3 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 * by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
12 * 'What a fix!' said Sam. 'That's the one place in all the lands we've ever
13 * heard of that we don't want to see any closer; and that's the one place
14 * we're trying to get to! And that's just where we can't get, nohow.'
16 * [p.603 of _The Lord of the Rings_, IV/I: "The Taming of Sméagol"]
18 * 'Well do I understand your speech,' he answered in the same language;
19 * 'yet few strangers do so. Why then do you not speak in the Common Tongue,
20 * as is the custom in the West, if you wish to be answered?'
21 * --Gandalf, addressing Théoden's door wardens
23 * [p.508 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"]
25 * ...the travellers perceived that the floor was paved with stones of many
26 * hues; branching runes and strange devices intertwined beneath their feet.
28 * [p.512 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"]
32 #define PERL_IN_UTF8_C
34 #include "invlist_inline.h"
36 static const char malformed_text[] = "Malformed UTF-8 character";
37 static const char unees[] =
38 "Malformed UTF-8 character (unexpected end of string)";
39 static const char cp_above_legal_max[] =
40 "Use of code point 0x%"UVXf" is deprecated; the permissible max is 0x%"UVXf"";
42 #define MAX_NON_DEPRECATED_CP ((UV) (IV_MAX))
45 =head1 Unicode Support
46 These are various utility functions for manipulating UTF8-encoded
47 strings. For the uninitiated, this is a method of representing arbitrary
48 Unicode characters as a variable number of bytes, in such a way that
49 characters in the ASCII range are unmodified, and a zero byte never appears
50 within non-zero characters.
56 =for apidoc uvoffuni_to_utf8_flags
58 THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
59 Instead, B<Almost all code should use L</uvchr_to_utf8> or
60 L</uvchr_to_utf8_flags>>.
62 This function is like them, but the input is a strict Unicode
63 (as opposed to native) code point. Only in very rare circumstances should code
64 not be using the native code point.
66 For details, see the description for L</uvchr_to_utf8_flags>.
71 #define HANDLE_UNICODE_SURROGATE(uv, flags) \
73 if (flags & UNICODE_WARN_SURROGATE) { \
74 Perl_ck_warner_d(aTHX_ packWARN(WARN_SURROGATE), \
75 "UTF-16 surrogate U+%04"UVXf, uv); \
77 if (flags & UNICODE_DISALLOW_SURROGATE) { \
82 #define HANDLE_UNICODE_NONCHAR(uv, flags) \
84 if (flags & UNICODE_WARN_NONCHAR) { \
85 Perl_ck_warner_d(aTHX_ packWARN(WARN_NONCHAR), \
86 "Unicode non-character U+%04"UVXf" is not " \
87 "recommended for open interchange", uv); \
89 if (flags & UNICODE_DISALLOW_NONCHAR) { \
94 /* Use shorter names internally in this file */
95 #define SHIFT UTF_ACCUMULATION_SHIFT
97 #define MARK UTF_CONTINUATION_MARK
98 #define MASK UTF_CONTINUATION_MASK
101 Perl_uvoffuni_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags)
103 PERL_ARGS_ASSERT_UVOFFUNI_TO_UTF8_FLAGS;
105 if (OFFUNI_IS_INVARIANT(uv)) {
106 *d++ = LATIN1_TO_NATIVE(uv);
110 if (uv <= MAX_UTF8_TWO_BYTE) {
111 *d++ = I8_TO_NATIVE_UTF8(( uv >> SHIFT) | UTF_START_MARK(2));
112 *d++ = I8_TO_NATIVE_UTF8(( uv & MASK) | MARK);
116 /* Not 2-byte; test for and handle 3-byte result. In the test immediately
117 * below, the 16 is for start bytes E0-EF (which are all the possible ones
118 * for 3 byte characters). The 2 is for 2 continuation bytes; these each
119 * contribute SHIFT bits. This yields 0x4000 on EBCDIC platforms, 0x1_0000
120 * on ASCII; so 3 bytes covers the range 0x400-0x3FFF on EBCDIC;
121 * 0x800-0xFFFF on ASCII */
122 if (uv < (16 * (1U << (2 * SHIFT)))) {
123 *d++ = I8_TO_NATIVE_UTF8(( uv >> ((3 - 1) * SHIFT)) | UTF_START_MARK(3));
124 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((2 - 1) * SHIFT)) & MASK) | MARK);
125 *d++ = I8_TO_NATIVE_UTF8(( uv /* (1 - 1) */ & MASK) | MARK);
127 #ifndef EBCDIC /* These problematic code points are 4 bytes on EBCDIC, so
128 aren't tested here */
129 /* The most likely code points in this range are below the surrogates.
130 * Do an extra test to quickly exclude those. */
131 if (UNLIKELY(uv >= UNICODE_SURROGATE_FIRST)) {
132 if (UNLIKELY( UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv)
133 || UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv)))
135 HANDLE_UNICODE_NONCHAR(uv, flags);
137 else if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
138 HANDLE_UNICODE_SURROGATE(uv, flags);
145 /* Not 3-byte; that means the code point is at least 0x1_0000 on ASCII
146 * platforms, and 0x4000 on EBCDIC. There are problematic cases that can
147 * happen starting with 4-byte characters on ASCII platforms. We unify the
148 * code for these with EBCDIC, even though some of them require 5-bytes on
149 * those, because khw believes the code saving is worth the very slight
150 * performance hit on these high EBCDIC code points. */
152 if (UNLIKELY(UNICODE_IS_SUPER(uv))) {
153 if ( UNLIKELY(uv > MAX_NON_DEPRECATED_CP)
154 && ckWARN_d(WARN_DEPRECATED))
156 Perl_warner(aTHX_ packWARN(WARN_DEPRECATED),
157 cp_above_legal_max, uv, MAX_NON_DEPRECATED_CP);
159 if ( (flags & UNICODE_WARN_SUPER)
160 || ( UNICODE_IS_ABOVE_31_BIT(uv)
161 && (flags & UNICODE_WARN_ABOVE_31_BIT)))
163 Perl_ck_warner_d(aTHX_ packWARN(WARN_NON_UNICODE),
165 /* Choose the more dire applicable warning */
166 (UNICODE_IS_ABOVE_31_BIT(uv))
167 ? "Code point 0x%"UVXf" is not Unicode, and not portable"
168 : "Code point 0x%"UVXf" is not Unicode, may not be portable",
171 if (flags & UNICODE_DISALLOW_SUPER
172 || ( UNICODE_IS_ABOVE_31_BIT(uv)
173 && (flags & UNICODE_DISALLOW_ABOVE_31_BIT)))
178 else if (UNLIKELY(UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv))) {
179 HANDLE_UNICODE_NONCHAR(uv, flags);
182 /* Test for and handle 4-byte result. In the test immediately below, the
183 * 8 is for start bytes F0-F7 (which are all the possible ones for 4 byte
184 * characters). The 3 is for 3 continuation bytes; these each contribute
185 * SHIFT bits. This yields 0x4_0000 on EBCDIC platforms, 0x20_0000 on
186 * ASCII, so 4 bytes covers the range 0x4000-0x3_FFFF on EBCDIC;
187 * 0x1_0000-0x1F_FFFF on ASCII */
188 if (uv < (8 * (1U << (3 * SHIFT)))) {
189 *d++ = I8_TO_NATIVE_UTF8(( uv >> ((4 - 1) * SHIFT)) | UTF_START_MARK(4));
190 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((3 - 1) * SHIFT)) & MASK) | MARK);
191 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((2 - 1) * SHIFT)) & MASK) | MARK);
192 *d++ = I8_TO_NATIVE_UTF8(( uv /* (1 - 1) */ & MASK) | MARK);
194 #ifdef EBCDIC /* These were handled on ASCII platforms in the code for 3-byte
195 characters. The end-plane non-characters for EBCDIC were
196 handled just above */
197 if (UNLIKELY(UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv))) {
198 HANDLE_UNICODE_NONCHAR(uv, flags);
200 else if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
201 HANDLE_UNICODE_SURROGATE(uv, flags);
208 /* Not 4-byte; that means the code point is at least 0x20_0000 on ASCII
209 * platforms, and 0x4000 on EBCDIC. At this point we switch to a loop
210 * format. The unrolled version above turns out to not save all that much
211 * time, and at these high code points (well above the legal Unicode range
212 * on ASCII platforms, and well above anything in common use in EBCDIC),
213 * khw believes that less code outweighs slight performance gains. */
216 STRLEN len = OFFUNISKIP(uv);
219 *p-- = I8_TO_NATIVE_UTF8((uv & UTF_CONTINUATION_MASK) | UTF_CONTINUATION_MARK);
220 uv >>= UTF_ACCUMULATION_SHIFT;
222 *p = I8_TO_NATIVE_UTF8((uv & UTF_START_MASK(len)) | UTF_START_MARK(len));
228 =for apidoc uvchr_to_utf8
230 Adds the UTF-8 representation of the native code point C<uv> to the end
231 of the string C<d>; C<d> should have at least C<UVCHR_SKIP(uv)+1> (up to
232 C<UTF8_MAXBYTES+1>) free bytes available. The return value is the pointer to
233 the byte after the end of the new character. In other words,
235 d = uvchr_to_utf8(d, uv);
237 is the recommended wide native character-aware way of saying
241 This function accepts any UV as input, but very high code points (above
242 C<IV_MAX> on the platform) will raise a deprecation warning. This is
243 typically 0x7FFF_FFFF in a 32-bit word.
245 It is possible to forbid or warn on non-Unicode code points, or those that may
246 be problematic by using L</uvchr_to_utf8_flags>.
251 /* This is also a macro */
252 PERL_CALLCONV U8* Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv);
255 Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv)
257 return uvchr_to_utf8(d, uv);
261 =for apidoc uvchr_to_utf8_flags
263 Adds the UTF-8 representation of the native code point C<uv> to the end
264 of the string C<d>; C<d> should have at least C<UVCHR_SKIP(uv)+1> (up to
265 C<UTF8_MAXBYTES+1>) free bytes available. The return value is the pointer to
266 the byte after the end of the new character. In other words,
268 d = uvchr_to_utf8_flags(d, uv, flags);
272 d = uvchr_to_utf8_flags(d, uv, 0);
274 This is the Unicode-aware way of saying
278 If C<flags> is 0, this function accepts any UV as input, but very high code
279 points (above C<IV_MAX> for the platform) will raise a deprecation warning.
280 This is typically 0x7FFF_FFFF in a 32-bit word.
282 Specifying C<flags> can further restrict what is allowed and not warned on, as
285 If C<uv> is a Unicode surrogate code point and C<UNICODE_WARN_SURROGATE> is set,
286 the function will raise a warning, provided UTF8 warnings are enabled. If
287 instead C<UNICODE_DISALLOW_SURROGATE> is set, the function will fail and return
288 NULL. If both flags are set, the function will both warn and return NULL.
290 Similarly, the C<UNICODE_WARN_NONCHAR> and C<UNICODE_DISALLOW_NONCHAR> flags
291 affect how the function handles a Unicode non-character.
293 And likewise, the C<UNICODE_WARN_SUPER> and C<UNICODE_DISALLOW_SUPER> flags
294 affect the handling of code points that are above the Unicode maximum of
295 0x10FFFF. Languages other than Perl may not be able to accept files that
298 The flag C<UNICODE_WARN_ILLEGAL_INTERCHANGE> selects all three of
299 the above WARN flags; and C<UNICODE_DISALLOW_ILLEGAL_INTERCHANGE> selects all
300 three DISALLOW flags. C<UNICODE_DISALLOW_ILLEGAL_INTERCHANGE> restricts the
301 allowed inputs to the strict UTF-8 traditionally defined by Unicode.
302 Similarly, C<UNICODE_WARN_ILLEGAL_C9_INTERCHANGE> and
303 C<UNICODE_DISALLOW_ILLEGAL_C9_INTERCHANGE> are shortcuts to select the
304 above-Unicode and surrogate flags, but not the non-character ones, as
306 L<Unicode Corrigendum #9|http://www.unicode.org/versions/corrigendum9.html>.
307 See L<perlunicode/Noncharacter code points>.
309 Code points above 0x7FFF_FFFF (2**31 - 1) were never specified in any standard,
310 so using them is more problematic than other above-Unicode code points. Perl
311 invented an extension to UTF-8 to represent the ones above 2**36-1, so it is
312 likely that non-Perl languages will not be able to read files that contain
313 these that written by the perl interpreter; nor would Perl understand files
314 written by something that uses a different extension. For these reasons, there
315 is a separate set of flags that can warn and/or disallow these extremely high
316 code points, even if other above-Unicode ones are accepted. These are the
317 C<UNICODE_WARN_ABOVE_31_BIT> and C<UNICODE_DISALLOW_ABOVE_31_BIT> flags. These
318 are entirely independent from the deprecation warning for code points above
319 C<IV_MAX>. On 32-bit machines, it will eventually be forbidden to have any
320 code point that needs more than 31 bits to represent. When that happens,
321 effectively the C<UNICODE_DISALLOW_ABOVE_31_BIT> flag will always be set on
322 32-bit machines. (Of course C<UNICODE_DISALLOW_SUPER> will treat all
323 above-Unicode code points, including these, as malformations; and
324 C<UNICODE_WARN_SUPER> warns on these.)
326 On EBCDIC platforms starting in Perl v5.24, the Perl extension for representing
327 extremely high code points kicks in at 0x3FFF_FFFF (2**30 -1), which is lower
328 than on ASCII. Prior to that, code points 2**31 and higher were simply
329 unrepresentable, and a different, incompatible method was used to represent
330 code points between 2**30 and 2**31 - 1. The flags C<UNICODE_WARN_ABOVE_31_BIT>
331 and C<UNICODE_DISALLOW_ABOVE_31_BIT> have the same function as on ASCII
332 platforms, warning and disallowing 2**31 and higher.
337 /* This is also a macro */
338 PERL_CALLCONV U8* Perl_uvchr_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags);
341 Perl_uvchr_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags)
343 return uvchr_to_utf8_flags(d, uv, flags);
346 PERL_STATIC_INLINE bool
347 S_is_utf8_cp_above_31_bits(const U8 * const s, const U8 * const e)
349 /* Returns TRUE if the first code point represented by the Perl-extended-
350 * UTF-8-encoded string starting at 's', and looking no further than 'e -
351 * 1' doesn't fit into 31 bytes. That is, that if it is >= 2**31.
353 * The function handles the case where the input bytes do not include all
354 * the ones necessary to represent a full character. That is, they may be
355 * the intial bytes of the representation of a code point, but possibly
356 * the final ones necessary for the complete representation may be beyond
359 * The function assumes that the sequence is well-formed UTF-8 as far as it
360 * goes, and is for a UTF-8 variant code point. If the sequence is
361 * incomplete, the function returns FALSE if there is any well-formed
362 * UTF-8 byte sequence that can complete it in such a way that a code point
363 * < 2**31 is produced; otherwise it returns TRUE.
365 * Getting this exactly right is slightly tricky, and has to be done in
366 * several places in this file, so is centralized here. It is based on the
369 * U+7FFFFFFF (2 ** 31 - 1)
370 * ASCII: \xFD\xBF\xBF\xBF\xBF\xBF
371 * IBM-1047: \xFE\x41\x41\x41\x41\x41\x41\x42\x73\x73\x73\x73\x73\x73
372 * IBM-037: \xFE\x41\x41\x41\x41\x41\x41\x42\x72\x72\x72\x72\x72\x72
373 * POSIX-BC: \xFE\x41\x41\x41\x41\x41\x41\x42\x75\x75\x75\x75\x75\x75
374 * I8: \xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA1\xBF\xBF\xBF\xBF\xBF\xBF
375 * U+80000000 (2 ** 31):
376 * ASCII: \xFE\x82\x80\x80\x80\x80\x80
377 * [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 10 11 12 13
378 * IBM-1047: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
379 * IBM-037: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
380 * POSIX-BC: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
381 * I8: \xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA2\xA0\xA0\xA0\xA0\xA0\xA0
386 /* [0] is start byte [1] [2] [3] [4] [5] [6] [7] */
387 const U8 * const prefix = (U8 *) "\x41\x41\x41\x41\x41\x41\x42";
388 const STRLEN prefix_len = sizeof(prefix) - 1;
389 const STRLEN len = e - s;
390 const STRLEN cmp_len = MIN(prefix_len, len - 1);
398 PERL_ARGS_ASSERT_IS_UTF8_CP_ABOVE_31_BITS;
400 assert(! UTF8_IS_INVARIANT(*s));
404 /* Technically, a start byte of FE can be for a code point that fits into
405 * 31 bytes, but not for well-formed UTF-8: doing that requires an overlong
411 /* On the EBCDIC code pages we handle, only 0xFE can mean a 32-bit or
412 * larger code point (0xFF is an invariant). For 0xFE, we need at least 2
413 * bytes, and maybe up through 8 bytes, to be sure if the value is above 31
415 if (*s != 0xFE || len == 1) {
419 /* Note that in UTF-EBCDIC, the two lowest possible continuation bytes are
421 return cBOOL(memGT(s + 1, prefix, cmp_len));
427 PERL_STATIC_INLINE bool
428 S_does_utf8_overflow(const U8 * const s, const U8 * e)
431 const U8 * y = (const U8 *) HIGHEST_REPRESENTABLE_UTF8;
433 /* Returns a boolean as to if this UTF-8 string would overflow a UV on this
434 * platform, that is if it represents a code point larger than the highest
435 * representable code point. (For ASCII platforms, we could use memcmp()
436 * because we don't have to convert each byte to I8, but it's very rare
437 * input indeed that would approach overflow, so the loop below will likely
438 * only get executed once.
