5 * One Ring to rule them all, One Ring to find them
7 * [p.v of _The Lord of the Rings_, opening poem]
8 * [p.50 of _The Lord of the Rings_, I/iii: "The Shadow of the Past"]
9 * [p.254 of _The Lord of the Rings_, II/ii: "The Council of Elrond"]
12 /* This file contains functions for executing a regular expression. See
13 * also regcomp.c which funnily enough, contains functions for compiling
14 * a regular expression.
16 * This file is also copied at build time to ext/re/re_exec.c, where
17 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
18 * This causes the main functions to be compiled under new names and with
19 * debugging support added, which makes "use re 'debug'" work.
22 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
23 * confused with the original package (see point 3 below). Thanks, Henry!
26 /* Additional note: this code is very heavily munged from Henry's version
27 * in places. In some spots I've traded clarity for efficiency, so don't
28 * blame Henry for some of the lack of readability.
31 /* The names of the functions have been changed from regcomp and
32 * regexec to pregcomp and pregexec in order to avoid conflicts
33 * with the POSIX routines of the same names.
36 #ifdef PERL_EXT_RE_BUILD
41 * pregcomp and pregexec -- regsub and regerror are not used in perl
43 * Copyright (c) 1986 by University of Toronto.
44 * Written by Henry Spencer. Not derived from licensed software.
46 * Permission is granted to anyone to use this software for any
47 * purpose on any computer system, and to redistribute it freely,
48 * subject to the following restrictions:
50 * 1. The author is not responsible for the consequences of use of
51 * this software, no matter how awful, even if they arise
54 * 2. The origin of this software must not be misrepresented, either
55 * by explicit claim or by omission.
57 * 3. Altered versions must be plainly marked as such, and must not
58 * be misrepresented as being the original software.
60 **** Alterations to Henry's code are...
62 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
63 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
64 **** by Larry Wall and others
66 **** You may distribute under the terms of either the GNU General Public
67 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGEXEC_C
77 #ifdef PERL_IN_XSUB_RE
83 #include "invlist_inline.h"
84 #include "unicode_constants.h"
86 #define B_ON_NON_UTF8_LOCALE_IS_WRONG \
87 "Use of \\b{} or \\B{} for non-UTF-8 locale is wrong. Assuming a UTF-8 locale"
89 static const char utf8_locale_required[] =
90 "Use of (?[ ]) for non-UTF-8 locale is wrong. Assuming a UTF-8 locale";
93 /* At least one required character in the target string is expressible only in
95 static const char non_utf8_target_but_utf8_required[]
96 = "Can't match, because target string needs to be in UTF-8\n";
99 #define NON_UTF8_TARGET_BUT_UTF8_REQUIRED(target) STMT_START { \
100 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ "%s", non_utf8_target_but_utf8_required));\
104 #define HAS_NONLATIN1_FOLD_CLOSURE(i) _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
107 #define STATIC static
114 #define CHR_SVLEN(sv) (utf8_target ? sv_len_utf8(sv) : SvCUR(sv))
116 #define HOPc(pos,off) \
117 (char *)(reginfo->is_utf8_target \
118 ? reghop3((U8*)pos, off, \
119 (U8*)(off >= 0 ? reginfo->strend : reginfo->strbeg)) \
122 /* like HOPMAYBE3 but backwards. lim must be +ve. Returns NULL on overshoot */
123 #define HOPBACK3(pos, off, lim) \
124 (reginfo->is_utf8_target \
125 ? reghopmaybe3((U8*)pos, (SSize_t)0-off, (U8*)(lim)) \
126 : (pos - off >= lim) \
130 #define HOPBACKc(pos, off) ((char*)HOPBACK3(pos, off, reginfo->strbeg))
132 #define HOP3(pos,off,lim) (reginfo->is_utf8_target ? reghop3((U8*)(pos), off, (U8*)(lim)) : (U8*)(pos + off))
133 #define HOP3c(pos,off,lim) ((char*)HOP3(pos,off,lim))
135 /* lim must be +ve. Returns NULL on overshoot */
136 #define HOPMAYBE3(pos,off,lim) \
137 (reginfo->is_utf8_target \
138 ? reghopmaybe3((U8*)pos, off, (U8*)(lim)) \
139 : ((U8*)pos + off <= lim) \
143 /* like HOP3, but limits the result to <= lim even for the non-utf8 case.
144 * off must be >=0; args should be vars rather than expressions */
145 #define HOP3lim(pos,off,lim) (reginfo->is_utf8_target \
146 ? reghop3((U8*)(pos), off, (U8*)(lim)) \
147 : (U8*)((pos + off) > lim ? lim : (pos + off)))
148 #define HOP3clim(pos,off,lim) ((char*)HOP3lim(pos,off,lim))
150 #define HOP4(pos,off,llim, rlim) (reginfo->is_utf8_target \
151 ? reghop4((U8*)(pos), off, (U8*)(llim), (U8*)(rlim)) \
153 #define HOP4c(pos,off,llim, rlim) ((char*)HOP4(pos,off,llim, rlim))
155 #define PLACEHOLDER /* Something for the preprocessor to grab onto */
156 /* TODO: Combine JUMPABLE and HAS_TEXT to cache OP(rn) */
158 /* for use after a quantifier and before an EXACT-like node -- japhy */
159 /* it would be nice to rework regcomp.sym to generate this stuff. sigh
161 * NOTE that *nothing* that affects backtracking should be in here, specifically
162 * VERBS must NOT be included. JUMPABLE is used to determine if we can ignore a
163 * node that is in between two EXACT like nodes when ascertaining what the required
164 * "follow" character is. This should probably be moved to regex compile time
165 * although it may be done at run time beause of the REF possibility - more
166 * investigation required. -- demerphq
168 #define JUMPABLE(rn) ( \
170 (OP(rn) == CLOSE && \
171 !EVAL_CLOSE_PAREN_IS(cur_eval,ARG(rn)) ) || \
173 OP(rn) == SUSPEND || OP(rn) == IFMATCH || \
174 OP(rn) == PLUS || OP(rn) == MINMOD || \
176 (PL_regkind[OP(rn)] == CURLY && ARG1(rn) > 0) \
178 #define IS_EXACT(rn) (PL_regkind[OP(rn)] == EXACT)
180 #define HAS_TEXT(rn) ( IS_EXACT(rn) || PL_regkind[OP(rn)] == REF )
183 Search for mandatory following text node; for lookahead, the text must
184 follow but for lookbehind (rn->flags != 0) we skip to the next step.
186 #define FIND_NEXT_IMPT(rn) STMT_START { \
187 while (JUMPABLE(rn)) { \
188 const OPCODE type = OP(rn); \
189 if (type == SUSPEND || PL_regkind[type] == CURLY) \
190 rn = NEXTOPER(NEXTOPER(rn)); \
191 else if (type == PLUS) \
193 else if (type == IFMATCH) \
194 rn = (rn->flags == 0) ? NEXTOPER(NEXTOPER(rn)) : rn + ARG(rn); \
195 else rn += NEXT_OFF(rn); \
199 #define SLAB_FIRST(s) (&(s)->states[0])
200 #define SLAB_LAST(s) (&(s)->states[PERL_REGMATCH_SLAB_SLOTS-1])
202 static void S_setup_eval_state(pTHX_ regmatch_info *const reginfo);
203 static void S_cleanup_regmatch_info_aux(pTHX_ void *arg);
204 static regmatch_state * S_push_slab(pTHX);
206 #define REGCP_PAREN_ELEMS 3
207 #define REGCP_OTHER_ELEMS 3
208 #define REGCP_FRAME_ELEMS 1
209 /* REGCP_FRAME_ELEMS are not part of the REGCP_OTHER_ELEMS and
210 * are needed for the regexp context stack bookkeeping. */
213 S_regcppush(pTHX_ const regexp *rex, I32 parenfloor, U32 maxopenparen _pDEPTH)
215 const int retval = PL_savestack_ix;
216 const int paren_elems_to_push =
217 (maxopenparen - parenfloor) * REGCP_PAREN_ELEMS;
218 const UV total_elems = paren_elems_to_push + REGCP_OTHER_ELEMS;
219 const UV elems_shifted = total_elems << SAVE_TIGHT_SHIFT;
221 GET_RE_DEBUG_FLAGS_DECL;
223 PERL_ARGS_ASSERT_REGCPPUSH;
225 if (paren_elems_to_push < 0)
226 Perl_croak(aTHX_ "panic: paren_elems_to_push, %i < 0, maxopenparen: %i parenfloor: %i REGCP_PAREN_ELEMS: %u",
227 (int)paren_elems_to_push, (int)maxopenparen,
228 (int)parenfloor, (unsigned)REGCP_PAREN_ELEMS);
230 if ((elems_shifted >> SAVE_TIGHT_SHIFT) != total_elems)
231 Perl_croak(aTHX_ "panic: paren_elems_to_push offset %" UVuf
232 " out of range (%lu-%ld)",
234 (unsigned long)maxopenparen,
237 SSGROW(total_elems + REGCP_FRAME_ELEMS);
240 if ((int)maxopenparen > (int)parenfloor)
241 Perl_re_exec_indentf( aTHX_
242 "rex=0x%" UVxf " offs=0x%" UVxf ": saving capture indices:\n",
248 for (p = parenfloor+1; p <= (I32)maxopenparen; p++) {
249 /* REGCP_PARENS_ELEMS are pushed per pairs of parentheses. */
250 SSPUSHIV(rex->offs[p].end);
251 SSPUSHIV(rex->offs[p].start);
252 SSPUSHINT(rex->offs[p].start_tmp);
253 DEBUG_BUFFERS_r(Perl_re_exec_indentf( aTHX_
254 " \\%" UVuf ": %" IVdf "(%" IVdf ")..%" IVdf "\n",
257 (IV)rex->offs[p].start,
258 (IV)rex->offs[p].start_tmp,
262 /* REGCP_OTHER_ELEMS are pushed in any case, parentheses or no. */
263 SSPUSHINT(maxopenparen);
264 SSPUSHINT(rex->lastparen);
265 SSPUSHINT(rex->lastcloseparen);
266 SSPUSHUV(SAVEt_REGCONTEXT | elems_shifted); /* Magic cookie. */
271 /* These are needed since we do not localize EVAL nodes: */
272 #define REGCP_SET(cp) \
274 Perl_re_exec_indentf( aTHX_ \
275 "Setting an EVAL scope, savestack=%" IVdf ",\n", \
276 depth, (IV)PL_savestack_ix \
281 #define REGCP_UNWIND(cp) \
283 if (cp != PL_savestack_ix) \
284 Perl_re_exec_indentf( aTHX_ \
285 "Clearing an EVAL scope, savestack=%" \
286 IVdf "..%" IVdf "\n", \
287 depth, (IV)(cp), (IV)PL_savestack_ix \
292 /* set the start and end positions of capture ix */
293 #define CLOSE_CAPTURE(ix, s, e) \
294 rex->offs[ix].start = s; \
295 rex->offs[ix].end = e; \
296 if (ix > rex->lastparen) \
297 rex->lastparen = ix; \
298 rex->lastcloseparen = ix; \
299 DEBUG_BUFFERS_r(Perl_re_exec_indentf( aTHX_ \
300 "CLOSE: rex=0x%" UVxf " offs=0x%" UVxf ": \\%" UVuf ": set %" IVdf "..%" IVdf " max: %" UVuf "\n", \
305 (IV)rex->offs[ix].start, \
306 (IV)rex->offs[ix].end, \
310 #define UNWIND_PAREN(lp, lcp) \
311 DEBUG_BUFFERS_r(Perl_re_exec_indentf( aTHX_ \
312 "UNWIND_PAREN: rex=0x%" UVxf " offs=0x%" UVxf ": invalidate (%" UVuf "..%" UVuf "] set lcp: %" UVuf "\n", \
317 (UV)(rex->lastparen), \
320 for (n = rex->lastparen; n > lp; n--) \
321 rex->offs[n].end = -1; \
322 rex->lastparen = n; \
323 rex->lastcloseparen = lcp;
327 S_regcppop(pTHX_ regexp *rex, U32 *maxopenparen_p _pDEPTH)
331 GET_RE_DEBUG_FLAGS_DECL;
333 PERL_ARGS_ASSERT_REGCPPOP;
335 /* Pop REGCP_OTHER_ELEMS before the parentheses loop starts. */
337 assert((i & SAVE_MASK) == SAVEt_REGCONTEXT); /* Check that the magic cookie is there. */
338 i >>= SAVE_TIGHT_SHIFT; /* Parentheses elements to pop. */
339 rex->lastcloseparen = SSPOPINT;
340 rex->lastparen = SSPOPINT;
341 *maxopenparen_p = SSPOPINT;
343 i -= REGCP_OTHER_ELEMS;
344 /* Now restore the parentheses context. */
346 if (i || rex->lastparen + 1 <= rex->nparens)
347 Perl_re_exec_indentf( aTHX_
348 "rex=0x%" UVxf " offs=0x%" UVxf ": restoring capture indices to:\n",
354 paren = *maxopenparen_p;
355 for ( ; i > 0; i -= REGCP_PAREN_ELEMS) {
357 rex->offs[paren].start_tmp = SSPOPINT;
358 rex->offs[paren].start = SSPOPIV;
360 if (paren <= rex->lastparen)
361 rex->offs[paren].end = tmps;
362 DEBUG_BUFFERS_r( Perl_re_exec_indentf( aTHX_
363 " \\%" UVuf ": %" IVdf "(%" IVdf ")..%" IVdf "%s\n",
366 (IV)rex->offs[paren].start,
367 (IV)rex->offs[paren].start_tmp,
368 (IV)rex->offs[paren].end,
369 (paren > rex->lastparen ? "(skipped)" : ""));
374 /* It would seem that the similar code in regtry()
375 * already takes care of this, and in fact it is in
376 * a better location to since this code can #if 0-ed out
377 * but the code in regtry() is needed or otherwise tests
378 * requiring null fields (pat.t#187 and split.t#{13,14}
379 * (as of patchlevel 7877) will fail. Then again,
380 * this code seems to be necessary or otherwise
381 * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
382 * --jhi updated by dapm */
383 for (i = rex->lastparen + 1; i <= rex->nparens; i++) {
384 if (i > *maxopenparen_p)
385 rex->offs[i].start = -1;
386 rex->offs[i].end = -1;
387 DEBUG_BUFFERS_r( Perl_re_exec_indentf( aTHX_
388 " \\%" UVuf ": %s ..-1 undeffing\n",
391 (i > *maxopenparen_p) ? "-1" : " "
397 /* restore the parens and associated vars at savestack position ix,
398 * but without popping the stack */
401 S_regcp_restore(pTHX_ regexp *rex, I32 ix, U32 *maxopenparen_p _pDEPTH)
403 I32 tmpix = PL_savestack_ix;
404 PERL_ARGS_ASSERT_REGCP_RESTORE;
406 PL_savestack_ix = ix;
407 regcppop(rex, maxopenparen_p);
408 PL_savestack_ix = tmpix;
411 #define regcpblow(cp) LEAVE_SCOPE(cp) /* Ignores regcppush()ed data. */
413 #ifndef PERL_IN_XSUB_RE
416 Perl_isFOO_lc(pTHX_ const U8 classnum, const U8 character)
418 /* Returns a boolean as to whether or not 'character' is a member of the
419 * Posix character class given by 'classnum' that should be equivalent to a
420 * value in the typedef '_char_class_number'.
422 * Ideally this could be replaced by a just an array of function pointers
423 * to the C library functions that implement the macros this calls.
