5 * "A fair jaw-cracker dwarf-language must be." --Samwise Gamgee
8 /* This file contains functions for compiling a regular expression. See
9 * also regexec.c which funnily enough, contains functions for executing
10 * a regular expression.
12 * This file is also copied at build time to ext/re/re_comp.c, where
13 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
14 * This causes the main functions to be compiled under new names and with
15 * debugging support added, which makes "use re 'debug'" work.
18 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
19 * confused with the original package (see point 3 below). Thanks, Henry!
22 /* Additional note: this code is very heavily munged from Henry's version
23 * in places. In some spots I've traded clarity for efficiency, so don't
24 * blame Henry for some of the lack of readability.
27 /* The names of the functions have been changed from regcomp and
28 * regexec to pregcomp and pregexec in order to avoid conflicts
29 * with the POSIX routines of the same names.
32 #ifdef PERL_EXT_RE_BUILD
37 * pregcomp and pregexec -- regsub and regerror are not used in perl
39 * Copyright (c) 1986 by University of Toronto.
40 * Written by Henry Spencer. Not derived from licensed software.
42 * Permission is granted to anyone to use this software for any
43 * purpose on any computer system, and to redistribute it freely,
44 * subject to the following restrictions:
46 * 1. The author is not responsible for the consequences of use of
47 * this software, no matter how awful, even if they arise
50 * 2. The origin of this software must not be misrepresented, either
51 * by explicit claim or by omission.
53 * 3. Altered versions must be plainly marked as such, and must not
54 * be misrepresented as being the original software.
57 **** Alterations to Henry's code are...
59 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
60 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 by Larry Wall and others
62 **** You may distribute under the terms of either the GNU General Public
63 **** License or the Artistic License, as specified in the README file.
66 * Beware that some of this code is subtly aware of the way operator
67 * precedence is structured in regular expressions. Serious changes in
68 * regular-expression syntax might require a total rethink.
71 #define PERL_IN_REGCOMP_C
74 #ifndef PERL_IN_XSUB_RE
79 #ifdef PERL_IN_XSUB_RE
90 # if defined(BUGGY_MSC6)
91 /* MSC 6.00A breaks on op/regexp.t test 85 unless we turn this off */
92 # pragma optimize("a",off)
93 /* But MSC 6.00A is happy with 'w', for aliases only across function calls*/
94 # pragma optimize("w",on )
95 # endif /* BUGGY_MSC6 */
102 typedef struct RExC_state_t {
103 U32 flags; /* are we folding, multilining? */
104 char *precomp; /* uncompiled string. */
105 regexp *rx; /* perl core regexp structure */
106 regexp_internal *rxi; /* internal data for regexp object pprivate field */
107 char *start; /* Start of input for compile */
108 char *end; /* End of input for compile */
109 char *parse; /* Input-scan pointer. */
110 I32 whilem_seen; /* number of WHILEM in this expr */
111 regnode *emit_start; /* Start of emitted-code area */
112 regnode *emit_bound; /* First regnode outside of the allocated space */
113 regnode *emit; /* Code-emit pointer; ®dummy = don't = compiling */
114 I32 naughty; /* How bad is this pattern? */
115 I32 sawback; /* Did we see \1, ...? */
117 I32 size; /* Code size. */
118 I32 npar; /* Capture buffer count, (OPEN). */
119 I32 cpar; /* Capture buffer count, (CLOSE). */
120 I32 nestroot; /* root parens we are in - used by accept */
124 regnode **open_parens; /* pointers to open parens */
125 regnode **close_parens; /* pointers to close parens */
126 regnode *opend; /* END node in program */
127 I32 utf8; /* whether the pattern is utf8 or not */
128 I32 orig_utf8; /* whether the pattern was originally in utf8 */
129 /* XXX use this for future optimisation of case
130 * where pattern must be upgraded to utf8. */
131 HV *charnames; /* cache of named sequences */
132 HV *paren_names; /* Paren names */
134 regnode **recurse; /* Recurse regops */
135 I32 recurse_count; /* Number of recurse regops */
137 char *starttry; /* -Dr: where regtry was called. */
138 #define RExC_starttry (pRExC_state->starttry)
141 const char *lastparse;
143 AV *paren_name_list; /* idx -> name */
144 #define RExC_lastparse (pRExC_state->lastparse)
145 #define RExC_lastnum (pRExC_state->lastnum)
146 #define RExC_paren_name_list (pRExC_state->paren_name_list)
150 #define RExC_flags (pRExC_state->flags)
151 #define RExC_precomp (pRExC_state->precomp)
152 #define RExC_rx (pRExC_state->rx)
153 #define RExC_rxi (pRExC_state->rxi)
154 #define RExC_start (pRExC_state->start)
155 #define RExC_end (pRExC_state->end)
156 #define RExC_parse (pRExC_state->parse)
157 #define RExC_whilem_seen (pRExC_state->whilem_seen)
158 #ifdef RE_TRACK_PATTERN_OFFSETS
159 #define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the others */
161 #define RExC_emit (pRExC_state->emit)
162 #define RExC_emit_start (pRExC_state->emit_start)
163 #define RExC_emit_bound (pRExC_state->emit_bound)
164 #define RExC_naughty (pRExC_state->naughty)
165 #define RExC_sawback (pRExC_state->sawback)
166 #define RExC_seen (pRExC_state->seen)
167 #define RExC_size (pRExC_state->size)
168 #define RExC_npar (pRExC_state->npar)
169 #define RExC_nestroot (pRExC_state->nestroot)
170 #define RExC_extralen (pRExC_state->extralen)
171 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
172 #define RExC_seen_evals (pRExC_state->seen_evals)
173 #define RExC_utf8 (pRExC_state->utf8)
174 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
175 #define RExC_charnames (pRExC_state->charnames)
176 #define RExC_open_parens (pRExC_state->open_parens)
177 #define RExC_close_parens (pRExC_state->close_parens)
178 #define RExC_opend (pRExC_state->opend)
179 #define RExC_paren_names (pRExC_state->paren_names)
180 #define RExC_recurse (pRExC_state->recurse)
181 #define RExC_recurse_count (pRExC_state->recurse_count)
184 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
185 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
186 ((*s) == '{' && regcurly(s)))
189 #undef SPSTART /* dratted cpp namespace... */
192 * Flags to be passed up and down.
194 #define WORST 0 /* Worst case. */
195 #define HASWIDTH 0x01 /* Known to match non-null strings. */
196 #define SIMPLE 0x02 /* Simple enough to be STAR/PLUS operand. */
197 #define SPSTART 0x04 /* Starts with * or +. */
198 #define TRYAGAIN 0x08 /* Weeded out a declaration. */
199 #define POSTPONED 0x10 /* (?1),(?&name), (??{...}) or similar */
201 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
203 /* whether trie related optimizations are enabled */
204 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
205 #define TRIE_STUDY_OPT
206 #define FULL_TRIE_STUDY
212 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
213 #define PBITVAL(paren) (1 << ((paren) & 7))
214 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
215 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
216 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
219 /* About scan_data_t.
221 During optimisation we recurse through the regexp program performing
222 various inplace (keyhole style) optimisations. In addition study_chunk
223 and scan_commit populate this data structure with information about
224 what strings MUST appear in the pattern. We look for the longest
225 string that must appear for at a fixed location, and we look for the
226 longest string that may appear at a floating location. So for instance
231 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
232 strings (because they follow a .* construct). study_chunk will identify
233 both FOO and BAR as being the longest fixed and floating strings respectively.
235 The strings can be composites, for instance
239 will result in a composite fixed substring 'foo'.
241 For each string some basic information is maintained:
243 - offset or min_offset
244 This is the position the string must appear at, or not before.
245 It also implicitly (when combined with minlenp) tells us how many
246 character must match before the string we are searching.
247 Likewise when combined with minlenp and the length of the string
248 tells us how many characters must appear after the string we have
252 Only used for floating strings. This is the rightmost point that
253 the string can appear at. Ifset to I32 max it indicates that the
254 string can occur infinitely far to the right.
257 A pointer to the minimum length of the pattern that the string
258 was found inside. This is important as in the case of positive
259 lookahead or positive lookbehind we can have multiple patterns
264 The minimum length of the pattern overall is 3, the minimum length
265 of the lookahead part is 3, but the minimum length of the part that
266 will actually match is 1. So 'FOO's minimum length is 3, but the
267 minimum length for the F is 1. This is important as the minimum length
268 is used to determine offsets in front of and behind the string being
269 looked for. Since strings can be composites this is the length of the
270 pattern at the time it was commited with a scan_commit. Note that
271 the length is calculated by study_chunk, so that the minimum lengths
272 are not known until the full pattern has been compiled, thus the
273 pointer to the value.
277 In the case of lookbehind the string being searched for can be
278 offset past the start point of the final matching string.
279 If this value was just blithely removed from the min_offset it would
280 invalidate some of the calculations for how many chars must match
281 before or after (as they are derived from min_offset and minlen and
282 the length of the string being searched for).
283 When the final pattern is compiled and the data is moved from the
284 scan_data_t structure into the regexp structure the information
285 about lookbehind is factored in, with the information that would
286 have been lost precalculated in the end_shift field for the
289 The fields pos_min and pos_delta are used to store the minimum offset
290 and the delta to the maximum offset at the current point in the pattern.
294 typedef struct scan_data_t {
295 /*I32 len_min; unused */
296 /*I32 len_delta; unused */
300 I32 last_end; /* min value, <0 unless valid. */
303 SV **longest; /* Either &l_fixed, or &l_float. */
304 SV *longest_fixed; /* longest fixed string found in pattern */
305 I32 offset_fixed; /* offset where it starts */
306 I32 *minlen_fixed; /* pointer to the minlen relevent to the string */
307 I32 lookbehind_fixed; /* is the position of the string modfied by LB */
308 SV *longest_float; /* longest floating string found in pattern */
309 I32 offset_float_min; /* earliest point in string it can appear */
310 I32 offset_float_max; /* latest point in string it can appear */
311 I32 *minlen_float; /* pointer to the minlen relevent to the string */
312 I32 lookbehind_float; /* is the position of the string modified by LB */
316 struct regnode_charclass_class *start_class;
320 * Forward declarations for pregcomp()'s friends.
323 static const scan_data_t zero_scan_data =
324 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
326 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
327 #define SF_BEFORE_SEOL 0x0001
328 #define SF_BEFORE_MEOL 0x0002
329 #define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
330 #define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
333 # define SF_FIX_SHIFT_EOL (0+2)
334 # define SF_FL_SHIFT_EOL (0+4)
336 # define SF_FIX_SHIFT_EOL (+2)
337 # define SF_FL_SHIFT_EOL (+4)
340 #define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
341 #define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
343 #define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
344 #define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
345 #define SF_IS_INF 0x0040
346 #define SF_HAS_PAR 0x0080
347 #define SF_IN_PAR 0x0100
348 #define SF_HAS_EVAL 0x0200
349 #define SCF_DO_SUBSTR 0x0400
350 #define SCF_DO_STCLASS_AND 0x0800
351 #define SCF_DO_STCLASS_OR 0x1000
352 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
353 #define SCF_WHILEM_VISITED_POS 0x2000
355 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
356 #define SCF_SEEN_ACCEPT 0x8000
358 #define UTF (RExC_utf8 != 0)
359 #define LOC ((RExC_flags & RXf_PMf_LOCALE) != 0)
360 #define FOLD ((RExC_flags & RXf_PMf_FOLD) != 0)
362 #define OOB_UNICODE 12345678
363 #define OOB_NAMEDCLASS -1
365 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
366 #define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
369 /* length of regex to show in messages that don't mark a position within */
370 #define RegexLengthToShowInErrorMessages 127
373 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
374 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
375 * op/pragma/warn/regcomp.
377 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
378 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
380 #define REPORT_LOCATION " in regex; marked by " MARKER1 " in m/%.*s" MARKER2 "%s/"
383 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
384 * arg. Show regex, up to a maximum length. If it's too long, chop and add
387 #define _FAIL(code) STMT_START { \
388 const char *ellipses = ""; \
389 IV len = RExC_end - RExC_precomp; \
392 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx); \
393 if (len > RegexLengthToShowInErrorMessages) { \
394 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
395 len = RegexLengthToShowInErrorMessages - 10; \
401 #define FAIL(msg) _FAIL( \
402 Perl_croak(aTHX_ "%s in regex m/%.*s%s/", \
403 msg, (int)len, RExC_precomp, ellipses))
405 #define FAIL2(msg,arg) _FAIL( \
406 Perl_croak(aTHX_ msg " in regex m/%.*s%s/", \
407 arg, (int)len, RExC_precomp, ellipses))
410 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
412 #define Simple_vFAIL(m) STMT_START { \
413 const IV offset = RExC_parse - RExC_precomp; \
414 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
415 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
419 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
421 #define vFAIL(m) STMT_START { \
423 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx); \
428 * Like Simple_vFAIL(), but accepts two arguments.
430 #define Simple_vFAIL2(m,a1) STMT_START { \
431 const IV offset = RExC_parse - RExC_precomp; \
432 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, \
433 (int)offset, RExC_precomp, RExC_precomp + offset); \
437 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
439 #define vFAIL2(m,a1) STMT_START { \
441 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx); \
442 Simple_vFAIL2(m, a1); \
447 * Like Simple_vFAIL(), but accepts three arguments.
449 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
450 const IV offset = RExC_parse - RExC_precomp; \
451 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, \
452 (int)offset, RExC_precomp, RExC_precomp + offset); \
456 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
458 #define vFAIL3(m,a1,a2) STMT_START { \
460 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx); \
461 Simple_vFAIL3(m, a1, a2); \
465 * Like Simple_vFAIL(), but accepts four arguments.