440 * 'e' must not be beyond a full character. If it is less than a full
441 * character, the function returns FALSE if there is any input beyond 'e'
442 * that could result in a non-overflowing code point */
444 PERL_ARGS_ASSERT_DOES_UTF8_OVERFLOW;
445 assert(s + UTF8SKIP(s) >= e);
447 for (x = s; x < e; x++, y++) {
449 /* If this byte is larger than the corresponding highest UTF-8 byte, it
451 if (UNLIKELY(NATIVE_UTF8_TO_I8(*x) > *y)) {
455 /* If not the same as this byte, it must be smaller, doesn't overflow */
456 if (LIKELY(NATIVE_UTF8_TO_I8(*x) != *y)) {
461 /* Got to the end and all bytes are the same. If the input is a whole
462 * character, it doesn't overflow. And if it is a partial character,
463 * there's not enough information to tell, so assume doesn't overflow */
467 PERL_STATIC_INLINE bool
468 S_is_utf8_overlong_given_start_byte_ok(const U8 * const s, const STRLEN len)
470 /* Overlongs can occur whenever the number of continuation bytes
471 * changes. That means whenever the number of leading 1 bits in a start
472 * byte increases from the next lower start byte. That happens for start
473 * bytes C0, E0, F0, F8, FC, FE, and FF. On modern perls, the following
474 * illegal start bytes have already been excluded, so don't need to be
476 * ASCII platforms: C0, C1
477 * EBCDIC platforms C0, C1, C2, C3, C4, E0
479 * At least a second byte is required to determine if other sequences will
482 const U8 s0 = NATIVE_UTF8_TO_I8(s[0]);
483 const U8 s1 = NATIVE_UTF8_TO_I8(s[1]);
485 PERL_ARGS_ASSERT_IS_UTF8_OVERLONG_GIVEN_START_BYTE_OK;
486 assert(len > 1 && UTF8_IS_START(*s));
488 /* Each platform has overlongs after the start bytes given above (expressed
489 * in I8 for EBCDIC). What constitutes an overlong varies by platform, but
490 * the logic is the same, except the E0 overlong has already been excluded
491 * on EBCDIC platforms. The values below were found by manually
492 * inspecting the UTF-8 patterns. See the tables in utf8.h and
496 # define F0_ABOVE_OVERLONG 0xB0
497 # define F8_ABOVE_OVERLONG 0xA8
498 # define FC_ABOVE_OVERLONG 0xA4
499 # define FE_ABOVE_OVERLONG 0xA2
500 # define FF_OVERLONG_PREFIX "\xfe\x41\x41\x41\x41\x41\x41\x41"
504 if (s0 == 0xE0 && UNLIKELY(s1 < 0xA0)) {
508 # define F0_ABOVE_OVERLONG 0x90
509 # define F8_ABOVE_OVERLONG 0x88
510 # define FC_ABOVE_OVERLONG 0x84
511 # define FE_ABOVE_OVERLONG 0x82
512 # define FF_OVERLONG_PREFIX "\xff\x80\x80\x80\x80\x80\x80"
516 if ( (s0 == 0xF0 && UNLIKELY(s1 < F0_ABOVE_OVERLONG))
517 || (s0 == 0xF8 && UNLIKELY(s1 < F8_ABOVE_OVERLONG))
518 || (s0 == 0xFC && UNLIKELY(s1 < FC_ABOVE_OVERLONG))
519 || (s0 == 0xFE && UNLIKELY(s1 < FE_ABOVE_OVERLONG)))
524 # if defined(UV_IS_QUAD) || defined(EBCDIC)
526 /* Check for the FF overlong. This happens only if all these bytes match;
527 * what comes after them doesn't matter. See tables in utf8.h,
528 * utfebcdic.h. (Can't happen on ASCII 32-bit platforms, as overflows
531 if ( len >= sizeof(FF_OVERLONG_PREFIX) - 1
532 && UNLIKELY(memEQ(s, FF_OVERLONG_PREFIX,
533 sizeof(FF_OVERLONG_PREFIX) - 1)))
543 #undef F0_ABOVE_OVERLONG
544 #undef F8_ABOVE_OVERLONG
545 #undef FC_ABOVE_OVERLONG
546 #undef FE_ABOVE_OVERLONG
547 #undef FF_OVERLONG_PREFIX
550 Perl__is_utf8_char_helper(const U8 * const s, const U8 * e, const U32 flags)
555 /* A helper function that should not be called directly.
557 * This function returns non-zero if the string beginning at 's' and
558 * looking no further than 'e - 1' is well-formed Perl-extended-UTF-8 for a
559 * code point; otherwise it returns 0. The examination stops after the
560 * first code point in 's' is validated, not looking at the rest of the
561 * input. If 'e' is such that there are not enough bytes to represent a
562 * complete code point, this function will return non-zero anyway, if the
563 * bytes it does have are well-formed UTF-8 as far as they go, and aren't
564 * excluded by 'flags'.
566 * A non-zero return gives the number of bytes required to represent the
567 * code point. Be aware that if the input is for a partial character, the
568 * return will be larger than 'e - s'.
570 * This function assumes that the code point represented is UTF-8 variant.
571 * The caller should have excluded this possibility before calling this
574 * 'flags' can be 0, or any combination of the UTF8_DISALLOW_foo flags
575 * accepted by L</utf8n_to_uvchr>. If non-zero, this function will return
576 * 0 if the code point represented is well-formed Perl-extended-UTF-8, but
577 * disallowed by the flags. If the input is only for a partial character,
578 * the function will return non-zero if there is any sequence of
579 * well-formed UTF-8 that, when appended to the input sequence, could
580 * result in an allowed code point; otherwise it returns 0. Non characters
581 * cannot be determined based on partial character input. But many of the
582 * other excluded types can be determined with just the first one or two
587 PERL_ARGS_ASSERT__IS_UTF8_CHAR_HELPER;
589 assert(0 == (flags & ~(UTF8_DISALLOW_ILLEGAL_INTERCHANGE
590 |UTF8_DISALLOW_ABOVE_31_BIT)));
591 assert(! UTF8_IS_INVARIANT(*s));
593 /* A variant char must begin with a start byte */
594 if (UNLIKELY(! UTF8_IS_START(*s))) {
598 /* Examine a maximum of a single whole code point */
599 if (e - s > UTF8SKIP(s)) {
605 if (flags && isUTF8_POSSIBLY_PROBLEMATIC(*s)) {
606 const U8 s0 = NATIVE_UTF8_TO_I8(s[0]);
608 /* The code below is derived from this table. Keep in mind that legal
609 * continuation bytes range between \x80..\xBF for UTF-8, and
610 * \xA0..\xBF for I8. Anything above those aren't continuation bytes.
611 * Hence, we don't have to test the upper edge because if any of those
612 * are encountered, the sequence is malformed, and will fail elsewhere
614 * UTF-8 UTF-EBCDIC I8
615 * U+D800: \xED\xA0\x80 \xF1\xB6\xA0\xA0 First surrogate
616 * U+DFFF: \xED\xBF\xBF \xF1\xB7\xBF\xBF Final surrogate
617 * U+110000: \xF4\x90\x80\x80 \xF9\xA2\xA0\xA0\xA0 First above Unicode
621 #ifdef EBCDIC /* On EBCDIC, these are actually I8 bytes */
622 # define FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER 0xFA
623 # define IS_UTF8_2_BYTE_SUPER(s0, s1) ((s0) == 0xF9 && (s1) >= 0xA2)
625 # define IS_UTF8_2_BYTE_SURROGATE(s0, s1) ((s0) == 0xF1 \
627 && ((s1) & 0xFE ) == 0xB6)
629 # define FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER 0xF5
630 # define IS_UTF8_2_BYTE_SUPER(s0, s1) ((s0) == 0xF4 && (s1) >= 0x90)
631 # define IS_UTF8_2_BYTE_SURROGATE(s0, s1) ((s0) == 0xED && (s1) >= 0xA0)
634 if ( (flags & UTF8_DISALLOW_SUPER)
635 && UNLIKELY(s0 >= FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER)) {
636 return 0; /* Above Unicode */
639 if ( (flags & UTF8_DISALLOW_ABOVE_31_BIT)
640 && UNLIKELY(is_utf8_cp_above_31_bits(s, e)))
642 return 0; /* Above 31 bits */
646 const U8 s1 = NATIVE_UTF8_TO_I8(s[1]);
648 if ( (flags & UTF8_DISALLOW_SUPER)
649 && UNLIKELY(IS_UTF8_2_BYTE_SUPER(s0, s1)))
651 return 0; /* Above Unicode */
654 if ( (flags & UTF8_DISALLOW_SURROGATE)
655 && UNLIKELY(IS_UTF8_2_BYTE_SURROGATE(s0, s1)))
657 return 0; /* Surrogate */
660 if ( (flags & UTF8_DISALLOW_NONCHAR)
661 && UNLIKELY(UTF8_IS_NONCHAR(s, e)))
663 return 0; /* Noncharacter code point */
668 /* Make sure that all that follows are continuation bytes */
669 for (x = s + 1; x < e; x++) {
670 if (UNLIKELY(! UTF8_IS_CONTINUATION(*x))) {
675 /* Here is syntactically valid. Next, make sure this isn't the start of an
677 if (len > 1 && is_utf8_overlong_given_start_byte_ok(s, len)) {
681 /* And finally, that the code point represented fits in a word on this
683 if (does_utf8_overflow(s, e)) {
691 S__byte_dump_string(pTHX_ const U8 * s, const STRLEN len)
693 /* Returns a mortalized C string that is a displayable copy of the 'len'
694 * bytes starting at 's', each in a \xXY format. */
696 const STRLEN output_len = 4 * len + 1; /* 4 bytes per each input, plus a
698 const U8 * const e = s + len;
702 PERL_ARGS_ASSERT__BYTE_DUMP_STRING;
704 Newx(output, output_len, char);
709 const unsigned high_nibble = (*s & 0xF0) >> 4;
710 const unsigned low_nibble = (*s & 0x0F);
715 if (high_nibble < 10) {
716 *d++ = high_nibble + '0';
719 *d++ = high_nibble - 10 + 'a';
722 if (low_nibble < 10) {
723 *d++ = low_nibble + '0';
726 *d++ = low_nibble - 10 + 'a';
734 PERL_STATIC_INLINE char *
735 S_unexpected_non_continuation_text(pTHX_ const U8 * const s,
737 /* How many bytes to print */
738 const STRLEN print_len,
740 /* Which one is the non-continuation */
741 const STRLEN non_cont_byte_pos,
743 /* How many bytes should there be? */
744 const STRLEN expect_len)
746 /* Return the malformation warning text for an unexpected continuation
749 const char * const where = (non_cont_byte_pos == 1)
751 : Perl_form(aTHX_ "%d bytes",
752 (int) non_cont_byte_pos);
754 PERL_ARGS_ASSERT_UNEXPECTED_NON_CONTINUATION_TEXT;
756 /* We don't need to pass this parameter, but since it has already been
757 * calculated, it's likely faster to pass it; verify under DEBUGGING */
758 assert(expect_len == UTF8SKIP(s));
760 return Perl_form(aTHX_ "%s: %s (unexpected non-continuation byte 0x%02x,"
761 " %s after start byte 0x%02x; need %d bytes, got %d)",
763 _byte_dump_string(s, print_len),
764 *(s + non_cont_byte_pos),
768 (int) non_cont_byte_pos);
773 =for apidoc utf8n_to_uvchr
775 THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
776 Most code should use L</utf8_to_uvchr_buf>() rather than call this directly.
778 Bottom level UTF-8 decode routine.
779 Returns the native code point value of the first character in the string C<s>,
780 which is assumed to be in UTF-8 (or UTF-EBCDIC) encoding, and no longer than
781 C<curlen> bytes; C<*retlen> (if C<retlen> isn't NULL) will be set to
782 the length, in bytes, of that character.
784 The value of C<flags> determines the behavior when C<s> does not point to a
785 well-formed UTF-8 character. If C<flags> is 0, encountering a malformation
786 causes zero to be returned and C<*retlen> is set so that (S<C<s> + C<*retlen>>)
787 is the next possible position in C<s> that could begin a non-malformed
788 character. Also, if UTF-8 warnings haven't been lexically disabled, a warning
789 is raised. Some UTF-8 input sequences may contain multiple malformations.
790 This function tries to find every possible one in each call, so multiple
791 warnings can be raised for each sequence.
793 Various ALLOW flags can be set in C<flags> to allow (and not warn on)
794 individual types of malformations, such as the sequence being overlong (that
795 is, when there is a shorter sequence that can express the same code point;
796 overlong sequences are expressly forbidden in the UTF-8 standard due to
797 potential security issues). Another malformation example is the first byte of
798 a character not being a legal first byte. See F<utf8.h> for the list of such
799 flags. For allowed 0 length strings, this function returns 0; for allowed
800 overlong sequences, the computed code point is returned; for all other allowed
801 malformations, the Unicode REPLACEMENT CHARACTER is returned, as these have no
802 determinable reasonable value.
804 The C<UTF8_CHECK_ONLY> flag overrides the behavior when a non-allowed (by other
805 flags) malformation is found. If this flag is set, the routine assumes that
806 the caller will raise a warning, and this function will silently just set
807 C<retlen> to C<-1> (cast to C<STRLEN>) and return zero.
809 Note that this API requires disambiguation between successful decoding a C<NUL>
810 character, and an error return (unless the C<UTF8_CHECK_ONLY> flag is set), as
811 in both cases, 0 is returned, and, depending on the malformation, C<retlen> may
812 be set to 1. To disambiguate, upon a zero return, see if the first byte of
813 C<s> is 0 as well. If so, the input was a C<NUL>; if not, the input had an
814 error. Or you can use C<L</utf8n_to_uvchr_error>>.
816 Certain code points are considered problematic. These are Unicode surrogates,
817 Unicode non-characters, and code points above the Unicode maximum of 0x10FFFF.
818 By default these are considered regular code points, but certain situations
819 warrant special handling for them, which can be specified using the C<flags>
820 parameter. If C<flags> contains C<UTF8_DISALLOW_ILLEGAL_INTERCHANGE>, all
821 three classes are treated as malformations and handled as such. The flags
822 C<UTF8_DISALLOW_SURROGATE>, C<UTF8_DISALLOW_NONCHAR>, and
823 C<UTF8_DISALLOW_SUPER> (meaning above the legal Unicode maximum) can be set to
824 disallow these categories individually. C<UTF8_DISALLOW_ILLEGAL_INTERCHANGE>
825 restricts the allowed inputs to the strict UTF-8 traditionally defined by
826 Unicode. Use C<UTF8_DISALLOW_ILLEGAL_C9_INTERCHANGE> to use the strictness
828 L<Unicode Corrigendum #9|http://www.unicode.org/versions/corrigendum9.html>.
829 The difference between traditional strictness and C9 strictness is that the
830 latter does not forbid non-character code points. (They are still discouraged,
831 however.) For more discussion see L<perlunicode/Noncharacter code points>.
833 The flags C<UTF8_WARN_ILLEGAL_INTERCHANGE>,
834 C<UTF8_WARN_ILLEGAL_C9_INTERCHANGE>, C<UTF8_WARN_SURROGATE>,
835 C<UTF8_WARN_NONCHAR>, and C<UTF8_WARN_SUPER> will cause warning messages to be
836 raised for their respective categories, but otherwise the code points are
837 considered valid (not malformations). To get a category to both be treated as
838 a malformation and raise a warning, specify both the WARN and DISALLOW flags.
839 (But note that warnings are not raised if lexically disabled nor if
840 C<UTF8_CHECK_ONLY> is also specified.)
842 It is now deprecated to have very high code points (above C<IV_MAX> on the
843 platforms) and this function will raise a deprecation warning for these (unless
844 such warnings are turned off). This value is typically 0x7FFF_FFFF (2**31 -1)
847 Code points above 0x7FFF_FFFF (2**31 - 1) were never specified in any standard,
848 so using them is more problematic than other above-Unicode code points. Perl
849 invented an extension to UTF-8 to represent the ones above 2**36-1, so it is
850 likely that non-Perl languages will not be able to read files that contain
851 these; nor would Perl understand files
852 written by something that uses a different extension. For these reasons, there
853 is a separate set of flags that can warn and/or disallow these extremely high
854 code points, even if other above-Unicode ones are accepted. These are the
855 C<UTF8_WARN_ABOVE_31_BIT> and C<UTF8_DISALLOW_ABOVE_31_BIT> flags. These
856 are entirely independent from the deprecation warning for code points above
857 C<IV_MAX>. On 32-bit machines, it will eventually be forbidden to have any
858 code point that needs more than 31 bits to represent. When that happens,
859 effectively the C<UTF8_DISALLOW_ABOVE_31_BIT> flag will always be set on
860 32-bit machines. (Of course C<UTF8_DISALLOW_SUPER> will treat all
861 above-Unicode code points, including these, as malformations; and
862 C<UTF8_WARN_SUPER> warns on these.)
864 On EBCDIC platforms starting in Perl v5.24, the Perl extension for representing
865 extremely high code points kicks in at 0x3FFF_FFFF (2**30 -1), which is lower
866 than on ASCII. Prior to that, code points 2**31 and higher were simply
867 unrepresentable, and a different, incompatible method was used to represent
868 code points between 2**30 and 2**31 - 1. The flags C<UTF8_WARN_ABOVE_31_BIT>
869 and C<UTF8_DISALLOW_ABOVE_31_BIT> have the same function as on ASCII
870 platforms, warning and disallowing 2**31 and higher.
872 All other code points corresponding to Unicode characters, including private
873 use and those yet to be assigned, are never considered malformed and never
878 Also implemented as a macro in utf8.h
882 Perl_utf8n_to_uvchr(pTHX_ const U8 *s,
887 PERL_ARGS_ASSERT_UTF8N_TO_UVCHR;
889 return utf8n_to_uvchr_error(s, curlen, retlen, flags, NULL);
894 =for apidoc utf8n_to_uvchr_error
896 THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
897 Most code should use L</utf8_to_uvchr_buf>() rather than call this directly.
899 This function is for code that needs to know what the precise malformation(s)
900 are when an error is found.
902 It is like C<L</utf8n_to_uvchr>> but it takes an extra parameter placed after
903 all the others, C<errors>. If this parameter is 0, this function behaves
904 identically to C<L</utf8n_to_uvchr>>. Otherwise, C<errors> should be a pointer
905 to a C<U32> variable, which this function sets to indicate any errors found.
906 Upon return, if C<*errors> is 0, there were no errors found. Otherwise,
907 C<*errors> is the bit-wise C<OR> of the bits described in the list below. Some
908 of these bits will be set if a malformation is found, even if the input
909 C<flags> parameter indicates that the given malformation is allowed; the
910 exceptions are noted:
914 =item C<UTF8_GOT_ABOVE_31_BIT>
916 The code point represented by the input UTF-8 sequence occupies more than 31
918 This bit is set only if the input C<flags> parameter contains either the
919 C<UTF8_DISALLOW_ABOVE_31_BIT> or the C<UTF8_WARN_ABOVE_31_BIT> flags.
921 =item C<UTF8_GOT_CONTINUATION>
923 The input sequence was malformed in that the first byte was a a UTF-8
926 =item C<UTF8_GOT_EMPTY>
928 The input C<curlen> parameter was 0.
930 =item C<UTF8_GOT_LONG>
932 The input sequence was malformed in that there is some other sequence that
933 evaluates to the same code point, but that sequence is shorter than this one.
935 =item C<UTF8_GOT_NONCHAR>
937 The code point represented by the input UTF-8 sequence is for a Unicode
938 non-character code point.
939 This bit is set only if the input C<flags> parameter contains either the
940 C<UTF8_DISALLOW_NONCHAR> or the C<UTF8_WARN_NONCHAR> flags.
942 =item C<UTF8_GOT_NON_CONTINUATION>
944 The input sequence was malformed in that a non-continuation type byte was found
945 in a position where only a continuation type one should be.
947 =item C<UTF8_GOT_OVERFLOW>
949 The input sequence was malformed in that it is for a code point that is not
950 representable in the number of bits available in a UV on the current platform.
952 =item C<UTF8_GOT_SHORT>
954 The input sequence was malformed in that C<curlen> is smaller than required for
955 a complete sequence. In other words, the input is for a partial character
958 =item C<UTF8_GOT_SUPER>
960 The input sequence was malformed in that it is for a non-Unicode code point;
961 that is, one above the legal Unicode maximum.
