3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by Larry Wall
7 * You may distribute under the terms of either the GNU General Public
8 * License or the Artistic License, as specified in the README file.
13 * 'I wonder what the Entish is for "yes" and "no",' he thought.
16 * [p.480 of _The Lord of the Rings_, III/iv: "Treebeard"]
22 * This file contains the code that creates, manipulates and destroys
23 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
24 * structure of an SV, so their creation and destruction is handled
25 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
26 * level functions (eg. substr, split, join) for each of the types are
38 /* Missing proto on LynxOS */
39 char *gconvert(double, int, int, char *);
42 #ifdef PERL_UTF8_CACHE_ASSERT
43 /* if adding more checks watch out for the following tests:
44 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
45 * lib/utf8.t lib/Unicode/Collate/t/index.t
48 # define ASSERT_UTF8_CACHE(cache) \
49 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
50 assert((cache)[2] <= (cache)[3]); \
51 assert((cache)[3] <= (cache)[1]);} \
54 # define ASSERT_UTF8_CACHE(cache) NOOP
57 #ifdef PERL_OLD_COPY_ON_WRITE
58 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
59 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
60 /* This is a pessimistic view. Scalar must be purely a read-write PV to copy-
64 /* ============================================================================
66 =head1 Allocation and deallocation of SVs.
68 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
69 sv, av, hv...) contains type and reference count information, and for
70 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
71 contains fields specific to each type. Some types store all they need
72 in the head, so don't have a body.
74 In all but the most memory-paranoid configuations (ex: PURIFY), heads
75 and bodies are allocated out of arenas, which by default are
76 approximately 4K chunks of memory parcelled up into N heads or bodies.
77 Sv-bodies are allocated by their sv-type, guaranteeing size
78 consistency needed to allocate safely from arrays.
80 For SV-heads, the first slot in each arena is reserved, and holds a
81 link to the next arena, some flags, and a note of the number of slots.
82 Snaked through each arena chain is a linked list of free items; when
83 this becomes empty, an extra arena is allocated and divided up into N
84 items which are threaded into the free list.
86 SV-bodies are similar, but they use arena-sets by default, which
87 separate the link and info from the arena itself, and reclaim the 1st
88 slot in the arena. SV-bodies are further described later.
90 The following global variables are associated with arenas:
92 PL_sv_arenaroot pointer to list of SV arenas
93 PL_sv_root pointer to list of free SV structures
95 PL_body_arenas head of linked-list of body arenas
96 PL_body_roots[] array of pointers to list of free bodies of svtype
97 arrays are indexed by the svtype needed
99 A few special SV heads are not allocated from an arena, but are
100 instead directly created in the interpreter structure, eg PL_sv_undef.
101 The size of arenas can be changed from the default by setting
102 PERL_ARENA_SIZE appropriately at compile time.
104 The SV arena serves the secondary purpose of allowing still-live SVs
105 to be located and destroyed during final cleanup.
107 At the lowest level, the macros new_SV() and del_SV() grab and free
108 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
109 to return the SV to the free list with error checking.) new_SV() calls
110 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
111 SVs in the free list have their SvTYPE field set to all ones.
113 At the time of very final cleanup, sv_free_arenas() is called from
114 perl_destruct() to physically free all the arenas allocated since the
115 start of the interpreter.
117 The function visit() scans the SV arenas list, and calls a specified
118 function for each SV it finds which is still live - ie which has an SvTYPE
119 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
120 following functions (specified as [function that calls visit()] / [function
121 called by visit() for each SV]):
123 sv_report_used() / do_report_used()
124 dump all remaining SVs (debugging aid)
126 sv_clean_objs() / do_clean_objs(),do_clean_named_objs()
127 Attempt to free all objects pointed to by RVs,
128 and, unless DISABLE_DESTRUCTOR_KLUDGE is defined,
129 try to do the same for all objects indirectly
130 referenced by typeglobs too. Called once from
131 perl_destruct(), prior to calling sv_clean_all()
134 sv_clean_all() / do_clean_all()
135 SvREFCNT_dec(sv) each remaining SV, possibly
136 triggering an sv_free(). It also sets the
137 SVf_BREAK flag on the SV to indicate that the
138 refcnt has been artificially lowered, and thus
139 stopping sv_free() from giving spurious warnings
140 about SVs which unexpectedly have a refcnt
141 of zero. called repeatedly from perl_destruct()
142 until there are no SVs left.
144 =head2 Arena allocator API Summary
146 Private API to rest of sv.c
150 new_XIV(), del_XIV(),
151 new_XNV(), del_XNV(),
156 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
160 * ========================================================================= */
163 * "A time to plant, and a time to uproot what was planted..."
167 Perl_offer_nice_chunk(pTHX_ void *const chunk, const U32 chunk_size)
173 PERL_ARGS_ASSERT_OFFER_NICE_CHUNK;
175 new_chunk = (void *)(chunk);
176 new_chunk_size = (chunk_size);
177 if (new_chunk_size > PL_nice_chunk_size) {
178 Safefree(PL_nice_chunk);
179 PL_nice_chunk = (char *) new_chunk;
180 PL_nice_chunk_size = new_chunk_size;
187 # define MEM_LOG_NEW_SV(sv, file, line, func) \
188 Perl_mem_log_new_sv(sv, file, line, func)
189 # define MEM_LOG_DEL_SV(sv, file, line, func) \
190 Perl_mem_log_del_sv(sv, file, line, func)
192 # define MEM_LOG_NEW_SV(sv, file, line, func) NOOP
193 # define MEM_LOG_DEL_SV(sv, file, line, func) NOOP
196 #ifdef DEBUG_LEAKING_SCALARS
197 # define FREE_SV_DEBUG_FILE(sv) Safefree((sv)->sv_debug_file)
198 # define DEBUG_SV_SERIAL(sv) \
199 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) del_SV\n", \
200 PTR2UV(sv), (long)(sv)->sv_debug_serial))
202 # define FREE_SV_DEBUG_FILE(sv)
203 # define DEBUG_SV_SERIAL(sv) NOOP
207 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
208 # define SvARENA_CHAIN_SET(sv,val) (sv)->sv_u.svu_rv = MUTABLE_SV((val))
209 /* Whilst I'd love to do this, it seems that things like to check on
211 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
213 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
214 PoisonNew(&SvREFCNT(sv), 1, U32)
216 # define SvARENA_CHAIN(sv) SvANY(sv)
217 # define SvARENA_CHAIN_SET(sv,val) SvANY(sv) = (void *)(val)
218 # define POSION_SV_HEAD(sv)
221 /* Mark an SV head as unused, and add to free list.
223 * If SVf_BREAK is set, skip adding it to the free list, as this SV had
224 * its refcount artificially decremented during global destruction, so
225 * there may be dangling pointers to it. The last thing we want in that
226 * case is for it to be reused. */
228 #define plant_SV(p) \
230 const U32 old_flags = SvFLAGS(p); \
231 MEM_LOG_DEL_SV(p, __FILE__, __LINE__, FUNCTION__); \
232 DEBUG_SV_SERIAL(p); \
233 FREE_SV_DEBUG_FILE(p); \
235 SvFLAGS(p) = SVTYPEMASK; \
236 if (!(old_flags & SVf_BREAK)) { \
237 SvARENA_CHAIN_SET(p, PL_sv_root); \
243 #define uproot_SV(p) \
246 PL_sv_root = MUTABLE_SV(SvARENA_CHAIN(p)); \
251 /* make some more SVs by adding another arena */
260 sv_add_arena(PL_nice_chunk, PL_nice_chunk_size, 0);
261 PL_nice_chunk = NULL;
262 PL_nice_chunk_size = 0;
265 char *chunk; /* must use New here to match call to */
266 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
267 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
273 /* new_SV(): return a new, empty SV head */
275 #ifdef DEBUG_LEAKING_SCALARS
276 /* provide a real function for a debugger to play with */
278 S_new_SV(pTHX_ const char *file, int line, const char *func)
285 sv = S_more_sv(aTHX);
289 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
290 sv->sv_debug_line = (U16) (PL_parser && PL_parser->copline != NOLINE
296 sv->sv_debug_inpad = 0;
297 sv->sv_debug_cloned = 0;
298 sv->sv_debug_file = PL_curcop ? savepv(CopFILE(PL_curcop)): NULL;
300 sv->sv_debug_serial = PL_sv_serial++;
302 MEM_LOG_NEW_SV(sv, file, line, func);
303 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) new_SV (from %s:%d [%s])\n",
304 PTR2UV(sv), (long)sv->sv_debug_serial, file, line, func));
308 # define new_SV(p) (p)=S_new_SV(aTHX_ __FILE__, __LINE__, FUNCTION__)
316 (p) = S_more_sv(aTHX); \
320 MEM_LOG_NEW_SV(p, __FILE__, __LINE__, FUNCTION__); \
325 /* del_SV(): return an empty SV head to the free list */
338 S_del_sv(pTHX_ SV *p)
342 PERL_ARGS_ASSERT_DEL_SV;
347 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
348 const SV * const sv = sva + 1;
349 const SV * const svend = &sva[SvREFCNT(sva)];
350 if (p >= sv && p < svend) {
356 if (ckWARN_d(WARN_INTERNAL))
357 Perl_warner(aTHX_ packWARN(WARN_INTERNAL),
358 "Attempt to free non-arena SV: 0x%"UVxf
359 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
366 #else /* ! DEBUGGING */
368 #define del_SV(p) plant_SV(p)
370 #endif /* DEBUGGING */
374 =head1 SV Manipulation Functions
376 =for apidoc sv_add_arena
378 Given a chunk of memory, link it to the head of the list of arenas,
379 and split it into a list of free SVs.
385 S_sv_add_arena(pTHX_ char *const ptr, const U32 size, const U32 flags)
388 SV *const sva = MUTABLE_SV(ptr);
392 PERL_ARGS_ASSERT_SV_ADD_ARENA;
394 /* The first SV in an arena isn't an SV. */
395 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
396 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
397 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
399 PL_sv_arenaroot = sva;
400 PL_sv_root = sva + 1;
402 svend = &sva[SvREFCNT(sva) - 1];
405 SvARENA_CHAIN_SET(sv, (sv + 1));
409 /* Must always set typemask because it's always checked in on cleanup
410 when the arenas are walked looking for objects. */
411 SvFLAGS(sv) = SVTYPEMASK;
414 SvARENA_CHAIN_SET(sv, 0);
418 SvFLAGS(sv) = SVTYPEMASK;
421 /* visit(): call the named function for each non-free SV in the arenas
422 * whose flags field matches the flags/mask args. */
425 S_visit(pTHX_ SVFUNC_t f, const U32 flags, const U32 mask)
431 PERL_ARGS_ASSERT_VISIT;
433 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
434 register const SV * const svend = &sva[SvREFCNT(sva)];
436 for (sv = sva + 1; sv < svend; ++sv) {
437 if (SvTYPE(sv) != SVTYPEMASK
438 && (sv->sv_flags & mask) == flags
451 /* called by sv_report_used() for each live SV */
454 do_report_used(pTHX_ SV *const sv)
456 if (SvTYPE(sv) != SVTYPEMASK) {
457 PerlIO_printf(Perl_debug_log, "****\n");
464 =for apidoc sv_report_used
466 Dump the contents of all SVs not yet freed. (Debugging aid).
472 Perl_sv_report_used(pTHX)
475 visit(do_report_used, 0, 0);
481 /* called by sv_clean_objs() for each live SV */
484 do_clean_objs(pTHX_ SV *const ref)
489 SV * const target = SvRV(ref);
490 if (SvOBJECT(target)) {
491 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
492 if (SvWEAKREF(ref)) {
493 sv_del_backref(target, ref);
499 SvREFCNT_dec(target);
504 /* XXX Might want to check arrays, etc. */
507 /* called by sv_clean_objs() for each live SV */
509 #ifndef DISABLE_DESTRUCTOR_KLUDGE
511 do_clean_named_objs(pTHX_ SV *const sv)
514 assert(SvTYPE(sv) == SVt_PVGV);
515 assert(isGV_with_GP(sv));
518 #ifdef PERL_DONT_CREATE_GVSV
521 SvOBJECT(GvSV(sv))) ||
522 (GvAV(sv) && SvOBJECT(GvAV(sv))) ||
523 (GvHV(sv) && SvOBJECT(GvHV(sv))) ||
524 /* In certain rare cases GvIOp(sv) can be NULL, which would make SvOBJECT(GvIO(sv)) dereference NULL. */
525 (GvIO(sv) ? (SvFLAGS(GvIOp(sv)) & SVs_OBJECT) : 0) ||
526 (GvCV(sv) && SvOBJECT(GvCV(sv))) )
528 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning named glob object:\n "), sv_dump(sv)));
529 SvFLAGS(sv) |= SVf_BREAK;
537 =for apidoc sv_clean_objs
539 Attempt to destroy all objects not yet freed
545 Perl_sv_clean_objs(pTHX)
548 PL_in_clean_objs = TRUE;
549 visit(do_clean_objs, SVf_ROK, SVf_ROK);
550 #ifndef DISABLE_DESTRUCTOR_KLUDGE
551 /* some barnacles may yet remain, clinging to typeglobs */
552 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
554 PL_in_clean_objs = FALSE;
557 /* called by sv_clean_all() for each live SV */
560 do_clean_all(pTHX_ SV *const sv)
563 if (sv == (const SV *) PL_fdpid || sv == (const SV *)PL_strtab) {
564 /* don't clean pid table and strtab */
567 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
568 SvFLAGS(sv) |= SVf_BREAK;
573 =for apidoc sv_clean_all
575 Decrement the refcnt of each remaining SV, possibly triggering a
576 cleanup. This function may have to be called multiple times to free
577 SVs which are in complex self-referential hierarchies.
583 Perl_sv_clean_all(pTHX)
587 PL_in_clean_all = TRUE;
588 cleaned = visit(do_clean_all, 0,0);
589 PL_in_clean_all = FALSE;
594 ARENASETS: a meta-arena implementation which separates arena-info
595 into struct arena_set, which contains an array of struct
596 arena_descs, each holding info for a single arena. By separating
597 the meta-info from the arena, we recover the 1st slot, formerly
598 borrowed for list management. The arena_set is about the size of an
599 arena, avoiding the needless malloc overhead of a naive linked-list.
601 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
602 memory in the last arena-set (1/2 on average). In trade, we get
603 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
604 smaller types). The recovery of the wasted space allows use of
605 small arenas for large, rare body types, by changing array* fields
606 in body_details_by_type[] below.
609 char *arena; /* the raw storage, allocated aligned */
610 size_t size; /* its size ~4k typ */
611 U32 misc; /* type, and in future other things. */
616 /* Get the maximum number of elements in set[] such that struct arena_set
617 will fit within PERL_ARENA_SIZE, which is probably just under 4K, and
618 therefore likely to be 1 aligned memory page. */
620 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
621 - 2 * sizeof(int)) / sizeof (struct arena_desc))
624 struct arena_set* next;
625 unsigned int set_size; /* ie ARENAS_PER_SET */
626 unsigned int curr; /* index of next available arena-desc */
627 struct arena_desc set[ARENAS_PER_SET];
631 =for apidoc sv_free_arenas
633 Deallocate the memory used by all arenas. Note that all the individual SV
634 heads and bodies within the arenas must already have been freed.