424 * However, to compile, the precise function signatures are required, and
425 * these may vary from platform to to platform. To avoid having to figure
426 * out what those all are on each platform, I (khw) am using this method,
427 * which adds an extra layer of function call overhead (unless the C
428 * optimizer strips it away). But we don't particularly care about
429 * performance with locales anyway. */
431 switch ((_char_class_number) classnum) {
432 case _CC_ENUM_ALPHANUMERIC: return isALPHANUMERIC_LC(character);
433 case _CC_ENUM_ALPHA: return isALPHA_LC(character);
434 case _CC_ENUM_ASCII: return isASCII_LC(character);
435 case _CC_ENUM_BLANK: return isBLANK_LC(character);
436 case _CC_ENUM_CASED: return isLOWER_LC(character)
437 || isUPPER_LC(character);
438 case _CC_ENUM_CNTRL: return isCNTRL_LC(character);
439 case _CC_ENUM_DIGIT: return isDIGIT_LC(character);
440 case _CC_ENUM_GRAPH: return isGRAPH_LC(character);
441 case _CC_ENUM_LOWER: return isLOWER_LC(character);
442 case _CC_ENUM_PRINT: return isPRINT_LC(character);
443 case _CC_ENUM_PUNCT: return isPUNCT_LC(character);
444 case _CC_ENUM_SPACE: return isSPACE_LC(character);
445 case _CC_ENUM_UPPER: return isUPPER_LC(character);
446 case _CC_ENUM_WORDCHAR: return isWORDCHAR_LC(character);
447 case _CC_ENUM_XDIGIT: return isXDIGIT_LC(character);
448 default: /* VERTSPACE should never occur in locales */
449 Perl_croak(aTHX_ "panic: isFOO_lc() has an unexpected character class '%d'", classnum);
452 NOT_REACHED; /* NOTREACHED */
458 PERL_STATIC_INLINE I32
459 S_foldEQ_latin1_s2_folded(const char *s1, const char *s2, I32 len)
461 /* Compare non-UTF-8 using Unicode (Latin1) semantics. s2 must already be
462 * folded. Works on all folds representable without UTF-8, except for
463 * LATIN_SMALL_LETTER_SHARP_S, and does not check for this. Nor does it
464 * check that the strings each have at least 'len' characters.
466 * There is almost an identical API function where s2 need not be folded:
467 * Perl_foldEQ_latin1() */
469 const U8 *a = (const U8 *)s1;
470 const U8 *b = (const U8 *)s2;
472 PERL_ARGS_ASSERT_FOLDEQ_LATIN1_S2_FOLDED;
477 assert(! isUPPER_L1(*b));
478 if (toLOWER_L1(*a) != *b) {
487 S_isFOO_utf8_lc(pTHX_ const U8 classnum, const U8* character, const U8* e)
489 /* Returns a boolean as to whether or not the (well-formed) UTF-8-encoded
490 * 'character' is a member of the Posix character class given by 'classnum'
491 * that should be equivalent to a value in the typedef
492 * '_char_class_number'.
494 * This just calls isFOO_lc on the code point for the character if it is in
495 * the range 0-255. Outside that range, all characters use Unicode
496 * rules, ignoring any locale. So use the Unicode function if this class
497 * requires an inversion list, and use the Unicode macro otherwise. */
501 PERL_ARGS_ASSERT_ISFOO_UTF8_LC;
503 if (UTF8_IS_INVARIANT(*character)) {
504 return isFOO_lc(classnum, *character);
506 else if (UTF8_IS_DOWNGRADEABLE_START(*character)) {
507 return isFOO_lc(classnum,
508 EIGHT_BIT_UTF8_TO_NATIVE(*character, *(character + 1)));
511 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(character, e);
513 switch ((_char_class_number) classnum) {
514 case _CC_ENUM_SPACE: return is_XPERLSPACE_high(character);
515 case _CC_ENUM_BLANK: return is_HORIZWS_high(character);
516 case _CC_ENUM_XDIGIT: return is_XDIGIT_high(character);
517 case _CC_ENUM_VERTSPACE: return is_VERTWS_high(character);
519 return _invlist_contains_cp(PL_XPosix_ptrs[classnum],
520 utf8_to_uvchr_buf(character, e, NULL));
523 return FALSE; /* Things like CNTRL are always below 256 */
527 S_find_span_end(U8 * s, const U8 * send, const U8 span_byte)
529 /* Returns the position of the first byte in the sequence between 's' and
530 * 'send-1' inclusive that isn't 'span_byte'; returns 'send' if none found.
533 PERL_ARGS_ASSERT_FIND_SPAN_END;
537 if ((STRLEN) (send - s) >= PERL_WORDSIZE
538 + PERL_WORDSIZE * PERL_IS_SUBWORD_ADDR(s)
539 - (PTR2nat(s) & PERL_WORD_BOUNDARY_MASK))
541 PERL_UINTMAX_T span_word;
543 /* Process per-byte until reach word boundary. XXX This loop could be
544 * eliminated if we knew that this platform had fast unaligned reads */
545 while (PTR2nat(s) & PERL_WORD_BOUNDARY_MASK) {
546 if (*s != span_byte) {
552 /* Create a word filled with the bytes we are spanning */
553 span_word = PERL_COUNT_MULTIPLIER * span_byte;
555 /* Process per-word as long as we have at least a full word left */
558 /* Keep going if the whole word is composed of 'span_byte's */
559 if ((* (PERL_UINTMAX_T *) s) == span_word) {
564 /* Here, at least one byte in the word isn't 'span_byte'. */
572 /* This xor leaves 1 bits only in those non-matching bytes */
573 span_word ^= * (PERL_UINTMAX_T *) s;
575 /* Make sure the upper bit of each non-matching byte is set. This
576 * makes each such byte look like an ASCII platform variant byte */
577 span_word |= span_word << 1;
578 span_word |= span_word << 2;
579 span_word |= span_word << 4;
581 /* That reduces the problem to what this function solves */
582 return s + _variant_byte_number(span_word);
586 } while (s + PERL_WORDSIZE <= send);
589 /* Process the straggler bytes beyond the final word boundary */
591 if (*s != span_byte) {
601 S_find_next_masked(U8 * s, const U8 * send, const U8 byte, const U8 mask)
603 /* Returns the position of the first byte in the sequence between 's'
604 * and 'send-1' inclusive that when ANDed with 'mask' yields 'byte';
605 * returns 'send' if none found. It uses word-level operations instead of
606 * byte to speed up the process */
608 PERL_ARGS_ASSERT_FIND_NEXT_MASKED;
611 assert((byte & mask) == byte);
615 if ((STRLEN) (send - s) >= PERL_WORDSIZE
616 + PERL_WORDSIZE * PERL_IS_SUBWORD_ADDR(s)
617 - (PTR2nat(s) & PERL_WORD_BOUNDARY_MASK))
619 PERL_UINTMAX_T word, mask_word;
621 while (PTR2nat(s) & PERL_WORD_BOUNDARY_MASK) {
622 if (((*s) & mask) == byte) {
628 word = PERL_COUNT_MULTIPLIER * byte;
629 mask_word = PERL_COUNT_MULTIPLIER * mask;
632 PERL_UINTMAX_T masked = (* (PERL_UINTMAX_T *) s) & mask_word;
634 /* If 'masked' contains bytes with the bit pattern of 'byte' within
635 * it, xoring with 'word' will leave each of the 8 bits in such
636 * bytes be 0, and no byte containing any other bit pattern will be
640 /* This causes the most significant bit to be set to 1 for any
641 * bytes in the word that aren't completely 0 */
642 masked |= masked << 1;
643 masked |= masked << 2;
644 masked |= masked << 4;
646 /* The msbits are the same as what marks a byte as variant, so we
647 * can use this mask. If all msbits are 1, the word doesn't
649 if ((masked & PERL_VARIANTS_WORD_MASK) == PERL_VARIANTS_WORD_MASK) {
654 /* Here, the msbit of bytes in the word that aren't 'byte' are 1,
655 * and any that are, are 0. Complement and re-AND to swap that */
657 masked &= PERL_VARIANTS_WORD_MASK;
659 /* This reduces the problem to that solved by this function */
660 s += _variant_byte_number(masked);
663 } while (s + PERL_WORDSIZE <= send);
669 if (((*s) & mask) == byte) {
679 S_find_span_end_mask(U8 * s, const U8 * send, const U8 span_byte, const U8 mask)
681 /* Returns the position of the first byte in the sequence between 's' and
682 * 'send-1' inclusive that when ANDed with 'mask' isn't 'span_byte'.
683 * 'span_byte' should have been ANDed with 'mask' in the call of this
684 * function. Returns 'send' if none found. Works like find_span_end(),
685 * except for the AND */
687 PERL_ARGS_ASSERT_FIND_SPAN_END_MASK;
690 assert((span_byte & mask) == span_byte);
692 if ((STRLEN) (send - s) >= PERL_WORDSIZE
693 + PERL_WORDSIZE * PERL_IS_SUBWORD_ADDR(s)
694 - (PTR2nat(s) & PERL_WORD_BOUNDARY_MASK))
696 PERL_UINTMAX_T span_word, mask_word;
698 while (PTR2nat(s) & PERL_WORD_BOUNDARY_MASK) {
699 if (((*s) & mask) != span_byte) {
705 span_word = PERL_COUNT_MULTIPLIER * span_byte;
706 mask_word = PERL_COUNT_MULTIPLIER * mask;
709 PERL_UINTMAX_T masked = (* (PERL_UINTMAX_T *) s) & mask_word;
711 if (masked == span_word) {
723 masked |= masked << 1;
724 masked |= masked << 2;
725 masked |= masked << 4;
726 return s + _variant_byte_number(masked);
730 } while (s + PERL_WORDSIZE <= send);
734 if (((*s) & mask) != span_byte) {
744 * pregexec and friends
747 #ifndef PERL_IN_XSUB_RE
749 - pregexec - match a regexp against a string
752 Perl_pregexec(pTHX_ REGEXP * const prog, char* stringarg, char *strend,
753 char *strbeg, SSize_t minend, SV *screamer, U32 nosave)
754 /* stringarg: the point in the string at which to begin matching */
755 /* strend: pointer to null at end of string */
756 /* strbeg: real beginning of string */
757 /* minend: end of match must be >= minend bytes after stringarg. */
758 /* screamer: SV being matched: only used for utf8 flag, pos() etc; string
759 * itself is accessed via the pointers above */
760 /* nosave: For optimizations. */
762 PERL_ARGS_ASSERT_PREGEXEC;
765 regexec_flags(prog, stringarg, strend, strbeg, minend, screamer, NULL,
766 nosave ? 0 : REXEC_COPY_STR);
772 /* re_intuit_start():
774 * Based on some optimiser hints, try to find the earliest position in the
775 * string where the regex could match.
777 * rx: the regex to match against
778 * sv: the SV being matched: only used for utf8 flag; the string
779 * itself is accessed via the pointers below. Note that on
780 * something like an overloaded SV, SvPOK(sv) may be false
781 * and the string pointers may point to something unrelated to
783 * strbeg: real beginning of string
784 * strpos: the point in the string at which to begin matching
785 * strend: pointer to the byte following the last char of the string
786 * flags currently unused; set to 0
787 * data: currently unused; set to NULL
789 * The basic idea of re_intuit_start() is to use some known information
790 * about the pattern, namely:
792 * a) the longest known anchored substring (i.e. one that's at a
793 * constant offset from the beginning of the pattern; but not
794 * necessarily at a fixed offset from the beginning of the
796 * b) the longest floating substring (i.e. one that's not at a constant
797 * offset from the beginning of the pattern);
798 * c) Whether the pattern is anchored to the string; either
799 * an absolute anchor: /^../, or anchored to \n: /^.../m,
800 * or anchored to pos(): /\G/;
801 * d) A start class: a real or synthetic character class which
802 * represents which characters are legal at the start of the pattern;
804 * to either quickly reject the match, or to find the earliest position
805 * within the string at which the pattern might match, thus avoiding
806 * running the full NFA engine at those earlier locations, only to
807 * eventually fail and retry further along.
809 * Returns NULL if the pattern can't match, or returns the address within
810 * the string which is the earliest place the match could occur.
812 * The longest of the anchored and floating substrings is called 'check'
813 * and is checked first. The other is called 'other' and is checked
814 * second. The 'other' substring may not be present. For example,
816 * /(abc|xyz)ABC\d{0,3}DEFG/
820 * check substr (float) = "DEFG", offset 6..9 chars
821 * other substr (anchored) = "ABC", offset 3..3 chars
824 * Be aware that during the course of this function, sometimes 'anchored'
825 * refers to a substring being anchored relative to the start of the
826 * pattern, and sometimes to the pattern itself being anchored relative to
827 * the string. For example:
829 * /\dabc/: "abc" is anchored to the pattern;
830 * /^\dabc/: "abc" is anchored to the pattern and the string;
831 * /\d+abc/: "abc" is anchored to neither the pattern nor the string;
832 * /^\d+abc/: "abc" is anchored to neither the pattern nor the string,
833 * but the pattern is anchored to the string.
837 Perl_re_intuit_start(pTHX_
840 const char * const strbeg,
844 re_scream_pos_data *data)
846 struct regexp *const prog = ReANY(rx);
847 SSize_t start_shift = prog->check_offset_min;
848 /* Should be nonnegative! */
849 SSize_t end_shift = 0;
850 /* current lowest pos in string where the regex can start matching */
851 char *rx_origin = strpos;
853 const bool utf8_target = (sv && SvUTF8(sv)) ? 1 : 0; /* if no sv we have to assume bytes */
854 U8 other_ix = 1 - prog->substrs->check_ix;
856 char *other_last = strpos;/* latest pos 'other' substr already checked to */
857 char *check_at = NULL; /* check substr found at this pos */
858 const I32 multiline = prog->extflags & RXf_PMf_MULTILINE;
859 RXi_GET_DECL(prog,progi);
860 regmatch_info reginfo_buf; /* create some info to pass to find_byclass */
861 regmatch_info *const reginfo = ®info_buf;
862 GET_RE_DEBUG_FLAGS_DECL;
864 PERL_ARGS_ASSERT_RE_INTUIT_START;
865 PERL_UNUSED_ARG(flags);
866 PERL_UNUSED_ARG(data);
868 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
869 "Intuit: trying to determine minimum start position...\n"));
871 /* for now, assume that all substr offsets are positive. If at some point
872 * in the future someone wants to do clever things with lookbehind and
873 * -ve offsets, they'll need to fix up any code in this function
874 * which uses these offsets. See the thread beginning
875 * <20140113145929.GF27210@iabyn.com>
877 assert(prog->substrs->data[0].min_offset >= 0);
878 assert(prog->substrs->data[0].max_offset >= 0);
879 assert(prog->substrs->data[1].min_offset >= 0);
880 assert(prog->substrs->data[1].max_offset >= 0);
881 assert(prog->substrs->data[2].min_offset >= 0);
882 assert(prog->substrs->data[2].max_offset >= 0);
884 /* for now, assume that if both present, that the floating substring
885 * doesn't start before the anchored substring.
