.
2396 /* add a fail transition */
2397 const U32 trie_offset = ARG(source);
2398 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
2400 const U32 ucharcount = trie->uniquecharcount;
2401 const U32 numstates = trie->statecount;
2402 const U32 ubound = trie->lasttrans + ucharcount;
2406 U32 base = trie->states[ 1 ].trans.base;
2409 const U32 data_slot = add_data( pRExC_state, 1, "T" );
2410 GET_RE_DEBUG_FLAGS_DECL;
2412 PERL_ARGS_ASSERT_MAKE_TRIE_FAILTABLE;
2414 PERL_UNUSED_ARG(depth);
2418 ARG_SET( stclass, data_slot );
2419 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
2420 RExC_rxi->data->data[ data_slot ] = (void*)aho;
2421 aho->trie=trie_offset;
2422 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
2423 Copy( trie->states, aho->states, numstates, reg_trie_state );
2424 Newxz( q, numstates, U32);
2425 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
2428 /* initialize fail[0..1] to be 1 so that we always have
2429 a valid final fail state */
2430 fail[ 0 ] = fail[ 1 ] = 1;
2432 for ( charid = 0; charid < ucharcount ; charid++ ) {
2433 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
2435 q[ q_write ] = newstate;
2436 /* set to point at the root */
2437 fail[ q[ q_write++ ] ]=1;
2440 while ( q_read < q_write) {
2441 const U32 cur = q[ q_read++ % numstates ];
2442 base = trie->states[ cur ].trans.base;
2444 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
2445 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
2447 U32 fail_state = cur;
2450 fail_state = fail[ fail_state ];
2451 fail_base = aho->states[ fail_state ].trans.base;
2452 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
2454 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
2455 fail[ ch_state ] = fail_state;
2456 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
2458 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
2460 q[ q_write++ % numstates] = ch_state;
2464 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
2465 when we fail in state 1, this allows us to use the
2466 charclass scan to find a valid start char. This is based on the principle
2467 that theres a good chance the string being searched contains lots of stuff
2468 that cant be a start char.
2470 fail[ 0 ] = fail[ 1 ] = 0;
2471 DEBUG_TRIE_COMPILE_r({
2472 PerlIO_printf(Perl_debug_log,
2473 "%*sStclass Failtable (%"UVuf" states): 0",
2474 (int)(depth * 2), "", (UV)numstates
2476 for( q_read=1; q_read<numstates; q_read++ ) {
2477 PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
2479 PerlIO_printf(Perl_debug_log, "\n");
2482 /*RExC_seen |= REG_SEEN_TRIEDFA;*/
2487 * There are strange code-generation bugs caused on sparc64 by gcc-2.95.2.
2488 * These need to be revisited when a newer toolchain becomes available.
2490 #if defined(__sparc64__) && defined(__GNUC__)
2491 # if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 96)
2492 # undef SPARC64_GCC_WORKAROUND
2493 # define SPARC64_GCC_WORKAROUND 1
2497 #define DEBUG_PEEP(str,scan,depth) \
2498 DEBUG_OPTIMISE_r({if (scan){ \
2499 SV * const mysv=sv_newmortal(); \
2500 regnode *Next = regnext(scan); \
2501 regprop(RExC_rx, mysv, scan); \
2502 PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)\n", \
2503 (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\
2504 Next ? (REG_NODE_NUM(Next)) : 0 ); \
2509 #define JOIN_EXACT(scan,min_change,flags) \
2510 if (PL_regkind[OP(scan)] == EXACT) \
2511 join_exact(pRExC_state,(scan),(min_change),(flags),NULL,depth+1)
2514 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan, IV *min_change, U32 flags,regnode *val, U32 depth) {
2515 /* Merge several consecutive EXACTish nodes into one. */
2516 regnode *n = regnext(scan);
2518 regnode *next = scan + NODE_SZ_STR(scan);
2522 regnode *stop = scan;
2523 GET_RE_DEBUG_FLAGS_DECL;
2525 PERL_UNUSED_ARG(depth);
2528 PERL_ARGS_ASSERT_JOIN_EXACT;
2529 #ifndef EXPERIMENTAL_INPLACESCAN
2530 PERL_UNUSED_ARG(flags);
2531 PERL_UNUSED_ARG(val);
2533 DEBUG_PEEP("join",scan,depth);
2535 /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
2536 * EXACT ones that are mergeable to the current one. */
2538 && (PL_regkind[OP(n)] == NOTHING
2539 || (stringok && OP(n) == OP(scan)))
2541 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
2544 if (OP(n) == TAIL || n > next)
2546 if (PL_regkind[OP(n)] == NOTHING) {
2547 DEBUG_PEEP("skip:",n,depth);
2548 NEXT_OFF(scan) += NEXT_OFF(n);
2549 next = n + NODE_STEP_REGNODE;
2556 else if (stringok) {
2557 const unsigned int oldl = STR_LEN(scan);
2558 regnode * const nnext = regnext(n);
2560 if (oldl + STR_LEN(n) > U8_MAX)
2563 DEBUG_PEEP("merg",n,depth);
2566 NEXT_OFF(scan) += NEXT_OFF(n);
2567 STR_LEN(scan) += STR_LEN(n);
2568 next = n + NODE_SZ_STR(n);
2569 /* Now we can overwrite *n : */
2570 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
2578 #ifdef EXPERIMENTAL_INPLACESCAN
2579 if (flags && !NEXT_OFF(n)) {
2580 DEBUG_PEEP("atch", val, depth);
2581 if (reg_off_by_arg[OP(n)]) {
2582 ARG_SET(n, val - n);
2585 NEXT_OFF(n) = val - n;
2591 #define GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS 0x0390
2592 #define IOTA_D_T GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS
2593 #define GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS 0x03B0
2594 #define UPSILON_D_T GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS
2598 /* Here, all the adjacent mergeable EXACTish nodes have been merged. We
2599 * can now analyze for sequences of problematic code points. (Prior to
2600 * this final joining, sequences could have been split over boundaries, and
2601 * hence missed). The sequences only happen in folding */
2604 && ( OP(scan) == EXACTF || OP(scan) == EXACTFU || OP(scan) == EXACTFA)
2605 && ( STR_LEN(scan) >= 6 ) )
2608 Two problematic code points in Unicode casefolding of EXACT nodes:
2610 U+0390 - GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
2611 U+03B0 - GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
2617 U+03B9 U+0308 U+0301 0xCE 0xB9 0xCC 0x88 0xCC 0x81
2618 U+03C5 U+0308 U+0301 0xCF 0x85 0xCC 0x88 0xCC 0x81
2620 This means that in case-insensitive matching (or "loose matching",
2621 as Unicode calls it), an EXACTF of length six (the UTF-8 encoded byte
2622 length of the above casefolded versions) can match a target string
2623 of length two (the byte length of UTF-8 encoded U+0390 or U+03B0).