467 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
468 const IV offset = RExC_parse - RExC_precomp; \
469 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, a3, \
470 (int)offset, RExC_precomp, RExC_precomp + offset); \
473 #define vWARN(loc,m) STMT_START { \
474 const IV offset = loc - RExC_precomp; \
475 Perl_warner(aTHX_ packWARN(WARN_REGEXP), "%s" REPORT_LOCATION, \
476 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
479 #define vWARNdep(loc,m) STMT_START { \
480 const IV offset = loc - RExC_precomp; \
481 Perl_warner(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
482 "%s" REPORT_LOCATION, \
483 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
487 #define vWARN2(loc, m, a1) STMT_START { \
488 const IV offset = loc - RExC_precomp; \
489 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
490 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
493 #define vWARN3(loc, m, a1, a2) STMT_START { \
494 const IV offset = loc - RExC_precomp; \
495 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
496 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
499 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \
500 const IV offset = loc - RExC_precomp; \
501 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
502 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
505 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
506 const IV offset = loc - RExC_precomp; \
507 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
508 a1, a2, a3, a4, (int)offset, RExC_precomp, RExC_precomp + offset); \
512 /* Allow for side effects in s */
513 #define REGC(c,s) STMT_START { \
514 if (!SIZE_ONLY) *(s) = (c); else (void)(s); \
517 /* Macros for recording node offsets. 20001227 mjd@plover.com
518 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
519 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
520 * Element 0 holds the number n.
521 * Position is 1 indexed.
523 #ifndef RE_TRACK_PATTERN_OFFSETS
524 #define Set_Node_Offset_To_R(node,byte)
525 #define Set_Node_Offset(node,byte)
526 #define Set_Cur_Node_Offset
527 #define Set_Node_Length_To_R(node,len)
528 #define Set_Node_Length(node,len)
529 #define Set_Node_Cur_Length(node)
530 #define Node_Offset(n)
531 #define Node_Length(n)
532 #define Set_Node_Offset_Length(node,offset,len)
533 #define ProgLen(ri) ri->u.proglen
534 #define SetProgLen(ri,x) ri->u.proglen = x
536 #define ProgLen(ri) ri->u.offsets[0]
537 #define SetProgLen(ri,x) ri->u.offsets[0] = x
538 #define Set_Node_Offset_To_R(node,byte) STMT_START { \
540 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
541 __LINE__, (int)(node), (int)(byte))); \
543 Perl_croak(aTHX_ "value of node is %d in Offset macro", (int)(node)); \
545 RExC_offsets[2*(node)-1] = (byte); \
550 #define Set_Node_Offset(node,byte) \
551 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
552 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
554 #define Set_Node_Length_To_R(node,len) STMT_START { \
556 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
557 __LINE__, (int)(node), (int)(len))); \
559 Perl_croak(aTHX_ "value of node is %d in Length macro", (int)(node)); \
561 RExC_offsets[2*(node)] = (len); \
566 #define Set_Node_Length(node,len) \
567 Set_Node_Length_To_R((node)-RExC_emit_start, len)
568 #define Set_Cur_Node_Length(len) Set_Node_Length(RExC_emit, len)
569 #define Set_Node_Cur_Length(node) \
570 Set_Node_Length(node, RExC_parse - parse_start)
572 /* Get offsets and lengths */
573 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
574 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
576 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
577 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
578 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
582 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
583 #define EXPERIMENTAL_INPLACESCAN
584 #endif /*RE_TRACK_PATTERN_OFFSETS*/
586 #define DEBUG_STUDYDATA(str,data,depth) \
587 DEBUG_OPTIMISE_MORE_r(if(data){ \
588 PerlIO_printf(Perl_debug_log, \
589 "%*s" str "Pos:%"IVdf"/%"IVdf \
590 " Flags: 0x%"UVXf" Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
591 (int)(depth)*2, "", \
592 (IV)((data)->pos_min), \
593 (IV)((data)->pos_delta), \
594 (UV)((data)->flags), \
595 (IV)((data)->whilem_c), \
596 (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
597 is_inf ? "INF " : "" \
599 if ((data)->last_found) \
600 PerlIO_printf(Perl_debug_log, \
601 "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
602 " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
603 SvPVX_const((data)->last_found), \
604 (IV)((data)->last_end), \
605 (IV)((data)->last_start_min), \
606 (IV)((data)->last_start_max), \
607 ((data)->longest && \
608 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
609 SvPVX_const((data)->longest_fixed), \
610 (IV)((data)->offset_fixed), \
611 ((data)->longest && \
612 (data)->longest==&((data)->longest_float)) ? "*" : "", \
613 SvPVX_const((data)->longest_float), \
614 (IV)((data)->offset_float_min), \
615 (IV)((data)->offset_float_max) \
617 PerlIO_printf(Perl_debug_log,"\n"); \
620 static void clear_re(pTHX_ void *r);
622 /* Mark that we cannot extend a found fixed substring at this point.
623 Update the longest found anchored substring and the longest found
624 floating substrings if needed. */
627 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data, I32 *minlenp, int is_inf)
629 const STRLEN l = CHR_SVLEN(data->last_found);
630 const STRLEN old_l = CHR_SVLEN(*data->longest);
631 GET_RE_DEBUG_FLAGS_DECL;
633 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
634 SvSetMagicSV(*data->longest, data->last_found);
635 if (*data->longest == data->longest_fixed) {
636 data->offset_fixed = l ? data->last_start_min : data->pos_min;
637 if (data->flags & SF_BEFORE_EOL)
639 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
641 data->flags &= ~SF_FIX_BEFORE_EOL;
642 data->minlen_fixed=minlenp;
643 data->lookbehind_fixed=0;
645 else { /* *data->longest == data->longest_float */
646 data->offset_float_min = l ? data->last_start_min : data->pos_min;
647 data->offset_float_max = (l
648 ? data->last_start_max
649 : data->pos_min + data->pos_delta);
650 if (is_inf || (U32)data->offset_float_max > (U32)I32_MAX)
651 data->offset_float_max = I32_MAX;
652 if (data->flags & SF_BEFORE_EOL)
654 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
656 data->flags &= ~SF_FL_BEFORE_EOL;
657 data->minlen_float=minlenp;
658 data->lookbehind_float=0;
661 SvCUR_set(data->last_found, 0);
663 SV * const sv = data->last_found;
664 if (SvUTF8(sv) && SvMAGICAL(sv)) {
665 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
671 data->flags &= ~SF_BEFORE_EOL;
672 DEBUG_STUDYDATA("commit: ",data,0);
675 /* Can match anything (initialization) */
677 S_cl_anything(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
679 ANYOF_CLASS_ZERO(cl);
680 ANYOF_BITMAP_SETALL(cl);
681 cl->flags = ANYOF_EOS|ANYOF_UNICODE_ALL;
683 cl->flags |= ANYOF_LOCALE;
686 /* Can match anything (initialization) */
688 S_cl_is_anything(const struct regnode_charclass_class *cl)
692 for (value = 0; value <= ANYOF_MAX; value += 2)
693 if (ANYOF_CLASS_TEST(cl, value) && ANYOF_CLASS_TEST(cl, value + 1))
695 if (!(cl->flags & ANYOF_UNICODE_ALL))
697 if (!ANYOF_BITMAP_TESTALLSET((const void*)cl))
702 /* Can match anything (initialization) */
704 S_cl_init(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
706 Zero(cl, 1, struct regnode_charclass_class);
708 cl_anything(pRExC_state, cl);
712 S_cl_init_zero(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
714 Zero(cl, 1, struct regnode_charclass_class);
716 cl_anything(pRExC_state, cl);
718 cl->flags |= ANYOF_LOCALE;
721 /* 'And' a given class with another one. Can create false positives */
722 /* We assume that cl is not inverted */
724 S_cl_and(struct regnode_charclass_class *cl,
725 const struct regnode_charclass_class *and_with)
728 assert(and_with->type == ANYOF);
729 if (!(and_with->flags & ANYOF_CLASS)
730 && !(cl->flags & ANYOF_CLASS)
731 && (and_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
732 && !(and_with->flags & ANYOF_FOLD)
733 && !(cl->flags & ANYOF_FOLD)) {
736 if (and_with->flags & ANYOF_INVERT)
737 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
738 cl->bitmap[i] &= ~and_with->bitmap[i];
740 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
741 cl->bitmap[i] &= and_with->bitmap[i];
742 } /* XXXX: logic is complicated otherwise, leave it along for a moment. */
743 if (!(and_with->flags & ANYOF_EOS))
744 cl->flags &= ~ANYOF_EOS;
746 if (cl->flags & ANYOF_UNICODE_ALL && and_with->flags & ANYOF_UNICODE &&
747 !(and_with->flags & ANYOF_INVERT)) {
748 cl->flags &= ~ANYOF_UNICODE_ALL;
749 cl->flags |= ANYOF_UNICODE;
750 ARG_SET(cl, ARG(and_with));
752 if (!(and_with->flags & ANYOF_UNICODE_ALL) &&
753 !(and_with->flags & ANYOF_INVERT))
754 cl->flags &= ~ANYOF_UNICODE_ALL;
755 if (!(and_with->flags & (ANYOF_UNICODE|ANYOF_UNICODE_ALL)) &&
756 !(and_with->flags & ANYOF_INVERT))
757 cl->flags &= ~ANYOF_UNICODE;
760 /* 'OR' a given class with another one. Can create false positives */
761 /* We assume that cl is not inverted */
763 S_cl_or(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl, const struct regnode_charclass_class *or_with)
765 if (or_with->flags & ANYOF_INVERT) {
767 * (B1 | CL1) | (!B2 & !CL2) = (B1 | !B2 & !CL2) | (CL1 | (!B2 & !CL2))
768 * <= (B1 | !B2) | (CL1 | !CL2)
769 * which is wasteful if CL2 is small, but we ignore CL2:
770 * (B1 | CL1) | (!B2 & !CL2) <= (B1 | CL1) | !B2 = (B1 | !B2) | CL1
771 * XXXX Can we handle case-fold? Unclear:
772 * (OK1(i) | OK1(i')) | !(OK1(i) | OK1(i')) =
773 * (OK1(i) | OK1(i')) | (!OK1(i) & !OK1(i'))
775 if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
776 && !(or_with->flags & ANYOF_FOLD)
777 && !(cl->flags & ANYOF_FOLD) ) {
780 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
781 cl->bitmap[i] |= ~or_with->bitmap[i];
782 } /* XXXX: logic is complicated otherwise */
784 cl_anything(pRExC_state, cl);
787 /* (B1 | CL1) | (B2 | CL2) = (B1 | B2) | (CL1 | CL2)) */
788 if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
789 && (!(or_with->flags & ANYOF_FOLD)
790 || (cl->flags & ANYOF_FOLD)) ) {
793 /* OR char bitmap and class bitmap separately */
794 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
795 cl->bitmap[i] |= or_with->bitmap[i];
796 if (or_with->flags & ANYOF_CLASS) {
797 for (i = 0; i < ANYOF_CLASSBITMAP_SIZE; i++)
798 cl->classflags[i] |= or_with->classflags[i];
799 cl->flags |= ANYOF_CLASS;
802 else { /* XXXX: logic is complicated, leave it along for a moment. */
803 cl_anything(pRExC_state, cl);
806 if (or_with->flags & ANYOF_EOS)
807 cl->flags |= ANYOF_EOS;
809 if (cl->flags & ANYOF_UNICODE && or_with->flags & ANYOF_UNICODE &&
810 ARG(cl) != ARG(or_with)) {
811 cl->flags |= ANYOF_UNICODE_ALL;
812 cl->flags &= ~ANYOF_UNICODE;
814 if (or_with->flags & ANYOF_UNICODE_ALL) {
815 cl->flags |= ANYOF_UNICODE_ALL;
816 cl->flags &= ~ANYOF_UNICODE;
820 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
821 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
822 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
823 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list ? (TRIE_LIST_CUR( idx ) - 1) : 0 )
828 dump_trie(trie,widecharmap,revcharmap)
829 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
830 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
832 These routines dump out a trie in a somewhat readable format.
833 The _interim_ variants are used for debugging the interim
834 tables that are used to generate the final compressed
835 representation which is what dump_trie expects.
837 Part of the reason for their existance is to provide a form
838 of documentation as to how the different representations function.
843 Dumps the final compressed table form of the trie to Perl_debug_log.
844 Used for debugging make_trie().
848 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
849 AV *revcharmap, U32 depth)
852 SV *sv=sv_newmortal();
853 int colwidth= widecharmap ? 6 : 4;
854 GET_RE_DEBUG_FLAGS_DECL;
857 PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
858 (int)depth * 2 + 2,"",
859 "Match","Base","Ofs" );
861 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
862 SV ** const tmp = av_fetch( revcharmap, state, 0);
864 PerlIO_printf( Perl_debug_log, "%*s",
866 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
867 PL_colors[0], PL_colors[1],
868 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
869 PERL_PV_ESCAPE_FIRSTCHAR
874 PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
875 (int)depth * 2 + 2,"");
877 for( state = 0 ; state < trie->uniquecharcount ; state++ )
878 PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
879 PerlIO_printf( Perl_debug_log, "\n");
881 for( state = 1 ; state < trie->statecount ; state++ ) {
882 const U32 base = trie->states[ state ].trans.base;
884 PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|", (int)depth * 2 + 2,"", (UV)state);
886 if ( trie->states[ state ].wordnum ) {
887 PerlIO_printf( Perl_debug_log, " W%4X", trie->states[ state ].wordnum );
889 PerlIO_printf( Perl_debug_log, "%6s", "" );
892 PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
897 while( ( base + ofs < trie->uniquecharcount ) ||
898 ( base + ofs - trie->uniquecharcount < trie->lasttrans
899 && trie->trans[ base + ofs - trie->uniquecharcount ].check != state))
902 PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
904 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
905 if ( ( base + ofs >= trie->uniquecharcount ) &&
906 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
907 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
909 PerlIO_printf( Perl_debug_log, "%*"UVXf,
911 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next );
913 PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
917 PerlIO_printf( Perl_debug_log, "]");
920 PerlIO_printf( Perl_debug_log, "\n" );
924 Dumps a fully constructed but uncompressed trie in list form.
925 List tries normally only are used for construction when the number of
926 possible chars (trie->uniquecharcount) is very high.
