3 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 * by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
12 * 'What a fix!' said Sam. 'That's the one place in all the lands we've ever
13 * heard of that we don't want to see any closer; and that's the one place
14 * we're trying to get to! And that's just where we can't get, nohow.'
16 * [p.603 of _The Lord of the Rings_, IV/I: "The Taming of Sméagol"]
18 * 'Well do I understand your speech,' he answered in the same language;
19 * 'yet few strangers do so. Why then do you not speak in the Common Tongue,
20 * as is the custom in the West, if you wish to be answered?'
21 * --Gandalf, addressing Théoden's door wardens
23 * [p.508 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"]
25 * ...the travellers perceived that the floor was paved with stones of many
26 * hues; branching runes and strange devices intertwined beneath their feet.
28 * [p.512 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"]
32 #define PERL_IN_UTF8_C
34 #include "inline_invlist.c"
37 /* Separate prototypes needed because in ASCII systems these are
38 * usually macros but they still are compiled as code, too. */
39 PERL_CALLCONV UV Perl_utf8n_to_uvchr(pTHX_ const U8 *s, STRLEN curlen, STRLEN *retlen, U32 flags);
40 PERL_CALLCONV UV Perl_valid_utf8_to_uvchr(pTHX_ const U8 *s, STRLEN *retlen);
41 PERL_CALLCONV U8* Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv);
44 static const char unees[] =
45 "Malformed UTF-8 character (unexpected end of string)";
48 =head1 Unicode Support
50 This file contains various utility functions for manipulating UTF8-encoded
51 strings. For the uninitiated, this is a method of representing arbitrary
52 Unicode characters as a variable number of bytes, in such a way that
53 characters in the ASCII range are unmodified, and a zero byte never appears
54 within non-zero characters.
60 =for apidoc is_ascii_string
62 Returns true if the first C<len> bytes of the string C<s> are the same whether
63 or not the string is encoded in UTF-8 (or UTF-EBCDIC on EBCDIC machines). That
64 is, if they are invariant. On ASCII-ish machines, only ASCII characters
65 fit this definition, hence the function's name.
67 If C<len> is 0, it will be calculated using C<strlen(s)>.
69 See also L</is_utf8_string>(), L</is_utf8_string_loclen>(), and L</is_utf8_string_loc>().
75 Perl_is_ascii_string(const U8 *s, STRLEN len)
77 const U8* const send = s + (len ? len : strlen((const char *)s));
80 PERL_ARGS_ASSERT_IS_ASCII_STRING;
82 for (; x < send; ++x) {
83 if (!UTF8_IS_INVARIANT(*x))
91 =for apidoc uvuni_to_utf8_flags
93 Adds the UTF-8 representation of the code point C<uv> to the end
94 of the string C<d>; C<d> should have at least C<UTF8_MAXBYTES+1> free
95 bytes available. The return value is the pointer to the byte after the
96 end of the new character. In other words,
98 d = uvuni_to_utf8_flags(d, uv, flags);
102 d = uvuni_to_utf8(d, uv);
104 (which is equivalent to)
106 d = uvuni_to_utf8_flags(d, uv, 0);
108 This is the recommended Unicode-aware way of saying
112 This function will convert to UTF-8 (and not warn) even code points that aren't
113 legal Unicode or are problematic, unless C<flags> contains one or more of the
116 If C<uv> is a Unicode surrogate code point and UNICODE_WARN_SURROGATE is set,
117 the function will raise a warning, provided UTF8 warnings are enabled. If instead
118 UNICODE_DISALLOW_SURROGATE is set, the function will fail and return NULL.
119 If both flags are set, the function will both warn and return NULL.
121 The UNICODE_WARN_NONCHAR and UNICODE_DISALLOW_NONCHAR flags correspondingly
122 affect how the function handles a Unicode non-character. And, likewise for the
123 UNICODE_WARN_SUPER and UNICODE_DISALLOW_SUPER flags, and code points that are
124 above the Unicode maximum of 0x10FFFF. Code points above 0x7FFF_FFFF (which are
125 even less portable) can be warned and/or disallowed even if other above-Unicode
126 code points are accepted by the UNICODE_WARN_FE_FF and UNICODE_DISALLOW_FE_FF
129 And finally, the flag UNICODE_WARN_ILLEGAL_INTERCHANGE selects all four of the
130 above WARN flags; and UNICODE_DISALLOW_ILLEGAL_INTERCHANGE selects all four
138 Perl_uvuni_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags)
140 PERL_ARGS_ASSERT_UVUNI_TO_UTF8_FLAGS;
142 /* The first problematic code point is the first surrogate */
143 if (uv >= UNICODE_SURROGATE_FIRST
144 && ckWARN4_d(WARN_UTF8, WARN_SURROGATE, WARN_NON_UNICODE, WARN_NONCHAR))
146 if (UNICODE_IS_SURROGATE(uv)) {
147 if (flags & UNICODE_WARN_SURROGATE) {
148 Perl_ck_warner_d(aTHX_ packWARN(WARN_SURROGATE),
149 "UTF-16 surrogate U+%04"UVXf, uv);
151 if (flags & UNICODE_DISALLOW_SURROGATE) {
155 else if (UNICODE_IS_SUPER(uv)) {
156 if (flags & UNICODE_WARN_SUPER
157 || (UNICODE_IS_FE_FF(uv) && (flags & UNICODE_WARN_FE_FF)))
159 Perl_ck_warner_d(aTHX_ packWARN(WARN_NON_UNICODE),
160 "Code point 0x%04"UVXf" is not Unicode, may not be portable", uv);
162 if (flags & UNICODE_DISALLOW_SUPER
163 || (UNICODE_IS_FE_FF(uv) && (flags & UNICODE_DISALLOW_FE_FF)))
168 else if (UNICODE_IS_NONCHAR(uv)) {
169 if (flags & UNICODE_WARN_NONCHAR) {
170 Perl_ck_warner_d(aTHX_ packWARN(WARN_NONCHAR),
171 "Unicode non-character U+%04"UVXf" is illegal for open interchange",
174 if (flags & UNICODE_DISALLOW_NONCHAR) {
179 if (UNI_IS_INVARIANT(uv)) {
180 *d++ = (U8)UTF_TO_NATIVE(uv);
185 STRLEN len = UNISKIP(uv);
188 *p-- = (U8)UTF_TO_NATIVE((uv & UTF_CONTINUATION_MASK) | UTF_CONTINUATION_MARK);
189 uv >>= UTF_ACCUMULATION_SHIFT;
191 *p = (U8)UTF_TO_NATIVE((uv & UTF_START_MASK(len)) | UTF_START_MARK(len));
194 #else /* Non loop style */
196 *d++ = (U8)(( uv >> 6) | 0xc0);
197 *d++ = (U8)(( uv & 0x3f) | 0x80);
201 *d++ = (U8)(( uv >> 12) | 0xe0);
202 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
203 *d++ = (U8)(( uv & 0x3f) | 0x80);
207 *d++ = (U8)(( uv >> 18) | 0xf0);
208 *d++ = (U8)(((uv >> 12) & 0x3f) | 0x80);
209 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
210 *d++ = (U8)(( uv & 0x3f) | 0x80);
213 if (uv < 0x4000000) {
214 *d++ = (U8)(( uv >> 24) | 0xf8);
215 *d++ = (U8)(((uv >> 18) & 0x3f) | 0x80);
216 *d++ = (U8)(((uv >> 12) & 0x3f) | 0x80);
217 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
218 *d++ = (U8)(( uv & 0x3f) | 0x80);
221 if (uv < 0x80000000) {
222 *d++ = (U8)(( uv >> 30) | 0xfc);
223 *d++ = (U8)(((uv >> 24) & 0x3f) | 0x80);
224 *d++ = (U8)(((uv >> 18) & 0x3f) | 0x80);
225 *d++ = (U8)(((uv >> 12) & 0x3f) | 0x80);
226 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
227 *d++ = (U8)(( uv & 0x3f) | 0x80);
231 if (uv < UTF8_QUAD_MAX)
234 *d++ = 0xfe; /* Can't match U+FEFF! */
235 *d++ = (U8)(((uv >> 30) & 0x3f) | 0x80);
236 *d++ = (U8)(((uv >> 24) & 0x3f) | 0x80);
237 *d++ = (U8)(((uv >> 18) & 0x3f) | 0x80);
238 *d++ = (U8)(((uv >> 12) & 0x3f) | 0x80);
239 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
240 *d++ = (U8)(( uv & 0x3f) | 0x80);
245 *d++ = 0xff; /* Can't match U+FFFE! */
246 *d++ = 0x80; /* 6 Reserved bits */
247 *d++ = (U8)(((uv >> 60) & 0x0f) | 0x80); /* 2 Reserved bits */
248 *d++ = (U8)(((uv >> 54) & 0x3f) | 0x80);
249 *d++ = (U8)(((uv >> 48) & 0x3f) | 0x80);
250 *d++ = (U8)(((uv >> 42) & 0x3f) | 0x80);
251 *d++ = (U8)(((uv >> 36) & 0x3f) | 0x80);
252 *d++ = (U8)(((uv >> 30) & 0x3f) | 0x80);
253 *d++ = (U8)(((uv >> 24) & 0x3f) | 0x80);
254 *d++ = (U8)(((uv >> 18) & 0x3f) | 0x80);
255 *d++ = (U8)(((uv >> 12) & 0x3f) | 0x80);
256 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
257 *d++ = (U8)(( uv & 0x3f) | 0x80);
261 #endif /* Loop style */
266 Tests if the first C<len> bytes of string C<s> form a valid UTF-8
267 character. Note that an INVARIANT (i.e. ASCII) character is a valid
268 UTF-8 character. The number of bytes in the UTF-8 character
269 will be returned if it is valid, otherwise 0.
271 This is the "slow" version as opposed to the "fast" version which is
272 the "unrolled" IS_UTF8_CHAR(). E.g. for t/uni/class.t the speed
273 difference is a factor of 2 to 3. For lengths (UTF8SKIP(s)) of four
274 or less you should use the IS_UTF8_CHAR(), for lengths of five or more
275 you should use the _slow(). In practice this means that the _slow()
276 will be used very rarely, since the maximum Unicode code point (as of
277 Unicode 4.1) is U+10FFFF, which encodes in UTF-8 to four bytes. Only
278 the "Perl extended UTF-8" (the infamous 'v-strings') will encode into
283 S_is_utf8_char_slow(const U8 *s, const STRLEN len)
285 dTHX; /* The function called below requires thread context */
289 PERL_ARGS_ASSERT_IS_UTF8_CHAR_SLOW;
291 utf8n_to_uvuni(s, len, &actual_len, UTF8_CHECK_ONLY);
293 return (actual_len == (STRLEN) -1) ? 0 : actual_len;
297 =for apidoc is_utf8_char_buf
299 Returns the number of bytes that comprise the first UTF-8 encoded character in
300 buffer C<buf>. C<buf_end> should point to one position beyond the end of the
301 buffer. 0 is returned if C<buf> does not point to a complete, valid UTF-8
304 Note that an INVARIANT character (i.e. ASCII on non-EBCDIC
305 machines) is a valid UTF-8 character.
310 Perl_is_utf8_char_buf(const U8 *buf, const U8* buf_end)
315 PERL_ARGS_ASSERT_IS_UTF8_CHAR_BUF;
317 if (buf_end <= buf) {
322 if (len > UTF8SKIP(buf)) {
327 if (IS_UTF8_CHAR_FAST(len))
328 return IS_UTF8_CHAR(buf, len) ? len : 0;
329 #endif /* #ifdef IS_UTF8_CHAR */
330 return is_utf8_char_slow(buf, len);
334 =for apidoc is_utf8_char
338 Tests if some arbitrary number of bytes begins in a valid UTF-8
339 character. Note that an INVARIANT (i.e. ASCII on non-EBCDIC machines)
340 character is a valid UTF-8 character. The actual number of bytes in the UTF-8
341 character will be returned if it is valid, otherwise 0.
343 This function is deprecated due to the possibility that malformed input could
344 cause reading beyond the end of the input buffer. Use L</is_utf8_char_buf>
350 Perl_is_utf8_char(const U8 *s)
352 PERL_ARGS_ASSERT_IS_UTF8_CHAR;
354 /* Assumes we have enough space, which is why this is deprecated */
355 return is_utf8_char_buf(s, s + UTF8SKIP(s));
360 =for apidoc is_utf8_string
362 Returns true if the first C<len> bytes of string C<s> form a valid
363 UTF-8 string, false otherwise. If C<len> is 0, it will be calculated
364 using C<strlen(s)> (which means if you use this option, that C<s> has to have a
365 terminating NUL byte). Note that all characters being ASCII constitute 'a
368 See also L</is_ascii_string>(), L</is_utf8_string_loclen>(), and L</is_utf8_string_loc>().
374 Perl_is_utf8_string(const U8 *s, STRLEN len)
376 const U8* const send = s + (len ? len : strlen((const char *)s));
379 PERL_ARGS_ASSERT_IS_UTF8_STRING;
382 /* Inline the easy bits of is_utf8_char() here for speed... */
383 if (UTF8_IS_INVARIANT(*x)) {
387 /* ... and call is_utf8_char() only if really needed. */
388 const STRLEN c = UTF8SKIP(x);
389 const U8* const next_char_ptr = x + c;
391 if (next_char_ptr > send) {
395 if (IS_UTF8_CHAR_FAST(c)) {
396 if (!IS_UTF8_CHAR(x, c))
399 else if (! is_utf8_char_slow(x, c)) {
410 Implemented as a macro in utf8.h
412 =for apidoc is_utf8_string_loc
414 Like L</is_utf8_string> but stores the location of the failure (in the
415 case of "utf8ness failure") or the location C<s>+C<len> (in the case of
416 "utf8ness success") in the C<ep>.
418 See also L</is_utf8_string_loclen>() and L</is_utf8_string>().
420 =for apidoc is_utf8_string_loclen
422 Like L</is_utf8_string>() but stores the location of the failure (in the
423 case of "utf8ness failure") or the location C<s>+C<len> (in the case of
424 "utf8ness success") in the C<ep>, and the number of UTF-8
425 encoded characters in the C<el>.
427 See also L</is_utf8_string_loc>() and L</is_utf8_string>().
433 Perl_is_utf8_string_loclen(const U8 *s, STRLEN len, const U8 **ep, STRLEN *el)
435 const U8* const send = s + (len ? len : strlen((const char *)s));
440 PERL_ARGS_ASSERT_IS_UTF8_STRING_LOCLEN;
443 const U8* next_char_ptr;
445 /* Inline the easy bits of is_utf8_char() here for speed... */
446 if (UTF8_IS_INVARIANT(*x))
447 next_char_ptr = x + 1;
449 /* ... and call is_utf8_char() only if really needed. */
451 next_char_ptr = c + x;
452 if (next_char_ptr > send) {
455 if (IS_UTF8_CHAR_FAST(c)) {
456 if (!IS_UTF8_CHAR(x, c))
459 c = is_utf8_char_slow(x, c);
478 =for apidoc utf8n_to_uvuni
480 Bottom level UTF-8 decode routine.
481 Returns the code point value of the first character in the string C<s>,
482 which is assumed to be in UTF-8 (or UTF-EBCDIC) encoding, and no longer than
483 C<curlen> bytes; C<*retlen> (if C<retlen> isn't NULL) will be set to
484 the length, in bytes, of that character.
486 The value of C<flags> determines the behavior when C<s> does not point to a
487 well-formed UTF-8 character. If C<flags> is 0, when a malformation is found,
488 zero is returned and C<*retlen> is set so that (S<C<s> + C<*retlen>>) is the
489 next possible position in C<s> that could begin a non-malformed character.
490 Also, if UTF-8 warnings haven't been lexically disabled, a warning is raised.
492 Various ALLOW flags can be set in C<flags> to allow (and not warn on)
493 individual types of malformations, such as the sequence being overlong (that
494 is, when there is a shorter sequence that can express the same code point;
495 overlong sequences are expressly forbidden in the UTF-8 standard due to
496 potential security issues). Another malformation example is the first byte of
497 a character not being a legal first byte. See F<utf8.h> for the list of such
498 flags. For allowed 0 length strings, this function returns 0; for allowed
499 overlong sequences, the computed code point is returned; for all other allowed
500 malformations, the Unicode REPLACEMENT CHARACTER is returned, as these have no
501 determinable reasonable value.
503 The UTF8_CHECK_ONLY flag overrides the behavior when a non-allowed (by other
504 flags) malformation is found. If this flag is set, the routine assumes that
505 the caller will raise a warning, and this function will silently just set
506 C<retlen> to C<-1> (cast to C<STRLEN>) and return zero.
508 Note that this API requires disambiguation between successful decoding a NUL
509 character, and an error return (unless the UTF8_CHECK_ONLY flag is set), as
510 in both cases, 0 is returned. To disambiguate, upon a zero return, see if the
511 first byte of C<s> is 0 as well. If so, the input was a NUL; if not, the input
514 Certain code points are considered problematic. These are Unicode surrogates,
515 Unicode non-characters, and code points above the Unicode maximum of 0x10FFFF.
516 By default these are considered regular code points, but certain situations
517 warrant special handling for them. If C<flags> contains
518 UTF8_DISALLOW_ILLEGAL_INTERCHANGE, all three classes are treated as
519 malformations and handled as such. The flags UTF8_DISALLOW_SURROGATE,
520 UTF8_DISALLOW_NONCHAR, and UTF8_DISALLOW_SUPER (meaning above the legal Unicode
521 maximum) can be set to disallow these categories individually.
523 The flags UTF8_WARN_ILLEGAL_INTERCHANGE, UTF8_WARN_SURROGATE,
524 UTF8_WARN_NONCHAR, and UTF8_WARN_SUPER will cause warning messages to be raised
525 for their respective categories, but otherwise the code points are considered
526 valid (not malformations). To get a category to both be treated as a
527 malformation and raise a warning, specify both the WARN and DISALLOW flags.