639 Perl_sv_free_arenas(pTHX)
646 /* Free arenas here, but be careful about fake ones. (We assume
647 contiguity of the fake ones with the corresponding real ones.) */
649 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
650 svanext = MUTABLE_SV(SvANY(sva));
651 while (svanext && SvFAKE(svanext))
652 svanext = MUTABLE_SV(SvANY(svanext));
659 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
662 struct arena_set *current = aroot;
665 assert(aroot->set[i].arena);
666 Safefree(aroot->set[i].arena);
674 i = PERL_ARENA_ROOTS_SIZE;
676 PL_body_roots[i] = 0;
678 Safefree(PL_nice_chunk);
679 PL_nice_chunk = NULL;
680 PL_nice_chunk_size = 0;
686 Here are mid-level routines that manage the allocation of bodies out
687 of the various arenas. There are 5 kinds of arenas:
689 1. SV-head arenas, which are discussed and handled above
690 2. regular body arenas
691 3. arenas for reduced-size bodies
693 5. pte arenas (thread related)
695 Arena types 2 & 3 are chained by body-type off an array of
696 arena-root pointers, which is indexed by svtype. Some of the
697 larger/less used body types are malloced singly, since a large
698 unused block of them is wasteful. Also, several svtypes dont have
699 bodies; the data fits into the sv-head itself. The arena-root
700 pointer thus has a few unused root-pointers (which may be hijacked
701 later for arena types 4,5)
703 3 differs from 2 as an optimization; some body types have several
704 unused fields in the front of the structure (which are kept in-place
705 for consistency). These bodies can be allocated in smaller chunks,
706 because the leading fields arent accessed. Pointers to such bodies
707 are decremented to point at the unused 'ghost' memory, knowing that
708 the pointers are used with offsets to the real memory.
710 HE, HEK arenas are managed separately, with separate code, but may
711 be merge-able later..
713 PTE arenas are not sv-bodies, but they share these mid-level
714 mechanics, so are considered here. The new mid-level mechanics rely
715 on the sv_type of the body being allocated, so we just reserve one
716 of the unused body-slots for PTEs, then use it in those (2) PTE
717 contexts below (line ~10k)
720 /* get_arena(size): this creates custom-sized arenas
721 TBD: export properly for hv.c: S_more_he().
724 Perl_get_arena(pTHX_ const size_t arena_size, const U32 misc)
727 struct arena_desc* adesc;
728 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
731 /* shouldnt need this
732 if (!arena_size) arena_size = PERL_ARENA_SIZE;
735 /* may need new arena-set to hold new arena */
736 if (!aroot || aroot->curr >= aroot->set_size) {
737 struct arena_set *newroot;
738 Newxz(newroot, 1, struct arena_set);
739 newroot->set_size = ARENAS_PER_SET;
740 newroot->next = aroot;
742 PL_body_arenas = (void *) newroot;
743 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
746 /* ok, now have arena-set with at least 1 empty/available arena-desc */
747 curr = aroot->curr++;
748 adesc = &(aroot->set[curr]);
749 assert(!adesc->arena);
751 Newx(adesc->arena, arena_size, char);
752 adesc->size = arena_size;
754 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %"UVuf"\n",
755 curr, (void*)adesc->arena, (UV)arena_size));
761 /* return a thing to the free list */
763 #define del_body(thing, root) \
765 void ** const thing_copy = (void **)thing;\
766 *thing_copy = *root; \
767 *root = (void*)thing_copy; \
772 =head1 SV-Body Allocation
774 Allocation of SV-bodies is similar to SV-heads, differing as follows;
775 the allocation mechanism is used for many body types, so is somewhat
776 more complicated, it uses arena-sets, and has no need for still-live
779 At the outermost level, (new|del)_X*V macros return bodies of the
780 appropriate type. These macros call either (new|del)_body_type or
781 (new|del)_body_allocated macro pairs, depending on specifics of the
782 type. Most body types use the former pair, the latter pair is used to
783 allocate body types with "ghost fields".
785 "ghost fields" are fields that are unused in certain types, and
786 consequently dont need to actually exist. They are declared because
787 they're part of a "base type", which allows use of functions as
788 methods. The simplest examples are AVs and HVs, 2 aggregate types
789 which don't use the fields which support SCALAR semantics.
791 For these types, the arenas are carved up into *_allocated size
792 chunks, we thus avoid wasted memory for those unaccessed members.
793 When bodies are allocated, we adjust the pointer back in memory by the
794 size of the bit not allocated, so it's as if we allocated the full
795 structure. (But things will all go boom if you write to the part that
796 is "not there", because you'll be overwriting the last members of the
797 preceding structure in memory.)
799 We calculate the correction using the STRUCT_OFFSET macro. For
800 example, if xpv_allocated is the same structure as XPV then the two
801 OFFSETs sum to zero, and the pointer is unchanged. If the allocated
802 structure is smaller (no initial NV actually allocated) then the net
803 effect is to subtract the size of the NV from the pointer, to return a
804 new pointer as if an initial NV were actually allocated.
806 This is the same trick as was used for NV and IV bodies. Ironically it
807 doesn't need to be used for NV bodies any more, because NV is now at
808 the start of the structure. IV bodies don't need it either, because
809 they are no longer allocated.
811 In turn, the new_body_* allocators call S_new_body(), which invokes
812 new_body_inline macro, which takes a lock, and takes a body off the
813 linked list at PL_body_roots[sv_type], calling S_more_bodies() if
814 necessary to refresh an empty list. Then the lock is released, and
815 the body is returned.
817 S_more_bodies calls get_arena(), and carves it up into an array of N
818 bodies, which it strings into a linked list. It looks up arena-size
819 and body-size from the body_details table described below, thus
820 supporting the multiple body-types.
822 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
823 the (new|del)_X*V macros are mapped directly to malloc/free.
829 For each sv-type, struct body_details bodies_by_type[] carries
830 parameters which control these aspects of SV handling:
832 Arena_size determines whether arenas are used for this body type, and if
833 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
834 zero, forcing individual mallocs and frees.
836 Body_size determines how big a body is, and therefore how many fit into
837 each arena. Offset carries the body-pointer adjustment needed for
838 *_allocated body types, and is used in *_allocated macros.
840 But its main purpose is to parameterize info needed in
841 Perl_sv_upgrade(). The info here dramatically simplifies the function
842 vs the implementation in 5.8.7, making it table-driven. All fields
843 are used for this, except for arena_size.
845 For the sv-types that have no bodies, arenas are not used, so those
846 PL_body_roots[sv_type] are unused, and can be overloaded. In
847 something of a special case, SVt_NULL is borrowed for HE arenas;
848 PL_body_roots[HE_SVSLOT=SVt_NULL] is filled by S_more_he, but the
849 bodies_by_type[SVt_NULL] slot is not used, as the table is not
852 PTEs also use arenas, but are never seen in Perl_sv_upgrade. Nonetheless,
853 they get their own slot in bodies_by_type[PTE_SVSLOT =SVt_IV], so they can
854 just use the same allocation semantics. At first, PTEs were also
855 overloaded to a non-body sv-type, but this yielded hard-to-find malloc
856 bugs, so was simplified by claiming a new slot. This choice has no
857 consequence at this time.
861 struct body_details {
862 U8 body_size; /* Size to allocate */
863 U8 copy; /* Size of structure to copy (may be shorter) */
865 unsigned int type : 4; /* We have space for a sanity check. */
866 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
867 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
868 unsigned int arena : 1; /* Allocated from an arena */
869 size_t arena_size; /* Size of arena to allocate */
877 /* With -DPURFIY we allocate everything directly, and don't use arenas.
878 This seems a rather elegant way to simplify some of the code below. */
879 #define HASARENA FALSE
881 #define HASARENA TRUE
883 #define NOARENA FALSE
885 /* Size the arenas to exactly fit a given number of bodies. A count
886 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
887 simplifying the default. If count > 0, the arena is sized to fit
888 only that many bodies, allowing arenas to be used for large, rare
889 bodies (XPVFM, XPVIO) without undue waste. The arena size is
890 limited by PERL_ARENA_SIZE, so we can safely oversize the
893 #define FIT_ARENA0(body_size) \
894 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
895 #define FIT_ARENAn(count,body_size) \
896 ( count * body_size <= PERL_ARENA_SIZE) \
897 ? count * body_size \
898 : FIT_ARENA0 (body_size)
899 #define FIT_ARENA(count,body_size) \
901 ? FIT_ARENAn (count, body_size) \
902 : FIT_ARENA0 (body_size)
904 /* A macro to work out the offset needed to subtract from a pointer to (say)
911 to make its members accessible via a pointer to (say)
921 #define relative_STRUCT_OFFSET(longer, shorter, member) \
922 (STRUCT_OFFSET(shorter, member) - STRUCT_OFFSET(longer, member))
924 /* Calculate the length to copy. Specifically work out the length less any
925 final padding the compiler needed to add. See the comment in sv_upgrade
926 for why copying the padding proved to be a bug. */
928 #define copy_length(type, last_member) \
929 STRUCT_OFFSET(type, last_member) \
930 + sizeof (((type*)SvANY((const SV *)0))->last_member)
932 static const struct body_details bodies_by_type[] = {
933 { sizeof(HE), 0, 0, SVt_NULL,
934 FALSE, NONV, NOARENA, FIT_ARENA(0, sizeof(HE)) },
936 /* The bind placeholder pretends to be an RV for now.
937 Also it's marked as "can't upgrade" to stop anyone using it before it's
939 { 0, 0, 0, SVt_BIND, TRUE, NONV, NOARENA, 0 },
941 /* IVs are in the head, so the allocation size is 0.
942 However, the slot is overloaded for PTEs. */
943 { sizeof(struct ptr_tbl_ent), /* This is used for PTEs. */
944 sizeof(IV), /* This is used to copy out the IV body. */
945 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
946 NOARENA /* IVS don't need an arena */,
947 /* But PTEs need to know the size of their arena */
948 FIT_ARENA(0, sizeof(struct ptr_tbl_ent))
951 /* 8 bytes on most ILP32 with IEEE doubles */
952 { sizeof(NV), sizeof(NV), 0, SVt_NV, FALSE, HADNV, HASARENA,
953 FIT_ARENA(0, sizeof(NV)) },
955 /* 8 bytes on most ILP32 with IEEE doubles */
956 { sizeof(xpv_allocated),
957 copy_length(XPV, xpv_len)
958 - relative_STRUCT_OFFSET(xpv_allocated, XPV, xpv_cur),
959 + relative_STRUCT_OFFSET(xpv_allocated, XPV, xpv_cur),
960 SVt_PV, FALSE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpv_allocated)) },
963 { sizeof(xpviv_allocated),
964 copy_length(XPVIV, xiv_u)
965 - relative_STRUCT_OFFSET(xpviv_allocated, XPVIV, xpv_cur),
966 + relative_STRUCT_OFFSET(xpviv_allocated, XPVIV, xpv_cur),
967 SVt_PVIV, FALSE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpviv_allocated)) },
970 { sizeof(XPVNV), copy_length(XPVNV, xiv_u), 0, SVt_PVNV, FALSE, HADNV,
971 HASARENA, FIT_ARENA(0, sizeof(XPVNV)) },
974 { sizeof(XPVMG), copy_length(XPVMG, xmg_stash), 0, SVt_PVMG, FALSE, HADNV,
975 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
978 { sizeof(struct regexp_allocated), sizeof(struct regexp_allocated),
979 + relative_STRUCT_OFFSET(struct regexp_allocated, regexp, xpv_cur),
980 SVt_REGEXP, FALSE, NONV, HASARENA,
981 FIT_ARENA(0, sizeof(struct regexp_allocated))
985 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
986 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
989 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
990 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
992 { sizeof(xpvav_allocated),
993 copy_length(XPVAV, xmg_stash)
994 - relative_STRUCT_OFFSET(xpvav_allocated, XPVAV, xav_fill),
995 + relative_STRUCT_OFFSET(xpvav_allocated, XPVAV, xav_fill),
996 SVt_PVAV, TRUE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpvav_allocated)) },
998 { sizeof(xpvhv_allocated),
999 copy_length(XPVHV, xmg_stash)
1000 - relative_STRUCT_OFFSET(xpvhv_allocated, XPVHV, xhv_fill),
1001 + relative_STRUCT_OFFSET(xpvhv_allocated, XPVHV, xhv_fill),
1002 SVt_PVHV, TRUE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpvhv_allocated)) },
1005 { sizeof(xpvcv_allocated), sizeof(xpvcv_allocated),
1006 + relative_STRUCT_OFFSET(xpvcv_allocated, XPVCV, xpv_cur),
1007 SVt_PVCV, TRUE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpvcv_allocated)) },
1009 { sizeof(xpvfm_allocated), sizeof(xpvfm_allocated),
1010 + relative_STRUCT_OFFSET(xpvfm_allocated, XPVFM, xpv_cur),
1011 SVt_PVFM, TRUE, NONV, NOARENA, FIT_ARENA(20, sizeof(xpvfm_allocated)) },
1013 /* XPVIO is 84 bytes, fits 48x */
1014 { sizeof(xpvio_allocated), sizeof(xpvio_allocated),
1015 + relative_STRUCT_OFFSET(xpvio_allocated, XPVIO, xpv_cur),
1016 SVt_PVIO, TRUE, NONV, HASARENA, FIT_ARENA(24, sizeof(xpvio_allocated)) },
1019 #define new_body_type(sv_type) \
1020 (void *)((char *)S_new_body(aTHX_ sv_type))
1022 #define del_body_type(p, sv_type) \
1023 del_body(p, &PL_body_roots[sv_type])
1026 #define new_body_allocated(sv_type) \
1027 (void *)((char *)S_new_body(aTHX_ sv_type) \
1028 - bodies_by_type[sv_type].offset)
1030 #define del_body_allocated(p, sv_type) \
1031 del_body(p + bodies_by_type[sv_type].offset, &PL_body_roots[sv_type])
1034 #define my_safemalloc(s) (void*)safemalloc(s)
1035 #define my_safecalloc(s) (void*)safecalloc(s, 1)
1036 #define my_safefree(p) safefree((char*)p)
1040 #define new_XNV() my_safemalloc(sizeof(XPVNV))
1041 #define del_XNV(p) my_safefree(p)
1043 #define new_XPVNV() my_safemalloc(sizeof(XPVNV))
1044 #define del_XPVNV(p) my_safefree(p)
1046 #define new_XPVAV() my_safemalloc(sizeof(XPVAV))
1047 #define del_XPVAV(p) my_safefree(p)
1049 #define new_XPVHV() my_safemalloc(sizeof(XPVHV))
1050 #define del_XPVHV(p) my_safefree(p)
1052 #define new_XPVMG() my_safemalloc(sizeof(XPVMG))
1053 #define del_XPVMG(p) my_safefree(p)
1055 #define new_XPVGV() my_safemalloc(sizeof(XPVGV))
1056 #define del_XPVGV(p) my_safefree(p)
1060 #define new_XNV() new_body_type(SVt_NV)
1061 #define del_XNV(p) del_body_type(p, SVt_NV)
1063 #define new_XPVNV() new_body_type(SVt_PVNV)
1064 #define del_XPVNV(p) del_body_type(p, SVt_PVNV)
1066 #define new_XPVAV() new_body_allocated(SVt_PVAV)
1067 #define del_XPVAV(p) del_body_allocated(p, SVt_PVAV)
1069 #define new_XPVHV() new_body_allocated(SVt_PVHV)
1070 #define del_XPVHV(p) del_body_allocated(p, SVt_PVHV)
1072 #define new_XPVMG() new_body_type(SVt_PVMG)
1073 #define del_XPVMG(p) del_body_type(p, SVt_PVMG)
1075 #define new_XPVGV() new_body_type(SVt_PVGV)
1076 #define del_XPVGV(p) del_body_type(p, SVt_PVGV)
1080 /* no arena for you! */
1082 #define new_NOARENA(details) \
1083 my_safemalloc((details)->body_size + (details)->offset)
1084 #define new_NOARENAZ(details) \
1085 my_safecalloc((details)->body_size + (details)->offset)
1088 S_more_bodies (pTHX_ const svtype sv_type)
1091 void ** const root = &PL_body_roots[sv_type];
1092 const struct body_details * const bdp = &bodies_by_type[sv_type];
1093 const size_t body_size = bdp->body_size;
1096 const size_t arena_size = Perl_malloc_good_size(bdp->arena_size);
1097 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1098 static bool done_sanity_check;
1100 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1101 * variables like done_sanity_check. */
1102 if (!done_sanity_check) {
1103 unsigned int i = SVt_LAST;
1105 done_sanity_check = TRUE;
1108 assert (bodies_by_type[i].type == i);
1112 assert(bdp->arena_size);
1114 start = (char*) Perl_get_arena(aTHX_ arena_size, sv_type);
1116 end = start + arena_size - 2 * body_size;
1118 /* computed count doesnt reflect the 1st slot reservation */
1119 #if defined(MYMALLOC) || defined(HAS_MALLOC_GOOD_SIZE)
1120 DEBUG_m(PerlIO_printf(Perl_debug_log,
1121 "arena %p end %p arena-size %d (from %d) type %d "
1123 (void*)start, (void*)end, (int)arena_size,
1124 (int)bdp->arena_size, sv_type, (int)body_size,
1125 (int)arena_size / (int)body_size));
1127 DEBUG_m(PerlIO_printf(Perl_debug_log,
1128 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1129 (void*)start, (void*)end,
1130 (int)bdp->arena_size, sv_type, (int)body_size,
1131 (int)bdp->arena_size / (int)body_size));
1133 *root = (void *)start;
1135 while (start <= end) {
1136 char * const next = start + body_size;
1137 *(void**) start = (void *)next;
1140 *(void **)start = 0;
1145 /* grab a new thing from the free list, allocating more if necessary.