927 Used for debugging make_trie().
930 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
931 HV *widecharmap, AV *revcharmap, U32 next_alloc,
935 SV *sv=sv_newmortal();
936 int colwidth= widecharmap ? 6 : 4;
937 GET_RE_DEBUG_FLAGS_DECL;
938 /* print out the table precompression. */
939 PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
940 (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
941 "------:-----+-----------------\n" );
943 for( state=1 ; state < next_alloc ; state ++ ) {
946 PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
947 (int)depth * 2 + 2,"", (UV)state );
948 if ( ! trie->states[ state ].wordnum ) {
949 PerlIO_printf( Perl_debug_log, "%5s| ","");
951 PerlIO_printf( Perl_debug_log, "W%4x| ",
952 trie->states[ state ].wordnum
955 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
956 SV ** const tmp = av_fetch( revcharmap, TRIE_LIST_ITEM(state,charid).forid, 0);
958 PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
960 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
961 PL_colors[0], PL_colors[1],
962 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
963 PERL_PV_ESCAPE_FIRSTCHAR
965 TRIE_LIST_ITEM(state,charid).forid,
966 (UV)TRIE_LIST_ITEM(state,charid).newstate
969 PerlIO_printf(Perl_debug_log, "\n%*s| ",
970 (int)((depth * 2) + 14), "");
973 PerlIO_printf( Perl_debug_log, "\n");
978 Dumps a fully constructed but uncompressed trie in table form.
979 This is the normal DFA style state transition table, with a few
980 twists to facilitate compression later.
981 Used for debugging make_trie().
984 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
985 HV *widecharmap, AV *revcharmap, U32 next_alloc,
990 SV *sv=sv_newmortal();
991 int colwidth= widecharmap ? 6 : 4;
992 GET_RE_DEBUG_FLAGS_DECL;
995 print out the table precompression so that we can do a visual check
996 that they are identical.
999 PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
1001 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1002 SV ** const tmp = av_fetch( revcharmap, charid, 0);
1004 PerlIO_printf( Perl_debug_log, "%*s",
1006 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1007 PL_colors[0], PL_colors[1],
1008 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1009 PERL_PV_ESCAPE_FIRSTCHAR
1015 PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
1017 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
1018 PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
1021 PerlIO_printf( Perl_debug_log, "\n" );
1023 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
1025 PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
1026 (int)depth * 2 + 2,"",
1027 (UV)TRIE_NODENUM( state ) );
1029 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1030 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
1032 PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
1034 PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
1036 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
1037 PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n", (UV)trie->trans[ state ].check );
1039 PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n", (UV)trie->trans[ state ].check,
1040 trie->states[ TRIE_NODENUM( state ) ].wordnum );
1047 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
1048 startbranch: the first branch in the whole branch sequence
1049 first : start branch of sequence of branch-exact nodes.
1050 May be the same as startbranch
1051 last : Thing following the last branch.
1052 May be the same as tail.
1053 tail : item following the branch sequence
1054 count : words in the sequence
1055 flags : currently the OP() type we will be building one of /EXACT(|F|Fl)/
1056 depth : indent depth
1058 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
1060 A trie is an N'ary tree where the branches are determined by digital
1061 decomposition of the key. IE, at the root node you look up the 1st character and
1062 follow that branch repeat until you find the end of the branches. Nodes can be
1063 marked as "accepting" meaning they represent a complete word. Eg:
1067 would convert into the following structure. Numbers represent states, letters
1068 following numbers represent valid transitions on the letter from that state, if
1069 the number is in square brackets it represents an accepting state, otherwise it
1070 will be in parenthesis.
1072 +-h->+-e->[3]-+-r->(8)-+-s->[9]
1076 (1) +-i->(6)-+-s->[7]
1078 +-s->(3)-+-h->(4)-+-e->[5]
1080 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
1082 This shows that when matching against the string 'hers' we will begin at state 1
1083 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
1084 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
1085 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
1086 single traverse. We store a mapping from accepting to state to which word was
1087 matched, and then when we have multiple possibilities we try to complete the
1088 rest of the regex in the order in which they occured in the alternation.
1090 The only prior NFA like behaviour that would be changed by the TRIE support is
1091 the silent ignoring of duplicate alternations which are of the form:
1093 / (DUPE|DUPE) X? (?{ ... }) Y /x
1095 Thus EVAL blocks follwing a trie may be called a different number of times with
1096 and without the optimisation. With the optimisations dupes will be silently
1097 ignored. This inconsistant behaviour of EVAL type nodes is well established as
1098 the following demonstrates:
1100 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
1102 which prints out 'word' three times, but
1104 'words'=~/(word|word|word)(?{ print $1 })S/
1106 which doesnt print it out at all. This is due to other optimisations kicking in.
1108 Example of what happens on a structural level:
1110 The regexp /(ac|ad|ab)+/ will produce the folowing debug output:
1112 1: CURLYM[1] {1,32767}(18)
1123 This would be optimizable with startbranch=5, first=5, last=16, tail=16
1124 and should turn into:
1126 1: CURLYM[1] {1,32767}(18)
1128 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
1136 Cases where tail != last would be like /(?foo|bar)baz/:
1146 which would be optimizable with startbranch=1, first=1, last=7, tail=8
1147 and would end up looking like:
1150 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
1157 d = uvuni_to_utf8_flags(d, uv, 0);
1159 is the recommended Unicode-aware way of saying
1164 #define TRIE_STORE_REVCHAR \
1166 SV *tmp = newSVpvs(""); \
1167 if (UTF) SvUTF8_on(tmp); \
1168 Perl_sv_catpvf( aTHX_ tmp, "%c", (int)uvc ); \
1169 av_push( revcharmap, tmp ); \
1172 #define TRIE_READ_CHAR STMT_START { \
1176 if ( foldlen > 0 ) { \
1177 uvc = utf8n_to_uvuni( scan, UTF8_MAXLEN, &len, uniflags ); \
1182 uvc = utf8n_to_uvuni( (const U8*)uc, UTF8_MAXLEN, &len, uniflags);\
1183 uvc = to_uni_fold( uvc, foldbuf, &foldlen ); \
1184 foldlen -= UNISKIP( uvc ); \
1185 scan = foldbuf + UNISKIP( uvc ); \
1188 uvc = utf8n_to_uvuni( (const U8*)uc, UTF8_MAXLEN, &len, uniflags);\
1198 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
1199 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
1200 U32 ging = TRIE_LIST_LEN( state ) *= 2; \
1201 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
1203 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
1204 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
1205 TRIE_LIST_CUR( state )++; \
1208 #define TRIE_LIST_NEW(state) STMT_START { \
1209 Newxz( trie->states[ state ].trans.list, \
1210 4, reg_trie_trans_le ); \
1211 TRIE_LIST_CUR( state ) = 1; \
1212 TRIE_LIST_LEN( state ) = 4; \
1215 #define TRIE_HANDLE_WORD(state) STMT_START { \
1216 U16 dupe= trie->states[ state ].wordnum; \
1217 regnode * const noper_next = regnext( noper ); \
1219 if (trie->wordlen) \
1220 trie->wordlen[ curword ] = wordlen; \
1222 /* store the word for dumping */ \
1224 if (OP(noper) != NOTHING) \
1225 tmp = newSVpvn(STRING(noper), STR_LEN(noper)); \
1227 tmp = newSVpvn( "", 0 ); \
1228 if ( UTF ) SvUTF8_on( tmp ); \
1229 av_push( trie_words, tmp ); \
1234 if ( noper_next < tail ) { \
1236 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, sizeof(U16) ); \
1237 trie->jump[curword] = (U16)(noper_next - convert); \
1239 jumper = noper_next; \
1241 nextbranch= regnext(cur); \
1245 /* So it's a dupe. This means we need to maintain a */\
1246 /* linked-list from the first to the next. */\
1247 /* we only allocate the nextword buffer when there */\
1248 /* a dupe, so first time we have to do the allocation */\
1249 if (!trie->nextword) \
1250 trie->nextword = (U16 *) \
1251 PerlMemShared_calloc( word_count + 1, sizeof(U16)); \
1252 while ( trie->nextword[dupe] ) \
1253 dupe= trie->nextword[dupe]; \
1254 trie->nextword[dupe]= curword; \
1256 /* we haven't inserted this word yet. */ \
1257 trie->states[ state ].wordnum = curword; \
1262 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
1263 ( ( base + charid >= ucharcount \
1264 && base + charid < ubound \
1265 && state == trie->trans[ base - ucharcount + charid ].check \
1266 && trie->trans[ base - ucharcount + charid ].next ) \
1267 ? trie->trans[ base - ucharcount + charid ].next \
1268 : ( state==1 ? special : 0 ) \
1272 #define MADE_JUMP_TRIE 2
1273 #define MADE_EXACT_TRIE 4
1276 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch, regnode *first, regnode *last, regnode *tail, U32 word_count, U32 flags, U32 depth)
1279 /* first pass, loop through and scan words */
1280 reg_trie_data *trie;
1281 HV *widecharmap = NULL;
1282 AV *revcharmap = newAV();
1284 const U32 uniflags = UTF8_ALLOW_DEFAULT;
1289 regnode *jumper = NULL;
1290 regnode *nextbranch = NULL;
1291 regnode *convert = NULL;
1292 /* we just use folder as a flag in utf8 */
1293 const U8 * const folder = ( flags == EXACTF
1295 : ( flags == EXACTFL
1302 const U32 data_slot = add_data( pRExC_state, 4, "tuuu" );
1303 AV *trie_words = NULL;
1304 /* along with revcharmap, this only used during construction but both are
1305 * useful during debugging so we store them in the struct when debugging.
1308 const U32 data_slot = add_data( pRExC_state, 2, "tu" );
1309 STRLEN trie_charcount=0;
1311 SV *re_trie_maxbuff;
1312 GET_RE_DEBUG_FLAGS_DECL;
1314 PERL_UNUSED_ARG(depth);
1317 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
1319 trie->startstate = 1;
1320 trie->wordcount = word_count;
1321 RExC_rxi->data->data[ data_slot ] = (void*)trie;
1322 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
1323 if (!(UTF && folder))
1324 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
1326 trie_words = newAV();
1329 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
1330 if (!SvIOK(re_trie_maxbuff)) {
1331 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
1334 PerlIO_printf( Perl_debug_log,
1335 "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
1336 (int)depth * 2 + 2, "",
1337 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
1338 REG_NODE_NUM(last), REG_NODE_NUM(tail),
1342 /* Find the node we are going to overwrite */
1343 if ( first == startbranch && OP( last ) != BRANCH ) {
1344 /* whole branch chain */
1347 /* branch sub-chain */
1348 convert = NEXTOPER( first );
1351 /* -- First loop and Setup --
1353 We first traverse the branches and scan each word to determine if it
1354 contains widechars, and how many unique chars there are, this is
1355 important as we have to build a table with at least as many columns as we
1358 We use an array of integers to represent the character codes 0..255
1359 (trie->charmap) and we use a an HV* to store unicode characters. We use the
1360 native representation of the character value as the key and IV's for the
1363 *TODO* If we keep track of how many times each character is used we can
1364 remap the columns so that the table compression later on is more
1365 efficient in terms of memory by ensuring most common value is in the
1366 middle and the least common are on the outside. IMO this would be better
1367 than a most to least common mapping as theres a decent chance the most
1368 common letter will share a node with the least common, meaning the node
1369 will not be compressable. With a middle is most common approach the worst
1370 case is when we have the least common nodes twice.
1374 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1375 regnode * const noper = NEXTOPER( cur );
1376 const U8 *uc = (U8*)STRING( noper );
1377 const U8 * const e = uc + STR_LEN( noper );
1379 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1380 const U8 *scan = (U8*)NULL;
1381 U32 wordlen = 0; /* required init */
1383 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the bitmap?*/
1385 if (OP(noper) == NOTHING) {
1389 if ( set_bit ) /* bitmap only alloced when !(UTF&&Folding) */
1390 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
1391 regardless of encoding */
1393 for ( ; uc < e ; uc += len ) {
1394 TRIE_CHARCOUNT(trie)++;
1398 if ( !trie->charmap[ uvc ] ) {
1399 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
1401 trie->charmap[ folder[ uvc ] ] = trie->charmap[ uvc ];
1405 /* store the codepoint in the bitmap, and if its ascii
1406 also store its folded equivelent. */
1407 TRIE_BITMAP_SET(trie,uvc);
1408 if ( folder ) TRIE_BITMAP_SET(trie,folder[ uvc ]);
1409 set_bit = 0; /* We've done our bit :-) */
1414 widecharmap = newHV();
1416 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
1419 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
1421 if ( !SvTRUE( *svpp ) ) {
1422 sv_setiv( *svpp, ++trie->uniquecharcount );
1427 if( cur == first ) {
1430 } else if (chars < trie->minlen) {
1432 } else if (chars > trie->maxlen) {
1436 } /* end first pass */
1437 DEBUG_TRIE_COMPILE_r(
1438 PerlIO_printf( Perl_debug_log, "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
1439 (int)depth * 2 + 2,"",
1440 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
1441 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
1442 (int)trie->minlen, (int)trie->maxlen )
1444 trie->wordlen = (U32 *) PerlMemShared_calloc( word_count, sizeof(U32) );
1447 We now know what we are dealing with in terms of unique chars and
1448 string sizes so we can calculate how much memory a naive
1449 representation using a flat table will take. If it's over a reasonable
1450 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
1451 conservative but potentially much slower representation using an array
1454 At the end we convert both representations into the same compressed
1455 form that will be used in regexec.c for matching with. The latter
1456 is a form that cannot be used to construct with but has memory
1457 properties similar to the list form and access properties similar
1458 to the table form making it both suitable for fast searches and
1459 small enough that its feasable to store for the duration of a program.