962 This bit is set only if the input C<flags> parameter contains either the
963 C<UTF8_DISALLOW_SUPER> or the C<UTF8_WARN_SUPER> flags.
965 =item C<UTF8_GOT_SURROGATE>
967 The input sequence was malformed in that it is for a -Unicode UTF-16 surrogate
969 This bit is set only if the input C<flags> parameter contains either the
970 C<UTF8_DISALLOW_SURROGATE> or the C<UTF8_WARN_SURROGATE> flags.
978 Perl_utf8n_to_uvchr_error(pTHX_ const U8 *s,
984 const U8 * const s0 = s;
985 U8 * send = NULL; /* (initialized to silence compilers' wrong
987 U32 possible_problems = 0; /* A bit is set here for each potential problem
988 found as we go along */
990 STRLEN expectlen = 0; /* How long should this sequence be?
991 (initialized to silence compilers' wrong
993 U32 discard_errors = 0; /* Used to save branches when 'errors' is NULL;
994 this gets set and discarded */
996 /* The below are used only if there is both an overlong malformation and a
997 * too short one. Otherwise the first two are set to 's0' and 'send', and
998 * the third not used at all */
999 U8 * adjusted_s0 = (U8 *) s0;
1000 U8 * adjusted_send = NULL; /* (Initialized to silence compilers' wrong
1002 UV uv_so_far = 0; /* (Initialized to silence compilers' wrong warning) */
1004 PERL_ARGS_ASSERT_UTF8N_TO_UVCHR_ERROR;
1010 errors = &discard_errors;
1013 /* The order of malformation tests here is important. We should consume as
1014 * few bytes as possible in order to not skip any valid character. This is
1015 * required by the Unicode Standard (section 3.9 of Unicode 6.0); see also
1016 * http://unicode.org/reports/tr36 for more discussion as to why. For
1017 * example, once we've done a UTF8SKIP, we can tell the expected number of
1018 * bytes, and could fail right off the bat if the input parameters indicate
1019 * that there are too few available. But it could be that just that first
1020 * byte is garbled, and the intended character occupies fewer bytes. If we
1021 * blindly assumed that the first byte is correct, and skipped based on
1022 * that number, we could skip over a valid input character. So instead, we
1023 * always examine the sequence byte-by-byte.
1025 * We also should not consume too few bytes, otherwise someone could inject
1026 * things. For example, an input could be deliberately designed to
1027 * overflow, and if this code bailed out immediately upon discovering that,
1028 * returning to the caller C<*retlen> pointing to the very next byte (one
1029 * which is actually part of of the overflowing sequence), that could look
1030 * legitimate to the caller, which could discard the initial partial
1031 * sequence and process the rest, inappropriately.
1033 * Some possible input sequences are malformed in more than one way. This
1034 * function goes to lengths to try to find all of them. This is necessary
1035 * for correctness, as the inputs may allow one malformation but not
1036 * another, and if we abandon searching for others after finding the
1037 * allowed one, we could allow in something that shouldn't have been.
1040 if (UNLIKELY(curlen == 0)) {
1041 possible_problems |= UTF8_GOT_EMPTY;
1043 uv = 0; /* XXX It could be argued that this should be
1044 UNICODE_REPLACEMENT? */
1045 goto ready_to_handle_errors;
1048 expectlen = UTF8SKIP(s);
1050 /* A well-formed UTF-8 character, as the vast majority of calls to this
1051 * function will be for, has this expected length. For efficiency, set
1052 * things up here to return it. It will be overriden only in those rare
1053 * cases where a malformation is found */
1055 *retlen = expectlen;
1058 /* An invariant is trivially well-formed */
1059 if (UTF8_IS_INVARIANT(uv)) {
1063 /* A continuation character can't start a valid sequence */
1064 if (UNLIKELY(UTF8_IS_CONTINUATION(uv))) {
1065 possible_problems |= UTF8_GOT_CONTINUATION;
1067 uv = UNICODE_REPLACEMENT;
1068 goto ready_to_handle_errors;
1071 /* Here is not a continuation byte, nor an invariant. The only thing left
1072 * is a start byte (possibly for an overlong) */
1074 /* Convert to I8 on EBCDIC (no-op on ASCII), then remove the leading bits
1075 * that indicate the number of bytes in the character's whole UTF-8
1076 * sequence, leaving just the bits that are part of the value. */
1077 uv = NATIVE_UTF8_TO_I8(uv) & UTF_START_MASK(expectlen);
1079 /* Now, loop through the remaining bytes in the character's sequence,
1080 * accumulating each into the working value as we go. Be sure to not look
1081 * past the end of the input string */
1082 send = adjusted_send = (U8*) s0 + ((expectlen <= curlen)
1085 for (s = s0 + 1; s < send; s++) {
1086 if (LIKELY(UTF8_IS_CONTINUATION(*s))) {
1087 uv = UTF8_ACCUMULATE(uv, *s);
1091 /* Here, found a non-continuation before processing all expected bytes.
1092 * This byte indicates the beginning of a new character, so quit, even
1093 * if allowing this malformation. */
1094 curlen = s - s0; /* Save how many bytes we actually got */
1095 possible_problems |= UTF8_GOT_NON_CONTINUATION;
1097 } /* End of loop through the character's bytes */
1099 /* Save how many bytes were actually in the character */
1102 /* Did we get all the continuation bytes that were expected? Note that we
1103 * know this result even without executing the loop above. But we had to
1104 * do the loop to see if there are unexpected non-continuations. */
1105 if (UNLIKELY(curlen < expectlen)) {
1106 possible_problems |= UTF8_GOT_SHORT;
1110 uv = UNICODE_REPLACEMENT;
1113 /* Note that there are two types of too-short malformation. One is when
1114 * there is actual wrong data before the normal termination of the
1115 * sequence. The other is that the sequence wasn't complete before the end
1116 * of the data we are allowed to look at, based on the input 'curlen'.
1117 * This means that we were passed data for a partial character, but it is
1118 * valid as far as we saw. The other is definitely invalid. This
1119 * distinction could be important to a caller, so the two types are kept
1122 /* Check for overflow */
1123 if (UNLIKELY(does_utf8_overflow(s0, send))) {
1124 possible_problems |= UTF8_GOT_OVERFLOW;
1125 uv = UNICODE_REPLACEMENT;
1128 /* Check for overlong. If no problems so far, 'uv' is the correct code
1129 * point value. Simply see if it is expressible in fewer bytes. Otherwise
1130 * we must look at the UTF-8 byte sequence itself to see if it is for an
1132 if ( ( LIKELY(! possible_problems)
1133 && UNLIKELY(expectlen > (STRLEN) OFFUNISKIP(uv)))
1134 || ( UNLIKELY( possible_problems)
1135 && ( UNLIKELY(! UTF8_IS_START(*s0))
1137 && UNLIKELY(is_utf8_overlong_given_start_byte_ok(s0,
1140 possible_problems |= UTF8_GOT_LONG;
1142 /* A convenience macro that matches either of the too-short conditions.
1144 # define UTF8_GOT_TOO_SHORT (UTF8_GOT_SHORT|UTF8_GOT_NON_CONTINUATION)
1146 if (UNLIKELY(possible_problems & UTF8_GOT_TOO_SHORT)) {
1147 UV min_uv = uv_so_far;
1150 /* Here, the input is both overlong and is missing some trailing
1151 * bytes. There is no single code point it could be for, but there
1152 * may be enough information present to determine if what we have
1153 * so far is for an unallowed code point, such as for a surrogate.
1154 * The code below has the intelligence to determine this, but just
1155 * for non-overlong UTF-8 sequences. What we do here is calculate
1156 * the smallest code point the input could represent if there were
1157 * no too short malformation. Then we compute and save the UTF-8
1158 * for that, which is what the code below looks at instead of the
1159 * raw input. It turns out that the smallest such code point is
1161 for (i = curlen; i < expectlen; i++) {
1162 min_uv = UTF8_ACCUMULATE(min_uv,
1163 I8_TO_NATIVE_UTF8(UTF_CONTINUATION_MARK));
1166 Newx(adjusted_s0, OFFUNISKIP(min_uv) + 1, U8);
1167 SAVEFREEPV((U8 *) adjusted_s0); /* Needed because we may not get
1168 to free it ourselves if
1169 warnings are made fatal */
1170 adjusted_send = uvoffuni_to_utf8_flags(adjusted_s0, min_uv, 0);
1174 /* Now check that the input isn't for a problematic code point not allowed
1175 * by the input parameters. */
1176 /* isn't problematic if < this */
1177 if ( ( ( LIKELY(! possible_problems) && uv >= UNICODE_SURROGATE_FIRST)
1178 || ( UNLIKELY(possible_problems)
1179 && isUTF8_POSSIBLY_PROBLEMATIC(*adjusted_s0)))
1180 && ((flags & ( UTF8_DISALLOW_NONCHAR
1181 |UTF8_DISALLOW_SURROGATE
1182 |UTF8_DISALLOW_SUPER
1183 |UTF8_DISALLOW_ABOVE_31_BIT
1185 |UTF8_WARN_SURROGATE
1187 |UTF8_WARN_ABOVE_31_BIT))
1188 /* In case of a malformation, 'uv' is not valid, and has
1189 * been changed to something in the Unicode range.
1190 * Currently we don't output a deprecation message if there
1191 * is already a malformation, so we don't have to special
1192 * case the test immediately below */
1193 || ( UNLIKELY(uv > MAX_NON_DEPRECATED_CP)
1194 && ckWARN_d(WARN_DEPRECATED))))
1196 /* If there were no malformations, or the only malformation is an
1197 * overlong, 'uv' is valid */
1198 if (LIKELY(! (possible_problems & ~UTF8_GOT_LONG))) {
1199 if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
1200 possible_problems |= UTF8_GOT_SURROGATE;
1202 else if (UNLIKELY(uv > PERL_UNICODE_MAX)) {
1203 possible_problems |= UTF8_GOT_SUPER;
1205 else if (UNLIKELY(UNICODE_IS_NONCHAR(uv))) {
1206 possible_problems |= UTF8_GOT_NONCHAR;
1209 else { /* Otherwise, need to look at the source UTF-8, possibly
1210 adjusted to be non-overlong */
1212 if (UNLIKELY(NATIVE_UTF8_TO_I8(*adjusted_s0)
1213 >= FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER))
1215 possible_problems |= UTF8_GOT_SUPER;
1217 else if (curlen > 1) {
1218 if (UNLIKELY(IS_UTF8_2_BYTE_SUPER(
1219 NATIVE_UTF8_TO_I8(*adjusted_s0),
1220 NATIVE_UTF8_TO_I8(*(adjusted_s0 + 1)))))
1222 possible_problems |= UTF8_GOT_SUPER;
1224 else if (UNLIKELY(IS_UTF8_2_BYTE_SURROGATE(
1225 NATIVE_UTF8_TO_I8(*adjusted_s0),
1226 NATIVE_UTF8_TO_I8(*(adjusted_s0 + 1)))))
1228 possible_problems |= UTF8_GOT_SURROGATE;
1232 /* We need a complete well-formed UTF-8 character to discern
1233 * non-characters, so can't look for them here */
1237 ready_to_handle_errors:
1240 * curlen contains the number of bytes in the sequence that
1241 * this call should advance the input by.
1242 * possible_problems' is 0 if there weren't any problems; otherwise a bit
1243 * is set in it for each potential problem found.
1244 * uv contains the code point the input sequence
1245 * represents; or if there is a problem that prevents
1246 * a well-defined value from being computed, it is
1247 * some subsitute value, typically the REPLACEMENT
1249 * s0 points to the first byte of the character
1250 * send points to just after where that (potentially
1251 * partial) character ends
1252 * adjusted_s0 normally is the same as s0, but in case of an
1253 * overlong for which the UTF-8 matters below, it is
1254 * the first byte of the shortest form representation
1256 * adjusted_send normally is the same as 'send', but if adjusted_s0
1257 * is set to something other than s0, this points one
1261 if (UNLIKELY(possible_problems)) {
1262 bool disallowed = FALSE;
1263 const U32 orig_problems = possible_problems;
1265 while (possible_problems) { /* Handle each possible problem */
1267 char * message = NULL;
1269 /* Each 'if' clause handles one problem. They are ordered so that
1270 * the first ones' messages will be displayed before the later
1271 * ones; this is kinda in decreasing severity order */
1272 if (possible_problems & UTF8_GOT_OVERFLOW) {
1274 /* Overflow means also got a super and above 31 bits, but we
1275 * handle all three cases here */
1277 &= ~(UTF8_GOT_OVERFLOW|UTF8_GOT_SUPER|UTF8_GOT_ABOVE_31_BIT);
1278 *errors |= UTF8_GOT_OVERFLOW;
1280 /* But the API says we flag all errors found */
1281 if (flags & (UTF8_WARN_SUPER|UTF8_DISALLOW_SUPER)) {
1282 *errors |= UTF8_GOT_SUPER;
1284 if (flags & (UTF8_WARN_ABOVE_31_BIT|UTF8_DISALLOW_ABOVE_31_BIT)) {
1285 *errors |= UTF8_GOT_ABOVE_31_BIT;
1290 /* The warnings code explicitly says it doesn't handle the case
1291 * of packWARN2 and two categories which have parent-child
1292 * relationship. Even if it works now to raise the warning if
1293 * either is enabled, it wouldn't necessarily do so in the
1294 * future. We output (only) the most dire warning*/
1295 if (! (flags & UTF8_CHECK_ONLY)) {
1296 if (ckWARN_d(WARN_UTF8)) {
1297 pack_warn = packWARN(WARN_UTF8);
1299 else if (ckWARN_d(WARN_NON_UNICODE)) {
1300 pack_warn = packWARN(WARN_NON_UNICODE);
1303 message = Perl_form(aTHX_ "%s: %s (overflows)",
1305 _byte_dump_string(s0, send - s0));
1309 else if (possible_problems & UTF8_GOT_EMPTY) {
1310 possible_problems &= ~UTF8_GOT_EMPTY;
1311 *errors |= UTF8_GOT_EMPTY;
1313 if (! (flags & UTF8_ALLOW_EMPTY)) {
1315 if (ckWARN_d(WARN_UTF8) && ! (flags & UTF8_CHECK_ONLY)) {
1316 pack_warn = packWARN(WARN_UTF8);
1317 message = Perl_form(aTHX_ "%s (empty string)",
1322 else if (possible_problems & UTF8_GOT_CONTINUATION) {
1323 possible_problems &= ~UTF8_GOT_CONTINUATION;
1324 *errors |= UTF8_GOT_CONTINUATION;
1326 if (! (flags & UTF8_ALLOW_CONTINUATION)) {
1328 if (ckWARN_d(WARN_UTF8) && ! (flags & UTF8_CHECK_ONLY)) {
1329 pack_warn = packWARN(WARN_UTF8);
1330 message = Perl_form(aTHX_
1331 "%s: %s (unexpected continuation byte 0x%02x,"
1332 " with no preceding start byte)",
1334 _byte_dump_string(s0, 1), *s0);
1338 else if (possible_problems & UTF8_GOT_NON_CONTINUATION) {
1339 possible_problems &= ~UTF8_GOT_NON_CONTINUATION;
1340 *errors |= UTF8_GOT_NON_CONTINUATION;
1342 if (! (flags & UTF8_ALLOW_NON_CONTINUATION)) {
1344 if (ckWARN_d(WARN_UTF8) && ! (flags & UTF8_CHECK_ONLY)) {
1345 pack_warn = packWARN(WARN_UTF8);
1346 message = Perl_form(aTHX_ "%s",
1347 unexpected_non_continuation_text(s0,
1354 else if (possible_problems & UTF8_GOT_SHORT) {
1355 possible_problems &= ~UTF8_GOT_SHORT;
1356 *errors |= UTF8_GOT_SHORT;
1358 if (! (flags & UTF8_ALLOW_SHORT)) {
1360 if (ckWARN_d(WARN_UTF8) && ! (flags & UTF8_CHECK_ONLY)) {
1361 pack_warn = packWARN(WARN_UTF8);
1362 message = Perl_form(aTHX_
1363 "%s: %s (too short; got %d byte%s, need %d)",
1365 _byte_dump_string(s0, send - s0),
1367 curlen == 1 ? "" : "s",
1373 else if (possible_problems & UTF8_GOT_LONG) {
1374 possible_problems &= ~UTF8_GOT_LONG;
1375 *errors |= UTF8_GOT_LONG;
1377 if (! (flags & UTF8_ALLOW_LONG)) {
1380 if (ckWARN_d(WARN_UTF8) && ! (flags & UTF8_CHECK_ONLY)) {
1381 pack_warn = packWARN(WARN_UTF8);
1383 /* These error types cause 'uv' to be something that
1384 * isn't what was intended, so can't use it in the
1385 * message. The other error types either can't
1386 * generate an overlong, or else the 'uv' is valid */
1388 (UTF8_GOT_TOO_SHORT|UTF8_GOT_OVERFLOW))
1390 message = Perl_form(aTHX_
1391 "%s: %s (any UTF-8 sequence that starts"
1392 " with \"%s\" is overlong which can and"
1393 " should be represented with a"
1394 " different, shorter sequence)",
1396 _byte_dump_string(s0, send - s0),
1397 _byte_dump_string(s0, curlen));
1400 U8 tmpbuf[UTF8_MAXBYTES+1];
1401 const U8 * const e = uvoffuni_to_utf8_flags(tmpbuf,
1403 message = Perl_form(aTHX_
1404 "%s: %s (overlong; instead use %s to represent"
1407 _byte_dump_string(s0, send - s0),
1408 _byte_dump_string(tmpbuf, e - tmpbuf),
1409 ((uv < 256) ? 2 : 4), /* Field width of 2 for
1410 small code points */
1416 else if (possible_problems & UTF8_GOT_SURROGATE) {
1417 possible_problems &= ~UTF8_GOT_SURROGATE;
1419 if (flags & UTF8_WARN_SURROGATE) {
1420 *errors |= UTF8_GOT_SURROGATE;
1422 if ( ! (flags & UTF8_CHECK_ONLY)
1423 && ckWARN_d(WARN_SURROGATE))
1425 pack_warn = packWARN(WARN_SURROGATE);
1427 /* These are the only errors that can occur with a
1428 * surrogate when the 'uv' isn't valid */
1429 if (orig_problems & UTF8_GOT_TOO_SHORT) {
1430 message = Perl_form(aTHX_
1431 "UTF-16 surrogate (any UTF-8 sequence that"
1432 " starts with \"%s\" is for a surrogate)",
1433 _byte_dump_string(s0, curlen));
1436 message = Perl_form(aTHX_
1437 "UTF-16 surrogate U+%04"UVXf"", uv);
1442 if (flags & UTF8_DISALLOW_SURROGATE) {
1444 *errors |= UTF8_GOT_SURROGATE;
1447 else if (possible_problems & UTF8_GOT_SUPER) {
1448 possible_problems &= ~UTF8_GOT_SUPER;
1450 if (flags & UTF8_WARN_SUPER) {
1451 *errors |= UTF8_GOT_SUPER;
1453 if ( ! (flags & UTF8_CHECK_ONLY)
1454 && ckWARN_d(WARN_NON_UNICODE))
1456 pack_warn = packWARN(WARN_NON_UNICODE);
1458 if (orig_problems & UTF8_GOT_TOO_SHORT) {
1459 message = Perl_form(aTHX_
1460 "Any UTF-8 sequence that starts with"
1461 " \"%s\" is for a non-Unicode code point,"
1462 " may not be portable",
1463 _byte_dump_string(s0, curlen));
1466 message = Perl_form(aTHX_
1467 "Code point 0x%04"UVXf" is not"
1468 " Unicode, may not be portable",
1474 /* The maximum code point ever specified by a standard was
1475 * 2**31 - 1. Anything larger than that is a Perl extension
1476 * that very well may not be understood by other applications
1477 * (including earlier perl versions on EBCDIC platforms). We
1478 * test for these after the regular SUPER ones, and before
1479 * possibly bailing out, so that the slightly more dire warning
1480 * will override the regular one. */
1481 if ( (flags & (UTF8_WARN_ABOVE_31_BIT
1483 |UTF8_DISALLOW_ABOVE_31_BIT))
1484 && ( ( UNLIKELY(orig_problems & UTF8_GOT_TOO_SHORT)
1485 && UNLIKELY(is_utf8_cp_above_31_bits(
1488 || ( LIKELY(! (orig_problems & UTF8_GOT_TOO_SHORT))
1489 && UNLIKELY(UNICODE_IS_ABOVE_31_BIT(uv)))))
1491 if ( ! (flags & UTF8_CHECK_ONLY)
1492 && (flags & (UTF8_WARN_ABOVE_31_BIT|UTF8_WARN_SUPER))
1493 && ckWARN_d(WARN_UTF8))
1495 pack_warn = packWARN(WARN_UTF8);
1497 if (orig_problems & UTF8_GOT_TOO_SHORT) {
1498 message = Perl_form(aTHX_
1499 "Any UTF-8 sequence that starts with"
1500 " \"%s\" is for a non-Unicode code"
1501 " point, and is not portable",
1502 _byte_dump_string(s0, curlen));
1505 message = Perl_form(aTHX_
1506 "Code point 0x%"UVXf" is not Unicode,"
1507 " and not portable",
1512 if (flags & (UTF8_WARN_ABOVE_31_BIT|UTF8_DISALLOW_ABOVE_31_BIT)) {
1513 *errors |= UTF8_GOT_ABOVE_31_BIT;
1515 if (flags & UTF8_DISALLOW_ABOVE_31_BIT) {
1521 if (flags & UTF8_DISALLOW_SUPER) {
1522 *errors |= UTF8_GOT_SUPER;
1526 /* The deprecated warning overrides any non-deprecated one. If
1527 * there are other problems, a deprecation message is not
1528 * really helpful, so don't bother to raise it in that case.