2624 This would rather mess up the minimum length computation.
2626 What we'll do is to look for the tail four bytes, and then peek
2627 at the preceding two bytes to see whether we need to decrease
2628 the minimum length by four (six minus two).
2630 Thanks to the design of UTF-8, there cannot be false matches:
2631 A sequence of valid UTF-8 bytes cannot be a subsequence of
2632 another valid sequence of UTF-8 bytes.
2635 char * const s0 = STRING(scan), *s, *t;
2636 char * const s1 = s0 + STR_LEN(scan) - 1;
2637 char * const s2 = s1 - 4;
2638 #ifdef EBCDIC /* RD tunifold greek 0390 and 03B0 */
2639 const char t0[] = "\xaf\x49\xaf\x42";
2641 const char t0[] = "\xcc\x88\xcc\x81";
2643 const char * const t1 = t0 + 3;
2646 s < s2 && (t = ninstr(s, s1, t0, t1));
2649 if (((U8)t[-1] == 0x68 && (U8)t[-2] == 0xB4) ||
2650 ((U8)t[-1] == 0x46 && (U8)t[-2] == 0xB5))
2652 if (((U8)t[-1] == 0xB9 && (U8)t[-2] == 0xCE) ||
2653 ((U8)t[-1] == 0x85 && (U8)t[-2] == 0xCF))
2660 /* Allow dumping but overwriting the collection of skipped
2661 * ops and/or strings with fake optimized ops */
2662 n = scan + NODE_SZ_STR(scan);
2670 DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
2674 /* REx optimizer. Converts nodes into quicker variants "in place".
2675 Finds fixed substrings. */
2677 /* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
2678 to the position after last scanned or to NULL. */
2680 #define INIT_AND_WITHP \
2681 assert(!and_withp); \
2682 Newx(and_withp,1,struct regnode_charclass_class); \
2683 SAVEFREEPV(and_withp)
2685 /* this is a chain of data about sub patterns we are processing that
2686 need to be handled separately/specially in study_chunk. Its so
2687 we can simulate recursion without losing state. */
2689 typedef struct scan_frame {
2690 regnode *last; /* last node to process in this frame */
2691 regnode *next; /* next node to process when last is reached */
2692 struct scan_frame *prev; /*previous frame*/
2693 I32 stop; /* what stopparen do we use */
2697 #define SCAN_COMMIT(s, data, m) scan_commit(s, data, m, is_inf)
2699 #define CASE_SYNST_FNC(nAmE) \
2701 if (flags & SCF_DO_STCLASS_AND) { \
2702 for (value = 0; value < 256; value++) \
2703 if (!is_ ## nAmE ## _cp(value)) \
2704 ANYOF_BITMAP_CLEAR(data->start_class, value); \
2707 for (value = 0; value < 256; value++) \
2708 if (is_ ## nAmE ## _cp(value)) \
2709 ANYOF_BITMAP_SET(data->start_class, value); \
2713 if (flags & SCF_DO_STCLASS_AND) { \
2714 for (value = 0; value < 256; value++) \
2715 if (is_ ## nAmE ## _cp(value)) \
2716 ANYOF_BITMAP_CLEAR(data->start_class, value); \
2719 for (value = 0; value < 256; value++) \
2720 if (!is_ ## nAmE ## _cp(value)) \
2721 ANYOF_BITMAP_SET(data->start_class, value); \
2728 S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
2729 I32 *minlenp, I32 *deltap,
2734 struct regnode_charclass_class *and_withp,
2735 U32 flags, U32 depth)
2736 /* scanp: Start here (read-write). */
2737 /* deltap: Write maxlen-minlen here. */
2738 /* last: Stop before this one. */
2739 /* data: string data about the pattern */
2740 /* stopparen: treat close N as END */
2741 /* recursed: which subroutines have we recursed into */
2742 /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
2745 I32 min = 0, pars = 0, code;
2746 regnode *scan = *scanp, *next;
2748 int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
2749 int is_inf_internal = 0; /* The studied chunk is infinite */
2750 I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
2751 scan_data_t data_fake;
2752 SV *re_trie_maxbuff = NULL;
2753 regnode *first_non_open = scan;
2754 I32 stopmin = I32_MAX;
2755 scan_frame *frame = NULL;
2756 GET_RE_DEBUG_FLAGS_DECL;
2758 PERL_ARGS_ASSERT_STUDY_CHUNK;
2761 StructCopy(&zero_scan_data, &data_fake, scan_data_t);
2765 while (first_non_open && OP(first_non_open) == OPEN)
2766 first_non_open=regnext(first_non_open);
2771 while ( scan && OP(scan) != END && scan < last ){
2773 /* Peephole optimizer: */
2774 DEBUG_STUDYDATA("Peep:", data,depth);
2775 DEBUG_PEEP("Peep",scan,depth);
2776 JOIN_EXACT(scan,&min_change,0);
2778 /* Follow the next-chain of the current node and optimize