1461 See the comment in the code where the compressed table is produced
1462 inplace from the flat tabe representation for an explanation of how
1463 the compression works.
1468 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1) > SvIV(re_trie_maxbuff) ) {
1470 Second Pass -- Array Of Lists Representation
1472 Each state will be represented by a list of charid:state records
1473 (reg_trie_trans_le) the first such element holds the CUR and LEN
1474 points of the allocated array. (See defines above).
1476 We build the initial structure using the lists, and then convert
1477 it into the compressed table form which allows faster lookups
1478 (but cant be modified once converted).
1481 STRLEN transcount = 1;
1483 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1484 "%*sCompiling trie using list compiler\n",
1485 (int)depth * 2 + 2, ""));
1487 trie->states = (reg_trie_state *)
1488 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1489 sizeof(reg_trie_state) );
1493 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1495 regnode * const noper = NEXTOPER( cur );
1496 U8 *uc = (U8*)STRING( noper );
1497 const U8 * const e = uc + STR_LEN( noper );
1498 U32 state = 1; /* required init */
1499 U16 charid = 0; /* sanity init */
1500 U8 *scan = (U8*)NULL; /* sanity init */
1501 STRLEN foldlen = 0; /* required init */
1502 U32 wordlen = 0; /* required init */
1503 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1505 if (OP(noper) != NOTHING) {
1506 for ( ; uc < e ; uc += len ) {
1511 charid = trie->charmap[ uvc ];
1513 SV** const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1517 charid=(U16)SvIV( *svpp );
1520 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1527 if ( !trie->states[ state ].trans.list ) {
1528 TRIE_LIST_NEW( state );
1530 for ( check = 1; check <= TRIE_LIST_USED( state ); check++ ) {
1531 if ( TRIE_LIST_ITEM( state, check ).forid == charid ) {
1532 newstate = TRIE_LIST_ITEM( state, check ).newstate;
1537 newstate = next_alloc++;
1538 TRIE_LIST_PUSH( state, charid, newstate );
1543 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1547 TRIE_HANDLE_WORD(state);
1549 } /* end second pass */
1551 /* next alloc is the NEXT state to be allocated */
1552 trie->statecount = next_alloc;
1553 trie->states = (reg_trie_state *)
1554 PerlMemShared_realloc( trie->states,
1556 * sizeof(reg_trie_state) );
1558 /* and now dump it out before we compress it */
1559 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
1560 revcharmap, next_alloc,
1564 trie->trans = (reg_trie_trans *)
1565 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
1572 for( state=1 ; state < next_alloc ; state ++ ) {
1576 DEBUG_TRIE_COMPILE_MORE_r(
1577 PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
1581 if (trie->states[state].trans.list) {
1582 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
1586 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1587 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
1588 if ( forid < minid ) {
1590 } else if ( forid > maxid ) {
1594 if ( transcount < tp + maxid - minid + 1) {
1596 trie->trans = (reg_trie_trans *)
1597 PerlMemShared_realloc( trie->trans,
1599 * sizeof(reg_trie_trans) );
1600 Zero( trie->trans + (transcount / 2), transcount / 2 , reg_trie_trans );
1602 base = trie->uniquecharcount + tp - minid;
1603 if ( maxid == minid ) {
1605 for ( ; zp < tp ; zp++ ) {
1606 if ( ! trie->trans[ zp ].next ) {
1607 base = trie->uniquecharcount + zp - minid;
1608 trie->trans[ zp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1609 trie->trans[ zp ].check = state;
1615 trie->trans[ tp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1616 trie->trans[ tp ].check = state;
1621 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1622 const U32 tid = base - trie->uniquecharcount + TRIE_LIST_ITEM( state, idx ).forid;
1623 trie->trans[ tid ].next = TRIE_LIST_ITEM( state, idx ).newstate;
1624 trie->trans[ tid ].check = state;
1626 tp += ( maxid - minid + 1 );
1628 Safefree(trie->states[ state ].trans.list);
1631 DEBUG_TRIE_COMPILE_MORE_r(
1632 PerlIO_printf( Perl_debug_log, " base: %d\n",base);
1635 trie->states[ state ].trans.base=base;
1637 trie->lasttrans = tp + 1;
1641 Second Pass -- Flat Table Representation.
1643 we dont use the 0 slot of either trans[] or states[] so we add 1 to each.
1644 We know that we will need Charcount+1 trans at most to store the data
1645 (one row per char at worst case) So we preallocate both structures
1646 assuming worst case.
1648 We then construct the trie using only the .next slots of the entry
1651 We use the .check field of the first entry of the node temporarily to
1652 make compression both faster and easier by keeping track of how many non
1653 zero fields are in the node.
1655 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
1658 There are two terms at use here: state as a TRIE_NODEIDX() which is a
1659 number representing the first entry of the node, and state as a
1660 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1) and
1661 TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3) if there
1662 are 2 entrys per node. eg:
1670 The table is internally in the right hand, idx form. However as we also
1671 have to deal with the states array which is indexed by nodenum we have to
1672 use TRIE_NODENUM() to convert.
1675 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1676 "%*sCompiling trie using table compiler\n",
1677 (int)depth * 2 + 2, ""));
1679 trie->trans = (reg_trie_trans *)
1680 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
1681 * trie->uniquecharcount + 1,
1682 sizeof(reg_trie_trans) );
1683 trie->states = (reg_trie_state *)
1684 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1685 sizeof(reg_trie_state) );
1686 next_alloc = trie->uniquecharcount + 1;
1689 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1691 regnode * const noper = NEXTOPER( cur );
1692 const U8 *uc = (U8*)STRING( noper );
1693 const U8 * const e = uc + STR_LEN( noper );
1695 U32 state = 1; /* required init */
1697 U16 charid = 0; /* sanity init */
1698 U32 accept_state = 0; /* sanity init */
1699 U8 *scan = (U8*)NULL; /* sanity init */
1701 STRLEN foldlen = 0; /* required init */
1702 U32 wordlen = 0; /* required init */
1703 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1705 if ( OP(noper) != NOTHING ) {
1706 for ( ; uc < e ; uc += len ) {
1711 charid = trie->charmap[ uvc ];
1713 SV* const * const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1714 charid = svpp ? (U16)SvIV(*svpp) : 0;
1718 if ( !trie->trans[ state + charid ].next ) {
1719 trie->trans[ state + charid ].next = next_alloc;
1720 trie->trans[ state ].check++;
1721 next_alloc += trie->uniquecharcount;
1723 state = trie->trans[ state + charid ].next;
1725 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1727 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1730 accept_state = TRIE_NODENUM( state );
1731 TRIE_HANDLE_WORD(accept_state);
1733 } /* end second pass */
1735 /* and now dump it out before we compress it */
1736 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
1738 next_alloc, depth+1));
1742 * Inplace compress the table.*
1744 For sparse data sets the table constructed by the trie algorithm will
1745 be mostly 0/FAIL transitions or to put it another way mostly empty.
1746 (Note that leaf nodes will not contain any transitions.)
1748 This algorithm compresses the tables by eliminating most such
1749 transitions, at the cost of a modest bit of extra work during lookup:
1751 - Each states[] entry contains a .base field which indicates the
1752 index in the state[] array wheres its transition data is stored.
1754 - If .base is 0 there are no valid transitions from that node.
1756 - If .base is nonzero then charid is added to it to find an entry in
1759 -If trans[states[state].base+charid].check!=state then the
1760 transition is taken to be a 0/Fail transition. Thus if there are fail
1761 transitions at the front of the node then the .base offset will point
1762 somewhere inside the previous nodes data (or maybe even into a node
1763 even earlier), but the .check field determines if the transition is
1767 The following process inplace converts the table to the compressed
1768 table: We first do not compress the root node 1,and mark its all its
1769 .check pointers as 1 and set its .base pointer as 1 as well. This
1770 allows to do a DFA construction from the compressed table later, and
1771 ensures that any .base pointers we calculate later are greater than
1774 - We set 'pos' to indicate the first entry of the second node.
1776 - We then iterate over the columns of the node, finding the first and
1777 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
1778 and set the .check pointers accordingly, and advance pos
1779 appropriately and repreat for the next node. Note that when we copy
1780 the next pointers we have to convert them from the original
1781 NODEIDX form to NODENUM form as the former is not valid post
1784 - If a node has no transitions used we mark its base as 0 and do not
1785 advance the pos pointer.
1787 - If a node only has one transition we use a second pointer into the
1788 structure to fill in allocated fail transitions from other states.
1789 This pointer is independent of the main pointer and scans forward
1790 looking for null transitions that are allocated to a state. When it
1791 finds one it writes the single transition into the "hole". If the
1792 pointer doesnt find one the single transition is appended as normal.
1794 - Once compressed we can Renew/realloc the structures to release the
1797 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
1798 specifically Fig 3.47 and the associated pseudocode.
1802 const U32 laststate = TRIE_NODENUM( next_alloc );
1805 trie->statecount = laststate;
1807 for ( state = 1 ; state < laststate ; state++ ) {
1809 const U32 stateidx = TRIE_NODEIDX( state );
1810 const U32 o_used = trie->trans[ stateidx ].check;
1811 U32 used = trie->trans[ stateidx ].check;
1812 trie->trans[ stateidx ].check = 0;
1814 for ( charid = 0 ; used && charid < trie->uniquecharcount ; charid++ ) {
1815 if ( flag || trie->trans[ stateidx + charid ].next ) {
1816 if ( trie->trans[ stateidx + charid ].next ) {
1818 for ( ; zp < pos ; zp++ ) {
1819 if ( ! trie->trans[ zp ].next ) {
1823 trie->states[ state ].trans.base = zp + trie->uniquecharcount - charid ;
1824 trie->trans[ zp ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
1825 trie->trans[ zp ].check = state;
1826 if ( ++zp > pos ) pos = zp;
1833 trie->states[ state ].trans.base = pos + trie->uniquecharcount - charid ;
1835 trie->trans[ pos ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
1836 trie->trans[ pos ].check = state;
1841 trie->lasttrans = pos + 1;
1842 trie->states = (reg_trie_state *)
1843 PerlMemShared_realloc( trie->states, laststate
1844 * sizeof(reg_trie_state) );
1845 DEBUG_TRIE_COMPILE_MORE_r(
1846 PerlIO_printf( Perl_debug_log,
1847 "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
1848 (int)depth * 2 + 2,"",
1849 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1 ),
1852 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
1855 } /* end table compress */
1857 DEBUG_TRIE_COMPILE_MORE_r(
1858 PerlIO_printf(Perl_debug_log, "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
1859 (int)depth * 2 + 2, "",
1860 (UV)trie->statecount,
1861 (UV)trie->lasttrans)
1863 /* resize the trans array to remove unused space */
1864 trie->trans = (reg_trie_trans *)
1865 PerlMemShared_realloc( trie->trans, trie->lasttrans
1866 * sizeof(reg_trie_trans) );
1868 /* and now dump out the compressed format */
1869 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
1871 { /* Modify the program and insert the new TRIE node*/
1872 U8 nodetype =(U8)(flags & 0xFF);
1876 regnode *optimize = NULL;
1877 #ifdef RE_TRACK_PATTERN_OFFSETS
1880 U32 mjd_nodelen = 0;
1881 #endif /* RE_TRACK_PATTERN_OFFSETS */
1882 #endif /* DEBUGGING */
1884 This means we convert either the first branch or the first Exact,
1885 depending on whether the thing following (in 'last') is a branch
1886 or not and whther first is the startbranch (ie is it a sub part of
1887 the alternation or is it the whole thing.)
1888 Assuming its a sub part we conver the EXACT otherwise we convert
1889 the whole branch sequence, including the first.
1891 /* Find the node we are going to overwrite */
1892 if ( first != startbranch || OP( last ) == BRANCH ) {
1893 /* branch sub-chain */
1894 NEXT_OFF( first ) = (U16)(last - first);
1895 #ifdef RE_TRACK_PATTERN_OFFSETS
1897 mjd_offset= Node_Offset((convert));
1898 mjd_nodelen= Node_Length((convert));
1901 /* whole branch chain */
1903 #ifdef RE_TRACK_PATTERN_OFFSETS
1906 const regnode *nop = NEXTOPER( convert );
1907 mjd_offset= Node_Offset((nop));
1908 mjd_nodelen= Node_Length((nop));
1912 PerlIO_printf(Perl_debug_log, "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
1913 (int)depth * 2 + 2, "",
1914 (UV)mjd_offset, (UV)mjd_nodelen)
1917 /* But first we check to see if there is a common prefix we can
1918 split out as an EXACT and put in front of the TRIE node. */
1919 trie->startstate= 1;
1920 if ( trie->bitmap && !widecharmap && !trie->jump ) {
1922 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
1926 const U32 base = trie->states[ state ].trans.base;
1928 if ( trie->states[state].wordnum )
1931 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
1932 if ( ( base + ofs >= trie->uniquecharcount ) &&
1933 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
1934 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
1936 if ( ++count > 1 ) {
1937 SV **tmp = av_fetch( revcharmap, ofs, 0);
1938 const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
1939 if ( state == 1 ) break;
1941 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
1943 PerlIO_printf(Perl_debug_log,
1944 "%*sNew Start State=%"UVuf" Class: [",
1945 (int)depth * 2 + 2, "",
1948 SV ** const tmp = av_fetch( revcharmap, idx, 0);
1949 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
1951 TRIE_BITMAP_SET(trie,*ch);
1953 TRIE_BITMAP_SET(trie, folder[ *ch ]);
1955 PerlIO_printf(Perl_debug_log, (char*)ch)
1959 TRIE_BITMAP_SET(trie,*ch);
1961 TRIE_BITMAP_SET(trie,folder[ *ch ]);
1962 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
1968 SV **tmp = av_fetch( revcharmap, idx, 0);
1969 char *ch = SvPV_nolen( *tmp );
1971 SV *sv=sv_newmortal();
1972 PerlIO_printf( Perl_debug_log,
1973 "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
1974 (int)depth * 2 + 2, "",
1976 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
1977 PL_colors[0], PL_colors[1],
1978 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1979 PERL_PV_ESCAPE_FIRSTCHAR
1984 OP( convert ) = nodetype;
1985 str=STRING(convert);
1996 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
2002 regnode *n = convert+NODE_SZ_STR(convert);
2003 NEXT_OFF(convert) = NODE_SZ_STR(convert);
2004 trie->startstate = state;
2005 trie->minlen -= (state - 1);
2006 trie->maxlen -= (state - 1);
2008 regnode *fix = convert;
2009 U32 word = trie->wordcount;
2011 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
2012 while( ++fix < n ) {
2013 Set_Node_Offset_Length(fix, 0, 0);
2016 SV ** const tmp = av_fetch( trie_words, word, 0 );
2018 if ( STR_LEN(convert) <= SvCUR(*tmp) )
2019 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
2021 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
2028 NEXT_OFF(convert) = (U16)(tail - convert);
2029 DEBUG_r(optimize= n);
2035 if ( trie->maxlen ) {
2036 NEXT_OFF( convert ) = (U16)(tail - convert);
2037 ARG_SET( convert, data_slot );
2038 /* Store the offset to the first unabsorbed branch in
2039 jump[0], which is otherwise unused by the jump logic.