528 (But note that warnings are not raised if lexically disabled nor if
529 UTF8_CHECK_ONLY is also specified.)
531 Very large code points (above 0x7FFF_FFFF) are considered more problematic than
532 the others that are above the Unicode legal maximum. There are several
533 reasons: they requre at least 32 bits to represent them on ASCII platforms, are
534 not representable at all on EBCDIC platforms, and the original UTF-8
535 specification never went above this number (the current 0x10FFFF limit was
536 imposed later). (The smaller ones, those that fit into 32 bits, are
537 representable by a UV on ASCII platforms, but not by an IV, which means that
538 the number of operations that can be performed on them is quite restricted.)
539 The UTF-8 encoding on ASCII platforms for these large code points begins with a
540 byte containing 0xFE or 0xFF. The UTF8_DISALLOW_FE_FF flag will cause them to
541 be treated as malformations, while allowing smaller above-Unicode code points.
542 (Of course UTF8_DISALLOW_SUPER will treat all above-Unicode code points,
543 including these, as malformations.) Similarly, UTF8_WARN_FE_FF acts just like
544 the other WARN flags, but applies just to these code points.
546 All other code points corresponding to Unicode characters, including private
547 use and those yet to be assigned, are never considered malformed and never
550 Most code should use L</utf8_to_uvchr_buf>() rather than call this directly.
556 Perl_utf8n_to_uvuni(pTHX_ const U8 *s, STRLEN curlen, STRLEN *retlen, U32 flags)
559 const U8 * const s0 = s;
560 U8 overflow_byte = '\0'; /* Save byte in case of overflow */
565 UV outlier_ret = 0; /* return value when input is in error or problematic
567 UV pack_warn = 0; /* Save result of packWARN() for later */
568 bool unexpected_non_continuation = FALSE;
569 bool overflowed = FALSE;
570 bool do_overlong_test = TRUE; /* May have to skip this test */
572 const char* const malformed_text = "Malformed UTF-8 character";
574 PERL_ARGS_ASSERT_UTF8N_TO_UVUNI;
576 /* The order of malformation tests here is important. We should consume as
577 * few bytes as possible in order to not skip any valid character. This is
578 * required by the Unicode Standard (section 3.9 of Unicode 6.0); see also
579 * http://unicode.org/reports/tr36 for more discussion as to why. For
580 * example, once we've done a UTF8SKIP, we can tell the expected number of
581 * bytes, and could fail right off the bat if the input parameters indicate
582 * that there are too few available. But it could be that just that first
583 * byte is garbled, and the intended character occupies fewer bytes. If we
584 * blindly assumed that the first byte is correct, and skipped based on
585 * that number, we could skip over a valid input character. So instead, we
586 * always examine the sequence byte-by-byte.
588 * We also should not consume too few bytes, otherwise someone could inject
589 * things. For example, an input could be deliberately designed to
590 * overflow, and if this code bailed out immediately upon discovering that,
591 * returning to the caller *retlen pointing to the very next byte (one
592 * which is actually part of of the overflowing sequence), that could look
593 * legitimate to the caller, which could discard the initial partial
594 * sequence and process the rest, inappropriately */
596 /* Zero length strings, if allowed, of necessity are zero */
597 if (UNLIKELY(curlen == 0)) {
602 if (flags & UTF8_ALLOW_EMPTY) {
605 if (! (flags & UTF8_CHECK_ONLY)) {
606 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (empty string)", malformed_text));
611 expectlen = UTF8SKIP(s);
613 /* A well-formed UTF-8 character, as the vast majority of calls to this
614 * function will be for, has this expected length. For efficiency, set
615 * things up here to return it. It will be overriden only in those rare
616 * cases where a malformation is found */
621 /* An invariant is trivially well-formed */
622 if (UTF8_IS_INVARIANT(uv)) {
623 return (UV) (NATIVE_TO_UTF(*s));
626 /* A continuation character can't start a valid sequence */
627 if (UNLIKELY(UTF8_IS_CONTINUATION(uv))) {
628 if (flags & UTF8_ALLOW_CONTINUATION) {
632 return UNICODE_REPLACEMENT;
635 if (! (flags & UTF8_CHECK_ONLY)) {
636 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (unexpected continuation byte 0x%02x, with no preceding start byte)", malformed_text, *s0));
643 uv = NATIVE_TO_UTF(uv);
646 /* Here is not a continuation byte, nor an invariant. The only thing left
647 * is a start byte (possibly for an overlong) */
649 /* Remove the leading bits that indicate the number of bytes in the
650 * character's whole UTF-8 sequence, leaving just the bits that are part of
652 uv &= UTF_START_MASK(expectlen);
654 /* Now, loop through the remaining bytes in the character's sequence,
655 * accumulating each into the working value as we go. Be sure to not look
656 * past the end of the input string */
657 send = (U8*) s0 + ((expectlen <= curlen) ? expectlen : curlen);
659 for (s = s0 + 1; s < send; s++) {
660 if (LIKELY(UTF8_IS_CONTINUATION(*s))) {
661 #ifndef EBCDIC /* Can't overflow in EBCDIC */
662 if (uv & UTF_ACCUMULATION_OVERFLOW_MASK) {
664 /* The original implementors viewed this malformation as more
665 * serious than the others (though I, khw, don't understand
666 * why, since other malformations also give very very wrong
667 * results), so there is no way to turn off checking for it.
668 * Set a flag, but keep going in the loop, so that we absorb
669 * the rest of the bytes that comprise the character. */
671 overflow_byte = *s; /* Save for warning message's use */
674 uv = UTF8_ACCUMULATE(uv, *s);
677 /* Here, found a non-continuation before processing all expected
678 * bytes. This byte begins a new character, so quit, even if
679 * allowing this malformation. */
680 unexpected_non_continuation = TRUE;
683 } /* End of loop through the character's bytes */
685 /* Save how many bytes were actually in the character */
688 /* The loop above finds two types of malformations: non-continuation and/or
689 * overflow. The non-continuation malformation is really a too-short
690 * malformation, as it means that the current character ended before it was
691 * expected to (being terminated prematurely by the beginning of the next
692 * character, whereas in the too-short malformation there just are too few
693 * bytes available to hold the character. In both cases, the check below
694 * that we have found the expected number of bytes would fail if executed.)
695 * Thus the non-continuation malformation is really unnecessary, being a
696 * subset of the too-short malformation. But there may be existing
697 * applications that are expecting the non-continuation type, so we retain
698 * it, and return it in preference to the too-short malformation. (If this
699 * code were being written from scratch, the two types might be collapsed
700 * into one.) I, khw, am also giving priority to returning the
701 * non-continuation and too-short malformations over overflow when multiple
702 * ones are present. I don't know of any real reason to prefer one over
703 * the other, except that it seems to me that multiple-byte errors trumps
704 * errors from a single byte */
705 if (UNLIKELY(unexpected_non_continuation)) {
706 if (!(flags & UTF8_ALLOW_NON_CONTINUATION)) {
707 if (! (flags & UTF8_CHECK_ONLY)) {
709 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (unexpected non-continuation byte 0x%02x, immediately after start byte 0x%02x)", malformed_text, *s, *s0));
712 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (unexpected non-continuation byte 0x%02x, %d bytes after start byte 0x%02x, expected %d bytes)", malformed_text, *s, (int) curlen, *s0, (int)expectlen));
717 uv = UNICODE_REPLACEMENT;
719 /* Skip testing for overlongs, as the REPLACEMENT may not be the same
720 * as what the original expectations were. */
721 do_overlong_test = FALSE;
726 else if (UNLIKELY(curlen < expectlen)) {
727 if (! (flags & UTF8_ALLOW_SHORT)) {
728 if (! (flags & UTF8_CHECK_ONLY)) {
729 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (%d byte%s, need %d, after start byte 0x%02x)", malformed_text, (int)curlen, curlen == 1 ? "" : "s", (int)expectlen, *s0));
733 uv = UNICODE_REPLACEMENT;
734 do_overlong_test = FALSE;
740 #ifndef EBCDIC /* EBCDIC allows FE, FF, can't overflow */
741 if ((*s0 & 0xFE) == 0xFE /* matches both FE, FF */
742 && (flags & (UTF8_WARN_FE_FF|UTF8_DISALLOW_FE_FF)))
744 /* By adding UTF8_CHECK_ONLY to the test, we avoid unnecessary
745 * generation of the sv, since no warnings are raised under CHECK */
746 if ((flags & (UTF8_WARN_FE_FF|UTF8_CHECK_ONLY)) == UTF8_WARN_FE_FF
747 && ckWARN_d(WARN_UTF8))
749 /* This message is deliberately not of the same syntax as the other
750 * messages for malformations, for backwards compatibility in the
751 * unlikely event that code is relying on its precise earlier text
753 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s Code point beginning with byte 0x%02X is not Unicode, and not portable", malformed_text, *s0));
754 pack_warn = packWARN(WARN_UTF8);
756 if (flags & UTF8_DISALLOW_FE_FF) {
760 if (UNLIKELY(overflowed)) {
762 /* If the first byte is FF, it will overflow a 32-bit word. If the
763 * first byte is FE, it will overflow a signed 32-bit word. The
764 * above preserves backward compatibility, since its message was used
765 * in earlier versions of this code in preference to overflow */
766 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (overflow at byte 0x%02x, after start byte 0x%02x)", malformed_text, overflow_byte, *s0));
772 && expectlen > (STRLEN)UNISKIP(uv)
773 && ! (flags & UTF8_ALLOW_LONG))
775 /* The overlong malformation has lower precedence than the others.
776 * Note that if this malformation is allowed, we return the actual
777 * value, instead of the replacement character. This is because this
778 * value is actually well-defined. */
779 if (! (flags & UTF8_CHECK_ONLY)) {
780 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (%d byte%s, need %d, after start byte 0x%02x)", malformed_text, (int)expectlen, expectlen == 1 ? "": "s", UNISKIP(uv), *s0));
785 /* Here, the input is considered to be well-formed , but could be a
786 * problematic code point that is not allowed by the input parameters. */
787 if (uv >= UNICODE_SURROGATE_FIRST /* isn't problematic if < this */
788 && (flags & (UTF8_DISALLOW_ILLEGAL_INTERCHANGE
789 |UTF8_WARN_ILLEGAL_INTERCHANGE)))
791 if (UNICODE_IS_SURROGATE(uv)) {
792 if ((flags & (UTF8_WARN_SURROGATE|UTF8_CHECK_ONLY)) == UTF8_WARN_SURROGATE
793 && ckWARN2_d(WARN_UTF8, WARN_SURROGATE))
795 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "UTF-16 surrogate U+%04"UVXf"", uv));
796 pack_warn = packWARN2(WARN_UTF8, WARN_SURROGATE);
798 if (flags & UTF8_DISALLOW_SURROGATE) {
802 else if ((uv > PERL_UNICODE_MAX)) {
803 if ((flags & (UTF8_WARN_SUPER|UTF8_CHECK_ONLY)) == UTF8_WARN_SUPER
804 && ckWARN2_d(WARN_UTF8, WARN_NON_UNICODE))
806 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "Code point 0x%04"UVXf" is not Unicode, may not be portable", uv));
807 pack_warn = packWARN2(WARN_UTF8, WARN_NON_UNICODE);
809 if (flags & UTF8_DISALLOW_SUPER) {
813 else if (UNICODE_IS_NONCHAR(uv)) {
814 if ((flags & (UTF8_WARN_NONCHAR|UTF8_CHECK_ONLY)) == UTF8_WARN_NONCHAR
815 && ckWARN2_d(WARN_UTF8, WARN_NONCHAR))
817 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "Unicode non-character U+%04"UVXf" is illegal for open interchange", uv));
818 pack_warn = packWARN2(WARN_UTF8, WARN_NONCHAR);
820 if (flags & UTF8_DISALLOW_NONCHAR) {
830 /* Here, this is not considered a malformed character, so drop through
836 /* There are three cases which get to beyond this point. In all 3 cases:
837 * <sv> if not null points to a string to print as a warning.
838 * <curlen> is what <*retlen> should be set to if UTF8_CHECK_ONLY isn't
840 * <outlier_ret> is what return value to use if UTF8_CHECK_ONLY isn't set.
841 * This is done by initializing it to 0, and changing it only
844 * 1) The input is valid but problematic, and to be warned about. The
845 * return value is the resultant code point; <*retlen> is set to
846 * <curlen>, the number of bytes that comprise the code point.
847 * <pack_warn> contains the result of packWARN() for the warning
848 * types. The entry point for this case is the label <do_warn>;
849 * 2) The input is a valid code point but disallowed by the parameters to
850 * this function. The return value is 0. If UTF8_CHECK_ONLY is set,
851 * <*relen> is -1; otherwise it is <curlen>, the number of bytes that
852 * comprise the code point. <pack_warn> contains the result of
853 * packWARN() for the warning types. The entry point for this case is
854 * the label <disallowed>.
855 * 3) The input is malformed. The return value is 0. If UTF8_CHECK_ONLY
856 * is set, <*relen> is -1; otherwise it is <curlen>, the number of
857 * bytes that comprise the malformation. All such malformations are
858 * assumed to be warning type <utf8>. The entry point for this case
859 * is the label <malformed>.
864 if (sv && ckWARN_d(WARN_UTF8)) {
865 pack_warn = packWARN(WARN_UTF8);
870 if (flags & UTF8_CHECK_ONLY) {
872 *retlen = ((STRLEN) -1);
878 if (pack_warn) { /* <pack_warn> was initialized to 0, and changed only
879 if warnings are to be raised. */
880 const char * const string = SvPVX_const(sv);
883 Perl_warner(aTHX_ pack_warn, "%s in %s", string, OP_DESC(PL_op));
885 Perl_warner(aTHX_ pack_warn, "%s", string);
896 =for apidoc utf8_to_uvchr_buf
898 Returns the native code point of the first character in the string C<s> which
899 is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>.
900 C<*retlen> will be set to the length, in bytes, of that character.
902 If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are
903 enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
904 NULL) to -1. If those warnings are off, the computed value if well-defined (or
905 the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and C<*retlen>
906 is set (if C<retlen> isn't NULL) so that (S<C<s> + C<*retlen>>) is the
907 next possible position in C<s> that could begin a non-malformed character.
908 See L</utf8n_to_uvuni> for details on when the REPLACEMENT CHARACTER is returned.
915 Perl_utf8_to_uvchr_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen)
917 PERL_ARGS_ASSERT_UTF8_TO_UVCHR_BUF;
921 return utf8n_to_uvchr(s, send - s, retlen,
922 ckWARN_d(WARN_UTF8) ? 0 : UTF8_ALLOW_ANY);
925 /* Like L</utf8_to_uvchr_buf>(), but should only be called when it is known that
926 * there are no malformations in the input UTF-8 string C<s>. surrogates,
927 * non-character code points, and non-Unicode code points are allowed. A macro
928 * in utf8.h is used to normally avoid this function wrapper */
931 Perl_valid_utf8_to_uvchr(pTHX_ const U8 *s, STRLEN *retlen)
933 const UV uv = valid_utf8_to_uvuni(s, retlen);
935 PERL_ARGS_ASSERT_VALID_UTF8_TO_UVCHR;
937 return UNI_TO_NATIVE(uv);
941 =for apidoc utf8_to_uvchr
945 Returns the native code point of the first character in the string C<s>
946 which is assumed to be in UTF-8 encoding; C<retlen> will be set to the
947 length, in bytes, of that character.
949 Some, but not all, UTF-8 malformations are detected, and in fact, some
950 malformed input could cause reading beyond the end of the input buffer, which
951 is why this function is deprecated. Use L</utf8_to_uvchr_buf> instead.
953 If C<s> points to one of the detected malformations, and UTF8 warnings are
954 enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
955 NULL) to -1. If those warnings are off, the computed value if well-defined (or
956 the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and C<*retlen>
957 is set (if C<retlen> isn't NULL) so that (S<C<s> + C<*retlen>>) is the
958 next possible position in C<s> that could begin a non-malformed character.
959 See L</utf8n_to_uvuni> for details on when the REPLACEMENT CHARACTER is returned.
965 Perl_utf8_to_uvchr(pTHX_ const U8 *s, STRLEN *retlen)
967 PERL_ARGS_ASSERT_UTF8_TO_UVCHR;
969 return utf8_to_uvchr_buf(s, s + UTF8_MAXBYTES, retlen);
973 =for apidoc utf8_to_uvuni_buf
975 Returns the Unicode code point of the first character in the string C<s> which
976 is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>.
977 C<retlen> will be set to the length, in bytes, of that character.
979 This function should only be used when the returned UV is considered
980 an index into the Unicode semantic tables (e.g. swashes).
982 If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are
983 enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
984 NULL) to -1. If those warnings are off, the computed value if well-defined (or
985 the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and C<*retlen>
986 is set (if C<retlen> isn't NULL) so that (S<C<s> + C<*retlen>>) is the
987 next possible position in C<s> that could begin a non-malformed character.
988 See L</utf8n_to_uvuni> for details on when the REPLACEMENT CHARACTER is returned.
994 Perl_utf8_to_uvuni_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen)
996 PERL_ARGS_ASSERT_UTF8_TO_UVUNI_BUF;
1000 /* Call the low level routine asking for checks */
1001 return Perl_utf8n_to_uvuni(aTHX_ s, send -s, retlen,
1002 ckWARN_d(WARN_UTF8) ? 0 : UTF8_ALLOW_ANY);
1005 /* Like L</utf8_to_uvuni_buf>(), but should only be called when it is known that
1006 * there are no malformations in the input UTF-8 string C<s>. Surrogates,
1007 * non-character code points, and non-Unicode code points are allowed */
1010 Perl_valid_utf8_to_uvuni(pTHX_ const U8 *s, STRLEN *retlen)
1012 UV expectlen = UTF8SKIP(s);
1013 const U8* send = s + expectlen;
1014 UV uv = NATIVE_TO_UTF(*s);
1016 PERL_ARGS_ASSERT_VALID_UTF8_TO_UVUNI;
1019 *retlen = expectlen;
1022 /* An invariant is trivially returned */
1023 if (expectlen == 1) {
1027 /* Remove the leading bits that indicate the number of bytes, leaving just
1028 * the bits that are part of the value */
1029 uv &= UTF_START_MASK(expectlen);
1031 /* Now, loop through the remaining bytes, accumulating each into the
1032 * working total as we go. (I khw tried unrolling the loop for up to 4
1033 * bytes, but there was no performance improvement) */
1034 for (++s; s < send; s++) {
1035 uv = UTF8_ACCUMULATE(uv, *s);
1042 =for apidoc utf8_to_uvuni
1046 Returns the Unicode code point of the first character in the string C<s>
1047 which is assumed to be in UTF-8 encoding; C<retlen> will be set to the
1048 length, in bytes, of that character.