1146 The inline version is used for speed in hot routines, and the
1147 function using it serves the rest (unless PURIFY).
1149 #define new_body_inline(xpv, sv_type) \
1151 void ** const r3wt = &PL_body_roots[sv_type]; \
1152 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1153 ? *((void **)(r3wt)) : more_bodies(sv_type)); \
1154 *(r3wt) = *(void**)(xpv); \
1160 S_new_body(pTHX_ const svtype sv_type)
1164 new_body_inline(xpv, sv_type);
1170 static const struct body_details fake_rv =
1171 { 0, 0, 0, SVt_IV, FALSE, NONV, NOARENA, 0 };
1174 =for apidoc sv_upgrade
1176 Upgrade an SV to a more complex form. Generally adds a new body type to the
1177 SV, then copies across as much information as possible from the old body.
1178 You generally want to use the C<SvUPGRADE> macro wrapper. See also C<svtype>.
1184 Perl_sv_upgrade(pTHX_ register SV *const sv, svtype new_type)
1189 const svtype old_type = SvTYPE(sv);
1190 const struct body_details *new_type_details;
1191 const struct body_details *old_type_details
1192 = bodies_by_type + old_type;
1193 SV *referant = NULL;
1195 PERL_ARGS_ASSERT_SV_UPGRADE;
1197 if (new_type != SVt_PV && SvIsCOW(sv)) {
1198 sv_force_normal_flags(sv, 0);
1201 if (old_type == new_type)
1204 old_body = SvANY(sv);
1206 /* Copying structures onto other structures that have been neatly zeroed
1207 has a subtle gotcha. Consider XPVMG
1209 +------+------+------+------+------+-------+-------+
1210 | NV | CUR | LEN | IV | MAGIC | STASH |
1211 +------+------+------+------+------+-------+-------+
1212 0 4 8 12 16 20 24 28
1214 where NVs are aligned to 8 bytes, so that sizeof that structure is
1215 actually 32 bytes long, with 4 bytes of padding at the end:
1217 +------+------+------+------+------+-------+-------+------+
1218 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1219 +------+------+------+------+------+-------+-------+------+
1220 0 4 8 12 16 20 24 28 32
1222 so what happens if you allocate memory for this structure:
1224 +------+------+------+------+------+-------+-------+------+------+...
1225 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1226 +------+------+------+------+------+-------+-------+------+------+...
1227 0 4 8 12 16 20 24 28 32 36
1229 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1230 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1231 started out as zero once, but it's quite possible that it isn't. So now,
1232 rather than a nicely zeroed GP, you have it pointing somewhere random.
1235 (In fact, GP ends up pointing at a previous GP structure, because the
1236 principle cause of the padding in XPVMG getting garbage is a copy of
1237 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1238 this happens to be moot because XPVGV has been re-ordered, with GP
1239 no longer after STASH)
1241 So we are careful and work out the size of used parts of all the
1249 referant = SvRV(sv);
1250 old_type_details = &fake_rv;
1251 if (new_type == SVt_NV)
1252 new_type = SVt_PVNV;
1254 if (new_type < SVt_PVIV) {
1255 new_type = (new_type == SVt_NV)
1256 ? SVt_PVNV : SVt_PVIV;
1261 if (new_type < SVt_PVNV) {
1262 new_type = SVt_PVNV;
1266 assert(new_type > SVt_PV);
1267 assert(SVt_IV < SVt_PV);
1268 assert(SVt_NV < SVt_PV);
1275 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1276 there's no way that it can be safely upgraded, because perl.c
1277 expects to Safefree(SvANY(PL_mess_sv)) */
1278 assert(sv != PL_mess_sv);
1279 /* This flag bit is used to mean other things in other scalar types.
1280 Given that it only has meaning inside the pad, it shouldn't be set
1281 on anything that can get upgraded. */
1282 assert(!SvPAD_TYPED(sv));
1285 if (old_type_details->cant_upgrade)
1286 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1287 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1290 if (old_type > new_type)
1291 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1292 (int)old_type, (int)new_type);
1294 new_type_details = bodies_by_type + new_type;
1296 SvFLAGS(sv) &= ~SVTYPEMASK;
1297 SvFLAGS(sv) |= new_type;
1299 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1300 the return statements above will have triggered. */
1301 assert (new_type != SVt_NULL);
1304 assert(old_type == SVt_NULL);
1305 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1309 assert(old_type == SVt_NULL);
1310 SvANY(sv) = new_XNV();
1315 assert(new_type_details->body_size);
1318 assert(new_type_details->arena);
1319 assert(new_type_details->arena_size);
1320 /* This points to the start of the allocated area. */
1321 new_body_inline(new_body, new_type);
1322 Zero(new_body, new_type_details->body_size, char);
1323 new_body = ((char *)new_body) - new_type_details->offset;
1325 /* We always allocated the full length item with PURIFY. To do this
1326 we fake things so that arena is false for all 16 types.. */
1327 new_body = new_NOARENAZ(new_type_details);
1329 SvANY(sv) = new_body;
1330 if (new_type == SVt_PVAV) {
1334 if (old_type_details->body_size) {
1337 /* It will have been zeroed when the new body was allocated.
1338 Lets not write to it, in case it confuses a write-back
1344 #ifndef NODEFAULT_SHAREKEYS
1345 HvSHAREKEYS_on(sv); /* key-sharing on by default */
1347 HvMAX(sv) = 7; /* (start with 8 buckets) */
1348 if (old_type_details->body_size) {
1351 /* It will have been zeroed when the new body was allocated.
1352 Lets not write to it, in case it confuses a write-back
1357 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1358 The target created by newSVrv also is, and it can have magic.
1359 However, it never has SvPVX set.
1361 if (old_type == SVt_IV) {
1363 } else if (old_type >= SVt_PV) {
1364 assert(SvPVX_const(sv) == 0);
1367 if (old_type >= SVt_PVMG) {
1368 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1369 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1371 sv->sv_u.svu_array = NULL; /* or svu_hash */
1377 /* XXX Is this still needed? Was it ever needed? Surely as there is
1378 no route from NV to PVIV, NOK can never be true */
1379 assert(!SvNOKp(sv));
1391 assert(new_type_details->body_size);
1392 /* We always allocated the full length item with PURIFY. To do this
1393 we fake things so that arena is false for all 16 types.. */
1394 if(new_type_details->arena) {
1395 /* This points to the start of the allocated area. */
1396 new_body_inline(new_body, new_type);
1397 Zero(new_body, new_type_details->body_size, char);
1398 new_body = ((char *)new_body) - new_type_details->offset;
1400 new_body = new_NOARENAZ(new_type_details);
1402 SvANY(sv) = new_body;
1404 if (old_type_details->copy) {
1405 /* There is now the potential for an upgrade from something without
1406 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1407 int offset = old_type_details->offset;
1408 int length = old_type_details->copy;
1410 if (new_type_details->offset > old_type_details->offset) {
1411 const int difference
1412 = new_type_details->offset - old_type_details->offset;
1413 offset += difference;
1414 length -= difference;
1416 assert (length >= 0);
1418 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1422 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1423 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1424 * correct 0.0 for us. Otherwise, if the old body didn't have an
1425 * NV slot, but the new one does, then we need to initialise the
1426 * freshly created NV slot with whatever the correct bit pattern is
1428 if (old_type_details->zero_nv && !new_type_details->zero_nv
1429 && !isGV_with_GP(sv))
1433 if (new_type == SVt_PVIO)
1434 IoPAGE_LEN(sv) = 60;
1435 if (old_type < SVt_PV) {
1436 /* referant will be NULL unless the old type was SVt_IV emulating
1438 sv->sv_u.svu_rv = referant;
1442 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1443 (unsigned long)new_type);
1446 if (old_type_details->arena) {
1447 /* If there was an old body, then we need to free it.
1448 Note that there is an assumption that all bodies of types that
1449 can be upgraded came from arenas. Only the more complex non-
1450 upgradable types are allowed to be directly malloc()ed. */
1452 my_safefree(old_body);
1454 del_body((void*)((char*)old_body + old_type_details->offset),
1455 &PL_body_roots[old_type]);
1461 =for apidoc sv_backoff
1463 Remove any string offset. You should normally use the C<SvOOK_off> macro
1470 Perl_sv_backoff(pTHX_ register SV *const sv)
1473 const char * const s = SvPVX_const(sv);
1475 PERL_ARGS_ASSERT_SV_BACKOFF;
1476 PERL_UNUSED_CONTEXT;
1479 assert(SvTYPE(sv) != SVt_PVHV);
1480 assert(SvTYPE(sv) != SVt_PVAV);
1482 SvOOK_offset(sv, delta);
1484 SvLEN_set(sv, SvLEN(sv) + delta);
1485 SvPV_set(sv, SvPVX(sv) - delta);
1486 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1487 SvFLAGS(sv) &= ~SVf_OOK;
1494 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1495 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1496 Use the C<SvGROW> wrapper instead.
1502 Perl_sv_grow(pTHX_ register SV *const sv, register STRLEN newlen)
1506 PERL_ARGS_ASSERT_SV_GROW;
1508 if (PL_madskills && newlen >= 0x100000) {
1509 PerlIO_printf(Perl_debug_log,
1510 "Allocation too large: %"UVxf"\n", (UV)newlen);
1512 #ifdef HAS_64K_LIMIT
1513 if (newlen >= 0x10000) {
1514 PerlIO_printf(Perl_debug_log,
1515 "Allocation too large: %"UVxf"\n", (UV)newlen);
1518 #endif /* HAS_64K_LIMIT */
1521 if (SvTYPE(sv) < SVt_PV) {
1522 sv_upgrade(sv, SVt_PV);
1523 s = SvPVX_mutable(sv);
1525 else if (SvOOK(sv)) { /* pv is offset? */
1527 s = SvPVX_mutable(sv);
1528 if (newlen > SvLEN(sv))
1529 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1530 #ifdef HAS_64K_LIMIT
1531 if (newlen >= 0x10000)
1536 s = SvPVX_mutable(sv);
1538 if (newlen > SvLEN(sv)) { /* need more room? */
1539 #ifndef Perl_safesysmalloc_size
1540 newlen = PERL_STRLEN_ROUNDUP(newlen);
1542 if (SvLEN(sv) && s) {
1543 s = (char*)saferealloc(s, newlen);
1546 s = (char*)safemalloc(newlen);
1547 if (SvPVX_const(sv) && SvCUR(sv)) {
1548 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1552 #ifdef Perl_safesysmalloc_size
1553 /* Do this here, do it once, do it right, and then we will never get
1554 called back into sv_grow() unless there really is some growing
1556 SvLEN_set(sv, Perl_safesysmalloc_size(s));
1558 SvLEN_set(sv, newlen);
1565 =for apidoc sv_setiv
1567 Copies an integer into the given SV, upgrading first if necessary.
1568 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1574 Perl_sv_setiv(pTHX_ register SV *const sv, const IV i)
1578 PERL_ARGS_ASSERT_SV_SETIV;
1580 SV_CHECK_THINKFIRST_COW_DROP(sv);
1581 switch (SvTYPE(sv)) {
1584 sv_upgrade(sv, SVt_IV);
1587 sv_upgrade(sv, SVt_PVIV);
1591 if (!isGV_with_GP(sv))
1598 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1602 (void)SvIOK_only(sv); /* validate number */
1608 =for apidoc sv_setiv_mg
1610 Like C<sv_setiv>, but also handles 'set' magic.
1616 Perl_sv_setiv_mg(pTHX_ register SV *const sv, const IV i)
1618 PERL_ARGS_ASSERT_SV_SETIV_MG;
1625 =for apidoc sv_setuv
1627 Copies an unsigned integer into the given SV, upgrading first if necessary.
1628 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1634 Perl_sv_setuv(pTHX_ register SV *const sv, const UV u)
1636 PERL_ARGS_ASSERT_SV_SETUV;
1638 /* With these two if statements:
1639 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1642 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1644 If you wish to remove them, please benchmark to see what the effect is
1646 if (u <= (UV)IV_MAX) {
1647 sv_setiv(sv, (IV)u);
1656 =for apidoc sv_setuv_mg
1658 Like C<sv_setuv>, but also handles 'set' magic.
1664 Perl_sv_setuv_mg(pTHX_ register SV *const sv, const UV u)
1666 PERL_ARGS_ASSERT_SV_SETUV_MG;
1673 =for apidoc sv_setnv
1675 Copies a double into the given SV, upgrading first if necessary.
1676 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1682 Perl_sv_setnv(pTHX_ register SV *const sv, const NV num)
1686 PERL_ARGS_ASSERT_SV_SETNV;
1688 SV_CHECK_THINKFIRST_COW_DROP(sv);
1689 switch (SvTYPE(sv)) {
1692 sv_upgrade(sv, SVt_NV);
1696 sv_upgrade(sv, SVt_PVNV);
1700 if (!isGV_with_GP(sv))
1707 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1712 (void)SvNOK_only(sv); /* validate number */
1717 =for apidoc sv_setnv_mg
1719 Like C<sv_setnv>, but also handles 'set' magic.
1725 Perl_sv_setnv_mg(pTHX_ register SV *const sv, const NV num)
1727 PERL_ARGS_ASSERT_SV_SETNV_MG;
1733 /* Print an "isn't numeric" warning, using a cleaned-up,
1734 * printable version of the offending string
1738 S_not_a_number(pTHX_ SV *const sv)
1745 PERL_ARGS_ASSERT_NOT_A_NUMBER;
1748 dsv = newSVpvs_flags("", SVs_TEMP);
1749 pv = sv_uni_display(dsv, sv, 10, 0);
1752 const char * const limit = tmpbuf + sizeof(tmpbuf) - 8;
1753 /* each *s can expand to 4 chars + "...\0",
1754 i.e. need room for 8 chars */
1756 const char *s = SvPVX_const(sv);
1757 const char * const end = s + SvCUR(sv);
1758 for ( ; s < end && d < limit; s++ ) {
1760 if (ch & 128 && !isPRINT_LC(ch)) {
1769 else if (ch == '\r') {
1773 else if (ch == '\f') {
1777 else if (ch == '\\') {
1781 else if (ch == '\0') {
1785 else if (isPRINT_LC(ch))
1802 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1803 "Argument \"%s\" isn't numeric in %s", pv,
1806 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1807 "Argument \"%s\" isn't numeric", pv);
1811 =for apidoc looks_like_number
1813 Test if the content of an SV looks like a number (or is a number).
1814 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1815 non-numeric warning), even if your atof() doesn't grok them.