2040 We use this when dumping a trie and during optimisation. */
2042 trie->jump[0] = (U16)(nextbranch - convert);
2045 if ( !trie->states[trie->startstate].wordnum && trie->bitmap &&
2046 ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
2048 OP( convert ) = TRIEC;
2049 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
2050 PerlMemShared_free(trie->bitmap);
2053 OP( convert ) = TRIE;
2055 /* store the type in the flags */
2056 convert->flags = nodetype;
2060 + regarglen[ OP( convert ) ];
2062 /* XXX We really should free up the resource in trie now,
2063 as we won't use them - (which resources?) dmq */
2065 /* needed for dumping*/
2066 DEBUG_r(if (optimize) {
2067 regnode *opt = convert;
2069 while ( ++opt < optimize) {
2070 Set_Node_Offset_Length(opt,0,0);
2073 Try to clean up some of the debris left after the
2076 while( optimize < jumper ) {
2077 mjd_nodelen += Node_Length((optimize));
2078 OP( optimize ) = OPTIMIZED;
2079 Set_Node_Offset_Length(optimize,0,0);
2082 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
2084 } /* end node insert */
2085 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
2087 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
2088 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
2090 SvREFCNT_dec(revcharmap);
2094 : trie->startstate>1
2100 S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source, regnode *stclass, U32 depth)
2102 /* The Trie is constructed and compressed now so we can build a fail array now if its needed
2104 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and 3.32 in the
2105 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi, Ullman 1985/88
2108 We find the fail state for each state in the trie, this state is the longest proper
2109 suffix of the current states 'word' that is also a proper prefix of another word in our
2110 trie. State 1 represents the word '' and is the thus the default fail state. This allows
2111 the DFA not to have to restart after its tried and failed a word at a given point, it
2112 simply continues as though it had been matching the other word in the first place.
2114 'abcdgu'=~/abcdefg|cdgu/
2115 When we get to 'd' we are still matching the first word, we would encounter 'g' which would
2116 fail, which would bring use to the state representing 'd' in the second word where we would
2117 try 'g' and succeed, prodceding to match 'cdgu'.
2119 /* add a fail transition */
2120 const U32 trie_offset = ARG(source);
2121 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
2123 const U32 ucharcount = trie->uniquecharcount;
2124 const U32 numstates = trie->statecount;
2125 const U32 ubound = trie->lasttrans + ucharcount;
2129 U32 base = trie->states[ 1 ].trans.base;
2132 const U32 data_slot = add_data( pRExC_state, 1, "T" );
2133 GET_RE_DEBUG_FLAGS_DECL;
2135 PERL_UNUSED_ARG(depth);
2139 ARG_SET( stclass, data_slot );
2140 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
2141 RExC_rxi->data->data[ data_slot ] = (void*)aho;
2142 aho->trie=trie_offset;
2143 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
2144 Copy( trie->states, aho->states, numstates, reg_trie_state );
2145 Newxz( q, numstates, U32);
2146 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
2149 /* initialize fail[0..1] to be 1 so that we always have
2150 a valid final fail state */
2151 fail[ 0 ] = fail[ 1 ] = 1;
2153 for ( charid = 0; charid < ucharcount ; charid++ ) {
2154 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
2156 q[ q_write ] = newstate;
2157 /* set to point at the root */
2158 fail[ q[ q_write++ ] ]=1;
2161 while ( q_read < q_write) {
2162 const U32 cur = q[ q_read++ % numstates ];
2163 base = trie->states[ cur ].trans.base;
2165 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
2166 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
2168 U32 fail_state = cur;
2171 fail_state = fail[ fail_state ];
2172 fail_base = aho->states[ fail_state ].trans.base;
2173 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
2175 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
2176 fail[ ch_state ] = fail_state;
2177 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
2179 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
2181 q[ q_write++ % numstates] = ch_state;
2185 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
2186 when we fail in state 1, this allows us to use the
2187 charclass scan to find a valid start char. This is based on the principle
2188 that theres a good chance the string being searched contains lots of stuff
2189 that cant be a start char.
2191 fail[ 0 ] = fail[ 1 ] = 0;
2192 DEBUG_TRIE_COMPILE_r({
2193 PerlIO_printf(Perl_debug_log,
2194 "%*sStclass Failtable (%"UVuf" states): 0",
2195 (int)(depth * 2), "", (UV)numstates
2197 for( q_read=1; q_read<numstates; q_read++ ) {
2198 PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
2200 PerlIO_printf(Perl_debug_log, "\n");
2203 /*RExC_seen |= REG_SEEN_TRIEDFA;*/
2208 * There are strange code-generation bugs caused on sparc64 by gcc-2.95.2.
2209 * These need to be revisited when a newer toolchain becomes available.
2211 #if defined(__sparc64__) && defined(__GNUC__)
2212 # if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 96)
2213 # undef SPARC64_GCC_WORKAROUND
2214 # define SPARC64_GCC_WORKAROUND 1
2218 #define DEBUG_PEEP(str,scan,depth) \
2219 DEBUG_OPTIMISE_r({if (scan){ \
2220 SV * const mysv=sv_newmortal(); \
2221 regnode *Next = regnext(scan); \
2222 regprop(RExC_rx, mysv, scan); \
2223 PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)\n", \
2224 (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\
2225 Next ? (REG_NODE_NUM(Next)) : 0 ); \
2232 #define JOIN_EXACT(scan,min,flags) \
2233 if (PL_regkind[OP(scan)] == EXACT) \
2234 join_exact(pRExC_state,(scan),(min),(flags),NULL,depth+1)
2237 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan, I32 *min, U32 flags,regnode *val, U32 depth) {
2238 /* Merge several consecutive EXACTish nodes into one. */
2239 regnode *n = regnext(scan);
2241 regnode *next = scan + NODE_SZ_STR(scan);
2245 regnode *stop = scan;
2246 GET_RE_DEBUG_FLAGS_DECL;
2248 PERL_UNUSED_ARG(depth);
2250 #ifndef EXPERIMENTAL_INPLACESCAN
2251 PERL_UNUSED_ARG(flags);
2252 PERL_UNUSED_ARG(val);
2254 DEBUG_PEEP("join",scan,depth);
2256 /* Skip NOTHING, merge EXACT*. */
2258 ( PL_regkind[OP(n)] == NOTHING ||
2259 (stringok && (OP(n) == OP(scan))))
2261 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX) {
2263 if (OP(n) == TAIL || n > next)
2265 if (PL_regkind[OP(n)] == NOTHING) {
2266 DEBUG_PEEP("skip:",n,depth);
2267 NEXT_OFF(scan) += NEXT_OFF(n);
2268 next = n + NODE_STEP_REGNODE;
2275 else if (stringok) {
2276 const unsigned int oldl = STR_LEN(scan);
2277 regnode * const nnext = regnext(n);
2279 DEBUG_PEEP("merg",n,depth);
2282 if (oldl + STR_LEN(n) > U8_MAX)
2284 NEXT_OFF(scan) += NEXT_OFF(n);
2285 STR_LEN(scan) += STR_LEN(n);
2286 next = n + NODE_SZ_STR(n);
2287 /* Now we can overwrite *n : */
2288 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
2296 #ifdef EXPERIMENTAL_INPLACESCAN
2297 if (flags && !NEXT_OFF(n)) {
2298 DEBUG_PEEP("atch", val, depth);
2299 if (reg_off_by_arg[OP(n)]) {
2300 ARG_SET(n, val - n);
2303 NEXT_OFF(n) = val - n;
2310 if (UTF && ( OP(scan) == EXACTF ) && ( STR_LEN(scan) >= 6 ) ) {
2312 Two problematic code points in Unicode casefolding of EXACT nodes:
2314 U+0390 - GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
2315 U+03B0 - GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
2321 U+03B9 U+0308 U+0301 0xCE 0xB9 0xCC 0x88 0xCC 0x81
2322 U+03C5 U+0308 U+0301 0xCF 0x85 0xCC 0x88 0xCC 0x81
2324 This means that in case-insensitive matching (or "loose matching",
2325 as Unicode calls it), an EXACTF of length six (the UTF-8 encoded byte
2326 length of the above casefolded versions) can match a target string
2327 of length two (the byte length of UTF-8 encoded U+0390 or U+03B0).
2328 This would rather mess up the minimum length computation.
2330 What we'll do is to look for the tail four bytes, and then peek
2331 at the preceding two bytes to see whether we need to decrease
2332 the minimum length by four (six minus two).
2334 Thanks to the design of UTF-8, there cannot be false matches:
2335 A sequence of valid UTF-8 bytes cannot be a subsequence of
2336 another valid sequence of UTF-8 bytes.
2339 char * const s0 = STRING(scan), *s, *t;
2340 char * const s1 = s0 + STR_LEN(scan) - 1;
2341 char * const s2 = s1 - 4;
2342 #ifdef EBCDIC /* RD tunifold greek 0390 and 03B0 */
2343 const char t0[] = "\xaf\x49\xaf\x42";
2345 const char t0[] = "\xcc\x88\xcc\x81";
2347 const char * const t1 = t0 + 3;
2350 s < s2 && (t = ninstr(s, s1, t0, t1));
2353 if (((U8)t[-1] == 0x68 && (U8)t[-2] == 0xB4) ||
2354 ((U8)t[-1] == 0x46 && (U8)t[-2] == 0xB5))
2356 if (((U8)t[-1] == 0xB9 && (U8)t[-2] == 0xCE) ||
2357 ((U8)t[-1] == 0x85 && (U8)t[-2] == 0xCF))
2365 n = scan + NODE_SZ_STR(scan);
2367 if (PL_regkind[OP(n)] != NOTHING || OP(n) == NOTHING) {
2374 DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
2378 /* REx optimizer. Converts nodes into quickier variants "in place".