2779 away all the NOTHINGs from it. */
2780 if (OP(scan) != CURLYX) {
2781 const int max = (reg_off_by_arg[OP(scan)]
2783 /* I32 may be smaller than U16 on CRAYs! */
2784 : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
2785 int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
2789 /* Skip NOTHING and LONGJMP. */
2790 while ((n = regnext(n))
2791 && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
2792 || ((OP(n) == LONGJMP) && (noff = ARG(n))))
2793 && off + noff < max)
2795 if (reg_off_by_arg[OP(scan)])
2798 NEXT_OFF(scan) = off;
2803 /* The principal pseudo-switch. Cannot be a switch, since we
2804 look into several different things. */
2805 if (OP(scan) == BRANCH || OP(scan) == BRANCHJ
2806 || OP(scan) == IFTHEN) {
2807 next = regnext(scan);
2809 /* demq: the op(next)==code check is to see if we have "branch-branch" AFAICT */
2811 if (OP(next) == code || code == IFTHEN) {
2812 /* NOTE - There is similar code to this block below for handling
2813 TRIE nodes on a re-study. If you change stuff here check there
2815 I32 max1 = 0, min1 = I32_MAX, num = 0;
2816 struct regnode_charclass_class accum;
2817 regnode * const startbranch=scan;
2819 if (flags & SCF_DO_SUBSTR)
2820 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot merge strings after this. */
2821 if (flags & SCF_DO_STCLASS)
2822 cl_init_zero(pRExC_state, &accum);
2824 while (OP(scan) == code) {
2825 I32 deltanext, minnext, f = 0, fake;
2826 struct regnode_charclass_class this_class;
2829 data_fake.flags = 0;
2831 data_fake.whilem_c = data->whilem_c;
2832 data_fake.last_closep = data->last_closep;
2835 data_fake.last_closep = &fake;
2837 data_fake.pos_delta = delta;
2838 next = regnext(scan);
2839 scan = NEXTOPER(scan);
2841 scan = NEXTOPER(scan);
2842 if (flags & SCF_DO_STCLASS) {
2843 cl_init(pRExC_state, &this_class);
2844 data_fake.start_class = &this_class;
2845 f = SCF_DO_STCLASS_AND;
2847 if (flags & SCF_WHILEM_VISITED_POS)
2848 f |= SCF_WHILEM_VISITED_POS;
2850 /* we suppose the run is continuous, last=next...*/
2851 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
2853 stopparen, recursed, NULL, f,depth+1);
2856 if (max1 < minnext + deltanext)
2857 max1 = minnext + deltanext;
2858 if (deltanext == I32_MAX)
2859 is_inf = is_inf_internal = 1;
2861 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
2863 if (data_fake.flags & SCF_SEEN_ACCEPT) {
2864 if ( stopmin > minnext)
2865 stopmin = min + min1;
2866 flags &= ~SCF_DO_SUBSTR;
2868 data->flags |= SCF_SEEN_ACCEPT;
2871 if (data_fake.flags & SF_HAS_EVAL)
2872 data->flags |= SF_HAS_EVAL;
2873 data->whilem_c = data_fake.whilem_c;
2875 if (flags & SCF_DO_STCLASS)
2876 cl_or(pRExC_state, &accum, &this_class);
2878 if (code == IFTHEN && num < 2) /* Empty ELSE branch */
2880 if (flags & SCF_DO_SUBSTR) {
2881 data->pos_min += min1;
2882 data->pos_delta += max1 - min1;
2883 if (max1 != min1 || is_inf)
2884 data->longest = &(data->longest_float);
2887 delta += max1 - min1;
2888 if (flags & SCF_DO_STCLASS_OR) {
2889 cl_or(pRExC_state, data->start_class, &accum);
2891 cl_and(data->start_class, and_withp);
2892 flags &= ~SCF_DO_STCLASS;
2895 else if (flags & SCF_DO_STCLASS_AND) {
2897 cl_and(data->start_class, &accum);
2898 flags &= ~SCF_DO_STCLASS;
2901 /* Switch to OR mode: cache the old value of
2902 * data->start_class */
2904 StructCopy(data->start_class, and_withp,
2905 struct regnode_charclass_class);
2906 flags &= ~SCF_DO_STCLASS_AND;
2907 StructCopy(&accum, data->start_class,
2908 struct regnode_charclass_class);
2909 flags |= SCF_DO_STCLASS_OR;
2910 data->start_class->flags |= ANYOF_EOS;
2914 if (PERL_ENABLE_TRIE_OPTIMISATION && OP( startbranch ) == BRANCH ) {
2917 Assuming this was/is a branch we are dealing with: 'scan' now
2918 points at the item that follows the branch sequence, whatever
2919 it is. We now start at the beginning of the sequence and look
2926 which would be constructed from a pattern like /A|LIST|OF|WORDS/
2928 If we can find such a subsequence we need to turn the first
2929 element into a trie and then add the subsequent branch exact
2930 strings to the trie.