1050 This function should only be used when the returned UV is considered
1051 an index into the Unicode semantic tables (e.g. swashes).
1053 Some, but not all, UTF-8 malformations are detected, and in fact, some
1054 malformed input could cause reading beyond the end of the input buffer, which
1055 is why this function is deprecated. Use L</utf8_to_uvuni_buf> instead.
1057 If C<s> points to one of the detected malformations, and UTF8 warnings are
1058 enabled, zero is returned and C<*retlen> is set (if C<retlen> doesn't point to
1059 NULL) to -1. If those warnings are off, the computed value if well-defined (or
1060 the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and C<*retlen>
1061 is set (if C<retlen> isn't NULL) so that (S<C<s> + C<*retlen>>) is the
1062 next possible position in C<s> that could begin a non-malformed character.
1063 See L</utf8n_to_uvuni> for details on when the REPLACEMENT CHARACTER is returned.
1069 Perl_utf8_to_uvuni(pTHX_ const U8 *s, STRLEN *retlen)
1071 PERL_ARGS_ASSERT_UTF8_TO_UVUNI;
1073 return valid_utf8_to_uvuni(s, retlen);
1077 =for apidoc utf8_length
1079 Return the length of the UTF-8 char encoded string C<s> in characters.
1080 Stops at C<e> (inclusive). If C<e E<lt> s> or if the scan would end
1081 up past C<e>, croaks.
1087 Perl_utf8_length(pTHX_ const U8 *s, const U8 *e)
1092 PERL_ARGS_ASSERT_UTF8_LENGTH;
1094 /* Note: cannot use UTF8_IS_...() too eagerly here since e.g.
1095 * the bitops (especially ~) can create illegal UTF-8.
1096 * In other words: in Perl UTF-8 is not just for Unicode. */
1099 goto warn_and_return;
1109 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
1110 "%s in %s", unees, OP_DESC(PL_op));
1112 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees);
1119 =for apidoc utf8_distance
1121 Returns the number of UTF-8 characters between the UTF-8 pointers C<a>
1124 WARNING: use only if you *know* that the pointers point inside the
1131 Perl_utf8_distance(pTHX_ const U8 *a, const U8 *b)
1133 PERL_ARGS_ASSERT_UTF8_DISTANCE;
1135 return (a < b) ? -1 * (IV) utf8_length(a, b) : (IV) utf8_length(b, a);
1139 =for apidoc utf8_hop
1141 Return the UTF-8 pointer C<s> displaced by C<off> characters, either
1142 forward or backward.
1144 WARNING: do not use the following unless you *know* C<off> is within
1145 the UTF-8 data pointed to by C<s> *and* that on entry C<s> is aligned
1146 on the first byte of character or just after the last byte of a character.
1152 Perl_utf8_hop(pTHX_ const U8 *s, I32 off)
1154 PERL_ARGS_ASSERT_UTF8_HOP;
1156 PERL_UNUSED_CONTEXT;
1157 /* Note: cannot use UTF8_IS_...() too eagerly here since e.g
1158 * the bitops (especially ~) can create illegal UTF-8.
1159 * In other words: in Perl UTF-8 is not just for Unicode. */
1168 while (UTF8_IS_CONTINUATION(*s))
1176 =for apidoc bytes_cmp_utf8
1178 Compares the sequence of characters (stored as octets) in C<b>, C<blen> with the
1179 sequence of characters (stored as UTF-8) in C<u>, C<ulen>. Returns 0 if they are
1180 equal, -1 or -2 if the first string is less than the second string, +1 or +2
1181 if the first string is greater than the second string.
1183 -1 or +1 is returned if the shorter string was identical to the start of the
1184 longer string. -2 or +2 is returned if the was a difference between characters
1191 Perl_bytes_cmp_utf8(pTHX_ const U8 *b, STRLEN blen, const U8 *u, STRLEN ulen)
1193 const U8 *const bend = b + blen;
1194 const U8 *const uend = u + ulen;
1196 PERL_ARGS_ASSERT_BYTES_CMP_UTF8;
1198 PERL_UNUSED_CONTEXT;
1200 while (b < bend && u < uend) {
1202 if (!UTF8_IS_INVARIANT(c)) {
1203 if (UTF8_IS_DOWNGRADEABLE_START(c)) {
1206 if (UTF8_IS_CONTINUATION(c1)) {
1207 c = UNI_TO_NATIVE(TWO_BYTE_UTF8_TO_UNI(c, c1));
1209 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
1210 "Malformed UTF-8 character "
1211 "(unexpected non-continuation byte 0x%02x"
1212 ", immediately after start byte 0x%02x)"
1213 /* Dear diag.t, it's in the pod. */
1215 PL_op ? " in " : "",
1216 PL_op ? OP_DESC(PL_op) : "");
1221 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
1222 "%s in %s", unees, OP_DESC(PL_op));
1224 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees);
1225 return -2; /* Really want to return undef :-) */
1232 return *b < c ? -2 : +2;
1237 if (b == bend && u == uend)
1240 return b < bend ? +1 : -1;
1244 =for apidoc utf8_to_bytes
1246 Converts a string C<s> of length C<len> from UTF-8 into native byte encoding.
1247 Unlike L</bytes_to_utf8>, this over-writes the original string, and
1248 updates C<len> to contain the new length.
1249 Returns zero on failure, setting C<len> to -1.
1251 If you need a copy of the string, see L</bytes_from_utf8>.
1257 Perl_utf8_to_bytes(pTHX_ U8 *s, STRLEN *len)
1259 U8 * const save = s;
1260 U8 * const send = s + *len;
1263 PERL_ARGS_ASSERT_UTF8_TO_BYTES;
1265 /* ensure valid UTF-8 and chars < 256 before updating string */
1269 if (!UTF8_IS_INVARIANT(c) &&
1270 (!UTF8_IS_DOWNGRADEABLE_START(c) || (s >= send)
1271 || !(c = *s++) || !UTF8_IS_CONTINUATION(c))) {
1272 *len = ((STRLEN) -1);
1280 *d++ = (U8)utf8_to_uvchr_buf(s, send, &ulen);
1289 =for apidoc bytes_from_utf8
1291 Converts a string C<s> of length C<len> from UTF-8 into native byte encoding.
1292 Unlike L</utf8_to_bytes> but like L</bytes_to_utf8>, returns a pointer to
1293 the newly-created string, and updates C<len> to contain the new
1294 length. Returns the original string if no conversion occurs, C<len>
1295 is unchanged. Do nothing if C<is_utf8> points to 0. Sets C<is_utf8> to
1296 0 if C<s> is converted or consisted entirely of characters that are invariant
1297 in utf8 (i.e., US-ASCII on non-EBCDIC machines).
1303 Perl_bytes_from_utf8(pTHX_ const U8 *s, STRLEN *len, bool *is_utf8)
1306 const U8 *start = s;
1310 PERL_ARGS_ASSERT_BYTES_FROM_UTF8;
1312 PERL_UNUSED_CONTEXT;
1316 /* ensure valid UTF-8 and chars < 256 before converting string */
1317 for (send = s + *len; s < send;) {
1319 if (!UTF8_IS_INVARIANT(c)) {
1320 if (UTF8_IS_DOWNGRADEABLE_START(c) && s < send &&
1321 (c = *s++) && UTF8_IS_CONTINUATION(c))
1330 Newx(d, (*len) - count + 1, U8);
1331 s = start; start = d;
1334 if (!UTF8_IS_INVARIANT(c)) {
1335 /* Then it is two-byte encoded */
1336 c = UNI_TO_NATIVE(TWO_BYTE_UTF8_TO_UNI(c, *s++));
1346 =for apidoc bytes_to_utf8
1348 Converts a string C<s> of length C<len> bytes from the native encoding into
1350 Returns a pointer to the newly-created string, and sets C<len> to
1351 reflect the new length in bytes.
1353 A NUL character will be written after the end of the string.
1355 If you want to convert to UTF-8 from encodings other than
1356 the native (Latin1 or EBCDIC),
1357 see L</sv_recode_to_utf8>().
1362 /* This logic is duplicated in sv_catpvn_flags, so any bug fixes will
1363 likewise need duplication. */
1366 Perl_bytes_to_utf8(pTHX_ const U8 *s, STRLEN *len)
1368 const U8 * const send = s + (*len);
1372 PERL_ARGS_ASSERT_BYTES_TO_UTF8;
1373 PERL_UNUSED_CONTEXT;
1375 Newx(d, (*len) * 2 + 1, U8);
1379 const UV uv = NATIVE_TO_ASCII(*s++);
1380 if (UNI_IS_INVARIANT(uv))
1381 *d++ = (U8)UTF_TO_NATIVE(uv);
1383 *d++ = (U8)UTF8_EIGHT_BIT_HI(uv);
1384 *d++ = (U8)UTF8_EIGHT_BIT_LO(uv);
1393 * Convert native (big-endian) or reversed (little-endian) UTF-16 to UTF-8.
1395 * Destination must be pre-extended to 3/2 source. Do not use in-place.
1396 * We optimize for native, for obvious reasons. */
1399 Perl_utf16_to_utf8(pTHX_ U8* p, U8* d, I32 bytelen, I32 *newlen)
1404 PERL_ARGS_ASSERT_UTF16_TO_UTF8;
1407 Perl_croak(aTHX_ "panic: utf16_to_utf8: odd bytelen %"UVuf, (UV)bytelen);
1412 UV uv = (p[0] << 8) + p[1]; /* UTF-16BE */
1416 *d++ = UNI_TO_NATIVE(uv);
1423 *d++ = (U8)(( uv >> 6) | 0xc0);
1424 *d++ = (U8)(( uv & 0x3f) | 0x80);
1427 if (uv >= 0xd800 && uv <= 0xdbff) { /* surrogates */
1429 Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
1431 UV low = (p[0] << 8) + p[1];
1433 if (low < 0xdc00 || low > 0xdfff)
1434 Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
1435 uv = ((uv - 0xd800) << 10) + (low - 0xdc00) + 0x10000;
1437 } else if (uv >= 0xdc00 && uv <= 0xdfff) {
1438 Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
1441 *d++ = (U8)(( uv >> 12) | 0xe0);
1442 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
1443 *d++ = (U8)(( uv & 0x3f) | 0x80);
1447 *d++ = (U8)(( uv >> 18) | 0xf0);
1448 *d++ = (U8)(((uv >> 12) & 0x3f) | 0x80);
1449 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
1450 *d++ = (U8)(( uv & 0x3f) | 0x80);
1454 *newlen = d - dstart;
1458 /* Note: this one is slightly destructive of the source. */
1461 Perl_utf16_to_utf8_reversed(pTHX_ U8* p, U8* d, I32 bytelen, I32 *newlen)
1464 U8* const send = s + bytelen;
1466 PERL_ARGS_ASSERT_UTF16_TO_UTF8_REVERSED;
1469 Perl_croak(aTHX_ "panic: utf16_to_utf8_reversed: odd bytelen %"UVuf,
1473 const U8 tmp = s[0];
1478 return utf16_to_utf8(p, d, bytelen, newlen);
1481 /* for now these are all defined (inefficiently) in terms of the utf8 versions.
1482 * Note that the macros in handy.h that call these short-circuit calling them
1483 * for Latin-1 range inputs */
1486 Perl_is_uni_alnum(pTHX_ UV c)
1488 U8 tmpbuf[UTF8_MAXBYTES+1];
1489 uvchr_to_utf8(tmpbuf, c);
1490 return is_utf8_alnum(tmpbuf);
1494 Perl_is_uni_idfirst(pTHX_ UV c)
1496 U8 tmpbuf[UTF8_MAXBYTES+1];
1497 uvchr_to_utf8(tmpbuf, c);
1498 return is_utf8_idfirst(tmpbuf);
1502 Perl_is_uni_alpha(pTHX_ UV c)
1504 U8 tmpbuf[UTF8_MAXBYTES+1];
1505 uvchr_to_utf8(tmpbuf, c);
1506 return is_utf8_alpha(tmpbuf);
1510 Perl_is_uni_ascii(pTHX_ UV c)
1516 Perl_is_uni_blank(pTHX_ UV c)
1518 U8 tmpbuf[UTF8_MAXBYTES+1];
1519 uvchr_to_utf8(tmpbuf, c);
1520 return is_utf8_blank(tmpbuf);
1524 Perl_is_uni_space(pTHX_ UV c)
1526 U8 tmpbuf[UTF8_MAXBYTES+1];
1527 uvchr_to_utf8(tmpbuf, c);
1528 return is_utf8_space(tmpbuf);
1532 Perl_is_uni_digit(pTHX_ UV c)
1534 U8 tmpbuf[UTF8_MAXBYTES+1];
1535 uvchr_to_utf8(tmpbuf, c);
1536 return is_utf8_digit(tmpbuf);
1540 Perl_is_uni_upper(pTHX_ UV c)
1542 U8 tmpbuf[UTF8_MAXBYTES+1];
1543 uvchr_to_utf8(tmpbuf, c);
1544 return is_utf8_upper(tmpbuf);
1548 Perl_is_uni_lower(pTHX_ UV c)
1550 U8 tmpbuf[UTF8_MAXBYTES+1];
1551 uvchr_to_utf8(tmpbuf, c);
1552 return is_utf8_lower(tmpbuf);
1556 Perl_is_uni_cntrl(pTHX_ UV c)
1558 return isCNTRL_L1(c);
1562 Perl_is_uni_graph(pTHX_ UV c)
1564 U8 tmpbuf[UTF8_MAXBYTES+1];
1565 uvchr_to_utf8(tmpbuf, c);
1566 return is_utf8_graph(tmpbuf);
1570 Perl_is_uni_print(pTHX_ UV c)
1572 U8 tmpbuf[UTF8_MAXBYTES+1];
1573 uvchr_to_utf8(tmpbuf, c);
1574 return is_utf8_print(tmpbuf);
1578 Perl_is_uni_punct(pTHX_ UV c)
1580 U8 tmpbuf[UTF8_MAXBYTES+1];
1581 uvchr_to_utf8(tmpbuf, c);
1582 return is_utf8_punct(tmpbuf);
1586 Perl_is_uni_xdigit(pTHX_ UV c)
1588 U8 tmpbuf[UTF8_MAXBYTES_CASE+1];
1589 uvchr_to_utf8(tmpbuf, c);
1590 return is_utf8_xdigit(tmpbuf);
1594 Perl__to_upper_title_latin1(pTHX_ const U8 c, U8* p, STRLEN *lenp, const char S_or_s)
1596 /* We have the latin1-range values compiled into the core, so just use
1597 * those, converting the result to utf8. The only difference between upper
1598 * and title case in this range is that LATIN_SMALL_LETTER_SHARP_S is
1599 * either "SS" or "Ss". Which one to use is passed into the routine in
1600 * 'S_or_s' to avoid a test */
1602 UV converted = toUPPER_LATIN1_MOD(c);
1604 PERL_ARGS_ASSERT__TO_UPPER_TITLE_LATIN1;
1606 assert(S_or_s == 'S' || S_or_s == 's');
1608 if (UNI_IS_INVARIANT(converted)) { /* No difference between the two for
1609 characters in this range */
1610 *p = (U8) converted;
1615 /* toUPPER_LATIN1_MOD gives the correct results except for three outliers,
1616 * which it maps to one of them, so as to only have to have one check for
1617 * it in the main case */
1618 if (UNLIKELY(converted == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS)) {
1620 case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
1621 converted = LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS;
1624 converted = GREEK_CAPITAL_LETTER_MU;
1626 case LATIN_SMALL_LETTER_SHARP_S:
1632 Perl_croak(aTHX_ "panic: to_upper_title_latin1 did not expect '%c' to map to '%c'", c, LATIN_SMALL_LETTER_Y_WITH_DIAERESIS);
1633 assert(0); /* NOTREACHED */
1637 *(p)++ = UTF8_TWO_BYTE_HI(converted);
1638 *p = UTF8_TWO_BYTE_LO(converted);
1644 /* Call the function to convert a UTF-8 encoded character to the specified case.
1645 * Note that there may be more than one character in the result.
1646 * INP is a pointer to the first byte of the input character
1647 * OUTP will be set to the first byte of the string of changed characters. It
1648 * needs to have space for UTF8_MAXBYTES_CASE+1 bytes
1649 * LENP will be set to the length in bytes of the string of changed characters
1651 * The functions return the ordinal of the first character in the string of OUTP */
1652 #define CALL_UPPER_CASE(INP, OUTP, LENP) Perl_to_utf8_case(aTHX_ INP, OUTP, LENP, &PL_utf8_toupper, "ToUc", "utf8::ToSpecUc")
1653 #define CALL_TITLE_CASE(INP, OUTP, LENP) Perl_to_utf8_case(aTHX_ INP, OUTP, LENP, &PL_utf8_totitle, "ToTc", "utf8::ToSpecTc")
1654 #define CALL_LOWER_CASE(INP, OUTP, LENP) Perl_to_utf8_case(aTHX_ INP, OUTP, LENP, &PL_utf8_tolower, "ToLc", "utf8::ToSpecLc")
1656 /* This additionally has the input parameter SPECIALS, which if non-zero will
1657 * cause this to use the SPECIALS hash for folding (meaning get full case
1658 * folding); otherwise, when zero, this implies a simple case fold */
1659 #define CALL_FOLD_CASE(INP, OUTP, LENP, SPECIALS) Perl_to_utf8_case(aTHX_ INP, OUTP, LENP, &PL_utf8_tofold, "ToCf", (SPECIALS) ? "utf8::ToSpecCf" : NULL)
1662 Perl_to_uni_upper(pTHX_ UV c, U8* p, STRLEN *lenp)
1666 /* Convert the Unicode character whose ordinal is <c> to its uppercase
1667 * version and store that in UTF-8 in <p> and its length in bytes in <lenp>.