2379 Finds fixed substrings. */
2381 /* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
2382 to the position after last scanned or to NULL. */
2384 #define INIT_AND_WITHP \
2385 assert(!and_withp); \
2386 Newx(and_withp,1,struct regnode_charclass_class); \
2387 SAVEFREEPV(and_withp)
2389 /* this is a chain of data about sub patterns we are processing that
2390 need to be handled seperately/specially in study_chunk. Its so
2391 we can simulate recursion without losing state. */
2393 typedef struct scan_frame {
2394 regnode *last; /* last node to process in this frame */
2395 regnode *next; /* next node to process when last is reached */
2396 struct scan_frame *prev; /*previous frame*/
2397 I32 stop; /* what stopparen do we use */
2401 #define SCAN_COMMIT(s, data, m) scan_commit(s, data, m, is_inf)
2404 S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
2405 I32 *minlenp, I32 *deltap,
2410 struct regnode_charclass_class *and_withp,
2411 U32 flags, U32 depth)
2412 /* scanp: Start here (read-write). */
2413 /* deltap: Write maxlen-minlen here. */
2414 /* last: Stop before this one. */
2415 /* data: string data about the pattern */
2416 /* stopparen: treat close N as END */
2417 /* recursed: which subroutines have we recursed into */
2418 /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
2421 I32 min = 0, pars = 0, code;
2422 regnode *scan = *scanp, *next;
2424 int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
2425 int is_inf_internal = 0; /* The studied chunk is infinite */
2426 I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
2427 scan_data_t data_fake;
2428 SV *re_trie_maxbuff = NULL;
2429 regnode *first_non_open = scan;
2430 I32 stopmin = I32_MAX;
2431 scan_frame *frame = NULL;
2433 GET_RE_DEBUG_FLAGS_DECL;
2436 StructCopy(&zero_scan_data, &data_fake, scan_data_t);
2440 while (first_non_open && OP(first_non_open) == OPEN)
2441 first_non_open=regnext(first_non_open);
2446 while ( scan && OP(scan) != END && scan < last ){
2447 /* Peephole optimizer: */
2448 DEBUG_STUDYDATA("Peep:", data,depth);
2449 DEBUG_PEEP("Peep",scan,depth);
2450 JOIN_EXACT(scan,&min,0);
2452 /* Follow the next-chain of the current node and optimize
2453 away all the NOTHINGs from it. */
2454 if (OP(scan) != CURLYX) {
2455 const int max = (reg_off_by_arg[OP(scan)]
2457 /* I32 may be smaller than U16 on CRAYs! */
2458 : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
2459 int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
2463 /* Skip NOTHING and LONGJMP. */
2464 while ((n = regnext(n))
2465 && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
2466 || ((OP(n) == LONGJMP) && (noff = ARG(n))))
2467 && off + noff < max)
2469 if (reg_off_by_arg[OP(scan)])
2472 NEXT_OFF(scan) = off;
2477 /* The principal pseudo-switch. Cannot be a switch, since we
2478 look into several different things. */
2479 if (OP(scan) == BRANCH || OP(scan) == BRANCHJ
2480 || OP(scan) == IFTHEN) {
2481 next = regnext(scan);
2483 /* demq: the op(next)==code check is to see if we have "branch-branch" AFAICT */
2485 if (OP(next) == code || code == IFTHEN) {
2486 /* NOTE - There is similar code to this block below for handling
2487 TRIE nodes on a re-study. If you change stuff here check there
2489 I32 max1 = 0, min1 = I32_MAX, num = 0;
2490 struct regnode_charclass_class accum;
2491 regnode * const startbranch=scan;
2493 if (flags & SCF_DO_SUBSTR)
2494 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot merge strings after this. */
2495 if (flags & SCF_DO_STCLASS)
2496 cl_init_zero(pRExC_state, &accum);
2498 while (OP(scan) == code) {
2499 I32 deltanext, minnext, f = 0, fake;
2500 struct regnode_charclass_class this_class;
2503 data_fake.flags = 0;
2505 data_fake.whilem_c = data->whilem_c;
2506 data_fake.last_closep = data->last_closep;
2509 data_fake.last_closep = &fake;
2511 data_fake.pos_delta = delta;
2512 next = regnext(scan);
2513 scan = NEXTOPER(scan);
2515 scan = NEXTOPER(scan);
2516 if (flags & SCF_DO_STCLASS) {
2517 cl_init(pRExC_state, &this_class);
2518 data_fake.start_class = &this_class;
2519 f = SCF_DO_STCLASS_AND;
2521 if (flags & SCF_WHILEM_VISITED_POS)
2522 f |= SCF_WHILEM_VISITED_POS;
2524 /* we suppose the run is continuous, last=next...*/
2525 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
2527 stopparen, recursed, NULL, f,depth+1);
2530 if (max1 < minnext + deltanext)
2531 max1 = minnext + deltanext;
2532 if (deltanext == I32_MAX)
2533 is_inf = is_inf_internal = 1;
2535 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
2537 if (data_fake.flags & SCF_SEEN_ACCEPT) {
2538 if ( stopmin > minnext)
2539 stopmin = min + min1;
2540 flags &= ~SCF_DO_SUBSTR;
2542 data->flags |= SCF_SEEN_ACCEPT;
2545 if (data_fake.flags & SF_HAS_EVAL)
2546 data->flags |= SF_HAS_EVAL;
2547 data->whilem_c = data_fake.whilem_c;
2549 if (flags & SCF_DO_STCLASS)
2550 cl_or(pRExC_state, &accum, &this_class);
2552 if (code == IFTHEN && num < 2) /* Empty ELSE branch */
2554 if (flags & SCF_DO_SUBSTR) {
2555 data->pos_min += min1;
2556 data->pos_delta += max1 - min1;
2557 if (max1 != min1 || is_inf)
2558 data->longest = &(data->longest_float);
2561 delta += max1 - min1;
2562 if (flags & SCF_DO_STCLASS_OR) {
2563 cl_or(pRExC_state, data->start_class, &accum);
2565 cl_and(data->start_class, and_withp);
2566 flags &= ~SCF_DO_STCLASS;
2569 else if (flags & SCF_DO_STCLASS_AND) {
2571 cl_and(data->start_class, &accum);
2572 flags &= ~SCF_DO_STCLASS;
2575 /* Switch to OR mode: cache the old value of
2576 * data->start_class */
2578 StructCopy(data->start_class, and_withp,
2579 struct regnode_charclass_class);
2580 flags &= ~SCF_DO_STCLASS_AND;
2581 StructCopy(&accum, data->start_class,
2582 struct regnode_charclass_class);
2583 flags |= SCF_DO_STCLASS_OR;
2584 data->start_class->flags |= ANYOF_EOS;
2588 if (PERL_ENABLE_TRIE_OPTIMISATION && OP( startbranch ) == BRANCH ) {
2591 Assuming this was/is a branch we are dealing with: 'scan' now
2592 points at the item that follows the branch sequence, whatever
2593 it is. We now start at the beginning of the sequence and look
2600 which would be constructed from a pattern like /A|LIST|OF|WORDS/
2602 If we can find such a subseqence we need to turn the first
2603 element into a trie and then add the subsequent branch exact
2604 strings to the trie.
2608 1. patterns where the whole set of branch can be converted.
2610 2. patterns where only a subset can be converted.
2612 In case 1 we can replace the whole set with a single regop
2613 for the trie. In case 2 we need to keep the start and end
2616 'BRANCH EXACT; BRANCH EXACT; BRANCH X'
2617 becomes BRANCH TRIE; BRANCH X;
2619 There is an additional case, that being where there is a
2620 common prefix, which gets split out into an EXACT like node
2621 preceding the TRIE node.
2623 If x(1..n)==tail then we can do a simple trie, if not we make
2624 a "jump" trie, such that when we match the appropriate word
2625 we "jump" to the appopriate tail node. Essentailly we turn
2626 a nested if into a case structure of sorts.
2631 if (!re_trie_maxbuff) {
2632 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
2633 if (!SvIOK(re_trie_maxbuff))
2634 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
2636 if ( SvIV(re_trie_maxbuff)>=0 ) {
2638 regnode *first = (regnode *)NULL;
2639 regnode *last = (regnode *)NULL;
2640 regnode *tail = scan;
2645 SV * const mysv = sv_newmortal(); /* for dumping */
2647 /* var tail is used because there may be a TAIL
2648 regop in the way. Ie, the exacts will point to the
2649 thing following the TAIL, but the last branch will
2650 point at the TAIL. So we advance tail. If we
2651 have nested (?:) we may have to move through several
2655 while ( OP( tail ) == TAIL ) {
2656 /* this is the TAIL generated by (?:) */
2657 tail = regnext( tail );
2662 regprop(RExC_rx, mysv, tail );
2663 PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
2664 (int)depth * 2 + 2, "",
2665 "Looking for TRIE'able sequences. Tail node is: ",
2666 SvPV_nolen_const( mysv )
2672 step through the branches, cur represents each
2673 branch, noper is the first thing to be matched
2674 as part of that branch and noper_next is the
2675 regnext() of that node. if noper is an EXACT
2676 and noper_next is the same as scan (our current
2677 position in the regex) then the EXACT branch is
2678 a possible optimization target. Once we have
2679 two or more consequetive such branches we can
2680 create a trie of the EXACT's contents and stich
2681 it in place. If the sequence represents all of
2682 the branches we eliminate the whole thing and
2683 replace it with a single TRIE. If it is a
2684 subsequence then we need to stitch it in. This
2685 means the first branch has to remain, and needs
2686 to be repointed at the item on the branch chain
2687 following the last branch optimized. This could
2688 be either a BRANCH, in which case the
2689 subsequence is internal, or it could be the
2690 item following the branch sequence in which
2691 case the subsequence is at the end.
2695 /* dont use tail as the end marker for this traverse */
2696 for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
2697 regnode * const noper = NEXTOPER( cur );
2698 #if defined(DEBUGGING) || defined(NOJUMPTRIE)
2699 regnode * const noper_next = regnext( noper );
2703 regprop(RExC_rx, mysv, cur);
2704 PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
2705 (int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) );
2707 regprop(RExC_rx, mysv, noper);
2708 PerlIO_printf( Perl_debug_log, " -> %s",
2709 SvPV_nolen_const(mysv));
2712 regprop(RExC_rx, mysv, noper_next );
2713 PerlIO_printf( Perl_debug_log,"\t=> %s\t",
2714 SvPV_nolen_const(mysv));
2716 PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d)\n",
2717 REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur) );
2719 if ( (((first && optype!=NOTHING) ? OP( noper ) == optype
2720 : PL_regkind[ OP( noper ) ] == EXACT )
2721 || OP(noper) == NOTHING )
2723 && noper_next == tail
2728 if ( !first || optype == NOTHING ) {
2729 if (!first) first = cur;
2730 optype = OP( noper );
2736 make_trie( pRExC_state,
2737 startbranch, first, cur, tail, count,
2740 if ( PL_regkind[ OP( noper ) ] == EXACT
2742 && noper_next == tail
2747 optype = OP( noper );
2757 regprop(RExC_rx, mysv, cur);
2758 PerlIO_printf( Perl_debug_log,
2759 "%*s- %s (%d) <SCAN FINISHED>\n", (int)depth * 2 + 2,
2760 "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
2764 made= make_trie( pRExC_state, startbranch, first, scan, tail, count, optype, depth+1 );
2765 #ifdef TRIE_STUDY_OPT
2766 if ( ((made == MADE_EXACT_TRIE &&
2767 startbranch == first)
2768 || ( first_non_open == first )) &&
2770 flags |= SCF_TRIE_RESTUDY;
2771 if ( startbranch == first
2774 RExC_seen &=~REG_TOP_LEVEL_BRANCHES;
2784 else if ( code == BRANCHJ ) { /* single branch is optimized. */
2785 scan = NEXTOPER(NEXTOPER(scan));
2786 } else /* single branch is optimized. */
2787 scan = NEXTOPER(scan);
2789 } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
2790 scan_frame *newframe = NULL;
2795 if (OP(scan) != SUSPEND) {
2796 /* set the pointer */
2797 if (OP(scan) == GOSUB) {
2799 RExC_recurse[ARG2L(scan)] = scan;
2800 start = RExC_open_parens[paren-1];
2801 end = RExC_close_parens[paren-1];
2804 start = RExC_rxi->program + 1;
2808 Newxz(recursed, (((RExC_npar)>>3) +1), U8);
2809 SAVEFREEPV(recursed);
2811 if (!PAREN_TEST(recursed,paren+1)) {
2812 PAREN_SET(recursed,paren+1);
2813 Newx(newframe,1,scan_frame);
2815 if (flags & SCF_DO_SUBSTR) {
2816 SCAN_COMMIT(pRExC_state,data,minlenp);
2817 data->longest = &(data->longest_float);
2819 is_inf = is_inf_internal = 1;
2820 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
2821 cl_anything(pRExC_state, data->start_class);
2822 flags &= ~SCF_DO_STCLASS;
2825 Newx(newframe,1,scan_frame);
2828 end = regnext(scan);
2833 SAVEFREEPV(newframe);
2834 newframe->next = regnext(scan);
2835 newframe->last = last;
2836 newframe->stop = stopparen;
2837 newframe->prev = frame;
2847 else if (OP(scan) == EXACT) {
2848 I32 l = STR_LEN(scan);
2851 const U8 * const s = (U8*)STRING(scan);
2852 l = utf8_length(s, s + l);
2853 uc = utf8_to_uvchr(s, NULL);
2855 uc = *((U8*)STRING(scan));
2858 if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
2859 /* The code below prefers earlier match for fixed
2860 offset, later match for variable offset. */
2861 if (data->last_end == -1) { /* Update the start info. */
2862 data->last_start_min = data->pos_min;
2863 data->last_start_max = is_inf
2864 ? I32_MAX : data->pos_min + data->pos_delta;
2866 sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
2868 SvUTF8_on(data->last_found);
2870 SV * const sv = data->last_found;
2871 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
2872 mg_find(sv, PERL_MAGIC_utf8) : NULL;
2873 if (mg && mg->mg_len >= 0)
2874 mg->mg_len += utf8_length((U8*)STRING(scan),
2875 (U8*)STRING(scan)+STR_LEN(scan));
2877 data->last_end = data->pos_min + l;
2878 data->pos_min += l; /* As in the first entry. */
2879 data->flags &= ~SF_BEFORE_EOL;
2881 if (flags & SCF_DO_STCLASS_AND) {
2882 /* Check whether it is compatible with what we know already! */
2886 (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
2887 && !ANYOF_BITMAP_TEST(data->start_class, uc)
2888 && (!(data->start_class->flags & ANYOF_FOLD)
2889 || !ANYOF_BITMAP_TEST(data->start_class, PL_fold[uc])))
2892 ANYOF_CLASS_ZERO(data->start_class);
2893 ANYOF_BITMAP_ZERO(data->start_class);
2895 ANYOF_BITMAP_SET(data->start_class, uc);
2896 data->start_class->flags &= ~ANYOF_EOS;
2898 data->start_class->flags &= ~ANYOF_UNICODE_ALL;
2900 else if (flags & SCF_DO_STCLASS_OR) {
2901 /* false positive possible if the class is case-folded */
2903 ANYOF_BITMAP_SET(data->start_class, uc);
2905 data->start_class->flags |= ANYOF_UNICODE_ALL;
2906 data->start_class->flags &= ~ANYOF_EOS;
2907 cl_and(data->start_class, and_withp);
2909 flags &= ~SCF_DO_STCLASS;
2911 else if (PL_regkind[OP(scan)] == EXACT) { /* But OP != EXACT! */
2912 I32 l = STR_LEN(scan);
2913 UV uc = *((U8*)STRING(scan));
2915 /* Search for fixed substrings supports EXACT only. */
2916 if (flags & SCF_DO_SUBSTR) {
2918 SCAN_COMMIT(pRExC_state, data, minlenp);
2921 const U8 * const s = (U8 *)STRING(scan);
2922 l = utf8_length(s, s + l);
2923 uc = utf8_to_uvchr(s, NULL);
2926 if (flags & SCF_DO_SUBSTR)
2928 if (flags & SCF_DO_STCLASS_AND) {
2929 /* Check whether it is compatible with what we know already! */
2933 (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
2934 && !ANYOF_BITMAP_TEST(data->start_class, uc)
2935 && !ANYOF_BITMAP_TEST(data->start_class, PL_fold[uc])))
2937 ANYOF_CLASS_ZERO(data->start_class);
2938 ANYOF_BITMAP_ZERO(data->start_class);
2940 ANYOF_BITMAP_SET(data->start_class, uc);
2941 data->start_class->flags &= ~ANYOF_EOS;
2942 data->start_class->flags |= ANYOF_FOLD;
2943 if (OP(scan) == EXACTFL)
2944 data->start_class->flags |= ANYOF_LOCALE;
2947 else if (flags & SCF_DO_STCLASS_OR) {
2948 if (data->start_class->flags & ANYOF_FOLD) {
2949 /* false positive possible if the class is case-folded.