886 * If you break this assumption (e.g. doing better optimisations
887 * with lookahead/behind), then you'll need to audit the code in this
888 * function carefully first
891 ! ( (prog->anchored_utf8 || prog->anchored_substr)
892 && (prog->float_utf8 || prog->float_substr))
893 || (prog->float_min_offset >= prog->anchored_offset));
895 /* byte rather than char calculation for efficiency. It fails
896 * to quickly reject some cases that can't match, but will reject
897 * them later after doing full char arithmetic */
898 if (prog->minlen > strend - strpos) {
899 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
900 " String too short...\n"));
904 RXp_MATCH_UTF8_set(prog, utf8_target);
905 reginfo->is_utf8_target = cBOOL(utf8_target);
906 reginfo->info_aux = NULL;
907 reginfo->strbeg = strbeg;
908 reginfo->strend = strend;
909 reginfo->is_utf8_pat = cBOOL(RX_UTF8(rx));
911 /* not actually used within intuit, but zero for safety anyway */
912 reginfo->poscache_maxiter = 0;
915 if ((!prog->anchored_utf8 && prog->anchored_substr)
916 || (!prog->float_utf8 && prog->float_substr))
917 to_utf8_substr(prog);
918 check = prog->check_utf8;
920 if (!prog->check_substr && prog->check_utf8) {
921 if (! to_byte_substr(prog)) {
922 NON_UTF8_TARGET_BUT_UTF8_REQUIRED(fail);
925 check = prog->check_substr;
928 /* dump the various substring data */
929 DEBUG_OPTIMISE_MORE_r({
931 for (i=0; i<=2; i++) {
932 SV *sv = (utf8_target ? prog->substrs->data[i].utf8_substr
933 : prog->substrs->data[i].substr);
937 Perl_re_printf( aTHX_
938 " substrs[%d]: min=%" IVdf " max=%" IVdf " end shift=%" IVdf
939 " useful=%" IVdf " utf8=%d [%s]\n",
941 (IV)prog->substrs->data[i].min_offset,
942 (IV)prog->substrs->data[i].max_offset,
943 (IV)prog->substrs->data[i].end_shift,
950 if (prog->intflags & PREGf_ANCH) { /* Match at \G, beg-of-str or after \n */
952 /* ml_anch: check after \n?
954 * A note about PREGf_IMPLICIT: on an un-anchored pattern beginning
955 * with /.*.../, these flags will have been added by the
957 * /.*abc/, /.*abc/m: PREGf_IMPLICIT | PREGf_ANCH_MBOL
958 * /.*abc/s: PREGf_IMPLICIT | PREGf_ANCH_SBOL
960 ml_anch = (prog->intflags & PREGf_ANCH_MBOL)
961 && !(prog->intflags & PREGf_IMPLICIT);
963 if (!ml_anch && !(prog->intflags & PREGf_IMPLICIT)) {
964 /* we are only allowed to match at BOS or \G */
966 /* trivially reject if there's a BOS anchor and we're not at BOS.
968 * Note that we don't try to do a similar quick reject for
969 * \G, since generally the caller will have calculated strpos
970 * based on pos() and gofs, so the string is already correctly
971 * anchored by definition; and handling the exceptions would
972 * be too fiddly (e.g. REXEC_IGNOREPOS).
974 if ( strpos != strbeg
975 && (prog->intflags & PREGf_ANCH_SBOL))
977 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
978 " Not at start...\n"));
982 /* in the presence of an anchor, the anchored (relative to the
983 * start of the regex) substr must also be anchored relative
984 * to strpos. So quickly reject if substr isn't found there.
985 * This works for \G too, because the caller will already have
986 * subtracted gofs from pos, and gofs is the offset from the
987 * \G to the start of the regex. For example, in /.abc\Gdef/,
988 * where substr="abcdef", pos()=3, gofs=4, offset_min=1:
989 * caller will have set strpos=pos()-4; we look for the substr
990 * at position pos()-4+1, which lines up with the "a" */
992 if (prog->check_offset_min == prog->check_offset_max) {
993 /* Substring at constant offset from beg-of-str... */
994 SSize_t slen = SvCUR(check);
995 char *s = HOP3c(strpos, prog->check_offset_min, strend);
997 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
998 " Looking for check substr at fixed offset %" IVdf "...\n",
999 (IV)prog->check_offset_min));
1001 if (SvTAIL(check)) {
1002 /* In this case, the regex is anchored at the end too.
1003 * Unless it's a multiline match, the lengths must match
1004 * exactly, give or take a \n. NB: slen >= 1 since
1005 * the last char of check is \n */
1007 && ( strend - s > slen
1008 || strend - s < slen - 1
1009 || (strend - s == slen && strend[-1] != '\n')))
1011 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1012 " String too long...\n"));
1015 /* Now should match s[0..slen-2] */
1018 if (slen && (strend - s < slen
1019 || *SvPVX_const(check) != *s
1020 || (slen > 1 && (memNE(SvPVX_const(check), s, slen)))))
1022 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1023 " String not equal...\n"));
1028 goto success_at_start;
1033 end_shift = prog->check_end_shift;
1035 #ifdef DEBUGGING /* 7/99: reports of failure (with the older version) */
1037 Perl_croak(aTHX_ "panic: end_shift: %" IVdf " pattern:\n%s\n ",
1038 (IV)end_shift, RX_PRECOMP(rx));
1043 /* This is the (re)entry point of the main loop in this function.
1044 * The goal of this loop is to:
1045 * 1) find the "check" substring in the region rx_origin..strend
1046 * (adjusted by start_shift / end_shift). If not found, reject
1048 * 2) If it exists, look for the "other" substr too if defined; for
1049 * example, if the check substr maps to the anchored substr, then
1050 * check the floating substr, and vice-versa. If not found, go
1051 * back to (1) with rx_origin suitably incremented.
1052 * 3) If we find an rx_origin position that doesn't contradict
1053 * either of the substrings, then check the possible additional
1054 * constraints on rx_origin of /^.../m or a known start class.
1055 * If these fail, then depending on which constraints fail, jump
1056 * back to here, or to various other re-entry points further along
1057 * that skip some of the first steps.
1058 * 4) If we pass all those tests, update the BmUSEFUL() count on the
1059 * substring. If the start position was determined to be at the
1060 * beginning of the string - so, not rejected, but not optimised,
1061 * since we have to run regmatch from position 0 - decrement the
1062 * BmUSEFUL() count. Otherwise increment it.
1066 /* first, look for the 'check' substring */
1072 DEBUG_OPTIMISE_MORE_r({
1073 Perl_re_printf( aTHX_
1074 " At restart: rx_origin=%" IVdf " Check offset min: %" IVdf
1075 " Start shift: %" IVdf " End shift %" IVdf
1076 " Real end Shift: %" IVdf "\n",
1077 (IV)(rx_origin - strbeg),
1078 (IV)prog->check_offset_min,
1081 (IV)prog->check_end_shift);
1084 end_point = HOPBACK3(strend, end_shift, rx_origin);
1087 start_point = HOPMAYBE3(rx_origin, start_shift, end_point);
1092 /* If the regex is absolutely anchored to either the start of the
1093 * string (SBOL) or to pos() (ANCH_GPOS), then
1094 * check_offset_max represents an upper bound on the string where
1095 * the substr could start. For the ANCH_GPOS case, we assume that
1096 * the caller of intuit will have already set strpos to
1097 * pos()-gofs, so in this case strpos + offset_max will still be
1098 * an upper bound on the substr.
1101 && prog->intflags & PREGf_ANCH
1102 && prog->check_offset_max != SSize_t_MAX)
1104 SSize_t check_len = SvCUR(check) - !!SvTAIL(check);
1105 const char * const anchor =
1106 (prog->intflags & PREGf_ANCH_GPOS ? strpos : strbeg);
1107 SSize_t targ_len = (char*)end_point - anchor;
1109 if (check_len > targ_len) {
1110 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1111 "Target string too short to match required substring...\n"));
1115 /* do a bytes rather than chars comparison. It's conservative;
1116 * so it skips doing the HOP if the result can't possibly end
1117 * up earlier than the old value of end_point.
1119 assert(anchor + check_len <= (char *)end_point);
1120 if (prog->check_offset_max + check_len < targ_len) {
1121 end_point = HOP3lim((U8*)anchor,
1122 prog->check_offset_max,
1123 end_point - check_len
1126 if (end_point < start_point)
1131 check_at = fbm_instr( start_point, end_point,
1132 check, multiline ? FBMrf_MULTILINE : 0);
1134 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1135 " doing 'check' fbm scan, [%" IVdf "..%" IVdf "] gave %" IVdf "\n",
1136 (IV)((char*)start_point - strbeg),
1137 (IV)((char*)end_point - strbeg),
1138 (IV)(check_at ? check_at - strbeg : -1)
1141 /* Update the count-of-usability, remove useless subpatterns,
1145 RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
1146 SvPVX_const(check), RE_SV_DUMPLEN(check), 30);
1147 Perl_re_printf( aTHX_ " %s %s substr %s%s%s",
1148 (check_at ? "Found" : "Did not find"),
1149 (check == (utf8_target ? prog->anchored_utf8 : prog->anchored_substr)
1150 ? "anchored" : "floating"),
1153 (check_at ? " at offset " : "...\n") );
1158 /* set rx_origin to the minimum position where the regex could start
1159 * matching, given the constraint of the just-matched check substring.
1160 * But don't set it lower than previously.
1163 if (check_at - rx_origin > prog->check_offset_max)
1164 rx_origin = HOP3c(check_at, -prog->check_offset_max, rx_origin);
1165 /* Finish the diagnostic message */
1166 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1167 "%ld (rx_origin now %" IVdf ")...\n",
1168 (long)(check_at - strbeg),
1169 (IV)(rx_origin - strbeg)
1174 /* now look for the 'other' substring if defined */
1176 if (prog->substrs->data[other_ix].utf8_substr
1177 || prog->substrs->data[other_ix].substr)
1179 /* Take into account the "other" substring. */
1183 struct reg_substr_datum *other;
1186 other = &prog->substrs->data[other_ix];
1187 if (!utf8_target && !other->substr) {
1188 if (!to_byte_substr(prog)) {
1189 NON_UTF8_TARGET_BUT_UTF8_REQUIRED(fail);
1193 /* if "other" is anchored:
1194 * we've previously found a floating substr starting at check_at.
1195 * This means that the regex origin must lie somewhere
1196 * between min (rx_origin): HOP3(check_at, -check_offset_max)
1197 * and max: HOP3(check_at, -check_offset_min)
1198 * (except that min will be >= strpos)
1199 * So the fixed substr must lie somewhere between
1200 * HOP3(min, anchored_offset)
1201 * HOP3(max, anchored_offset) + SvCUR(substr)
1204 /* if "other" is floating
1205 * Calculate last1, the absolute latest point where the
1206 * floating substr could start in the string, ignoring any
1207 * constraints from the earlier fixed match. It is calculated
1210 * strend - prog->minlen (in chars) is the absolute latest
1211 * position within the string where the origin of the regex
1212 * could appear. The latest start point for the floating
1213 * substr is float_min_offset(*) on from the start of the
1214 * regex. last1 simply combines thee two offsets.
1216 * (*) You might think the latest start point should be
1217 * float_max_offset from the regex origin, and technically
1218 * you'd be correct. However, consider
1220 * Here, float min, max are 3,5 and minlen is 7.
1221 * This can match either
1225 * In the first case, the regex matches minlen chars; in the
1226 * second, minlen+1, in the third, minlen+2.
1227 * In the first case, the floating offset is 3 (which equals
1228 * float_min), in the second, 4, and in the third, 5 (which
1229 * equals float_max). In all cases, the floating string bcd
1230 * can never start more than 4 chars from the end of the
1231 * string, which equals minlen - float_min. As the substring
1232 * starts to match more than float_min from the start of the
1233 * regex, it makes the regex match more than minlen chars,
1234 * and the two cancel each other out. So we can always use
1235 * float_min - minlen, rather than float_max - minlen for the
1236 * latest position in the string.
1238 * Note that -minlen + float_min_offset is equivalent (AFAIKT)
1239 * to CHR_SVLEN(must) - !!SvTAIL(must) + prog->float_end_shift
1242 assert(prog->minlen >= other->min_offset);
1243 last1 = HOP3c(strend,
1244 other->min_offset - prog->minlen, strbeg);
1246 if (other_ix) {/* i.e. if (other-is-float) */
1247 /* last is the latest point where the floating substr could
1248 * start, *given* any constraints from the earlier fixed
1249 * match. This constraint is that the floating string starts
1250 * <= float_max_offset chars from the regex origin (rx_origin).
1251 * If this value is less than last1, use it instead.
1253 assert(rx_origin <= last1);
1255 /* this condition handles the offset==infinity case, and
1256 * is a short-cut otherwise. Although it's comparing a
1257 * byte offset to a char length, it does so in a safe way,
1258 * since 1 char always occupies 1 or more bytes,
1259 * so if a string range is (last1 - rx_origin) bytes,
1260 * it will be less than or equal to (last1 - rx_origin)
1261 * chars; meaning it errs towards doing the accurate HOP3
1262 * rather than just using last1 as a short-cut */
1263 (last1 - rx_origin) < other->max_offset
1265 : (char*)HOP3lim(rx_origin, other->max_offset, last1);
1268 assert(strpos + start_shift <= check_at);
1269 last = HOP4c(check_at, other->min_offset - start_shift,
1273 s = HOP3c(rx_origin, other->min_offset, strend);
1274 if (s < other_last) /* These positions already checked */
1277 must = utf8_target ? other->utf8_substr : other->substr;
1278 assert(SvPOK(must));
1281 char *to = last + SvCUR(must) - (SvTAIL(must)!=0);
1287 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1288 " skipping 'other' fbm scan: %" IVdf " > %" IVdf "\n",
1289 (IV)(from - strbeg),
1295 (unsigned char*)from,
1298 multiline ? FBMrf_MULTILINE : 0
1300 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1301 " doing 'other' fbm scan, [%" IVdf "..%" IVdf "] gave %" IVdf "\n",
1302 (IV)(from - strbeg),
1304 (IV)(s ? s - strbeg : -1)
1310 RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
1311 SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
1312 Perl_re_printf( aTHX_ " %s %s substr %s%s",
1313 s ? "Found" : "Contradicts",
1314 other_ix ? "floating" : "anchored",
1315 quoted, RE_SV_TAIL(must));
1320 /* last1 is latest possible substr location. If we didn't
1321 * find it before there, we never will */
1322 if (last >= last1) {
1323 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1324 "; giving up...\n"));
1328 /* try to find the check substr again at a later
1329 * position. Maybe next time we'll find the "other" substr
1331 other_last = HOP3c(last, 1, strend) /* highest failure */;
1333 other_ix /* i.e. if other-is-float */
1334 ? HOP3c(rx_origin, 1, strend)
1335 : HOP4c(last, 1 - other->min_offset, strbeg, strend);
1336 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1337 "; about to retry %s at offset %ld (rx_origin now %" IVdf ")...\n",
1338 (other_ix ? "floating" : "anchored"),
1339 (long)(HOP3c(check_at, 1, strend) - strbeg),
1340 (IV)(rx_origin - strbeg)
1345 if (other_ix) { /* if (other-is-float) */
1346 /* other_last is set to s, not s+1, since its possible for
1347 * a floating substr to fail first time, then succeed
1348 * second time at the same floating position; e.g.:
1349 * "-AB--AABZ" =~ /\wAB\d*Z/
1350 * The first time round, anchored and float match at
1351 * "-(AB)--AAB(Z)" then fail on the initial \w character
1352 * class. Second time round, they match at "-AB--A(AB)(Z)".
1357 rx_origin = HOP3c(s, -other->min_offset, strbeg);
1358 other_last = HOP3c(s, 1, strend);
1360 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1361 " at offset %ld (rx_origin now %" IVdf ")...\n",
1363 (IV)(rx_origin - strbeg)
1369 DEBUG_OPTIMISE_MORE_r(
1370 Perl_re_printf( aTHX_
1371 " Check-only match: offset min:%" IVdf " max:%" IVdf
1372 " check_at:%" IVdf " rx_origin:%" IVdf " rx_origin-check_at:%" IVdf
1373 " strend:%" IVdf "\n",
1374 (IV)prog->check_offset_min,
1375 (IV)prog->check_offset_max,
1376 (IV)(check_at-strbeg),
1377 (IV)(rx_origin-strbeg),
1378 (IV)(rx_origin-check_at),
1384 postprocess_substr_matches:
1386 /* handle the extra constraint of /^.../m if present */
1388 if (ml_anch && rx_origin != strbeg && rx_origin[-1] != '\n') {
1391 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1392 " looking for /^/m anchor"));
1394 /* we have failed the constraint of a \n before rx_origin.