1821 Perl_looks_like_number(pTHX_ SV *const sv)
1823 register const char *sbegin;
1826 PERL_ARGS_ASSERT_LOOKS_LIKE_NUMBER;
1829 sbegin = SvPVX_const(sv);
1832 else if (SvPOKp(sv))
1833 sbegin = SvPV_const(sv, len);
1835 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1836 return grok_number(sbegin, len, NULL);
1840 S_glob_2number(pTHX_ GV * const gv)
1842 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1843 SV *const buffer = sv_newmortal();
1845 PERL_ARGS_ASSERT_GLOB_2NUMBER;
1847 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1850 gv_efullname3(buffer, gv, "*");
1851 SvFLAGS(gv) |= wasfake;
1853 /* We know that all GVs stringify to something that is not-a-number,
1854 so no need to test that. */
1855 if (ckWARN(WARN_NUMERIC))
1856 not_a_number(buffer);
1857 /* We just want something true to return, so that S_sv_2iuv_common
1858 can tail call us and return true. */
1862 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1863 until proven guilty, assume that things are not that bad... */
1868 As 64 bit platforms often have an NV that doesn't preserve all bits of
1869 an IV (an assumption perl has been based on to date) it becomes necessary
1870 to remove the assumption that the NV always carries enough precision to
1871 recreate the IV whenever needed, and that the NV is the canonical form.
1872 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1873 precision as a side effect of conversion (which would lead to insanity
1874 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1875 1) to distinguish between IV/UV/NV slots that have cached a valid
1876 conversion where precision was lost and IV/UV/NV slots that have a
1877 valid conversion which has lost no precision
1878 2) to ensure that if a numeric conversion to one form is requested that
1879 would lose precision, the precise conversion (or differently
1880 imprecise conversion) is also performed and cached, to prevent
1881 requests for different numeric formats on the same SV causing
1882 lossy conversion chains. (lossless conversion chains are perfectly
1887 SvIOKp is true if the IV slot contains a valid value
1888 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1889 SvNOKp is true if the NV slot contains a valid value
1890 SvNOK is true only if the NV value is accurate
1893 while converting from PV to NV, check to see if converting that NV to an
1894 IV(or UV) would lose accuracy over a direct conversion from PV to
1895 IV(or UV). If it would, cache both conversions, return NV, but mark
1896 SV as IOK NOKp (ie not NOK).
1898 While converting from PV to IV, check to see if converting that IV to an
1899 NV would lose accuracy over a direct conversion from PV to NV. If it
1900 would, cache both conversions, flag similarly.
1902 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1903 correctly because if IV & NV were set NV *always* overruled.
1904 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1905 changes - now IV and NV together means that the two are interchangeable:
1906 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1908 The benefit of this is that operations such as pp_add know that if
1909 SvIOK is true for both left and right operands, then integer addition
1910 can be used instead of floating point (for cases where the result won't
1911 overflow). Before, floating point was always used, which could lead to
1912 loss of precision compared with integer addition.
1914 * making IV and NV equal status should make maths accurate on 64 bit
1916 * may speed up maths somewhat if pp_add and friends start to use
1917 integers when possible instead of fp. (Hopefully the overhead in
1918 looking for SvIOK and checking for overflow will not outweigh the
1919 fp to integer speedup)
1920 * will slow down integer operations (callers of SvIV) on "inaccurate"
1921 values, as the change from SvIOK to SvIOKp will cause a call into
1922 sv_2iv each time rather than a macro access direct to the IV slot
1923 * should speed up number->string conversion on integers as IV is
1924 favoured when IV and NV are equally accurate
1926 ####################################################################
1927 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1928 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1929 On the other hand, SvUOK is true iff UV.
1930 ####################################################################
1932 Your mileage will vary depending your CPU's relative fp to integer
1936 #ifndef NV_PRESERVES_UV
1937 # define IS_NUMBER_UNDERFLOW_IV 1
1938 # define IS_NUMBER_UNDERFLOW_UV 2
1939 # define IS_NUMBER_IV_AND_UV 2
1940 # define IS_NUMBER_OVERFLOW_IV 4
1941 # define IS_NUMBER_OVERFLOW_UV 5
1943 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1945 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1947 S_sv_2iuv_non_preserve(pTHX_ register SV *const sv
1955 PERL_ARGS_ASSERT_SV_2IUV_NON_PRESERVE;
1957 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1958 if (SvNVX(sv) < (NV)IV_MIN) {
1959 (void)SvIOKp_on(sv);
1961 SvIV_set(sv, IV_MIN);
1962 return IS_NUMBER_UNDERFLOW_IV;
1964 if (SvNVX(sv) > (NV)UV_MAX) {
1965 (void)SvIOKp_on(sv);
1968 SvUV_set(sv, UV_MAX);
1969 return IS_NUMBER_OVERFLOW_UV;
1971 (void)SvIOKp_on(sv);
1973 /* Can't use strtol etc to convert this string. (See truth table in
1975 if (SvNVX(sv) <= (UV)IV_MAX) {
1976 SvIV_set(sv, I_V(SvNVX(sv)));
1977 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1978 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1980 /* Integer is imprecise. NOK, IOKp */
1982 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
1985 SvUV_set(sv, U_V(SvNVX(sv)));
1986 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
1987 if (SvUVX(sv) == UV_MAX) {
1988 /* As we know that NVs don't preserve UVs, UV_MAX cannot
1989 possibly be preserved by NV. Hence, it must be overflow.
1991 return IS_NUMBER_OVERFLOW_UV;
1993 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
1995 /* Integer is imprecise. NOK, IOKp */
1997 return IS_NUMBER_OVERFLOW_IV;
1999 #endif /* !NV_PRESERVES_UV*/
2002 S_sv_2iuv_common(pTHX_ SV *const sv)
2006 PERL_ARGS_ASSERT_SV_2IUV_COMMON;
2009 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
2010 * without also getting a cached IV/UV from it at the same time
2011 * (ie PV->NV conversion should detect loss of accuracy and cache
2012 * IV or UV at same time to avoid this. */
2013 /* IV-over-UV optimisation - choose to cache IV if possible */
2015 if (SvTYPE(sv) == SVt_NV)
2016 sv_upgrade(sv, SVt_PVNV);
2018 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
2019 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
2020 certainly cast into the IV range at IV_MAX, whereas the correct
2021 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
2023 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
2024 if (Perl_isnan(SvNVX(sv))) {
2030 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2031 SvIV_set(sv, I_V(SvNVX(sv)));
2032 if (SvNVX(sv) == (NV) SvIVX(sv)
2033 #ifndef NV_PRESERVES_UV
2034 && (((UV)1 << NV_PRESERVES_UV_BITS) >
2035 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
2036 /* Don't flag it as "accurately an integer" if the number
2037 came from a (by definition imprecise) NV operation, and
2038 we're outside the range of NV integer precision */
2042 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
2044 /* scalar has trailing garbage, eg "42a" */
2046 DEBUG_c(PerlIO_printf(Perl_debug_log,
2047 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
2053 /* IV not precise. No need to convert from PV, as NV
2054 conversion would already have cached IV if it detected
2055 that PV->IV would be better than PV->NV->IV
2056 flags already correct - don't set public IOK. */
2057 DEBUG_c(PerlIO_printf(Perl_debug_log,
2058 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
2063 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
2064 but the cast (NV)IV_MIN rounds to a the value less (more
2065 negative) than IV_MIN which happens to be equal to SvNVX ??
2066 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
2067 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
2068 (NV)UVX == NVX are both true, but the values differ. :-(
2069 Hopefully for 2s complement IV_MIN is something like
2070 0x8000000000000000 which will be exact. NWC */
2073 SvUV_set(sv, U_V(SvNVX(sv)));
2075 (SvNVX(sv) == (NV) SvUVX(sv))
2076 #ifndef NV_PRESERVES_UV
2077 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
2078 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
2079 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
2080 /* Don't flag it as "accurately an integer" if the number
2081 came from a (by definition imprecise) NV operation, and
2082 we're outside the range of NV integer precision */
2088 DEBUG_c(PerlIO_printf(Perl_debug_log,
2089 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
2095 else if (SvPOKp(sv) && SvLEN(sv)) {
2097 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2098 /* We want to avoid a possible problem when we cache an IV/ a UV which
2099 may be later translated to an NV, and the resulting NV is not
2100 the same as the direct translation of the initial string
2101 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
2102 be careful to ensure that the value with the .456 is around if the
2103 NV value is requested in the future).
2105 This means that if we cache such an IV/a UV, we need to cache the
2106 NV as well. Moreover, we trade speed for space, and do not
2107 cache the NV if we are sure it's not needed.
2110 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
2111 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2112 == IS_NUMBER_IN_UV) {
2113 /* It's definitely an integer, only upgrade to PVIV */
2114 if (SvTYPE(sv) < SVt_PVIV)
2115 sv_upgrade(sv, SVt_PVIV);
2117 } else if (SvTYPE(sv) < SVt_PVNV)
2118 sv_upgrade(sv, SVt_PVNV);
2120 /* If NVs preserve UVs then we only use the UV value if we know that
2121 we aren't going to call atof() below. If NVs don't preserve UVs
2122 then the value returned may have more precision than atof() will
2123 return, even though value isn't perfectly accurate. */
2124 if ((numtype & (IS_NUMBER_IN_UV
2125 #ifdef NV_PRESERVES_UV
2128 )) == IS_NUMBER_IN_UV) {
2129 /* This won't turn off the public IOK flag if it was set above */
2130 (void)SvIOKp_on(sv);
2132 if (!(numtype & IS_NUMBER_NEG)) {
2134 if (value <= (UV)IV_MAX) {
2135 SvIV_set(sv, (IV)value);
2137 /* it didn't overflow, and it was positive. */
2138 SvUV_set(sv, value);
2142 /* 2s complement assumption */
2143 if (value <= (UV)IV_MIN) {
2144 SvIV_set(sv, -(IV)value);
2146 /* Too negative for an IV. This is a double upgrade, but
2147 I'm assuming it will be rare. */
2148 if (SvTYPE(sv) < SVt_PVNV)
2149 sv_upgrade(sv, SVt_PVNV);
2153 SvNV_set(sv, -(NV)value);
2154 SvIV_set(sv, IV_MIN);
2158 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2159 will be in the previous block to set the IV slot, and the next
2160 block to set the NV slot. So no else here. */
2162 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2163 != IS_NUMBER_IN_UV) {
2164 /* It wasn't an (integer that doesn't overflow the UV). */
2165 SvNV_set(sv, Atof(SvPVX_const(sv)));
2167 if (! numtype && ckWARN(WARN_NUMERIC))
2170 #if defined(USE_LONG_DOUBLE)
2171 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2172 PTR2UV(sv), SvNVX(sv)));
2174 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2175 PTR2UV(sv), SvNVX(sv)));
2178 #ifdef NV_PRESERVES_UV
2179 (void)SvIOKp_on(sv);
2181 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2182 SvIV_set(sv, I_V(SvNVX(sv)));
2183 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2186 NOOP; /* Integer is imprecise. NOK, IOKp */
2188 /* UV will not work better than IV */
2190 if (SvNVX(sv) > (NV)UV_MAX) {
2192 /* Integer is inaccurate. NOK, IOKp, is UV */
2193 SvUV_set(sv, UV_MAX);
2195 SvUV_set(sv, U_V(SvNVX(sv)));
2196 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2197 NV preservse UV so can do correct comparison. */
2198 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2201 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2206 #else /* NV_PRESERVES_UV */
2207 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2208 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2209 /* The IV/UV slot will have been set from value returned by
2210 grok_number above. The NV slot has just been set using
2213 assert (SvIOKp(sv));
2215 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2216 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2217 /* Small enough to preserve all bits. */
2218 (void)SvIOKp_on(sv);
2220 SvIV_set(sv, I_V(SvNVX(sv)));
2221 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2223 /* Assumption: first non-preserved integer is < IV_MAX,
2224 this NV is in the preserved range, therefore: */
2225 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2227 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2231 0 0 already failed to read UV.
2232 0 1 already failed to read UV.
2233 1 0 you won't get here in this case. IV/UV
2234 slot set, public IOK, Atof() unneeded.
2235 1 1 already read UV.