2950 Assume that the locale settings are the same... */
2952 ANYOF_BITMAP_SET(data->start_class, uc);
2953 data->start_class->flags &= ~ANYOF_EOS;
2955 cl_and(data->start_class, and_withp);
2957 flags &= ~SCF_DO_STCLASS;
2959 else if (strchr((const char*)PL_varies,OP(scan))) {
2960 I32 mincount, maxcount, minnext, deltanext, fl = 0;
2961 I32 f = flags, pos_before = 0;
2962 regnode * const oscan = scan;
2963 struct regnode_charclass_class this_class;
2964 struct regnode_charclass_class *oclass = NULL;
2965 I32 next_is_eval = 0;
2967 switch (PL_regkind[OP(scan)]) {
2968 case WHILEM: /* End of (?:...)* . */
2969 scan = NEXTOPER(scan);
2972 if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
2973 next = NEXTOPER(scan);
2974 if (OP(next) == EXACT || (flags & SCF_DO_STCLASS)) {
2976 maxcount = REG_INFTY;
2977 next = regnext(scan);
2978 scan = NEXTOPER(scan);
2982 if (flags & SCF_DO_SUBSTR)
2987 if (flags & SCF_DO_STCLASS) {
2989 maxcount = REG_INFTY;
2990 next = regnext(scan);
2991 scan = NEXTOPER(scan);
2994 is_inf = is_inf_internal = 1;
2995 scan = regnext(scan);
2996 if (flags & SCF_DO_SUBSTR) {
2997 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot extend fixed substrings */
2998 data->longest = &(data->longest_float);
3000 goto optimize_curly_tail;
3002 if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
3003 && (scan->flags == stopparen))
3008 mincount = ARG1(scan);
3009 maxcount = ARG2(scan);
3011 next = regnext(scan);
3012 if (OP(scan) == CURLYX) {
3013 I32 lp = (data ? *(data->last_closep) : 0);
3014 scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
3016 scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
3017 next_is_eval = (OP(scan) == EVAL);
3019 if (flags & SCF_DO_SUBSTR) {
3020 if (mincount == 0) SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot extend fixed substrings */
3021 pos_before = data->pos_min;
3025 data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
3027 data->flags |= SF_IS_INF;
3029 if (flags & SCF_DO_STCLASS) {
3030 cl_init(pRExC_state, &this_class);
3031 oclass = data->start_class;
3032 data->start_class = &this_class;
3033 f |= SCF_DO_STCLASS_AND;
3034 f &= ~SCF_DO_STCLASS_OR;
3036 /* These are the cases when once a subexpression
3037 fails at a particular position, it cannot succeed
3038 even after backtracking at the enclosing scope.
3040 XXXX what if minimal match and we are at the
3041 initial run of {n,m}? */
3042 if ((mincount != maxcount - 1) && (maxcount != REG_INFTY))
3043 f &= ~SCF_WHILEM_VISITED_POS;
3045 /* This will finish on WHILEM, setting scan, or on NULL: */
3046 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
3047 last, data, stopparen, recursed, NULL,
3049 ? (f & ~SCF_DO_SUBSTR) : f),depth+1);
3051 if (flags & SCF_DO_STCLASS)
3052 data->start_class = oclass;
3053 if (mincount == 0 || minnext == 0) {
3054 if (flags & SCF_DO_STCLASS_OR) {
3055 cl_or(pRExC_state, data->start_class, &this_class);
3057 else if (flags & SCF_DO_STCLASS_AND) {
3058 /* Switch to OR mode: cache the old value of
3059 * data->start_class */
3061 StructCopy(data->start_class, and_withp,
3062 struct regnode_charclass_class);
3063 flags &= ~SCF_DO_STCLASS_AND;
3064 StructCopy(&this_class, data->start_class,
3065 struct regnode_charclass_class);
3066 flags |= SCF_DO_STCLASS_OR;
3067 data->start_class->flags |= ANYOF_EOS;
3069 } else { /* Non-zero len */
3070 if (flags & SCF_DO_STCLASS_OR) {
3071 cl_or(pRExC_state, data->start_class, &this_class);
3072 cl_and(data->start_class, and_withp);
3074 else if (flags & SCF_DO_STCLASS_AND)
3075 cl_and(data->start_class, &this_class);
3076 flags &= ~SCF_DO_STCLASS;
3078 if (!scan) /* It was not CURLYX, but CURLY. */
3080 if ( /* ? quantifier ok, except for (?{ ... }) */
3081 (next_is_eval || !(mincount == 0 && maxcount == 1))
3082 && (minnext == 0) && (deltanext == 0)
3083 && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
3084 && maxcount <= REG_INFTY/3 /* Complement check for big count */
3085 && ckWARN(WARN_REGEXP))
3088 "Quantifier unexpected on zero-length expression");
3091 min += minnext * mincount;
3092 is_inf_internal |= ((maxcount == REG_INFTY
3093 && (minnext + deltanext) > 0)
3094 || deltanext == I32_MAX);
3095 is_inf |= is_inf_internal;
3096 delta += (minnext + deltanext) * maxcount - minnext * mincount;
3098 /* Try powerful optimization CURLYX => CURLYN. */
3099 if ( OP(oscan) == CURLYX && data
3100 && data->flags & SF_IN_PAR
3101 && !(data->flags & SF_HAS_EVAL)
3102 && !deltanext && minnext == 1 ) {
3103 /* Try to optimize to CURLYN. */
3104 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
3105 regnode * const nxt1 = nxt;
3112 if (!strchr((const char*)PL_simple,OP(nxt))
3113 && !(PL_regkind[OP(nxt)] == EXACT
3114 && STR_LEN(nxt) == 1))
3120 if (OP(nxt) != CLOSE)
3122 if (RExC_open_parens) {
3123 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3124 RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
3126 /* Now we know that nxt2 is the only contents: */
3127 oscan->flags = (U8)ARG(nxt);
3129 OP(nxt1) = NOTHING; /* was OPEN. */
3132 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3133 NEXT_OFF(nxt1+ 1) = 0; /* just for consistancy. */
3134 NEXT_OFF(nxt2) = 0; /* just for consistancy with CURLY. */
3135 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3136 OP(nxt + 1) = OPTIMIZED; /* was count. */
3137 NEXT_OFF(nxt+ 1) = 0; /* just for consistancy. */
3142 /* Try optimization CURLYX => CURLYM. */
3143 if ( OP(oscan) == CURLYX && data
3144 && !(data->flags & SF_HAS_PAR)
3145 && !(data->flags & SF_HAS_EVAL)
3146 && !deltanext /* atom is fixed width */
3147 && minnext != 0 /* CURLYM can't handle zero width */
3149 /* XXXX How to optimize if data == 0? */
3150 /* Optimize to a simpler form. */
3151 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
3155 while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
3156 && (OP(nxt2) != WHILEM))
3158 OP(nxt2) = SUCCEED; /* Whas WHILEM */
3159 /* Need to optimize away parenths. */
3160 if (data->flags & SF_IN_PAR) {
3161 /* Set the parenth number. */
3162 regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
3164 if (OP(nxt) != CLOSE)
3165 FAIL("Panic opt close");
3166 oscan->flags = (U8)ARG(nxt);
3167 if (RExC_open_parens) {
3168 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3169 RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
3171 OP(nxt1) = OPTIMIZED; /* was OPEN. */
3172 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3175 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3176 OP(nxt + 1) = OPTIMIZED; /* was count. */
3177 NEXT_OFF(nxt1 + 1) = 0; /* just for consistancy. */
3178 NEXT_OFF(nxt + 1) = 0; /* just for consistancy. */
3181 while ( nxt1 && (OP(nxt1) != WHILEM)) {
3182 regnode *nnxt = regnext(nxt1);
3185 if (reg_off_by_arg[OP(nxt1)])
3186 ARG_SET(nxt1, nxt2 - nxt1);
3187 else if (nxt2 - nxt1 < U16_MAX)
3188 NEXT_OFF(nxt1) = nxt2 - nxt1;
3190 OP(nxt) = NOTHING; /* Cannot beautify */
3195 /* Optimize again: */
3196 study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
3197 NULL, stopparen, recursed, NULL, 0,depth+1);
3202 else if ((OP(oscan) == CURLYX)
3203 && (flags & SCF_WHILEM_VISITED_POS)
3204 /* See the comment on a similar expression above.
3205 However, this time it not a subexpression
3206 we care about, but the expression itself. */
3207 && (maxcount == REG_INFTY)
3208 && data && ++data->whilem_c < 16) {
3209 /* This stays as CURLYX, we can put the count/of pair. */
3210 /* Find WHILEM (as in regexec.c) */
3211 regnode *nxt = oscan + NEXT_OFF(oscan);
3213 if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
3215 PREVOPER(nxt)->flags = (U8)(data->whilem_c
3216 | (RExC_whilem_seen << 4)); /* On WHILEM */
3218 if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
3220 if (flags & SCF_DO_SUBSTR) {
3221 SV *last_str = NULL;
3222 int counted = mincount != 0;
3224 if (data->last_end > 0 && mincount != 0) { /* Ends with a string. */
3225 #if defined(SPARC64_GCC_WORKAROUND)
3228 const char *s = NULL;
3231 if (pos_before >= data->last_start_min)
3234 b = data->last_start_min;
3237 s = SvPV_const(data->last_found, l);
3238 old = b - data->last_start_min;
3241 I32 b = pos_before >= data->last_start_min
3242 ? pos_before : data->last_start_min;
3244 const char * const s = SvPV_const(data->last_found, l);
3245 I32 old = b - data->last_start_min;
3249 old = utf8_hop((U8*)s, old) - (U8*)s;
3252 /* Get the added string: */
3253 last_str = newSVpvn(s + old, l);
3255 SvUTF8_on(last_str);
3256 if (deltanext == 0 && pos_before == b) {
3257 /* What was added is a constant string */
3259 SvGROW(last_str, (mincount * l) + 1);
3260 repeatcpy(SvPVX(last_str) + l,
3261 SvPVX_const(last_str), l, mincount - 1);
3262 SvCUR_set(last_str, SvCUR(last_str) * mincount);
3263 /* Add additional parts. */
3264 SvCUR_set(data->last_found,
3265 SvCUR(data->last_found) - l);
3266 sv_catsv(data->last_found, last_str);