1529 * This also keeps the code from having to handle the case
1530 * where 'uv' is not valid. */
1531 if ( ! (orig_problems
1532 & (UTF8_GOT_TOO_SHORT|UTF8_GOT_OVERFLOW))
1533 && UNLIKELY(uv > MAX_NON_DEPRECATED_CP)
1534 && ckWARN_d(WARN_DEPRECATED))
1536 message = Perl_form(aTHX_ cp_above_legal_max,
1537 uv, MAX_NON_DEPRECATED_CP);
1538 pack_warn = packWARN(WARN_DEPRECATED);
1541 else if (possible_problems & UTF8_GOT_NONCHAR) {
1542 possible_problems &= ~UTF8_GOT_NONCHAR;
1544 if (flags & UTF8_WARN_NONCHAR) {
1545 *errors |= UTF8_GOT_NONCHAR;
1547 if ( ! (flags & UTF8_CHECK_ONLY)
1548 && ckWARN_d(WARN_NONCHAR))
1550 /* The code above should have guaranteed that we don't
1551 * get here with errors other than overlong */
1552 assert (! (orig_problems
1553 & ~(UTF8_GOT_LONG|UTF8_GOT_NONCHAR)));
1555 pack_warn = packWARN(WARN_NONCHAR);
1556 message = Perl_form(aTHX_ "Unicode non-character"
1557 " U+%04"UVXf" is not recommended"
1558 " for open interchange", uv);
1562 if (flags & UTF8_DISALLOW_NONCHAR) {
1564 *errors |= UTF8_GOT_NONCHAR;
1566 } /* End of looking through the possible flags */
1568 /* Display the message (if any) for the problem being handled in
1569 * this iteration of the loop */
1572 Perl_warner(aTHX_ pack_warn, "%s in %s", message,
1575 Perl_warner(aTHX_ pack_warn, "%s", message);
1577 } /* End of 'while (possible_problems) {' */
1579 /* Since there was a possible problem, the returned length may need to
1580 * be changed from the one stored at the beginning of this function.
1581 * Instead of trying to figure out if that's needed, just do it. */
1587 if (flags & UTF8_CHECK_ONLY && retlen) {
1588 *retlen = ((STRLEN) -1);
1594 return UNI_TO_NATIVE(uv);
1598 =for apidoc utf8_to_uvchr_buf
1600 Returns the native code point of the first character in the string C<s> which
1601 is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>.
1602 C<*retlen> will be set to the length, in bytes, of that character.
1604 If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are
1605 enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
1606 C<NULL>) to -1. If those warnings are off, the computed value, if well-defined
1607 (or the Unicode REPLACEMENT CHARACTER if not), is silently returned, and
1608 C<*retlen> is set (if C<retlen> isn't C<NULL>) so that (S<C<s> + C<*retlen>>) is
1609 the next possible position in C<s> that could begin a non-malformed character.
1610 See L</utf8n_to_uvchr> for details on when the REPLACEMENT CHARACTER is
1613 Code points above the platform's C<IV_MAX> will raise a deprecation warning,
1614 unless those are turned off.
1618 Also implemented as a macro in utf8.h
1624 Perl_utf8_to_uvchr_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen)
1628 return utf8n_to_uvchr(s, send - s, retlen,
1629 ckWARN_d(WARN_UTF8) ? 0 : UTF8_ALLOW_ANY);
1632 /* This is marked as deprecated
1634 =for apidoc utf8_to_uvuni_buf
1636 Only in very rare circumstances should code need to be dealing in Unicode
1637 (as opposed to native) code points. In those few cases, use
1638 C<L<NATIVE_TO_UNI(utf8_to_uvchr_buf(...))|/utf8_to_uvchr_buf>> instead.
1640 Returns the Unicode (not-native) code point of the first character in the
1642 is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>.
1643 C<retlen> will be set to the length, in bytes, of that character.
1645 If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are
1646 enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
1647 NULL) to -1. If those warnings are off, the computed value if well-defined (or
1648 the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and C<*retlen>
1649 is set (if C<retlen> isn't NULL) so that (S<C<s> + C<*retlen>>) is the
1650 next possible position in C<s> that could begin a non-malformed character.
1651 See L</utf8n_to_uvchr> for details on when the REPLACEMENT CHARACTER is returned.
1653 Code points above the platform's C<IV_MAX> will raise a deprecation warning,
1654 unless those are turned off.
1660 Perl_utf8_to_uvuni_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen)
1662 PERL_ARGS_ASSERT_UTF8_TO_UVUNI_BUF;
1666 /* Call the low level routine, asking for checks */
1667 return NATIVE_TO_UNI(utf8_to_uvchr_buf(s, send, retlen));
1671 =for apidoc utf8_length
1673 Return the length of the UTF-8 char encoded string C<s> in characters.
1674 Stops at C<e> (inclusive). If C<e E<lt> s> or if the scan would end
1675 up past C<e>, croaks.
1681 Perl_utf8_length(pTHX_ const U8 *s, const U8 *e)
1685 PERL_ARGS_ASSERT_UTF8_LENGTH;
1687 /* Note: cannot use UTF8_IS_...() too eagerly here since e.g.
1688 * the bitops (especially ~) can create illegal UTF-8.
1689 * In other words: in Perl UTF-8 is not just for Unicode. */
1692 goto warn_and_return;
1702 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
1703 "%s in %s", unees, OP_DESC(PL_op));
1705 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees);
1712 =for apidoc bytes_cmp_utf8
1714 Compares the sequence of characters (stored as octets) in C<b>, C<blen> with the
1715 sequence of characters (stored as UTF-8)
1716 in C<u>, C<ulen>. Returns 0 if they are
1717 equal, -1 or -2 if the first string is less than the second string, +1 or +2
1718 if the first string is greater than the second string.
1720 -1 or +1 is returned if the shorter string was identical to the start of the
1721 longer string. -2 or +2 is returned if
1722 there was a difference between characters
1729 Perl_bytes_cmp_utf8(pTHX_ const U8 *b, STRLEN blen, const U8 *u, STRLEN ulen)
1731 const U8 *const bend = b + blen;
1732 const U8 *const uend = u + ulen;
1734 PERL_ARGS_ASSERT_BYTES_CMP_UTF8;
1736 while (b < bend && u < uend) {
1738 if (!UTF8_IS_INVARIANT(c)) {
1739 if (UTF8_IS_DOWNGRADEABLE_START(c)) {
1742 if (UTF8_IS_CONTINUATION(c1)) {
1743 c = EIGHT_BIT_UTF8_TO_NATIVE(c, c1);
1745 /* diag_listed_as: Malformed UTF-8 character%s */
1746 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
1748 unexpected_non_continuation_text(u - 1, 2, 1, 2),
1749 PL_op ? " in " : "",
1750 PL_op ? OP_DESC(PL_op) : "");
1755 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
1756 "%s in %s", unees, OP_DESC(PL_op));
1758 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees);
1759 return -2; /* Really want to return undef :-) */
1766 return *b < c ? -2 : +2;
1771 if (b == bend && u == uend)
1774 return b < bend ? +1 : -1;
1778 =for apidoc utf8_to_bytes
1780 Converts a string C<s> of length C<len> from UTF-8 into native byte encoding.
1781 Unlike L</bytes_to_utf8>, this over-writes the original string, and
1782 updates C<len> to contain the new length.
1783 Returns zero on failure, setting C<len> to -1.
1785 If you need a copy of the string, see L</bytes_from_utf8>.
1791 Perl_utf8_to_bytes(pTHX_ U8 *s, STRLEN *len)
1793 U8 * const save = s;
1794 U8 * const send = s + *len;
1797 PERL_ARGS_ASSERT_UTF8_TO_BYTES;
1798 PERL_UNUSED_CONTEXT;
1800 /* ensure valid UTF-8 and chars < 256 before updating string */
1802 if (! UTF8_IS_INVARIANT(*s)) {
1803 if (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(s, send)) {
1804 *len = ((STRLEN) -1);
1815 if (! UTF8_IS_INVARIANT(c)) {
1816 /* Then it is two-byte encoded */
1817 c = EIGHT_BIT_UTF8_TO_NATIVE(c, *s);
1828 =for apidoc bytes_from_utf8
1830 Converts a string C<s> of length C<len> from UTF-8 into native byte encoding.
1831 Unlike L</utf8_to_bytes> but like L</bytes_to_utf8>, returns a pointer to
1832 the newly-created string, and updates C<len> to contain the new
1833 length. Returns the original string if no conversion occurs, C<len>
1834 is unchanged. Do nothing if C<is_utf8> points to 0. Sets C<is_utf8> to
1835 0 if C<s> is converted or consisted entirely of characters that are invariant
1836 in UTF-8 (i.e., US-ASCII on non-EBCDIC machines).
1842 Perl_bytes_from_utf8(pTHX_ const U8 *s, STRLEN *len, bool *is_utf8)
1845 const U8 *start = s;
1849 PERL_ARGS_ASSERT_BYTES_FROM_UTF8;
1850 PERL_UNUSED_CONTEXT;
1854 /* ensure valid UTF-8 and chars < 256 before converting string */
1855 for (send = s + *len; s < send;) {
1856 if (! UTF8_IS_INVARIANT(*s)) {
1857 if (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(s, send)) {
1868 Newx(d, (*len) - count + 1, U8);
1869 s = start; start = d;
1872 if (! UTF8_IS_INVARIANT(c)) {
1873 /* Then it is two-byte encoded */
1874 c = EIGHT_BIT_UTF8_TO_NATIVE(c, *s);
1885 =for apidoc bytes_to_utf8
1887 Converts a string C<s> of length C<len> bytes from the native encoding into
1889 Returns a pointer to the newly-created string, and sets C<len> to
1890 reflect the new length in bytes.
1892 A C<NUL> character will be written after the end of the string.
1894 If you want to convert to UTF-8 from encodings other than
1895 the native (Latin1 or EBCDIC),
1896 see L</sv_recode_to_utf8>().
1901 /* This logic is duplicated in sv_catpvn_flags, so any bug fixes will
1902 likewise need duplication. */
1905 Perl_bytes_to_utf8(pTHX_ const U8 *s, STRLEN *len)
1907 const U8 * const send = s + (*len);
1911 PERL_ARGS_ASSERT_BYTES_TO_UTF8;
1912 PERL_UNUSED_CONTEXT;
1914 Newx(d, (*len) * 2 + 1, U8);
1918 append_utf8_from_native_byte(*s, &d);
1927 * Convert native (big-endian) or reversed (little-endian) UTF-16 to UTF-8.
1929 * Destination must be pre-extended to 3/2 source. Do not use in-place.
1930 * We optimize for native, for obvious reasons. */
1933 Perl_utf16_to_utf8(pTHX_ U8* p, U8* d, I32 bytelen, I32 *newlen)
1938 PERL_ARGS_ASSERT_UTF16_TO_UTF8;
1941 Perl_croak(aTHX_ "panic: utf16_to_utf8: odd bytelen %"UVuf, (UV)bytelen);
1946 UV uv = (p[0] << 8) + p[1]; /* UTF-16BE */
1948 if (OFFUNI_IS_INVARIANT(uv)) {
1949 *d++ = LATIN1_TO_NATIVE((U8) uv);
1952 if (uv <= MAX_UTF8_TWO_BYTE) {
1953 *d++ = UTF8_TWO_BYTE_HI(UNI_TO_NATIVE(uv));
1954 *d++ = UTF8_TWO_BYTE_LO(UNI_TO_NATIVE(uv));
1957 #define FIRST_HIGH_SURROGATE UNICODE_SURROGATE_FIRST
1958 #define LAST_HIGH_SURROGATE 0xDBFF
1959 #define FIRST_LOW_SURROGATE 0xDC00
1960 #define LAST_LOW_SURROGATE UNICODE_SURROGATE_LAST
1962 /* This assumes that most uses will be in the first Unicode plane, not
1963 * needing surrogates */
1964 if (UNLIKELY(uv >= UNICODE_SURROGATE_FIRST
1965 && uv <= UNICODE_SURROGATE_LAST))
1967 if (UNLIKELY(p >= pend) || UNLIKELY(uv > LAST_HIGH_SURROGATE)) {
1968 Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
1971 UV low = (p[0] << 8) + p[1];
1972 if ( UNLIKELY(low < FIRST_LOW_SURROGATE)
1973 || UNLIKELY(low > LAST_LOW_SURROGATE))
1975 Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
1978 uv = ((uv - FIRST_HIGH_SURROGATE) << 10)
1979 + (low - FIRST_LOW_SURROGATE) + 0x10000;
1983 d = uvoffuni_to_utf8_flags(d, uv, 0);
1986 *d++ = (U8)(( uv >> 12) | 0xe0);
1987 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
1988 *d++ = (U8)(( uv & 0x3f) | 0x80);
1992 *d++ = (U8)(( uv >> 18) | 0xf0);
1993 *d++ = (U8)(((uv >> 12) & 0x3f) | 0x80);
1994 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
1995 *d++ = (U8)(( uv & 0x3f) | 0x80);
2000 *newlen = d - dstart;
2004 /* Note: this one is slightly destructive of the source. */
2007 Perl_utf16_to_utf8_reversed(pTHX_ U8* p, U8* d, I32 bytelen, I32 *newlen)
2010 U8* const send = s + bytelen;
2012 PERL_ARGS_ASSERT_UTF16_TO_UTF8_REVERSED;
2015 Perl_croak(aTHX_ "panic: utf16_to_utf8_reversed: odd bytelen %"UVuf,
2019 const U8 tmp = s[0];
2024 return utf16_to_utf8(p, d, bytelen, newlen);
2028 Perl__is_uni_FOO(pTHX_ const U8 classnum, const UV c)
2030 U8 tmpbuf[UTF8_MAXBYTES+1];
2031 uvchr_to_utf8(tmpbuf, c);
2032 return _is_utf8_FOO(classnum, tmpbuf);
2035 /* Internal function so we can deprecate the external one, and call
2036 this one from other deprecated functions in this file */
2039 Perl__is_utf8_idstart(pTHX_ const U8 *p)
2041 PERL_ARGS_ASSERT__IS_UTF8_IDSTART;
2045 return is_utf8_common(p, &PL_utf8_idstart, "IdStart", NULL);
2049 Perl__is_uni_perl_idcont(pTHX_ UV c)
2051 U8 tmpbuf[UTF8_MAXBYTES+1];
2052 uvchr_to_utf8(tmpbuf, c);
2053 return _is_utf8_perl_idcont(tmpbuf);
2057 Perl__is_uni_perl_idstart(pTHX_ UV c)
2059 U8 tmpbuf[UTF8_MAXBYTES+1];
2060 uvchr_to_utf8(tmpbuf, c);
2061 return _is_utf8_perl_idstart(tmpbuf);
2065 Perl__to_upper_title_latin1(pTHX_ const U8 c, U8* p, STRLEN *lenp, const char S_or_s)
2067 /* We have the latin1-range values compiled into the core, so just use
2068 * those, converting the result to UTF-8. The only difference between upper
2069 * and title case in this range is that LATIN_SMALL_LETTER_SHARP_S is
2070 * either "SS" or "Ss". Which one to use is passed into the routine in
2071 * 'S_or_s' to avoid a test */
2073 UV converted = toUPPER_LATIN1_MOD(c);
2075 PERL_ARGS_ASSERT__TO_UPPER_TITLE_LATIN1;
2077 assert(S_or_s == 'S' || S_or_s == 's');
2079 if (UVCHR_IS_INVARIANT(converted)) { /* No difference between the two for
2080 characters in this range */
2081 *p = (U8) converted;
2086 /* toUPPER_LATIN1_MOD gives the correct results except for three outliers,
2087 * which it maps to one of them, so as to only have to have one check for
2088 * it in the main case */
2089 if (UNLIKELY(converted == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS)) {
2091 case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
2092 converted = LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS;
2095 converted = GREEK_CAPITAL_LETTER_MU;
2097 #if UNICODE_MAJOR_VERSION > 2 \
2098 || (UNICODE_MAJOR_VERSION == 2 && UNICODE_DOT_VERSION >= 1 \
2099 && UNICODE_DOT_DOT_VERSION >= 8)
2100 case LATIN_SMALL_LETTER_SHARP_S:
2107 Perl_croak(aTHX_ "panic: to_upper_title_latin1 did not expect '%c' to map to '%c'", c, LATIN_SMALL_LETTER_Y_WITH_DIAERESIS);
2108 NOT_REACHED; /* NOTREACHED */
2112 *(p)++ = UTF8_TWO_BYTE_HI(converted);
2113 *p = UTF8_TWO_BYTE_LO(converted);
2119 /* Call the function to convert a UTF-8 encoded character to the specified case.