2934 1. patterns where the whole set of branches can be converted.
2936 2. patterns where only a subset can be converted.
2938 In case 1 we can replace the whole set with a single regop
2939 for the trie. In case 2 we need to keep the start and end
2942 'BRANCH EXACT; BRANCH EXACT; BRANCH X'
2943 becomes BRANCH TRIE; BRANCH X;
2945 There is an additional case, that being where there is a
2946 common prefix, which gets split out into an EXACT like node
2947 preceding the TRIE node.
2949 If x(1..n)==tail then we can do a simple trie, if not we make
2950 a "jump" trie, such that when we match the appropriate word
2951 we "jump" to the appropriate tail node. Essentially we turn
2952 a nested if into a case structure of sorts.
2957 if (!re_trie_maxbuff) {
2958 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
2959 if (!SvIOK(re_trie_maxbuff))
2960 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
2962 if ( SvIV(re_trie_maxbuff)>=0 ) {
2964 regnode *first = (regnode *)NULL;
2965 regnode *last = (regnode *)NULL;
2966 regnode *tail = scan;
2971 SV * const mysv = sv_newmortal(); /* for dumping */
2973 /* var tail is used because there may be a TAIL
2974 regop in the way. Ie, the exacts will point to the
2975 thing following the TAIL, but the last branch will
2976 point at the TAIL. So we advance tail. If we
2977 have nested (?:) we may have to move through several
2981 while ( OP( tail ) == TAIL ) {
2982 /* this is the TAIL generated by (?:) */
2983 tail = regnext( tail );
2988 regprop(RExC_rx, mysv, tail );
2989 PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
2990 (int)depth * 2 + 2, "",
2991 "Looking for TRIE'able sequences. Tail node is: ",
2992 SvPV_nolen_const( mysv )
2998 step through the branches, cur represents each
2999 branch, noper is the first thing to be matched
3000 as part of that branch and noper_next is the
3001 regnext() of that node. if noper is an EXACT
3002 and noper_next is the same as scan (our current
3003 position in the regex) then the EXACT branch is
3004 a possible optimization target. Once we have
3005 two or more consecutive such branches we can
3006 create a trie of the EXACT's contents and stich
3007 it in place. If the sequence represents all of
3008 the branches we eliminate the whole thing and
3009 replace it with a single TRIE. If it is a
3010 subsequence then we need to stitch it in. This
3011 means the first branch has to remain, and needs
3012 to be repointed at the item on the branch chain
3013 following the last branch optimized. This could
3014 be either a BRANCH, in which case the
3015 subsequence is internal, or it could be the
3016 item following the branch sequence in which
3017 case the subsequence is at the end.
3021 /* dont use tail as the end marker for this traverse */
3022 for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
3023 regnode * const noper = NEXTOPER( cur );
3024 #if defined(DEBUGGING) || defined(NOJUMPTRIE)
3025 regnode * const noper_next = regnext( noper );
3029 regprop(RExC_rx, mysv, cur);
3030 PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
3031 (int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) );
3033 regprop(RExC_rx, mysv, noper);
3034 PerlIO_printf( Perl_debug_log, " -> %s",
3035 SvPV_nolen_const(mysv));
3038 regprop(RExC_rx, mysv, noper_next );
3039 PerlIO_printf( Perl_debug_log,"\t=> %s\t",
3040 SvPV_nolen_const(mysv));
3042 PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d)\n",
3043 REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur) );
3045 if ( (((first && optype!=NOTHING) ? OP( noper ) == optype
3046 : PL_regkind[ OP( noper ) ] == EXACT )
3047 || OP(noper) == NOTHING )
3049 && noper_next == tail
3054 if ( !first || optype == NOTHING ) {
3055 if (!first) first = cur;
3056 optype = OP( noper );
3062 Currently the trie logic handles case insensitive matching properly only
3063 when the pattern is UTF-8 and the node is EXACTFU (thus forcing unicode
3066 If/when this is fixed the following define can be swapped
3067 in below to fully enable trie logic.