1395 * Find the next \n, if any, even if it's beyond the current
1396 * anchored and/or floating substrings. Whether we should be
1397 * scanning ahead for the next \n or the next substr is debatable.
1398 * On the one hand you'd expect rare substrings to appear less
1399 * often than \n's. On the other hand, searching for \n means
1400 * we're effectively flipping between check_substr and "\n" on each
1401 * iteration as the current "rarest" string candidate, which
1402 * means for example that we'll quickly reject the whole string if
1403 * hasn't got a \n, rather than trying every substr position
1407 s = HOP3c(strend, - prog->minlen, strpos);
1408 if (s <= rx_origin ||
1409 ! ( rx_origin = (char *)memchr(rx_origin, '\n', s - rx_origin)))
1411 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1412 " Did not find /%s^%s/m...\n",
1413 PL_colors[0], PL_colors[1]));
1417 /* earliest possible origin is 1 char after the \n.
1418 * (since *rx_origin == '\n', it's safe to ++ here rather than
1419 * HOP(rx_origin, 1)) */
1422 if (prog->substrs->check_ix == 0 /* check is anchored */
1423 || rx_origin >= HOP3c(check_at, - prog->check_offset_min, strpos))
1425 /* Position contradicts check-string; either because
1426 * check was anchored (and thus has no wiggle room),
1427 * or check was float and rx_origin is above the float range */
1428 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1429 " Found /%s^%s/m, about to restart lookup for check-string with rx_origin %ld...\n",
1430 PL_colors[0], PL_colors[1], (long)(rx_origin - strbeg)));
1434 /* if we get here, the check substr must have been float,
1435 * is in range, and we may or may not have had an anchored
1436 * "other" substr which still contradicts */
1437 assert(prog->substrs->check_ix); /* check is float */
1439 if (utf8_target ? prog->anchored_utf8 : prog->anchored_substr) {
1440 /* whoops, the anchored "other" substr exists, so we still
1441 * contradict. On the other hand, the float "check" substr
1442 * didn't contradict, so just retry the anchored "other"
1444 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1445 " Found /%s^%s/m, rescanning for anchored from offset %" IVdf " (rx_origin now %" IVdf ")...\n",
1446 PL_colors[0], PL_colors[1],
1447 (IV)(rx_origin - strbeg + prog->anchored_offset),
1448 (IV)(rx_origin - strbeg)
1450 goto do_other_substr;
1453 /* success: we don't contradict the found floating substring
1454 * (and there's no anchored substr). */
1455 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1456 " Found /%s^%s/m with rx_origin %ld...\n",
1457 PL_colors[0], PL_colors[1], (long)(rx_origin - strbeg)));
1460 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1461 " (multiline anchor test skipped)\n"));
1467 /* if we have a starting character class, then test that extra constraint.
1468 * (trie stclasses are too expensive to use here, we are better off to
1469 * leave it to regmatch itself) */
1471 if (progi->regstclass && PL_regkind[OP(progi->regstclass)]!=TRIE) {
1472 const U8* const str = (U8*)STRING(progi->regstclass);
1474 /* XXX this value could be pre-computed */
1475 const int cl_l = (PL_regkind[OP(progi->regstclass)] == EXACT
1476 ? (reginfo->is_utf8_pat
1477 ? utf8_distance(str + STR_LEN(progi->regstclass), str)
1478 : STR_LEN(progi->regstclass))
1482 /* latest pos that a matching float substr constrains rx start to */
1483 char *rx_max_float = NULL;
1485 /* if the current rx_origin is anchored, either by satisfying an
1486 * anchored substring constraint, or a /^.../m constraint, then we
1487 * can reject the current origin if the start class isn't found
1488 * at the current position. If we have a float-only match, then
1489 * rx_origin is constrained to a range; so look for the start class
1490 * in that range. if neither, then look for the start class in the
1491 * whole rest of the string */
1493 /* XXX DAPM it's not clear what the minlen test is for, and why
1494 * it's not used in the floating case. Nothing in the test suite
1495 * causes minlen == 0 here. See <20140313134639.GS12844@iabyn.com>.
1496 * Here are some old comments, which may or may not be correct:
1498 * minlen == 0 is possible if regstclass is \b or \B,
1499 * and the fixed substr is ''$.
1500 * Since minlen is already taken into account, rx_origin+1 is
1501 * before strend; accidentally, minlen >= 1 guaranties no false
1502 * positives at rx_origin + 1 even for \b or \B. But (minlen? 1 :
1503 * 0) below assumes that regstclass does not come from lookahead...
1504 * If regstclass takes bytelength more than 1: If charlength==1, OK.
1505 * This leaves EXACTF-ish only, which are dealt with in
1509 if (prog->anchored_substr || prog->anchored_utf8 || ml_anch)
1510 endpos = HOP3clim(rx_origin, (prog->minlen ? cl_l : 0), strend);
1511 else if (prog->float_substr || prog->float_utf8) {
1512 rx_max_float = HOP3c(check_at, -start_shift, strbeg);
1513 endpos = HOP3clim(rx_max_float, cl_l, strend);
1518 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1519 " looking for class: start_shift: %" IVdf " check_at: %" IVdf
1520 " rx_origin: %" IVdf " endpos: %" IVdf "\n",
1521 (IV)start_shift, (IV)(check_at - strbeg),
1522 (IV)(rx_origin - strbeg), (IV)(endpos - strbeg)));
1524 s = find_byclass(prog, progi->regstclass, rx_origin, endpos,
1527 if (endpos == strend) {
1528 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
1529 " Could not match STCLASS...\n") );
1532 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
1533 " This position contradicts STCLASS...\n") );
1534 if ((prog->intflags & PREGf_ANCH) && !ml_anch
1535 && !(prog->intflags & PREGf_IMPLICIT))
1538 /* Contradict one of substrings */
1539 if (prog->anchored_substr || prog->anchored_utf8) {
1540 if (prog->substrs->check_ix == 1) { /* check is float */
1541 /* Have both, check_string is floating */
1542 assert(rx_origin + start_shift <= check_at);
1543 if (rx_origin + start_shift != check_at) {
1544 /* not at latest position float substr could match:
1545 * Recheck anchored substring, but not floating.
1546 * The condition above is in bytes rather than
1547 * chars for efficiency. It's conservative, in
1548 * that it errs on the side of doing 'goto
1549 * do_other_substr'. In this case, at worst,
1550 * an extra anchored search may get done, but in
1551 * practice the extra fbm_instr() is likely to
1552 * get skipped anyway. */
1553 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
1554 " about to retry anchored at offset %ld (rx_origin now %" IVdf ")...\n",
1555 (long)(other_last - strbeg),
1556 (IV)(rx_origin - strbeg)
1558 goto do_other_substr;
1566 /* In the presence of ml_anch, we might be able to
1567 * find another \n without breaking the current float
1570 /* strictly speaking this should be HOP3c(..., 1, ...),
1571 * but since we goto a block of code that's going to
1572 * search for the next \n if any, its safe here */
1574 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
1575 " about to look for /%s^%s/m starting at rx_origin %ld...\n",
1576 PL_colors[0], PL_colors[1],
1577 (long)(rx_origin - strbeg)) );
1578 goto postprocess_substr_matches;
1581 /* strictly speaking this can never be true; but might
1582 * be if we ever allow intuit without substrings */
1583 if (!(utf8_target ? prog->float_utf8 : prog->float_substr))
1586 rx_origin = rx_max_float;
1589 /* at this point, any matching substrings have been
1590 * contradicted. Start again... */
1592 rx_origin = HOP3c(rx_origin, 1, strend);
1594 /* uses bytes rather than char calculations for efficiency.
1595 * It's conservative: it errs on the side of doing 'goto restart',
1596 * where there is code that does a proper char-based test */
1597 if (rx_origin + start_shift + end_shift > strend) {
1598 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
1599 " Could not match STCLASS...\n") );
1602 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
1603 " about to look for %s substr starting at offset %ld (rx_origin now %" IVdf ")...\n",
1604 (prog->substrs->check_ix ? "floating" : "anchored"),
1605 (long)(rx_origin + start_shift - strbeg),
1606 (IV)(rx_origin - strbeg)
1613 if (rx_origin != s) {
1614 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1615 " By STCLASS: moving %ld --> %ld\n",
1616 (long)(rx_origin - strbeg), (long)(s - strbeg))
1620 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1621 " Does not contradict STCLASS...\n");
1626 /* Decide whether using the substrings helped */
1628 if (rx_origin != strpos) {
1629 /* Fixed substring is found far enough so that the match
1630 cannot start at strpos. */
1632 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ " try at offset...\n"));
1633 ++BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr); /* hooray/5 */
1636 /* The found rx_origin position does not prohibit matching at
1637 * strpos, so calling intuit didn't gain us anything. Decrement
1638 * the BmUSEFUL() count on the check substring, and if we reach
1640 if (!(prog->intflags & PREGf_NAUGHTY)
1642 prog->check_utf8 /* Could be deleted already */
1643 && --BmUSEFUL(prog->check_utf8) < 0
1644 && (prog->check_utf8 == prog->float_utf8)
1646 prog->check_substr /* Could be deleted already */
1647 && --BmUSEFUL(prog->check_substr) < 0
1648 && (prog->check_substr == prog->float_substr)
1651 /* If flags & SOMETHING - do not do it many times on the same match */
1652 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ " ... Disabling check substring...\n"));
1653 /* XXX Does the destruction order has to change with utf8_target? */
1654 SvREFCNT_dec(utf8_target ? prog->check_utf8 : prog->check_substr);
1655 SvREFCNT_dec(utf8_target ? prog->check_substr : prog->check_utf8);
1656 prog->check_substr = prog->check_utf8 = NULL; /* disable */
1657 prog->float_substr = prog->float_utf8 = NULL; /* clear */
1658 check = NULL; /* abort */
1659 /* XXXX This is a remnant of the old implementation. It
1660 looks wasteful, since now INTUIT can use many
1661 other heuristics. */
1662 prog->extflags &= ~RXf_USE_INTUIT;
1666 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1667 "Intuit: %sSuccessfully guessed:%s match at offset %ld\n",
1668 PL_colors[4], PL_colors[5], (long)(rx_origin - strbeg)) );
1672 fail_finish: /* Substring not found */
1673 if (prog->check_substr || prog->check_utf8) /* could be removed already */
1674 BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr) += 5; /* hooray */
1676 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ "%sMatch rejected by optimizer%s\n",
1677 PL_colors[4], PL_colors[5]));
1682 #define DECL_TRIE_TYPE(scan) \
1683 const enum { trie_plain, trie_utf8, trie_utf8_fold, trie_latin_utf8_fold, \
1684 trie_utf8_exactfa_fold, trie_latin_utf8_exactfa_fold, \
1685 trie_utf8l, trie_flu8, trie_flu8_latin } \
1686 trie_type = ((scan->flags == EXACT) \
1687 ? (utf8_target ? trie_utf8 : trie_plain) \
1688 : (scan->flags == EXACTL) \
1689 ? (utf8_target ? trie_utf8l : trie_plain) \
1690 : (scan->flags == EXACTFAA) \
1692 ? trie_utf8_exactfa_fold \
1693 : trie_latin_utf8_exactfa_fold) \
1694 : (scan->flags == EXACTFLU8 \
1697 : trie_flu8_latin) \
1700 : trie_latin_utf8_fold)))
1702 /* 'uscan' is set to foldbuf, and incremented, so below the end of uscan is
1703 * 'foldbuf+sizeof(foldbuf)' */
1704 #define REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc, uc_end, uscan, len, uvc, charid, foldlen, foldbuf, uniflags) \
1707 U8 flags = FOLD_FLAGS_FULL; \
1708 switch (trie_type) { \
1710 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; \
1711 if (UTF8_IS_ABOVE_LATIN1(*uc)) { \
1712 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(uc, uc_end); \
1714 goto do_trie_utf8_fold; \
1715 case trie_utf8_exactfa_fold: \
1716 flags |= FOLD_FLAGS_NOMIX_ASCII; \
1718 case trie_utf8_fold: \
1719 do_trie_utf8_fold: \
1720 if ( foldlen>0 ) { \
1721 uvc = utf8n_to_uvchr( (const U8*) uscan, foldlen, &len, uniflags ); \
1726 uvc = _toFOLD_utf8_flags( (const U8*) uc, uc_end, foldbuf, &foldlen, \
1728 len = UTF8_SAFE_SKIP(uc, uc_end); \
1729 skiplen = UVCHR_SKIP( uvc ); \
1730 foldlen -= skiplen; \
1731 uscan = foldbuf + skiplen; \
1734 case trie_flu8_latin: \
1735 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; \
1736 goto do_trie_latin_utf8_fold; \
1737 case trie_latin_utf8_exactfa_fold: \
1738 flags |= FOLD_FLAGS_NOMIX_ASCII; \
1740 case trie_latin_utf8_fold: \
1741 do_trie_latin_utf8_fold: \
1742 if ( foldlen>0 ) { \
1743 uvc = utf8n_to_uvchr( (const U8*) uscan, foldlen, &len, uniflags ); \
1749 uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, flags); \
1750 skiplen = UVCHR_SKIP( uvc ); \
1751 foldlen -= skiplen; \
1752 uscan = foldbuf + skiplen; \
1756 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; \
1757 if (utf8_target && UTF8_IS_ABOVE_LATIN1(*uc)) { \
1758 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(uc, uc_end); \
1762 uvc = utf8n_to_uvchr( (const U8*) uc, uc_end - uc, &len, uniflags ); \
1769 charid = trie->charmap[ uvc ]; \
1773 if (widecharmap) { \
1774 SV** const svpp = hv_fetch(widecharmap, \
1775 (char*)&uvc, sizeof(UV), 0); \
1777 charid = (U16)SvIV(*svpp); \
1782 #define DUMP_EXEC_POS(li,s,doutf8,depth) \
1783 dump_exec_pos(li,s,(reginfo->strend),(reginfo->strbeg), \
1784 startpos, doutf8, depth)
1786 #define REXEC_FBC_SCAN(UTF8, CODE) \
1788 while (s < strend) { \
1791 ? UTF8_SAFE_SKIP(s, reginfo->strend) \
1796 #define REXEC_FBC_CLASS_SCAN(UTF8, COND) \
1798 while (s < strend) { \
1799 REXEC_FBC_CLASS_SCAN_GUTS(UTF8, COND) \
1803 #define REXEC_FBC_CLASS_SCAN_GUTS(UTF8, COND) \
1806 s += ((UTF8) ? UTF8_SAFE_SKIP(s, reginfo->strend) : 1);\
1807 previous_occurrence_end = s; \
1810 s += ((UTF8) ? UTF8SKIP(s) : 1); \
1813 #define REXEC_FBC_CSCAN(CONDUTF8,COND) \
1814 if (utf8_target) { \
1815 REXEC_FBC_CLASS_SCAN(1, CONDUTF8); \
1818 REXEC_FBC_CLASS_SCAN(0, COND); \
1821 /* We keep track of where the next character should start after an occurrence
1822 * of the one we're looking for. Knowing that, we can see right away if the
1823 * next occurrence is adjacent to the previous. When 'doevery' is FALSE, we
1824 * don't accept the 2nd and succeeding adjacent occurrences */
1825 #define FBC_CHECK_AND_TRY \
1827 || s != previous_occurrence_end) \
1828 && ( reginfo->intuit \
1829 || (s <= reginfo->strend && regtry(reginfo, &s)))) \
1835 /* This differs from the above macros in that it calls a function which returns
1836 * the next occurrence of the thing being looked for in 's'; and 'strend' if
1837 * there is no such occurrence. */
1838 #define REXEC_FBC_FIND_NEXT_SCAN(UTF8, f) \
1839 while (s < strend) { \
1841 if (s >= strend) { \
1846 s += (UTF8) ? UTF8SKIP(s) : 1; \
1847 previous_occurrence_end = s; \
1850 /* This differs from the above macros in that it is passed a single byte that
1851 * is known to begin the next occurrence of the thing being looked for in 's'.