2120 * Note that there may be more than one character in the result.
2121 * INP is a pointer to the first byte of the input character
2122 * OUTP will be set to the first byte of the string of changed characters. It
2123 * needs to have space for UTF8_MAXBYTES_CASE+1 bytes
2124 * LENP will be set to the length in bytes of the string of changed characters
2126 * The functions return the ordinal of the first character in the string of OUTP */
2127 #define CALL_UPPER_CASE(uv, s, d, lenp) _to_utf8_case(uv, s, d, lenp, &PL_utf8_toupper, "ToUc", "")
2128 #define CALL_TITLE_CASE(uv, s, d, lenp) _to_utf8_case(uv, s, d, lenp, &PL_utf8_totitle, "ToTc", "")
2129 #define CALL_LOWER_CASE(uv, s, d, lenp) _to_utf8_case(uv, s, d, lenp, &PL_utf8_tolower, "ToLc", "")
2131 /* This additionally has the input parameter 'specials', which if non-zero will
2132 * cause this to use the specials hash for folding (meaning get full case
2133 * folding); otherwise, when zero, this implies a simple case fold */
2134 #define CALL_FOLD_CASE(uv, s, d, lenp, specials) _to_utf8_case(uv, s, d, lenp, &PL_utf8_tofold, "ToCf", (specials) ? "" : NULL)
2137 Perl_to_uni_upper(pTHX_ UV c, U8* p, STRLEN *lenp)
2139 /* Convert the Unicode character whose ordinal is <c> to its uppercase
2140 * version and store that in UTF-8 in <p> and its length in bytes in <lenp>.
2141 * Note that the <p> needs to be at least UTF8_MAXBYTES_CASE+1 bytes since
2142 * the changed version may be longer than the original character.
2144 * The ordinal of the first character of the changed version is returned
2145 * (but note, as explained above, that there may be more.) */
2147 PERL_ARGS_ASSERT_TO_UNI_UPPER;
2150 return _to_upper_title_latin1((U8) c, p, lenp, 'S');
2153 uvchr_to_utf8(p, c);
2154 return CALL_UPPER_CASE(c, p, p, lenp);
2158 Perl_to_uni_title(pTHX_ UV c, U8* p, STRLEN *lenp)
2160 PERL_ARGS_ASSERT_TO_UNI_TITLE;
2163 return _to_upper_title_latin1((U8) c, p, lenp, 's');
2166 uvchr_to_utf8(p, c);
2167 return CALL_TITLE_CASE(c, p, p, lenp);
2171 S_to_lower_latin1(const U8 c, U8* p, STRLEN *lenp)
2173 /* We have the latin1-range values compiled into the core, so just use
2174 * those, converting the result to UTF-8. Since the result is always just
2175 * one character, we allow <p> to be NULL */
2177 U8 converted = toLOWER_LATIN1(c);
2180 if (NATIVE_BYTE_IS_INVARIANT(converted)) {
2185 /* Result is known to always be < 256, so can use the EIGHT_BIT
2187 *p = UTF8_EIGHT_BIT_HI(converted);
2188 *(p+1) = UTF8_EIGHT_BIT_LO(converted);
2196 Perl_to_uni_lower(pTHX_ UV c, U8* p, STRLEN *lenp)
2198 PERL_ARGS_ASSERT_TO_UNI_LOWER;
2201 return to_lower_latin1((U8) c, p, lenp);
2204 uvchr_to_utf8(p, c);
2205 return CALL_LOWER_CASE(c, p, p, lenp);
2209 Perl__to_fold_latin1(pTHX_ const U8 c, U8* p, STRLEN *lenp, const unsigned int flags)
2211 /* Corresponds to to_lower_latin1(); <flags> bits meanings:
2212 * FOLD_FLAGS_NOMIX_ASCII iff non-ASCII to ASCII folds are prohibited
2213 * FOLD_FLAGS_FULL iff full folding is to be used;
2215 * Not to be used for locale folds
2220 PERL_ARGS_ASSERT__TO_FOLD_LATIN1;
2221 PERL_UNUSED_CONTEXT;
2223 assert (! (flags & FOLD_FLAGS_LOCALE));
2225 if (UNLIKELY(c == MICRO_SIGN)) {
2226 converted = GREEK_SMALL_LETTER_MU;
2228 #if UNICODE_MAJOR_VERSION > 3 /* no multifolds in early Unicode */ \
2229 || (UNICODE_MAJOR_VERSION == 3 && ( UNICODE_DOT_VERSION > 0) \
2230 || UNICODE_DOT_DOT_VERSION > 0)
2231 else if ( (flags & FOLD_FLAGS_FULL)
2232 && UNLIKELY(c == LATIN_SMALL_LETTER_SHARP_S))
2234 /* If can't cross 127/128 boundary, can't return "ss"; instead return
2235 * two U+017F characters, as fc("\df") should eq fc("\x{17f}\x{17f}")
2236 * under those circumstances. */
2237 if (flags & FOLD_FLAGS_NOMIX_ASCII) {
2238 *lenp = 2 * sizeof(LATIN_SMALL_LETTER_LONG_S_UTF8) - 2;
2239 Copy(LATIN_SMALL_LETTER_LONG_S_UTF8 LATIN_SMALL_LETTER_LONG_S_UTF8,
2241 return LATIN_SMALL_LETTER_LONG_S;
2251 else { /* In this range the fold of all other characters is their lower
2253 converted = toLOWER_LATIN1(c);
2256 if (UVCHR_IS_INVARIANT(converted)) {
2257 *p = (U8) converted;
2261 *(p)++ = UTF8_TWO_BYTE_HI(converted);
2262 *p = UTF8_TWO_BYTE_LO(converted);
2270 Perl__to_uni_fold_flags(pTHX_ UV c, U8* p, STRLEN *lenp, U8 flags)
2273 /* Not currently externally documented, and subject to change
2274 * <flags> bits meanings:
2275 * FOLD_FLAGS_FULL iff full folding is to be used;
2276 * FOLD_FLAGS_LOCALE is set iff the rules from the current underlying
2277 * locale are to be used.
2278 * FOLD_FLAGS_NOMIX_ASCII iff non-ASCII to ASCII folds are prohibited
2281 PERL_ARGS_ASSERT__TO_UNI_FOLD_FLAGS;
2283 if (flags & FOLD_FLAGS_LOCALE) {
2284 /* Treat a UTF-8 locale as not being in locale at all */
2285 if (IN_UTF8_CTYPE_LOCALE) {
2286 flags &= ~FOLD_FLAGS_LOCALE;
2289 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2290 goto needs_full_generality;
2295 return _to_fold_latin1((U8) c, p, lenp,
2296 flags & (FOLD_FLAGS_FULL | FOLD_FLAGS_NOMIX_ASCII));
2299 /* Here, above 255. If no special needs, just use the macro */
2300 if ( ! (flags & (FOLD_FLAGS_LOCALE|FOLD_FLAGS_NOMIX_ASCII))) {
2301 uvchr_to_utf8(p, c);
2302 return CALL_FOLD_CASE(c, p, p, lenp, flags & FOLD_FLAGS_FULL);
2304 else { /* Otherwise, _to_utf8_fold_flags has the intelligence to deal with
2305 the special flags. */
2306 U8 utf8_c[UTF8_MAXBYTES + 1];
2308 needs_full_generality:
2309 uvchr_to_utf8(utf8_c, c);
2310 return _to_utf8_fold_flags(utf8_c, p, lenp, flags);
2314 PERL_STATIC_INLINE bool
2315 S_is_utf8_common(pTHX_ const U8 *const p, SV **swash,
2316 const char *const swashname, SV* const invlist)
2318 /* returns a boolean giving whether or not the UTF8-encoded character that
2319 * starts at <p> is in the swash indicated by <swashname>. <swash>
2320 * contains a pointer to where the swash indicated by <swashname>
2321 * is to be stored; which this routine will do, so that future calls will
2322 * look at <*swash> and only generate a swash if it is not null. <invlist>
2323 * is NULL or an inversion list that defines the swash. If not null, it
2324 * saves time during initialization of the swash.
2326 * Note that it is assumed that the buffer length of <p> is enough to
2327 * contain all the bytes that comprise the character. Thus, <*p> should
2328 * have been checked before this call for mal-formedness enough to assure
2331 PERL_ARGS_ASSERT_IS_UTF8_COMMON;
2333 /* The API should have included a length for the UTF-8 character in <p>,
2334 * but it doesn't. We therefore assume that p has been validated at least
2335 * as far as there being enough bytes available in it to accommodate the
2336 * character without reading beyond the end, and pass that number on to the
2337 * validating routine */
2338 if (! isUTF8_CHAR(p, p + UTF8SKIP(p))) {
2339 if (ckWARN_d(WARN_UTF8)) {
2340 Perl_warner(aTHX_ packWARN2(WARN_DEPRECATED,WARN_UTF8),
2341 "Passing malformed UTF-8 to \"%s\" is deprecated", swashname);
2342 if (ckWARN(WARN_UTF8)) { /* This will output details as to the
2343 what the malformation is */
2344 utf8_to_uvchr_buf(p, p + UTF8SKIP(p), NULL);
2350 U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
2351 *swash = _core_swash_init("utf8",
2353 /* Only use the name if there is no inversion
2354 * list; otherwise will go out to disk */
2355 (invlist) ? "" : swashname,
2357 &PL_sv_undef, 1, 0, invlist, &flags);
2360 return swash_fetch(*swash, p, TRUE) != 0;
2364 Perl__is_utf8_FOO(pTHX_ const U8 classnum, const U8 *p)
2366 PERL_ARGS_ASSERT__IS_UTF8_FOO;
2368 assert(classnum < _FIRST_NON_SWASH_CC);
2370 return is_utf8_common(p,
2371 &PL_utf8_swash_ptrs[classnum],
2372 swash_property_names[classnum],
2373 PL_XPosix_ptrs[classnum]);
2377 Perl__is_utf8_perl_idstart(pTHX_ const U8 *p)
2381 PERL_ARGS_ASSERT__IS_UTF8_PERL_IDSTART;
2383 if (! PL_utf8_perl_idstart) {
2384 invlist = _new_invlist_C_array(_Perl_IDStart_invlist);
2386 return is_utf8_common(p, &PL_utf8_perl_idstart, "_Perl_IDStart", invlist);
2390 Perl__is_utf8_xidstart(pTHX_ const U8 *p)
2392 PERL_ARGS_ASSERT__IS_UTF8_XIDSTART;
2396 return is_utf8_common(p, &PL_utf8_xidstart, "XIdStart", NULL);
2400 Perl__is_utf8_perl_idcont(pTHX_ const U8 *p)
2404 PERL_ARGS_ASSERT__IS_UTF8_PERL_IDCONT;
2406 if (! PL_utf8_perl_idcont) {
2407 invlist = _new_invlist_C_array(_Perl_IDCont_invlist);
2409 return is_utf8_common(p, &PL_utf8_perl_idcont, "_Perl_IDCont", invlist);
2413 Perl__is_utf8_idcont(pTHX_ const U8 *p)
2415 PERL_ARGS_ASSERT__IS_UTF8_IDCONT;
2417 return is_utf8_common(p, &PL_utf8_idcont, "IdContinue", NULL);
2421 Perl__is_utf8_xidcont(pTHX_ const U8 *p)
2423 PERL_ARGS_ASSERT__IS_UTF8_XIDCONT;
2425 return is_utf8_common(p, &PL_utf8_idcont, "XIdContinue", NULL);
2429 Perl__is_utf8_mark(pTHX_ const U8 *p)
2431 PERL_ARGS_ASSERT__IS_UTF8_MARK;
2433 return is_utf8_common(p, &PL_utf8_mark, "IsM", NULL);
2437 =for apidoc to_utf8_case
2439 Instead use the appropriate one of L</toUPPER_utf8>,
2444 C<p> contains the pointer to the UTF-8 string encoding
2445 the character that is being converted. This routine assumes that the character
2446 at C<p> is well-formed.
2448 C<ustrp> is a pointer to the character buffer to put the
2449 conversion result to. C<lenp> is a pointer to the length
2452 C<swashp> is a pointer to the swash to use.
2454 Both the special and normal mappings are stored in F<lib/unicore/To/Foo.pl>,
2455 and loaded by C<SWASHNEW>, using F<lib/utf8_heavy.pl>. C<special> (usually,
2456 but not always, a multicharacter mapping), is tried first.
2458 C<special> is a string, normally C<NULL> or C<"">. C<NULL> means to not use
2459 any special mappings; C<""> means to use the special mappings. Values other
2460 than these two are treated as the name of the hash containing the special
2461 mappings, like C<"utf8::ToSpecLower">.
2463 C<normal> is a string like C<"ToLower"> which means the swash
2466 Code points above the platform's C<IV_MAX> will raise a deprecation warning,
2467 unless those are turned off.
2472 Perl_to_utf8_case(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp,
2473 SV **swashp, const char *normal, const char *special)
2475 PERL_ARGS_ASSERT_TO_UTF8_CASE;
2477 return _to_utf8_case(valid_utf8_to_uvchr(p, NULL), p, ustrp, lenp, swashp, normal, special);
2480 /* change namve uv1 to 'from' */
2482 S__to_utf8_case(pTHX_ const UV uv1, const U8 *p, U8* ustrp, STRLEN *lenp,
2483 SV **swashp, const char *normal, const char *special)
2487 PERL_ARGS_ASSERT__TO_UTF8_CASE;
2489 /* For code points that don't change case, we already know that the output
2490 * of this function is the unchanged input, so we can skip doing look-ups
2491 * for them. Unfortunately the case-changing code points are scattered
2492 * around. But there are some long consecutive ranges where there are no
2493 * case changing code points. By adding tests, we can eliminate the lookup
2494 * for all the ones in such ranges. This is currently done here only for
2495 * just a few cases where the scripts are in common use in modern commerce
2496 * (and scripts adjacent to those which can be included without additional
2499 if (uv1 >= 0x0590) {
2500 /* This keeps from needing further processing the code points most
2501 * likely to be used in the following non-cased scripts: Hebrew,
2502 * Arabic, Syriac, Thaana, NKo, Samaritan, Mandaic, Devanagari,
2503 * Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu, Kannada,
2504 * Malayalam, Sinhala, Thai, Lao, Tibetan, Myanmar */
2509 /* The following largish code point ranges also don't have case
2510 * changes, but khw didn't think they warranted extra tests to speed
2511 * them up (which would slightly slow down everything else above them):
2512 * 1100..139F Hangul Jamo, Ethiopic
2513 * 1400..1CFF Unified Canadian Aboriginal Syllabics, Ogham, Runic,
2514 * Tagalog, Hanunoo, Buhid, Tagbanwa, Khmer, Mongolian,
2515 * Limbu, Tai Le, New Tai Lue, Buginese, Tai Tham,
2516 * Combining Diacritical Marks Extended, Balinese,
2517 * Sundanese, Batak, Lepcha, Ol Chiki
2518 * 2000..206F General Punctuation
2521 if (uv1 >= 0x2D30) {
2523 /* This keeps the from needing further processing the code points
2524 * most likely to be used in the following non-cased major scripts:
2525 * CJK, Katakana, Hiragana, plus some less-likely scripts.
2527 * (0x2D30 above might have to be changed to 2F00 in the unlikely
2528 * event that Unicode eventually allocates the unused block as of
2529 * v8.0 2FE0..2FEF to code points that are cased. khw has verified
2530 * that the test suite will start having failures to alert you
2531 * should that happen) */
2536 if (uv1 >= 0xAC00) {
2537 if (UNLIKELY(UNICODE_IS_SURROGATE(uv1))) {
2538 if (ckWARN_d(WARN_SURROGATE)) {
2539 const char* desc = (PL_op) ? OP_DESC(PL_op) : normal;
2540 Perl_warner(aTHX_ packWARN(WARN_SURROGATE),
2541 "Operation \"%s\" returns its argument for UTF-16 surrogate U+%04"UVXf"", desc, uv1);
2546 /* AC00..FAFF Catches Hangul syllables and private use, plus
2553 if (UNLIKELY(UNICODE_IS_SUPER(uv1))) {
2554 if ( UNLIKELY(uv1 > MAX_NON_DEPRECATED_CP)
2555 && ckWARN_d(WARN_DEPRECATED))
2557 Perl_warner(aTHX_ packWARN(WARN_DEPRECATED),
2558 cp_above_legal_max, uv1, MAX_NON_DEPRECATED_CP);
2560 if (ckWARN_d(WARN_NON_UNICODE)) {
2561 const char* desc = (PL_op) ? OP_DESC(PL_op) : normal;
2562 Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE),
2563 "Operation \"%s\" returns its argument for non-Unicode code point 0x%04"UVXf"", desc, uv1);
2567 #ifdef HIGHEST_CASE_CHANGING_CP_FOR_USE_ONLY_BY_UTF8_DOT_C
2569 > HIGHEST_CASE_CHANGING_CP_FOR_USE_ONLY_BY_UTF8_DOT_C))
2572 /* As of this writing, this means we avoid swash creation
2573 * for anything beyond low Plane 1 */
2580 /* Note that non-characters are perfectly legal, so no warning should
2581 * be given. There are so few of them, that it isn't worth the extra
2582 * tests to avoid swash creation */
2585 if (!*swashp) /* load on-demand */
2586 *swashp = _core_swash_init("utf8", normal, &PL_sv_undef, 4, 0, NULL, NULL);
2589 /* It might be "special" (sometimes, but not always,
2590 * a multicharacter mapping) */
2594 /* If passed in the specials name, use that; otherwise use any
2595 * given in the swash */
2596 if (*special != '\0') {
2597 hv = get_hv(special, 0);
2600 svp = hv_fetchs(MUTABLE_HV(SvRV(*swashp)), "SPECIALS", 0);
2602 hv = MUTABLE_HV(SvRV(*svp));
2607 && (svp = hv_fetch(hv, (const char*)p, UVCHR_SKIP(uv1), FALSE))
2612 s = SvPV_const(*svp, len);
2615 len = uvchr_to_utf8(ustrp, *(U8*)s) - ustrp;
2617 Copy(s, ustrp, len, U8);
2622 if (!len && *swashp) {
2623 const UV uv2 = swash_fetch(*swashp, p, TRUE /* => is UTF-8 */);
2626 /* It was "normal" (a single character mapping). */
2627 len = uvchr_to_utf8(ustrp, uv2) - ustrp;
2635 return valid_utf8_to_uvchr(ustrp, 0);
2638 /* Here, there was no mapping defined, which means that the code point maps
2639 * to itself. Return the inputs */
2642 if (p != ustrp) { /* Don't copy onto itself */
2643 Copy(p, ustrp, len, U8);
2654 S_check_locale_boundary_crossing(pTHX_ const U8* const p, const UV result, U8* const ustrp, STRLEN *lenp)
2656 /* This is called when changing the case of a UTF-8-encoded character above
2657 * the Latin1 range, and the operation is in a non-UTF-8 locale. If the
2658 * result contains a character that crosses the 255/256 boundary, disallow
2659 * the change, and return the original code point. See L<perlfunc/lc> for
2662 * p points to the original string whose case was changed; assumed
2663 * by this routine to be well-formed
2664 * result the code point of the first character in the changed-case string
2665 * ustrp points to the changed-case string (<result> represents its first char)
2666 * lenp points to the length of <ustrp> */
2668 UV original; /* To store the first code point of <p> */
2670 PERL_ARGS_ASSERT_CHECK_LOCALE_BOUNDARY_CROSSING;
2672 assert(UTF8_IS_ABOVE_LATIN1(*p));
2674 /* We know immediately if the first character in the string crosses the
2675 * boundary, so can skip */
2678 /* Look at every character in the result; if any cross the
2679 * boundary, the whole thing is disallowed */
2680 U8* s = ustrp + UTF8SKIP(ustrp);
2681 U8* e = ustrp + *lenp;
2683 if (! UTF8_IS_ABOVE_LATIN1(*s)) {
2689 /* Here, no characters crossed, result is ok as-is, but we warn. */
2690 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(p, p + UTF8SKIP(p));
2696 /* Failed, have to return the original */
2697 original = valid_utf8_to_uvchr(p, lenp);
2699 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
2700 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
2701 "Can't do %s(\"\\x{%"UVXf"}\") on non-UTF-8 locale; "