1668 * Note that the <p> needs to be at least UTF8_MAXBYTES_CASE+1 bytes since
1669 * the changed version may be longer than the original character.
1671 * The ordinal of the first character of the changed version is returned
1672 * (but note, as explained above, that there may be more.) */
1674 PERL_ARGS_ASSERT_TO_UNI_UPPER;
1677 return _to_upper_title_latin1((U8) c, p, lenp, 'S');
1680 uvchr_to_utf8(p, c);
1681 return CALL_UPPER_CASE(p, p, lenp);
1685 Perl_to_uni_title(pTHX_ UV c, U8* p, STRLEN *lenp)
1689 PERL_ARGS_ASSERT_TO_UNI_TITLE;
1692 return _to_upper_title_latin1((U8) c, p, lenp, 's');
1695 uvchr_to_utf8(p, c);
1696 return CALL_TITLE_CASE(p, p, lenp);
1700 S_to_lower_latin1(pTHX_ const U8 c, U8* p, STRLEN *lenp)
1702 /* We have the latin1-range values compiled into the core, so just use
1703 * those, converting the result to utf8. Since the result is always just
1704 * one character, we allow <p> to be NULL */
1706 U8 converted = toLOWER_LATIN1(c);
1709 if (UNI_IS_INVARIANT(converted)) {
1714 *p = UTF8_TWO_BYTE_HI(converted);
1715 *(p+1) = UTF8_TWO_BYTE_LO(converted);
1723 Perl_to_uni_lower(pTHX_ UV c, U8* p, STRLEN *lenp)
1727 PERL_ARGS_ASSERT_TO_UNI_LOWER;
1730 return to_lower_latin1((U8) c, p, lenp);
1733 uvchr_to_utf8(p, c);
1734 return CALL_LOWER_CASE(p, p, lenp);
1738 Perl__to_fold_latin1(pTHX_ const U8 c, U8* p, STRLEN *lenp, const bool flags)
1740 /* Corresponds to to_lower_latin1(), <flags> is TRUE if to use full case
1745 PERL_ARGS_ASSERT__TO_FOLD_LATIN1;
1747 if (c == MICRO_SIGN) {
1748 converted = GREEK_SMALL_LETTER_MU;
1750 else if (flags && c == LATIN_SMALL_LETTER_SHARP_S) {
1756 else { /* In this range the fold of all other characters is their lower
1758 converted = toLOWER_LATIN1(c);
1761 if (UNI_IS_INVARIANT(converted)) {
1762 *p = (U8) converted;
1766 *(p)++ = UTF8_TWO_BYTE_HI(converted);
1767 *p = UTF8_TWO_BYTE_LO(converted);
1775 Perl__to_uni_fold_flags(pTHX_ UV c, U8* p, STRLEN *lenp, const U8 flags)
1778 /* Not currently externally documented, and subject to change
1779 * <flags> bits meanings:
1780 * FOLD_FLAGS_FULL iff full folding is to be used;
1781 * FOLD_FLAGS_LOCALE iff in locale
1782 * FOLD_FLAGS_NOMIX_ASCII iff non-ASCII to ASCII folds are prohibited
1785 PERL_ARGS_ASSERT__TO_UNI_FOLD_FLAGS;
1788 UV result = _to_fold_latin1((U8) c, p, lenp,
1789 cBOOL(((flags & FOLD_FLAGS_FULL)
1790 /* If ASCII-safe, don't allow full folding,
1791 * as that could include SHARP S => ss;
1792 * otherwise there is no crossing of
1793 * ascii/non-ascii in the latin1 range */
1794 && ! (flags & FOLD_FLAGS_NOMIX_ASCII))));
1795 /* It is illegal for the fold to cross the 255/256 boundary under
1796 * locale; in this case return the original */
1797 return (result > 256 && flags & FOLD_FLAGS_LOCALE)
1802 /* If no special needs, just use the macro */
1803 if ( ! (flags & (FOLD_FLAGS_LOCALE|FOLD_FLAGS_NOMIX_ASCII))) {
1804 uvchr_to_utf8(p, c);
1805 return CALL_FOLD_CASE(p, p, lenp, flags & FOLD_FLAGS_FULL);
1807 else { /* Otherwise, _to_utf8_fold_flags has the intelligence to deal with
1808 the special flags. */
1809 U8 utf8_c[UTF8_MAXBYTES + 1];
1810 uvchr_to_utf8(utf8_c, c);
1811 return _to_utf8_fold_flags(utf8_c, p, lenp, flags, NULL);
1815 /* for now these all assume no locale info available for Unicode > 255; and
1816 * the corresponding macros in handy.h (like isALNUM_LC_uvchr) should have been
1817 * called instead, so that these don't get called for < 255 */
1820 Perl_is_uni_alnum_lc(pTHX_ UV c)
1822 return is_uni_alnum(c); /* XXX no locale support yet */
1826 Perl_is_uni_idfirst_lc(pTHX_ UV c)
1828 return is_uni_idfirst(c); /* XXX no locale support yet */
1832 Perl_is_uni_alpha_lc(pTHX_ UV c)
1834 return is_uni_alpha(c); /* XXX no locale support yet */
1838 Perl_is_uni_ascii_lc(pTHX_ UV c)
1840 return is_uni_ascii(c); /* XXX no locale support yet */
1844 Perl_is_uni_blank_lc(pTHX_ UV c)
1846 return is_uni_blank(c); /* XXX no locale support yet */
1850 Perl_is_uni_space_lc(pTHX_ UV c)
1852 return is_uni_space(c); /* XXX no locale support yet */
1856 Perl_is_uni_digit_lc(pTHX_ UV c)
1858 return is_uni_digit(c); /* XXX no locale support yet */
1862 Perl_is_uni_upper_lc(pTHX_ UV c)
1864 return is_uni_upper(c); /* XXX no locale support yet */
1868 Perl_is_uni_lower_lc(pTHX_ UV c)
1870 return is_uni_lower(c); /* XXX no locale support yet */
1874 Perl_is_uni_cntrl_lc(pTHX_ UV c)
1876 return is_uni_cntrl(c); /* XXX no locale support yet */
1880 Perl_is_uni_graph_lc(pTHX_ UV c)
1882 return is_uni_graph(c); /* XXX no locale support yet */
1886 Perl_is_uni_print_lc(pTHX_ UV c)
1888 return is_uni_print(c); /* XXX no locale support yet */
1892 Perl_is_uni_punct_lc(pTHX_ UV c)
1894 return is_uni_punct(c); /* XXX no locale support yet */
1898 Perl_is_uni_xdigit_lc(pTHX_ UV c)
1900 return is_uni_xdigit(c); /* XXX no locale support yet */
1904 Perl_to_uni_upper_lc(pTHX_ U32 c)
1906 /* XXX returns only the first character -- do not use XXX */
1907 /* XXX no locale support yet */
1909 U8 tmpbuf[UTF8_MAXBYTES_CASE+1];
1910 return (U32)to_uni_upper(c, tmpbuf, &len);
1914 Perl_to_uni_title_lc(pTHX_ U32 c)
1916 /* XXX returns only the first character XXX -- do not use XXX */
1917 /* XXX no locale support yet */
1919 U8 tmpbuf[UTF8_MAXBYTES_CASE+1];
1920 return (U32)to_uni_title(c, tmpbuf, &len);
1924 Perl_to_uni_lower_lc(pTHX_ U32 c)
1926 /* XXX returns only the first character -- do not use XXX */
1927 /* XXX no locale support yet */
1929 U8 tmpbuf[UTF8_MAXBYTES_CASE+1];
1930 return (U32)to_uni_lower(c, tmpbuf, &len);
1934 S_is_utf8_common(pTHX_ const U8 *const p, SV **swash,
1935 const char *const swashname)
1937 /* returns a boolean giving whether or not the UTF8-encoded character that
1938 * starts at <p> is in the swash indicated by <swashname>. <swash>
1939 * contains a pointer to where the swash indicated by <swashname>
1940 * is to be stored; which this routine will do, so that future calls will
1941 * look at <*swash> and only generate a swash if it is not null
1943 * Note that it is assumed that the buffer length of <p> is enough to
1944 * contain all the bytes that comprise the character. Thus, <*p> should
1945 * have been checked before this call for mal-formedness enough to assure
1950 PERL_ARGS_ASSERT_IS_UTF8_COMMON;
1952 /* The API should have included a length for the UTF-8 character in <p>,
1953 * but it doesn't. We therefor assume that p has been validated at least
1954 * as far as there being enough bytes available in it to accommodate the
1955 * character without reading beyond the end, and pass that number on to the
1956 * validating routine */
1957 if (!is_utf8_char_buf(p, p + UTF8SKIP(p)))
1960 U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
1961 *swash = _core_swash_init("utf8", swashname, &PL_sv_undef, 1, 0, NULL, &flags);
1963 return swash_fetch(*swash, p, TRUE) != 0;
1967 Perl_is_utf8_alnum(pTHX_ const U8 *p)
1971 PERL_ARGS_ASSERT_IS_UTF8_ALNUM;
1973 /* NOTE: "IsWord", not "IsAlnum", since Alnum is a true
1974 * descendant of isalnum(3), in other words, it doesn't
1975 * contain the '_'. --jhi */
1976 return is_utf8_common(p, &PL_utf8_alnum, "IsWord");
1980 Perl_is_utf8_idfirst(pTHX_ const U8 *p) /* The naming is historical. */
1984 PERL_ARGS_ASSERT_IS_UTF8_IDFIRST;
1988 /* is_utf8_idstart would be more logical. */
1989 return is_utf8_common(p, &PL_utf8_idstart, "IdStart");
1993 Perl_is_utf8_xidfirst(pTHX_ const U8 *p) /* The naming is historical. */
1997 PERL_ARGS_ASSERT_IS_UTF8_XIDFIRST;
2001 /* is_utf8_idstart would be more logical. */
2002 return is_utf8_common(p, &PL_utf8_xidstart, "XIdStart");
2006 Perl__is_utf8__perl_idstart(pTHX_ const U8 *p)
2010 PERL_ARGS_ASSERT__IS_UTF8__PERL_IDSTART;
2012 return is_utf8_common(p, &PL_utf8_perl_idstart, "_Perl_IDStart");
2016 Perl_is_utf8_idcont(pTHX_ const U8 *p)
2020 PERL_ARGS_ASSERT_IS_UTF8_IDCONT;
2022 return is_utf8_common(p, &PL_utf8_idcont, "IdContinue");
2026 Perl_is_utf8_xidcont(pTHX_ const U8 *p)
2030 PERL_ARGS_ASSERT_IS_UTF8_XIDCONT;
2032 return is_utf8_common(p, &PL_utf8_idcont, "XIdContinue");
2036 Perl_is_utf8_alpha(pTHX_ const U8 *p)
2040 PERL_ARGS_ASSERT_IS_UTF8_ALPHA;
2042 return is_utf8_common(p, &PL_utf8_alpha, "IsAlpha");
2046 Perl_is_utf8_ascii(pTHX_ const U8 *p)
2050 PERL_ARGS_ASSERT_IS_UTF8_ASCII;
2052 /* ASCII characters are the same whether in utf8 or not. So the macro
2053 * works on both utf8 and non-utf8 representations. */
2058 Perl_is_utf8_blank(pTHX_ const U8 *p)
2062 PERL_ARGS_ASSERT_IS_UTF8_BLANK;
2064 return is_utf8_common(p, &PL_utf8_blank, "XPosixBlank");
2068 Perl_is_utf8_space(pTHX_ const U8 *p)
2072 PERL_ARGS_ASSERT_IS_UTF8_SPACE;
2074 return is_utf8_common(p, &PL_utf8_space, "IsXPerlSpace");
2078 Perl_is_utf8_perl_space(pTHX_ const U8 *p)
2082 PERL_ARGS_ASSERT_IS_UTF8_PERL_SPACE;
2084 /* Only true if is an ASCII space-like character, and ASCII is invariant
2085 * under utf8, so can just use the macro */
2086 return isSPACE_A(*p);
2090 Perl_is_utf8_perl_word(pTHX_ const U8 *p)
2094 PERL_ARGS_ASSERT_IS_UTF8_PERL_WORD;
2096 /* Only true if is an ASCII word character, and ASCII is invariant
2097 * under utf8, so can just use the macro */
2098 return isWORDCHAR_A(*p);
2102 Perl_is_utf8_digit(pTHX_ const U8 *p)
2106 PERL_ARGS_ASSERT_IS_UTF8_DIGIT;
2108 return is_utf8_common(p, &PL_utf8_digit, "IsDigit");
2112 Perl_is_utf8_posix_digit(pTHX_ const U8 *p)
2116 PERL_ARGS_ASSERT_IS_UTF8_POSIX_DIGIT;
2118 /* Only true if is an ASCII digit character, and ASCII is invariant
2119 * under utf8, so can just use the macro */
2120 return isDIGIT_A(*p);
2124 Perl_is_utf8_upper(pTHX_ const U8 *p)
2128 PERL_ARGS_ASSERT_IS_UTF8_UPPER;
2130 return is_utf8_common(p, &PL_utf8_upper, "IsUppercase");
2134 Perl_is_utf8_lower(pTHX_ const U8 *p)
2138 PERL_ARGS_ASSERT_IS_UTF8_LOWER;
2140 return is_utf8_common(p, &PL_utf8_lower, "IsLowercase");
2144 Perl_is_utf8_cntrl(pTHX_ const U8 *p)
2148 PERL_ARGS_ASSERT_IS_UTF8_CNTRL;
2151 return isCNTRL_A(*p);
2154 /* All controls are in Latin1 */
2155 if (! UTF8_IS_DOWNGRADEABLE_START(*p)) {
2158 return isCNTRL_L1(TWO_BYTE_UTF8_TO_UNI(*p, *(p+1)));
2162 Perl_is_utf8_graph(pTHX_ const U8 *p)
2166 PERL_ARGS_ASSERT_IS_UTF8_GRAPH;
2168 return is_utf8_common(p, &PL_utf8_graph, "IsGraph");
2172 Perl_is_utf8_print(pTHX_ const U8 *p)
2176 PERL_ARGS_ASSERT_IS_UTF8_PRINT;
2178 return is_utf8_common(p, &PL_utf8_print, "IsPrint");
2182 Perl_is_utf8_punct(pTHX_ const U8 *p)
2186 PERL_ARGS_ASSERT_IS_UTF8_PUNCT;
2188 return is_utf8_common(p, &PL_utf8_punct, "IsPunct");
2192 Perl_is_utf8_xdigit(pTHX_ const U8 *p)
2196 PERL_ARGS_ASSERT_IS_UTF8_XDIGIT;
2198 return is_utf8_common(p, &PL_utf8_xdigit, "IsXDigit");
2202 Perl_is_utf8_mark(pTHX_ const U8 *p)
2206 PERL_ARGS_ASSERT_IS_UTF8_MARK;
2208 return is_utf8_common(p, &PL_utf8_mark, "IsM");
2212 Perl_is_utf8_X_regular_begin(pTHX_ const U8 *p)
2216 PERL_ARGS_ASSERT_IS_UTF8_X_REGULAR_BEGIN;
2218 return is_utf8_common(p, &PL_utf8_X_regular_begin, "_X_Regular_Begin");
2222 Perl_is_utf8_X_extend(pTHX_ const U8 *p)
2226 PERL_ARGS_ASSERT_IS_UTF8_X_EXTEND;
2228 return is_utf8_common(p, &PL_utf8_X_extend, "_X_Extend");
2232 =for apidoc to_utf8_case
2234 The C<p> contains the pointer to the UTF-8 string encoding
2235 the character that is being converted. This routine assumes that the character
2236 at C<p> is well-formed.
2238 The C<ustrp> is a pointer to the character buffer to put the
2239 conversion result to. The C<lenp> is a pointer to the length
2242 The C<swashp> is a pointer to the swash to use.
2244 Both the special and normal mappings are stored in F<lib/unicore/To/Foo.pl>,
2245 and loaded by SWASHNEW, using F<lib/utf8_heavy.pl>. The C<special> (usually,
2246 but not always, a multicharacter mapping), is tried first.