1852 * It does a memchr to find the next occurrence of 'byte', before trying 'COND'
1853 * at that position. */
1854 #define REXEC_FBC_FIND_NEXT_UTF8_BYTE_SCAN(byte, COND) \
1855 while (s < strend) { \
1856 s = (char *) memchr(s, byte, strend -s); \
1858 s = (char *) strend; \
1864 s += UTF8_SAFE_SKIP(s, reginfo->strend); \
1865 previous_occurrence_end = s; \
1872 /* The three macros below are slightly different versions of the same logic.
1874 * The first is for /a and /aa when the target string is UTF-8. This can only
1875 * match ascii, but it must advance based on UTF-8. The other two handle the
1876 * non-UTF-8 and the more generic UTF-8 cases. In all three, we are looking
1877 * for the boundary (or non-boundary) between a word and non-word character.
1878 * The utf8 and non-utf8 cases have the same logic, but the details must be
1879 * different. Find the "wordness" of the character just prior to this one, and
1880 * compare it with the wordness of this one. If they differ, we have a
1881 * boundary. At the beginning of the string, pretend that the previous
1882 * character was a new-line.
1884 * All these macros uncleanly have side-effects with each other and outside
1885 * variables. So far it's been too much trouble to clean-up
1887 * TEST_NON_UTF8 is the macro or function to call to test if its byte input is
1888 * a word character or not.
1889 * IF_SUCCESS is code to do if it finds that we are at a boundary between
1891 * IF_FAIL is code to do if we aren't at a boundary between word/non-word
1893 * Exactly one of the two IF_FOO parameters is a no-op, depending on whether we
1894 * are looking for a boundary or for a non-boundary. If we are looking for a
1895 * boundary, we want IF_FAIL to be the no-op, and for IF_SUCCESS to go out and
1896 * see if this tentative match actually works, and if so, to quit the loop
1897 * here. And vice-versa if we are looking for a non-boundary.
1899 * 'tmp' below in the next three macros in the REXEC_FBC_SCAN and
1900 * REXEC_FBC_SCAN loops is a loop invariant, a bool giving the return of
1901 * TEST_NON_UTF8(s-1). To see this, note that that's what it is defined to be
1902 * at entry to the loop, and to get to the IF_FAIL branch, tmp must equal
1903 * TEST_NON_UTF8(s), and in the opposite branch, IF_SUCCESS, tmp is that
1904 * complement. But in that branch we complement tmp, meaning that at the
1905 * bottom of the loop tmp is always going to be equal to TEST_NON_UTF8(s),
1906 * which means at the top of the loop in the next iteration, it is
1907 * TEST_NON_UTF8(s-1) */
1908 #define FBC_UTF8_A(TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \
1909 tmp = (s != reginfo->strbeg) ? UCHARAT(s - 1) : '\n'; \
1910 tmp = TEST_NON_UTF8(tmp); \
1911 REXEC_FBC_SCAN(1, /* 1=>is-utf8; advances s while s < strend */ \
1912 if (tmp == ! TEST_NON_UTF8((U8) *s)) { \
1914 IF_SUCCESS; /* Is a boundary if values for s-1 and s differ */ \
1921 /* Like FBC_UTF8_A, but TEST_UV is a macro which takes a UV as its input, and
1922 * TEST_UTF8 is a macro that for the same input code points returns identically
1923 * to TEST_UV, but takes a pointer to a UTF-8 encoded string instead */
1924 #define FBC_UTF8(TEST_UV, TEST_UTF8, IF_SUCCESS, IF_FAIL) \
1925 if (s == reginfo->strbeg) { \
1928 else { /* Back-up to the start of the previous character */ \
1929 U8 * const r = reghop3((U8*)s, -1, (U8*)reginfo->strbeg); \
1930 tmp = utf8n_to_uvchr(r, (U8*) reginfo->strend - r, \
1931 0, UTF8_ALLOW_DEFAULT); \
1933 tmp = TEST_UV(tmp); \
1934 REXEC_FBC_SCAN(1, /* 1=>is-utf8; advances s while s < strend */ \
1935 if (tmp == ! (TEST_UTF8((U8 *) s, (U8 *) reginfo->strend))) { \
1944 /* Like the above two macros. UTF8_CODE is the complete code for handling
1945 * UTF-8. Common to the BOUND and NBOUND cases, set-up by the FBC_BOUND, etc
1947 #define FBC_BOUND_COMMON(UTF8_CODE, TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \
1948 if (utf8_target) { \
1951 else { /* Not utf8 */ \
1952 tmp = (s != reginfo->strbeg) ? UCHARAT(s - 1) : '\n'; \
1953 tmp = TEST_NON_UTF8(tmp); \
1954 REXEC_FBC_SCAN(0, /* 0=>not-utf8; advances s while s < strend */ \
1955 if (tmp == ! TEST_NON_UTF8((U8) *s)) { \
1964 /* Here, things have been set up by the previous code so that tmp is the \
1965 * return of TEST_NON_UTF(s-1) or TEST_UTF8(s-1) (depending on the \
1966 * utf8ness of the target). We also have to check if this matches against \
1967 * the EOS, which we treat as a \n (which is the same value in both UTF-8 \
1968 * or non-UTF8, so can use the non-utf8 test condition even for a UTF-8 \
1970 if (tmp == ! TEST_NON_UTF8('\n')) { \
1977 /* This is the macro to use when we want to see if something that looks like it
1978 * could match, actually does, and if so exits the loop. It needs to be used
1979 * only for bounds checking macros, as it allows for matching beyond the end of
1980 * string (which should be zero length without having to look at the string
1982 #define REXEC_FBC_TRYIT \
1983 if (reginfo->intuit || (s <= reginfo->strend && regtry(reginfo, &s))) \
1986 /* The only difference between the BOUND and NBOUND cases is that
1987 * REXEC_FBC_TRYIT is called when matched in BOUND, and when non-matched in
1988 * NBOUND. This is accomplished by passing it as either the if or else clause,
1989 * with the other one being empty (PLACEHOLDER is defined as empty).
1991 * The TEST_FOO parameters are for operating on different forms of input, but
1992 * all should be ones that return identically for the same underlying code
1994 #define FBC_BOUND(TEST_NON_UTF8, TEST_UV, TEST_UTF8) \
1996 FBC_UTF8(TEST_UV, TEST_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER), \
1997 TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
1999 #define FBC_BOUND_A(TEST_NON_UTF8) \
2001 FBC_UTF8_A(TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER), \
2002 TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
2004 #define FBC_NBOUND(TEST_NON_UTF8, TEST_UV, TEST_UTF8) \
2006 FBC_UTF8(TEST_UV, TEST_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), \
2007 TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
2009 #define FBC_NBOUND_A(TEST_NON_UTF8) \
2011 FBC_UTF8_A(TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), \
2012 TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
2016 S_get_break_val_cp_checked(SV* const invlist, const UV cp_in) {
2017 IV cp_out = _invlist_search(invlist, cp_in);
2018 assert(cp_out >= 0);
2021 # define _generic_GET_BREAK_VAL_CP_CHECKED(invlist, invmap, cp) \
2022 invmap[S_get_break_val_cp_checked(invlist, cp)]
2024 # define _generic_GET_BREAK_VAL_CP_CHECKED(invlist, invmap, cp) \
2025 invmap[_invlist_search(invlist, cp)]
2028 /* Takes a pointer to an inversion list, a pointer to its corresponding
2029 * inversion map, and a code point, and returns the code point's value
2030 * according to the two arrays. It assumes that all code points have a value.
2031 * This is used as the base macro for macros for particular properties */
2032 #define _generic_GET_BREAK_VAL_CP(invlist, invmap, cp) \
2033 _generic_GET_BREAK_VAL_CP_CHECKED(invlist, invmap, cp)
2035 /* Same as above, but takes begin, end ptrs to a UTF-8 encoded string instead
2036 * of a code point, returning the value for the first code point in the string.
2037 * And it takes the particular macro name that finds the desired value given a
2038 * code point. Merely convert the UTF-8 to code point and call the cp macro */
2039 #define _generic_GET_BREAK_VAL_UTF8(cp_macro, pos, strend) \
2040 (__ASSERT_(pos < strend) \
2041 /* Note assumes is valid UTF-8 */ \
2042 (cp_macro(utf8_to_uvchr_buf((pos), (strend), NULL))))
2044 /* Returns the GCB value for the input code point */
2045 #define getGCB_VAL_CP(cp) \
2046 _generic_GET_BREAK_VAL_CP( \
2051 /* Returns the GCB value for the first code point in the UTF-8 encoded string
2052 * bounded by pos and strend */
2053 #define getGCB_VAL_UTF8(pos, strend) \
2054 _generic_GET_BREAK_VAL_UTF8(getGCB_VAL_CP, pos, strend)
2056 /* Returns the LB value for the input code point */
2057 #define getLB_VAL_CP(cp) \
2058 _generic_GET_BREAK_VAL_CP( \
2063 /* Returns the LB value for the first code point in the UTF-8 encoded string
2064 * bounded by pos and strend */
2065 #define getLB_VAL_UTF8(pos, strend) \
2066 _generic_GET_BREAK_VAL_UTF8(getLB_VAL_CP, pos, strend)
2069 /* Returns the SB value for the input code point */
2070 #define getSB_VAL_CP(cp) \
2071 _generic_GET_BREAK_VAL_CP( \
2076 /* Returns the SB value for the first code point in the UTF-8 encoded string
2077 * bounded by pos and strend */
2078 #define getSB_VAL_UTF8(pos, strend) \
2079 _generic_GET_BREAK_VAL_UTF8(getSB_VAL_CP, pos, strend)
2081 /* Returns the WB value for the input code point */
2082 #define getWB_VAL_CP(cp) \
2083 _generic_GET_BREAK_VAL_CP( \
2088 /* Returns the WB value for the first code point in the UTF-8 encoded string
2089 * bounded by pos and strend */
2090 #define getWB_VAL_UTF8(pos, strend) \
2091 _generic_GET_BREAK_VAL_UTF8(getWB_VAL_CP, pos, strend)
2093 /* We know what class REx starts with. Try to find this position... */
2094 /* if reginfo->intuit, its a dryrun */
2095 /* annoyingly all the vars in this routine have different names from their counterparts
2096 in regmatch. /grrr */
2098 S_find_byclass(pTHX_ regexp * prog, const regnode *c, char *s,
2099 const char *strend, regmatch_info *reginfo)
2103 /* TRUE if x+ need not match at just the 1st pos of run of x's */
2104 const I32 doevery = (prog->intflags & PREGf_SKIP) == 0;
2106 char *pat_string; /* The pattern's exactish string */
2107 char *pat_end; /* ptr to end char of pat_string */
2108 re_fold_t folder; /* Function for computing non-utf8 folds */
2109 const U8 *fold_array; /* array for folding ords < 256 */
2116 /* In some cases we accept only the first occurence of 'x' in a sequence of
2117 * them. This variable points to just beyond the end of the previous
2118 * occurrence of 'x', hence we can tell if we are in a sequence. (Having
2119 * it point to beyond the 'x' allows us to work for UTF-8 without having to
2121 char * previous_occurrence_end = 0;
2123 I32 tmp; /* Scratch variable */
2124 const bool utf8_target = reginfo->is_utf8_target;
2125 UV utf8_fold_flags = 0;
2126 const bool is_utf8_pat = reginfo->is_utf8_pat;
2127 bool to_complement = FALSE; /* Invert the result? Taking the xor of this
2128 with a result inverts that result, as 0^1 =
2130 _char_class_number classnum;
2132 RXi_GET_DECL(prog,progi);
2134 PERL_ARGS_ASSERT_FIND_BYCLASS;
2136 /* We know what class it must start with. */
2140 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2142 if (ANYOFL_UTF8_LOCALE_REQD(FLAGS(c)) && ! IN_UTF8_CTYPE_LOCALE) {
2143 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE), utf8_locale_required);
2150 REXEC_FBC_CLASS_SCAN(1, /* 1=>is-utf8 */
2151 reginclass(prog, c, (U8*)s, (U8*) strend, utf8_target));
2153 else if (ANYOF_FLAGS(c) & ~ ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
2154 /* We know that s is in the bitmap range since the target isn't
2155 * UTF-8, so what happens for out-of-range values is not relevant,
2156 * so exclude that from the flags */
2157 REXEC_FBC_CLASS_SCAN(0, reginclass(prog,c, (U8*)s, (U8*)s+1, 0));
2160 REXEC_FBC_CLASS_SCAN(0, ANYOF_BITMAP_TEST(c, *((U8*)s)));
2164 case ANYOFM: /* ARG() is the base byte; FLAGS() the mask byte */
2165 /* UTF-8ness doesn't matter because only matches UTF-8 invariants, so
2167 REXEC_FBC_FIND_NEXT_SCAN(0,
2168 (char *) find_next_masked((U8 *) s, (U8 *) strend,
2169 (U8) ARG(c), FLAGS(c)));
2172 case NANYOFM: /* UTF-8ness does matter because can match UTF-8 variants.
2174 REXEC_FBC_FIND_NEXT_SCAN(utf8_target,
2175 (char *) find_span_end_mask((U8 *) s, (U8 *) strend,
2176 (U8) ARG(c), FLAGS(c)));
2180 if (utf8_target) { /* Can't possibly match a non-UTF-8 target */
2181 U8 first_byte = FLAGS(c);
2183 if (first_byte) { /* We know what the first byte of any matched
2185 REXEC_FBC_FIND_NEXT_UTF8_BYTE_SCAN(first_byte,
2186 reginclass(prog, c, (U8*)s, (U8*) strend, utf8_target));
2189 REXEC_FBC_CLASS_SCAN(TRUE,
2190 reginclass(prog, c, (U8*)s, (U8*) strend, utf8_target));
2195 case EXACTFAA_NO_TRIE: /* This node only generated for non-utf8 patterns */
2196 assert(! is_utf8_pat);
2200 utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII
2201 |FOLDEQ_S2_ALREADY_FOLDED|FOLDEQ_S2_FOLDS_SANE;
2202 goto do_exactf_utf8;
2204 else if (utf8_target) {
2206 /* Here, and elsewhere in this file, the reason we can't consider a
2207 * non-UTF-8 pattern already folded in the presence of a UTF-8
2208 * target is because any MICRO SIGN in the pattern won't be folded.