2702 "resolved to \"\\x{%"UVXf"}\".",
2706 Copy(p, ustrp, *lenp, char);
2711 =for apidoc to_utf8_upper
2713 Instead use L</toUPPER_utf8>.
2717 /* Not currently externally documented, and subject to change:
2718 * <flags> is set iff iff the rules from the current underlying locale are to
2722 Perl__to_utf8_upper_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, bool flags)
2726 PERL_ARGS_ASSERT__TO_UTF8_UPPER_FLAGS;
2729 /* Treat a UTF-8 locale as not being in locale at all */
2730 if (IN_UTF8_CTYPE_LOCALE) {
2734 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2738 if (UTF8_IS_INVARIANT(*p)) {
2740 result = toUPPER_LC(*p);
2743 return _to_upper_title_latin1(*p, ustrp, lenp, 'S');
2746 else if UTF8_IS_DOWNGRADEABLE_START(*p) {
2748 U8 c = EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1));
2749 result = toUPPER_LC(c);
2752 return _to_upper_title_latin1(EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1)),
2756 else { /* UTF-8, ord above 255 */
2757 result = CALL_UPPER_CASE(valid_utf8_to_uvchr(p, NULL), p, ustrp, lenp);
2760 result = check_locale_boundary_crossing(p, result, ustrp, lenp);
2765 /* Here, used locale rules. Convert back to UTF-8 */
2766 if (UTF8_IS_INVARIANT(result)) {
2767 *ustrp = (U8) result;
2771 *ustrp = UTF8_EIGHT_BIT_HI((U8) result);
2772 *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result);
2780 =for apidoc to_utf8_title
2782 Instead use L</toTITLE_utf8>.
2786 /* Not currently externally documented, and subject to change:
2787 * <flags> is set iff the rules from the current underlying locale are to be
2788 * used. Since titlecase is not defined in POSIX, for other than a
2789 * UTF-8 locale, uppercase is used instead for code points < 256.
2793 Perl__to_utf8_title_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, bool flags)
2797 PERL_ARGS_ASSERT__TO_UTF8_TITLE_FLAGS;
2800 /* Treat a UTF-8 locale as not being in locale at all */
2801 if (IN_UTF8_CTYPE_LOCALE) {
2805 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2809 if (UTF8_IS_INVARIANT(*p)) {
2811 result = toUPPER_LC(*p);
2814 return _to_upper_title_latin1(*p, ustrp, lenp, 's');
2817 else if UTF8_IS_DOWNGRADEABLE_START(*p) {
2819 U8 c = EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1));
2820 result = toUPPER_LC(c);
2823 return _to_upper_title_latin1(EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1)),
2827 else { /* UTF-8, ord above 255 */
2828 result = CALL_TITLE_CASE(valid_utf8_to_uvchr(p, NULL), p, ustrp, lenp);
2831 result = check_locale_boundary_crossing(p, result, ustrp, lenp);
2836 /* Here, used locale rules. Convert back to UTF-8 */
2837 if (UTF8_IS_INVARIANT(result)) {
2838 *ustrp = (U8) result;
2842 *ustrp = UTF8_EIGHT_BIT_HI((U8) result);
2843 *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result);
2851 =for apidoc to_utf8_lower
2853 Instead use L</toLOWER_utf8>.
2857 /* Not currently externally documented, and subject to change:
2858 * <flags> is set iff iff the rules from the current underlying locale are to
2863 Perl__to_utf8_lower_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, bool flags)
2867 PERL_ARGS_ASSERT__TO_UTF8_LOWER_FLAGS;
2870 /* Treat a UTF-8 locale as not being in locale at all */
2871 if (IN_UTF8_CTYPE_LOCALE) {
2875 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2879 if (UTF8_IS_INVARIANT(*p)) {
2881 result = toLOWER_LC(*p);
2884 return to_lower_latin1(*p, ustrp, lenp);
2887 else if UTF8_IS_DOWNGRADEABLE_START(*p) {
2889 U8 c = EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1));
2890 result = toLOWER_LC(c);
2893 return to_lower_latin1(EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1)),
2897 else { /* UTF-8, ord above 255 */
2898 result = CALL_LOWER_CASE(valid_utf8_to_uvchr(p, NULL), p, ustrp, lenp);
2901 result = check_locale_boundary_crossing(p, result, ustrp, lenp);
2907 /* Here, used locale rules. Convert back to UTF-8 */
2908 if (UTF8_IS_INVARIANT(result)) {
2909 *ustrp = (U8) result;
2913 *ustrp = UTF8_EIGHT_BIT_HI((U8) result);
2914 *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result);
2922 =for apidoc to_utf8_fold
2924 Instead use L</toFOLD_utf8>.
2928 /* Not currently externally documented, and subject to change,
2930 * bit FOLD_FLAGS_LOCALE is set iff the rules from the current underlying
2931 * locale are to be used.
2932 * bit FOLD_FLAGS_FULL is set iff full case folds are to be used;
2933 * otherwise simple folds
2934 * bit FOLD_FLAGS_NOMIX_ASCII is set iff folds of non-ASCII to ASCII are
2939 Perl__to_utf8_fold_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, U8 flags)
2943 PERL_ARGS_ASSERT__TO_UTF8_FOLD_FLAGS;
2945 /* These are mutually exclusive */
2946 assert (! ((flags & FOLD_FLAGS_LOCALE) && (flags & FOLD_FLAGS_NOMIX_ASCII)));
2948 assert(p != ustrp); /* Otherwise overwrites */
2950 if (flags & FOLD_FLAGS_LOCALE) {
2951 /* Treat a UTF-8 locale as not being in locale at all */
2952 if (IN_UTF8_CTYPE_LOCALE) {
2953 flags &= ~FOLD_FLAGS_LOCALE;
2956 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2960 if (UTF8_IS_INVARIANT(*p)) {
2961 if (flags & FOLD_FLAGS_LOCALE) {
2962 result = toFOLD_LC(*p);
2965 return _to_fold_latin1(*p, ustrp, lenp,
2966 flags & (FOLD_FLAGS_FULL | FOLD_FLAGS_NOMIX_ASCII));
2969 else if UTF8_IS_DOWNGRADEABLE_START(*p) {
2970 if (flags & FOLD_FLAGS_LOCALE) {
2971 U8 c = EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1));
2972 result = toFOLD_LC(c);
2975 return _to_fold_latin1(EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1)),
2977 flags & (FOLD_FLAGS_FULL | FOLD_FLAGS_NOMIX_ASCII));
2980 else { /* UTF-8, ord above 255 */
2981 result = CALL_FOLD_CASE(valid_utf8_to_uvchr(p, NULL), p, ustrp, lenp, flags & FOLD_FLAGS_FULL);
2983 if (flags & FOLD_FLAGS_LOCALE) {
2985 # define LONG_S_T LATIN_SMALL_LIGATURE_LONG_S_T_UTF8
2986 const unsigned int long_s_t_len = sizeof(LONG_S_T) - 1;
2988 # ifdef LATIN_CAPITAL_LETTER_SHARP_S_UTF8
2989 # define CAP_SHARP_S LATIN_CAPITAL_LETTER_SHARP_S_UTF8
2991 const unsigned int cap_sharp_s_len = sizeof(CAP_SHARP_S) - 1;
2993 /* Special case these two characters, as what normally gets
2994 * returned under locale doesn't work */
2995 if (UTF8SKIP(p) == cap_sharp_s_len
2996 && memEQ((char *) p, CAP_SHARP_S, cap_sharp_s_len))
2998 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
2999 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3000 "Can't do fc(\"\\x{1E9E}\") on non-UTF-8 locale; "
3001 "resolved to \"\\x{17F}\\x{17F}\".");
3006 if (UTF8SKIP(p) == long_s_t_len
3007 && memEQ((char *) p, LONG_S_T, long_s_t_len))
3009 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3010 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3011 "Can't do fc(\"\\x{FB05}\") on non-UTF-8 locale; "
3012 "resolved to \"\\x{FB06}\".");
3013 goto return_ligature_st;
3016 #if UNICODE_MAJOR_VERSION == 3 \
3017 && UNICODE_DOT_VERSION == 0 \
3018 && UNICODE_DOT_DOT_VERSION == 1
3019 # define DOTTED_I LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE_UTF8
3021 /* And special case this on this Unicode version only, for the same
3022 * reaons the other two are special cased. They would cross the
3023 * 255/256 boundary which is forbidden under /l, and so the code
3024 * wouldn't catch that they are equivalent (which they are only in
3026 else if (UTF8SKIP(p) == sizeof(DOTTED_I) - 1
3027 && memEQ((char *) p, DOTTED_I, sizeof(DOTTED_I) - 1))
3029 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3030 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3031 "Can't do fc(\"\\x{0130}\") on non-UTF-8 locale; "
3032 "resolved to \"\\x{0131}\".");
3033 goto return_dotless_i;
3037 return check_locale_boundary_crossing(p, result, ustrp, lenp);
3039 else if (! (flags & FOLD_FLAGS_NOMIX_ASCII)) {
3043 /* This is called when changing the case of a UTF-8-encoded
3044 * character above the ASCII range, and the result should not
3045 * contain an ASCII character. */
3047 UV original; /* To store the first code point of <p> */
3049 /* Look at every character in the result; if any cross the
3050 * boundary, the whole thing is disallowed */
3052 U8* e = ustrp + *lenp;
3055 /* Crossed, have to return the original */
3056 original = valid_utf8_to_uvchr(p, lenp);
3058 /* But in these instances, there is an alternative we can
3059 * return that is valid */
3060 if (original == LATIN_SMALL_LETTER_SHARP_S
3061 #ifdef LATIN_CAPITAL_LETTER_SHARP_S /* not defined in early Unicode releases */
3062 || original == LATIN_CAPITAL_LETTER_SHARP_S
3067 else if (original == LATIN_SMALL_LIGATURE_LONG_S_T) {
3068 goto return_ligature_st;
3070 #if UNICODE_MAJOR_VERSION == 3 \
3071 && UNICODE_DOT_VERSION == 0 \
3072 && UNICODE_DOT_DOT_VERSION == 1
3074 else if (original == LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE) {
3075 goto return_dotless_i;
3078 Copy(p, ustrp, *lenp, char);
3084 /* Here, no characters crossed, result is ok as-is */
3089 /* Here, used locale rules. Convert back to UTF-8 */
3090 if (UTF8_IS_INVARIANT(result)) {
3091 *ustrp = (U8) result;
3095 *ustrp = UTF8_EIGHT_BIT_HI((U8) result);
3096 *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result);
3103 /* Certain folds to 'ss' are prohibited by the options, but they do allow
3104 * folds to a string of two of these characters. By returning this
3105 * instead, then, e.g.,
3106 * fc("\x{1E9E}") eq fc("\x{17F}\x{17F}")
3109 *lenp = 2 * sizeof(LATIN_SMALL_LETTER_LONG_S_UTF8) - 2;
3110 Copy(LATIN_SMALL_LETTER_LONG_S_UTF8 LATIN_SMALL_LETTER_LONG_S_UTF8,
3112 return LATIN_SMALL_LETTER_LONG_S;
3115 /* Two folds to 'st' are prohibited by the options; instead we pick one and
3116 * have the other one fold to it */
3118 *lenp = sizeof(LATIN_SMALL_LIGATURE_ST_UTF8) - 1;
3119 Copy(LATIN_SMALL_LIGATURE_ST_UTF8, ustrp, *lenp, U8);
3120 return LATIN_SMALL_LIGATURE_ST;
3122 #if UNICODE_MAJOR_VERSION == 3 \
3123 && UNICODE_DOT_VERSION == 0 \
3124 && UNICODE_DOT_DOT_VERSION == 1
3127 *lenp = sizeof(LATIN_SMALL_LETTER_DOTLESS_I_UTF8) - 1;
3128 Copy(LATIN_SMALL_LETTER_DOTLESS_I_UTF8, ustrp, *lenp, U8);
3129 return LATIN_SMALL_LETTER_DOTLESS_I;
3136 * Returns a "swash" which is a hash described in utf8.c:Perl_swash_fetch().
3137 * C<pkg> is a pointer to a package name for SWASHNEW, should be "utf8".
3138 * For other parameters, see utf8::SWASHNEW in lib/utf8_heavy.pl.
3142 Perl_swash_init(pTHX_ const char* pkg, const char* name, SV *listsv, I32 minbits, I32 none)
3144 PERL_ARGS_ASSERT_SWASH_INIT;
3146 /* Returns a copy of a swash initiated by the called function. This is the
3147 * public interface, and returning a copy prevents others from doing
3148 * mischief on the original */
3150 return newSVsv(_core_swash_init(pkg, name, listsv, minbits, none, NULL, NULL));
3154 Perl__core_swash_init(pTHX_ const char* pkg, const char* name, SV *listsv, I32 minbits, I32 none, SV* invlist, U8* const flags_p)
3157 /*NOTE NOTE NOTE - If you want to use "return" in this routine you MUST
3158 * use the following define */
3160 #define CORE_SWASH_INIT_RETURN(x) \
3161 PL_curpm= old_PL_curpm; \
3164 /* Initialize and return a swash, creating it if necessary. It does this
3165 * by calling utf8_heavy.pl in the general case. The returned value may be
3166 * the swash's inversion list instead if the input parameters allow it.
3167 * Which is returned should be immaterial to callers, as the only
3168 * operations permitted on a swash, swash_fetch(), _get_swash_invlist(),
3169 * and swash_to_invlist() handle both these transparently.
3171 * This interface should only be used by functions that won't destroy or
3172 * adversely change the swash, as doing so affects all other uses of the
3173 * swash in the program; the general public should use 'Perl_swash_init'
3176 * pkg is the name of the package that <name> should be in.
3177 * name is the name of the swash to find. Typically it is a Unicode
3178 * property name, including user-defined ones
3179 * listsv is a string to initialize the swash with. It must be of the form
3180 * documented as the subroutine return value in
3181 * L<perlunicode/User-Defined Character Properties>
3182 * minbits is the number of bits required to represent each data element.
3183 * It is '1' for binary properties.
3184 * none I (khw) do not understand this one, but it is used only in tr///.
3185 * invlist is an inversion list to initialize the swash with (or NULL)
3186 * flags_p if non-NULL is the address of various input and output flag bits
3187 * to the routine, as follows: ('I' means is input to the routine;
3188 * 'O' means output from the routine. Only flags marked O are
3189 * meaningful on return.)
3190 * _CORE_SWASH_INIT_USER_DEFINED_PROPERTY indicates if the swash
3191 * came from a user-defined property. (I O)
3192 * _CORE_SWASH_INIT_RETURN_IF_UNDEF indicates that instead of croaking
3193 * when the swash cannot be located, to simply return NULL. (I)
3194 * _CORE_SWASH_INIT_ACCEPT_INVLIST indicates that the caller will accept a
3195 * return of an inversion list instead of a swash hash if this routine
3196 * thinks that would result in faster execution of swash_fetch() later
3199 * Thus there are three possible inputs to find the swash: <name>,
3200 * <listsv>, and <invlist>. At least one must be specified. The result
3201 * will be the union of the specified ones, although <listsv>'s various
3202 * actions can intersect, etc. what <name> gives. To avoid going out to
3203 * disk at all, <invlist> should specify completely what the swash should
3204 * have, and <listsv> should be &PL_sv_undef and <name> should be "".
3206 * <invlist> is only valid for binary properties */
3208 PMOP *old_PL_curpm= PL_curpm; /* save away the old PL_curpm */
3210 SV* retval = &PL_sv_undef;
3211 HV* swash_hv = NULL;
3212 const int invlist_swash_boundary =
3213 (flags_p && *flags_p & _CORE_SWASH_INIT_ACCEPT_INVLIST)
3214 ? 512 /* Based on some benchmarking, but not extensive, see commit
3216 : -1; /* Never return just an inversion list */
3218 assert(listsv != &PL_sv_undef || strNE(name, "") || invlist);
3219 assert(! invlist || minbits == 1);
3221 PL_curpm= NULL; /* reset PL_curpm so that we dont get confused between the regex
3222 that triggered the swash init and the swash init perl logic itself.