2248 The C<special> is a string like "utf8::ToSpecLower", which means the
2249 hash %utf8::ToSpecLower. The access to the hash is through
2250 Perl_to_utf8_case().
2252 The C<normal> is a string like "ToLower" which means the swash
2258 Perl_to_utf8_case(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp,
2259 SV **swashp, const char *normal, const char *special)
2262 U8 tmpbuf[UTF8_MAXBYTES_CASE+1];
2264 const UV uv0 = valid_utf8_to_uvchr(p, NULL);
2265 /* The NATIVE_TO_UNI() and UNI_TO_NATIVE() mappings
2266 * are necessary in EBCDIC, they are redundant no-ops
2267 * in ASCII-ish platforms, and hopefully optimized away. */
2268 const UV uv1 = NATIVE_TO_UNI(uv0);
2270 PERL_ARGS_ASSERT_TO_UTF8_CASE;
2272 /* Note that swash_fetch() doesn't output warnings for these because it
2273 * assumes we will */
2274 if (uv1 >= UNICODE_SURROGATE_FIRST) {
2275 if (uv1 <= UNICODE_SURROGATE_LAST) {
2276 if (ckWARN_d(WARN_SURROGATE)) {
2277 const char* desc = (PL_op) ? OP_DESC(PL_op) : normal;
2278 Perl_warner(aTHX_ packWARN(WARN_SURROGATE),
2279 "Operation \"%s\" returns its argument for UTF-16 surrogate U+%04"UVXf"", desc, uv1);
2282 else if (UNICODE_IS_SUPER(uv1)) {
2283 if (ckWARN_d(WARN_NON_UNICODE)) {
2284 const char* desc = (PL_op) ? OP_DESC(PL_op) : normal;
2285 Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE),
2286 "Operation \"%s\" returns its argument for non-Unicode code point 0x%04"UVXf"", desc, uv1);
2290 /* Note that non-characters are perfectly legal, so no warning should
2294 uvuni_to_utf8(tmpbuf, uv1);
2296 if (!*swashp) /* load on-demand */
2297 *swashp = _core_swash_init("utf8", normal, &PL_sv_undef, 4, 0, NULL, NULL);
2300 /* It might be "special" (sometimes, but not always,
2301 * a multicharacter mapping) */
2302 HV * const hv = get_hv(special, 0);
2306 (svp = hv_fetch(hv, (const char*)tmpbuf, UNISKIP(uv1), FALSE)) &&
2310 s = SvPV_const(*svp, len);
2312 len = uvuni_to_utf8(ustrp, NATIVE_TO_UNI(*(U8*)s)) - ustrp;
2315 /* If we have EBCDIC we need to remap the characters
2316 * since any characters in the low 256 are Unicode
2317 * code points, not EBCDIC. */
2318 U8 *t = (U8*)s, *tend = t + len, *d;
2325 const UV c = utf8_to_uvchr_buf(t, tend, &tlen);
2327 d = uvchr_to_utf8(d, UNI_TO_NATIVE(c));
2336 d = uvchr_to_utf8(d, UNI_TO_NATIVE(*t));
2341 Copy(tmpbuf, ustrp, len, U8);
2343 Copy(s, ustrp, len, U8);
2349 if (!len && *swashp) {
2350 const UV uv2 = swash_fetch(*swashp, tmpbuf, TRUE /* => is utf8 */);
2353 /* It was "normal" (a single character mapping). */
2354 const UV uv3 = UNI_TO_NATIVE(uv2);
2355 len = uvchr_to_utf8(ustrp, uv3) - ustrp;
2363 return valid_utf8_to_uvchr(ustrp, 0);
2366 /* Here, there was no mapping defined, which means that the code point maps
2367 * to itself. Return the inputs */
2369 if (p != ustrp) { /* Don't copy onto itself */
2370 Copy(p, ustrp, len, U8);
2381 S_check_locale_boundary_crossing(pTHX_ const U8* const p, const UV result, U8* const ustrp, STRLEN *lenp)
2383 /* This is called when changing the case of a utf8-encoded character above
2384 * the Latin1 range, and the operation is in locale. If the result
2385 * contains a character that crosses the 255/256 boundary, disallow the
2386 * change, and return the original code point. See L<perlfunc/lc> for why;
2388 * p points to the original string whose case was changed; assumed
2389 * by this routine to be well-formed
2390 * result the code point of the first character in the changed-case string
2391 * ustrp points to the changed-case string (<result> represents its first char)
2392 * lenp points to the length of <ustrp> */
2394 UV original; /* To store the first code point of <p> */
2396 PERL_ARGS_ASSERT_CHECK_LOCALE_BOUNDARY_CROSSING;
2398 assert(! UTF8_IS_INVARIANT(*p) && ! UTF8_IS_DOWNGRADEABLE_START(*p));
2400 /* We know immediately if the first character in the string crosses the
2401 * boundary, so can skip */
2404 /* Look at every character in the result; if any cross the
2405 * boundary, the whole thing is disallowed */
2406 U8* s = ustrp + UTF8SKIP(ustrp);
2407 U8* e = ustrp + *lenp;
2409 if (UTF8_IS_INVARIANT(*s) || UTF8_IS_DOWNGRADEABLE_START(*s))
2416 /* Here, no characters crossed, result is ok as-is */
2422 /* Failed, have to return the original */
2423 original = valid_utf8_to_uvchr(p, lenp);
2424 Copy(p, ustrp, *lenp, char);
2429 =for apidoc to_utf8_upper
2431 Convert the UTF-8 encoded character at C<p> to its uppercase version and
2432 store that in UTF-8 in C<ustrp> and its length in bytes in C<lenp>. Note
2433 that the ustrp needs to be at least UTF8_MAXBYTES_CASE+1 bytes since
2434 the uppercase version may be longer than the original character.
2436 The first character of the uppercased version is returned
2437 (but note, as explained above, that there may be more.)
2439 The character at C<p> is assumed by this routine to be well-formed.
2443 /* Not currently externally documented, and subject to change:
2444 * <flags> is set iff locale semantics are to be used for code points < 256
2445 * <tainted_ptr> if non-null, *tainted_ptr will be set TRUE iff locale rules
2446 * were used in the calculation; otherwise unchanged. */
2449 Perl__to_utf8_upper_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, const bool flags, bool* tainted_ptr)
2455 PERL_ARGS_ASSERT__TO_UTF8_UPPER_FLAGS;
2457 if (UTF8_IS_INVARIANT(*p)) {
2459 result = toUPPER_LC(*p);
2462 return _to_upper_title_latin1(*p, ustrp, lenp, 'S');
2465 else if UTF8_IS_DOWNGRADEABLE_START(*p) {
2467 result = toUPPER_LC(TWO_BYTE_UTF8_TO_UNI(*p, *(p+1)));
2470 return _to_upper_title_latin1(TWO_BYTE_UTF8_TO_UNI(*p, *(p+1)),
2474 else { /* utf8, ord above 255 */
2475 result = CALL_UPPER_CASE(p, ustrp, lenp);
2478 result = check_locale_boundary_crossing(p, result, ustrp, lenp);
2483 /* Here, used locale rules. Convert back to utf8 */
2484 if (UTF8_IS_INVARIANT(result)) {
2485 *ustrp = (U8) result;
2489 *ustrp = UTF8_EIGHT_BIT_HI(result);
2490 *(ustrp + 1) = UTF8_EIGHT_BIT_LO(result);
2495 *tainted_ptr = TRUE;
2501 =for apidoc to_utf8_title
2503 Convert the UTF-8 encoded character at C<p> to its titlecase version and
2504 store that in UTF-8 in C<ustrp> and its length in bytes in C<lenp>. Note
2505 that the C<ustrp> needs to be at least UTF8_MAXBYTES_CASE+1 bytes since the
2506 titlecase version may be longer than the original character.
2508 The first character of the titlecased version is returned
2509 (but note, as explained above, that there may be more.)
2511 The character at C<p> is assumed by this routine to be well-formed.
2515 /* Not currently externally documented, and subject to change:
2516 * <flags> is set iff locale semantics are to be used for code points < 256
2517 * Since titlecase is not defined in POSIX, uppercase is used instead
2519 * <tainted_ptr> if non-null, *tainted_ptr will be set TRUE iff locale rules
2520 * were used in the calculation; otherwise unchanged. */
2523 Perl__to_utf8_title_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, const bool flags, bool* tainted_ptr)
2529 PERL_ARGS_ASSERT__TO_UTF8_TITLE_FLAGS;
2531 if (UTF8_IS_INVARIANT(*p)) {
2533 result = toUPPER_LC(*p);
2536 return _to_upper_title_latin1(*p, ustrp, lenp, 's');
2539 else if UTF8_IS_DOWNGRADEABLE_START(*p) {
2541 result = toUPPER_LC(TWO_BYTE_UTF8_TO_UNI(*p, *(p+1)));
2544 return _to_upper_title_latin1(TWO_BYTE_UTF8_TO_UNI(*p, *(p+1)),
2548 else { /* utf8, ord above 255 */
2549 result = CALL_TITLE_CASE(p, ustrp, lenp);
2552 result = check_locale_boundary_crossing(p, result, ustrp, lenp);
2557 /* Here, used locale rules. Convert back to utf8 */
2558 if (UTF8_IS_INVARIANT(result)) {
2559 *ustrp = (U8) result;
2563 *ustrp = UTF8_EIGHT_BIT_HI(result);
2564 *(ustrp + 1) = UTF8_EIGHT_BIT_LO(result);
2569 *tainted_ptr = TRUE;
2575 =for apidoc to_utf8_lower
2577 Convert the UTF-8 encoded character at C<p> to its lowercase version and
2578 store that in UTF-8 in ustrp and its length in bytes in C<lenp>. Note
2579 that the C<ustrp> needs to be at least UTF8_MAXBYTES_CASE+1 bytes since the
2580 lowercase version may be longer than the original character.
2582 The first character of the lowercased version is returned
2583 (but note, as explained above, that there may be more.)
2585 The character at C<p> is assumed by this routine to be well-formed.
2589 /* Not currently externally documented, and subject to change:
2590 * <flags> is set iff locale semantics are to be used for code points < 256
2591 * <tainted_ptr> if non-null, *tainted_ptr will be set TRUE iff locale rules
2592 * were used in the calculation; otherwise unchanged. */
2595 Perl__to_utf8_lower_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, const bool flags, bool* tainted_ptr)
2601 PERL_ARGS_ASSERT__TO_UTF8_LOWER_FLAGS;
2603 if (UTF8_IS_INVARIANT(*p)) {
2605 result = toLOWER_LC(*p);
2608 return to_lower_latin1(*p, ustrp, lenp);
2611 else if UTF8_IS_DOWNGRADEABLE_START(*p) {
2613 result = toLOWER_LC(TWO_BYTE_UTF8_TO_UNI(*p, *(p+1)));
2616 return to_lower_latin1(TWO_BYTE_UTF8_TO_UNI(*p, *(p+1)),
2620 else { /* utf8, ord above 255 */
2621 result = CALL_LOWER_CASE(p, ustrp, lenp);
2624 result = check_locale_boundary_crossing(p, result, ustrp, lenp);
2630 /* Here, used locale rules. Convert back to utf8 */
2631 if (UTF8_IS_INVARIANT(result)) {
2632 *ustrp = (U8) result;
2636 *ustrp = UTF8_EIGHT_BIT_HI(result);
2637 *(ustrp + 1) = UTF8_EIGHT_BIT_LO(result);
2642 *tainted_ptr = TRUE;
2648 =for apidoc to_utf8_fold
2650 Convert the UTF-8 encoded character at C<p> to its foldcase version and
2651 store that in UTF-8 in C<ustrp> and its length in bytes in C<lenp>. Note
2652 that the C<ustrp> needs to be at least UTF8_MAXBYTES_CASE+1 bytes since the
2653 foldcase version may be longer than the original character (up to
2656 The first character of the foldcased version is returned
2657 (but note, as explained above, that there may be more.)
2659 The character at C<p> is assumed by this routine to be well-formed.
2663 /* Not currently externally documented, and subject to change,
2665 * bit FOLD_FLAGS_LOCALE is set iff locale semantics are to be used for code
2666 * points < 256. Since foldcase is not defined in
2667 * POSIX, lowercase is used instead
2668 * bit FOLD_FLAGS_FULL is set iff full case folds are to be used;
2669 * otherwise simple folds
2670 * bit FOLD_FLAGS_NOMIX_ASCII is set iff folds of non-ASCII to ASCII are
2672 * <tainted_ptr> if non-null, *tainted_ptr will be set TRUE iff locale rules
2673 * were used in the calculation; otherwise unchanged. */
2676 Perl__to_utf8_fold_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, U8 flags, bool* tainted_ptr)
2682 PERL_ARGS_ASSERT__TO_UTF8_FOLD_FLAGS;
2684 /* These are mutually exclusive */
2685 assert (! ((flags & FOLD_FLAGS_LOCALE) && (flags & FOLD_FLAGS_NOMIX_ASCII)));
2687 assert(p != ustrp); /* Otherwise overwrites */
2689 if (UTF8_IS_INVARIANT(*p)) {
2690 if (flags & FOLD_FLAGS_LOCALE) {
2691 result = toLOWER_LC(*p);
2694 return _to_fold_latin1(*p, ustrp, lenp,
2695 cBOOL(flags & FOLD_FLAGS_FULL));
2698 else if UTF8_IS_DOWNGRADEABLE_START(*p) {
2699 if (flags & FOLD_FLAGS_LOCALE) {
2700 result = toLOWER_LC(TWO_BYTE_UTF8_TO_UNI(*p, *(p+1)));
2703 return _to_fold_latin1(TWO_BYTE_UTF8_TO_UNI(*p, *(p+1)),
2705 cBOOL((flags & FOLD_FLAGS_FULL
2706 /* If ASCII safe, don't allow full
2707 * folding, as that could include SHARP
2708 * S => ss; otherwise there is no
2709 * crossing of ascii/non-ascii in the
2711 && ! (flags & FOLD_FLAGS_NOMIX_ASCII))));
2714 else { /* utf8, ord above 255 */
2715 result = CALL_FOLD_CASE(p, ustrp, lenp, flags & FOLD_FLAGS_FULL);
2717 if ((flags & FOLD_FLAGS_LOCALE)) {
2718 return check_locale_boundary_crossing(p, result, ustrp, lenp);
2720 else if (! (flags & FOLD_FLAGS_NOMIX_ASCII)) {
2724 /* This is called when changing the case of a utf8-encoded
2725 * character above the Latin1 range, and the result should not
2726 * contain an ASCII character. */
2728 UV original; /* To store the first code point of <p> */
2730 /* Look at every character in the result; if any cross the
2731 * boundary, the whole thing is disallowed */
2733 U8* e = ustrp + *lenp;
2736 /* Crossed, have to return the original */
2737 original = valid_utf8_to_uvchr(p, lenp);
2738 Copy(p, ustrp, *lenp, char);
2744 /* Here, no characters crossed, result is ok as-is */
2749 /* Here, used locale rules. Convert back to utf8 */
2750 if (UTF8_IS_INVARIANT(result)) {
2751 *ustrp = (U8) result;
2755 *ustrp = UTF8_EIGHT_BIT_HI(result);
2756 *(ustrp + 1) = UTF8_EIGHT_BIT_LO(result);
2761 *tainted_ptr = TRUE;
2767 * Returns a "swash" which is a hash described in utf8.c:Perl_swash_fetch().
2768 * C<pkg> is a pointer to a package name for SWASHNEW, should be "utf8".
2769 * For other parameters, see utf8::SWASHNEW in lib/utf8_heavy.pl.
2773 Perl_swash_init(pTHX_ const char* pkg, const char* name, SV *listsv, I32 minbits, I32 none)
2775 PERL_ARGS_ASSERT_SWASH_INIT;
2777 /* Returns a copy of a swash initiated by the called function. This is the
2778 * public interface, and returning a copy prevents others from doing
2779 * mischief on the original */
2781 return newSVsv(_core_swash_init(pkg, name, listsv, minbits, none, NULL, NULL));
2785 Perl__core_swash_init(pTHX_ const char* pkg, const char* name, SV *listsv, I32 minbits, I32 none, SV* invlist, U8* const flags_p)
2787 /* Initialize and return a swash, creating it if necessary. It does this
2788 * by calling utf8_heavy.pl in the general case. The returned value may be
2789 * the swash's inversion list instead if the input parameters allow it.
2790 * Which is returned should be immaterial to callers, as the only
2791 * operations permitted on a swash, swash_fetch(), _get_swash_invlist(),
2792 * and swash_to_invlist() handle both these transparently.
2794 * This interface should only be used by functions that won't destroy or
2795 * adversely change the swash, as doing so affects all other uses of the
2796 * swash in the program; the general public should use 'Perl_swash_init'
2799 * pkg is the name of the package that <name> should be in.
2800 * name is the name of the swash to find. Typically it is a Unicode
2801 * property name, including user-defined ones
2802 * listsv is a string to initialize the swash with. It must be of the form
2803 * documented as the subroutine return value in
2804 * L<perlunicode/User-Defined Character Properties>
2805 * minbits is the number of bits required to represent each data element.
2806 * It is '1' for binary properties.
2807 * none I (khw) do not understand this one, but it is used only in tr///.
2808 * invlist is an inversion list to initialize the swash with (or NULL)
2809 * flags_p if non-NULL is the address of various input and output flag bits
2810 * to the routine, as follows: ('I' means is input to the routine;
2811 * 'O' means output from the routine. Only flags marked O are
2812 * meaningful on return.)
2813 * _CORE_SWASH_INIT_USER_DEFINED_PROPERTY indicates if the swash
2814 * came from a user-defined property. (I O)
2815 * _CORE_SWASH_INIT_RETURN_IF_UNDEF indicates that instead of croaking
2816 * when the swash cannot be located, to simply return NULL. (I)
2817 * _CORE_SWASH_INIT_ACCEPT_INVLIST indicates that the caller will accept a
2818 * return of an inversion list instead of a swash hash if this routine
2819 * thinks that would result in faster execution of swash_fetch() later
2822 * Thus there are three possible inputs to find the swash: <name>,
2823 * <listsv>, and <invlist>. At least one must be specified. The result
2824 * will be the union of the specified ones, although <listsv>'s various
2825 * actions can intersect, etc. what <name> gives.