2209 * Since the fold of the MICRO SIGN requires UTF-8 to represent, we
2210 * can consider a non-UTF-8 pattern folded when matching a
2211 * non-UTF-8 target */
2212 utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
2213 goto do_exactf_utf8;
2216 /* Latin1 folds are not affected by /a, except it excludes the sharp s,
2217 * which these functions don't handle anyway */
2218 fold_array = PL_fold_latin1;
2219 folder = foldEQ_latin1_s2_folded;
2220 goto do_exactf_non_utf8;
2222 case EXACTF: /* This node only generated for non-utf8 patterns */
2223 assert(! is_utf8_pat);
2225 goto do_exactf_utf8;
2227 fold_array = PL_fold;
2229 goto do_exactf_non_utf8;
2232 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2233 if (is_utf8_pat || utf8_target || IN_UTF8_CTYPE_LOCALE) {
2234 utf8_fold_flags = FOLDEQ_LOCALE;
2235 goto do_exactf_utf8;
2237 fold_array = PL_fold_locale;
2238 folder = foldEQ_locale;
2239 goto do_exactf_non_utf8;
2241 case EXACTFUP: /* Problematic even though pattern isn't UTF-8. Use
2242 full functionality normally not done except for
2244 assert(! is_utf8_pat);
2245 goto do_exactf_utf8;
2248 if (! utf8_target) { /* All code points in this node require
2249 UTF-8 to express. */
2252 utf8_fold_flags = FOLDEQ_LOCALE | FOLDEQ_S2_ALREADY_FOLDED
2253 | FOLDEQ_S2_FOLDS_SANE;
2254 goto do_exactf_utf8;
2257 if (! utf8_target) {
2260 assert(is_utf8_pat);
2261 utf8_fold_flags = FOLDEQ_S2_ALREADY_FOLDED;
2262 goto do_exactf_utf8;
2265 if (is_utf8_pat || utf8_target) {
2266 utf8_fold_flags = FOLDEQ_S2_ALREADY_FOLDED;
2267 goto do_exactf_utf8;
2270 /* Any 'ss' in the pattern should have been replaced by regcomp,
2271 * so we don't have to worry here about this single special case
2272 * in the Latin1 range */
2273 fold_array = PL_fold_latin1;
2274 folder = foldEQ_latin1_s2_folded;
2278 do_exactf_non_utf8: /* Neither pattern nor string are UTF8, and there
2279 are no glitches with fold-length differences
2280 between the target string and pattern */
2282 /* The idea in the non-utf8 EXACTF* cases is to first find the
2283 * first character of the EXACTF* node and then, if necessary,
2284 * case-insensitively compare the full text of the node. c1 is the
2285 * first character. c2 is its fold. This logic will not work for
2286 * Unicode semantics and the german sharp ss, which hence should
2287 * not be compiled into a node that gets here. */
2288 pat_string = STRING(c);
2289 ln = STR_LEN(c); /* length to match in octets/bytes */
2291 /* We know that we have to match at least 'ln' bytes (which is the
2292 * same as characters, since not utf8). If we have to match 3
2293 * characters, and there are only 2 availabe, we know without
2294 * trying that it will fail; so don't start a match past the
2295 * required minimum number from the far end */
2296 e = HOP3c(strend, -((SSize_t)ln), s);
2301 c2 = fold_array[c1];
2302 if (c1 == c2) { /* If char and fold are the same */
2304 s = (char *) memchr(s, c1, e + 1 - s);
2309 /* Check that the rest of the node matches */
2310 if ( (ln == 1 || folder(s + 1, pat_string + 1, ln - 1))
2311 && (reginfo->intuit || regtry(reginfo, &s)) )
2319 U8 bits_differing = c1 ^ c2;
2321 /* If the folds differ in one bit position only, we can mask to
2322 * match either of them, and can use this faster find method. Both
2323 * ASCII and EBCDIC tend to have their case folds differ in only
2324 * one position, so this is very likely */
2325 if (LIKELY(PL_bitcount[bits_differing] == 1)) {
2326 bits_differing = ~ bits_differing;
2328 s = (char *) find_next_masked((U8 *) s, (U8 *) e + 1,
2329 (c1 & bits_differing), bits_differing);
2334 if ( (ln == 1 || folder(s + 1, pat_string + 1, ln - 1))
2335 && (reginfo->intuit || regtry(reginfo, &s)) )
2342 else { /* Otherwise, stuck with looking byte-at-a-time. This
2343 should actually happen only in EXACTFL nodes */
2345 if ( (*(U8*)s == c1 || *(U8*)s == c2)
2346 && (ln == 1 || folder(s + 1, pat_string + 1, ln - 1))
2347 && (reginfo->intuit || regtry(reginfo, &s)) )
2361 /* If one of the operands is in utf8, we can't use the simpler folding
2362 * above, due to the fact that many different characters can have the
2363 * same fold, or portion of a fold, or different- length fold */
2364 pat_string = STRING(c);
2365 ln = STR_LEN(c); /* length to match in octets/bytes */
2366 pat_end = pat_string + ln;
2367 lnc = is_utf8_pat /* length to match in characters */
2368 ? utf8_length((U8 *) pat_string, (U8 *) pat_end)
2371 /* We have 'lnc' characters to match in the pattern, but because of
2372 * multi-character folding, each character in the target can match
2373 * up to 3 characters (Unicode guarantees it will never exceed
2374 * this) if it is utf8-encoded; and up to 2 if not (based on the
2375 * fact that the Latin 1 folds are already determined, and the
2376 * only multi-char fold in that range is the sharp-s folding to
2377 * 'ss'. Thus, a pattern character can match as little as 1/3 of a
2378 * string character. Adjust lnc accordingly, rounding up, so that
2379 * if we need to match at least 4+1/3 chars, that really is 5. */
2380 expansion = (utf8_target) ? UTF8_MAX_FOLD_CHAR_EXPAND : 2;
2381 lnc = (lnc + expansion - 1) / expansion;
2383 /* As in the non-UTF8 case, if we have to match 3 characters, and
2384 * only 2 are left, it's guaranteed to fail, so don't start a
2385 * match that would require us to go beyond the end of the string
2387 e = HOP3c(strend, -((SSize_t)lnc), s);
2389 /* XXX Note that we could recalculate e to stop the loop earlier,
2390 * as the worst case expansion above will rarely be met, and as we
2391 * go along we would usually find that e moves further to the left.
2392 * This would happen only after we reached the point in the loop
2393 * where if there were no expansion we should fail. Unclear if
2394 * worth the expense */
2397 char *my_strend= (char *)strend;
2398 if (foldEQ_utf8_flags(s, &my_strend, 0, utf8_target,
2399 pat_string, NULL, ln, is_utf8_pat, utf8_fold_flags)
2400 && (reginfo->intuit || regtry(reginfo, &s)) )
2404 s += (utf8_target) ? UTF8_SAFE_SKIP(s, reginfo->strend) : 1;
2410 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2411 if (FLAGS(c) != TRADITIONAL_BOUND) {
2412 if (! IN_UTF8_CTYPE_LOCALE) {
2413 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
2414 B_ON_NON_UTF8_LOCALE_IS_WRONG);
2419 FBC_BOUND(isWORDCHAR_LC, isWORDCHAR_LC_uvchr, isWORDCHAR_LC_utf8_safe);
2423 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2424 if (FLAGS(c) != TRADITIONAL_BOUND) {
2425 if (! IN_UTF8_CTYPE_LOCALE) {
2426 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
2427 B_ON_NON_UTF8_LOCALE_IS_WRONG);
2432 FBC_NBOUND(isWORDCHAR_LC, isWORDCHAR_LC_uvchr, isWORDCHAR_LC_utf8_safe);
2435 case BOUND: /* regcomp.c makes sure that this only has the traditional \b
2437 assert(FLAGS(c) == TRADITIONAL_BOUND);
2439 FBC_BOUND(isWORDCHAR, isWORDCHAR_uni, isWORDCHAR_utf8_safe);
2442 case BOUNDA: /* regcomp.c makes sure that this only has the traditional \b
2444 assert(FLAGS(c) == TRADITIONAL_BOUND);
2446 FBC_BOUND_A(isWORDCHAR_A);
2449 case NBOUND: /* regcomp.c makes sure that this only has the traditional \b
2451 assert(FLAGS(c) == TRADITIONAL_BOUND);
2453 FBC_NBOUND(isWORDCHAR, isWORDCHAR_uni, isWORDCHAR_utf8_safe);
2456 case NBOUNDA: /* regcomp.c makes sure that this only has the traditional \b
2458 assert(FLAGS(c) == TRADITIONAL_BOUND);
2460 FBC_NBOUND_A(isWORDCHAR_A);
2464 if ((bound_type) FLAGS(c) == TRADITIONAL_BOUND) {
2465 FBC_NBOUND(isWORDCHAR_L1, isWORDCHAR_uni, isWORDCHAR_utf8_safe);
2476 switch((bound_type) FLAGS(c)) {
2477 case TRADITIONAL_BOUND:
2478 FBC_BOUND(isWORDCHAR_L1, isWORDCHAR_uni, isWORDCHAR_utf8_safe);
2481 if (s == reginfo->strbeg) {
2482 if (reginfo->intuit || regtry(reginfo, &s))
2487 /* Didn't match. Try at the next position (if there is one) */
2488 s += (utf8_target) ? UTF8_SAFE_SKIP(s, reginfo->strend) : 1;
2489 if (UNLIKELY(s >= reginfo->strend)) {
2495 GCB_enum before = getGCB_VAL_UTF8(
2497 (U8*)(reginfo->strbeg)),
2498 (U8*) reginfo->strend);
2499 while (s < strend) {
2500 GCB_enum after = getGCB_VAL_UTF8((U8*) s,
2501 (U8*) reginfo->strend);
2502 if ( (to_complement ^ isGCB(before,
2504 (U8*) reginfo->strbeg,
2507 && (reginfo->intuit || regtry(reginfo, &s)))
2512 s += UTF8_SAFE_SKIP(s, reginfo->strend);
2515 else { /* Not utf8. Everything is a GCB except between CR and
2517 while (s < strend) {
2518 if ((to_complement ^ ( UCHARAT(s - 1) != '\r'
2519 || UCHARAT(s) != '\n'))
2520 && (reginfo->intuit || regtry(reginfo, &s)))
2528 /* And, since this is a bound, it can match after the final
2529 * character in the string */
2530 if ( reginfo->intuit
2531 || (s <= reginfo->strend && regtry(reginfo, &s)))
2538 if (s == reginfo->strbeg) {
2539 if (reginfo->intuit || regtry(reginfo, &s)) {
2542 s += (utf8_target) ? UTF8_SAFE_SKIP(s, reginfo->strend) : 1;
2543 if (UNLIKELY(s >= reginfo->strend)) {
2549 LB_enum before = getLB_VAL_UTF8(reghop3((U8*)s,
2551 (U8*)(reginfo->strbeg)),
2552 (U8*) reginfo->strend);
2553 while (s < strend) {
2554 LB_enum after = getLB_VAL_UTF8((U8*) s, (U8*) reginfo->strend);
2555 if (to_complement ^ isLB(before,
2557 (U8*) reginfo->strbeg,
2559 (U8*) reginfo->strend,
2561 && (reginfo->intuit || regtry(reginfo, &s)))
2566 s += UTF8_SAFE_SKIP(s, reginfo->strend);
2569 else { /* Not utf8. */
2570 LB_enum before = getLB_VAL_CP((U8) *(s -1));
2571 while (s < strend) {
2572 LB_enum after = getLB_VAL_CP((U8) *s);
2573 if (to_complement ^ isLB(before,
2575 (U8*) reginfo->strbeg,
2577 (U8*) reginfo->strend,
2579 && (reginfo->intuit || regtry(reginfo, &s)))
2588 if ( reginfo->intuit
2589 || (s <= reginfo->strend && regtry(reginfo, &s)))
2597 if (s == reginfo->strbeg) {
2598 if (reginfo->intuit || regtry(reginfo, &s)) {
2601 s += (utf8_target) ? UTF8_SAFE_SKIP(s, reginfo->strend) : 1;
2602 if (UNLIKELY(s >= reginfo->strend)) {
2608 SB_enum before = getSB_VAL_UTF8(reghop3((U8*)s,
2610 (U8*)(reginfo->strbeg)),
2611 (U8*) reginfo->strend);
2612 while (s < strend) {
2613 SB_enum after = getSB_VAL_UTF8((U8*) s,
2614 (U8*) reginfo->strend);
2615 if ((to_complement ^ isSB(before,
2617 (U8*) reginfo->strbeg,
2619 (U8*) reginfo->strend,
2621 && (reginfo->intuit || regtry(reginfo, &s)))
2626 s += UTF8_SAFE_SKIP(s, reginfo->strend);
2629 else { /* Not utf8. */
2630 SB_enum before = getSB_VAL_CP((U8) *(s -1));
2631 while (s < strend) {
2632 SB_enum after = getSB_VAL_CP((U8) *s);
2633 if ((to_complement ^ isSB(before,
2635 (U8*) reginfo->strbeg,
2637 (U8*) reginfo->strend,
2639 && (reginfo->intuit || regtry(reginfo, &s)))
2648 /* Here are at the final position in the target string. The SB
2649 * value is always true here, so matches, depending on other
2651 if ( reginfo->intuit
2652 || (s <= reginfo->strend && regtry(reginfo, &s)))
2660 if (s == reginfo->strbeg) {
2661 if (reginfo->intuit || regtry(reginfo, &s)) {
2664 s += (utf8_target) ? UTF8_SAFE_SKIP(s, reginfo->strend) : 1;
2665 if (UNLIKELY(s >= reginfo->strend)) {
2671 /* We are at a boundary between char_sub_0 and char_sub_1.
2672 * We also keep track of the value for char_sub_-1 as we
2673 * loop through the line. Context may be needed to make a
2674 * determination, and if so, this can save having to
2676 WB_enum previous = WB_UNKNOWN;
2677 WB_enum before = getWB_VAL_UTF8(
2680 (U8*)(reginfo->strbeg)),
2681 (U8*) reginfo->strend);
2682 while (s < strend) {
2683 WB_enum after = getWB_VAL_UTF8((U8*) s,
2684 (U8*) reginfo->strend);
2685 if ((to_complement ^ isWB(previous,
2688 (U8*) reginfo->strbeg,
2690 (U8*) reginfo->strend,
2692 && (reginfo->intuit || regtry(reginfo, &s)))
2698 s += UTF8_SAFE_SKIP(s, reginfo->strend);
2701 else { /* Not utf8. */
2702 WB_enum previous = WB_UNKNOWN;
2703 WB_enum before = getWB_VAL_CP((U8) *(s -1));
2704 while (s < strend) {
2705 WB_enum after = getWB_VAL_CP((U8) *s);
2706 if ((to_complement ^ isWB(previous,
2709 (U8*) reginfo->strbeg,
2711 (U8*) reginfo->strend,
2713 && (reginfo->intuit || regtry(reginfo, &s)))
2723 if ( reginfo->intuit
2724 || (s <= reginfo->strend && regtry(reginfo, &s)))
2732 REXEC_FBC_CSCAN(is_LNBREAK_utf8_safe(s, strend),
2733 is_LNBREAK_latin1_safe(s, strend)
2737 /* The argument to all the POSIX node types is the class number to pass to
2738 * _generic_isCC() to build a mask for searching in PL_charclass[] */
2745 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2746 REXEC_FBC_CSCAN(to_complement ^ cBOOL(isFOO_utf8_lc(FLAGS(c), (U8 *) s, (U8 *) strend)),
2747 to_complement ^ cBOOL(isFOO_lc(FLAGS(c), *s)));
2762 /* The complement of something that matches only ASCII matches all
2763 * non-ASCII, plus everything in ASCII that isn't in the class. */
2764 REXEC_FBC_CLASS_SCAN(1, ! isASCII_utf8_safe(s, strend)
2765 || ! _generic_isCC_A(*s, FLAGS(c)));
2773 /* Don't need to worry about utf8, as it can match only a single
2774 * byte invariant character. But we do anyway for performance reasons,
2775 * as otherwise we would have to examine all the continuation
2778 REXEC_FBC_CLASS_SCAN(1, _generic_isCC_A(*s, FLAGS(c)));
2783 REXEC_FBC_CLASS_SCAN(0, /* 0=>not-utf8 */
2784 to_complement ^ cBOOL(_generic_isCC_A(*s, FLAGS(c))));
2792 if (! utf8_target) {
2793 REXEC_FBC_CLASS_SCAN(0, /* 0=>not-utf8 */
2794 to_complement ^ cBOOL(_generic_isCC(*s,
2800 classnum = (_char_class_number) FLAGS(c);
2803 REXEC_FBC_CLASS_SCAN(1, /* 1=>is-utf8 */
2804 to_complement ^ cBOOL(_invlist_contains_cp(
2805 PL_XPosix_ptrs[classnum],
2806 utf8_to_uvchr_buf((U8 *) s,
2810 case _CC_ENUM_SPACE:
2811 REXEC_FBC_CLASS_SCAN(1, /* 1=>is-utf8 */
2812 to_complement ^ cBOOL(isSPACE_utf8_safe(s, strend)));
2815 case _CC_ENUM_BLANK:
2816 REXEC_FBC_CLASS_SCAN(1,
2817 to_complement ^ cBOOL(isBLANK_utf8_safe(s, strend)));
2820 case _CC_ENUM_XDIGIT:
2821 REXEC_FBC_CLASS_SCAN(1,
2822 to_complement ^ cBOOL(isXDIGIT_utf8_safe(s, strend)));
2825 case _CC_ENUM_VERTSPACE:
2826 REXEC_FBC_CLASS_SCAN(1,
2827 to_complement ^ cBOOL(isVERTWS_utf8_safe(s, strend)));
2830 case _CC_ENUM_CNTRL:
2831 REXEC_FBC_CLASS_SCAN(1,
2832 to_complement ^ cBOOL(isCNTRL_utf8_safe(s, strend)));
2842 /* what trie are we using right now */
2843 reg_ac_data *aho = (reg_ac_data*)progi->data->data[ ARG( c ) ];
2844 reg_trie_data *trie = (reg_trie_data*)progi->data->data[ aho->trie ];
2845 HV *widecharmap = MUTABLE_HV(progi->data->data[ aho->trie + 1 ]);
2847 const char *last_start = strend - trie->minlen;
2849 const char *real_start = s;
2851 STRLEN maxlen = trie->maxlen;
2853 U8 **points; /* map of where we were in the input string
2854 when reading a given char. For ASCII this
2855 is unnecessary overhead as the relationship
2856 is always 1:1, but for Unicode, especially
2857 case folded Unicode this is not true. */
2858 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
2862 GET_RE_DEBUG_FLAGS_DECL;
2864 /* We can't just allocate points here. We need to wrap it in
2865 * an SV so it gets freed properly if there is a croak while
2866 * running the match */
2869 sv_points=newSV(maxlen * sizeof(U8 *));
2870 SvCUR_set(sv_points,
2871 maxlen * sizeof(U8 *));
2872 SvPOK_on(sv_points);
2873 sv_2mortal(sv_points);
2874 points=(U8**)SvPV_nolen(sv_points );
2875 if ( trie_type != trie_utf8_fold
2876 && (trie->bitmap || OP(c)==AHOCORASICKC) )
2879 bitmap=(U8*)trie->bitmap;
2881 bitmap=(U8*)ANYOF_BITMAP(c);
2883 /* this is the Aho-Corasick algorithm modified a touch
2884 to include special handling for long "unknown char" sequences.