3069 #define TRIE_TYPE_IS_SAFE 1
3072 #define TRIE_TYPE_IS_SAFE ((UTF && optype == EXACTFU) || optype==EXACT)
3074 if ( last && TRIE_TYPE_IS_SAFE ) {
3075 make_trie( pRExC_state,
3076 startbranch, first, cur, tail, count,
3079 if ( PL_regkind[ OP( noper ) ] == EXACT
3081 && noper_next == tail
3086 optype = OP( noper );
3096 regprop(RExC_rx, mysv, cur);
3097 PerlIO_printf( Perl_debug_log,
3098 "%*s- %s (%d) <SCAN FINISHED>\n", (int)depth * 2 + 2,
3099 "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
3103 if ( last && TRIE_TYPE_IS_SAFE ) {
3104 made= make_trie( pRExC_state, startbranch, first, scan, tail, count, optype, depth+1 );
3105 #ifdef TRIE_STUDY_OPT
3106 if ( ((made == MADE_EXACT_TRIE &&
3107 startbranch == first)
3108 || ( first_non_open == first )) &&
3110 flags |= SCF_TRIE_RESTUDY;
3111 if ( startbranch == first
3114 RExC_seen &=~REG_TOP_LEVEL_BRANCHES;
3124 else if ( code == BRANCHJ ) { /* single branch is optimized. */
3125 scan = NEXTOPER(NEXTOPER(scan));
3126 } else /* single branch is optimized. */
3127 scan = NEXTOPER(scan);
3129 } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
3130 scan_frame *newframe = NULL;
3135 if (OP(scan) != SUSPEND) {
3136 /* set the pointer */
3137 if (OP(scan) == GOSUB) {
3139 RExC_recurse[ARG2L(scan)] = scan;
3140 start = RExC_open_parens[paren-1];
3141 end = RExC_close_parens[paren-1];
3144 start = RExC_rxi->program + 1;
3148 Newxz(recursed, (((RExC_npar)>>3) +1), U8);
3149 SAVEFREEPV(recursed);
3151 if (!PAREN_TEST(recursed,paren+1)) {
3152 PAREN_SET(recursed,paren+1);
3153 Newx(newframe,1,scan_frame);
3155 if (flags & SCF_DO_SUBSTR) {
3156 SCAN_COMMIT(pRExC_state,data,minlenp);
3157 data->longest = &(data->longest_float);
3159 is_inf = is_inf_internal = 1;
3160 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3161 cl_anything(pRExC_state, data->start_class);
3162 flags &= ~SCF_DO_STCLASS;
3165 Newx(newframe,1,scan_frame);
3168 end = regnext(scan);
3173 SAVEFREEPV(newframe);
3174 newframe->next = regnext(scan);
3175 newframe->last = last;
3176 newframe->stop = stopparen;
3177 newframe->prev = frame;
3187 else if (OP(scan) == EXACT) {
3188 I32 l = STR_LEN(scan);
3191 const U8 * const s = (U8*)STRING(scan);
3192 l = utf8_length(s, s + l);
3193 uc = utf8_to_uvchr(s, NULL);
3195 uc = *((U8*)STRING(scan));
3198 if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
3199 /* The code below prefers earlier match for fixed
3200 offset, later match for variable offset. */
3201 if (data->last_end == -1) { /* Update the start info. */
3202 data->last_start_min = data->pos_min;
3203 data->last_start_max = is_inf
3204 ? I32_MAX : data->pos_min + data->pos_delta;
3206 sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
3208 SvUTF8_on(data->last_found);
3210 SV * const sv = data->last_found;
3211 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
3212 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3213 if (mg && mg->mg_len >= 0)
3214 mg->mg_len += utf8_length((U8*)STRING(scan),
3215 (U8*)STRING(scan)+STR_LEN(scan));
3217 data->last_end = data->pos_min + l;
3218 data->pos_min += l; /* As in the first entry. */
3219 data->flags &= ~SF_BEFORE_EOL;
3221 if (flags & SCF_DO_STCLASS_AND) {
3222 /* Check whether it is compatible with what we know already! */
3226 /* If compatible, we or it in below. It is compatible if is
3227 * in the bitmp and either 1) its bit or its fold is set, or 2)
3228 * it's for a locale. Even if there isn't unicode semantics
3229 * here, at runtime there may be because of matching against a
3230 * utf8 string, so accept a possible false positive for
3231 * latin1-range folds */
3233 (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
3234 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3235 && (!(data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD)
3236 || !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3241 ANYOF_CLASS_ZERO(data->start_class);
3242 ANYOF_BITMAP_ZERO(data->start_class);
3244 ANYOF_BITMAP_SET(data->start_class, uc);
3245 else if (uc >= 0x100) {
3248 /* Some Unicode code points fold to the Latin1 range; as
3249 * XXX temporary code, instead of figuring out if this is
3250 * one, just assume it is and set all the start class bits
3251 * that could be some such above 255 code point's fold
3252 * which will generate fals positives. As the code
3253 * elsewhere that does compute the fold settles down, it
3254 * can be extracted out and re-used here */
3255 for (i = 0; i < 256; i++){
3256 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
3257 ANYOF_BITMAP_SET(data->start_class, i);
3261 data->start_class->flags &= ~ANYOF_EOS;
3263 data->start_class->flags &= ~ANYOF_UNICODE_ALL;
3265 else if (flags & SCF_DO_STCLASS_OR) {
3266 /* false positive possible if the class is case-folded */
3268 ANYOF_BITMAP_SET(data->start_class, uc);
3270 data->start_class->flags |= ANYOF_UNICODE_ALL;
3271 data->start_class->flags &= ~ANYOF_EOS;
3272 cl_and(data->start_class, and_withp);
3274 flags &= ~SCF_DO_STCLASS;
3276 else if (PL_regkind[OP(scan)] == EXACT) { /* But OP != EXACT! */
3277 I32 l = STR_LEN(scan);
3278 UV uc = *((U8*)STRING(scan));
3280 /* Search for fixed substrings supports EXACT only. */
3281 if (flags & SCF_DO_SUBSTR) {
3283 SCAN_COMMIT(pRExC_state, data, minlenp);
3286 const U8 * const s = (U8 *)STRING(scan);
3287 l = utf8_length(s, s + l);
3288 uc = utf8_to_uvchr(s, NULL);
3290 min += l + min_change;
3294 delta += abs(min_change);
3295 if (flags & SCF_DO_SUBSTR) {
3296 data->pos_min += l + min_change;
3297 if (data->pos_min < 0) {
3300 data->pos_delta += abs(min_change);
3302 data->longest = &(data->longest_float);
3305 if (flags & SCF_DO_STCLASS_AND) {
3306 /* Check whether it is compatible with what we know already! */
3309 (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
3310 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3311 && !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3315 ANYOF_CLASS_ZERO(data->start_class);
3316 ANYOF_BITMAP_ZERO(data->start_class);
3318 ANYOF_BITMAP_SET(data->start_class, uc);
3319 data->start_class->flags &= ~ANYOF_EOS;
3320 data->start_class->flags |= ANYOF_LOC_NONBITMAP_FOLD;
3321 if (OP(scan) == EXACTFL) {
3322 /* XXX This set is probably no longer necessary, and
3323 * probably wrong as LOCALE now is on in the initial
3325 data->start_class->flags |= ANYOF_LOCALE;
3329 /* Also set the other member of the fold pair. In case
3330 * that unicode semantics is called for at runtime, use
3331 * the full latin1 fold. (Can't do this for locale,
3332 * because not known until runtime */
3333 ANYOF_BITMAP_SET(data->start_class, PL_fold_latin1[uc]);
3335 /* All folds except under /iaa that include s, S, and
3336 * sharp_s also may include the others */
3337 if (OP(scan) != EXACTFA) {
3338 if (uc == 's' || uc == 'S') {
3339 ANYOF_BITMAP_SET(data->start_class,
3340 LATIN_SMALL_LETTER_SHARP_S);
3342 else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
3343 ANYOF_BITMAP_SET(data->start_class, 's');
3344 ANYOF_BITMAP_SET(data->start_class, 'S');
3349 else if (uc >= 0x100) {
3351 for (i = 0; i < 256; i++){
3352 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
3353 ANYOF_BITMAP_SET(data->start_class, i);
3358 else if (flags & SCF_DO_STCLASS_OR) {
3359 if (data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD) {
3360 /* false positive possible if the class is case-folded.