2236 so there's no point in sv_2iuv_non_preserve() attempting
2237 to use atol, strtol, strtoul etc. */
2239 sv_2iuv_non_preserve (sv, numtype);
2241 sv_2iuv_non_preserve (sv);
2245 #endif /* NV_PRESERVES_UV */
2246 /* It might be more code efficient to go through the entire logic above
2247 and conditionally set with SvIOKp_on() rather than SvIOK(), but it
2248 gets complex and potentially buggy, so more programmer efficient
2249 to do it this way, by turning off the public flags: */
2251 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2255 if (isGV_with_GP(sv))
2256 return glob_2number(MUTABLE_GV(sv));
2258 if (!(SvFLAGS(sv) & SVs_PADTMP)) {
2259 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2262 if (SvTYPE(sv) < SVt_IV)
2263 /* Typically the caller expects that sv_any is not NULL now. */
2264 sv_upgrade(sv, SVt_IV);
2265 /* Return 0 from the caller. */
2272 =for apidoc sv_2iv_flags
2274 Return the integer value of an SV, doing any necessary string
2275 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2276 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2282 Perl_sv_2iv_flags(pTHX_ register SV *const sv, const I32 flags)
2287 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2288 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2289 cache IVs just in case. In practice it seems that they never
2290 actually anywhere accessible by user Perl code, let alone get used
2291 in anything other than a string context. */
2292 if (flags & SV_GMAGIC)
2297 return I_V(SvNVX(sv));
2299 if (SvPOKp(sv) && SvLEN(sv)) {
2302 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2304 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2305 == IS_NUMBER_IN_UV) {
2306 /* It's definitely an integer */
2307 if (numtype & IS_NUMBER_NEG) {
2308 if (value < (UV)IV_MIN)
2311 if (value < (UV)IV_MAX)
2316 if (ckWARN(WARN_NUMERIC))
2319 return I_V(Atof(SvPVX_const(sv)));
2324 assert(SvTYPE(sv) >= SVt_PVMG);
2325 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2326 } else if (SvTHINKFIRST(sv)) {
2330 SV * const tmpstr=AMG_CALLun(sv,numer);
2331 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2332 return SvIV(tmpstr);
2335 return PTR2IV(SvRV(sv));
2338 sv_force_normal_flags(sv, 0);
2340 if (SvREADONLY(sv) && !SvOK(sv)) {
2341 if (ckWARN(WARN_UNINITIALIZED))
2347 if (S_sv_2iuv_common(aTHX_ sv))
2350 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2351 PTR2UV(sv),SvIVX(sv)));
2352 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2356 =for apidoc sv_2uv_flags
2358 Return the unsigned integer value of an SV, doing any necessary string
2359 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2360 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2366 Perl_sv_2uv_flags(pTHX_ register SV *const sv, const I32 flags)
2371 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2372 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2373 cache IVs just in case. */
2374 if (flags & SV_GMAGIC)
2379 return U_V(SvNVX(sv));
2380 if (SvPOKp(sv) && SvLEN(sv)) {
2383 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2385 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2386 == IS_NUMBER_IN_UV) {
2387 /* It's definitely an integer */
2388 if (!(numtype & IS_NUMBER_NEG))
2392 if (ckWARN(WARN_NUMERIC))
2395 return U_V(Atof(SvPVX_const(sv)));
2400 assert(SvTYPE(sv) >= SVt_PVMG);
2401 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2402 } else if (SvTHINKFIRST(sv)) {
2406 SV *const tmpstr = AMG_CALLun(sv,numer);
2407 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2408 return SvUV(tmpstr);
2411 return PTR2UV(SvRV(sv));
2414 sv_force_normal_flags(sv, 0);
2416 if (SvREADONLY(sv) && !SvOK(sv)) {
2417 if (ckWARN(WARN_UNINITIALIZED))
2423 if (S_sv_2iuv_common(aTHX_ sv))
2427 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2428 PTR2UV(sv),SvUVX(sv)));
2429 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2435 Return the num value of an SV, doing any necessary string or integer
2436 conversion, magic etc. Normally used via the C<SvNV(sv)> and C<SvNVx(sv)>
2443 Perl_sv_2nv(pTHX_ register SV *const sv)
2448 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2449 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2450 cache IVs just in case. */
2454 if ((SvPOKp(sv) && SvLEN(sv)) && !SvIOKp(sv)) {
2455 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2456 !grok_number(SvPVX_const(sv), SvCUR(sv), NULL))
2458 return Atof(SvPVX_const(sv));
2462 return (NV)SvUVX(sv);
2464 return (NV)SvIVX(sv);
2469 assert(SvTYPE(sv) >= SVt_PVMG);
2470 /* This falls through to the report_uninit near the end of the
2472 } else if (SvTHINKFIRST(sv)) {
2476 SV *const tmpstr = AMG_CALLun(sv,numer);
2477 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2478 return SvNV(tmpstr);
2481 return PTR2NV(SvRV(sv));
2484 sv_force_normal_flags(sv, 0);
2486 if (SvREADONLY(sv) && !SvOK(sv)) {
2487 if (ckWARN(WARN_UNINITIALIZED))
2492 if (SvTYPE(sv) < SVt_NV) {
2493 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2494 sv_upgrade(sv, SVt_NV);
2495 #ifdef USE_LONG_DOUBLE
2497 STORE_NUMERIC_LOCAL_SET_STANDARD();
2498 PerlIO_printf(Perl_debug_log,
2499 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2500 PTR2UV(sv), SvNVX(sv));
2501 RESTORE_NUMERIC_LOCAL();
2505 STORE_NUMERIC_LOCAL_SET_STANDARD();
2506 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2507 PTR2UV(sv), SvNVX(sv));
2508 RESTORE_NUMERIC_LOCAL();
2512 else if (SvTYPE(sv) < SVt_PVNV)
2513 sv_upgrade(sv, SVt_PVNV);
2518 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2519 #ifdef NV_PRESERVES_UV
2525 /* Only set the public NV OK flag if this NV preserves the IV */
2526 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2528 SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2529 : (SvIVX(sv) == I_V(SvNVX(sv))))
2535 else if (SvPOKp(sv) && SvLEN(sv)) {
2537 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2538 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2540 #ifdef NV_PRESERVES_UV
2541 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2542 == IS_NUMBER_IN_UV) {
2543 /* It's definitely an integer */
2544 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2546 SvNV_set(sv, Atof(SvPVX_const(sv)));
2552 SvNV_set(sv, Atof(SvPVX_const(sv)));
2553 /* Only set the public NV OK flag if this NV preserves the value in
2554 the PV at least as well as an IV/UV would.
2555 Not sure how to do this 100% reliably. */
2556 /* if that shift count is out of range then Configure's test is
2557 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2559 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2560 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2561 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2562 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2563 /* Can't use strtol etc to convert this string, so don't try.
2564 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2567 /* value has been set. It may not be precise. */
2568 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2569 /* 2s complement assumption for (UV)IV_MIN */
2570 SvNOK_on(sv); /* Integer is too negative. */
2575 if (numtype & IS_NUMBER_NEG) {
2576 SvIV_set(sv, -(IV)value);
2577 } else if (value <= (UV)IV_MAX) {
2578 SvIV_set(sv, (IV)value);
2580 SvUV_set(sv, value);
2584 if (numtype & IS_NUMBER_NOT_INT) {
2585 /* I believe that even if the original PV had decimals,
2586 they are lost beyond the limit of the FP precision.
2587 However, neither is canonical, so both only get p
2588 flags. NWC, 2000/11/25 */
2589 /* Both already have p flags, so do nothing */
2591 const NV nv = SvNVX(sv);
2592 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2593 if (SvIVX(sv) == I_V(nv)) {
2596 /* It had no "." so it must be integer. */
2600 /* between IV_MAX and NV(UV_MAX).
2601 Could be slightly > UV_MAX */
2603 if (numtype & IS_NUMBER_NOT_INT) {
2604 /* UV and NV both imprecise. */
2606 const UV nv_as_uv = U_V(nv);
2608 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2617 /* It might be more code efficient to go through the entire logic above
2618 and conditionally set with SvNOKp_on() rather than SvNOK(), but it
2619 gets complex and potentially buggy, so more programmer efficient
2620 to do it this way, by turning off the public flags: */
2622 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2623 #endif /* NV_PRESERVES_UV */
2626 if (isGV_with_GP(sv)) {
2627 glob_2number(MUTABLE_GV(sv));
2631 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2633 assert (SvTYPE(sv) >= SVt_NV);
2634 /* Typically the caller expects that sv_any is not NULL now. */
2635 /* XXX Ilya implies that this is a bug in callers that assume this
2636 and ideally should be fixed. */
2639 #if defined(USE_LONG_DOUBLE)
2641 STORE_NUMERIC_LOCAL_SET_STANDARD();
2642 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2643 PTR2UV(sv), SvNVX(sv));
2644 RESTORE_NUMERIC_LOCAL();
2648 STORE_NUMERIC_LOCAL_SET_STANDARD();
2649 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2650 PTR2UV(sv), SvNVX(sv));
2651 RESTORE_NUMERIC_LOCAL();
2660 Return an SV with the numeric value of the source SV, doing any necessary
2661 reference or overload conversion. You must use the C<SvNUM(sv)> macro to
2662 access this function.
2668 Perl_sv_2num(pTHX_ register SV *const sv)
2670 PERL_ARGS_ASSERT_SV_2NUM;
2675 SV * const tmpsv = AMG_CALLun(sv,numer);
2676 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2677 return sv_2num(tmpsv);
2679 return sv_2mortal(newSVuv(PTR2UV(SvRV(sv))));
2682 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2683 * UV as a string towards the end of buf, and return pointers to start and
2686 * We assume that buf is at least TYPE_CHARS(UV) long.
2690 S_uiv_2buf(char *const buf, const IV iv, UV uv, const int is_uv, char **const peob)
2692 char *ptr = buf + TYPE_CHARS(UV);
2693 char * const ebuf = ptr;
2696 PERL_ARGS_ASSERT_UIV_2BUF;
2708 *--ptr = '0' + (char)(uv % 10);
2717 =for apidoc sv_2pv_flags
2719 Returns a pointer to the string value of an SV, and sets *lp to its length.
2720 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a string
2722 Normally invoked via the C<SvPV_flags> macro. C<sv_2pv()> and C<sv_2pv_nomg>
2723 usually end up here too.
2729 Perl_sv_2pv_flags(pTHX_ register SV *const sv, STRLEN *const lp, const I32 flags)
2739 if (SvGMAGICAL(sv)) {
2740 if (flags & SV_GMAGIC)
2745 if (flags & SV_MUTABLE_RETURN)
2746 return SvPVX_mutable(sv);
2747 if (flags & SV_CONST_RETURN)
2748 return (char *)SvPVX_const(sv);
2751 if (SvIOKp(sv) || SvNOKp(sv)) {
2752 char tbuf[64]; /* Must fit sprintf/Gconvert of longest IV/NV */
2757 ? my_snprintf(tbuf, sizeof(tbuf), "%"UVuf, (UV)SvUVX(sv))
2758 : my_snprintf(tbuf, sizeof(tbuf), "%"IVdf, (IV)SvIVX(sv));
2760 Gconvert(SvNVX(sv), NV_DIG, 0, tbuf);
2767 #ifdef FIXNEGATIVEZERO
2768 if (len == 2 && tbuf[0] == '-' && tbuf[1] == '0') {
2774 SvUPGRADE(sv, SVt_PV);
2777 s = SvGROW_mutable(sv, len + 1);
2780 return (char*)memcpy(s, tbuf, len + 1);
2786 assert(SvTYPE(sv) >= SVt_PVMG);
2787 /* This falls through to the report_uninit near the end of the
2789 } else if (SvTHINKFIRST(sv)) {
2793 SV *const tmpstr = AMG_CALLun(sv,string);
2794 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2796 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2800 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2801 if (flags & SV_CONST_RETURN) {
2802 pv = (char *) SvPVX_const(tmpstr);
2804 pv = (flags & SV_MUTABLE_RETURN)
2805 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2808 *lp = SvCUR(tmpstr);
2810 pv = sv_2pv_flags(tmpstr, lp, flags);
2823 SV *const referent = SvRV(sv);
2827 retval = buffer = savepvn("NULLREF", len);
2828 } else if (SvTYPE(referent) == SVt_REGEXP) {
2829 REGEXP * const re = (REGEXP *)MUTABLE_PTR(referent);
2834 /* If the regex is UTF-8 we want the containing scalar to
2835 have an UTF-8 flag too */
2841 if ((seen_evals = RX_SEEN_EVALS(re)))
2842 PL_reginterp_cnt += seen_evals;
2845 *lp = RX_WRAPLEN(re);
2847 return RX_WRAPPED(re);
2849 const char *const typestr = sv_reftype(referent, 0);
2850 const STRLEN typelen = strlen(typestr);
2851 UV addr = PTR2UV(referent);
2852 const char *stashname = NULL;
2853 STRLEN stashnamelen = 0; /* hush, gcc */
2854 const char *buffer_end;
2856 if (SvOBJECT(referent)) {
2857 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2860 stashname = HEK_KEY(name);
2861 stashnamelen = HEK_LEN(name);
2863 if (HEK_UTF8(name)) {
2869 stashname = "__ANON__";
2872 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2873 + 2 * sizeof(UV) + 2 /* )\0 */;
2875 len = typelen + 3 /* (0x */
2876 + 2 * sizeof(UV) + 2 /* )\0 */;
2879 Newx(buffer, len, char);
2880 buffer_end = retval = buffer + len;
2882 /* Working backwards */
2886 *--retval = PL_hexdigit[addr & 15];
2887 } while (addr >>= 4);
2893 memcpy(retval, typestr, typelen);
2897 retval -= stashnamelen;
2898 memcpy(retval, stashname, stashnamelen);
2900 /* retval may not neccesarily have reached the start of the
2902 assert (retval >= buffer);
2904 len = buffer_end - retval - 1; /* -1 for that \0 */
2912 if (SvREADONLY(sv) && !SvOK(sv)) {
2915 if (flags & SV_UNDEF_RETURNS_NULL)
2917 if (ckWARN(WARN_UNINITIALIZED))
2922 if (SvIOK(sv) || ((SvIOKp(sv) && !SvNOKp(sv)))) {
2923 /* I'm assuming that if both IV and NV are equally valid then
2924 converting the IV is going to be more efficient */
2925 const U32 isUIOK = SvIsUV(sv);
2926 char buf[TYPE_CHARS(UV)];
2930 if (SvTYPE(sv) < SVt_PVIV)
2931 sv_upgrade(sv, SVt_PVIV);
2932 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2934 /* inlined from sv_setpvn */
2935 s = SvGROW_mutable(sv, len + 1);
2936 Move(ptr, s, len, char);
2940 else if (SvNOKp(sv)) {
2942 if (SvTYPE(sv) < SVt_PVNV)
2943 sv_upgrade(sv, SVt_PVNV);
2944 /* The +20 is pure guesswork. Configure test needed. --jhi */
2945 s = SvGROW_mutable(sv, NV_DIG + 20);
2946 /* some Xenix systems wipe out errno here */
2948 if (SvNVX(sv) == 0.0)
2949 my_strlcpy(s, "0", SvLEN(sv));
2953 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2956 #ifdef FIXNEGATIVEZERO
2957 if (*s == '-' && s[1] == '0' && !s[2]) {
2969 if (isGV_with_GP(sv)) {
2970 GV *const gv = MUTABLE_GV(sv);
2971 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
2972 SV *const buffer = sv_newmortal();
2974 /* FAKE globs can get coerced, so need to turn this off temporarily
2977 gv_efullname3(buffer, gv, "*");
2978 SvFLAGS(gv) |= wasfake;
2980 assert(SvPOK(buffer));
2982 *lp = SvCUR(buffer);
2984 return SvPVX(buffer);
2989 if (flags & SV_UNDEF_RETURNS_NULL)
2991 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2993 if (SvTYPE(sv) < SVt_PV)
2994 /* Typically the caller expects that sv_any is not NULL now. */
2995 sv_upgrade(sv, SVt_PV);
2999 const STRLEN len = s - SvPVX_const(sv);
3005 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
3006 PTR2UV(sv),SvPVX_const(sv)));
3007 if (flags & SV_CONST_RETURN)
3008 return (char *)SvPVX_const(sv);
3009 if (flags & SV_MUTABLE_RETURN)
3010 return SvPVX_mutable(sv);
3015 =for apidoc sv_copypv
3017 Copies a stringified representation of the source SV into the
3018 destination SV. Automatically performs any necessary mg_get and
3019 coercion of numeric values into strings. Guaranteed to preserve
3020 UTF8 flag even from overloaded objects. Similar in nature to
3021 sv_2pv[_flags] but operates directly on an SV instead of just the
3022 string. Mostly uses sv_2pv_flags to do its work, except when that
3023 would lose the UTF-8'ness of the PV.
3029 Perl_sv_copypv(pTHX_ SV *const dsv, register SV *const ssv)
3032 const char * const s = SvPV_const(ssv,len);
3034 PERL_ARGS_ASSERT_SV_COPYPV;
3036 sv_setpvn(dsv,s,len);
3044 =for apidoc sv_2pvbyte
3046 Return a pointer to the byte-encoded representation of the SV, and set *lp
3047 to its length. May cause the SV to be downgraded from UTF-8 as a
3050 Usually accessed via the C<SvPVbyte> macro.
3056 Perl_sv_2pvbyte(pTHX_ register SV *const sv, STRLEN *const lp)
3058 PERL_ARGS_ASSERT_SV_2PVBYTE;
3060 sv_utf8_downgrade(sv,0);
3061 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
3065 =for apidoc sv_2pvutf8
3067 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
3068 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
3070 Usually accessed via the C<SvPVutf8> macro.
3076 Perl_sv_2pvutf8(pTHX_ register SV *const sv, STRLEN *const lp)
3078 PERL_ARGS_ASSERT_SV_2PVUTF8;
3080 sv_utf8_upgrade(sv);
3081 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
3086 =for apidoc sv_2bool
3088 This function is only called on magical items, and is only used by
3089 sv_true() or its macro equivalent.