2885 The basic idea being that we use AC as long as we are dealing
2886 with a possible matching char, when we encounter an unknown char
2887 (and we have not encountered an accepting state) we scan forward
2888 until we find a legal starting char.
2889 AC matching is basically that of trie matching, except that when
2890 we encounter a failing transition, we fall back to the current
2891 states "fail state", and try the current char again, a process
2892 we repeat until we reach the root state, state 1, or a legal
2893 transition. If we fail on the root state then we can either
2894 terminate if we have reached an accepting state previously, or
2895 restart the entire process from the beginning if we have not.
2898 while (s <= last_start) {
2899 const U32 uniflags = UTF8_ALLOW_DEFAULT;
2907 U8 *uscan = (U8*)NULL;
2908 U8 *leftmost = NULL;
2910 U32 accepted_word= 0;
2914 while ( state && uc <= (U8*)strend ) {
2916 U32 word = aho->states[ state ].wordnum;
2920 DEBUG_TRIE_EXECUTE_r(
2921 if ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
2922 dump_exec_pos( (char *)uc, c, strend, real_start,
2923 (char *)uc, utf8_target, 0 );
2924 Perl_re_printf( aTHX_
2925 " Scanning for legal start char...\n");
2929 while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
2933 while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
2939 if (uc >(U8*)last_start) break;
2943 U8 *lpos= points[ (pointpos - trie->wordinfo[word].len) % maxlen ];
2944 if (!leftmost || lpos < leftmost) {
2945 DEBUG_r(accepted_word=word);
2951 points[pointpos++ % maxlen]= uc;
2952 if (foldlen || uc < (U8*)strend) {
2953 REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc,
2954 (U8 *) strend, uscan, len, uvc,
2955 charid, foldlen, foldbuf,
2957 DEBUG_TRIE_EXECUTE_r({
2958 dump_exec_pos( (char *)uc, c, strend,
2959 real_start, s, utf8_target, 0);
2960 Perl_re_printf( aTHX_
2961 " Charid:%3u CP:%4" UVxf " ",
2973 word = aho->states[ state ].wordnum;
2975 base = aho->states[ state ].trans.base;
2977 DEBUG_TRIE_EXECUTE_r({
2979 dump_exec_pos( (char *)uc, c, strend, real_start,
2980 s, utf8_target, 0 );
2981 Perl_re_printf( aTHX_
2982 "%sState: %4" UVxf ", word=%" UVxf,
2983 failed ? " Fail transition to " : "",
2984 (UV)state, (UV)word);
2990 ( ((offset = base + charid
2991 - 1 - trie->uniquecharcount)) >= 0)
2992 && ((U32)offset < trie->lasttrans)
2993 && trie->trans[offset].check == state
2994 && (tmp=trie->trans[offset].next))
2996 DEBUG_TRIE_EXECUTE_r(
2997 Perl_re_printf( aTHX_ " - legal\n"));
3002 DEBUG_TRIE_EXECUTE_r(
3003 Perl_re_printf( aTHX_ " - fail\n"));
3005 state = aho->fail[state];
3009 /* we must be accepting here */
3010 DEBUG_TRIE_EXECUTE_r(
3011 Perl_re_printf( aTHX_ " - accepting\n"));
3020 if (!state) state = 1;
3023 if ( aho->states[ state ].wordnum ) {
3024 U8 *lpos = points[ (pointpos - trie->wordinfo[aho->states[ state ].wordnum].len) % maxlen ];
3025 if (!leftmost || lpos < leftmost) {
3026 DEBUG_r(accepted_word=aho->states[ state ].wordnum);
3031 s = (char*)leftmost;
3032 DEBUG_TRIE_EXECUTE_r({
3033 Perl_re_printf( aTHX_ "Matches word #%" UVxf " at position %" IVdf ". Trying full pattern...\n",
3034 (UV)accepted_word, (IV)(s - real_start)
3037 if (reginfo->intuit || regtry(reginfo, &s)) {
3042 if (s < reginfo->strend) {
3045 DEBUG_TRIE_EXECUTE_r({
3046 Perl_re_printf( aTHX_ "Pattern failed. Looking for new start point...\n");
3049 DEBUG_TRIE_EXECUTE_r(
3050 Perl_re_printf( aTHX_ "No match.\n"));
3059 Perl_croak(aTHX_ "panic: unknown regstclass %d", (int)OP(c));
3066 /* set RX_SAVED_COPY, RX_SUBBEG etc.
3067 * flags have same meanings as with regexec_flags() */
3070 S_reg_set_capture_string(pTHX_ REGEXP * const rx,
3077 struct regexp *const prog = ReANY(rx);
3079 if (flags & REXEC_COPY_STR) {
3082 DEBUG_C(Perl_re_printf( aTHX_
3083 "Copy on write: regexp capture, type %d\n",
3085 /* Create a new COW SV to share the match string and store
3086 * in saved_copy, unless the current COW SV in saved_copy
3087 * is valid and suitable for our purpose */
3088 if (( prog->saved_copy
3089 && SvIsCOW(prog->saved_copy)
3090 && SvPOKp(prog->saved_copy)
3093 && SvPVX(sv) == SvPVX(prog->saved_copy)))
3095 /* just reuse saved_copy SV */
3096 if (RXp_MATCH_COPIED(prog)) {
3097 Safefree(prog->subbeg);
3098 RXp_MATCH_COPIED_off(prog);
3102 /* create new COW SV to share string */
3103 RXp_MATCH_COPY_FREE(prog);
3104 prog->saved_copy = sv_setsv_cow(prog->saved_copy, sv);
3106 prog->subbeg = (char *)SvPVX_const(prog->saved_copy);
3107 assert (SvPOKp(prog->saved_copy));
3108 prog->sublen = strend - strbeg;
3109 prog->suboffset = 0;
3110 prog->subcoffset = 0;
3115 SSize_t max = strend - strbeg;
3118 if ( (flags & REXEC_COPY_SKIP_POST)
3119 && !(prog->extflags & RXf_PMf_KEEPCOPY) /* //p */
3120 && !(PL_sawampersand & SAWAMPERSAND_RIGHT)
3121 ) { /* don't copy $' part of string */
3124 /* calculate the right-most part of the string covered
3125 * by a capture. Due to lookahead, this may be to
3126 * the right of $&, so we have to scan all captures */
3127 while (n <= prog->lastparen) {
3128 if (prog->offs[n].end > max)
3129 max = prog->offs[n].end;
3133 max = (PL_sawampersand & SAWAMPERSAND_LEFT)
3134 ? prog->offs[0].start
3136 assert(max >= 0 && max <= strend - strbeg);
3139 if ( (flags & REXEC_COPY_SKIP_PRE)
3140 && !(prog->extflags & RXf_PMf_KEEPCOPY) /* //p */
3141 && !(PL_sawampersand & SAWAMPERSAND_LEFT)
3142 ) { /* don't copy $` part of string */
3145 /* calculate the left-most part of the string covered
3146 * by a capture. Due to lookbehind, this may be to
3147 * the left of $&, so we have to scan all captures */
3148 while (min && n <= prog->lastparen) {
3149 if ( prog->offs[n].start != -1
3150 && prog->offs[n].start < min)
3152 min = prog->offs[n].start;
3156 if ((PL_sawampersand & SAWAMPERSAND_RIGHT)
3157 && min > prog->offs[0].end
3159 min = prog->offs[0].end;
3163 assert(min >= 0 && min <= max && min <= strend - strbeg);
3166 if (RXp_MATCH_COPIED(prog)) {
3167 if (sublen > prog->sublen)
3169 (char*)saferealloc(prog->subbeg, sublen+1);
3172 prog->subbeg = (char*)safemalloc(sublen+1);
3173 Copy(strbeg + min, prog->subbeg, sublen, char);
3174 prog->subbeg[sublen] = '\0';
3175 prog->suboffset = min;
3176 prog->sublen = sublen;
3177 RXp_MATCH_COPIED_on(prog);
3179 prog->subcoffset = prog->suboffset;
3180 if (prog->suboffset && utf8_target) {
3181 /* Convert byte offset to chars.
3182 * XXX ideally should only compute this if @-/@+
3183 * has been seen, a la PL_sawampersand ??? */
3185 /* If there's a direct correspondence between the
3186 * string which we're matching and the original SV,
3187 * then we can use the utf8 len cache associated with
3188 * the SV. In particular, it means that under //g,
3189 * sv_pos_b2u() will use the previously cached
3190 * position to speed up working out the new length of
3191 * subcoffset, rather than counting from the start of
3192 * the string each time. This stops
3193 * $x = "\x{100}" x 1E6; 1 while $x =~ /(.)/g;
3194 * from going quadratic */
3195 if (SvPOKp(sv) && SvPVX(sv) == strbeg)
3196 prog->subcoffset = sv_pos_b2u_flags(sv, prog->subcoffset,
3197 SV_GMAGIC|SV_CONST_RETURN);
3199 prog->subcoffset = utf8_length((U8*)strbeg,
3200 (U8*)(strbeg+prog->suboffset));
3204 RXp_MATCH_COPY_FREE(prog);
3205 prog->subbeg = strbeg;
3206 prog->suboffset = 0;
3207 prog->subcoffset = 0;
3208 prog->sublen = strend - strbeg;
3216 - regexec_flags - match a regexp against a string
3219 Perl_regexec_flags(pTHX_ REGEXP * const rx, char *stringarg, char *strend,
3220 char *strbeg, SSize_t minend, SV *sv, void *data, U32 flags)
3221 /* stringarg: the point in the string at which to begin matching */
3222 /* strend: pointer to null at end of string */
3223 /* strbeg: real beginning of string */
3224 /* minend: end of match must be >= minend bytes after stringarg. */
3225 /* sv: SV being matched: only used for utf8 flag, pos() etc; string
3226 * itself is accessed via the pointers above */
3227 /* data: May be used for some additional optimizations.
3228 Currently unused. */
3229 /* flags: For optimizations. See REXEC_* in regexp.h */
3232 struct regexp *const prog = ReANY(rx);
3236 SSize_t minlen; /* must match at least this many chars */
3237 SSize_t dontbother = 0; /* how many characters not to try at end */
3238 const bool utf8_target = cBOOL(DO_UTF8(sv));
3240 RXi_GET_DECL(prog,progi);
3241 regmatch_info reginfo_buf; /* create some info to pass to regtry etc */
3242 regmatch_info *const reginfo = ®info_buf;
3243 regexp_paren_pair *swap = NULL;
3245 GET_RE_DEBUG_FLAGS_DECL;
3247 PERL_ARGS_ASSERT_REGEXEC_FLAGS;
3248 PERL_UNUSED_ARG(data);
3250 /* Be paranoid... */
3252 Perl_croak(aTHX_ "NULL regexp parameter");
3256 debug_start_match(rx, utf8_target, stringarg, strend,
3260 startpos = stringarg;
3262 /* set these early as they may be used by the HOP macros below */
3263 reginfo->strbeg = strbeg;
3264 reginfo->strend = strend;
3265 reginfo->is_utf8_target = cBOOL(utf8_target);
3267 if (prog->intflags & PREGf_GPOS_SEEN) {
3270 /* set reginfo->ganch, the position where \G can match */
3273 (flags & REXEC_IGNOREPOS)
3274 ? stringarg /* use start pos rather than pos() */
3275 : ((mg = mg_find_mglob(sv)) && mg->mg_len >= 0)
3276 /* Defined pos(): */
3277 ? strbeg + MgBYTEPOS(mg, sv, strbeg, strend-strbeg)
3278 : strbeg; /* pos() not defined; use start of string */
3280 DEBUG_GPOS_r(Perl_re_printf( aTHX_
3281 "GPOS ganch set to strbeg[%" IVdf "]\n", (IV)(reginfo->ganch - strbeg)));
3283 /* in the presence of \G, we may need to start looking earlier in
3284 * the string than the suggested start point of stringarg:
3285 * if prog->gofs is set, then that's a known, fixed minimum
3288 * /ab|c\G/: gofs = 1
3289 * or if the minimum offset isn't known, then we have to go back
3290 * to the start of the string, e.g. /w+\G/
3293 if (prog->intflags & PREGf_ANCH_GPOS) {
3295 startpos = HOPBACKc(reginfo->ganch, prog->gofs);
3297 ((flags & REXEC_FAIL_ON_UNDERFLOW) && startpos < stringarg))
3299 DEBUG_r(Perl_re_printf( aTHX_
3300 "fail: ganch-gofs before earliest possible start\n"));
3305 startpos = reginfo->ganch;
3307 else if (prog->gofs) {
3308 startpos = HOPBACKc(startpos, prog->gofs);
3312 else if (prog->intflags & PREGf_GPOS_FLOAT)
3316 minlen = prog->minlen;
3317 if ((startpos + minlen) > strend || startpos < strbeg) {
3318 DEBUG_r(Perl_re_printf( aTHX_
3319 "Regex match can't succeed, so not even tried\n"));
3323 /* at the end of this function, we'll do a LEAVE_SCOPE(oldsave),
3324 * which will call destuctors to reset PL_regmatch_state, free higher
3325 * PL_regmatch_slabs, and clean up regmatch_info_aux and
3326 * regmatch_info_aux_eval */
3328 oldsave = PL_savestack_ix;
3332 if ((prog->extflags & RXf_USE_INTUIT)
3333 && !(flags & REXEC_CHECKED))
3335 s = re_intuit_start(rx, sv, strbeg, startpos, strend,
3340 if (prog->extflags & RXf_CHECK_ALL) {
3341 /* we can match based purely on the result of INTUIT.