3361 Assume that the locale settings are the same... */
3363 ANYOF_BITMAP_SET(data->start_class, uc);
3364 if (OP(scan) != EXACTFL) {
3366 /* And set the other member of the fold pair, but
3367 * can't do that in locale because not known until
3369 ANYOF_BITMAP_SET(data->start_class,
3370 PL_fold_latin1[uc]);
3372 /* All folds except under /iaa that include s, S,
3373 * and sharp_s also may include the others */
3374 if (OP(scan) != EXACTFA) {
3375 if (uc == 's' || uc == 'S') {
3376 ANYOF_BITMAP_SET(data->start_class,
3377 LATIN_SMALL_LETTER_SHARP_S);
3379 else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
3380 ANYOF_BITMAP_SET(data->start_class, 's');
3381 ANYOF_BITMAP_SET(data->start_class, 'S');
3386 data->start_class->flags &= ~ANYOF_EOS;
3388 cl_and(data->start_class, and_withp);
3390 flags &= ~SCF_DO_STCLASS;
3392 else if (REGNODE_VARIES(OP(scan))) {
3393 I32 mincount, maxcount, minnext, deltanext, fl = 0;
3394 I32 f = flags, pos_before = 0;
3395 regnode * const oscan = scan;
3396 struct regnode_charclass_class this_class;
3397 struct regnode_charclass_class *oclass = NULL;
3398 I32 next_is_eval = 0;
3400 switch (PL_regkind[OP(scan)]) {
3401 case WHILEM: /* End of (?:...)* . */
3402 scan = NEXTOPER(scan);
3405 if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
3406 next = NEXTOPER(scan);
3407 if (OP(next) == EXACT || (flags & SCF_DO_STCLASS)) {
3409 maxcount = REG_INFTY;
3410 next = regnext(scan);
3411 scan = NEXTOPER(scan);
3415 if (flags & SCF_DO_SUBSTR)
3420 if (flags & SCF_DO_STCLASS) {
3422 maxcount = REG_INFTY;
3423 next = regnext(scan);
3424 scan = NEXTOPER(scan);
3427 is_inf = is_inf_internal = 1;
3428 scan = regnext(scan);
3429 if (flags & SCF_DO_SUBSTR) {
3430 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot extend fixed substrings */
3431 data->longest = &(data->longest_float);
3433 goto optimize_curly_tail;
3435 if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
3436 && (scan->flags == stopparen))
3441 mincount = ARG1(scan);
3442 maxcount = ARG2(scan);
3444 next = regnext(scan);
3445 if (OP(scan) == CURLYX) {
3446 I32 lp = (data ? *(data->last_closep) : 0);
3447 scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
3449 scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
3450 next_is_eval = (OP(scan) == EVAL);
3452 if (flags & SCF_DO_SUBSTR) {
3453 if (mincount == 0) SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot extend fixed substrings */
3454 pos_before = data->pos_min;
3458 data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
3460 data->flags |= SF_IS_INF;
3462 if (flags & SCF_DO_STCLASS) {
3463 cl_init(pRExC_state, &this_class);
3464 oclass = data->start_class;
3465 data->start_class = &this_class;
3466 f |= SCF_DO_STCLASS_AND;
3467 f &= ~SCF_DO_STCLASS_OR;
3469 /* Exclude from super-linear cache processing any {n,m}
3470 regops for which the combination of input pos and regex
3471 pos is not enough information to determine if a match
3474 For example, in the regex /foo(bar\s*){4,8}baz/ with the
3475 regex pos at the \s*, the prospects for a match depend not
3476 only on the input position but also on how many (bar\s*)
3477 repeats into the {4,8} we are. */
3478 if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
3479 f &= ~SCF_WHILEM_VISITED_POS;
3481 /* This will finish on WHILEM, setting scan, or on NULL: */
3482 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
3483 last, data, stopparen, recursed, NULL,
3485 ? (f & ~SCF_DO_SUBSTR) : f),depth+1);
3487 if (flags & SCF_DO_STCLASS)
3488 data->start_class = oclass;
3489 if (mincount == 0 || minnext == 0) {
3490 if (flags & SCF_DO_STCLASS_OR) {
3491 cl_or(pRExC_state, data->start_class, &this_class);
3493 else if (flags & SCF_DO_STCLASS_AND) {
3494 /* Switch to OR mode: cache the old value of
3495 * data->start_class */
3497 StructCopy(data->start_class, and_withp,
3498 struct regnode_charclass_class);
3499 flags &= ~SCF_DO_STCLASS_AND;
3500 StructCopy(&this_class, data->start_class,
3501 struct regnode_charclass_class);
3502 flags |= SCF_DO_STCLASS_OR;
3503 data->start_class->flags |= ANYOF_EOS;
3505 } else { /* Non-zero len */
3506 if (flags & SCF_DO_STCLASS_OR) {
3507 cl_or(pRExC_state, data->start_class, &this_class);
3508 cl_and(data->start_class, and_withp);
3510 else if (flags & SCF_DO_STCLASS_AND)
3511 cl_and(data->start_class, &this_class);
3512 flags &= ~SCF_DO_STCLASS;
3514 if (!scan) /* It was not CURLYX, but CURLY. */
3516 if ( /* ? quantifier ok, except for (?{ ... }) */
3517 (next_is_eval || !(mincount == 0 && maxcount == 1))
3518 && (minnext == 0) && (deltanext == 0)
3519 && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
3520 && maxcount <= REG_INFTY/3) /* Complement check for big count */
3522 ckWARNreg(RExC_parse,
3523 "Quantifier unexpected on zero-length expression");