3268 SV * sv = data->last_found;
3270 SvUTF8(sv) && SvMAGICAL(sv) ?
3271 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3272 if (mg && mg->mg_len >= 0)
3273 mg->mg_len += CHR_SVLEN(last_str);
3275 data->last_end += l * (mincount - 1);
3278 /* start offset must point into the last copy */
3279 data->last_start_min += minnext * (mincount - 1);
3280 data->last_start_max += is_inf ? I32_MAX
3281 : (maxcount - 1) * (minnext + data->pos_delta);
3284 /* It is counted once already... */
3285 data->pos_min += minnext * (mincount - counted);
3286 data->pos_delta += - counted * deltanext +
3287 (minnext + deltanext) * maxcount - minnext * mincount;
3288 if (mincount != maxcount) {
3289 /* Cannot extend fixed substrings found inside
3291 SCAN_COMMIT(pRExC_state,data,minlenp);
3292 if (mincount && last_str) {
3293 SV * const sv = data->last_found;
3294 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
3295 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3299 sv_setsv(sv, last_str);
3300 data->last_end = data->pos_min;
3301 data->last_start_min =
3302 data->pos_min - CHR_SVLEN(last_str);
3303 data->last_start_max = is_inf
3305 : data->pos_min + data->pos_delta
3306 - CHR_SVLEN(last_str);
3308 data->longest = &(data->longest_float);
3310 SvREFCNT_dec(last_str);
3312 if (data && (fl & SF_HAS_EVAL))
3313 data->flags |= SF_HAS_EVAL;
3314 optimize_curly_tail:
3315 if (OP(oscan) != CURLYX) {
3316 while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
3318 NEXT_OFF(oscan) += NEXT_OFF(next);
3321 default: /* REF and CLUMP only? */
3322 if (flags & SCF_DO_SUBSTR) {
3323 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3324 data->longest = &(data->longest_float);
3326 is_inf = is_inf_internal = 1;
3327 if (flags & SCF_DO_STCLASS_OR)
3328 cl_anything(pRExC_state, data->start_class);
3329 flags &= ~SCF_DO_STCLASS;
3333 else if (strchr((const char*)PL_simple,OP(scan))) {
3336 if (flags & SCF_DO_SUBSTR) {
3337 SCAN_COMMIT(pRExC_state,data,minlenp);
3341 if (flags & SCF_DO_STCLASS) {
3342 data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
3344 /* Some of the logic below assumes that switching
3345 locale on will only add false positives. */
3346 switch (PL_regkind[OP(scan)]) {
3350 /* Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d", OP(scan)); */
3351 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3352 cl_anything(pRExC_state, data->start_class);
3355 if (OP(scan) == SANY)
3357 if (flags & SCF_DO_STCLASS_OR) { /* Everything but \n */
3358 value = (ANYOF_BITMAP_TEST(data->start_class,'\n')
3359 || (data->start_class->flags & ANYOF_CLASS));
3360 cl_anything(pRExC_state, data->start_class);
3362 if (flags & SCF_DO_STCLASS_AND || !value)
3363 ANYOF_BITMAP_CLEAR(data->start_class,'\n');
3366 if (flags & SCF_DO_STCLASS_AND)
3367 cl_and(data->start_class,
3368 (struct regnode_charclass_class*)scan);
3370 cl_or(pRExC_state, data->start_class,
3371 (struct regnode_charclass_class*)scan);
3374 if (flags & SCF_DO_STCLASS_AND) {
3375 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3376 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NALNUM);
3377 for (value = 0; value < 256; value++)
3378 if (!isALNUM(value))
3379 ANYOF_BITMAP_CLEAR(data->start_class, value);
3383 if (data->start_class->flags & ANYOF_LOCALE)
3384 ANYOF_CLASS_SET(data->start_class,ANYOF_ALNUM);
3386 for (value = 0; value < 256; value++)
3388 ANYOF_BITMAP_SET(data->start_class, value);
3393 if (flags & SCF_DO_STCLASS_AND) {
3394 if (data->start_class->flags & ANYOF_LOCALE)
3395 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NALNUM);
3398 ANYOF_CLASS_SET(data->start_class,ANYOF_ALNUM);
3399 data->start_class->flags |= ANYOF_LOCALE;
3403 if (flags & SCF_DO_STCLASS_AND) {
3404 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3405 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_ALNUM);
3406 for (value = 0; value < 256; value++)
3408 ANYOF_BITMAP_CLEAR(data->start_class, value);
3412 if (data->start_class->flags & ANYOF_LOCALE)
3413 ANYOF_CLASS_SET(data->start_class,ANYOF_NALNUM);
3415 for (value = 0; value < 256; value++)
3416 if (!isALNUM(value))
3417 ANYOF_BITMAP_SET(data->start_class, value);
3422 if (flags & SCF_DO_STCLASS_AND) {
3423 if (data->start_class->flags & ANYOF_LOCALE)
3424 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_ALNUM);
3427 data->start_class->flags |= ANYOF_LOCALE;
3428 ANYOF_CLASS_SET(data->start_class,ANYOF_NALNUM);
3432 if (flags & SCF_DO_STCLASS_AND) {
3433 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3434 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NSPACE);
3435 for (value = 0; value < 256; value++)
3436 if (!isSPACE(value))
3437 ANYOF_BITMAP_CLEAR(data->start_class, value);
3441 if (data->start_class->flags & ANYOF_LOCALE)
3442 ANYOF_CLASS_SET(data->start_class,ANYOF_SPACE);
3444 for (value = 0; value < 256; value++)
3446 ANYOF_BITMAP_SET(data->start_class, value);
3451 if (flags & SCF_DO_STCLASS_AND) {
3452 if (data->start_class->flags & ANYOF_LOCALE)
3453 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NSPACE);
3456 data->start_class->flags |= ANYOF_LOCALE;
3457 ANYOF_CLASS_SET(data->start_class,ANYOF_SPACE);
3461 if (flags & SCF_DO_STCLASS_AND) {
3462 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3463 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_SPACE);
3464 for (value = 0; value < 256; value++)
3466 ANYOF_BITMAP_CLEAR(data->start_class, value);
3470 if (data->start_class->flags & ANYOF_LOCALE)
3471 ANYOF_CLASS_SET(data->start_class,ANYOF_NSPACE);
3473 for (value = 0; value < 256; value++)
3474 if (!isSPACE(value))
3475 ANYOF_BITMAP_SET(data->start_class, value);
3480 if (flags & SCF_DO_STCLASS_AND) {
3481 if (data->start_class->flags & ANYOF_LOCALE) {
3482 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_SPACE);
3483 for (value = 0; value < 256; value++)
3484 if (!isSPACE(value))
3485 ANYOF_BITMAP_CLEAR(data->start_class, value);
3489 data->start_class->flags |= ANYOF_LOCALE;
3490 ANYOF_CLASS_SET(data->start_class,ANYOF_NSPACE);
3494 if (flags & SCF_DO_STCLASS_AND) {
3495 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NDIGIT);
3496 for (value = 0; value < 256; value++)
3497 if (!isDIGIT(value))
3498 ANYOF_BITMAP_CLEAR(data->start_class, value);
3501 if (data->start_class->flags & ANYOF_LOCALE)
3502 ANYOF_CLASS_SET(data->start_class,ANYOF_DIGIT);
3504 for (value = 0; value < 256; value++)
3506 ANYOF_BITMAP_SET(data->start_class, value);
3511 if (flags & SCF_DO_STCLASS_AND) {
3512 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_DIGIT);
3513 for (value = 0; value < 256; value++)
3515 ANYOF_BITMAP_CLEAR(data->start_class, value);
3518 if (data->start_class->flags & ANYOF_LOCALE)
3519 ANYOF_CLASS_SET(data->start_class,ANYOF_NDIGIT);
3521 for (value = 0; value < 256; value++)
3522 if (!isDIGIT(value))
3523 ANYOF_BITMAP_SET(data->start_class, value);
3528 if (flags & SCF_DO_STCLASS_OR)
3529 cl_and(data->start_class, and_withp);
3530 flags &= ~SCF_DO_STCLASS;
3533 else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
3534 data->flags |= (OP(scan) == MEOL
3538 else if ( PL_regkind[OP(scan)] == BRANCHJ
3539 /* Lookbehind, or need to calculate parens/evals/stclass: */
3540 && (scan->flags || data || (flags & SCF_DO_STCLASS))
3541 && (OP(scan) == IFMATCH || OP(scan) == UNLESSM)) {
3542 if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
3543 || OP(scan) == UNLESSM )
3545 /* Negative Lookahead/lookbehind
3546 In this case we can't do fixed string optimisation.
3549 I32 deltanext, minnext, fake = 0;
3551 struct regnode_charclass_class intrnl;
3554 data_fake.flags = 0;
3556 data_fake.whilem_c = data->whilem_c;
3557 data_fake.last_closep = data->last_closep;
3560 data_fake.last_closep = &fake;
3561 data_fake.pos_delta = delta;
3562 if ( flags & SCF_DO_STCLASS && !scan->flags
3563 && OP(scan) == IFMATCH ) { /* Lookahead */
3564 cl_init(pRExC_state, &intrnl);
3565 data_fake.start_class = &intrnl;
3566 f |= SCF_DO_STCLASS_AND;
3568 if (flags & SCF_WHILEM_VISITED_POS)
3569 f |= SCF_WHILEM_VISITED_POS;
3570 next = regnext(scan);
3571 nscan = NEXTOPER(NEXTOPER(scan));
3572 minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
3573 last, &data_fake, stopparen, recursed, NULL, f, depth+1);
3576 FAIL("Variable length lookbehind not implemented");
3578 else if (minnext > (I32)U8_MAX) {
3579 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
3581 scan->flags = (U8)minnext;
3584 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
3586 if (data_fake.flags & SF_HAS_EVAL)
3587 data->flags |= SF_HAS_EVAL;
3588 data->whilem_c = data_fake.whilem_c;
3590 if (f & SCF_DO_STCLASS_AND) {
3591 const int was = (data->start_class->flags & ANYOF_EOS);
3593 cl_and(data->start_class, &intrnl);
3595 data->start_class->flags |= ANYOF_EOS;
3598 #if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
3600 /* Positive Lookahead/lookbehind
3601 In this case we can do fixed string optimisation,
3602 but we must be careful about it. Note in the case of
3603 lookbehind the positions will be offset by the minimum
3604 length of the pattern, something we won't know about
3605 until after the recurse.
3607 I32 deltanext, fake = 0;
3609 struct regnode_charclass_class intrnl;
3611 /* We use SAVEFREEPV so that when the full compile
3612 is finished perl will clean up the allocated
3613 minlens when its all done. This was we don't
3614 have to worry about freeing them when we know
3615 they wont be used, which would be a pain.
3618 Newx( minnextp, 1, I32 );
3619 SAVEFREEPV(minnextp);
3622 StructCopy(data, &data_fake, scan_data_t);
3623 if ((flags & SCF_DO_SUBSTR) && data->last_found) {
3626 SCAN_COMMIT(pRExC_state, &data_fake,minlenp);
3627 data_fake.last_found=newSVsv(data->last_found);
3631 data_fake.last_closep = &fake;
3632 data_fake.flags = 0;
3633 data_fake.pos_delta = delta;
3635 data_fake.flags |= SF_IS_INF;
3636 if ( flags & SCF_DO_STCLASS && !scan->flags
3637 && OP(scan) == IFMATCH ) { /* Lookahead */
3638 cl_init(pRExC_state, &intrnl);
3639 data_fake.start_class = &intrnl;
3640 f |= SCF_DO_STCLASS_AND;
3642 if (flags & SCF_WHILEM_VISITED_POS)
3643 f |= SCF_WHILEM_VISITED_POS;
3644 next = regnext(scan);
3645 nscan = NEXTOPER(NEXTOPER(scan));
3647 *minnextp = study_chunk(pRExC_state, &nscan, minnextp, &deltanext,
3648 last, &data_fake, stopparen, recursed, NULL, f,depth+1);
3651 FAIL("Variable length lookbehind not implemented");
3653 else if (*minnextp > (I32)U8_MAX) {
3654 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
3656 scan->flags = (U8)*minnextp;
3661 if (f & SCF_DO_STCLASS_AND) {
3662 const int was = (data->start_class->flags & ANYOF_EOS);
3664 cl_and(data->start_class, &intrnl);
3666 data->start_class->flags |= ANYOF_EOS;
3669 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
3671 if (data_fake.flags & SF_HAS_EVAL)
3672 data->flags |= SF_HAS_EVAL;
3673 data->whilem_c = data_fake.whilem_c;
3674 if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
3675 if (RExC_rx->minlen<*minnextp)
3676 RExC_rx->minlen=*minnextp;
3677 SCAN_COMMIT(pRExC_state, &data_fake, minnextp);
3678 SvREFCNT_dec(data_fake.last_found);
3680 if ( data_fake.minlen_fixed != minlenp )
3682 data->offset_fixed= data_fake.offset_fixed;
3683 data->minlen_fixed= data_fake.minlen_fixed;
3684 data->lookbehind_fixed+= scan->flags;
3686 if ( data_fake.minlen_float != minlenp )
3688 data->minlen_float= data_fake.minlen_float;
3689 data->offset_float_min=data_fake.offset_float_min;
3690 data->offset_float_max=data_fake.offset_float_max;
3691 data->lookbehind_float+= scan->flags;
3700 else if (OP(scan) == OPEN) {
3701 if (stopparen != (I32)ARG(scan))
3704 else if (OP(scan) == CLOSE) {
3705 if (stopparen == (I32)ARG(scan)) {
3708 if ((I32)ARG(scan) == is_par) {
3709 next = regnext(scan);
3711 if ( next && (OP(next) != WHILEM) && next < last)
3712 is_par = 0; /* Disable optimization */
3715 *(data->last_closep) = ARG(scan);
3717 else if (OP(scan) == EVAL) {
3719 data->flags |= SF_HAS_EVAL;
3721 else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
3722 if (flags & SCF_DO_SUBSTR) {
3723 SCAN_COMMIT(pRExC_state,data,minlenp);
3724 flags &= ~SCF_DO_SUBSTR;
3726 if (data && OP(scan)==ACCEPT) {
3727 data->flags |= SCF_SEEN_ACCEPT;
3732 else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
3734 if (flags & SCF_DO_SUBSTR) {
3735 SCAN_COMMIT(pRExC_state,data,minlenp);
3736 data->longest = &(data->longest_float);
3738 is_inf = is_inf_internal = 1;
3739 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3740 cl_anything(pRExC_state, data->start_class);
3741 flags &= ~SCF_DO_STCLASS;
3743 else if (OP(scan) == GPOS) {
3744 if (!(RExC_rx->extflags & RXf_GPOS_FLOAT) &&
3745 !(delta || is_inf || (data && data->pos_delta)))
3747 if (!(RExC_rx->extflags & RXf_ANCH) && (flags & SCF_DO_SUBSTR))
3748 RExC_rx->extflags |= RXf_ANCH_GPOS;
3749 if (RExC_rx->gofs < (U32)min)
3750 RExC_rx->gofs = min;
3752 RExC_rx->extflags |= RXf_GPOS_FLOAT;
3756 #ifdef TRIE_STUDY_OPT
3757 #ifdef FULL_TRIE_STUDY
3758 else if (PL_regkind[OP(scan)] == TRIE) {
3759 /* NOTE - There is similar code to this block above for handling
3760 BRANCH nodes on the initial study. If you change stuff here
3762 regnode *trie_node= scan;
3763 regnode *tail= regnext(scan);
3764 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
3765 I32 max1 = 0, min1 = I32_MAX;
3766 struct regnode_charclass_class accum;
3768 if (flags & SCF_DO_SUBSTR) /* XXXX Add !SUSPEND? */
3769 SCAN_COMMIT(pRExC_state, data,minlenp); /* Cannot merge strings after this. */
3770 if (flags & SCF_DO_STCLASS)
3771 cl_init_zero(pRExC_state, &accum);
3777 const regnode *nextbranch= NULL;
3780 for ( word=1 ; word <= trie->wordcount ; word++)
3782 I32 deltanext=0, minnext=0, f = 0, fake;
3783 struct regnode_charclass_class this_class;
3785 data_fake.flags = 0;
3787 data_fake.whilem_c = data->whilem_c;
3788 data_fake.last_closep = data->last_closep;
3791 data_fake.last_closep = &fake;
3792 data_fake.pos_delta = delta;
3793 if (flags & SCF_DO_STCLASS) {
3794 cl_init(pRExC_state, &this_class);
3795 data_fake.start_class = &this_class;
3796 f = SCF_DO_STCLASS_AND;
3798 if (flags & SCF_WHILEM_VISITED_POS)
3799 f |= SCF_WHILEM_VISITED_POS;
3801 if (trie->jump[word]) {
3803 nextbranch = trie_node + trie->jump[0];
3804 scan= trie_node + trie->jump[word];
3805 /* We go from the jump point to the branch that follows
3806 it. Note this means we need the vestigal unused branches
3807 even though they arent otherwise used.
3809 minnext = study_chunk(pRExC_state, &scan, minlenp,
3810 &deltanext, (regnode *)nextbranch, &data_fake,
3811 stopparen, recursed, NULL, f,depth+1);
3813 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
3814 nextbranch= regnext((regnode*)nextbranch);
3816 if (min1 > (I32)(minnext + trie->minlen))
3817 min1 = minnext + trie->minlen;