3342 * Set up captures etc just for $& and $-[0]
3343 * (an intuit-only match wont have $1,$2,..) */
3344 assert(!prog->nparens);
3346 /* s/// doesn't like it if $& is earlier than where we asked it to
3347 * start searching (which can happen on something like /.\G/) */
3348 if ( (flags & REXEC_FAIL_ON_UNDERFLOW)
3351 /* this should only be possible under \G */
3352 assert(prog->intflags & PREGf_GPOS_SEEN);
3353 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
3354 "matched, but failing for REXEC_FAIL_ON_UNDERFLOW\n"));
3358 /* match via INTUIT shouldn't have any captures.
3359 * Let @-, @+, $^N know */
3360 prog->lastparen = prog->lastcloseparen = 0;
3361 RXp_MATCH_UTF8_set(prog, utf8_target);
3362 prog->offs[0].start = s - strbeg;
3363 prog->offs[0].end = utf8_target
3364 ? (char*)utf8_hop_forward((U8*)s, prog->minlenret, (U8 *) strend) - strbeg
3365 : s - strbeg + prog->minlenret;
3366 if ( !(flags & REXEC_NOT_FIRST) )
3367 S_reg_set_capture_string(aTHX_ rx,
3369 sv, flags, utf8_target);
3375 multiline = prog->extflags & RXf_PMf_MULTILINE;
3377 if (strend - s < (minlen+(prog->check_offset_min<0?prog->check_offset_min:0))) {
3378 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
3379 "String too short [regexec_flags]...\n"));
3383 /* Check validity of program. */
3384 if (UCHARAT(progi->program) != REG_MAGIC) {
3385 Perl_croak(aTHX_ "corrupted regexp program");
3388 RXp_MATCH_TAINTED_off(prog);
3389 RXp_MATCH_UTF8_set(prog, utf8_target);
3391 reginfo->prog = rx; /* Yes, sorry that this is confusing. */
3392 reginfo->intuit = 0;
3393 reginfo->is_utf8_pat = cBOOL(RX_UTF8(rx));
3394 reginfo->warned = FALSE;
3396 reginfo->poscache_maxiter = 0; /* not yet started a countdown */
3397 /* see how far we have to get to not match where we matched before */
3398 reginfo->till = stringarg + minend;
3400 if (prog->extflags & RXf_EVAL_SEEN && SvPADTMP(sv)) {
3401 /* SAVEFREESV, not sv_mortalcopy, as this SV must last until after
3402 S_cleanup_regmatch_info_aux has executed (registered by
3403 SAVEDESTRUCTOR_X below). S_cleanup_regmatch_info_aux modifies
3404 magic belonging to this SV.
3405 Not newSVsv, either, as it does not COW.
3407 reginfo->sv = newSV(0);
3408 SvSetSV_nosteal(reginfo->sv, sv);
3409 SAVEFREESV(reginfo->sv);
3412 /* reserve next 2 or 3 slots in PL_regmatch_state:
3413 * slot N+0: may currently be in use: skip it
3414 * slot N+1: use for regmatch_info_aux struct
3415 * slot N+2: use for regmatch_info_aux_eval struct if we have (?{})'s
3416 * slot N+3: ready for use by regmatch()
3420 regmatch_state *old_regmatch_state;
3421 regmatch_slab *old_regmatch_slab;
3422 int i, max = (prog->extflags & RXf_EVAL_SEEN) ? 2 : 1;
3424 /* on first ever match, allocate first slab */
3425 if (!PL_regmatch_slab) {
3426 Newx(PL_regmatch_slab, 1, regmatch_slab);
3427 PL_regmatch_slab->prev = NULL;
3428 PL_regmatch_slab->next = NULL;
3429 PL_regmatch_state = SLAB_FIRST(PL_regmatch_slab);
3432 old_regmatch_state = PL_regmatch_state;
3433 old_regmatch_slab = PL_regmatch_slab;
3435 for (i=0; i <= max; i++) {
3437 reginfo->info_aux = &(PL_regmatch_state->u.info_aux);
3439 reginfo->info_aux_eval =
3440 reginfo->info_aux->info_aux_eval =
3441 &(PL_regmatch_state->u.info_aux_eval);
3443 if (++PL_regmatch_state > SLAB_LAST(PL_regmatch_slab))
3444 PL_regmatch_state = S_push_slab(aTHX);
3447 /* note initial PL_regmatch_state position; at end of match we'll
3448 * pop back to there and free any higher slabs */
3450 reginfo->info_aux->old_regmatch_state = old_regmatch_state;
3451 reginfo->info_aux->old_regmatch_slab = old_regmatch_slab;
3452 reginfo->info_aux->poscache = NULL;
3454 SAVEDESTRUCTOR_X(S_cleanup_regmatch_info_aux, reginfo->info_aux);
3456 if ((prog->extflags & RXf_EVAL_SEEN))
3457 S_setup_eval_state(aTHX_ reginfo);
3459 reginfo->info_aux_eval = reginfo->info_aux->info_aux_eval = NULL;
3462 /* If there is a "must appear" string, look for it. */
3464 if (PL_curpm && (PM_GETRE(PL_curpm) == rx)) {
3465 /* We have to be careful. If the previous successful match
3466 was from this regex we don't want a subsequent partially
3467 successful match to clobber the old results.
3468 So when we detect this possibility we add a swap buffer
3469 to the re, and switch the buffer each match. If we fail,
3470 we switch it back; otherwise we leave it swapped.
3473 /* avoid leak if we die, or clean up anyway if match completes */
3475 Newxz(prog->offs, (prog->nparens + 1), regexp_paren_pair);
3476 DEBUG_BUFFERS_r(Perl_re_exec_indentf( aTHX_
3477 "rex=0x%" UVxf " saving offs: orig=0x%" UVxf " new=0x%" UVxf "\n",
3485 if (prog->recurse_locinput)
3486 Zero(prog->recurse_locinput,prog->nparens + 1, char *);
3488 /* Simplest case: anchored match need be tried only once, or with
3489 * MBOL, only at the beginning of each line.
3491 * Note that /.*.../ sets PREGf_IMPLICIT|MBOL, while /.*.../s sets
3492 * PREGf_IMPLICIT|SBOL. The idea is that with /.*.../s, if it doesn't
3493 * match at the start of the string then it won't match anywhere else
3494 * either; while with /.*.../, if it doesn't match at the beginning,
3495 * the earliest it could match is at the start of the next line */
3497 if (prog->intflags & (PREGf_ANCH & ~PREGf_ANCH_GPOS)) {
3500 if (regtry(reginfo, &s))
3503 if (!(prog->intflags & PREGf_ANCH_MBOL))
3506 /* didn't match at start, try at other newline positions */
3509 dontbother = minlen - 1;
3510 end = HOP3c(strend, -dontbother, strbeg) - 1;
3512 /* skip to next newline */
3514 while (s <= end) { /* note it could be possible to match at the end of the string */
3515 /* NB: newlines are the same in unicode as they are in latin */
3518 if (prog->check_substr || prog->check_utf8) {
3519 /* note that with PREGf_IMPLICIT, intuit can only fail
3520 * or return the start position, so it's of limited utility.
3521 * Nevertheless, I made the decision that the potential for
3522 * quick fail was still worth it - DAPM */
3523 s = re_intuit_start(rx, sv, strbeg, s, strend, flags, NULL);
3527 if (regtry(reginfo, &s))
3531 } /* end anchored search */
3533 if (prog->intflags & PREGf_ANCH_GPOS)
3535 /* PREGf_ANCH_GPOS should never be true if PREGf_GPOS_SEEN is not true */
3536 assert(prog->intflags & PREGf_GPOS_SEEN);
3537 /* For anchored \G, the only position it can match from is
3538 * (ganch-gofs); we already set startpos to this above; if intuit
3539 * moved us on from there, we can't possibly succeed */
3540 assert(startpos == HOPBACKc(reginfo->ganch, prog->gofs));
3541 if (s == startpos && regtry(reginfo, &s))
3546 /* Messy cases: unanchored match. */
3547 if ((prog->anchored_substr || prog->anchored_utf8) && prog->intflags & PREGf_SKIP) {
3548 /* we have /x+whatever/ */
3549 /* it must be a one character string (XXXX Except is_utf8_pat?) */
3555 if (! prog->anchored_utf8) {
3556 to_utf8_substr(prog);
3558 ch = SvPVX_const(prog->anchored_utf8)[0];
3559 REXEC_FBC_SCAN(0, /* 0=>not-utf8 */
3561 DEBUG_EXECUTE_r( did_match = 1 );
3562 if (regtry(reginfo, &s)) goto got_it;
3563 s += UTF8_SAFE_SKIP(s, strend);
3564 while (s < strend && *s == ch)
3571 if (! prog->anchored_substr) {
3572 if (! to_byte_substr(prog)) {
3573 NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
3576 ch = SvPVX_const(prog->anchored_substr)[0];
3577 REXEC_FBC_SCAN(0, /* 0=>not-utf8 */
3579 DEBUG_EXECUTE_r( did_match = 1 );
3580 if (regtry(reginfo, &s)) goto got_it;
3582 while (s < strend && *s == ch)
3587 DEBUG_EXECUTE_r(if (!did_match)
3588 Perl_re_printf( aTHX_
3589 "Did not find anchored character...\n")
3592 else if (prog->anchored_substr != NULL
3593 || prog->anchored_utf8 != NULL
3594 || ((prog->float_substr != NULL || prog->float_utf8 != NULL)
3595 && prog->float_max_offset < strend - s)) {
3600 char *last1; /* Last position checked before */
3604 if (prog->anchored_substr || prog->anchored_utf8) {
3606 if (! prog->anchored_utf8) {
3607 to_utf8_substr(prog);
3609 must = prog->anchored_utf8;
3612 if (! prog->anchored_substr) {
3613 if (! to_byte_substr(prog)) {
3614 NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
3617 must = prog->anchored_substr;
3619 back_max = back_min = prog->anchored_offset;
3622 if (! prog->float_utf8) {
3623 to_utf8_substr(prog);
3625 must = prog->float_utf8;
3628 if (! prog->float_substr) {
3629 if (! to_byte_substr(prog)) {
3630 NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
3633 must = prog->float_substr;
3635 back_max = prog->float_max_offset;
3636 back_min = prog->float_min_offset;
3642 last = HOP3c(strend, /* Cannot start after this */
3643 -(SSize_t)(CHR_SVLEN(must)
3644 - (SvTAIL(must) != 0) + back_min), strbeg);
3646 if (s > reginfo->strbeg)
3647 last1 = HOPc(s, -1);
3649 last1 = s - 1; /* bogus */
3651 /* XXXX check_substr already used to find "s", can optimize if
3652 check_substr==must. */
3654 strend = HOPc(strend, -dontbother);
3655 while ( (s <= last) &&
3656 (s = fbm_instr((unsigned char*)HOP4c(s, back_min, strbeg, strend),
3657 (unsigned char*)strend, must,
3658 multiline ? FBMrf_MULTILINE : 0)) ) {
3659 DEBUG_EXECUTE_r( did_match = 1 );
3660 if (HOPc(s, -back_max) > last1) {
3661 last1 = HOPc(s, -back_min);
3662 s = HOPc(s, -back_max);
3665 char * const t = (last1 >= reginfo->strbeg)
3666 ? HOPc(last1, 1) : last1 + 1;
3668 last1 = HOPc(s, -back_min);
3672 while (s <= last1) {
3673 if (regtry(reginfo, &s))
3676 s++; /* to break out of outer loop */
3683 while (s <= last1) {
3684 if (regtry(reginfo, &s))
3690 DEBUG_EXECUTE_r(if (!did_match) {
3691 RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
3692 SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
3693 Perl_re_printf( aTHX_ "Did not find %s substr %s%s...\n",
3694 ((must == prog->anchored_substr || must == prog->anchored_utf8)
3695 ? "anchored" : "floating"),
3696 quoted, RE_SV_TAIL(must));
3700 else if ( (c = progi->regstclass) ) {
3702 const OPCODE op = OP(progi->regstclass);
3703 /* don't bother with what can't match */
3704 if (PL_regkind[op] != EXACT && PL_regkind[op] != TRIE)
3705 strend = HOPc(strend, -(minlen - 1));
3708 SV * const prop = sv_newmortal();
3709 regprop(prog, prop, c, reginfo, NULL);
3711 RE_PV_QUOTED_DECL(quoted,utf8_target,PERL_DEBUG_PAD_ZERO(1),
3712 s,strend-s,PL_dump_re_max_len);
3713 Perl_re_printf( aTHX_
3714 "Matching stclass %.*s against %s (%d bytes)\n",
3715 (int)SvCUR(prop), SvPVX_const(prop),
3716 quoted, (int)(strend - s));
3719 if (find_byclass(prog, c, s, strend, reginfo))
3721 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ "Contradicts stclass... [regexec_flags]\n"));
3725 if (prog->float_substr != NULL || prog->float_utf8 != NULL) {
3733 if (! prog->float_utf8) {
3734 to_utf8_substr(prog);
3736 float_real = prog->float_utf8;
3739 if (! prog->float_substr) {
3740 if (! to_byte_substr(prog)) {
3741 NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
3744 float_real = prog->float_substr;
3747 little = SvPV_const(float_real, len);
3748 if (SvTAIL(float_real)) {
3749 /* This means that float_real contains an artificial \n on
3750 * the end due to the presence of something like this:
3751 * /foo$/ where we can match both "foo" and "foo\n" at the
3752 * end of the string. So we have to compare the end of the
3753 * string first against the float_real without the \n and
3754 * then against the full float_real with the string. We
3755 * have to watch out for cases where the string might be
3756 * smaller than the float_real or the float_real without
3758 char *checkpos= strend - len;
3760 Perl_re_printf( aTHX_
3761 "%sChecking for float_real.%s\n",
3762 PL_colors[4], PL_colors[5]));
3763 if (checkpos + 1 < strbeg) {
3764 /* can't match, even if we remove the trailing \n
3765 * string is too short to match */
3767 Perl_re_printf( aTHX_
3768 "%sString shorter than required trailing substring, cannot match.%s\n",
3769 PL_colors[4], PL_colors[5]));
3771 } else if (memEQ(checkpos + 1, little, len - 1)) {
3772 /* can match, the end of the string matches without the
3774 last = checkpos + 1;
3775 } else if (checkpos < strbeg) {
3776 /* cant match, string is too short when the "\n" is
3779 Perl_re_printf( aTHX_
3780 "%sString does not contain required trailing substring, cannot match.%s\n",
3781 PL_colors[4], PL_colors[5]));
3783 } else if (!multiline) {
3784 /* non multiline match, so compare with the "\n" at the
3785 * end of the string */
3786 if (memEQ(checkpos, little, len)) {
3790 Perl_re_printf( aTHX_
3791 "%sString does not contain required trailing substring, cannot match.%s\n",
3792 PL_colors[4], PL_colors[5]));
3796 /* multiline match, so we have to search for a place
3797 * where the full string is located */
3803 last = rninstr(s, strend, little, little + len);
3805 last = strend; /* matching "$" */
3808 /* at one point this block contained a comment which was
3809 * probably incorrect, which said that this was a "should not
3810 * happen" case. Even if it was true when it was written I am