3095 Perl_sv_2bool(pTHX_ register SV *const sv)
3099 PERL_ARGS_ASSERT_SV_2BOOL;
3107 SV * const tmpsv = AMG_CALLun(sv,bool_);
3108 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
3109 return (bool)SvTRUE(tmpsv);
3111 return SvRV(sv) != 0;
3114 register XPV* const Xpvtmp = (XPV*)SvANY(sv);
3116 (*sv->sv_u.svu_pv > '0' ||
3117 Xpvtmp->xpv_cur > 1 ||
3118 (Xpvtmp->xpv_cur && *sv->sv_u.svu_pv != '0')))
3125 return SvIVX(sv) != 0;
3128 return SvNVX(sv) != 0.0;
3130 if (isGV_with_GP(sv))
3140 =for apidoc sv_utf8_upgrade
3142 Converts the PV of an SV to its UTF-8-encoded form.
3143 Forces the SV to string form if it is not already.
3144 Will C<mg_get> on C<sv> if appropriate.
3145 Always sets the SvUTF8 flag to avoid future validity checks even
3146 if the whole string is the same in UTF-8 as not.
3147 Returns the number of bytes in the converted string
3149 This is not as a general purpose byte encoding to Unicode interface:
3150 use the Encode extension for that.
3152 =for apidoc sv_utf8_upgrade_nomg
3154 Like sv_utf8_upgrade, but doesn't do magic on C<sv>
3156 =for apidoc sv_utf8_upgrade_flags
3158 Converts the PV of an SV to its UTF-8-encoded form.
3159 Forces the SV to string form if it is not already.
3160 Always sets the SvUTF8 flag to avoid future validity checks even
3161 if all the bytes are invariant in UTF-8. If C<flags> has C<SV_GMAGIC> bit set,
3162 will C<mg_get> on C<sv> if appropriate, else not.
3163 Returns the number of bytes in the converted string
3164 C<sv_utf8_upgrade> and
3165 C<sv_utf8_upgrade_nomg> are implemented in terms of this function.
3167 This is not as a general purpose byte encoding to Unicode interface:
3168 use the Encode extension for that.
3172 The grow version is currently not externally documented. It adds a parameter,
3173 extra, which is the number of unused bytes the string of 'sv' is guaranteed to
3174 have free after it upon return. This allows the caller to reserve extra space
3175 that it intends to fill, to avoid extra grows.
3177 Also externally undocumented for the moment is the flag SV_FORCE_UTF8_UPGRADE,
3178 which can be used to tell this function to not first check to see if there are
3179 any characters that are different in UTF-8 (variant characters) which would
3180 force it to allocate a new string to sv, but to assume there are. Typically
3181 this flag is used by a routine that has already parsed the string to find that
3182 there are such characters, and passes this information on so that the work
3183 doesn't have to be repeated.
3185 (One might think that the calling routine could pass in the position of the
3186 first such variant, so it wouldn't have to be found again. But that is not the
3187 case, because typically when the caller is likely to use this flag, it won't be
3188 calling this routine unless it finds something that won't fit into a byte.
3189 Otherwise it tries to not upgrade and just use bytes. But some things that
3190 do fit into a byte are variants in utf8, and the caller may not have been
3191 keeping track of these.)
3193 If the routine itself changes the string, it adds a trailing NUL. Such a NUL
3194 isn't guaranteed due to having other routines do the work in some input cases,
3195 or if the input is already flagged as being in utf8.
3197 The speed of this could perhaps be improved for many cases if someone wanted to
3198 write a fast function that counts the number of variant characters in a string,
3199 especially if it could return the position of the first one.
3204 Perl_sv_utf8_upgrade_flags_grow(pTHX_ register SV *const sv, const I32 flags, STRLEN extra)
3208 PERL_ARGS_ASSERT_SV_UTF8_UPGRADE_FLAGS_GROW;
3210 if (sv == &PL_sv_undef)
3214 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
3215 (void) sv_2pv_flags(sv,&len, flags);
3217 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3221 (void) SvPV_force(sv,len);
3226 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3231 sv_force_normal_flags(sv, 0);
3234 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING)) {
3235 sv_recode_to_utf8(sv, PL_encoding);
3236 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3240 if (SvCUR(sv) > 0) { /* Assume Latin-1/EBCDIC */
3241 /* This function could be much more efficient if we
3242 * had a FLAG in SVs to signal if there are any variant
3243 * chars in the PV. Given that there isn't such a flag
3244 * make the loop as fast as possible (although there are certainly ways
3245 * to speed this up, eg. through vectorization) */
3246 U8 * s = (U8 *) SvPVX_const(sv);
3247 U8 * e = (U8 *) SvEND(sv);
3249 STRLEN two_byte_count = 0;
3251 if (flags & SV_FORCE_UTF8_UPGRADE) goto must_be_utf8;
3253 /* See if really will need to convert to utf8. We mustn't rely on our
3254 * incoming SV being well formed and having a trailing '\0', as certain
3255 * code in pp_formline can send us partially built SVs. */
3259 if (NATIVE_IS_INVARIANT(ch)) continue;
3261 t--; /* t already incremented; re-point to first variant */
3266 /* utf8 conversion not needed because all are invariants. Mark as
3267 * UTF-8 even if no variant - saves scanning loop */
3273 /* Here, the string should be converted to utf8, either because of an
3274 * input flag (two_byte_count = 0), or because a character that
3275 * requires 2 bytes was found (two_byte_count = 1). t points either to
3276 * the beginning of the string (if we didn't examine anything), or to
3277 * the first variant. In either case, everything from s to t - 1 will
3278 * occupy only 1 byte each on output.
3280 * There are two main ways to convert. One is to create a new string
3281 * and go through the input starting from the beginning, appending each
3282 * converted value onto the new string as we go along. It's probably
3283 * best to allocate enough space in the string for the worst possible
3284 * case rather than possibly running out of space and having to
3285 * reallocate and then copy what we've done so far. Since everything
3286 * from s to t - 1 is invariant, the destination can be initialized
3287 * with these using a fast memory copy
3289 * The other way is to figure out exactly how big the string should be
3290 * by parsing the entire input. Then you don't have to make it big
3291 * enough to handle the worst possible case, and more importantly, if
3292 * the string you already have is large enough, you don't have to
3293 * allocate a new string, you can copy the last character in the input
3294 * string to the final position(s) that will be occupied by the
3295 * converted string and go backwards, stopping at t, since everything
3296 * before that is invariant.
3298 * There are advantages and disadvantages to each method.
3300 * In the first method, we can allocate a new string, do the memory
3301 * copy from the s to t - 1, and then proceed through the rest of the
3302 * string byte-by-byte.
3304 * In the second method, we proceed through the rest of the input
3305 * string just calculating how big the converted string will be. Then
3306 * there are two cases:
3307 * 1) if the string has enough extra space to handle the converted
3308 * value. We go backwards through the string, converting until we
3309 * get to the position we are at now, and then stop. If this
3310 * position is far enough along in the string, this method is
3311 * faster than the other method. If the memory copy were the same
3312 * speed as the byte-by-byte loop, that position would be about
3313 * half-way, as at the half-way mark, parsing to the end and back
3314 * is one complete string's parse, the same amount as starting
3315 * over and going all the way through. Actually, it would be
3316 * somewhat less than half-way, as it's faster to just count bytes
3317 * than to also copy, and we don't have the overhead of allocating
3318 * a new string, changing the scalar to use it, and freeing the
3319 * existing one. But if the memory copy is fast, the break-even
3320 * point is somewhere after half way. The counting loop could be
3321 * sped up by vectorization, etc, to move the break-even point
3322 * further towards the beginning.
3323 * 2) if the string doesn't have enough space to handle the converted
3324 * value. A new string will have to be allocated, and one might
3325 * as well, given that, start from the beginning doing the first
3326 * method. We've spent extra time parsing the string and in
3327 * exchange all we've gotten is that we know precisely how big to
3328 * make the new one. Perl is more optimized for time than space,
3329 * so this case is a loser.
3330 * So what I've decided to do is not use the 2nd method unless it is
3331 * guaranteed that a new string won't have to be allocated, assuming
3332 * the worst case. I also decided not to put any more conditions on it
3333 * than this, for now. It seems likely that, since the worst case is
3334 * twice as big as the unknown portion of the string (plus 1), we won't
3335 * be guaranteed enough space, causing us to go to the first method,
3336 * unless the string is short, or the first variant character is near
3337 * the end of it. In either of these cases, it seems best to use the
3338 * 2nd method. The only circumstance I can think of where this would
3339 * be really slower is if the string had once had much more data in it
3340 * than it does now, but there is still a substantial amount in it */
3343 STRLEN invariant_head = t - s;
3344 STRLEN size = invariant_head + (e - t) * 2 + 1 + extra;
3345 if (SvLEN(sv) < size) {
3347 /* Here, have decided to allocate a new string */
3352 Newx(dst, size, U8);
3354 /* If no known invariants at the beginning of the input string,
3355 * set so starts from there. Otherwise, can use memory copy to
3356 * get up to where we are now, and then start from here */
3358 if (invariant_head <= 0) {
3361 Copy(s, dst, invariant_head, char);
3362 d = dst + invariant_head;
3366 const UV uv = NATIVE8_TO_UNI(*t++);
3367 if (UNI_IS_INVARIANT(uv))
3368 *d++ = (U8)UNI_TO_NATIVE(uv);
3370 *d++ = (U8)UTF8_EIGHT_BIT_HI(uv);
3371 *d++ = (U8)UTF8_EIGHT_BIT_LO(uv);
3375 SvPV_free(sv); /* No longer using pre-existing string */
3376 SvPV_set(sv, (char*)dst);
3377 SvCUR_set(sv, d - dst);
3378 SvLEN_set(sv, size);
3381 /* Here, have decided to get the exact size of the string.
3382 * Currently this happens only when we know that there is
3383 * guaranteed enough space to fit the converted string, so
3384 * don't have to worry about growing. If two_byte_count is 0,
3385 * then t points to the first byte of the string which hasn't
3386 * been examined yet. Otherwise two_byte_count is 1, and t
3387 * points to the first byte in the string that will expand to
3388 * two. Depending on this, start examining at t or 1 after t.
3391 U8 *d = t + two_byte_count;
3394 /* Count up the remaining bytes that expand to two */
3397 const U8 chr = *d++;
3398 if (! NATIVE_IS_INVARIANT(chr)) two_byte_count++;
3401 /* The string will expand by just the number of bytes that
3402 * occupy two positions. But we are one afterwards because of
3403 * the increment just above. This is the place to put the
3404 * trailing NUL, and to set the length before we decrement */
3406 d += two_byte_count;
3407 SvCUR_set(sv, d - s);
3411 /* Having decremented d, it points to the position to put the
3412 * very last byte of the expanded string. Go backwards through
3413 * the string, copying and expanding as we go, stopping when we
3414 * get to the part that is invariant the rest of the way down */
3418 const U8 ch = NATIVE8_TO_UNI(*e--);
3419 if (UNI_IS_INVARIANT(ch)) {
3420 *d-- = UNI_TO_NATIVE(ch);
3422 *d-- = (U8)UTF8_EIGHT_BIT_LO(ch);
3423 *d-- = (U8)UTF8_EIGHT_BIT_HI(ch);
3430 /* Mark as UTF-8 even if no variant - saves scanning loop */
3436 =for apidoc sv_utf8_downgrade
3438 Attempts to convert the PV of an SV from characters to bytes.
3439 If the PV contains a character that cannot fit
3440 in a byte, this conversion will fail;
3441 in this case, either returns false or, if C<fail_ok> is not
3444 This is not as a general purpose Unicode to byte encoding interface:
3445 use the Encode extension for that.
3451 Perl_sv_utf8_downgrade(pTHX_ register SV *const sv, const bool fail_ok)
3455 PERL_ARGS_ASSERT_SV_UTF8_DOWNGRADE;
3457 if (SvPOKp(sv) && SvUTF8(sv)) {
3463 sv_force_normal_flags(sv, 0);
3465 s = (U8 *) SvPV(sv, len);
3466 if (!utf8_to_bytes(s, &len)) {
3471 Perl_croak(aTHX_ "Wide character in %s",
3474 Perl_croak(aTHX_ "Wide character");
3485 =for apidoc sv_utf8_encode
3487 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3488 flag off so that it looks like octets again.
3494 Perl_sv_utf8_encode(pTHX_ register SV *const sv)
3496 PERL_ARGS_ASSERT_SV_UTF8_ENCODE;
3499 sv_force_normal_flags(sv, 0);
3501 if (SvREADONLY(sv)) {
3502 Perl_croak(aTHX_ "%s", PL_no_modify);
3504 (void) sv_utf8_upgrade(sv);
3509 =for apidoc sv_utf8_decode
3511 If the PV of the SV is an octet sequence in UTF-8
3512 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3513 so that it looks like a character. If the PV contains only single-byte
3514 characters, the C<SvUTF8> flag stays being off.
3515 Scans PV for validity and returns false if the PV is invalid UTF-8.
3521 Perl_sv_utf8_decode(pTHX_ register SV *const sv)
3523 PERL_ARGS_ASSERT_SV_UTF8_DECODE;
3529 /* The octets may have got themselves encoded - get them back as
3532 if (!sv_utf8_downgrade(sv, TRUE))
3535 /* it is actually just a matter of turning the utf8 flag on, but
3536 * we want to make sure everything inside is valid utf8 first.
3538 c = (const U8 *) SvPVX_const(sv);
3539 if (!is_utf8_string(c, SvCUR(sv)+1))
3541 e = (const U8 *) SvEND(sv);
3544 if (!UTF8_IS_INVARIANT(ch)) {
3554 =for apidoc sv_setsv
3556 Copies the contents of the source SV C<ssv> into the destination SV
3557 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3558 function if the source SV needs to be reused. Does not handle 'set' magic.
3559 Loosely speaking, it performs a copy-by-value, obliterating any previous
3560 content of the destination.
3562 You probably want to use one of the assortment of wrappers, such as
3563 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3564 C<SvSetMagicSV_nosteal>.
3566 =for apidoc sv_setsv_flags
3568 Copies the contents of the source SV C<ssv> into the destination SV
3569 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3570 function if the source SV needs to be reused. Does not handle 'set' magic.
3571 Loosely speaking, it performs a copy-by-value, obliterating any previous
3572 content of the destination.
3573 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3574 C<ssv> if appropriate, else not. If the C<flags> parameter has the
3575 C<NOSTEAL> bit set then the buffers of temps will not be stolen. <sv_setsv>
3576 and C<sv_setsv_nomg> are implemented in terms of this function.
3578 You probably want to use one of the assortment of wrappers, such as
3579 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3580 C<SvSetMagicSV_nosteal>.
3582 This is the primary function for copying scalars, and most other
3583 copy-ish functions and macros use this underneath.