3225 /* If data was passed in to go out to utf8_heavy to find the swash of, do
3227 if (listsv != &PL_sv_undef || strNE(name, "")) {
3229 const size_t pkg_len = strlen(pkg);
3230 const size_t name_len = strlen(name);
3231 HV * const stash = gv_stashpvn(pkg, pkg_len, 0);
3235 PERL_ARGS_ASSERT__CORE_SWASH_INIT;
3237 PUSHSTACKi(PERLSI_MAGIC);
3241 /* We might get here via a subroutine signature which uses a utf8
3242 * parameter name, at which point PL_subname will have been set
3243 * but not yet used. */
3244 save_item(PL_subname);
3245 if (PL_parser && PL_parser->error_count)
3246 SAVEI8(PL_parser->error_count), PL_parser->error_count = 0;
3247 method = gv_fetchmeth(stash, "SWASHNEW", 8, -1);
3248 if (!method) { /* demand load UTF-8 */
3250 if ((errsv_save = GvSV(PL_errgv))) SAVEFREESV(errsv_save);
3251 GvSV(PL_errgv) = NULL;
3252 #ifndef NO_TAINT_SUPPORT
3253 /* It is assumed that callers of this routine are not passing in
3254 * any user derived data. */
3255 /* Need to do this after save_re_context() as it will set
3256 * PL_tainted to 1 while saving $1 etc (see the code after getrx:
3257 * in Perl_magic_get). Even line to create errsv_save can turn on
3259 SAVEBOOL(TAINT_get);
3262 Perl_load_module(aTHX_ PERL_LOADMOD_NOIMPORT, newSVpvn(pkg,pkg_len),
3265 /* Not ERRSV, as there is no need to vivify a scalar we are
3266 about to discard. */
3267 SV * const errsv = GvSV(PL_errgv);
3268 if (!SvTRUE(errsv)) {
3269 GvSV(PL_errgv) = SvREFCNT_inc_simple(errsv_save);
3270 SvREFCNT_dec(errsv);
3278 mPUSHp(pkg, pkg_len);
3279 mPUSHp(name, name_len);
3284 if ((errsv_save = GvSV(PL_errgv))) SAVEFREESV(errsv_save);
3285 GvSV(PL_errgv) = NULL;
3286 /* If we already have a pointer to the method, no need to use
3287 * call_method() to repeat the lookup. */
3289 ? call_sv(MUTABLE_SV(method), G_SCALAR)
3290 : call_sv(newSVpvs_flags("SWASHNEW", SVs_TEMP), G_SCALAR | G_METHOD))
3292 retval = *PL_stack_sp--;
3293 SvREFCNT_inc(retval);
3296 /* Not ERRSV. See above. */
3297 SV * const errsv = GvSV(PL_errgv);
3298 if (!SvTRUE(errsv)) {
3299 GvSV(PL_errgv) = SvREFCNT_inc_simple(errsv_save);
3300 SvREFCNT_dec(errsv);
3305 if (IN_PERL_COMPILETIME) {
3306 CopHINTS_set(PL_curcop, PL_hints);
3308 if (!SvROK(retval) || SvTYPE(SvRV(retval)) != SVt_PVHV) {
3309 if (SvPOK(retval)) {
3311 /* If caller wants to handle missing properties, let them */
3312 if (flags_p && *flags_p & _CORE_SWASH_INIT_RETURN_IF_UNDEF) {
3313 CORE_SWASH_INIT_RETURN(NULL);
3316 "Can't find Unicode property definition \"%"SVf"\"",
3318 NOT_REACHED; /* NOTREACHED */
3321 } /* End of calling the module to find the swash */
3323 /* If this operation fetched a swash, and we will need it later, get it */
3324 if (retval != &PL_sv_undef
3325 && (minbits == 1 || (flags_p
3327 & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY))))
3329 swash_hv = MUTABLE_HV(SvRV(retval));
3331 /* If we don't already know that there is a user-defined component to
3332 * this swash, and the user has indicated they wish to know if there is
3333 * one (by passing <flags_p>), find out */
3334 if (flags_p && ! (*flags_p & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY)) {
3335 SV** user_defined = hv_fetchs(swash_hv, "USER_DEFINED", FALSE);
3336 if (user_defined && SvUV(*user_defined)) {
3337 *flags_p |= _CORE_SWASH_INIT_USER_DEFINED_PROPERTY;
3342 /* Make sure there is an inversion list for binary properties */
3344 SV** swash_invlistsvp = NULL;
3345 SV* swash_invlist = NULL;
3346 bool invlist_in_swash_is_valid = FALSE;
3347 bool swash_invlist_unclaimed = FALSE; /* whether swash_invlist has
3348 an unclaimed reference count */
3350 /* If this operation fetched a swash, get its already existing
3351 * inversion list, or create one for it */
3354 swash_invlistsvp = hv_fetchs(swash_hv, "V", FALSE);
3355 if (swash_invlistsvp) {
3356 swash_invlist = *swash_invlistsvp;
3357 invlist_in_swash_is_valid = TRUE;
3360 swash_invlist = _swash_to_invlist(retval);
3361 swash_invlist_unclaimed = TRUE;
3365 /* If an inversion list was passed in, have to include it */
3368 /* Any fetched swash will by now have an inversion list in it;
3369 * otherwise <swash_invlist> will be NULL, indicating that we
3370 * didn't fetch a swash */
3371 if (swash_invlist) {
3373 /* Add the passed-in inversion list, which invalidates the one
3374 * already stored in the swash */
3375 invlist_in_swash_is_valid = FALSE;
3376 _invlist_union(invlist, swash_invlist, &swash_invlist);
3380 /* Here, there is no swash already. Set up a minimal one, if
3381 * we are going to return a swash */
3382 if ((int) _invlist_len(invlist) > invlist_swash_boundary) {
3384 retval = newRV_noinc(MUTABLE_SV(swash_hv));
3386 swash_invlist = invlist;
3390 /* Here, we have computed the union of all the passed-in data. It may
3391 * be that there was an inversion list in the swash which didn't get
3392 * touched; otherwise save the computed one */
3393 if (! invlist_in_swash_is_valid
3394 && (int) _invlist_len(swash_invlist) > invlist_swash_boundary)
3396 if (! hv_stores(MUTABLE_HV(SvRV(retval)), "V", swash_invlist))
3398 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
3400 /* We just stole a reference count. */
3401 if (swash_invlist_unclaimed) swash_invlist_unclaimed = FALSE;
3402 else SvREFCNT_inc_simple_void_NN(swash_invlist);
3405 SvREADONLY_on(swash_invlist);
3407 /* Use the inversion list stand-alone if small enough */
3408 if ((int) _invlist_len(swash_invlist) <= invlist_swash_boundary) {
3409 SvREFCNT_dec(retval);
3410 if (!swash_invlist_unclaimed)
3411 SvREFCNT_inc_simple_void_NN(swash_invlist);
3412 retval = newRV_noinc(swash_invlist);
3416 CORE_SWASH_INIT_RETURN(retval);
3417 #undef CORE_SWASH_INIT_RETURN
3421 /* This API is wrong for special case conversions since we may need to
3422 * return several Unicode characters for a single Unicode character
3423 * (see lib/unicore/SpecCase.txt) The SWASHGET in lib/utf8_heavy.pl is
3424 * the lower-level routine, and it is similarly broken for returning
3425 * multiple values. --jhi
3426 * For those, you should use S__to_utf8_case() instead */
3427 /* Now SWASHGET is recasted into S_swatch_get in this file. */
3430 * Returns the value of property/mapping C<swash> for the first character
3431 * of the string C<ptr>. If C<do_utf8> is true, the string C<ptr> is
3432 * assumed to be in well-formed UTF-8. If C<do_utf8> is false, the string C<ptr>
3433 * is assumed to be in native 8-bit encoding. Caches the swatch in C<swash>.
3435 * A "swash" is a hash which contains initially the keys/values set up by
3436 * SWASHNEW. The purpose is to be able to completely represent a Unicode
3437 * property for all possible code points. Things are stored in a compact form
3438 * (see utf8_heavy.pl) so that calculation is required to find the actual
3439 * property value for a given code point. As code points are looked up, new
3440 * key/value pairs are added to the hash, so that the calculation doesn't have
3441 * to ever be re-done. Further, each calculation is done, not just for the
3442 * desired one, but for a whole block of code points adjacent to that one.
3443 * For binary properties on ASCII machines, the block is usually for 64 code
3444 * points, starting with a code point evenly divisible by 64. Thus if the
3445 * property value for code point 257 is requested, the code goes out and
3446 * calculates the property values for all 64 code points between 256 and 319,
3447 * and stores these as a single 64-bit long bit vector, called a "swatch",
3448 * under the key for code point 256. The key is the UTF-8 encoding for code
3449 * point 256, minus the final byte. Thus, if the length of the UTF-8 encoding
3450 * for a code point is 13 bytes, the key will be 12 bytes long. If the value
3451 * for code point 258 is then requested, this code realizes that it would be
3452 * stored under the key for 256, and would find that value and extract the
3453 * relevant bit, offset from 256.
3455 * Non-binary properties are stored in as many bits as necessary to represent
3456 * their values (32 currently, though the code is more general than that), not
3457 * as single bits, but the principle is the same: the value for each key is a
3458 * vector that encompasses the property values for all code points whose UTF-8
3459 * representations are represented by the key. That is, for all code points
3460 * whose UTF-8 representations are length N bytes, and the key is the first N-1
3464 Perl_swash_fetch(pTHX_ SV *swash, const U8 *ptr, bool do_utf8)
3466 HV *const hv = MUTABLE_HV(SvRV(swash));
3471 const U8 *tmps = NULL;
3475 PERL_ARGS_ASSERT_SWASH_FETCH;
3477 /* If it really isn't a hash, it isn't really swash; must be an inversion
3479 if (SvTYPE(hv) != SVt_PVHV) {
3480 return _invlist_contains_cp((SV*)hv,
3482 ? valid_utf8_to_uvchr(ptr, NULL)
3486 /* We store the values in a "swatch" which is a vec() value in a swash
3487 * hash. Code points 0-255 are a single vec() stored with key length
3488 * (klen) 0. All other code points have a UTF-8 representation
3489 * 0xAA..0xYY,0xZZ. A vec() is constructed containing all of them which
3490 * share 0xAA..0xYY, which is the key in the hash to that vec. So the key
3491 * length for them is the length of the encoded char - 1. ptr[klen] is the
3492 * final byte in the sequence representing the character */
3493 if (!do_utf8 || UTF8_IS_INVARIANT(c)) {
3498 else if (UTF8_IS_DOWNGRADEABLE_START(c)) {
3501 off = EIGHT_BIT_UTF8_TO_NATIVE(c, *(ptr + 1));
3504 klen = UTF8SKIP(ptr) - 1;
3506 /* Each vec() stores 2**UTF_ACCUMULATION_SHIFT values. The offset into
3507 * the vec is the final byte in the sequence. (In EBCDIC this is
3508 * converted to I8 to get consecutive values.) To help you visualize
3510 * Straight 1047 After final byte
3511 * UTF-8 UTF-EBCDIC I8 transform
3512 * U+0400: \xD0\x80 \xB8\x41\x41 \xB8\x41\xA0
3513 * U+0401: \xD0\x81 \xB8\x41\x42 \xB8\x41\xA1
3515 * U+0409: \xD0\x89 \xB8\x41\x4A \xB8\x41\xA9
3516 * U+040A: \xD0\x8A \xB8\x41\x51 \xB8\x41\xAA
3518 * U+0412: \xD0\x92 \xB8\x41\x59 \xB8\x41\xB2
3519 * U+0413: \xD0\x93 \xB8\x41\x62 \xB8\x41\xB3
3521 * U+041B: \xD0\x9B \xB8\x41\x6A \xB8\x41\xBB
3522 * U+041C: \xD0\x9C \xB8\x41\x70 \xB8\x41\xBC
3524 * U+041F: \xD0\x9F \xB8\x41\x73 \xB8\x41\xBF
3525 * U+0420: \xD0\xA0 \xB8\x42\x41 \xB8\x42\x41
3527 * (There are no discontinuities in the elided (...) entries.)
3528 * The UTF-8 key for these 33 code points is '\xD0' (which also is the
3529 * key for the next 31, up through U+043F, whose UTF-8 final byte is
3530 * \xBF). Thus in UTF-8, each key is for a vec() for 64 code points.
3531 * The final UTF-8 byte, which ranges between \x80 and \xBF, is an
3532 * index into the vec() swatch (after subtracting 0x80, which we
3533 * actually do with an '&').
3534 * In UTF-EBCDIC, each key is for a 32 code point vec(). The first 32
3535 * code points above have key '\xB8\x41'. The final UTF-EBCDIC byte has
3536 * dicontinuities which go away by transforming it into I8, and we
3537 * effectively subtract 0xA0 to get the index. */
3538 needents = (1 << UTF_ACCUMULATION_SHIFT);
3539 off = NATIVE_UTF8_TO_I8(ptr[klen]) & UTF_CONTINUATION_MASK;
3543 * This single-entry cache saves about 1/3 of the UTF-8 overhead in test
3544 * suite. (That is, only 7-8% overall over just a hash cache. Still,
3545 * it's nothing to sniff at.) Pity we usually come through at least
3546 * two function calls to get here...
3548 * NB: this code assumes that swatches are never modified, once generated!
3551 if (hv == PL_last_swash_hv &&
3552 klen == PL_last_swash_klen &&
3553 (!klen || memEQ((char *)ptr, (char *)PL_last_swash_key, klen)) )
3555 tmps = PL_last_swash_tmps;
3556 slen = PL_last_swash_slen;
3559 /* Try our second-level swatch cache, kept in a hash. */
3560 SV** svp = hv_fetch(hv, (const char*)ptr, klen, FALSE);
3562 /* If not cached, generate it via swatch_get */
3563 if (!svp || !SvPOK(*svp)
3564 || !(tmps = (const U8*)SvPV_const(*svp, slen)))
3567 const UV code_point = valid_utf8_to_uvchr(ptr, NULL);
3568 swatch = swatch_get(swash,
3569 code_point & ~((UV)needents - 1),
3572 else { /* For the first 256 code points, the swatch has a key of
3574 swatch = swatch_get(swash, 0, needents);
3577 if (IN_PERL_COMPILETIME)
3578 CopHINTS_set(PL_curcop, PL_hints);
3580 svp = hv_store(hv, (const char *)ptr, klen, swatch, 0);
3582 if (!svp || !(tmps = (U8*)SvPV(*svp, slen))
3583 || (slen << 3) < needents)
3584 Perl_croak(aTHX_ "panic: swash_fetch got improper swatch, "
3585 "svp=%p, tmps=%p, slen=%"UVuf", needents=%"UVuf,
3586 svp, tmps, (UV)slen, (UV)needents);
3589 PL_last_swash_hv = hv;
3590 assert(klen <= sizeof(PL_last_swash_key));
3591 PL_last_swash_klen = (U8)klen;
3592 /* FIXME change interpvar.h? */
3593 PL_last_swash_tmps = (U8 *) tmps;
3594 PL_last_swash_slen = slen;
3596 Copy(ptr, PL_last_swash_key, klen, U8);
3599 switch ((int)((slen << 3) / needents)) {
3601 return ((UV) tmps[off >> 3] & (1 << (off & 7))) != 0;
3603 return ((UV) tmps[off]);
3607 ((UV) tmps[off ] << 8) +
3608 ((UV) tmps[off + 1]);
3612 ((UV) tmps[off ] << 24) +
3613 ((UV) tmps[off + 1] << 16) +
3614 ((UV) tmps[off + 2] << 8) +
3615 ((UV) tmps[off + 3]);
3617 Perl_croak(aTHX_ "panic: swash_fetch got swatch of unexpected bit width, "
3618 "slen=%"UVuf", needents=%"UVuf, (UV)slen, (UV)needents);
3619 NORETURN_FUNCTION_END;
3622 /* Read a single line of the main body of the swash input text. These are of
3625 * where each number is hex. The first two numbers form the minimum and
3626 * maximum of a range, and the third is the value associated with the range.
3627 * Not all swashes should have a third number
3629 * On input: l points to the beginning of the line to be examined; it points
3630 * to somewhere in the string of the whole input text, and is
3631 * terminated by a \n or the null string terminator.
3632 * lend points to the null terminator of that string
3633 * wants_value is non-zero if the swash expects a third number
3634 * typestr is the name of the swash's mapping, like 'ToLower'
3635 * On output: *min, *max, and *val are set to the values read from the line.
3636 * returns a pointer just beyond the line examined. If there was no
3637 * valid min number on the line, returns lend+1
3641 S_swash_scan_list_line(pTHX_ U8* l, U8* const lend, UV* min, UV* max, UV* val,
3642 const bool wants_value, const U8* const typestr)
3644 const int typeto = typestr[0] == 'T' && typestr[1] == 'o';
3645 STRLEN numlen; /* Length of the number */
3646 I32 flags = PERL_SCAN_SILENT_ILLDIGIT
3647 | PERL_SCAN_DISALLOW_PREFIX
3648 | PERL_SCAN_SILENT_NON_PORTABLE;
3650 /* nl points to the next \n in the scan */
3651 U8* const nl = (U8*)memchr(l, '\n', lend - l);
3653 PERL_ARGS_ASSERT_SWASH_SCAN_LIST_LINE;
3655 /* Get the first number on the line: the range minimum */
3657 *min = grok_hex((char *)l, &numlen, &flags, NULL);
3658 *max = *min; /* So can never return without setting max */
3659 if (numlen) /* If found a hex number, position past it */
3661 else if (nl) { /* Else, go handle next line, if any */
3662 return nl + 1; /* 1 is length of "\n" */
3664 else { /* Else, no next line */
3665 return lend + 1; /* to LIST's end at which \n is not found */
3668 /* The max range value follows, separated by a BLANK */
3671 flags = PERL_SCAN_SILENT_ILLDIGIT
3672 | PERL_SCAN_DISALLOW_PREFIX
3673 | PERL_SCAN_SILENT_NON_PORTABLE;
3675 *max = grok_hex((char *)l, &numlen, &flags, NULL);
3678 else /* If no value here, it is a single element range */
3681 /* Non-binary tables have a third entry: what the first element of the
3682 * range maps to. The map for those currently read here is in hex */
3686 flags = PERL_SCAN_SILENT_ILLDIGIT
3687 | PERL_SCAN_DISALLOW_PREFIX
3688 | PERL_SCAN_SILENT_NON_PORTABLE;
3690 *val = grok_hex((char *)l, &numlen, &flags, NULL);
3699 /* diag_listed_as: To%s: illegal mapping '%s' */
3700 Perl_croak(aTHX_ "%s: illegal mapping '%s'",
3706 *val = 0; /* bits == 1, then any val should be ignored */
3708 else { /* Nothing following range min, should be single element with no
3713 /* diag_listed_as: To%s: illegal mapping '%s' */
3714 Perl_croak(aTHX_ "%s: illegal mapping '%s'", typestr, l);
3718 *val = 0; /* bits == 1, then val should be ignored */
3721 /* Position to next line if any, or EOF */
3731 * Returns a swatch (a bit vector string) for a code point sequence
3732 * that starts from the value C<start> and comprises the number C<span>.
3733 * A C<swash> must be an object created by SWASHNEW (see lib/utf8_heavy.pl).
3734 * Should be used via swash_fetch, which will cache the swatch in C<swash>.