2827 * <invlist> is only valid for binary properties */
2830 SV* retval = &PL_sv_undef;
2831 HV* swash_hv = NULL;
2832 const int invlist_swash_boundary =
2833 (flags_p && *flags_p & _CORE_SWASH_INIT_ACCEPT_INVLIST)
2834 ? 512 /* Based on some benchmarking, but not extensive, see commit
2836 : -1; /* Never return just an inversion list */
2838 assert(listsv != &PL_sv_undef || strNE(name, "") || invlist);
2839 assert(! invlist || minbits == 1);
2841 /* If data was passed in to go out to utf8_heavy to find the swash of, do
2843 if (listsv != &PL_sv_undef || strNE(name, "")) {
2845 const size_t pkg_len = strlen(pkg);
2846 const size_t name_len = strlen(name);
2847 HV * const stash = gv_stashpvn(pkg, pkg_len, 0);
2851 PERL_ARGS_ASSERT__CORE_SWASH_INIT;
2853 PUSHSTACKi(PERLSI_MAGIC);
2857 /* We might get here via a subroutine signature which uses a utf8
2858 * parameter name, at which point PL_subname will have been set
2859 * but not yet used. */
2860 save_item(PL_subname);
2861 if (PL_parser && PL_parser->error_count)
2862 SAVEI8(PL_parser->error_count), PL_parser->error_count = 0;
2863 method = gv_fetchmeth(stash, "SWASHNEW", 8, -1);
2864 if (!method) { /* demand load utf8 */
2866 errsv_save = newSVsv(ERRSV);
2867 SAVEFREESV(errsv_save);
2868 /* It is assumed that callers of this routine are not passing in
2869 * any user derived data. */
2870 /* Need to do this after save_re_context() as it will set
2871 * PL_tainted to 1 while saving $1 etc (see the code after getrx:
2872 * in Perl_magic_get). Even line to create errsv_save can turn on
2874 #ifndef NO_TAINT_SUPPORT
2875 SAVEBOOL(TAINT_get);
2878 Perl_load_module(aTHX_ PERL_LOADMOD_NOIMPORT, newSVpvn(pkg,pkg_len),
2881 sv_setsv(ERRSV, errsv_save);
2887 mPUSHp(pkg, pkg_len);
2888 mPUSHp(name, name_len);
2893 errsv_save = newSVsv(ERRSV);
2894 SAVEFREESV(errsv_save);
2895 /* If we already have a pointer to the method, no need to use
2896 * call_method() to repeat the lookup. */
2897 if (method ? call_sv(MUTABLE_SV(method), G_SCALAR)
2898 : call_sv(newSVpvs_flags("SWASHNEW", SVs_TEMP), G_SCALAR | G_METHOD))
2900 retval = *PL_stack_sp--;
2901 SvREFCNT_inc(retval);
2904 sv_setsv(ERRSV, errsv_save);
2907 if (IN_PERL_COMPILETIME) {
2908 CopHINTS_set(PL_curcop, PL_hints);
2910 if (!SvROK(retval) || SvTYPE(SvRV(retval)) != SVt_PVHV) {
2913 /* If caller wants to handle missing properties, let them */
2914 if (flags_p && *flags_p & _CORE_SWASH_INIT_RETURN_IF_UNDEF) {
2918 "Can't find Unicode property definition \"%"SVf"\"",
2920 Perl_croak(aTHX_ "SWASHNEW didn't return an HV ref");
2922 } /* End of calling the module to find the swash */
2924 /* If this operation fetched a swash, and we will need it later, get it */
2925 if (retval != &PL_sv_undef
2926 && (minbits == 1 || (flags_p
2928 & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY))))
2930 swash_hv = MUTABLE_HV(SvRV(retval));
2932 /* If we don't already know that there is a user-defined component to
2933 * this swash, and the user has indicated they wish to know if there is
2934 * one (by passing <flags_p>), find out */
2935 if (flags_p && ! (*flags_p & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY)) {
2936 SV** user_defined = hv_fetchs(swash_hv, "USER_DEFINED", FALSE);
2937 if (user_defined && SvUV(*user_defined)) {
2938 *flags_p |= _CORE_SWASH_INIT_USER_DEFINED_PROPERTY;
2943 /* Make sure there is an inversion list for binary properties */
2945 SV** swash_invlistsvp = NULL;
2946 SV* swash_invlist = NULL;
2947 bool invlist_in_swash_is_valid = FALSE;
2948 bool swash_invlist_unclaimed = FALSE; /* whether swash_invlist has
2949 an unclaimed reference count */
2951 /* If this operation fetched a swash, get its already existing
2952 * inversion list, or create one for it */
2955 swash_invlistsvp = hv_fetchs(swash_hv, "V", FALSE);
2956 if (swash_invlistsvp) {
2957 swash_invlist = *swash_invlistsvp;
2958 invlist_in_swash_is_valid = TRUE;
2961 swash_invlist = _swash_to_invlist(retval);
2962 swash_invlist_unclaimed = TRUE;
2966 /* If an inversion list was passed in, have to include it */
2969 /* Any fetched swash will by now have an inversion list in it;
2970 * otherwise <swash_invlist> will be NULL, indicating that we
2971 * didn't fetch a swash */
2972 if (swash_invlist) {
2974 /* Add the passed-in inversion list, which invalidates the one
2975 * already stored in the swash */
2976 invlist_in_swash_is_valid = FALSE;
2977 _invlist_union(invlist, swash_invlist, &swash_invlist);
2981 /* Here, there is no swash already. Set up a minimal one, if
2982 * we are going to return a swash */
2983 if ((int) _invlist_len(invlist) > invlist_swash_boundary) {
2985 retval = newRV_noinc(MUTABLE_SV(swash_hv));
2987 swash_invlist = invlist;
2991 /* Here, we have computed the union of all the passed-in data. It may
2992 * be that there was an inversion list in the swash which didn't get
2993 * touched; otherwise save the one computed one */
2994 if (! invlist_in_swash_is_valid
2995 && (int) _invlist_len(swash_invlist) > invlist_swash_boundary)
2997 if (! hv_stores(MUTABLE_HV(SvRV(retval)), "V", swash_invlist))
2999 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
3001 /* We just stole a reference count. */
3002 if (swash_invlist_unclaimed) swash_invlist_unclaimed = FALSE;
3003 else SvREFCNT_inc_simple_void_NN(swash_invlist);
3006 if ((int) _invlist_len(swash_invlist) <= invlist_swash_boundary) {
3007 SvREFCNT_dec(retval);
3008 if (!swash_invlist_unclaimed)
3009 SvREFCNT_inc_simple_void_NN(swash_invlist);
3010 retval = newRV_noinc(swash_invlist);
3018 /* This API is wrong for special case conversions since we may need to
3019 * return several Unicode characters for a single Unicode character
3020 * (see lib/unicore/SpecCase.txt) The SWASHGET in lib/utf8_heavy.pl is
3021 * the lower-level routine, and it is similarly broken for returning
3022 * multiple values. --jhi
3023 * For those, you should use to_utf8_case() instead */
3024 /* Now SWASHGET is recasted into S_swatch_get in this file. */
3027 * Returns the value of property/mapping C<swash> for the first character
3028 * of the string C<ptr>. If C<do_utf8> is true, the string C<ptr> is
3029 * assumed to be in utf8. If C<do_utf8> is false, the string C<ptr> is
3030 * assumed to be in native 8-bit encoding. Caches the swatch in C<swash>.
3032 * A "swash" is a hash which contains initially the keys/values set up by
3033 * SWASHNEW. The purpose is to be able to completely represent a Unicode
3034 * property for all possible code points. Things are stored in a compact form
3035 * (see utf8_heavy.pl) so that calculation is required to find the actual
3036 * property value for a given code point. As code points are looked up, new
3037 * key/value pairs are added to the hash, so that the calculation doesn't have
3038 * to ever be re-done. Further, each calculation is done, not just for the
3039 * desired one, but for a whole block of code points adjacent to that one.
3040 * For binary properties on ASCII machines, the block is usually for 64 code
3041 * points, starting with a code point evenly divisible by 64. Thus if the
3042 * property value for code point 257 is requested, the code goes out and
3043 * calculates the property values for all 64 code points between 256 and 319,
3044 * and stores these as a single 64-bit long bit vector, called a "swatch",
3045 * under the key for code point 256. The key is the UTF-8 encoding for code
3046 * point 256, minus the final byte. Thus, if the length of the UTF-8 encoding
3047 * for a code point is 13 bytes, the key will be 12 bytes long. If the value
3048 * for code point 258 is then requested, this code realizes that it would be
3049 * stored under the key for 256, and would find that value and extract the
3050 * relevant bit, offset from 256.
3052 * Non-binary properties are stored in as many bits as necessary to represent
3053 * their values (32 currently, though the code is more general than that), not
3054 * as single bits, but the principal is the same: the value for each key is a
3055 * vector that encompasses the property values for all code points whose UTF-8
3056 * representations are represented by the key. That is, for all code points
3057 * whose UTF-8 representations are length N bytes, and the key is the first N-1
3061 Perl_swash_fetch(pTHX_ SV *swash, const U8 *ptr, bool do_utf8)
3064 HV *const hv = MUTABLE_HV(SvRV(swash));
3069 const U8 *tmps = NULL;
3073 const UV c = NATIVE_TO_ASCII(*ptr);
3075 PERL_ARGS_ASSERT_SWASH_FETCH;
3077 /* If it really isn't a hash, it isn't really swash; must be an inversion
3079 if (SvTYPE(hv) != SVt_PVHV) {
3080 return _invlist_contains_cp((SV*)hv,
3082 ? valid_utf8_to_uvchr(ptr, NULL)
3086 /* Convert to utf8 if not already */
3087 if (!do_utf8 && !UNI_IS_INVARIANT(c)) {
3088 tmputf8[0] = (U8)UTF8_EIGHT_BIT_HI(c);
3089 tmputf8[1] = (U8)UTF8_EIGHT_BIT_LO(c);
3092 /* Given a UTF-X encoded char 0xAA..0xYY,0xZZ
3093 * then the "swatch" is a vec() for all the chars which start
3095 * So the key in the hash (klen) is length of encoded char -1
3097 klen = UTF8SKIP(ptr) - 1;
3101 /* If char is invariant then swatch is for all the invariant chars
3102 * In both UTF-8 and UTF-8-MOD that happens to be UTF_CONTINUATION_MARK
3104 needents = UTF_CONTINUATION_MARK;
3105 off = NATIVE_TO_UTF(ptr[klen]);
3108 /* If char is encoded then swatch is for the prefix */
3109 needents = (1 << UTF_ACCUMULATION_SHIFT);
3110 off = NATIVE_TO_UTF(ptr[klen]) & UTF_CONTINUATION_MASK;
3114 * This single-entry cache saves about 1/3 of the utf8 overhead in test
3115 * suite. (That is, only 7-8% overall over just a hash cache. Still,
3116 * it's nothing to sniff at.) Pity we usually come through at least
3117 * two function calls to get here...
3119 * NB: this code assumes that swatches are never modified, once generated!
3122 if (hv == PL_last_swash_hv &&
3123 klen == PL_last_swash_klen &&
3124 (!klen || memEQ((char *)ptr, (char *)PL_last_swash_key, klen)) )
3126 tmps = PL_last_swash_tmps;
3127 slen = PL_last_swash_slen;
3130 /* Try our second-level swatch cache, kept in a hash. */
3131 SV** svp = hv_fetch(hv, (const char*)ptr, klen, FALSE);
3133 /* If not cached, generate it via swatch_get */
3134 if (!svp || !SvPOK(*svp)
3135 || !(tmps = (const U8*)SvPV_const(*svp, slen))) {
3136 /* We use utf8n_to_uvuni() as we want an index into
3137 Unicode tables, not a native character number.
3139 const UV code_point = utf8n_to_uvuni(ptr, UTF8_MAXBYTES, 0,
3141 0 : UTF8_ALLOW_ANY);
3142 swatch = swatch_get(swash,
3143 /* On EBCDIC & ~(0xA0-1) isn't a useful thing to do */
3144 (klen) ? (code_point & ~((UV)needents - 1)) : 0,
3147 if (IN_PERL_COMPILETIME)
3148 CopHINTS_set(PL_curcop, PL_hints);
3150 svp = hv_store(hv, (const char *)ptr, klen, swatch, 0);
3152 if (!svp || !(tmps = (U8*)SvPV(*svp, slen))
3153 || (slen << 3) < needents)
3154 Perl_croak(aTHX_ "panic: swash_fetch got improper swatch, "
3155 "svp=%p, tmps=%p, slen=%"UVuf", needents=%"UVuf,
3156 svp, tmps, (UV)slen, (UV)needents);
3159 PL_last_swash_hv = hv;
3160 assert(klen <= sizeof(PL_last_swash_key));
3161 PL_last_swash_klen = (U8)klen;
3162 /* FIXME change interpvar.h? */
3163 PL_last_swash_tmps = (U8 *) tmps;
3164 PL_last_swash_slen = slen;
3166 Copy(ptr, PL_last_swash_key, klen, U8);
3169 switch ((int)((slen << 3) / needents)) {
3171 bit = 1 << (off & 7);
3173 return (tmps[off] & bit) != 0;
3178 return (tmps[off] << 8) + tmps[off + 1] ;
3181 return (tmps[off] << 24) + (tmps[off+1] << 16) + (tmps[off+2] << 8) + tmps[off + 3] ;
3183 Perl_croak(aTHX_ "panic: swash_fetch got swatch of unexpected bit width, "
3184 "slen=%"UVuf", needents=%"UVuf, (UV)slen, (UV)needents);
3185 NORETURN_FUNCTION_END;
3188 /* Read a single line of the main body of the swash input text. These are of
3191 * where each number is hex. The first two numbers form the minimum and
3192 * maximum of a range, and the third is the value associated with the range.
3193 * Not all swashes should have a third number
3195 * On input: l points to the beginning of the line to be examined; it points
3196 * to somewhere in the string of the whole input text, and is
3197 * terminated by a \n or the null string terminator.
3198 * lend points to the null terminator of that string
3199 * wants_value is non-zero if the swash expects a third number
3200 * typestr is the name of the swash's mapping, like 'ToLower'
3201 * On output: *min, *max, and *val are set to the values read from the line.
3202 * returns a pointer just beyond the line examined. If there was no
3203 * valid min number on the line, returns lend+1
3207 S_swash_scan_list_line(pTHX_ U8* l, U8* const lend, UV* min, UV* max, UV* val,
3208 const bool wants_value, const U8* const typestr)
3210 const int typeto = typestr[0] == 'T' && typestr[1] == 'o';
3211 STRLEN numlen; /* Length of the number */
3212 I32 flags = PERL_SCAN_SILENT_ILLDIGIT
3213 | PERL_SCAN_DISALLOW_PREFIX
3214 | PERL_SCAN_SILENT_NON_PORTABLE;
3216 /* nl points to the next \n in the scan */
3217 U8* const nl = (U8*)memchr(l, '\n', lend - l);
3219 /* Get the first number on the line: the range minimum */
3221 *min = grok_hex((char *)l, &numlen, &flags, NULL);
3222 if (numlen) /* If found a hex number, position past it */
3224 else if (nl) { /* Else, go handle next line, if any */
3225 return nl + 1; /* 1 is length of "\n" */
3227 else { /* Else, no next line */
3228 return lend + 1; /* to LIST's end at which \n is not found */
3231 /* The max range value follows, separated by a BLANK */
3234 flags = PERL_SCAN_SILENT_ILLDIGIT
3235 | PERL_SCAN_DISALLOW_PREFIX
3236 | PERL_SCAN_SILENT_NON_PORTABLE;
3238 *max = grok_hex((char *)l, &numlen, &flags, NULL);
3241 else /* If no value here, it is a single element range */
3244 /* Non-binary tables have a third entry: what the first element of the
3250 /* The ToLc, etc table mappings are not in hex, and must be
3251 * corrected by adding the code point to them */
3253 char *after_strtol = (char *) lend;
3254 *val = Strtol((char *)l, &after_strtol, 10);
3255 l = (U8 *) after_strtol;
3257 else { /* Other tables are in hex, and are the correct result
3259 flags = PERL_SCAN_SILENT_ILLDIGIT
3260 | PERL_SCAN_DISALLOW_PREFIX
3261 | PERL_SCAN_SILENT_NON_PORTABLE;
3263 *val = grok_hex((char *)l, &numlen, &flags, NULL);
3273 /* diag_listed_as: To%s: illegal mapping '%s' */
3274 Perl_croak(aTHX_ "%s: illegal mapping '%s'",
3280 *val = 0; /* bits == 1, then any val should be ignored */
3282 else { /* Nothing following range min, should be single element with no
3288 /* diag_listed_as: To%s: illegal mapping '%s' */
3289 Perl_croak(aTHX_ "%s: illegal mapping '%s'", typestr, l);
3293 *val = 0; /* bits == 1, then val should be ignored */
3296 /* Position to next line if any, or EOF */
3306 * Returns a swatch (a bit vector string) for a code point sequence
3307 * that starts from the value C<start> and comprises the number C<span>.
3308 * A C<swash> must be an object created by SWASHNEW (see lib/utf8_heavy.pl).
3309 * Should be used via swash_fetch, which will cache the swatch in C<swash>.