3589 S_glob_assign_glob(pTHX_ SV *const dstr, SV *const sstr, const int dtype)
3591 I32 mro_changes = 0; /* 1 = method, 2 = isa */
3593 PERL_ARGS_ASSERT_GLOB_ASSIGN_GLOB;
3595 if (dtype != SVt_PVGV) {
3596 const char * const name = GvNAME(sstr);
3597 const STRLEN len = GvNAMELEN(sstr);
3599 if (dtype >= SVt_PV) {
3605 SvUPGRADE(dstr, SVt_PVGV);
3606 (void)SvOK_off(dstr);
3607 /* FIXME - why are we doing this, then turning it off and on again
3609 isGV_with_GP_on(dstr);
3611 GvSTASH(dstr) = GvSTASH(sstr);
3613 Perl_sv_add_backref(aTHX_ MUTABLE_SV(GvSTASH(dstr)), dstr);
3614 gv_name_set(MUTABLE_GV(dstr), name, len, GV_ADD);
3615 SvFAKE_on(dstr); /* can coerce to non-glob */
3618 if(GvGP(MUTABLE_GV(sstr))) {
3619 /* If source has method cache entry, clear it */
3621 SvREFCNT_dec(GvCV(sstr));
3625 /* If source has a real method, then a method is
3627 else if(GvCV((const GV *)sstr)) {
3632 /* If dest already had a real method, that's a change as well */
3633 if(!mro_changes && GvGP(MUTABLE_GV(dstr)) && GvCVu((const GV *)dstr)) {
3637 if(strEQ(GvNAME((const GV *)dstr),"ISA"))
3640 gp_free(MUTABLE_GV(dstr));
3641 isGV_with_GP_off(dstr);
3642 (void)SvOK_off(dstr);
3643 isGV_with_GP_on(dstr);
3644 GvINTRO_off(dstr); /* one-shot flag */
3645 GvGP(dstr) = gp_ref(GvGP(sstr));
3646 if (SvTAINTED(sstr))
3648 if (GvIMPORTED(dstr) != GVf_IMPORTED
3649 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3651 GvIMPORTED_on(dstr);
3654 if(mro_changes == 2) mro_isa_changed_in(GvSTASH(dstr));
3655 else if(mro_changes) mro_method_changed_in(GvSTASH(dstr));
3660 S_glob_assign_ref(pTHX_ SV *const dstr, SV *const sstr)
3662 SV * const sref = SvREFCNT_inc(SvRV(sstr));
3664 const int intro = GvINTRO(dstr);
3667 const U32 stype = SvTYPE(sref);
3669 PERL_ARGS_ASSERT_GLOB_ASSIGN_REF;
3672 GvINTRO_off(dstr); /* one-shot flag */
3673 GvLINE(dstr) = CopLINE(PL_curcop);
3674 GvEGV(dstr) = MUTABLE_GV(dstr);
3679 location = (SV **) &GvCV(dstr);
3680 import_flag = GVf_IMPORTED_CV;
3683 location = (SV **) &GvHV(dstr);
3684 import_flag = GVf_IMPORTED_HV;
3687 location = (SV **) &GvAV(dstr);
3688 import_flag = GVf_IMPORTED_AV;
3691 location = (SV **) &GvIOp(dstr);
3694 location = (SV **) &GvFORM(dstr);
3697 location = &GvSV(dstr);
3698 import_flag = GVf_IMPORTED_SV;
3701 if (stype == SVt_PVCV) {
3702 /*if (GvCVGEN(dstr) && (GvCV(dstr) != (const CV *)sref || GvCVGEN(dstr))) {*/
3703 if (GvCVGEN(dstr)) {
3704 SvREFCNT_dec(GvCV(dstr));
3706 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3709 SAVEGENERICSV(*location);
3713 if (stype == SVt_PVCV && (*location != sref || GvCVGEN(dstr))) {
3714 CV* const cv = MUTABLE_CV(*location);
3716 if (!GvCVGEN((const GV *)dstr) &&
3717 (CvROOT(cv) || CvXSUB(cv)))
3719 /* Redefining a sub - warning is mandatory if
3720 it was a const and its value changed. */
3721 if (CvCONST(cv) && CvCONST((const CV *)sref)
3723 == cv_const_sv((const CV *)sref)) {
3725 /* They are 2 constant subroutines generated from
3726 the same constant. This probably means that
3727 they are really the "same" proxy subroutine
3728 instantiated in 2 places. Most likely this is
3729 when a constant is exported twice. Don't warn.
3732 else if (ckWARN(WARN_REDEFINE)
3734 && (!CvCONST((const CV *)sref)
3735 || sv_cmp(cv_const_sv(cv),
3736 cv_const_sv((const CV *)
3738 Perl_warner(aTHX_ packWARN(WARN_REDEFINE),
3741 ? "Constant subroutine %s::%s redefined"
3742 : "Subroutine %s::%s redefined"),
3743 HvNAME_get(GvSTASH((const GV *)dstr)),
3744 GvENAME(MUTABLE_GV(dstr)));
3748 cv_ckproto_len(cv, (const GV *)dstr,
3749 SvPOK(sref) ? SvPVX_const(sref) : NULL,
3750 SvPOK(sref) ? SvCUR(sref) : 0);
3752 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3753 GvASSUMECV_on(dstr);
3754 if(GvSTASH(dstr)) mro_method_changed_in(GvSTASH(dstr)); /* sub foo { 1 } sub bar { 2 } *bar = \&foo */
3757 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3758 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3759 GvFLAGS(dstr) |= import_flag;
3764 if (SvTAINTED(sstr))
3770 Perl_sv_setsv_flags(pTHX_ SV *dstr, register SV* sstr, const I32 flags)
3773 register U32 sflags;
3775 register svtype stype;
3777 PERL_ARGS_ASSERT_SV_SETSV_FLAGS;
3782 if (SvIS_FREED(dstr)) {
3783 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
3784 " to a freed scalar %p", SVfARG(sstr), (void *)dstr);
3786 SV_CHECK_THINKFIRST_COW_DROP(dstr);
3788 sstr = &PL_sv_undef;
3789 if (SvIS_FREED(sstr)) {
3790 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
3791 (void*)sstr, (void*)dstr);
3793 stype = SvTYPE(sstr);
3794 dtype = SvTYPE(dstr);
3796 (void)SvAMAGIC_off(dstr);
3799 /* need to nuke the magic */
3803 /* There's a lot of redundancy below but we're going for speed here */
3808 if (dtype != SVt_PVGV) {
3809 (void)SvOK_off(dstr);
3817 sv_upgrade(dstr, SVt_IV);
3821 sv_upgrade(dstr, SVt_PVIV);
3824 goto end_of_first_switch;
3826 (void)SvIOK_only(dstr);
3827 SvIV_set(dstr, SvIVX(sstr));
3830 /* SvTAINTED can only be true if the SV has taint magic, which in
3831 turn means that the SV type is PVMG (or greater). This is the
3832 case statement for SVt_IV, so this cannot be true (whatever gcov
3834 assert(!SvTAINTED(sstr));
3839 if (dtype < SVt_PV && dtype != SVt_IV)
3840 sv_upgrade(dstr, SVt_IV);
3848 sv_upgrade(dstr, SVt_NV);
3852 sv_upgrade(dstr, SVt_PVNV);
3855 goto end_of_first_switch;
3857 SvNV_set(dstr, SvNVX(sstr));
3858 (void)SvNOK_only(dstr);
3859 /* SvTAINTED can only be true if the SV has taint magic, which in
3860 turn means that the SV type is PVMG (or greater). This is the
3861 case statement for SVt_NV, so this cannot be true (whatever gcov
3863 assert(!SvTAINTED(sstr));
3869 #ifdef PERL_OLD_COPY_ON_WRITE
3870 if ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS) {
3871 if (dtype < SVt_PVIV)
3872 sv_upgrade(dstr, SVt_PVIV);
3880 sv_upgrade(dstr, SVt_PV);
3883 if (dtype < SVt_PVIV)
3884 sv_upgrade(dstr, SVt_PVIV);
3887 if (dtype < SVt_PVNV)
3888 sv_upgrade(dstr, SVt_PVNV);
3892 const char * const type = sv_reftype(sstr,0);
3894 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_NAME(PL_op));
3896 Perl_croak(aTHX_ "Bizarre copy of %s", type);
3900 /* case SVt_BIND: */
3903 if (isGV_with_GP(sstr) && dtype <= SVt_PVGV) {
3904 glob_assign_glob(dstr, sstr, dtype);
3907 /* SvVALID means that this PVGV is playing at being an FBM. */
3911 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
3913 if (SvTYPE(sstr) != stype) {
3914 stype = SvTYPE(sstr);
3915 if (isGV_with_GP(sstr) && stype == SVt_PVGV && dtype <= SVt_PVGV) {
3916 glob_assign_glob(dstr, sstr, dtype);
3921 if (stype == SVt_PVLV)
3922 SvUPGRADE(dstr, SVt_PVNV);
3924 SvUPGRADE(dstr, (svtype)stype);
3926 end_of_first_switch:
3928 /* dstr may have been upgraded. */
3929 dtype = SvTYPE(dstr);
3930 sflags = SvFLAGS(sstr);
3932 if (dtype == SVt_PVCV || dtype == SVt_PVFM) {
3933 /* Assigning to a subroutine sets the prototype. */
3936 const char *const ptr = SvPV_const(sstr, len);
3938 SvGROW(dstr, len + 1);
3939 Copy(ptr, SvPVX(dstr), len + 1, char);
3940 SvCUR_set(dstr, len);
3942 SvFLAGS(dstr) |= sflags & SVf_UTF8;
3946 } else if (dtype == SVt_PVAV || dtype == SVt_PVHV) {
3947 const char * const type = sv_reftype(dstr,0);
3949 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_NAME(PL_op));
3951 Perl_croak(aTHX_ "Cannot copy to %s", type);
3952 } else if (sflags & SVf_ROK) {
3953 if (isGV_with_GP(dstr) && dtype == SVt_PVGV
3954 && SvTYPE(SvRV(sstr)) == SVt_PVGV && isGV_with_GP(SvRV(sstr))) {
3957 if (GvIMPORTED(dstr) != GVf_IMPORTED
3958 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3960 GvIMPORTED_on(dstr);
3965 glob_assign_glob(dstr, sstr, dtype);
3969 if (dtype >= SVt_PV) {
3970 if (dtype == SVt_PVGV && isGV_with_GP(dstr)) {
3971 glob_assign_ref(dstr, sstr);
3974 if (SvPVX_const(dstr)) {
3980 (void)SvOK_off(dstr);
3981 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
3982 SvFLAGS(dstr) |= sflags & SVf_ROK;
3983 assert(!(sflags & SVp_NOK));
3984 assert(!(sflags & SVp_IOK));
3985 assert(!(sflags & SVf_NOK));
3986 assert(!(sflags & SVf_IOK));
3988 else if (dtype == SVt_PVGV && isGV_with_GP(dstr)) {
3989 if (!(sflags & SVf_OK)) {
3990 if (ckWARN(WARN_MISC))
3991 Perl_warner(aTHX_ packWARN(WARN_MISC),
3992 "Undefined value assigned to typeglob");
3995 GV *gv = gv_fetchsv(sstr, GV_ADD, SVt_PVGV);
3996 if (dstr != (const SV *)gv) {
3998 gp_free(MUTABLE_GV(dstr));
3999 GvGP(dstr) = gp_ref(GvGP(gv));
4003 else if (sflags & SVp_POK) {
4007 * Check to see if we can just swipe the string. If so, it's a
4008 * possible small lose on short strings, but a big win on long ones.
4009 * It might even be a win on short strings if SvPVX_const(dstr)
4010 * has to be allocated and SvPVX_const(sstr) has to be freed.
4011 * Likewise if we can set up COW rather than doing an actual copy, we
4012 * drop to the else clause, as the swipe code and the COW setup code
4013 * have much in common.
4016 /* Whichever path we take through the next code, we want this true,
4017 and doing it now facilitates the COW check. */
4018 (void)SvPOK_only(dstr);
4021 /* If we're already COW then this clause is not true, and if COW
4022 is allowed then we drop down to the else and make dest COW
4023 with us. If caller hasn't said that we're allowed to COW
4024 shared hash keys then we don't do the COW setup, even if the
4025 source scalar is a shared hash key scalar. */
4026 (((flags & SV_COW_SHARED_HASH_KEYS)
4027 ? (sflags & (SVf_FAKE|SVf_READONLY)) != (SVf_FAKE|SVf_READONLY)
4028 : 1 /* If making a COW copy is forbidden then the behaviour we
4029 desire is as if the source SV isn't actually already
4030 COW, even if it is. So we act as if the source flags
4031 are not COW, rather than actually testing them. */
4033 #ifndef PERL_OLD_COPY_ON_WRITE
4034 /* The change that added SV_COW_SHARED_HASH_KEYS makes the logic
4035 when PERL_OLD_COPY_ON_WRITE is defined a little wrong.
4036 Conceptually PERL_OLD_COPY_ON_WRITE being defined should
4037 override SV_COW_SHARED_HASH_KEYS, because it means "always COW"
4038 but in turn, it's somewhat dead code, never expected to go
4039 live, but more kept as a placeholder on how to do it better
4040 in a newer implementation. */
4041 /* If we are COW and dstr is a suitable target then we drop down
4042 into the else and make dest a COW of us. */
4043 || (SvFLAGS(dstr) & CAN_COW_MASK) != CAN_COW_FLAGS
4048 (sflags & SVs_TEMP) && /* slated for free anyway? */
4049 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
4050 (!(flags & SV_NOSTEAL)) &&
4051 /* and we're allowed to steal temps */
4052 SvREFCNT(sstr) == 1 && /* and no other references to it? */
4053 SvLEN(sstr) && /* and really is a string */
4054 /* and won't be needed again, potentially */
4055 !(PL_op && PL_op->op_type == OP_AASSIGN))
4056 #ifdef PERL_OLD_COPY_ON_WRITE
4057 && ((flags & SV_COW_SHARED_HASH_KEYS)
4058 ? (!((sflags & CAN_COW_MASK) == CAN_COW_FLAGS
4059 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
4060 && SvTYPE(sstr) >= SVt_PVIV && SvTYPE(sstr) != SVt_PVFM))
4064 /* Failed the swipe test, and it's not a shared hash key either.
4065 Have to copy the string. */
4066 STRLEN len = SvCUR(sstr);
4067 SvGROW(dstr, len + 1); /* inlined from sv_setpvn */
4068 Move(SvPVX_const(sstr),SvPVX(dstr),len,char);
4069 SvCUR_set(dstr, len);
4070 *SvEND(dstr) = '\0';
4072 /* If PERL_OLD_COPY_ON_WRITE is not defined, then isSwipe will always
4074 /* Either it's a shared hash key, or it's suitable for
4075 copy-on-write or we can swipe the string. */
4077 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
4081 #ifdef PERL_OLD_COPY_ON_WRITE
4083 if ((sflags & (SVf_FAKE | SVf_READONLY))
4084 != (SVf_FAKE | SVf_READONLY)) {
4085 SvREADONLY_on(sstr);
4087 /* Make the source SV into a loop of 1.
4088 (about to become 2) */
4089 SV_COW_NEXT_SV_SET(sstr, sstr);
4093 /* Initial code is common. */
4094 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
4099 /* making another shared SV. */
4100 STRLEN cur = SvCUR(sstr);
4101 STRLEN len = SvLEN(sstr);
4102 #ifdef PERL_OLD_COPY_ON_WRITE
4104 assert (SvTYPE(dstr) >= SVt_PVIV);
4105 /* SvIsCOW_normal */
4106 /* splice us in between source and next-after-source. */
4107 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4108 SV_COW_NEXT_SV_SET(sstr, dstr);
4109 SvPV_set(dstr, SvPVX_mutable(sstr));
4113 /* SvIsCOW_shared_hash */
4114 DEBUG_C(PerlIO_printf(Perl_debug_log,
4115 "Copy on write: Sharing hash\n"));
4117 assert (SvTYPE(dstr) >= SVt_PV);
4119 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
4121 SvLEN_set(dstr, len);
4122 SvCUR_set(dstr, cur);
4123 SvREADONLY_on(dstr);
4127 { /* Passes the swipe test. */
4128 SvPV_set(dstr, SvPVX_mutable(sstr));
4129 SvLEN_set(dstr, SvLEN(sstr));
4130 SvCUR_set(dstr, SvCUR(sstr));
4133 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
4134 SvPV_set(sstr, NULL);
4140 if (sflags & SVp_NOK) {
4141 SvNV_set(dstr, SvNVX(sstr));
4143 if (sflags & SVp_IOK) {
4144 SvIV_set(dstr, SvIVX(sstr));
4145 /* Must do this otherwise some other overloaded use of 0x80000000
4146 gets confused. I guess SVpbm_VALID */
4147 if (sflags & SVf_IVisUV)
4150 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8);
4152 const MAGIC * const smg = SvVSTRING_mg(sstr);
4154 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
4155 smg->mg_ptr, smg->mg_len);
4156 SvRMAGICAL_on(dstr);
4160 else if (sflags & (SVp_IOK|SVp_NOK)) {
4161 (void)SvOK_off(dstr);
4162 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK);
4163 if (sflags & SVp_IOK) {
4164 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
4165 SvIV_set(dstr, SvIVX(sstr));
4167 if (sflags & SVp_NOK) {
4168 SvNV_set(dstr, SvNVX(sstr));
4172 if (isGV_with_GP(sstr)) {
4173 /* This stringification rule for globs is spread in 3 places.
4174 This feels bad. FIXME. */
4175 const U32 wasfake = sflags & SVf_FAKE;
4177 /* FAKE globs can get coerced, so need to turn this off
4178 temporarily if it is on. */
4180 gv_efullname3(dstr, MUTABLE_GV(sstr), "*");
4181 SvFLAGS(sstr) |= wasfake;
4184 (void)SvOK_off(dstr);
4186 if (SvTAINTED(sstr))
4191 =for apidoc sv_setsv_mg
4193 Like C<sv_setsv>, but also handles 'set' magic.
4199 Perl_sv_setsv_mg(pTHX_ SV *const dstr, register SV *const sstr)
4201 PERL_ARGS_ASSERT_SV_SETSV_MG;
4203 sv_setsv(dstr,sstr);
4207 #ifdef PERL_OLD_COPY_ON_WRITE
4209 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
4211 STRLEN cur = SvCUR(sstr);
4212 STRLEN len = SvLEN(sstr);
4213 register char *new_pv;
4215 PERL_ARGS_ASSERT_SV_SETSV_COW;
4218 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
4219 (void*)sstr, (void*)dstr);
4226 if (SvTHINKFIRST(dstr))
4227 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
4228 else if (SvPVX_const(dstr))
4229 Safefree(SvPVX_const(dstr));
4233 SvUPGRADE(dstr, SVt_PVIV);
4235 assert (SvPOK(sstr));
4236 assert (SvPOKp(sstr));
4237 assert (!SvIOK(sstr));
4238 assert (!SvIOKp(sstr));
4239 assert (!SvNOK(sstr));
4240 assert (!SvNOKp(sstr));
4242 if (SvIsCOW(sstr)) {
4244 if (SvLEN(sstr) == 0) {
4245 /* source is a COW shared hash key. */
4246 DEBUG_C(PerlIO_printf(Perl_debug_log,
4247 "Fast copy on write: Sharing hash\n"));
4248 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
4251 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4253 assert ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS);
4254 SvUPGRADE(sstr, SVt_PVIV);
4255 SvREADONLY_on(sstr);
4257 DEBUG_C(PerlIO_printf(Perl_debug_log,
4258 "Fast copy on write: Converting sstr to COW\n"));
4259 SV_COW_NEXT_SV_SET(dstr, sstr);
4261 SV_COW_NEXT_SV_SET(sstr, dstr);
4262 new_pv = SvPVX_mutable(sstr);
4265 SvPV_set(dstr, new_pv);
4266 SvFLAGS(dstr) = (SVt_PVIV|SVf_POK|SVp_POK|SVf_FAKE|SVf_READONLY);
4269 SvLEN_set(dstr, len);
4270 SvCUR_set(dstr, cur);
4279 =for apidoc sv_setpvn
4281 Copies a string into an SV. The C<len> parameter indicates the number of
4282 bytes to be copied. If the C<ptr> argument is NULL the SV will become
4283 undefined. Does not handle 'set' magic. See C<sv_setpvn_mg>.
4289 Perl_sv_setpvn(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4292 register char *dptr;
4294 PERL_ARGS_ASSERT_SV_SETPVN;
4296 SV_CHECK_THINKFIRST_COW_DROP(sv);
4302 /* len is STRLEN which is unsigned, need to copy to signed */
4305 Perl_croak(aTHX_ "panic: sv_setpvn called with negative strlen");
4307 SvUPGRADE(sv, SVt_PV);
4309 dptr = SvGROW(sv, len + 1);
4310 Move(ptr,dptr,len,char);
4313 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4318 =for apidoc sv_setpvn_mg
4320 Like C<sv_setpvn>, but also handles 'set' magic.
4326 Perl_sv_setpvn_mg(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4328 PERL_ARGS_ASSERT_SV_SETPVN_MG;
4330 sv_setpvn(sv,ptr,len);
4335 =for apidoc sv_setpv
4337 Copies a string into an SV. The string must be null-terminated. Does not
4338 handle 'set' magic. See C<sv_setpv_mg>.
4344 Perl_sv_setpv(pTHX_ register SV *const sv, register const char *const ptr)
4347 register STRLEN len;
4349 PERL_ARGS_ASSERT_SV_SETPV;
4351 SV_CHECK_THINKFIRST_COW_DROP(sv);
4357 SvUPGRADE(sv, SVt_PV);
4359 SvGROW(sv, len + 1);
4360 Move(ptr,SvPVX(sv),len+1,char);
4362 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4367 =for apidoc sv_setpv_mg
4369 Like C<sv_setpv>, but also handles 'set' magic.
4375 Perl_sv_setpv_mg(pTHX_ register SV *const sv, register const char *const ptr)
4377 PERL_ARGS_ASSERT_SV_SETPV_MG;
4384 =for apidoc sv_usepvn_flags
4386 Tells an SV to use C<ptr> to find its string value. Normally the
4387 string is stored inside the SV but sv_usepvn allows the SV to use an
4388 outside string. The C<ptr> should point to memory that was allocated
4389 by C<malloc>. The string length, C<len>, must be supplied. By default
4390 this function will realloc (i.e. move) the memory pointed to by C<ptr>,
4391 so that pointer should not be freed or used by the programmer after
4392 giving it to sv_usepvn, and neither should any pointers from "behind"
4393 that pointer (e.g. ptr + 1) be used.
4395 If C<flags> & SV_SMAGIC is true, will call SvSETMAGIC. If C<flags> &
4396 SV_HAS_TRAILING_NUL is true, then C<ptr[len]> must be NUL, and the realloc
4397 will be skipped. (i.e. the buffer is actually at least 1 byte longer than
4398 C<len>, and already meets the requirements for storing in C<SvPVX>)
4404 Perl_sv_usepvn_flags(pTHX_ SV *const sv, char *ptr, const STRLEN len, const U32 flags)
4409 PERL_ARGS_ASSERT_SV_USEPVN_FLAGS;
4411 SV_CHECK_THINKFIRST_COW_DROP(sv);
4412 SvUPGRADE(sv, SVt_PV);
4415 if (flags & SV_SMAGIC)
4419 if (SvPVX_const(sv))
4423 if (flags & SV_HAS_TRAILING_NUL)
4424 assert(ptr[len] == '\0');
4427 allocate = (flags & SV_HAS_TRAILING_NUL)
4429 #ifdef Perl_safesysmalloc_size
4432 PERL_STRLEN_ROUNDUP(len + 1);
4434 if (flags & SV_HAS_TRAILING_NUL) {
4435 /* It's long enough - do nothing.
4436 Specfically Perl_newCONSTSUB is relying on this. */
4439 /* Force a move to shake out bugs in callers. */
4440 char *new_ptr = (char*)safemalloc(allocate);
4441 Copy(ptr, new_ptr, len, char);
4442 PoisonFree(ptr,len,char);
4446 ptr = (char*) saferealloc (ptr, allocate);
4449 #ifdef Perl_safesysmalloc_size
4450 SvLEN_set(sv, Perl_safesysmalloc_size(ptr));
4452 SvLEN_set(sv, allocate);
4456 if (!(flags & SV_HAS_TRAILING_NUL)) {
4459 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4461 if (flags & SV_SMAGIC)
4465 #ifdef PERL_OLD_COPY_ON_WRITE
4466 /* Need to do this *after* making the SV normal, as we need the buffer
4467 pointer to remain valid until after we've copied it. If we let go too early,
4468 another thread could invalidate it by unsharing last of the same hash key
4469 (which it can do by means other than releasing copy-on-write Svs)
4470 or by changing the other copy-on-write SVs in the loop. */
4472 S_sv_release_COW(pTHX_ register SV *sv, const char *pvx, SV *after)
4474 PERL_ARGS_ASSERT_SV_RELEASE_COW;
4476 { /* this SV was SvIsCOW_normal(sv) */
4477 /* we need to find the SV pointing to us. */
4478 SV *current = SV_COW_NEXT_SV(after);
4480 if (current == sv) {
4481 /* The SV we point to points back to us (there were only two of us
4483 Hence other SV is no longer copy on write either. */
4485 SvREADONLY_off(after);
4487 /* We need to follow the pointers around the loop. */
4489 while ((next = SV_COW_NEXT_SV(current)) != sv) {
4492 /* don't loop forever if the structure is bust, and we have
4493 a pointer into a closed loop. */
4494 assert (current != after);
4495 assert (SvPVX_const(current) == pvx);
4497 /* Make the SV before us point to the SV after us. */
4498 SV_COW_NEXT_SV_SET(current, after);
4504 =for apidoc sv_force_normal_flags
4506 Undo various types of fakery on an SV: if the PV is a shared string, make
4507 a private copy; if we're a ref, stop refing; if we're a glob, downgrade to
4508 an xpvmg; if we're a copy-on-write scalar, this is the on-write time when
4509 we do the copy, and is also used locally. If C<SV_COW_DROP_PV> is set
4510 then a copy-on-write scalar drops its PV buffer (if any) and becomes
4511 SvPOK_off rather than making a copy. (Used where this scalar is about to be
4512 set to some other value.) In addition, the C<flags> parameter gets passed to
4513 C<sv_unref_flags()> when unrefing. C<sv_force_normal> calls this function
4514 with flags set to 0.
4520 Perl_sv_force_normal_flags(pTHX_ register SV *const sv, const U32 flags)
4524 PERL_ARGS_ASSERT_SV_FORCE_NORMAL_FLAGS;
4526 #ifdef PERL_OLD_COPY_ON_WRITE
4527 if (SvREADONLY(sv)) {
4529 const char * const pvx = SvPVX_const(sv);
4530 const STRLEN len = SvLEN(sv);
4531 const STRLEN cur = SvCUR(sv);
4532 /* next COW sv in the loop. If len is 0 then this is a shared-hash
4533 key scalar, so we mustn't attempt to call SV_COW_NEXT_SV(), as
4534 we'll fail an assertion. */
4535 SV * const next = len ? SV_COW_NEXT_SV(sv) : 0;
4538 PerlIO_printf(Perl_debug_log,
4539 "Copy on write: Force normal %ld\n",
4545 /* This SV doesn't own the buffer, so need to Newx() a new one: */
4548 if (flags & SV_COW_DROP_PV) {
4549 /* OK, so we don't need to copy our buffer. */
4552 SvGROW(sv, cur + 1);
4553 Move(pvx,SvPVX(sv),cur,char);
4558 sv_release_COW(sv, pvx, next);
4560 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4566 else if (IN_PERL_RUNTIME)
4567 Perl_croak(aTHX_ "%s", PL_no_modify);
4570 if (SvREADONLY(sv)) {
4572 const char * const pvx = SvPVX_const(sv);
4573 const STRLEN len = SvCUR(sv);
4578 SvGROW(sv, len + 1);
4579 Move(pvx,SvPVX(sv),len,char);
4581 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4583 else if (IN_PERL_RUNTIME)
4584 Perl_croak(aTHX_ "%s", PL_no_modify);
4588 sv_unref_flags(sv, flags);
4589 else if (SvFAKE(sv) && SvTYPE(sv) == SVt_PVGV)
4596 Efficient removal of characters from the beginning of the string buffer.
4597 SvPOK(sv) must be true and the C<ptr> must be a pointer to somewhere inside
4598 the string buffer. The C<ptr> becomes the first character of the adjusted
4599 string. Uses the "OOK hack".
4600 Beware: after this function returns, C<ptr> and SvPVX_const(sv) may no longer
4601 refer to the same chunk of data.
4607 Perl_sv_chop(pTHX_ register SV *const sv, register const char *const ptr)
4613 const U8 *real_start;
4617 PERL_ARGS_ASSERT_SV_CHOP;
4619 if (!ptr || !SvPOKp(sv))
4621 delta = ptr - SvPVX_const(sv);
4623 /* Nothing to do. */
4626 /* SvPVX(sv) may move in SV_CHECK_THINKFIRST(sv), but after this line,
4627 nothing uses the value of ptr any more. */
4628 max_delta = SvLEN(sv) ? SvLEN(sv) : SvCUR(sv);
4629 if (ptr <= SvPVX_const(sv))
4630 Perl_croak(aTHX_ "panic: sv_chop ptr=%p, start=%p, end=%p",
4631 ptr, SvPVX_const(sv), SvPVX_const(sv) + max_delta);
4632 SV_CHECK_THINKFIRST(sv);
4633 if (delta > max_delta)
4634 Perl_croak(aTHX_ "panic: sv_chop ptr=%p (was %p), start=%p, end=%p",
4635 SvPVX_const(sv) + delta, ptr, SvPVX_const(sv),
4636 SvPVX_const(sv) + max_delta);
4639 if (!SvLEN(sv)) { /* make copy of shared string */
4640 const char *pvx = SvPVX_const(sv);
4641 const STRLEN len = SvCUR(sv);
4642 SvGROW(sv, len + 1);
4643 Move(pvx,SvPVX(sv),len,char);
4646 SvFLAGS(sv) |= SVf_OOK;
4649 SvOOK_offset(sv, old_delta);
4651 SvLEN_set(sv, SvLEN(sv) - delta);
4652 SvCUR_set(sv, SvCUR(sv) - delta);
4653 SvPV_set(sv, SvPVX(sv) + delta);
4655 p = (U8 *)SvPVX_const(sv);
4660 real_start = p - delta;
4664 if (delta < 0x100) {
4668 p -= sizeof(STRLEN);
4669 Copy((U8*)&delta, p, sizeof(STRLEN), U8);
4673 /* Fill the preceding buffer with sentinals to verify that no-one is
4675 while (p > real_start) {