3737 S_swatch_get(pTHX_ SV* swash, UV start, UV span)
3740 U8 *l, *lend, *x, *xend, *s, *send;
3741 STRLEN lcur, xcur, scur;
3742 HV *const hv = MUTABLE_HV(SvRV(swash));
3743 SV** const invlistsvp = hv_fetchs(hv, "V", FALSE);
3745 SV** listsvp = NULL; /* The string containing the main body of the table */
3746 SV** extssvp = NULL;
3747 SV** invert_it_svp = NULL;
3750 STRLEN octets; /* if bits == 1, then octets == 0 */
3752 UV end = start + span;
3754 if (invlistsvp == NULL) {
3755 SV** const bitssvp = hv_fetchs(hv, "BITS", FALSE);
3756 SV** const nonesvp = hv_fetchs(hv, "NONE", FALSE);
3757 SV** const typesvp = hv_fetchs(hv, "TYPE", FALSE);
3758 extssvp = hv_fetchs(hv, "EXTRAS", FALSE);
3759 listsvp = hv_fetchs(hv, "LIST", FALSE);
3760 invert_it_svp = hv_fetchs(hv, "INVERT_IT", FALSE);
3762 bits = SvUV(*bitssvp);
3763 none = SvUV(*nonesvp);
3764 typestr = (U8*)SvPV_nolen(*typesvp);
3770 octets = bits >> 3; /* if bits == 1, then octets == 0 */
3772 PERL_ARGS_ASSERT_SWATCH_GET;
3774 if (bits != 1 && bits != 8 && bits != 16 && bits != 32) {
3775 Perl_croak(aTHX_ "panic: swatch_get doesn't expect bits %"UVuf,
3779 /* If overflowed, use the max possible */
3785 /* create and initialize $swatch */
3786 scur = octets ? (span * octets) : (span + 7) / 8;
3787 swatch = newSV(scur);
3789 s = (U8*)SvPVX(swatch);
3790 if (octets && none) {
3791 const U8* const e = s + scur;
3794 *s++ = (U8)(none & 0xff);
3795 else if (bits == 16) {
3796 *s++ = (U8)((none >> 8) & 0xff);
3797 *s++ = (U8)( none & 0xff);
3799 else if (bits == 32) {
3800 *s++ = (U8)((none >> 24) & 0xff);
3801 *s++ = (U8)((none >> 16) & 0xff);
3802 *s++ = (U8)((none >> 8) & 0xff);
3803 *s++ = (U8)( none & 0xff);
3809 (void)memzero((U8*)s, scur + 1);
3811 SvCUR_set(swatch, scur);
3812 s = (U8*)SvPVX(swatch);
3814 if (invlistsvp) { /* If has an inversion list set up use that */
3815 _invlist_populate_swatch(*invlistsvp, start, end, s);
3819 /* read $swash->{LIST} */
3820 l = (U8*)SvPV(*listsvp, lcur);
3823 UV min, max, val, upper;
3824 l = swash_scan_list_line(l, lend, &min, &max, &val,
3825 cBOOL(octets), typestr);
3830 /* If looking for something beyond this range, go try the next one */
3834 /* <end> is generally 1 beyond where we want to set things, but at the
3835 * platform's infinity, where we can't go any higher, we want to
3836 * include the code point at <end> */
3839 : (max != UV_MAX || end != UV_MAX)
3846 if (!none || val < none) {
3851 for (key = min; key <= upper; key++) {
3853 /* offset must be non-negative (start <= min <= key < end) */
3854 offset = octets * (key - start);
3856 s[offset] = (U8)(val & 0xff);
3857 else if (bits == 16) {
3858 s[offset ] = (U8)((val >> 8) & 0xff);
3859 s[offset + 1] = (U8)( val & 0xff);
3861 else if (bits == 32) {
3862 s[offset ] = (U8)((val >> 24) & 0xff);
3863 s[offset + 1] = (U8)((val >> 16) & 0xff);
3864 s[offset + 2] = (U8)((val >> 8) & 0xff);
3865 s[offset + 3] = (U8)( val & 0xff);
3868 if (!none || val < none)
3872 else { /* bits == 1, then val should be ignored */
3877 for (key = min; key <= upper; key++) {
3878 const STRLEN offset = (STRLEN)(key - start);
3879 s[offset >> 3] |= 1 << (offset & 7);
3884 /* Invert if the data says it should be. Assumes that bits == 1 */
3885 if (invert_it_svp && SvUV(*invert_it_svp)) {
3887 /* Unicode properties should come with all bits above PERL_UNICODE_MAX
3888 * be 0, and their inversion should also be 0, as we don't succeed any
3889 * Unicode property matches for non-Unicode code points */
3890 if (start <= PERL_UNICODE_MAX) {
3892 /* The code below assumes that we never cross the
3893 * Unicode/above-Unicode boundary in a range, as otherwise we would
3894 * have to figure out where to stop flipping the bits. Since this
3895 * boundary is divisible by a large power of 2, and swatches comes
3896 * in small powers of 2, this should be a valid assumption */
3897 assert(start + span - 1 <= PERL_UNICODE_MAX);
3907 /* read $swash->{EXTRAS}
3908 * This code also copied to swash_to_invlist() below */
3909 x = (U8*)SvPV(*extssvp, xcur);
3917 SV **otherbitssvp, *other;
3921 const U8 opc = *x++;
3925 nl = (U8*)memchr(x, '\n', xend - x);
3927 if (opc != '-' && opc != '+' && opc != '!' && opc != '&') {
3929 x = nl + 1; /* 1 is length of "\n" */
3933 x = xend; /* to EXTRAS' end at which \n is not found */
3940 namelen = nl - namestr;
3944 namelen = xend - namestr;
3948 othersvp = hv_fetch(hv, (char *)namestr, namelen, FALSE);
3949 otherhv = MUTABLE_HV(SvRV(*othersvp));
3950 otherbitssvp = hv_fetchs(otherhv, "BITS", FALSE);
3951 otherbits = (STRLEN)SvUV(*otherbitssvp);
3952 if (bits < otherbits)
3953 Perl_croak(aTHX_ "panic: swatch_get found swatch size mismatch, "
3954 "bits=%"UVuf", otherbits=%"UVuf, (UV)bits, (UV)otherbits);
3956 /* The "other" swatch must be destroyed after. */
3957 other = swatch_get(*othersvp, start, span);
3958 o = (U8*)SvPV(other, olen);
3961 Perl_croak(aTHX_ "panic: swatch_get got improper swatch");
3963 s = (U8*)SvPV(swatch, slen);
3964 if (bits == 1 && otherbits == 1) {
3966 Perl_croak(aTHX_ "panic: swatch_get found swatch length "
3967 "mismatch, slen=%"UVuf", olen=%"UVuf,
3968 (UV)slen, (UV)olen);
3992 STRLEN otheroctets = otherbits >> 3;
3994 U8* const send = s + slen;
3999 if (otherbits == 1) {
4000 otherval = (o[offset >> 3] >> (offset & 7)) & 1;
4004 STRLEN vlen = otheroctets;
4012 if (opc == '+' && otherval)
4013 NOOP; /* replace with otherval */
4014 else if (opc == '!' && !otherval)
4016 else if (opc == '-' && otherval)
4018 else if (opc == '&' && !otherval)
4021 s += octets; /* no replacement */
4026 *s++ = (U8)( otherval & 0xff);
4027 else if (bits == 16) {
4028 *s++ = (U8)((otherval >> 8) & 0xff);
4029 *s++ = (U8)( otherval & 0xff);
4031 else if (bits == 32) {
4032 *s++ = (U8)((otherval >> 24) & 0xff);
4033 *s++ = (U8)((otherval >> 16) & 0xff);
4034 *s++ = (U8)((otherval >> 8) & 0xff);
4035 *s++ = (U8)( otherval & 0xff);
4039 sv_free(other); /* through with it! */
4045 Perl__swash_inversion_hash(pTHX_ SV* const swash)
4048 /* Subject to change or removal. For use only in regcomp.c and regexec.c
4049 * Can't be used on a property that is subject to user override, as it
4050 * relies on the value of SPECIALS in the swash which would be set by
4051 * utf8_heavy.pl to the hash in the non-overriden file, and hence is not set
4052 * for overridden properties
4054 * Returns a hash which is the inversion and closure of a swash mapping.
4055 * For example, consider the input lines:
4060 * The returned hash would have two keys, the UTF-8 for 006B and the UTF-8 for
4061 * 006C. The value for each key is an array. For 006C, the array would
4062 * have two elements, the UTF-8 for itself, and for 004C. For 006B, there
4063 * would be three elements in its array, the UTF-8 for 006B, 004B and 212A.
4065 * Note that there are no elements in the hash for 004B, 004C, 212A. The
4066 * keys are only code points that are folded-to, so it isn't a full closure.
4068 * Essentially, for any code point, it gives all the code points that map to
4069 * it, or the list of 'froms' for that point.
4071 * Currently it ignores any additions or deletions from other swashes,
4072 * looking at just the main body of the swash, and if there are SPECIALS
4073 * in the swash, at that hash
4075 * The specials hash can be extra code points, and most likely consists of
4076 * maps from single code points to multiple ones (each expressed as a string
4077 * of UTF-8 characters). This function currently returns only 1-1 mappings.
4078 * However consider this possible input in the specials hash:
4079 * "\xEF\xAC\x85" => "\x{0073}\x{0074}", # U+FB05 => 0073 0074
4080 * "\xEF\xAC\x86" => "\x{0073}\x{0074}", # U+FB06 => 0073 0074
4082 * Both FB05 and FB06 map to the same multi-char sequence, which we don't
4083 * currently handle. But it also means that FB05 and FB06 are equivalent in
4084 * a 1-1 mapping which we should handle, and this relationship may not be in
4085 * the main table. Therefore this function examines all the multi-char
4086 * sequences and adds the 1-1 mappings that come out of that.
4088 * XXX This function was originally intended to be multipurpose, but its
4089 * only use is quite likely to remain for constructing the inversion of
4090 * the CaseFolding (//i) property. If it were more general purpose for
4091 * regex patterns, it would have to do the FB05/FB06 game for simple folds,
4092 * because certain folds are prohibited under /iaa and /il. As an example,
4093 * in Unicode 3.0.1 both U+0130 and U+0131 fold to 'i', and hence are both
4094 * equivalent under /i. But under /iaa and /il, the folds to 'i' are
4095 * prohibited, so we would not figure out that they fold to each other.
4096 * Code could be written to automatically figure this out, similar to the
4097 * code that does this for multi-character folds, but this is the only case
4098 * where something like this is ever likely to happen, as all the single
4099 * char folds to the 0-255 range are now quite settled. Instead there is a
4100 * little special code that is compiled only for this Unicode version. This
4101 * is smaller and didn't require much coding time to do. But this makes
4102 * this routine strongly tied to being used just for CaseFolding. If ever
4103 * it should be generalized, this would have to be fixed */
4107 HV *const hv = MUTABLE_HV(SvRV(swash));
4109 /* The string containing the main body of the table. This will have its
4110 * assertion fail if the swash has been converted to its inversion list */
4111 SV** const listsvp = hv_fetchs(hv, "LIST", FALSE);
4113 SV** const typesvp = hv_fetchs(hv, "TYPE", FALSE);
4114 SV** const bitssvp = hv_fetchs(hv, "BITS", FALSE);
4115 SV** const nonesvp = hv_fetchs(hv, "NONE", FALSE);
4116 /*SV** const extssvp = hv_fetchs(hv, "EXTRAS", FALSE);*/
4117 const U8* const typestr = (U8*)SvPV_nolen(*typesvp);
4118 const STRLEN bits = SvUV(*bitssvp);
4119 const STRLEN octets = bits >> 3; /* if bits == 1, then octets == 0 */
4120 const UV none = SvUV(*nonesvp);
4121 SV **specials_p = hv_fetchs(hv, "SPECIALS", 0);
4125 PERL_ARGS_ASSERT__SWASH_INVERSION_HASH;
4127 /* Must have at least 8 bits to get the mappings */
4128 if (bits != 8 && bits != 16 && bits != 32) {
4129 Perl_croak(aTHX_ "panic: swash_inversion_hash doesn't expect bits %"UVuf,
4133 if (specials_p) { /* It might be "special" (sometimes, but not always, a
4134 mapping to more than one character */
4136 /* Construct an inverse mapping hash for the specials */
4137 HV * const specials_hv = MUTABLE_HV(SvRV(*specials_p));
4138 HV * specials_inverse = newHV();
4139 char *char_from; /* the lhs of the map */
4140 I32 from_len; /* its byte length */
4141 char *char_to; /* the rhs of the map */
4142 I32 to_len; /* its byte length */
4143 SV *sv_to; /* and in a sv */
4144 AV* from_list; /* list of things that map to each 'to' */
4146 hv_iterinit(specials_hv);
4148 /* The keys are the characters (in UTF-8) that map to the corresponding
4149 * UTF-8 string value. Iterate through the list creating the inverse
4151 while ((sv_to = hv_iternextsv(specials_hv, &char_from, &from_len))) {
4153 if (! SvPOK(sv_to)) {
4154 Perl_croak(aTHX_ "panic: value returned from hv_iternextsv() "
4155 "unexpectedly is not a string, flags=%lu",
4156 (unsigned long)SvFLAGS(sv_to));
4158 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "Found mapping from %"UVXf", First char of to is %"UVXf"\n", valid_utf8_to_uvchr((U8*) char_from, 0), valid_utf8_to_uvchr((U8*) SvPVX(sv_to), 0)));*/
4160 /* Each key in the inverse list is a mapped-to value, and the key's
4161 * hash value is a list of the strings (each in UTF-8) that map to
4162 * it. Those strings are all one character long */
4163 if ((listp = hv_fetch(specials_inverse,
4167 from_list = (AV*) *listp;
4169 else { /* No entry yet for it: create one */
4170 from_list = newAV();
4171 if (! hv_store(specials_inverse,
4174 (SV*) from_list, 0))
4176 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
4180 /* Here have the list associated with this 'to' (perhaps newly
4181 * created and empty). Just add to it. Note that we ASSUME that
4182 * the input is guaranteed to not have duplications, so we don't
4183 * check for that. Duplications just slow down execution time. */
4184 av_push(from_list, newSVpvn_utf8(char_from, from_len, TRUE));
4187 /* Here, 'specials_inverse' contains the inverse mapping. Go through
4188 * it looking for cases like the FB05/FB06 examples above. There would
4189 * be an entry in the hash like
4190 * 'st' => [ FB05, FB06 ]
4191 * In this example we will create two lists that get stored in the
4192 * returned hash, 'ret':
4193 * FB05 => [ FB05, FB06 ]
4194 * FB06 => [ FB05, FB06 ]
4196 * Note that there is nothing to do if the array only has one element.
4197 * (In the normal 1-1 case handled below, we don't have to worry about
4198 * two lists, as everything gets tied to the single list that is
4199 * generated for the single character 'to'. But here, we are omitting
4200 * that list, ('st' in the example), so must have multiple lists.) */
4201 while ((from_list = (AV *) hv_iternextsv(specials_inverse,
4202 &char_to, &to_len)))
4204 if (av_tindex_nomg(from_list) > 0) {
4207 /* We iterate over all combinations of i,j to place each code
4208 * point on each list */
4209 for (i = 0; i <= av_tindex_nomg(from_list); i++) {
4211 AV* i_list = newAV();
4212 SV** entryp = av_fetch(from_list, i, FALSE);
4213 if (entryp == NULL) {
4214 Perl_croak(aTHX_ "panic: av_fetch() unexpectedly failed");
4216 if (hv_fetch(ret, SvPVX(*entryp), SvCUR(*entryp), FALSE)) {
4217 Perl_croak(aTHX_ "panic: unexpected entry for %s", SvPVX(*entryp));
4219 if (! hv_store(ret, SvPVX(*entryp), SvCUR(*entryp),
4220 (SV*) i_list, FALSE))
4222 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
4225 /* For DEBUG_U: UV u = valid_utf8_to_uvchr((U8*) SvPVX(*entryp), 0);*/
4226 for (j = 0; j <= av_tindex_nomg(from_list); j++) {
4227 entryp = av_fetch(from_list, j, FALSE);
4228 if (entryp == NULL) {
4229 Perl_croak(aTHX_ "panic: av_fetch() unexpectedly failed");
4232 /* When i==j this adds itself to the list */
4233 av_push(i_list, newSVuv(utf8_to_uvchr_buf(
4234 (U8*) SvPVX(*entryp),
4235 (U8*) SvPVX(*entryp) + SvCUR(*entryp),
4237 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "%s: %d: Adding %"UVXf" to list for %"UVXf"\n", __FILE__, __LINE__, valid_utf8_to_uvchr((U8*) SvPVX(*entryp), 0), u));*/
4242 SvREFCNT_dec(specials_inverse); /* done with it */
4243 } /* End of specials */
4245 /* read $swash->{LIST} */
4247 #if UNICODE_MAJOR_VERSION == 3 \
4248 && UNICODE_DOT_VERSION == 0 \
4249 && UNICODE_DOT_DOT_VERSION == 1
4251 /* For this version only U+130 and U+131 are equivalent under qr//i. Add a
4252 * rule so that things work under /iaa and /il */
4254 SV * mod_listsv = sv_mortalcopy(*listsvp);
4255 sv_catpv(mod_listsv, "130\t130\t131\n");
4256 l = (U8*)SvPV(mod_listsv, lcur);
4260 l = (U8*)SvPV(*listsvp, lcur);
4266 /* Go through each input line */
4270 l = swash_scan_list_line(l, lend, &min, &max, &val,
4271 cBOOL(octets), typestr);
4276 /* Each element in the range is to be inverted */
4277 for (inverse = min; inverse <= max; inverse++) {
4281 bool found_key = FALSE;
4282 bool found_inverse = FALSE;
4284 /* The key is the inverse mapping */
4285 char key[UTF8_MAXBYTES+1];
4286 char* key_end = (char *) uvchr_to_utf8((U8*) key, val);
4287 STRLEN key_len = key_end - key;
4289 /* Get the list for the map */
4290 if ((listp = hv_fetch(ret, key, key_len, FALSE))) {
4291 list = (AV*) *listp;
4293 else { /* No entry yet for it: create one */
4295 if (! hv_store(ret, key, key_len, (SV*) list, FALSE)) {
4296 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
4300 /* Look through list to see if this inverse mapping already is
4301 * listed, or if there is a mapping to itself already */
4302 for (i = 0; i <= av_tindex_nomg(list); i++) {
4303 SV** entryp = av_fetch(list, i, FALSE);
4306 if (entryp == NULL) {
4307 Perl_croak(aTHX_ "panic: av_fetch() unexpectedly failed");
4311 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "list for %"UVXf" contains %"UVXf"\n", val, uv));*/
4315 if (uv == inverse) {
4316 found_inverse = TRUE;
4319 /* No need to continue searching if found everything we are
4321 if (found_key && found_inverse) {
4326 /* Make sure there is a mapping to itself on the list */
4328 av_push(list, newSVuv(val));
4329 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "%s: %d: Adding %"UVXf" to list for %"UVXf"\n", __FILE__, __LINE__, val, val));*/
4333 /* Simply add the value to the list */
4334 if (! found_inverse) {
4335 av_push(list, newSVuv(inverse));
4336 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "%s: %d: Adding %"UVXf" to list for %"UVXf"\n", __FILE__, __LINE__, inverse, val));*/
4339 /* swatch_get() increments the value of val for each element in the
4340 * range. That makes more compact tables possible. You can
4341 * express the capitalization, for example, of all consecutive
4342 * letters with a single line: 0061\t007A\t0041 This maps 0061 to
4343 * 0041, 0062 to 0042, etc. I (khw) have never understood 'none',
4344 * and it's not documented; it appears to be used only in
4345 * implementing tr//; I copied the semantics from swatch_get(), just
4347 if (!none || val < none) {
4357 Perl__swash_to_invlist(pTHX_ SV* const swash)
4360 /* Subject to change or removal. For use only in one place in regcomp.c.
4361 * Ownership is given to one reference count in the returned SV* */
4366 HV *const hv = MUTABLE_HV(SvRV(swash));
4367 UV elements = 0; /* Number of elements in the inversion list */
4377 STRLEN octets; /* if bits == 1, then octets == 0 */