3312 S_swatch_get(pTHX_ SV* swash, UV start, UV span)
3315 U8 *l, *lend, *x, *xend, *s, *send;
3316 STRLEN lcur, xcur, scur;
3317 HV *const hv = MUTABLE_HV(SvRV(swash));
3318 SV** const invlistsvp = hv_fetchs(hv, "V", FALSE);
3320 SV** listsvp = NULL; /* The string containing the main body of the table */
3321 SV** extssvp = NULL;
3322 SV** invert_it_svp = NULL;
3325 STRLEN octets; /* if bits == 1, then octets == 0 */
3327 UV end = start + span;
3329 if (invlistsvp == NULL) {
3330 SV** const bitssvp = hv_fetchs(hv, "BITS", FALSE);
3331 SV** const nonesvp = hv_fetchs(hv, "NONE", FALSE);
3332 SV** const typesvp = hv_fetchs(hv, "TYPE", FALSE);
3333 extssvp = hv_fetchs(hv, "EXTRAS", FALSE);
3334 listsvp = hv_fetchs(hv, "LIST", FALSE);
3335 invert_it_svp = hv_fetchs(hv, "INVERT_IT", FALSE);
3337 bits = SvUV(*bitssvp);
3338 none = SvUV(*nonesvp);
3339 typestr = (U8*)SvPV_nolen(*typesvp);
3345 octets = bits >> 3; /* if bits == 1, then octets == 0 */
3347 PERL_ARGS_ASSERT_SWATCH_GET;
3349 if (bits != 1 && bits != 8 && bits != 16 && bits != 32) {
3350 Perl_croak(aTHX_ "panic: swatch_get doesn't expect bits %"UVuf,
3354 /* If overflowed, use the max possible */
3360 /* create and initialize $swatch */
3361 scur = octets ? (span * octets) : (span + 7) / 8;
3362 swatch = newSV(scur);
3364 s = (U8*)SvPVX(swatch);
3365 if (octets && none) {
3366 const U8* const e = s + scur;
3369 *s++ = (U8)(none & 0xff);
3370 else if (bits == 16) {
3371 *s++ = (U8)((none >> 8) & 0xff);
3372 *s++ = (U8)( none & 0xff);
3374 else if (bits == 32) {
3375 *s++ = (U8)((none >> 24) & 0xff);
3376 *s++ = (U8)((none >> 16) & 0xff);
3377 *s++ = (U8)((none >> 8) & 0xff);
3378 *s++ = (U8)( none & 0xff);
3384 (void)memzero((U8*)s, scur + 1);
3386 SvCUR_set(swatch, scur);
3387 s = (U8*)SvPVX(swatch);
3389 if (invlistsvp) { /* If has an inversion list set up use that */
3390 _invlist_populate_swatch(*invlistsvp, start, end, s);
3394 /* read $swash->{LIST} */
3395 l = (U8*)SvPV(*listsvp, lcur);
3398 UV min, max, val, upper;
3399 l = S_swash_scan_list_line(aTHX_ l, lend, &min, &max, &val,
3400 cBOOL(octets), typestr);
3405 /* If looking for something beyond this range, go try the next one */
3409 /* <end> is generally 1 beyond where we want to set things, but at the
3410 * platform's infinity, where we can't go any higher, we want to
3411 * include the code point at <end> */
3414 : (max != UV_MAX || end != UV_MAX)
3421 if (!none || val < none) {
3426 for (key = min; key <= upper; key++) {
3428 /* offset must be non-negative (start <= min <= key < end) */
3429 offset = octets * (key - start);
3431 s[offset] = (U8)(val & 0xff);
3432 else if (bits == 16) {
3433 s[offset ] = (U8)((val >> 8) & 0xff);
3434 s[offset + 1] = (U8)( val & 0xff);
3436 else if (bits == 32) {
3437 s[offset ] = (U8)((val >> 24) & 0xff);
3438 s[offset + 1] = (U8)((val >> 16) & 0xff);
3439 s[offset + 2] = (U8)((val >> 8) & 0xff);
3440 s[offset + 3] = (U8)( val & 0xff);
3443 if (!none || val < none)
3447 else { /* bits == 1, then val should be ignored */
3452 for (key = min; key <= upper; key++) {
3453 const STRLEN offset = (STRLEN)(key - start);
3454 s[offset >> 3] |= 1 << (offset & 7);
3459 /* Invert if the data says it should be. Assumes that bits == 1 */
3460 if (invert_it_svp && SvUV(*invert_it_svp)) {
3462 /* Unicode properties should come with all bits above PERL_UNICODE_MAX
3463 * be 0, and their inversion should also be 0, as we don't succeed any
3464 * Unicode property matches for non-Unicode code points */
3465 if (start <= PERL_UNICODE_MAX) {
3467 /* The code below assumes that we never cross the
3468 * Unicode/above-Unicode boundary in a range, as otherwise we would
3469 * have to figure out where to stop flipping the bits. Since this
3470 * boundary is divisible by a large power of 2, and swatches comes
3471 * in small powers of 2, this should be a valid assumption */
3472 assert(start + span - 1 <= PERL_UNICODE_MAX);
3482 /* read $swash->{EXTRAS}
3483 * This code also copied to swash_to_invlist() below */
3484 x = (U8*)SvPV(*extssvp, xcur);
3492 SV **otherbitssvp, *other;
3496 const U8 opc = *x++;
3500 nl = (U8*)memchr(x, '\n', xend - x);
3502 if (opc != '-' && opc != '+' && opc != '!' && opc != '&') {
3504 x = nl + 1; /* 1 is length of "\n" */
3508 x = xend; /* to EXTRAS' end at which \n is not found */
3515 namelen = nl - namestr;
3519 namelen = xend - namestr;
3523 othersvp = hv_fetch(hv, (char *)namestr, namelen, FALSE);
3524 otherhv = MUTABLE_HV(SvRV(*othersvp));
3525 otherbitssvp = hv_fetchs(otherhv, "BITS", FALSE);
3526 otherbits = (STRLEN)SvUV(*otherbitssvp);
3527 if (bits < otherbits)
3528 Perl_croak(aTHX_ "panic: swatch_get found swatch size mismatch, "
3529 "bits=%"UVuf", otherbits=%"UVuf, (UV)bits, (UV)otherbits);
3531 /* The "other" swatch must be destroyed after. */
3532 other = swatch_get(*othersvp, start, span);
3533 o = (U8*)SvPV(other, olen);
3536 Perl_croak(aTHX_ "panic: swatch_get got improper swatch");
3538 s = (U8*)SvPV(swatch, slen);
3539 if (bits == 1 && otherbits == 1) {
3541 Perl_croak(aTHX_ "panic: swatch_get found swatch length "
3542 "mismatch, slen=%"UVuf", olen=%"UVuf,
3543 (UV)slen, (UV)olen);
3567 STRLEN otheroctets = otherbits >> 3;
3569 U8* const send = s + slen;
3574 if (otherbits == 1) {
3575 otherval = (o[offset >> 3] >> (offset & 7)) & 1;
3579 STRLEN vlen = otheroctets;
3587 if (opc == '+' && otherval)
3588 NOOP; /* replace with otherval */
3589 else if (opc == '!' && !otherval)
3591 else if (opc == '-' && otherval)
3593 else if (opc == '&' && !otherval)
3596 s += octets; /* no replacement */
3601 *s++ = (U8)( otherval & 0xff);
3602 else if (bits == 16) {
3603 *s++ = (U8)((otherval >> 8) & 0xff);
3604 *s++ = (U8)( otherval & 0xff);
3606 else if (bits == 32) {
3607 *s++ = (U8)((otherval >> 24) & 0xff);
3608 *s++ = (U8)((otherval >> 16) & 0xff);
3609 *s++ = (U8)((otherval >> 8) & 0xff);
3610 *s++ = (U8)( otherval & 0xff);
3614 sv_free(other); /* through with it! */
3620 Perl__swash_inversion_hash(pTHX_ SV* const swash)
3623 /* Subject to change or removal. For use only in regcomp.c and regexec.c
3624 * Can't be used on a property that is subject to user override, as it
3625 * relies on the value of SPECIALS in the swash which would be set by
3626 * utf8_heavy.pl to the hash in the non-overriden file, and hence is not set
3627 * for overridden properties
3629 * Returns a hash which is the inversion and closure of a swash mapping.
3630 * For example, consider the input lines:
3635 * The returned hash would have two keys, the utf8 for 006B and the utf8 for
3636 * 006C. The value for each key is an array. For 006C, the array would
3637 * have a two elements, the utf8 for itself, and for 004C. For 006B, there
3638 * would be three elements in its array, the utf8 for 006B, 004B and 212A.
3640 * Essentially, for any code point, it gives all the code points that map to
3641 * it, or the list of 'froms' for that point.
3643 * Currently it ignores any additions or deletions from other swashes,
3644 * looking at just the main body of the swash, and if there are SPECIALS
3645 * in the swash, at that hash
3647 * The specials hash can be extra code points, and most likely consists of
3648 * maps from single code points to multiple ones (each expressed as a string
3649 * of utf8 characters). This function currently returns only 1-1 mappings.
3650 * However consider this possible input in the specials hash:
3651 * "\xEF\xAC\x85" => "\x{0073}\x{0074}", # U+FB05 => 0073 0074
3652 * "\xEF\xAC\x86" => "\x{0073}\x{0074}", # U+FB06 => 0073 0074
3654 * Both FB05 and FB06 map to the same multi-char sequence, which we don't
3655 * currently handle. But it also means that FB05 and FB06 are equivalent in
3656 * a 1-1 mapping which we should handle, and this relationship may not be in
3657 * the main table. Therefore this function examines all the multi-char
3658 * sequences and adds the 1-1 mappings that come out of that. */
3662 HV *const hv = MUTABLE_HV(SvRV(swash));
3664 /* The string containing the main body of the table. This will have its
3665 * assertion fail if the swash has been converted to its inversion list */
3666 SV** const listsvp = hv_fetchs(hv, "LIST", FALSE);
3668 SV** const typesvp = hv_fetchs(hv, "TYPE", FALSE);
3669 SV** const bitssvp = hv_fetchs(hv, "BITS", FALSE);
3670 SV** const nonesvp = hv_fetchs(hv, "NONE", FALSE);
3671 /*SV** const extssvp = hv_fetchs(hv, "EXTRAS", FALSE);*/
3672 const U8* const typestr = (U8*)SvPV_nolen(*typesvp);
3673 const STRLEN bits = SvUV(*bitssvp);
3674 const STRLEN octets = bits >> 3; /* if bits == 1, then octets == 0 */
3675 const UV none = SvUV(*nonesvp);
3676 SV **specials_p = hv_fetchs(hv, "SPECIALS", 0);
3680 PERL_ARGS_ASSERT__SWASH_INVERSION_HASH;
3682 /* Must have at least 8 bits to get the mappings */
3683 if (bits != 8 && bits != 16 && bits != 32) {
3684 Perl_croak(aTHX_ "panic: swash_inversion_hash doesn't expect bits %"UVuf,
3688 if (specials_p) { /* It might be "special" (sometimes, but not always, a
3689 mapping to more than one character */
3691 /* Construct an inverse mapping hash for the specials */
3692 HV * const specials_hv = MUTABLE_HV(SvRV(*specials_p));
3693 HV * specials_inverse = newHV();
3694 char *char_from; /* the lhs of the map */
3695 I32 from_len; /* its byte length */
3696 char *char_to; /* the rhs of the map */
3697 I32 to_len; /* its byte length */
3698 SV *sv_to; /* and in a sv */
3699 AV* from_list; /* list of things that map to each 'to' */
3701 hv_iterinit(specials_hv);
3703 /* The keys are the characters (in utf8) that map to the corresponding
3704 * utf8 string value. Iterate through the list creating the inverse
3706 while ((sv_to = hv_iternextsv(specials_hv, &char_from, &from_len))) {
3708 if (! SvPOK(sv_to)) {
3709 Perl_croak(aTHX_ "panic: value returned from hv_iternextsv() "
3710 "unexpectedly is not a string, flags=%lu",
3711 (unsigned long)SvFLAGS(sv_to));
3713 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "Found mapping from %"UVXf", First char of to is %"UVXf"\n", valid_utf8_to_uvchr((U8*) char_from, 0), valid_utf8_to_uvchr((U8*) SvPVX(sv_to), 0)));*/
3715 /* Each key in the inverse list is a mapped-to value, and the key's
3716 * hash value is a list of the strings (each in utf8) that map to
3717 * it. Those strings are all one character long */
3718 if ((listp = hv_fetch(specials_inverse,
3722 from_list = (AV*) *listp;
3724 else { /* No entry yet for it: create one */
3725 from_list = newAV();
3726 if (! hv_store(specials_inverse,
3729 (SV*) from_list, 0))
3731 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
3735 /* Here have the list associated with this 'to' (perhaps newly
3736 * created and empty). Just add to it. Note that we ASSUME that
3737 * the input is guaranteed to not have duplications, so we don't
3738 * check for that. Duplications just slow down execution time. */
3739 av_push(from_list, newSVpvn_utf8(char_from, from_len, TRUE));
3742 /* Here, 'specials_inverse' contains the inverse mapping. Go through
3743 * it looking for cases like the FB05/FB06 examples above. There would
3744 * be an entry in the hash like
3745 * 'st' => [ FB05, FB06 ]
3746 * In this example we will create two lists that get stored in the
3747 * returned hash, 'ret':
3748 * FB05 => [ FB05, FB06 ]
3749 * FB06 => [ FB05, FB06 ]
3751 * Note that there is nothing to do if the array only has one element.
3752 * (In the normal 1-1 case handled below, we don't have to worry about
3753 * two lists, as everything gets tied to the single list that is
3754 * generated for the single character 'to'. But here, we are omitting
3755 * that list, ('st' in the example), so must have multiple lists.) */
3756 while ((from_list = (AV *) hv_iternextsv(specials_inverse,
3757 &char_to, &to_len)))
3759 if (av_len(from_list) > 0) {
3762 /* We iterate over all combinations of i,j to place each code
3763 * point on each list */
3764 for (i = 0; i <= av_len(from_list); i++) {
3766 AV* i_list = newAV();
3767 SV** entryp = av_fetch(from_list, i, FALSE);
3768 if (entryp == NULL) {
3769 Perl_croak(aTHX_ "panic: av_fetch() unexpectedly failed");
3771 if (hv_fetch(ret, SvPVX(*entryp), SvCUR(*entryp), FALSE)) {
3772 Perl_croak(aTHX_ "panic: unexpected entry for %s", SvPVX(*entryp));
3774 if (! hv_store(ret, SvPVX(*entryp), SvCUR(*entryp),
3775 (SV*) i_list, FALSE))
3777 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
3780 /* For debugging: UV u = valid_utf8_to_uvchr((U8*) SvPVX(*entryp), 0);*/
3781 for (j = 0; j <= av_len(from_list); j++) {
3782 entryp = av_fetch(from_list, j, FALSE);
3783 if (entryp == NULL) {
3784 Perl_croak(aTHX_ "panic: av_fetch() unexpectedly failed");
3787 /* When i==j this adds itself to the list */
3788 av_push(i_list, newSVuv(utf8_to_uvchr_buf(
3789 (U8*) SvPVX(*entryp),
3790 (U8*) SvPVX(*entryp) + SvCUR(*entryp),
3792 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "%s: %d: Adding %"UVXf" to list for %"UVXf"\n", __FILE__, __LINE__, valid_utf8_to_uvchr((U8*) SvPVX(*entryp), 0), u));*/
3797 SvREFCNT_dec(specials_inverse); /* done with it */
3798 } /* End of specials */
3800 /* read $swash->{LIST} */
3801 l = (U8*)SvPV(*listsvp, lcur);
3804 /* Go through each input line */
3808 l = S_swash_scan_list_line(aTHX_ l, lend, &min, &max, &val,
3809 cBOOL(octets), typestr);
3814 /* Each element in the range is to be inverted */
3815 for (inverse = min; inverse <= max; inverse++) {
3819 bool found_key = FALSE;
3820 bool found_inverse = FALSE;
3822 /* The key is the inverse mapping */
3823 char key[UTF8_MAXBYTES+1];
3824 char* key_end = (char *) uvuni_to_utf8((U8*) key, val);
3825 STRLEN key_len = key_end - key;
3827 /* Get the list for the map */
3828 if ((listp = hv_fetch(ret, key, key_len, FALSE))) {
3829 list = (AV*) *listp;
3831 else { /* No entry yet for it: create one */
3833 if (! hv_store(ret, key, key_len, (SV*) list, FALSE)) {
3834 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
3838 /* Look through list to see if this inverse mapping already is
3839 * listed, or if there is a mapping to itself already */
3840 for (i = 0; i <= av_len(list); i++) {
3841 SV** entryp = av_fetch(list, i, FALSE);
3843 if (entryp == NULL) {
3844 Perl_croak(aTHX_ "panic: av_fetch() unexpectedly failed");
3847 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "list for %"UVXf" contains %"UVXf"\n", val, SvUV(entry)));*/
3848 if (SvUV(entry) == val) {
3851 if (SvUV(entry) == inverse) {
3852 found_inverse = TRUE;
3855 /* No need to continue searching if found everything we are
3857 if (found_key && found_inverse) {
3862 /* Make sure there is a mapping to itself on the list */
3864 av_push(list, newSVuv(val));
3865 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "%s: %d: Adding %"UVXf" to list for %"UVXf"\n", __FILE__, __LINE__, val, val));*/
3869 /* Simply add the value to the list */
3870 if (! found_inverse) {
3871 av_push(list, newSVuv(inverse));
3872 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "%s: %d: Adding %"UVXf" to list for %"UVXf"\n", __FILE__, __LINE__, inverse, val));*/
3875 /* swatch_get() increments the value of val for each element in the
3876 * range. That makes more compact tables possible. You can
3877 * express the capitalization, for example, of all consecutive
3878 * letters with a single line: 0061\t007A\t0041 This maps 0061 to
3879 * 0041, 0062 to 0042, etc. I (khw) have never understood 'none',
3880 * and it's not documented; it appears to be used only in
3881 * implementing tr//; I copied the semantics from swatch_get(), just
3883 if (!none || val < none) {
3893 Perl__swash_to_invlist(pTHX_ SV* const swash)
3896 /* Subject to change or removal. For use only in one place in regcomp.c */
3901 HV *const hv = MUTABLE_HV(SvRV(swash));
3902 UV elements = 0; /* Number of elements in the inversion list */
3912 STRLEN octets; /* if bits == 1, then octets == 0 */
3918 /* If not a hash, it must be the swash's inversion list instead */
3919 if (SvTYPE(hv) != SVt_PVHV) {
3923 /* The string containing the main body of the table */
3924 listsvp = hv_fetchs(hv, "LIST", FALSE);
3925 typesvp = hv_fetchs(hv, "TYPE", FALSE);
3926 bitssvp = hv_fetchs(hv, "BITS", FALSE);
3927 extssvp = hv_fetchs(hv, "EXTRAS", FALSE);
3928 invert_it_svp = hv_fetchs(hv, "INVERT_IT", FALSE);
3930 typestr = (U8*)SvPV_nolen(*typesvp);
3931 bits = SvUV(*bitssvp);
3932 octets = bits >> 3; /* if bits == 1, then octets == 0 */
3934 PERL_ARGS_ASSERT__SWASH_TO_INVLIST;
3936 /* read $swash->{LIST} */
3937 if (SvPOK(*listsvp)) {
3938 l = (U8*)SvPV(*listsvp, lcur);
3941 /* LIST legitimately doesn't contain a string during compilation phases
3942 * of Perl itself, before the Unicode tables are generated. In this
3943 * case, just fake things up by creating an empty list */
3950 /* Scan the input to count the number of lines to preallocate array size
3951 * based on worst possible case, which is each line in the input creates 2
3952 * elements in the inversion list: 1) the beginning of a range in the list;
3953 * 2) the beginning of a range not in the list. */
3954 while ((loc = (strchr(loc, '\n'))) != NULL) {
3959 /* If the ending is somehow corrupt and isn't a new line, add another
3960 * element for the final range that isn't in the inversion list */
3961 if (! (*lend == '\n'
3962 || (*lend == '\0' && (lcur == 0 || *(lend - 1) == '\n'))))
3967 invlist = _new_invlist(elements);
3969 /* Now go through the input again, adding each range to the list */
3972 UV val; /* Not used by this function */
3974 l = S_swash_scan_list_line(aTHX_ l, lend, &start, &end, &val,
3975 cBOOL(octets), typestr);
3981 invlist = _add_range_to_invlist(invlist, start, end);
3984 /* Invert if the data says it should be */
3985 if (invert_it_svp && SvUV(*invert_it_svp)) {
3986 _invlist_invert_prop(invlist);
3989 /* This code is copied from swatch_get()
3990 * read $swash->{EXTRAS} */
3991 x = (U8*)SvPV(*extssvp, xcur);
3999 SV **otherbitssvp, *other;
4002 const U8 opc = *x++;
4006 nl = (U8*)memchr(x, '\n', xend - x);
4008 if (opc != '-' && opc != '+' && opc != '!' && opc != '&') {
4010 x = nl + 1; /* 1 is length of "\n" */
4014 x = xend; /* to EXTRAS' end at which \n is not found */
4021 namelen = nl - namestr;
4025 namelen = xend - namestr;
4029 othersvp = hv_fetch(hv, (char *)namestr, namelen, FALSE);
4030 otherhv = MUTABLE_HV(SvRV(*othersvp));
4031 otherbitssvp = hv_fetchs(otherhv, "BITS", FALSE);
4032 otherbits = (STRLEN)SvUV(*otherbitssvp);
4034 if (bits != otherbits || bits != 1) {
4035 Perl_croak(aTHX_ "panic: _swash_to_invlist only operates on boolean "
4036 "properties, bits=%"UVuf", otherbits=%"UVuf,
4037 (UV)bits, (UV)otherbits);
4040 /* The "other" swatch must be destroyed after. */
4041 other = _swash_to_invlist((SV *)*othersvp);
4043 /* End of code copied from swatch_get() */
4046 _invlist_union(invlist, other, &invlist);
4049 _invlist_invert(other);
4050 _invlist_union(invlist, other, &invlist);
4053 _invlist_subtract(invlist, other, &invlist);
4056 _invlist_intersection(invlist, other, &invlist);
4061 sv_free(other); /* through with it! */
4068 Perl__get_swash_invlist(pTHX_ SV* const swash)
4072 PERL_ARGS_ASSERT__GET_SWASH_INVLIST;
4074 if (! SvROK(swash)) {
4078 /* If it really isn't a hash, it isn't really swash; must be an inversion
4080 if (SvTYPE(SvRV(swash)) != SVt_PVHV) {
4084 ptr = hv_fetchs(MUTABLE_HV(SvRV(swash)), "V", FALSE);
4093 =for apidoc uvchr_to_utf8
4095 Adds the UTF-8 representation of the Native code point C<uv> to the end
4096 of the string C<d>; C<d> should have at least C<UTF8_MAXBYTES+1> free
4097 bytes available. The return value is the pointer to the byte after the
4098 end of the new character. In other words,
4100 d = uvchr_to_utf8(d, uv);
4102 is the recommended wide native character-aware way of saying
4109 /* On ASCII machines this is normally a macro but we want a
4110 real function in case XS code wants it
4113 Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv)
4115 PERL_ARGS_ASSERT_UVCHR_TO_UTF8;
4117 return Perl_uvuni_to_utf8_flags(aTHX_ d, NATIVE_TO_UNI(uv), 0);
4121 Perl_uvchr_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags)
4123 PERL_ARGS_ASSERT_UVCHR_TO_UTF8_FLAGS;
4125 return Perl_uvuni_to_utf8_flags(aTHX_ d, NATIVE_TO_UNI(uv), flags);
4129 =for apidoc utf8n_to_uvchr
4131 Returns the native character value of the first character in the string
4133 which is assumed to be in UTF-8 encoding; C<retlen> will be set to the
4134 length, in bytes, of that character.