3526 min += minnext * mincount;
3527 is_inf_internal |= ((maxcount == REG_INFTY
3528 && (minnext + deltanext) > 0)
3529 || deltanext == I32_MAX);
3530 is_inf |= is_inf_internal;
3531 delta += (minnext + deltanext) * maxcount - minnext * mincount;
3533 /* Try powerful optimization CURLYX => CURLYN. */
3534 if ( OP(oscan) == CURLYX && data
3535 && data->flags & SF_IN_PAR
3536 && !(data->flags & SF_HAS_EVAL)
3537 && !deltanext && minnext == 1 ) {
3538 /* Try to optimize to CURLYN. */
3539 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
3540 regnode * const nxt1 = nxt;
3547 if (!REGNODE_SIMPLE(OP(nxt))
3548 && !(PL_regkind[OP(nxt)] == EXACT
3549 && STR_LEN(nxt) == 1))
3555 if (OP(nxt) != CLOSE)
3557 if (RExC_open_parens) {
3558 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3559 RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
3561 /* Now we know that nxt2 is the only contents: */
3562 oscan->flags = (U8)ARG(nxt);
3564 OP(nxt1) = NOTHING; /* was OPEN. */
3567 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3568 NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
3569 NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
3570 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3571 OP(nxt + 1) = OPTIMIZED; /* was count. */
3572 NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
3577 /* Try optimization CURLYX => CURLYM. */
3578 if ( OP(oscan) == CURLYX && data
3579 && !(data->flags & SF_HAS_PAR)
3580 && !(data->flags & SF_HAS_EVAL)
3581 && !deltanext /* atom is fixed width */
3582 && minnext != 0 /* CURLYM can't handle zero width */
3584 /* XXXX How to optimize if data == 0? */
3585 /* Optimize to a simpler form. */
3586 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
3590 while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
3591 && (OP(nxt2) != WHILEM))
3593 OP(nxt2) = SUCCEED; /* Whas WHILEM */
3594 /* Need to optimize away parenths. */
3595 if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
3596 /* Set the parenth number. */
3597 regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
3599 oscan->flags = (U8)ARG(nxt);
3600 if (RExC_open_parens) {
3601 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3602 RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
3604 OP(nxt1) = OPTIMIZED; /* was OPEN. */
3605 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3608 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3609 OP(nxt + 1) = OPTIMIZED; /* was count. */
3610 NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
3611 NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
3614 while ( nxt1 && (OP(nxt1) != WHILEM)) {
3615 regnode *nnxt = regnext(nxt1);
3617 if (reg_off_by_arg[OP(nxt1)])
3618 ARG_SET(nxt1, nxt2 - nxt1);
3619 else if (nxt2 - nxt1 < U16_MAX)
3620 NEXT_OFF(nxt1) = nxt2 - nxt1;
3622 OP(nxt) = NOTHING; /* Cannot beautify */
3627 /* Optimize again: */
3628 study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
3629 NULL, stopparen, recursed, NULL, 0,depth+1);
3634 else if ((OP(oscan) == CURLYX)
3635 && (flags & SCF_WHILEM_VISITED_POS)
3636 /* See the comment on a similar expression above.
3637 However, this time it's not a subexpression
3638 we care about, but the expression itself. */
3639 && (maxcount == REG_INFTY)
3640 && data && ++data->whilem_c < 16) {
3641 /* This stays as CURLYX, we can put the count/of pair. */
3642 /* Find WHILEM (as in regexec.c) */
3643 regnode *nxt = oscan + NEXT_OFF(oscan);
3645 if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
3647 PREVOPER(nxt)->flags = (U8)(data->whilem_c
3648 | (RExC_whilem_seen << 4)); /* On WHILEM */
3650 if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
3652 if (flags & SCF_DO_SUBSTR) {
3653 SV *last_str = NULL;
3654 int counted = mincount != 0;
3656 if (data->last_end > 0 && mincount != 0) { /* Ends with a string. */
3657 #if defined(SPARC64_GCC_WORKAROUND)
3660 const char *s = NULL;
3663 if (pos_before >= data->last_start_min)
3666 b = data->last_start_min;
3669 s = SvPV_const(data->last_found, l);
3670 old = b - data->last_start_min;
3673 I32 b = pos_before >= data->last_start_min
3674 ? pos_before : data->last_start_min;
3676 const char * const s = SvPV_const(data->last_found, l);
3677 I32 old = b - data->last_start_min;
3681 old = utf8_hop((U8*)s, old) - (U8*)s;
3683 /* Get the added string: */
3684 last_str = newSVpvn_utf8(s + old, l, UTF);
3685 if (deltanext == 0 && pos_before == b) {
3686 /* What was added is a constant string */
3688 SvGROW(last_str, (mincount * l) + 1);
3689 repeatcpy(SvPVX(last_str) + l,
3690 SvPVX_const(last_str), l, mincount - 1);
3691 SvCUR_set(last_str, SvCUR(last_str) * mincount);
3692 /* Add additional parts. */
3693 SvCUR_set(data->last_found,
3694 SvCUR(data->last_found) - l);
3695 sv_catsv(data->last_found, last_str);
3697 SV * sv = data->last_found;
3699 SvUTF8(sv) && SvMAGICAL(sv) ?
3700 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3701 if (mg && mg->mg_len >= 0)
3702 mg->mg_len += CHR_SVLEN(last_str) - l;
3704 data->last_end += l * (mincount - 1);
3707 /* start offset must point into the last copy */
3708 data->last_start_min += minnext * (mincount - 1);
3709 data->last_start_max += is_inf ? I32_MAX
3710 : (maxcount - 1) * (minnext + data->pos_delta);
3713 /* It is counted once already... */
3714 data->pos_min += minnext * (mincount - counted);
3715 data->pos_delta += - counted * deltanext +
3716 (minnext + deltanext) * maxcount - minnext * mincount;
3717 if (mincount != maxcount) {
3718 /* Cannot extend fixed substrings found inside
3720 SCAN_COMMIT(pRExC_state,data,minlenp);
3721 if (mincount && last_str) {
3722 SV * const sv = data->last_found;
3723 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
3724 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3728 sv_setsv(sv, last_str);
3729 data->last_end = data->pos_min;
3730 data->last_start_min =
3731 data->pos_min - CHR_SVLEN(last_str);
3732 data->last_start_max = is_inf
3734 : data->pos_min + data->pos_delta
3735 - CHR_SVLEN(last_str);
3737 data->longest = &(data->longest_float);
3739 SvREFCNT_dec(last_str);
3741 if (data && (fl & SF_HAS_EVAL))
3742 data->flags |= SF_HAS_EVAL;
3743 optimize_curly_tail:
3744 if (OP(oscan) != CURLYX) {
3745 while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
3747 NEXT_OFF(oscan) += NEXT_OFF(next);
3750 default: /* REF, ANYOFV, and CLUMP only? */
3751 if (flags & SCF_DO_SUBSTR) {
3752 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3753 data->longest = &(data->longest_float);
3755 is_inf = is_inf_internal = 1;
3756 if (flags & SCF_DO_STCLASS_OR)
3757 cl_anything(pRExC_state, data->start_class);
3758 flags &= ~SCF_DO_STCLASS;
3762 else if (OP(scan) == LNBREAK) {
3763 if (flags & SCF_DO_STCLASS) {
3765 data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
3766 if (flags & SCF_DO_STCLASS_AND) {
3767 for (value = 0; value < 256; value++)
3768 if (!is_VERTWS_cp(value))
3769 ANYOF_BITMAP_CLEAR(data->start_class, value);
3772 for (value = 0; value < 256; value++)
3773 if (is_VERTWS_cp(value))
3774 ANYOF_BITMAP_SET(data->start_class, value);
3776 if (flags & SCF_DO_STCLASS_OR)
3777 cl_and(data->start_class, and_withp);
3778 flags &= ~SCF_DO_STCLASS;
3782 if (flags & SCF_DO_SUBSTR) {
3783 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3785 data->pos_delta += 1;
3786 data->longest = &(data->longest_float);
3789 else if (OP(scan) == FOLDCHAR) {
3790 int d = ARG(scan) == LATIN_SMALL_LETTER_SHARP_S ? 1 : 2;
3791 flags &= ~SCF_DO_STCLASS;
3794 if (flags & SCF_DO_SUBSTR) {
3795 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3797 data->pos_delta += d;
3798 data->longest = &(data->longest_float);
3801 else if (REGNODE_SIMPLE(OP(scan))) {
3804 if (flags & SCF_DO_SUBSTR) {
3805 SCAN_COMMIT(pRExC_state,data,minlenp);
3809 if (flags & SCF_DO_STCLASS) {
3810 data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
3812 /* Some of the logic below assumes that switching
3813 locale on will only add false positives. */
3814 switch (PL_regkind[OP(scan)]) {
3818 /* Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d", OP(scan)); */
3819 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3820 cl_anything(pRExC_state, data->start_class);
3823 if (OP(scan) == SANY)
3825 if (flags & SCF_DO_STCLASS_OR) { /* Everything but \n */
3826 value = (ANYOF_BITMAP_TEST(data->start_class,'\n')
3827 || ANYOF_CLASS_TEST_ANY_SET(data->start_class));
3828 cl_anything(pRExC_state, data->start_class);
3830 if (flags & SCF_DO_STCLASS_AND || !value)
3831 ANYOF_BITMAP_CLEAR(data->start_class,'\n');
3834 if (flags & SCF_DO_STCLASS_AND)
3835 cl_and(data->start_class,
3836 (struct regnode_charclass_class*)scan);
3838 cl_or(pRExC_state, data->start_class,
3839 (struct regnode_charclass_class*)scan);
3842 if (flags & SCF_DO_STCLASS_AND) {
3843 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3844 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NALNUM);
3845 if (OP(scan) == ALNUMU) {