4136 C<length> and C<flags> are the same as L</utf8n_to_uvuni>().
4140 /* On ASCII machines this is normally a macro but we want
4141 a real function in case XS code wants it
4144 Perl_utf8n_to_uvchr(pTHX_ const U8 *s, STRLEN curlen, STRLEN *retlen,
4147 const UV uv = Perl_utf8n_to_uvuni(aTHX_ s, curlen, retlen, flags);
4149 PERL_ARGS_ASSERT_UTF8N_TO_UVCHR;
4151 return UNI_TO_NATIVE(uv);
4155 Perl_check_utf8_print(pTHX_ register const U8* s, const STRLEN len)
4157 /* May change: warns if surrogates, non-character code points, or
4158 * non-Unicode code points are in s which has length len bytes. Returns
4159 * TRUE if none found; FALSE otherwise. The only other validity check is
4160 * to make sure that this won't exceed the string's length */
4162 const U8* const e = s + len;
4165 PERL_ARGS_ASSERT_CHECK_UTF8_PRINT;
4168 if (UTF8SKIP(s) > len) {
4169 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
4170 "%s in %s", unees, PL_op ? OP_DESC(PL_op) : "print");
4173 if (UNLIKELY(*s >= UTF8_FIRST_PROBLEMATIC_CODE_POINT_FIRST_BYTE)) {
4175 if (UTF8_IS_SUPER(s)) {
4176 if (ckWARN_d(WARN_NON_UNICODE)) {
4177 UV uv = utf8_to_uvchr_buf(s, e, &char_len);
4178 Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE),
4179 "Code point 0x%04"UVXf" is not Unicode, may not be portable", uv);
4183 else if (UTF8_IS_SURROGATE(s)) {
4184 if (ckWARN_d(WARN_SURROGATE)) {
4185 UV uv = utf8_to_uvchr_buf(s, e, &char_len);
4186 Perl_warner(aTHX_ packWARN(WARN_SURROGATE),
4187 "Unicode surrogate U+%04"UVXf" is illegal in UTF-8", uv);
4192 ((UTF8_IS_NONCHAR_GIVEN_THAT_NON_SUPER_AND_GE_PROBLEMATIC(s))
4193 && (ckWARN_d(WARN_NONCHAR)))
4195 UV uv = utf8_to_uvchr_buf(s, e, &char_len);
4196 Perl_warner(aTHX_ packWARN(WARN_NONCHAR),
4197 "Unicode non-character U+%04"UVXf" is illegal for open interchange", uv);
4208 =for apidoc pv_uni_display
4210 Build to the scalar C<dsv> a displayable version of the string C<spv>,
4211 length C<len>, the displayable version being at most C<pvlim> bytes long
4212 (if longer, the rest is truncated and "..." will be appended).
4214 The C<flags> argument can have UNI_DISPLAY_ISPRINT set to display
4215 isPRINT()able characters as themselves, UNI_DISPLAY_BACKSLASH
4216 to display the \\[nrfta\\] as the backslashed versions (like '\n')
4217 (UNI_DISPLAY_BACKSLASH is preferred over UNI_DISPLAY_ISPRINT for \\).
4218 UNI_DISPLAY_QQ (and its alias UNI_DISPLAY_REGEX) have both
4219 UNI_DISPLAY_BACKSLASH and UNI_DISPLAY_ISPRINT turned on.
4221 The pointer to the PV of the C<dsv> is returned.
4225 Perl_pv_uni_display(pTHX_ SV *dsv, const U8 *spv, STRLEN len, STRLEN pvlim, UV flags)
4230 PERL_ARGS_ASSERT_PV_UNI_DISPLAY;
4234 for (s = (const char *)spv, e = s + len; s < e; s += UTF8SKIP(s)) {
4236 /* This serves double duty as a flag and a character to print after
4237 a \ when flags & UNI_DISPLAY_BACKSLASH is true.
4241 if (pvlim && SvCUR(dsv) >= pvlim) {
4245 u = utf8_to_uvchr_buf((U8*)s, (U8*)e, 0);
4247 const unsigned char c = (unsigned char)u & 0xFF;
4248 if (flags & UNI_DISPLAY_BACKSLASH) {
4265 const char string = ok;
4266 sv_catpvs(dsv, "\\");
4267 sv_catpvn(dsv, &string, 1);
4270 /* isPRINT() is the locale-blind version. */
4271 if (!ok && (flags & UNI_DISPLAY_ISPRINT) && isPRINT(c)) {
4272 const char string = c;
4273 sv_catpvn(dsv, &string, 1);
4278 Perl_sv_catpvf(aTHX_ dsv, "\\x{%"UVxf"}", u);
4281 sv_catpvs(dsv, "...");
4287 =for apidoc sv_uni_display
4289 Build to the scalar C<dsv> a displayable version of the scalar C<sv>,
4290 the displayable version being at most C<pvlim> bytes long
4291 (if longer, the rest is truncated and "..." will be appended).
4293 The C<flags> argument is as in L</pv_uni_display>().
4295 The pointer to the PV of the C<dsv> is returned.
4300 Perl_sv_uni_display(pTHX_ SV *dsv, SV *ssv, STRLEN pvlim, UV flags)
4302 PERL_ARGS_ASSERT_SV_UNI_DISPLAY;
4304 return Perl_pv_uni_display(aTHX_ dsv, (const U8*)SvPVX_const(ssv),
4305 SvCUR(ssv), pvlim, flags);
4309 =for apidoc foldEQ_utf8
4311 Returns true if the leading portions of the strings C<s1> and C<s2> (either or both
4312 of which may be in UTF-8) are the same case-insensitively; false otherwise.
4313 How far into the strings to compare is determined by other input parameters.
4315 If C<u1> is true, the string C<s1> is assumed to be in UTF-8-encoded Unicode;
4316 otherwise it is assumed to be in native 8-bit encoding. Correspondingly for C<u2>
4317 with respect to C<s2>.
4319 If the byte length C<l1> is non-zero, it says how far into C<s1> to check for fold
4320 equality. In other words, C<s1>+C<l1> will be used as a goal to reach. The
4321 scan will not be considered to be a match unless the goal is reached, and
4322 scanning won't continue past that goal. Correspondingly for C<l2> with respect to
4325 If C<pe1> is non-NULL and the pointer it points to is not NULL, that pointer is
4326 considered an end pointer to the position 1 byte past the maximum point
4327 in C<s1> beyond which scanning will not continue under any circumstances.
4328 (This routine assumes that UTF-8 encoded input strings are not malformed;
4329 malformed input can cause it to read past C<pe1>).
4330 This means that if both C<l1> and C<pe1> are specified, and C<pe1>
4331 is less than C<s1>+C<l1>, the match will never be successful because it can
4333 get as far as its goal (and in fact is asserted against). Correspondingly for
4334 C<pe2> with respect to C<s2>.
4336 At least one of C<s1> and C<s2> must have a goal (at least one of C<l1> and
4337 C<l2> must be non-zero), and if both do, both have to be
4338 reached for a successful match. Also, if the fold of a character is multiple
4339 characters, all of them must be matched (see tr21 reference below for
4342 Upon a successful match, if C<pe1> is non-NULL,
4343 it will be set to point to the beginning of the I<next> character of C<s1>
4344 beyond what was matched. Correspondingly for C<pe2> and C<s2>.
4346 For case-insensitiveness, the "casefolding" of Unicode is used
4347 instead of upper/lowercasing both the characters, see
4348 L<http://www.unicode.org/unicode/reports/tr21/> (Case Mappings).
4352 /* A flags parameter has been added which may change, and hence isn't
4353 * externally documented. Currently it is:
4354 * 0 for as-documented above
4355 * FOLDEQ_UTF8_NOMIX_ASCII meaning that if a non-ASCII character folds to an
4356 ASCII one, to not match
4357 * FOLDEQ_UTF8_LOCALE meaning that locale rules are to be used for code
4358 * points below 256; unicode rules for above 255; and
4359 * folds that cross those boundaries are disallowed,
4360 * like the NOMIX_ASCII option
4361 * FOLDEQ_S1_ALREADY_FOLDED s1 has already been folded before calling this
4362 * routine. This allows that step to be skipped.
4363 * FOLDEQ_S2_ALREADY_FOLDED Similarly.
4366 Perl_foldEQ_utf8_flags(pTHX_ const char *s1, char **pe1, register UV l1, bool u1, const char *s2, char **pe2, register UV l2, bool u2, U32 flags)
4369 const U8 *p1 = (const U8*)s1; /* Point to current char */
4370 const U8 *p2 = (const U8*)s2;
4371 const U8 *g1 = NULL; /* goal for s1 */
4372 const U8 *g2 = NULL;
4373 const U8 *e1 = NULL; /* Don't scan s1 past this */
4374 U8 *f1 = NULL; /* Point to current folded */
4375 const U8 *e2 = NULL;
4377 STRLEN n1 = 0, n2 = 0; /* Number of bytes in current char */
4378 U8 foldbuf1[UTF8_MAXBYTES_CASE+1];
4379 U8 foldbuf2[UTF8_MAXBYTES_CASE+1];
4381 PERL_ARGS_ASSERT_FOLDEQ_UTF8_FLAGS;
4383 /* The algorithm requires that input with the flags on the first line of
4384 * the assert not be pre-folded. */
4385 assert( ! ((flags & (FOLDEQ_UTF8_NOMIX_ASCII | FOLDEQ_UTF8_LOCALE))
4386 && (flags & (FOLDEQ_S1_ALREADY_FOLDED | FOLDEQ_S2_ALREADY_FOLDED))));
4393 g1 = (const U8*)s1 + l1;
4401 g2 = (const U8*)s2 + l2;
4404 /* Must have at least one goal */
4409 /* Will never match if goal is out-of-bounds */
4410 assert(! e1 || e1 >= g1);
4412 /* Here, there isn't an end pointer, or it is beyond the goal. We
4413 * only go as far as the goal */
4417 assert(e1); /* Must have an end for looking at s1 */
4420 /* Same for goal for s2 */
4422 assert(! e2 || e2 >= g2);
4429 /* If both operands are already folded, we could just do a memEQ on the
4430 * whole strings at once, but it would be better if the caller realized
4431 * this and didn't even call us */
4433 /* Look through both strings, a character at a time */
4434 while (p1 < e1 && p2 < e2) {
4436 /* If at the beginning of a new character in s1, get its fold to use
4437 * and the length of the fold. (exception: locale rules just get the
4438 * character to a single byte) */
4440 if (flags & FOLDEQ_S1_ALREADY_FOLDED) {
4446 /* If in locale matching, we use two sets of rules, depending
4447 * on if the code point is above or below 255. Here, we test
4448 * for and handle locale rules */
4449 if ((flags & FOLDEQ_UTF8_LOCALE)
4450 && (! u1 || UTF8_IS_INVARIANT(*p1)
4451 || UTF8_IS_DOWNGRADEABLE_START(*p1)))
4453 /* There is no mixing of code points above and below 255. */
4454 if (u2 && (! UTF8_IS_INVARIANT(*p2)
4455 && ! UTF8_IS_DOWNGRADEABLE_START(*p2)))
4460 /* We handle locale rules by converting, if necessary, the
4461 * code point to a single byte. */
4462 if (! u1 || UTF8_IS_INVARIANT(*p1)) {
4466 *foldbuf1 = TWO_BYTE_UTF8_TO_UNI(*p1, *(p1 + 1));
4470 else if (isASCII(*p1)) { /* Note, that here won't be both
4471 ASCII and using locale rules */
4473 /* If trying to mix non- with ASCII, and not supposed to,
4475 if ((flags & FOLDEQ_UTF8_NOMIX_ASCII) && ! isASCII(*p2)) {
4479 *foldbuf1 = toLOWER(*p1); /* Folds in the ASCII range are
4483 to_utf8_fold(p1, foldbuf1, &n1);
4485 else { /* Not utf8, get utf8 fold */
4486 to_uni_fold(NATIVE_TO_UNI(*p1), foldbuf1, &n1);
4492 if (n2 == 0) { /* Same for s2 */
4493 if (flags & FOLDEQ_S2_ALREADY_FOLDED) {
4498 if ((flags & FOLDEQ_UTF8_LOCALE)
4499 && (! u2 || UTF8_IS_INVARIANT(*p2) || UTF8_IS_DOWNGRADEABLE_START(*p2)))
4501 /* Here, the next char in s2 is < 256. We've already
4502 * worked on s1, and if it isn't also < 256, can't match */
4503 if (u1 && (! UTF8_IS_INVARIANT(*p1)
4504 && ! UTF8_IS_DOWNGRADEABLE_START(*p1)))
4508 if (! u2 || UTF8_IS_INVARIANT(*p2)) {
4512 *foldbuf2 = TWO_BYTE_UTF8_TO_UNI(*p2, *(p2 + 1));
4515 /* Use another function to handle locale rules. We've made
4516 * sure that both characters to compare are single bytes */
4517 if (! foldEQ_locale((char *) f1, (char *) foldbuf2, 1)) {
4522 else if (isASCII(*p2)) {
4523 if ((flags & FOLDEQ_UTF8_NOMIX_ASCII) && ! isASCII(*p1)) {
4527 *foldbuf2 = toLOWER(*p2);
4530 to_utf8_fold(p2, foldbuf2, &n2);
4533 to_uni_fold(NATIVE_TO_UNI(*p2), foldbuf2, &n2);
4539 /* Here f1 and f2 point to the beginning of the strings to compare.
4540 * These strings are the folds of the next character from each input
4541 * string, stored in utf8. */
4543 /* While there is more to look for in both folds, see if they
4544 * continue to match */
4546 U8 fold_length = UTF8SKIP(f1);
4547 if (fold_length != UTF8SKIP(f2)
4548 || (fold_length == 1 && *f1 != *f2) /* Short circuit memNE
4549 function call for single
4551 || memNE((char*)f1, (char*)f2, fold_length))
4553 return 0; /* mismatch */
4556 /* Here, they matched, advance past them */
4563 /* When reach the end of any fold, advance the input past it */
4565 p1 += u1 ? UTF8SKIP(p1) : 1;
4568 p2 += u2 ? UTF8SKIP(p2) : 1;
4570 } /* End of loop through both strings */
4572 /* A match is defined by each scan that specified an explicit length
4573 * reaching its final goal, and the other not having matched a partial
4574 * character (which can happen when the fold of a character is more than one
4576 if (! ((g1 == 0 || p1 == g1) && (g2 == 0 || p2 == g2)) || n1 || n2) {
4580 /* Successful match. Set output pointers */
4592 * c-indentation-style: bsd
4594 * indent-tabs-mode: nil
4597 * ex: set ts=8 sts=4 sw=4 et: