3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by Larry Wall
7 * You may distribute under the terms of either the GNU General Public
8 * License or the Artistic License, as specified in the README file.
13 * 'I wonder what the Entish is for "yes" and "no",' he thought.
16 * [p.480 of _The Lord of the Rings_, III/iv: "Treebeard"]
22 * This file contains the code that creates, manipulates and destroys
23 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
24 * structure of an SV, so their creation and destruction is handled
25 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
26 * level functions (eg. substr, split, join) for each of the types are
38 /* Missing proto on LynxOS */
39 char *gconvert(double, int, int, char *);
42 #ifdef PERL_UTF8_CACHE_ASSERT
43 /* if adding more checks watch out for the following tests:
44 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
45 * lib/utf8.t lib/Unicode/Collate/t/index.t
48 # define ASSERT_UTF8_CACHE(cache) \
49 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
50 assert((cache)[2] <= (cache)[3]); \
51 assert((cache)[3] <= (cache)[1]);} \
54 # define ASSERT_UTF8_CACHE(cache) NOOP
57 #ifdef PERL_OLD_COPY_ON_WRITE
58 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
59 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
60 /* This is a pessimistic view. Scalar must be purely a read-write PV to copy-
64 /* ============================================================================
66 =head1 Allocation and deallocation of SVs.
68 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
69 sv, av, hv...) contains type and reference count information, and for
70 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
71 contains fields specific to each type. Some types store all they need
72 in the head, so don't have a body.
74 In all but the most memory-paranoid configuations (ex: PURIFY), heads
75 and bodies are allocated out of arenas, which by default are
76 approximately 4K chunks of memory parcelled up into N heads or bodies.
77 Sv-bodies are allocated by their sv-type, guaranteeing size
78 consistency needed to allocate safely from arrays.
80 For SV-heads, the first slot in each arena is reserved, and holds a
81 link to the next arena, some flags, and a note of the number of slots.
82 Snaked through each arena chain is a linked list of free items; when
83 this becomes empty, an extra arena is allocated and divided up into N
84 items which are threaded into the free list.
86 SV-bodies are similar, but they use arena-sets by default, which
87 separate the link and info from the arena itself, and reclaim the 1st
88 slot in the arena. SV-bodies are further described later.
90 The following global variables are associated with arenas:
92 PL_sv_arenaroot pointer to list of SV arenas
93 PL_sv_root pointer to list of free SV structures
95 PL_body_arenas head of linked-list of body arenas
96 PL_body_roots[] array of pointers to list of free bodies of svtype
97 arrays are indexed by the svtype needed
99 A few special SV heads are not allocated from an arena, but are
100 instead directly created in the interpreter structure, eg PL_sv_undef.
101 The size of arenas can be changed from the default by setting
102 PERL_ARENA_SIZE appropriately at compile time.
104 The SV arena serves the secondary purpose of allowing still-live SVs
105 to be located and destroyed during final cleanup.
107 At the lowest level, the macros new_SV() and del_SV() grab and free
108 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
109 to return the SV to the free list with error checking.) new_SV() calls
110 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
111 SVs in the free list have their SvTYPE field set to all ones.
113 At the time of very final cleanup, sv_free_arenas() is called from
114 perl_destruct() to physically free all the arenas allocated since the
115 start of the interpreter.
117 The function visit() scans the SV arenas list, and calls a specified
118 function for each SV it finds which is still live - ie which has an SvTYPE
119 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
120 following functions (specified as [function that calls visit()] / [function
121 called by visit() for each SV]):
123 sv_report_used() / do_report_used()
124 dump all remaining SVs (debugging aid)
126 sv_clean_objs() / do_clean_objs(),do_clean_named_objs()
127 Attempt to free all objects pointed to by RVs,
128 and, unless DISABLE_DESTRUCTOR_KLUDGE is defined,
129 try to do the same for all objects indirectly
130 referenced by typeglobs too. Called once from
131 perl_destruct(), prior to calling sv_clean_all()
134 sv_clean_all() / do_clean_all()
135 SvREFCNT_dec(sv) each remaining SV, possibly
136 triggering an sv_free(). It also sets the
137 SVf_BREAK flag on the SV to indicate that the
138 refcnt has been artificially lowered, and thus
139 stopping sv_free() from giving spurious warnings
140 about SVs which unexpectedly have a refcnt
141 of zero. called repeatedly from perl_destruct()
142 until there are no SVs left.
144 =head2 Arena allocator API Summary
146 Private API to rest of sv.c
150 new_XIV(), del_XIV(),
151 new_XNV(), del_XNV(),
156 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
160 * ========================================================================= */
163 * "A time to plant, and a time to uproot what was planted..."
167 Perl_offer_nice_chunk(pTHX_ void *const chunk, const U32 chunk_size)
173 PERL_ARGS_ASSERT_OFFER_NICE_CHUNK;
175 new_chunk = (void *)(chunk);
176 new_chunk_size = (chunk_size);
177 if (new_chunk_size > PL_nice_chunk_size) {
178 Safefree(PL_nice_chunk);
179 PL_nice_chunk = (char *) new_chunk;
180 PL_nice_chunk_size = new_chunk_size;
187 # define MEM_LOG_NEW_SV(sv, file, line, func) \
188 Perl_mem_log_new_sv(sv, file, line, func)
189 # define MEM_LOG_DEL_SV(sv, file, line, func) \
190 Perl_mem_log_del_sv(sv, file, line, func)
192 # define MEM_LOG_NEW_SV(sv, file, line, func) NOOP
193 # define MEM_LOG_DEL_SV(sv, file, line, func) NOOP
196 #ifdef DEBUG_LEAKING_SCALARS
197 # define FREE_SV_DEBUG_FILE(sv) Safefree((sv)->sv_debug_file)
198 # define DEBUG_SV_SERIAL(sv) \
199 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) del_SV\n", \
200 PTR2UV(sv), (long)(sv)->sv_debug_serial))
202 # define FREE_SV_DEBUG_FILE(sv)
203 # define DEBUG_SV_SERIAL(sv) NOOP
207 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
208 # define SvARENA_CHAIN_SET(sv,val) (sv)->sv_u.svu_rv = MUTABLE_SV((val))
209 /* Whilst I'd love to do this, it seems that things like to check on
211 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
213 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
214 PoisonNew(&SvREFCNT(sv), 1, U32)
216 # define SvARENA_CHAIN(sv) SvANY(sv)
217 # define SvARENA_CHAIN_SET(sv,val) SvANY(sv) = (void *)(val)
218 # define POSION_SV_HEAD(sv)
221 /* Mark an SV head as unused, and add to free list.
223 * If SVf_BREAK is set, skip adding it to the free list, as this SV had
224 * its refcount artificially decremented during global destruction, so
225 * there may be dangling pointers to it. The last thing we want in that
226 * case is for it to be reused. */
228 #define plant_SV(p) \
230 const U32 old_flags = SvFLAGS(p); \
231 MEM_LOG_DEL_SV(p, __FILE__, __LINE__, FUNCTION__); \
232 DEBUG_SV_SERIAL(p); \
233 FREE_SV_DEBUG_FILE(p); \
235 SvFLAGS(p) = SVTYPEMASK; \
236 if (!(old_flags & SVf_BREAK)) { \
237 SvARENA_CHAIN_SET(p, PL_sv_root); \
243 #define uproot_SV(p) \
246 PL_sv_root = MUTABLE_SV(SvARENA_CHAIN(p)); \
251 /* make some more SVs by adding another arena */
260 sv_add_arena(PL_nice_chunk, PL_nice_chunk_size, 0);
261 PL_nice_chunk = NULL;
262 PL_nice_chunk_size = 0;
265 char *chunk; /* must use New here to match call to */
266 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
267 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
273 /* new_SV(): return a new, empty SV head */
275 #ifdef DEBUG_LEAKING_SCALARS
276 /* provide a real function for a debugger to play with */
278 S_new_SV(pTHX_ const char *file, int line, const char *func)
285 sv = S_more_sv(aTHX);
289 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
290 sv->sv_debug_line = (U16) (PL_parser && PL_parser->copline != NOLINE
296 sv->sv_debug_inpad = 0;
297 sv->sv_debug_cloned = 0;
298 sv->sv_debug_file = PL_curcop ? savepv(CopFILE(PL_curcop)): NULL;
300 sv->sv_debug_serial = PL_sv_serial++;
302 MEM_LOG_NEW_SV(sv, file, line, func);
303 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) new_SV (from %s:%d [%s])\n",
304 PTR2UV(sv), (long)sv->sv_debug_serial, file, line, func));
308 # define new_SV(p) (p)=S_new_SV(aTHX_ __FILE__, __LINE__, FUNCTION__)
316 (p) = S_more_sv(aTHX); \
320 MEM_LOG_NEW_SV(p, __FILE__, __LINE__, FUNCTION__); \
325 /* del_SV(): return an empty SV head to the free list */
338 S_del_sv(pTHX_ SV *p)
342 PERL_ARGS_ASSERT_DEL_SV;
347 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
348 const SV * const sv = sva + 1;
349 const SV * const svend = &sva[SvREFCNT(sva)];
350 if (p >= sv && p < svend) {
356 if (ckWARN_d(WARN_INTERNAL))
357 Perl_warner(aTHX_ packWARN(WARN_INTERNAL),
358 "Attempt to free non-arena SV: 0x%"UVxf
359 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
366 #else /* ! DEBUGGING */
368 #define del_SV(p) plant_SV(p)
370 #endif /* DEBUGGING */
374 =head1 SV Manipulation Functions
376 =for apidoc sv_add_arena
378 Given a chunk of memory, link it to the head of the list of arenas,
379 and split it into a list of free SVs.
385 S_sv_add_arena(pTHX_ char *const ptr, const U32 size, const U32 flags)
388 SV *const sva = MUTABLE_SV(ptr);
392 PERL_ARGS_ASSERT_SV_ADD_ARENA;
394 /* The first SV in an arena isn't an SV. */
395 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
396 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
397 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
399 PL_sv_arenaroot = sva;
400 PL_sv_root = sva + 1;
402 svend = &sva[SvREFCNT(sva) - 1];
405 SvARENA_CHAIN_SET(sv, (sv + 1));
409 /* Must always set typemask because it's always checked in on cleanup
410 when the arenas are walked looking for objects. */
411 SvFLAGS(sv) = SVTYPEMASK;
414 SvARENA_CHAIN_SET(sv, 0);
418 SvFLAGS(sv) = SVTYPEMASK;
421 /* visit(): call the named function for each non-free SV in the arenas
422 * whose flags field matches the flags/mask args. */
425 S_visit(pTHX_ SVFUNC_t f, const U32 flags, const U32 mask)
431 PERL_ARGS_ASSERT_VISIT;
433 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
434 register const SV * const svend = &sva[SvREFCNT(sva)];
436 for (sv = sva + 1; sv < svend; ++sv) {
437 if (SvTYPE(sv) != SVTYPEMASK
438 && (sv->sv_flags & mask) == flags
451 /* called by sv_report_used() for each live SV */
454 do_report_used(pTHX_ SV *const sv)
456 if (SvTYPE(sv) != SVTYPEMASK) {
457 PerlIO_printf(Perl_debug_log, "****\n");
464 =for apidoc sv_report_used
466 Dump the contents of all SVs not yet freed. (Debugging aid).
472 Perl_sv_report_used(pTHX)
475 visit(do_report_used, 0, 0);
481 /* called by sv_clean_objs() for each live SV */
484 do_clean_objs(pTHX_ SV *const ref)
489 SV * const target = SvRV(ref);
490 if (SvOBJECT(target)) {
491 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
492 if (SvWEAKREF(ref)) {
493 sv_del_backref(target, ref);
499 SvREFCNT_dec(target);
504 /* XXX Might want to check arrays, etc. */
507 /* called by sv_clean_objs() for each live SV */
509 #ifndef DISABLE_DESTRUCTOR_KLUDGE
511 do_clean_named_objs(pTHX_ SV *const sv)
514 assert(SvTYPE(sv) == SVt_PVGV);
515 assert(isGV_with_GP(sv));
518 #ifdef PERL_DONT_CREATE_GVSV
521 SvOBJECT(GvSV(sv))) ||
522 (GvAV(sv) && SvOBJECT(GvAV(sv))) ||
523 (GvHV(sv) && SvOBJECT(GvHV(sv))) ||
524 /* In certain rare cases GvIOp(sv) can be NULL, which would make SvOBJECT(GvIO(sv)) dereference NULL. */
525 (GvIO(sv) ? (SvFLAGS(GvIOp(sv)) & SVs_OBJECT) : 0) ||
526 (GvCV(sv) && SvOBJECT(GvCV(sv))) )
528 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning named glob object:\n "), sv_dump(sv)));
529 SvFLAGS(sv) |= SVf_BREAK;
537 =for apidoc sv_clean_objs
539 Attempt to destroy all objects not yet freed
545 Perl_sv_clean_objs(pTHX)
548 PL_in_clean_objs = TRUE;
549 visit(do_clean_objs, SVf_ROK, SVf_ROK);
550 #ifndef DISABLE_DESTRUCTOR_KLUDGE
551 /* some barnacles may yet remain, clinging to typeglobs */
552 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
554 PL_in_clean_objs = FALSE;
557 /* called by sv_clean_all() for each live SV */
560 do_clean_all(pTHX_ SV *const sv)
563 if (sv == (const SV *) PL_fdpid || sv == (const SV *)PL_strtab) {
564 /* don't clean pid table and strtab */
567 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
568 SvFLAGS(sv) |= SVf_BREAK;
573 =for apidoc sv_clean_all
575 Decrement the refcnt of each remaining SV, possibly triggering a
576 cleanup. This function may have to be called multiple times to free
577 SVs which are in complex self-referential hierarchies.
583 Perl_sv_clean_all(pTHX)
587 PL_in_clean_all = TRUE;
588 cleaned = visit(do_clean_all, 0,0);
589 PL_in_clean_all = FALSE;
594 ARENASETS: a meta-arena implementation which separates arena-info
595 into struct arena_set, which contains an array of struct
596 arena_descs, each holding info for a single arena. By separating
597 the meta-info from the arena, we recover the 1st slot, formerly
598 borrowed for list management. The arena_set is about the size of an
599 arena, avoiding the needless malloc overhead of a naive linked-list.
601 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
602 memory in the last arena-set (1/2 on average). In trade, we get
603 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
604 smaller types). The recovery of the wasted space allows use of
605 small arenas for large, rare body types, by changing array* fields
606 in body_details_by_type[] below.
609 char *arena; /* the raw storage, allocated aligned */
610 size_t size; /* its size ~4k typ */
611 U32 misc; /* type, and in future other things. */
616 /* Get the maximum number of elements in set[] such that struct arena_set
617 will fit within PERL_ARENA_SIZE, which is probably just under 4K, and
618 therefore likely to be 1 aligned memory page. */
620 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
621 - 2 * sizeof(int)) / sizeof (struct arena_desc))
624 struct arena_set* next;
625 unsigned int set_size; /* ie ARENAS_PER_SET */
626 unsigned int curr; /* index of next available arena-desc */
627 struct arena_desc set[ARENAS_PER_SET];
631 =for apidoc sv_free_arenas
633 Deallocate the memory used by all arenas. Note that all the individual SV
634 heads and bodies within the arenas must already have been freed.
639 Perl_sv_free_arenas(pTHX)
646 /* Free arenas here, but be careful about fake ones. (We assume
647 contiguity of the fake ones with the corresponding real ones.) */
649 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
650 svanext = MUTABLE_SV(SvANY(sva));
651 while (svanext && SvFAKE(svanext))
652 svanext = MUTABLE_SV(SvANY(svanext));
659 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
662 struct arena_set *current = aroot;
665 assert(aroot->set[i].arena);
666 Safefree(aroot->set[i].arena);
674 i = PERL_ARENA_ROOTS_SIZE;
676 PL_body_roots[i] = 0;
678 Safefree(PL_nice_chunk);
679 PL_nice_chunk = NULL;
680 PL_nice_chunk_size = 0;
686 Here are mid-level routines that manage the allocation of bodies out
687 of the various arenas. There are 5 kinds of arenas:
689 1. SV-head arenas, which are discussed and handled above
690 2. regular body arenas
691 3. arenas for reduced-size bodies
693 5. pte arenas (thread related)
695 Arena types 2 & 3 are chained by body-type off an array of
696 arena-root pointers, which is indexed by svtype. Some of the
697 larger/less used body types are malloced singly, since a large
698 unused block of them is wasteful. Also, several svtypes dont have
699 bodies; the data fits into the sv-head itself. The arena-root
700 pointer thus has a few unused root-pointers (which may be hijacked
701 later for arena types 4,5)
703 3 differs from 2 as an optimization; some body types have several
704 unused fields in the front of the structure (which are kept in-place
705 for consistency). These bodies can be allocated in smaller chunks,
706 because the leading fields arent accessed. Pointers to such bodies
707 are decremented to point at the unused 'ghost' memory, knowing that
708 the pointers are used with offsets to the real memory.
710 HE, HEK arenas are managed separately, with separate code, but may
711 be merge-able later..
713 PTE arenas are not sv-bodies, but they share these mid-level
714 mechanics, so are considered here. The new mid-level mechanics rely
715 on the sv_type of the body being allocated, so we just reserve one
716 of the unused body-slots for PTEs, then use it in those (2) PTE
717 contexts below (line ~10k)
720 /* get_arena(size): this creates custom-sized arenas
721 TBD: export properly for hv.c: S_more_he().
724 Perl_get_arena(pTHX_ const size_t arena_size, const U32 misc)
727 struct arena_desc* adesc;
728 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
731 /* shouldnt need this
732 if (!arena_size) arena_size = PERL_ARENA_SIZE;
735 /* may need new arena-set to hold new arena */
736 if (!aroot || aroot->curr >= aroot->set_size) {
737 struct arena_set *newroot;
738 Newxz(newroot, 1, struct arena_set);
739 newroot->set_size = ARENAS_PER_SET;
740 newroot->next = aroot;
742 PL_body_arenas = (void *) newroot;
743 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
746 /* ok, now have arena-set with at least 1 empty/available arena-desc */
747 curr = aroot->curr++;
748 adesc = &(aroot->set[curr]);
749 assert(!adesc->arena);
751 Newx(adesc->arena, arena_size, char);
752 adesc->size = arena_size;
754 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %"UVuf"\n",
755 curr, (void*)adesc->arena, (UV)arena_size));
761 /* return a thing to the free list */
763 #define del_body(thing, root) \
765 void ** const thing_copy = (void **)thing;\
766 *thing_copy = *root; \
767 *root = (void*)thing_copy; \
772 =head1 SV-Body Allocation
774 Allocation of SV-bodies is similar to SV-heads, differing as follows;
775 the allocation mechanism is used for many body types, so is somewhat
776 more complicated, it uses arena-sets, and has no need for still-live
779 At the outermost level, (new|del)_X*V macros return bodies of the
780 appropriate type. These macros call either (new|del)_body_type or
781 (new|del)_body_allocated macro pairs, depending on specifics of the
782 type. Most body types use the former pair, the latter pair is used to
783 allocate body types with "ghost fields".
785 "ghost fields" are fields that are unused in certain types, and
786 consequently don't need to actually exist. They are declared because
787 they're part of a "base type", which allows use of functions as
788 methods. The simplest examples are AVs and HVs, 2 aggregate types
789 which don't use the fields which support SCALAR semantics.
791 For these types, the arenas are carved up into appropriately sized
792 chunks, we thus avoid wasted memory for those unaccessed members.
793 When bodies are allocated, we adjust the pointer back in memory by the
794 size of the part not allocated, so it's as if we allocated the full
795 structure. (But things will all go boom if you write to the part that
796 is "not there", because you'll be overwriting the last members of the
797 preceding structure in memory.)
799 We calculate the correction using the STRUCT_OFFSET macro on the first
800 member present. If the allocated structure is smaller (no initial NV
801 actually allocated) then the net effect is to subtract the size of the NV
802 from the pointer, to return a new pointer as if an initial NV were actually
803 allocated. (We were using structures named *_allocated for this, but
804 this turned out to be a subtle bug, because a structure without an NV
805 could have a lower alignment constraint, but the compiler is allowed to
806 optimised accesses based on the alignment constraint of the actual pointer
807 to the full structure, for example, using a single 64 bit load instruction
808 because it "knows" that two adjacent 32 bit members will be 8-byte aligned.)
810 This is the same trick as was used for NV and IV bodies. Ironically it
811 doesn't need to be used for NV bodies any more, because NV is now at
812 the start of the structure. IV bodies don't need it either, because
813 they are no longer allocated.
815 In turn, the new_body_* allocators call S_new_body(), which invokes
816 new_body_inline macro, which takes a lock, and takes a body off the
817 linked list at PL_body_roots[sv_type], calling S_more_bodies() if
818 necessary to refresh an empty list. Then the lock is released, and
819 the body is returned.
821 S_more_bodies calls get_arena(), and carves it up into an array of N
822 bodies, which it strings into a linked list. It looks up arena-size
823 and body-size from the body_details table described below, thus
824 supporting the multiple body-types.
826 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
827 the (new|del)_X*V macros are mapped directly to malloc/free.
833 For each sv-type, struct body_details bodies_by_type[] carries
834 parameters which control these aspects of SV handling:
836 Arena_size determines whether arenas are used for this body type, and if
837 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
838 zero, forcing individual mallocs and frees.
840 Body_size determines how big a body is, and therefore how many fit into
841 each arena. Offset carries the body-pointer adjustment needed for
842 "ghost fields", and is used in *_allocated macros.
844 But its main purpose is to parameterize info needed in
845 Perl_sv_upgrade(). The info here dramatically simplifies the function
846 vs the implementation in 5.8.8, making it table-driven. All fields
847 are used for this, except for arena_size.
849 For the sv-types that have no bodies, arenas are not used, so those
850 PL_body_roots[sv_type] are unused, and can be overloaded. In
851 something of a special case, SVt_NULL is borrowed for HE arenas;
852 PL_body_roots[HE_SVSLOT=SVt_NULL] is filled by S_more_he, but the
853 bodies_by_type[SVt_NULL] slot is not used, as the table is not
856 PTEs also use arenas, but are never seen in Perl_sv_upgrade. Nonetheless,
857 they get their own slot in bodies_by_type[PTE_SVSLOT =SVt_IV], so they can
858 just use the same allocation semantics. At first, PTEs were also
859 overloaded to a non-body sv-type, but this yielded hard-to-find malloc
860 bugs, so was simplified by claiming a new slot. This choice has no
861 consequence at this time.
865 struct body_details {
866 U8 body_size; /* Size to allocate */
867 U8 copy; /* Size of structure to copy (may be shorter) */
869 unsigned int type : 4; /* We have space for a sanity check. */
870 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
871 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
872 unsigned int arena : 1; /* Allocated from an arena */
873 size_t arena_size; /* Size of arena to allocate */
881 /* With -DPURFIY we allocate everything directly, and don't use arenas.
882 This seems a rather elegant way to simplify some of the code below. */
883 #define HASARENA FALSE
885 #define HASARENA TRUE
887 #define NOARENA FALSE
889 /* Size the arenas to exactly fit a given number of bodies. A count
890 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
891 simplifying the default. If count > 0, the arena is sized to fit
892 only that many bodies, allowing arenas to be used for large, rare
893 bodies (XPVFM, XPVIO) without undue waste. The arena size is
894 limited by PERL_ARENA_SIZE, so we can safely oversize the
897 #define FIT_ARENA0(body_size) \
898 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
899 #define FIT_ARENAn(count,body_size) \
900 ( count * body_size <= PERL_ARENA_SIZE) \
901 ? count * body_size \
902 : FIT_ARENA0 (body_size)
903 #define FIT_ARENA(count,body_size) \
905 ? FIT_ARENAn (count, body_size) \
906 : FIT_ARENA0 (body_size)
908 /* Calculate the length to copy. Specifically work out the length less any
909 final padding the compiler needed to add. See the comment in sv_upgrade
910 for why copying the padding proved to be a bug. */
912 #define copy_length(type, last_member) \
913 STRUCT_OFFSET(type, last_member) \
914 + sizeof (((type*)SvANY((const SV *)0))->last_member)
916 static const struct body_details bodies_by_type[] = {
917 { sizeof(HE), 0, 0, SVt_NULL,
918 FALSE, NONV, NOARENA, FIT_ARENA(0, sizeof(HE)) },
920 /* The bind placeholder pretends to be an RV for now.
921 Also it's marked as "can't upgrade" to stop anyone using it before it's
923 { 0, 0, 0, SVt_BIND, TRUE, NONV, NOARENA, 0 },
925 /* IVs are in the head, so the allocation size is 0.
926 However, the slot is overloaded for PTEs. */
927 { sizeof(struct ptr_tbl_ent), /* This is used for PTEs. */
928 sizeof(IV), /* This is used to copy out the IV body. */
929 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
930 NOARENA /* IVS don't need an arena */,
931 /* But PTEs need to know the size of their arena */
932 FIT_ARENA(0, sizeof(struct ptr_tbl_ent))
935 /* 8 bytes on most ILP32 with IEEE doubles */
936 { sizeof(NV), sizeof(NV), 0, SVt_NV, FALSE, HADNV, HASARENA,
937 FIT_ARENA(0, sizeof(NV)) },
939 /* 8 bytes on most ILP32 with IEEE doubles */
940 { sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur),
941 copy_length(XPV, xpv_len) - STRUCT_OFFSET(XPV, xpv_cur),
942 + STRUCT_OFFSET(XPV, xpv_cur),
943 SVt_PV, FALSE, NONV, HASARENA,
944 FIT_ARENA(0, sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur)) },
947 { sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur),
948 copy_length(XPVIV, xiv_u) - STRUCT_OFFSET(XPV, xpv_cur),
949 + STRUCT_OFFSET(XPVIV, xpv_cur),
950 SVt_PVIV, FALSE, NONV, HASARENA,
951 FIT_ARENA(0, sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur)) },
954 { sizeof(XPVNV), copy_length(XPVNV, xiv_u), 0, SVt_PVNV, FALSE, HADNV,
955 HASARENA, FIT_ARENA(0, sizeof(XPVNV)) },
958 { sizeof(XPVMG), copy_length(XPVMG, xmg_stash), 0, SVt_PVMG, FALSE, HADNV,
959 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
962 { sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur),
963 sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur),
964 + STRUCT_OFFSET(regexp, xpv_cur),
965 SVt_REGEXP, FALSE, NONV, HASARENA,
966 FIT_ARENA(0, sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur))
970 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
971 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
974 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
975 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
977 { sizeof(XPVAV) - STRUCT_OFFSET(XPVAV, xav_fill),
978 copy_length(XPVAV, xmg_stash) - STRUCT_OFFSET(XPVAV, xav_fill),
979 + STRUCT_OFFSET(XPVAV, xav_fill),
980 SVt_PVAV, TRUE, NONV, HASARENA,
981 FIT_ARENA(0, sizeof(XPVAV) - STRUCT_OFFSET(XPVAV, xav_fill)) },
983 { sizeof(XPVHV) - STRUCT_OFFSET(XPVHV, xhv_fill),
984 copy_length(XPVHV, xmg_stash) - STRUCT_OFFSET(XPVHV, xhv_fill),
985 + STRUCT_OFFSET(XPVHV, xhv_fill),
986 SVt_PVHV, TRUE, NONV, HASARENA,
987 FIT_ARENA(0, sizeof(XPVHV) - STRUCT_OFFSET(XPVHV, xhv_fill)) },
990 { sizeof(XPVCV) - STRUCT_OFFSET(XPVCV, xpv_cur),
991 sizeof(XPVCV) - STRUCT_OFFSET(XPVCV, xpv_cur),
992 + STRUCT_OFFSET(XPVCV, xpv_cur),
993 SVt_PVCV, TRUE, NONV, HASARENA,
994 FIT_ARENA(0, sizeof(XPVCV) - STRUCT_OFFSET(XPVCV, xpv_cur)) },
996 { sizeof(XPVFM) - STRUCT_OFFSET(XPVFM, xpv_cur),
997 sizeof(XPVFM) - STRUCT_OFFSET(XPVFM, xpv_cur),
998 + STRUCT_OFFSET(XPVFM, xpv_cur),
999 SVt_PVFM, TRUE, NONV, NOARENA,
1000 FIT_ARENA(20, sizeof(XPVFM) - STRUCT_OFFSET(XPVFM, xpv_cur)) },
1002 /* XPVIO is 84 bytes, fits 48x */
1003 { sizeof(XPVIO) - STRUCT_OFFSET(XPVIO, xpv_cur),
1004 sizeof(XPVIO) - STRUCT_OFFSET(XPVIO, xpv_cur),
1005 + STRUCT_OFFSET(XPVIO, xpv_cur),
1006 SVt_PVIO, TRUE, NONV, HASARENA,
1007 FIT_ARENA(24, sizeof(XPVIO) - STRUCT_OFFSET(XPVIO, xpv_cur)) },
1010 #define new_body_type(sv_type) \
1011 (void *)((char *)S_new_body(aTHX_ sv_type))
1013 #define del_body_type(p, sv_type) \
1014 del_body(p, &PL_body_roots[sv_type])
1017 #define new_body_allocated(sv_type) \
1018 (void *)((char *)S_new_body(aTHX_ sv_type) \
1019 - bodies_by_type[sv_type].offset)
1021 #define del_body_allocated(p, sv_type) \
1022 del_body(p + bodies_by_type[sv_type].offset, &PL_body_roots[sv_type])
1025 #define my_safemalloc(s) (void*)safemalloc(s)
1026 #define my_safecalloc(s) (void*)safecalloc(s, 1)
1027 #define my_safefree(p) safefree((char*)p)
1031 #define new_XNV() my_safemalloc(sizeof(XPVNV))
1032 #define del_XNV(p) my_safefree(p)
1034 #define new_XPVNV() my_safemalloc(sizeof(XPVNV))
1035 #define del_XPVNV(p) my_safefree(p)
1037 #define new_XPVAV() my_safemalloc(sizeof(XPVAV))
1038 #define del_XPVAV(p) my_safefree(p)
1040 #define new_XPVHV() my_safemalloc(sizeof(XPVHV))
1041 #define del_XPVHV(p) my_safefree(p)
1043 #define new_XPVMG() my_safemalloc(sizeof(XPVMG))
1044 #define del_XPVMG(p) my_safefree(p)
1046 #define new_XPVGV() my_safemalloc(sizeof(XPVGV))
1047 #define del_XPVGV(p) my_safefree(p)
1051 #define new_XNV() new_body_type(SVt_NV)
1052 #define del_XNV(p) del_body_type(p, SVt_NV)
1054 #define new_XPVNV() new_body_type(SVt_PVNV)
1055 #define del_XPVNV(p) del_body_type(p, SVt_PVNV)
1057 #define new_XPVAV() new_body_allocated(SVt_PVAV)
1058 #define del_XPVAV(p) del_body_allocated(p, SVt_PVAV)
1060 #define new_XPVHV() new_body_allocated(SVt_PVHV)
1061 #define del_XPVHV(p) del_body_allocated(p, SVt_PVHV)
1063 #define new_XPVMG() new_body_type(SVt_PVMG)
1064 #define del_XPVMG(p) del_body_type(p, SVt_PVMG)
1066 #define new_XPVGV() new_body_type(SVt_PVGV)
1067 #define del_XPVGV(p) del_body_type(p, SVt_PVGV)
1071 /* no arena for you! */
1073 #define new_NOARENA(details) \
1074 my_safemalloc((details)->body_size + (details)->offset)
1075 #define new_NOARENAZ(details) \
1076 my_safecalloc((details)->body_size + (details)->offset)
1079 S_more_bodies (pTHX_ const svtype sv_type)
1082 void ** const root = &PL_body_roots[sv_type];
1083 const struct body_details * const bdp = &bodies_by_type[sv_type];
1084 const size_t body_size = bdp->body_size;
1087 const size_t arena_size = Perl_malloc_good_size(bdp->arena_size);
1088 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1089 static bool done_sanity_check;
1091 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1092 * variables like done_sanity_check. */
1093 if (!done_sanity_check) {
1094 unsigned int i = SVt_LAST;
1096 done_sanity_check = TRUE;
1099 assert (bodies_by_type[i].type == i);
1103 assert(bdp->arena_size);
1105 start = (char*) Perl_get_arena(aTHX_ arena_size, sv_type);
1107 end = start + arena_size - 2 * body_size;
1109 /* computed count doesnt reflect the 1st slot reservation */
1110 #if defined(MYMALLOC) || defined(HAS_MALLOC_GOOD_SIZE)
1111 DEBUG_m(PerlIO_printf(Perl_debug_log,
1112 "arena %p end %p arena-size %d (from %d) type %d "
1114 (void*)start, (void*)end, (int)arena_size,
1115 (int)bdp->arena_size, sv_type, (int)body_size,
1116 (int)arena_size / (int)body_size));
1118 DEBUG_m(PerlIO_printf(Perl_debug_log,
1119 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1120 (void*)start, (void*)end,
1121 (int)bdp->arena_size, sv_type, (int)body_size,
1122 (int)bdp->arena_size / (int)body_size));
1124 *root = (void *)start;
1126 while (start <= end) {
1127 char * const next = start + body_size;
1128 *(void**) start = (void *)next;
1131 *(void **)start = 0;
1136 /* grab a new thing from the free list, allocating more if necessary.
1137 The inline version is used for speed in hot routines, and the
1138 function using it serves the rest (unless PURIFY).
1140 #define new_body_inline(xpv, sv_type) \
1142 void ** const r3wt = &PL_body_roots[sv_type]; \
1143 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1144 ? *((void **)(r3wt)) : more_bodies(sv_type)); \
1145 *(r3wt) = *(void**)(xpv); \
1151 S_new_body(pTHX_ const svtype sv_type)
1155 new_body_inline(xpv, sv_type);
1161 static const struct body_details fake_rv =
1162 { 0, 0, 0, SVt_IV, FALSE, NONV, NOARENA, 0 };
1165 =for apidoc sv_upgrade
1167 Upgrade an SV to a more complex form. Generally adds a new body type to the
1168 SV, then copies across as much information as possible from the old body.
1169 You generally want to use the C<SvUPGRADE> macro wrapper. See also C<svtype>.
1175 Perl_sv_upgrade(pTHX_ register SV *const sv, svtype new_type)
1180 const svtype old_type = SvTYPE(sv);
1181 const struct body_details *new_type_details;
1182 const struct body_details *old_type_details
1183 = bodies_by_type + old_type;
1184 SV *referant = NULL;
1186 PERL_ARGS_ASSERT_SV_UPGRADE;
1188 if (new_type != SVt_PV && SvIsCOW(sv)) {
1189 sv_force_normal_flags(sv, 0);
1192 if (old_type == new_type)
1195 old_body = SvANY(sv);
1197 /* Copying structures onto other structures that have been neatly zeroed
1198 has a subtle gotcha. Consider XPVMG
1200 +------+------+------+------+------+-------+-------+
1201 | NV | CUR | LEN | IV | MAGIC | STASH |
1202 +------+------+------+------+------+-------+-------+
1203 0 4 8 12 16 20 24 28
1205 where NVs are aligned to 8 bytes, so that sizeof that structure is
1206 actually 32 bytes long, with 4 bytes of padding at the end:
1208 +------+------+------+------+------+-------+-------+------+
1209 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1210 +------+------+------+------+------+-------+-------+------+
1211 0 4 8 12 16 20 24 28 32
1213 so what happens if you allocate memory for this structure:
1215 +------+------+------+------+------+-------+-------+------+------+...
1216 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1217 +------+------+------+------+------+-------+-------+------+------+...
1218 0 4 8 12 16 20 24 28 32 36
1220 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1221 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1222 started out as zero once, but it's quite possible that it isn't. So now,
1223 rather than a nicely zeroed GP, you have it pointing somewhere random.
1226 (In fact, GP ends up pointing at a previous GP structure, because the
1227 principle cause of the padding in XPVMG getting garbage is a copy of
1228 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1229 this happens to be moot because XPVGV has been re-ordered, with GP
1230 no longer after STASH)
1232 So we are careful and work out the size of used parts of all the
1240 referant = SvRV(sv);
1241 old_type_details = &fake_rv;
1242 if (new_type == SVt_NV)
1243 new_type = SVt_PVNV;
1245 if (new_type < SVt_PVIV) {
1246 new_type = (new_type == SVt_NV)
1247 ? SVt_PVNV : SVt_PVIV;
1252 if (new_type < SVt_PVNV) {
1253 new_type = SVt_PVNV;
1257 assert(new_type > SVt_PV);
1258 assert(SVt_IV < SVt_PV);
1259 assert(SVt_NV < SVt_PV);
1266 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1267 there's no way that it can be safely upgraded, because perl.c
1268 expects to Safefree(SvANY(PL_mess_sv)) */
1269 assert(sv != PL_mess_sv);
1270 /* This flag bit is used to mean other things in other scalar types.
1271 Given that it only has meaning inside the pad, it shouldn't be set
1272 on anything that can get upgraded. */
1273 assert(!SvPAD_TYPED(sv));
1276 if (old_type_details->cant_upgrade)
1277 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1278 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1281 if (old_type > new_type)
1282 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1283 (int)old_type, (int)new_type);
1285 new_type_details = bodies_by_type + new_type;
1287 SvFLAGS(sv) &= ~SVTYPEMASK;
1288 SvFLAGS(sv) |= new_type;
1290 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1291 the return statements above will have triggered. */
1292 assert (new_type != SVt_NULL);
1295 assert(old_type == SVt_NULL);
1296 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1300 assert(old_type == SVt_NULL);
1301 SvANY(sv) = new_XNV();
1306 assert(new_type_details->body_size);
1309 assert(new_type_details->arena);
1310 assert(new_type_details->arena_size);
1311 /* This points to the start of the allocated area. */
1312 new_body_inline(new_body, new_type);
1313 Zero(new_body, new_type_details->body_size, char);
1314 new_body = ((char *)new_body) - new_type_details->offset;
1316 /* We always allocated the full length item with PURIFY. To do this
1317 we fake things so that arena is false for all 16 types.. */
1318 new_body = new_NOARENAZ(new_type_details);
1320 SvANY(sv) = new_body;
1321 if (new_type == SVt_PVAV) {
1325 if (old_type_details->body_size) {
1328 /* It will have been zeroed when the new body was allocated.
1329 Lets not write to it, in case it confuses a write-back
1335 #ifndef NODEFAULT_SHAREKEYS
1336 HvSHAREKEYS_on(sv); /* key-sharing on by default */
1338 HvMAX(sv) = 7; /* (start with 8 buckets) */
1339 if (old_type_details->body_size) {
1342 /* It will have been zeroed when the new body was allocated.
1343 Lets not write to it, in case it confuses a write-back
1348 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1349 The target created by newSVrv also is, and it can have magic.
1350 However, it never has SvPVX set.
1352 if (old_type == SVt_IV) {
1354 } else if (old_type >= SVt_PV) {
1355 assert(SvPVX_const(sv) == 0);
1358 if (old_type >= SVt_PVMG) {
1359 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1360 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1362 sv->sv_u.svu_array = NULL; /* or svu_hash */
1368 /* XXX Is this still needed? Was it ever needed? Surely as there is
1369 no route from NV to PVIV, NOK can never be true */
1370 assert(!SvNOKp(sv));
1382 assert(new_type_details->body_size);
1383 /* We always allocated the full length item with PURIFY. To do this
1384 we fake things so that arena is false for all 16 types.. */
1385 if(new_type_details->arena) {
1386 /* This points to the start of the allocated area. */
1387 new_body_inline(new_body, new_type);
1388 Zero(new_body, new_type_details->body_size, char);
1389 new_body = ((char *)new_body) - new_type_details->offset;
1391 new_body = new_NOARENAZ(new_type_details);
1393 SvANY(sv) = new_body;
1395 if (old_type_details->copy) {
1396 /* There is now the potential for an upgrade from something without
1397 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1398 int offset = old_type_details->offset;
1399 int length = old_type_details->copy;
1401 if (new_type_details->offset > old_type_details->offset) {
1402 const int difference
1403 = new_type_details->offset - old_type_details->offset;
1404 offset += difference;
1405 length -= difference;
1407 assert (length >= 0);
1409 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1413 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1414 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1415 * correct 0.0 for us. Otherwise, if the old body didn't have an
1416 * NV slot, but the new one does, then we need to initialise the
1417 * freshly created NV slot with whatever the correct bit pattern is
1419 if (old_type_details->zero_nv && !new_type_details->zero_nv
1420 && !isGV_with_GP(sv))
1424 if (new_type == SVt_PVIO)
1425 IoPAGE_LEN(sv) = 60;
1426 if (old_type < SVt_PV) {
1427 /* referant will be NULL unless the old type was SVt_IV emulating
1429 sv->sv_u.svu_rv = referant;
1433 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1434 (unsigned long)new_type);
1437 if (old_type_details->arena) {
1438 /* If there was an old body, then we need to free it.
1439 Note that there is an assumption that all bodies of types that
1440 can be upgraded came from arenas. Only the more complex non-
1441 upgradable types are allowed to be directly malloc()ed. */
1443 my_safefree(old_body);
1445 del_body((void*)((char*)old_body + old_type_details->offset),
1446 &PL_body_roots[old_type]);
1452 =for apidoc sv_backoff
1454 Remove any string offset. You should normally use the C<SvOOK_off> macro
1461 Perl_sv_backoff(pTHX_ register SV *const sv)
1464 const char * const s = SvPVX_const(sv);
1466 PERL_ARGS_ASSERT_SV_BACKOFF;
1467 PERL_UNUSED_CONTEXT;
1470 assert(SvTYPE(sv) != SVt_PVHV);
1471 assert(SvTYPE(sv) != SVt_PVAV);
1473 SvOOK_offset(sv, delta);
1475 SvLEN_set(sv, SvLEN(sv) + delta);
1476 SvPV_set(sv, SvPVX(sv) - delta);
1477 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1478 SvFLAGS(sv) &= ~SVf_OOK;
1485 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1486 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1487 Use the C<SvGROW> wrapper instead.
1493 Perl_sv_grow(pTHX_ register SV *const sv, register STRLEN newlen)
1497 PERL_ARGS_ASSERT_SV_GROW;
1499 if (PL_madskills && newlen >= 0x100000) {
1500 PerlIO_printf(Perl_debug_log,
1501 "Allocation too large: %"UVxf"\n", (UV)newlen);
1503 #ifdef HAS_64K_LIMIT
1504 if (newlen >= 0x10000) {
1505 PerlIO_printf(Perl_debug_log,
1506 "Allocation too large: %"UVxf"\n", (UV)newlen);
1509 #endif /* HAS_64K_LIMIT */
1512 if (SvTYPE(sv) < SVt_PV) {
1513 sv_upgrade(sv, SVt_PV);
1514 s = SvPVX_mutable(sv);
1516 else if (SvOOK(sv)) { /* pv is offset? */
1518 s = SvPVX_mutable(sv);
1519 if (newlen > SvLEN(sv))
1520 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1521 #ifdef HAS_64K_LIMIT
1522 if (newlen >= 0x10000)
1527 s = SvPVX_mutable(sv);
1529 if (newlen > SvLEN(sv)) { /* need more room? */
1530 #ifndef Perl_safesysmalloc_size
1531 newlen = PERL_STRLEN_ROUNDUP(newlen);
1533 if (SvLEN(sv) && s) {
1534 s = (char*)saferealloc(s, newlen);
1537 s = (char*)safemalloc(newlen);
1538 if (SvPVX_const(sv) && SvCUR(sv)) {
1539 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1543 #ifdef Perl_safesysmalloc_size
1544 /* Do this here, do it once, do it right, and then we will never get
1545 called back into sv_grow() unless there really is some growing
1547 SvLEN_set(sv, Perl_safesysmalloc_size(s));
1549 SvLEN_set(sv, newlen);
1556 =for apidoc sv_setiv
1558 Copies an integer into the given SV, upgrading first if necessary.
1559 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1565 Perl_sv_setiv(pTHX_ register SV *const sv, const IV i)
1569 PERL_ARGS_ASSERT_SV_SETIV;
1571 SV_CHECK_THINKFIRST_COW_DROP(sv);
1572 switch (SvTYPE(sv)) {
1575 sv_upgrade(sv, SVt_IV);
1578 sv_upgrade(sv, SVt_PVIV);
1582 if (!isGV_with_GP(sv))
1589 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1593 (void)SvIOK_only(sv); /* validate number */
1599 =for apidoc sv_setiv_mg
1601 Like C<sv_setiv>, but also handles 'set' magic.
1607 Perl_sv_setiv_mg(pTHX_ register SV *const sv, const IV i)
1609 PERL_ARGS_ASSERT_SV_SETIV_MG;
1616 =for apidoc sv_setuv
1618 Copies an unsigned integer into the given SV, upgrading first if necessary.
1619 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1625 Perl_sv_setuv(pTHX_ register SV *const sv, const UV u)
1627 PERL_ARGS_ASSERT_SV_SETUV;
1629 /* With these two if statements:
1630 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1633 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1635 If you wish to remove them, please benchmark to see what the effect is
1637 if (u <= (UV)IV_MAX) {
1638 sv_setiv(sv, (IV)u);
1647 =for apidoc sv_setuv_mg
1649 Like C<sv_setuv>, but also handles 'set' magic.
1655 Perl_sv_setuv_mg(pTHX_ register SV *const sv, const UV u)
1657 PERL_ARGS_ASSERT_SV_SETUV_MG;
1664 =for apidoc sv_setnv
1666 Copies a double into the given SV, upgrading first if necessary.
1667 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1673 Perl_sv_setnv(pTHX_ register SV *const sv, const NV num)
1677 PERL_ARGS_ASSERT_SV_SETNV;
1679 SV_CHECK_THINKFIRST_COW_DROP(sv);
1680 switch (SvTYPE(sv)) {
1683 sv_upgrade(sv, SVt_NV);
1687 sv_upgrade(sv, SVt_PVNV);
1691 if (!isGV_with_GP(sv))
1698 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1703 (void)SvNOK_only(sv); /* validate number */
1708 =for apidoc sv_setnv_mg
1710 Like C<sv_setnv>, but also handles 'set' magic.
1716 Perl_sv_setnv_mg(pTHX_ register SV *const sv, const NV num)
1718 PERL_ARGS_ASSERT_SV_SETNV_MG;
1724 /* Print an "isn't numeric" warning, using a cleaned-up,
1725 * printable version of the offending string
1729 S_not_a_number(pTHX_ SV *const sv)
1736 PERL_ARGS_ASSERT_NOT_A_NUMBER;
1739 dsv = newSVpvs_flags("", SVs_TEMP);
1740 pv = sv_uni_display(dsv, sv, 10, 0);
1743 const char * const limit = tmpbuf + sizeof(tmpbuf) - 8;
1744 /* each *s can expand to 4 chars + "...\0",
1745 i.e. need room for 8 chars */
1747 const char *s = SvPVX_const(sv);
1748 const char * const end = s + SvCUR(sv);
1749 for ( ; s < end && d < limit; s++ ) {
1751 if (ch & 128 && !isPRINT_LC(ch)) {
1760 else if (ch == '\r') {
1764 else if (ch == '\f') {
1768 else if (ch == '\\') {
1772 else if (ch == '\0') {
1776 else if (isPRINT_LC(ch))
1793 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1794 "Argument \"%s\" isn't numeric in %s", pv,
1797 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1798 "Argument \"%s\" isn't numeric", pv);
1802 =for apidoc looks_like_number
1804 Test if the content of an SV looks like a number (or is a number).
1805 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1806 non-numeric warning), even if your atof() doesn't grok them.
1812 Perl_looks_like_number(pTHX_ SV *const sv)
1814 register const char *sbegin;
1817 PERL_ARGS_ASSERT_LOOKS_LIKE_NUMBER;
1820 sbegin = SvPVX_const(sv);
1823 else if (SvPOKp(sv))
1824 sbegin = SvPV_const(sv, len);
1826 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1827 return grok_number(sbegin, len, NULL);
1831 S_glob_2number(pTHX_ GV * const gv)
1833 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1834 SV *const buffer = sv_newmortal();
1836 PERL_ARGS_ASSERT_GLOB_2NUMBER;
1838 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1841 gv_efullname3(buffer, gv, "*");
1842 SvFLAGS(gv) |= wasfake;
1844 /* We know that all GVs stringify to something that is not-a-number,
1845 so no need to test that. */
1846 if (ckWARN(WARN_NUMERIC))
1847 not_a_number(buffer);
1848 /* We just want something true to return, so that S_sv_2iuv_common
1849 can tail call us and return true. */
1853 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1854 until proven guilty, assume that things are not that bad... */
1859 As 64 bit platforms often have an NV that doesn't preserve all bits of
1860 an IV (an assumption perl has been based on to date) it becomes necessary
1861 to remove the assumption that the NV always carries enough precision to
1862 recreate the IV whenever needed, and that the NV is the canonical form.
1863 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1864 precision as a side effect of conversion (which would lead to insanity
1865 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1866 1) to distinguish between IV/UV/NV slots that have cached a valid
1867 conversion where precision was lost and IV/UV/NV slots that have a
1868 valid conversion which has lost no precision
1869 2) to ensure that if a numeric conversion to one form is requested that
1870 would lose precision, the precise conversion (or differently
1871 imprecise conversion) is also performed and cached, to prevent
1872 requests for different numeric formats on the same SV causing
1873 lossy conversion chains. (lossless conversion chains are perfectly
1878 SvIOKp is true if the IV slot contains a valid value
1879 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1880 SvNOKp is true if the NV slot contains a valid value
1881 SvNOK is true only if the NV value is accurate
1884 while converting from PV to NV, check to see if converting that NV to an
1885 IV(or UV) would lose accuracy over a direct conversion from PV to
1886 IV(or UV). If it would, cache both conversions, return NV, but mark
1887 SV as IOK NOKp (ie not NOK).
1889 While converting from PV to IV, check to see if converting that IV to an
1890 NV would lose accuracy over a direct conversion from PV to NV. If it
1891 would, cache both conversions, flag similarly.
1893 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1894 correctly because if IV & NV were set NV *always* overruled.
1895 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1896 changes - now IV and NV together means that the two are interchangeable:
1897 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1899 The benefit of this is that operations such as pp_add know that if
1900 SvIOK is true for both left and right operands, then integer addition
1901 can be used instead of floating point (for cases where the result won't
1902 overflow). Before, floating point was always used, which could lead to
1903 loss of precision compared with integer addition.
1905 * making IV and NV equal status should make maths accurate on 64 bit
1907 * may speed up maths somewhat if pp_add and friends start to use
1908 integers when possible instead of fp. (Hopefully the overhead in
1909 looking for SvIOK and checking for overflow will not outweigh the
1910 fp to integer speedup)
1911 * will slow down integer operations (callers of SvIV) on "inaccurate"
1912 values, as the change from SvIOK to SvIOKp will cause a call into
1913 sv_2iv each time rather than a macro access direct to the IV slot
1914 * should speed up number->string conversion on integers as IV is
1915 favoured when IV and NV are equally accurate
1917 ####################################################################
1918 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1919 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1920 On the other hand, SvUOK is true iff UV.
1921 ####################################################################
1923 Your mileage will vary depending your CPU's relative fp to integer
1927 #ifndef NV_PRESERVES_UV
1928 # define IS_NUMBER_UNDERFLOW_IV 1
1929 # define IS_NUMBER_UNDERFLOW_UV 2
1930 # define IS_NUMBER_IV_AND_UV 2
1931 # define IS_NUMBER_OVERFLOW_IV 4
1932 # define IS_NUMBER_OVERFLOW_UV 5
1934 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1936 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1938 S_sv_2iuv_non_preserve(pTHX_ register SV *const sv
1946 PERL_ARGS_ASSERT_SV_2IUV_NON_PRESERVE;
1948 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1949 if (SvNVX(sv) < (NV)IV_MIN) {
1950 (void)SvIOKp_on(sv);
1952 SvIV_set(sv, IV_MIN);
1953 return IS_NUMBER_UNDERFLOW_IV;
1955 if (SvNVX(sv) > (NV)UV_MAX) {
1956 (void)SvIOKp_on(sv);
1959 SvUV_set(sv, UV_MAX);
1960 return IS_NUMBER_OVERFLOW_UV;
1962 (void)SvIOKp_on(sv);
1964 /* Can't use strtol etc to convert this string. (See truth table in
1966 if (SvNVX(sv) <= (UV)IV_MAX) {
1967 SvIV_set(sv, I_V(SvNVX(sv)));
1968 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1969 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1971 /* Integer is imprecise. NOK, IOKp */
1973 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
1976 SvUV_set(sv, U_V(SvNVX(sv)));
1977 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
1978 if (SvUVX(sv) == UV_MAX) {
1979 /* As we know that NVs don't preserve UVs, UV_MAX cannot
1980 possibly be preserved by NV. Hence, it must be overflow.
1982 return IS_NUMBER_OVERFLOW_UV;
1984 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
1986 /* Integer is imprecise. NOK, IOKp */
1988 return IS_NUMBER_OVERFLOW_IV;
1990 #endif /* !NV_PRESERVES_UV*/
1993 S_sv_2iuv_common(pTHX_ SV *const sv)
1997 PERL_ARGS_ASSERT_SV_2IUV_COMMON;
2000 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
2001 * without also getting a cached IV/UV from it at the same time
2002 * (ie PV->NV conversion should detect loss of accuracy and cache
2003 * IV or UV at same time to avoid this. */
2004 /* IV-over-UV optimisation - choose to cache IV if possible */
2006 if (SvTYPE(sv) == SVt_NV)
2007 sv_upgrade(sv, SVt_PVNV);
2009 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
2010 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
2011 certainly cast into the IV range at IV_MAX, whereas the correct
2012 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
2014 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
2015 if (Perl_isnan(SvNVX(sv))) {
2021 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2022 SvIV_set(sv, I_V(SvNVX(sv)));
2023 if (SvNVX(sv) == (NV) SvIVX(sv)
2024 #ifndef NV_PRESERVES_UV
2025 && (((UV)1 << NV_PRESERVES_UV_BITS) >
2026 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
2027 /* Don't flag it as "accurately an integer" if the number
2028 came from a (by definition imprecise) NV operation, and
2029 we're outside the range of NV integer precision */
2033 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
2035 /* scalar has trailing garbage, eg "42a" */
2037 DEBUG_c(PerlIO_printf(Perl_debug_log,
2038 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
2044 /* IV not precise. No need to convert from PV, as NV
2045 conversion would already have cached IV if it detected
2046 that PV->IV would be better than PV->NV->IV
2047 flags already correct - don't set public IOK. */
2048 DEBUG_c(PerlIO_printf(Perl_debug_log,
2049 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
2054 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
2055 but the cast (NV)IV_MIN rounds to a the value less (more
2056 negative) than IV_MIN which happens to be equal to SvNVX ??
2057 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
2058 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
2059 (NV)UVX == NVX are both true, but the values differ. :-(
2060 Hopefully for 2s complement IV_MIN is something like
2061 0x8000000000000000 which will be exact. NWC */
2064 SvUV_set(sv, U_V(SvNVX(sv)));
2066 (SvNVX(sv) == (NV) SvUVX(sv))
2067 #ifndef NV_PRESERVES_UV
2068 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
2069 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
2070 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
2071 /* Don't flag it as "accurately an integer" if the number
2072 came from a (by definition imprecise) NV operation, and
2073 we're outside the range of NV integer precision */
2079 DEBUG_c(PerlIO_printf(Perl_debug_log,
2080 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
2086 else if (SvPOKp(sv) && SvLEN(sv)) {
2088 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2089 /* We want to avoid a possible problem when we cache an IV/ a UV which
2090 may be later translated to an NV, and the resulting NV is not
2091 the same as the direct translation of the initial string
2092 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
2093 be careful to ensure that the value with the .456 is around if the
2094 NV value is requested in the future).
2096 This means that if we cache such an IV/a UV, we need to cache the
2097 NV as well. Moreover, we trade speed for space, and do not
2098 cache the NV if we are sure it's not needed.
2101 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
2102 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2103 == IS_NUMBER_IN_UV) {
2104 /* It's definitely an integer, only upgrade to PVIV */
2105 if (SvTYPE(sv) < SVt_PVIV)
2106 sv_upgrade(sv, SVt_PVIV);
2108 } else if (SvTYPE(sv) < SVt_PVNV)
2109 sv_upgrade(sv, SVt_PVNV);
2111 /* If NVs preserve UVs then we only use the UV value if we know that
2112 we aren't going to call atof() below. If NVs don't preserve UVs
2113 then the value returned may have more precision than atof() will
2114 return, even though value isn't perfectly accurate. */
2115 if ((numtype & (IS_NUMBER_IN_UV
2116 #ifdef NV_PRESERVES_UV
2119 )) == IS_NUMBER_IN_UV) {
2120 /* This won't turn off the public IOK flag if it was set above */
2121 (void)SvIOKp_on(sv);
2123 if (!(numtype & IS_NUMBER_NEG)) {
2125 if (value <= (UV)IV_MAX) {
2126 SvIV_set(sv, (IV)value);
2128 /* it didn't overflow, and it was positive. */
2129 SvUV_set(sv, value);
2133 /* 2s complement assumption */
2134 if (value <= (UV)IV_MIN) {
2135 SvIV_set(sv, -(IV)value);
2137 /* Too negative for an IV. This is a double upgrade, but
2138 I'm assuming it will be rare. */
2139 if (SvTYPE(sv) < SVt_PVNV)
2140 sv_upgrade(sv, SVt_PVNV);
2144 SvNV_set(sv, -(NV)value);
2145 SvIV_set(sv, IV_MIN);
2149 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2150 will be in the previous block to set the IV slot, and the next
2151 block to set the NV slot. So no else here. */
2153 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2154 != IS_NUMBER_IN_UV) {
2155 /* It wasn't an (integer that doesn't overflow the UV). */
2156 SvNV_set(sv, Atof(SvPVX_const(sv)));
2158 if (! numtype && ckWARN(WARN_NUMERIC))
2161 #if defined(USE_LONG_DOUBLE)
2162 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2163 PTR2UV(sv), SvNVX(sv)));
2165 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2166 PTR2UV(sv), SvNVX(sv)));
2169 #ifdef NV_PRESERVES_UV
2170 (void)SvIOKp_on(sv);
2172 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2173 SvIV_set(sv, I_V(SvNVX(sv)));
2174 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2177 NOOP; /* Integer is imprecise. NOK, IOKp */
2179 /* UV will not work better than IV */
2181 if (SvNVX(sv) > (NV)UV_MAX) {
2183 /* Integer is inaccurate. NOK, IOKp, is UV */
2184 SvUV_set(sv, UV_MAX);
2186 SvUV_set(sv, U_V(SvNVX(sv)));
2187 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2188 NV preservse UV so can do correct comparison. */
2189 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2192 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2197 #else /* NV_PRESERVES_UV */
2198 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2199 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2200 /* The IV/UV slot will have been set from value returned by
2201 grok_number above. The NV slot has just been set using
2204 assert (SvIOKp(sv));
2206 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2207 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2208 /* Small enough to preserve all bits. */
2209 (void)SvIOKp_on(sv);
2211 SvIV_set(sv, I_V(SvNVX(sv)));
2212 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2214 /* Assumption: first non-preserved integer is < IV_MAX,
2215 this NV is in the preserved range, therefore: */
2216 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2218 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2222 0 0 already failed to read UV.
2223 0 1 already failed to read UV.
2224 1 0 you won't get here in this case. IV/UV
2225 slot set, public IOK, Atof() unneeded.
2226 1 1 already read UV.
2227 so there's no point in sv_2iuv_non_preserve() attempting
2228 to use atol, strtol, strtoul etc. */
2230 sv_2iuv_non_preserve (sv, numtype);
2232 sv_2iuv_non_preserve (sv);
2236 #endif /* NV_PRESERVES_UV */
2237 /* It might be more code efficient to go through the entire logic above
2238 and conditionally set with SvIOKp_on() rather than SvIOK(), but it
2239 gets complex and potentially buggy, so more programmer efficient
2240 to do it this way, by turning off the public flags: */
2242 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2246 if (isGV_with_GP(sv))
2247 return glob_2number(MUTABLE_GV(sv));
2249 if (!(SvFLAGS(sv) & SVs_PADTMP)) {
2250 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2253 if (SvTYPE(sv) < SVt_IV)
2254 /* Typically the caller expects that sv_any is not NULL now. */
2255 sv_upgrade(sv, SVt_IV);
2256 /* Return 0 from the caller. */
2263 =for apidoc sv_2iv_flags
2265 Return the integer value of an SV, doing any necessary string
2266 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2267 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2273 Perl_sv_2iv_flags(pTHX_ register SV *const sv, const I32 flags)
2278 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2279 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2280 cache IVs just in case. In practice it seems that they never
2281 actually anywhere accessible by user Perl code, let alone get used
2282 in anything other than a string context. */
2283 if (flags & SV_GMAGIC)
2288 return I_V(SvNVX(sv));
2290 if (SvPOKp(sv) && SvLEN(sv)) {
2293 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2295 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2296 == IS_NUMBER_IN_UV) {
2297 /* It's definitely an integer */
2298 if (numtype & IS_NUMBER_NEG) {
2299 if (value < (UV)IV_MIN)
2302 if (value < (UV)IV_MAX)
2307 if (ckWARN(WARN_NUMERIC))
2310 return I_V(Atof(SvPVX_const(sv)));
2315 assert(SvTYPE(sv) >= SVt_PVMG);
2316 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2317 } else if (SvTHINKFIRST(sv)) {
2321 SV * const tmpstr=AMG_CALLun(sv,numer);
2322 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2323 return SvIV(tmpstr);
2326 return PTR2IV(SvRV(sv));
2329 sv_force_normal_flags(sv, 0);
2331 if (SvREADONLY(sv) && !SvOK(sv)) {
2332 if (ckWARN(WARN_UNINITIALIZED))
2338 if (S_sv_2iuv_common(aTHX_ sv))
2341 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2342 PTR2UV(sv),SvIVX(sv)));
2343 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2347 =for apidoc sv_2uv_flags
2349 Return the unsigned integer value of an SV, doing any necessary string
2350 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2351 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2357 Perl_sv_2uv_flags(pTHX_ register SV *const sv, const I32 flags)
2362 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2363 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2364 cache IVs just in case. */
2365 if (flags & SV_GMAGIC)
2370 return U_V(SvNVX(sv));
2371 if (SvPOKp(sv) && SvLEN(sv)) {
2374 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2376 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2377 == IS_NUMBER_IN_UV) {
2378 /* It's definitely an integer */
2379 if (!(numtype & IS_NUMBER_NEG))
2383 if (ckWARN(WARN_NUMERIC))
2386 return U_V(Atof(SvPVX_const(sv)));
2391 assert(SvTYPE(sv) >= SVt_PVMG);
2392 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2393 } else if (SvTHINKFIRST(sv)) {
2397 SV *const tmpstr = AMG_CALLun(sv,numer);
2398 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2399 return SvUV(tmpstr);
2402 return PTR2UV(SvRV(sv));
2405 sv_force_normal_flags(sv, 0);
2407 if (SvREADONLY(sv) && !SvOK(sv)) {
2408 if (ckWARN(WARN_UNINITIALIZED))
2414 if (S_sv_2iuv_common(aTHX_ sv))
2418 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2419 PTR2UV(sv),SvUVX(sv)));
2420 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2426 Return the num value of an SV, doing any necessary string or integer
2427 conversion, magic etc. Normally used via the C<SvNV(sv)> and C<SvNVx(sv)>
2434 Perl_sv_2nv(pTHX_ register SV *const sv)
2439 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2440 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2441 cache IVs just in case. */
2445 if ((SvPOKp(sv) && SvLEN(sv)) && !SvIOKp(sv)) {
2446 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2447 !grok_number(SvPVX_const(sv), SvCUR(sv), NULL))
2449 return Atof(SvPVX_const(sv));
2453 return (NV)SvUVX(sv);
2455 return (NV)SvIVX(sv);
2460 assert(SvTYPE(sv) >= SVt_PVMG);
2461 /* This falls through to the report_uninit near the end of the
2463 } else if (SvTHINKFIRST(sv)) {
2467 SV *const tmpstr = AMG_CALLun(sv,numer);
2468 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2469 return SvNV(tmpstr);
2472 return PTR2NV(SvRV(sv));
2475 sv_force_normal_flags(sv, 0);
2477 if (SvREADONLY(sv) && !SvOK(sv)) {
2478 if (ckWARN(WARN_UNINITIALIZED))
2483 if (SvTYPE(sv) < SVt_NV) {
2484 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2485 sv_upgrade(sv, SVt_NV);
2486 #ifdef USE_LONG_DOUBLE
2488 STORE_NUMERIC_LOCAL_SET_STANDARD();
2489 PerlIO_printf(Perl_debug_log,
2490 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2491 PTR2UV(sv), SvNVX(sv));
2492 RESTORE_NUMERIC_LOCAL();
2496 STORE_NUMERIC_LOCAL_SET_STANDARD();
2497 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2498 PTR2UV(sv), SvNVX(sv));
2499 RESTORE_NUMERIC_LOCAL();
2503 else if (SvTYPE(sv) < SVt_PVNV)
2504 sv_upgrade(sv, SVt_PVNV);
2509 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2510 #ifdef NV_PRESERVES_UV
2516 /* Only set the public NV OK flag if this NV preserves the IV */
2517 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2519 SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2520 : (SvIVX(sv) == I_V(SvNVX(sv))))
2526 else if (SvPOKp(sv) && SvLEN(sv)) {
2528 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2529 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2531 #ifdef NV_PRESERVES_UV
2532 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2533 == IS_NUMBER_IN_UV) {
2534 /* It's definitely an integer */
2535 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2537 SvNV_set(sv, Atof(SvPVX_const(sv)));
2543 SvNV_set(sv, Atof(SvPVX_const(sv)));
2544 /* Only set the public NV OK flag if this NV preserves the value in
2545 the PV at least as well as an IV/UV would.
2546 Not sure how to do this 100% reliably. */
2547 /* if that shift count is out of range then Configure's test is
2548 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2550 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2551 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2552 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2553 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2554 /* Can't use strtol etc to convert this string, so don't try.
2555 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2558 /* value has been set. It may not be precise. */
2559 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2560 /* 2s complement assumption for (UV)IV_MIN */
2561 SvNOK_on(sv); /* Integer is too negative. */
2566 if (numtype & IS_NUMBER_NEG) {
2567 SvIV_set(sv, -(IV)value);
2568 } else if (value <= (UV)IV_MAX) {
2569 SvIV_set(sv, (IV)value);
2571 SvUV_set(sv, value);
2575 if (numtype & IS_NUMBER_NOT_INT) {
2576 /* I believe that even if the original PV had decimals,
2577 they are lost beyond the limit of the FP precision.
2578 However, neither is canonical, so both only get p
2579 flags. NWC, 2000/11/25 */
2580 /* Both already have p flags, so do nothing */
2582 const NV nv = SvNVX(sv);
2583 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2584 if (SvIVX(sv) == I_V(nv)) {
2587 /* It had no "." so it must be integer. */
2591 /* between IV_MAX and NV(UV_MAX).
2592 Could be slightly > UV_MAX */
2594 if (numtype & IS_NUMBER_NOT_INT) {
2595 /* UV and NV both imprecise. */
2597 const UV nv_as_uv = U_V(nv);
2599 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2608 /* It might be more code efficient to go through the entire logic above
2609 and conditionally set with SvNOKp_on() rather than SvNOK(), but it
2610 gets complex and potentially buggy, so more programmer efficient
2611 to do it this way, by turning off the public flags: */
2613 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2614 #endif /* NV_PRESERVES_UV */
2617 if (isGV_with_GP(sv)) {
2618 glob_2number(MUTABLE_GV(sv));
2622 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2624 assert (SvTYPE(sv) >= SVt_NV);
2625 /* Typically the caller expects that sv_any is not NULL now. */
2626 /* XXX Ilya implies that this is a bug in callers that assume this
2627 and ideally should be fixed. */
2630 #if defined(USE_LONG_DOUBLE)
2632 STORE_NUMERIC_LOCAL_SET_STANDARD();
2633 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2634 PTR2UV(sv), SvNVX(sv));
2635 RESTORE_NUMERIC_LOCAL();
2639 STORE_NUMERIC_LOCAL_SET_STANDARD();
2640 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2641 PTR2UV(sv), SvNVX(sv));
2642 RESTORE_NUMERIC_LOCAL();
2651 Return an SV with the numeric value of the source SV, doing any necessary
2652 reference or overload conversion. You must use the C<SvNUM(sv)> macro to
2653 access this function.
2659 Perl_sv_2num(pTHX_ register SV *const sv)
2661 PERL_ARGS_ASSERT_SV_2NUM;
2666 SV * const tmpsv = AMG_CALLun(sv,numer);
2667 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2668 return sv_2num(tmpsv);
2670 return sv_2mortal(newSVuv(PTR2UV(SvRV(sv))));
2673 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2674 * UV as a string towards the end of buf, and return pointers to start and
2677 * We assume that buf is at least TYPE_CHARS(UV) long.
2681 S_uiv_2buf(char *const buf, const IV iv, UV uv, const int is_uv, char **const peob)
2683 char *ptr = buf + TYPE_CHARS(UV);
2684 char * const ebuf = ptr;
2687 PERL_ARGS_ASSERT_UIV_2BUF;
2699 *--ptr = '0' + (char)(uv % 10);
2708 =for apidoc sv_2pv_flags
2710 Returns a pointer to the string value of an SV, and sets *lp to its length.
2711 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a string
2713 Normally invoked via the C<SvPV_flags> macro. C<sv_2pv()> and C<sv_2pv_nomg>
2714 usually end up here too.
2720 Perl_sv_2pv_flags(pTHX_ register SV *const sv, STRLEN *const lp, const I32 flags)
2730 if (SvGMAGICAL(sv)) {
2731 if (flags & SV_GMAGIC)
2736 if (flags & SV_MUTABLE_RETURN)
2737 return SvPVX_mutable(sv);
2738 if (flags & SV_CONST_RETURN)
2739 return (char *)SvPVX_const(sv);
2742 if (SvIOKp(sv) || SvNOKp(sv)) {
2743 char tbuf[64]; /* Must fit sprintf/Gconvert of longest IV/NV */
2748 ? my_snprintf(tbuf, sizeof(tbuf), "%"UVuf, (UV)SvUVX(sv))
2749 : my_snprintf(tbuf, sizeof(tbuf), "%"IVdf, (IV)SvIVX(sv));
2751 Gconvert(SvNVX(sv), NV_DIG, 0, tbuf);
2758 #ifdef FIXNEGATIVEZERO
2759 if (len == 2 && tbuf[0] == '-' && tbuf[1] == '0') {
2765 SvUPGRADE(sv, SVt_PV);
2768 s = SvGROW_mutable(sv, len + 1);
2771 return (char*)memcpy(s, tbuf, len + 1);
2777 assert(SvTYPE(sv) >= SVt_PVMG);
2778 /* This falls through to the report_uninit near the end of the
2780 } else if (SvTHINKFIRST(sv)) {
2784 SV *const tmpstr = AMG_CALLun(sv,string);
2785 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2787 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2791 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2792 if (flags & SV_CONST_RETURN) {
2793 pv = (char *) SvPVX_const(tmpstr);
2795 pv = (flags & SV_MUTABLE_RETURN)
2796 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2799 *lp = SvCUR(tmpstr);
2801 pv = sv_2pv_flags(tmpstr, lp, flags);
2814 SV *const referent = SvRV(sv);
2818 retval = buffer = savepvn("NULLREF", len);
2819 } else if (SvTYPE(referent) == SVt_REGEXP) {
2820 REGEXP * const re = (REGEXP *)MUTABLE_PTR(referent);
2825 /* If the regex is UTF-8 we want the containing scalar to
2826 have an UTF-8 flag too */
2832 if ((seen_evals = RX_SEEN_EVALS(re)))
2833 PL_reginterp_cnt += seen_evals;
2836 *lp = RX_WRAPLEN(re);
2838 return RX_WRAPPED(re);
2840 const char *const typestr = sv_reftype(referent, 0);
2841 const STRLEN typelen = strlen(typestr);
2842 UV addr = PTR2UV(referent);
2843 const char *stashname = NULL;
2844 STRLEN stashnamelen = 0; /* hush, gcc */
2845 const char *buffer_end;
2847 if (SvOBJECT(referent)) {
2848 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2851 stashname = HEK_KEY(name);
2852 stashnamelen = HEK_LEN(name);
2854 if (HEK_UTF8(name)) {
2860 stashname = "__ANON__";
2863 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2864 + 2 * sizeof(UV) + 2 /* )\0 */;
2866 len = typelen + 3 /* (0x */
2867 + 2 * sizeof(UV) + 2 /* )\0 */;
2870 Newx(buffer, len, char);
2871 buffer_end = retval = buffer + len;
2873 /* Working backwards */
2877 *--retval = PL_hexdigit[addr & 15];
2878 } while (addr >>= 4);
2884 memcpy(retval, typestr, typelen);
2888 retval -= stashnamelen;
2889 memcpy(retval, stashname, stashnamelen);
2891 /* retval may not neccesarily have reached the start of the
2893 assert (retval >= buffer);
2895 len = buffer_end - retval - 1; /* -1 for that \0 */
2903 if (SvREADONLY(sv) && !SvOK(sv)) {
2906 if (flags & SV_UNDEF_RETURNS_NULL)
2908 if (ckWARN(WARN_UNINITIALIZED))
2913 if (SvIOK(sv) || ((SvIOKp(sv) && !SvNOKp(sv)))) {
2914 /* I'm assuming that if both IV and NV are equally valid then
2915 converting the IV is going to be more efficient */
2916 const U32 isUIOK = SvIsUV(sv);
2917 char buf[TYPE_CHARS(UV)];
2921 if (SvTYPE(sv) < SVt_PVIV)
2922 sv_upgrade(sv, SVt_PVIV);
2923 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2925 /* inlined from sv_setpvn */
2926 s = SvGROW_mutable(sv, len + 1);
2927 Move(ptr, s, len, char);
2931 else if (SvNOKp(sv)) {
2933 if (SvTYPE(sv) < SVt_PVNV)
2934 sv_upgrade(sv, SVt_PVNV);
2935 /* The +20 is pure guesswork. Configure test needed. --jhi */
2936 s = SvGROW_mutable(sv, NV_DIG + 20);
2937 /* some Xenix systems wipe out errno here */
2939 if (SvNVX(sv) == 0.0)
2940 my_strlcpy(s, "0", SvLEN(sv));
2944 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2947 #ifdef FIXNEGATIVEZERO
2948 if (*s == '-' && s[1] == '0' && !s[2]) {
2960 if (isGV_with_GP(sv)) {
2961 GV *const gv = MUTABLE_GV(sv);
2962 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
2963 SV *const buffer = sv_newmortal();
2965 /* FAKE globs can get coerced, so need to turn this off temporarily
2968 gv_efullname3(buffer, gv, "*");
2969 SvFLAGS(gv) |= wasfake;
2971 assert(SvPOK(buffer));
2973 *lp = SvCUR(buffer);
2975 return SvPVX(buffer);
2980 if (flags & SV_UNDEF_RETURNS_NULL)
2982 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2984 if (SvTYPE(sv) < SVt_PV)
2985 /* Typically the caller expects that sv_any is not NULL now. */
2986 sv_upgrade(sv, SVt_PV);
2990 const STRLEN len = s - SvPVX_const(sv);
2996 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
2997 PTR2UV(sv),SvPVX_const(sv)));
2998 if (flags & SV_CONST_RETURN)
2999 return (char *)SvPVX_const(sv);
3000 if (flags & SV_MUTABLE_RETURN)
3001 return SvPVX_mutable(sv);
3006 =for apidoc sv_copypv
3008 Copies a stringified representation of the source SV into the
3009 destination SV. Automatically performs any necessary mg_get and
3010 coercion of numeric values into strings. Guaranteed to preserve
3011 UTF8 flag even from overloaded objects. Similar in nature to
3012 sv_2pv[_flags] but operates directly on an SV instead of just the
3013 string. Mostly uses sv_2pv_flags to do its work, except when that
3014 would lose the UTF-8'ness of the PV.
3020 Perl_sv_copypv(pTHX_ SV *const dsv, register SV *const ssv)
3023 const char * const s = SvPV_const(ssv,len);
3025 PERL_ARGS_ASSERT_SV_COPYPV;
3027 sv_setpvn(dsv,s,len);
3035 =for apidoc sv_2pvbyte
3037 Return a pointer to the byte-encoded representation of the SV, and set *lp
3038 to its length. May cause the SV to be downgraded from UTF-8 as a
3041 Usually accessed via the C<SvPVbyte> macro.
3047 Perl_sv_2pvbyte(pTHX_ register SV *const sv, STRLEN *const lp)
3049 PERL_ARGS_ASSERT_SV_2PVBYTE;
3051 sv_utf8_downgrade(sv,0);
3052 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
3056 =for apidoc sv_2pvutf8
3058 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
3059 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
3061 Usually accessed via the C<SvPVutf8> macro.
3067 Perl_sv_2pvutf8(pTHX_ register SV *const sv, STRLEN *const lp)
3069 PERL_ARGS_ASSERT_SV_2PVUTF8;
3071 sv_utf8_upgrade(sv);
3072 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
3077 =for apidoc sv_2bool
3079 This function is only called on magical items, and is only used by
3080 sv_true() or its macro equivalent.
3086 Perl_sv_2bool(pTHX_ register SV *const sv)
3090 PERL_ARGS_ASSERT_SV_2BOOL;
3098 SV * const tmpsv = AMG_CALLun(sv,bool_);
3099 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
3100 return (bool)SvTRUE(tmpsv);
3102 return SvRV(sv) != 0;
3105 register XPV* const Xpvtmp = (XPV*)SvANY(sv);
3107 (*sv->sv_u.svu_pv > '0' ||
3108 Xpvtmp->xpv_cur > 1 ||
3109 (Xpvtmp->xpv_cur && *sv->sv_u.svu_pv != '0')))
3116 return SvIVX(sv) != 0;
3119 return SvNVX(sv) != 0.0;
3121 if (isGV_with_GP(sv))
3131 =for apidoc sv_utf8_upgrade
3133 Converts the PV of an SV to its UTF-8-encoded form.
3134 Forces the SV to string form if it is not already.
3135 Will C<mg_get> on C<sv> if appropriate.
3136 Always sets the SvUTF8 flag to avoid future validity checks even
3137 if the whole string is the same in UTF-8 as not.
3138 Returns the number of bytes in the converted string
3140 This is not as a general purpose byte encoding to Unicode interface:
3141 use the Encode extension for that.
3143 =for apidoc sv_utf8_upgrade_nomg
3145 Like sv_utf8_upgrade, but doesn't do magic on C<sv>
3147 =for apidoc sv_utf8_upgrade_flags
3149 Converts the PV of an SV to its UTF-8-encoded form.
3150 Forces the SV to string form if it is not already.
3151 Always sets the SvUTF8 flag to avoid future validity checks even
3152 if all the bytes are invariant in UTF-8. If C<flags> has C<SV_GMAGIC> bit set,
3153 will C<mg_get> on C<sv> if appropriate, else not.
3154 Returns the number of bytes in the converted string
3155 C<sv_utf8_upgrade> and
3156 C<sv_utf8_upgrade_nomg> are implemented in terms of this function.
3158 This is not as a general purpose byte encoding to Unicode interface:
3159 use the Encode extension for that.
3163 The grow version is currently not externally documented. It adds a parameter,
3164 extra, which is the number of unused bytes the string of 'sv' is guaranteed to
3165 have free after it upon return. This allows the caller to reserve extra space
3166 that it intends to fill, to avoid extra grows.
3168 Also externally undocumented for the moment is the flag SV_FORCE_UTF8_UPGRADE,
3169 which can be used to tell this function to not first check to see if there are
3170 any characters that are different in UTF-8 (variant characters) which would
3171 force it to allocate a new string to sv, but to assume there are. Typically
3172 this flag is used by a routine that has already parsed the string to find that
3173 there are such characters, and passes this information on so that the work
3174 doesn't have to be repeated.
3176 (One might think that the calling routine could pass in the position of the
3177 first such variant, so it wouldn't have to be found again. But that is not the
3178 case, because typically when the caller is likely to use this flag, it won't be
3179 calling this routine unless it finds something that won't fit into a byte.
3180 Otherwise it tries to not upgrade and just use bytes. But some things that
3181 do fit into a byte are variants in utf8, and the caller may not have been
3182 keeping track of these.)
3184 If the routine itself changes the string, it adds a trailing NUL. Such a NUL
3185 isn't guaranteed due to having other routines do the work in some input cases,
3186 or if the input is already flagged as being in utf8.
3188 The speed of this could perhaps be improved for many cases if someone wanted to
3189 write a fast function that counts the number of variant characters in a string,
3190 especially if it could return the position of the first one.
3195 Perl_sv_utf8_upgrade_flags_grow(pTHX_ register SV *const sv, const I32 flags, STRLEN extra)
3199 PERL_ARGS_ASSERT_SV_UTF8_UPGRADE_FLAGS_GROW;
3201 if (sv == &PL_sv_undef)
3205 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
3206 (void) sv_2pv_flags(sv,&len, flags);
3208 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3212 (void) SvPV_force(sv,len);
3217 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3222 sv_force_normal_flags(sv, 0);
3225 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING)) {
3226 sv_recode_to_utf8(sv, PL_encoding);
3227 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3231 if (SvCUR(sv) > 0) { /* Assume Latin-1/EBCDIC */
3232 /* This function could be much more efficient if we
3233 * had a FLAG in SVs to signal if there are any variant
3234 * chars in the PV. Given that there isn't such a flag
3235 * make the loop as fast as possible (although there are certainly ways
3236 * to speed this up, eg. through vectorization) */
3237 U8 * s = (U8 *) SvPVX_const(sv);
3238 U8 * e = (U8 *) SvEND(sv);
3240 STRLEN two_byte_count = 0;
3242 if (flags & SV_FORCE_UTF8_UPGRADE) goto must_be_utf8;
3244 /* See if really will need to convert to utf8. We mustn't rely on our
3245 * incoming SV being well formed and having a trailing '\0', as certain
3246 * code in pp_formline can send us partially built SVs. */
3250 if (NATIVE_IS_INVARIANT(ch)) continue;
3252 t--; /* t already incremented; re-point to first variant */
3257 /* utf8 conversion not needed because all are invariants. Mark as
3258 * UTF-8 even if no variant - saves scanning loop */
3264 /* Here, the string should be converted to utf8, either because of an
3265 * input flag (two_byte_count = 0), or because a character that
3266 * requires 2 bytes was found (two_byte_count = 1). t points either to
3267 * the beginning of the string (if we didn't examine anything), or to
3268 * the first variant. In either case, everything from s to t - 1 will
3269 * occupy only 1 byte each on output.
3271 * There are two main ways to convert. One is to create a new string
3272 * and go through the input starting from the beginning, appending each
3273 * converted value onto the new string as we go along. It's probably
3274 * best to allocate enough space in the string for the worst possible
3275 * case rather than possibly running out of space and having to
3276 * reallocate and then copy what we've done so far. Since everything
3277 * from s to t - 1 is invariant, the destination can be initialized
3278 * with these using a fast memory copy
3280 * The other way is to figure out exactly how big the string should be
3281 * by parsing the entire input. Then you don't have to make it big
3282 * enough to handle the worst possible case, and more importantly, if
3283 * the string you already have is large enough, you don't have to
3284 * allocate a new string, you can copy the last character in the input
3285 * string to the final position(s) that will be occupied by the
3286 * converted string and go backwards, stopping at t, since everything
3287 * before that is invariant.
3289 * There are advantages and disadvantages to each method.
3291 * In the first method, we can allocate a new string, do the memory
3292 * copy from the s to t - 1, and then proceed through the rest of the
3293 * string byte-by-byte.
3295 * In the second method, we proceed through the rest of the input
3296 * string just calculating how big the converted string will be. Then
3297 * there are two cases:
3298 * 1) if the string has enough extra space to handle the converted
3299 * value. We go backwards through the string, converting until we
3300 * get to the position we are at now, and then stop. If this
3301 * position is far enough along in the string, this method is
3302 * faster than the other method. If the memory copy were the same
3303 * speed as the byte-by-byte loop, that position would be about
3304 * half-way, as at the half-way mark, parsing to the end and back
3305 * is one complete string's parse, the same amount as starting
3306 * over and going all the way through. Actually, it would be
3307 * somewhat less than half-way, as it's faster to just count bytes
3308 * than to also copy, and we don't have the overhead of allocating
3309 * a new string, changing the scalar to use it, and freeing the
3310 * existing one. But if the memory copy is fast, the break-even
3311 * point is somewhere after half way. The counting loop could be
3312 * sped up by vectorization, etc, to move the break-even point
3313 * further towards the beginning.
3314 * 2) if the string doesn't have enough space to handle the converted
3315 * value. A new string will have to be allocated, and one might
3316 * as well, given that, start from the beginning doing the first
3317 * method. We've spent extra time parsing the string and in
3318 * exchange all we've gotten is that we know precisely how big to
3319 * make the new one. Perl is more optimized for time than space,
3320 * so this case is a loser.
3321 * So what I've decided to do is not use the 2nd method unless it is
3322 * guaranteed that a new string won't have to be allocated, assuming
3323 * the worst case. I also decided not to put any more conditions on it
3324 * than this, for now. It seems likely that, since the worst case is
3325 * twice as big as the unknown portion of the string (plus 1), we won't
3326 * be guaranteed enough space, causing us to go to the first method,
3327 * unless the string is short, or the first variant character is near
3328 * the end of it. In either of these cases, it seems best to use the
3329 * 2nd method. The only circumstance I can think of where this would
3330 * be really slower is if the string had once had much more data in it
3331 * than it does now, but there is still a substantial amount in it */
3334 STRLEN invariant_head = t - s;
3335 STRLEN size = invariant_head + (e - t) * 2 + 1 + extra;
3336 if (SvLEN(sv) < size) {
3338 /* Here, have decided to allocate a new string */
3343 Newx(dst, size, U8);
3345 /* If no known invariants at the beginning of the input string,
3346 * set so starts from there. Otherwise, can use memory copy to
3347 * get up to where we are now, and then start from here */
3349 if (invariant_head <= 0) {
3352 Copy(s, dst, invariant_head, char);
3353 d = dst + invariant_head;
3357 const UV uv = NATIVE8_TO_UNI(*t++);
3358 if (UNI_IS_INVARIANT(uv))
3359 *d++ = (U8)UNI_TO_NATIVE(uv);
3361 *d++ = (U8)UTF8_EIGHT_BIT_HI(uv);
3362 *d++ = (U8)UTF8_EIGHT_BIT_LO(uv);
3366 SvPV_free(sv); /* No longer using pre-existing string */
3367 SvPV_set(sv, (char*)dst);
3368 SvCUR_set(sv, d - dst);
3369 SvLEN_set(sv, size);
3372 /* Here, have decided to get the exact size of the string.
3373 * Currently this happens only when we know that there is
3374 * guaranteed enough space to fit the converted string, so
3375 * don't have to worry about growing. If two_byte_count is 0,
3376 * then t points to the first byte of the string which hasn't
3377 * been examined yet. Otherwise two_byte_count is 1, and t
3378 * points to the first byte in the string that will expand to
3379 * two. Depending on this, start examining at t or 1 after t.
3382 U8 *d = t + two_byte_count;
3385 /* Count up the remaining bytes that expand to two */
3388 const U8 chr = *d++;
3389 if (! NATIVE_IS_INVARIANT(chr)) two_byte_count++;
3392 /* The string will expand by just the number of bytes that
3393 * occupy two positions. But we are one afterwards because of
3394 * the increment just above. This is the place to put the
3395 * trailing NUL, and to set the length before we decrement */
3397 d += two_byte_count;
3398 SvCUR_set(sv, d - s);
3402 /* Having decremented d, it points to the position to put the
3403 * very last byte of the expanded string. Go backwards through
3404 * the string, copying and expanding as we go, stopping when we
3405 * get to the part that is invariant the rest of the way down */
3409 const U8 ch = NATIVE8_TO_UNI(*e--);
3410 if (UNI_IS_INVARIANT(ch)) {
3411 *d-- = UNI_TO_NATIVE(ch);
3413 *d-- = (U8)UTF8_EIGHT_BIT_LO(ch);
3414 *d-- = (U8)UTF8_EIGHT_BIT_HI(ch);
3421 /* Mark as UTF-8 even if no variant - saves scanning loop */
3427 =for apidoc sv_utf8_downgrade
3429 Attempts to convert the PV of an SV from characters to bytes.
3430 If the PV contains a character that cannot fit
3431 in a byte, this conversion will fail;
3432 in this case, either returns false or, if C<fail_ok> is not
3435 This is not as a general purpose Unicode to byte encoding interface:
3436 use the Encode extension for that.
3442 Perl_sv_utf8_downgrade(pTHX_ register SV *const sv, const bool fail_ok)
3446 PERL_ARGS_ASSERT_SV_UTF8_DOWNGRADE;
3448 if (SvPOKp(sv) && SvUTF8(sv)) {
3454 sv_force_normal_flags(sv, 0);
3456 s = (U8 *) SvPV(sv, len);
3457 if (!utf8_to_bytes(s, &len)) {
3462 Perl_croak(aTHX_ "Wide character in %s",
3465 Perl_croak(aTHX_ "Wide character");
3476 =for apidoc sv_utf8_encode
3478 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3479 flag off so that it looks like octets again.
3485 Perl_sv_utf8_encode(pTHX_ register SV *const sv)
3487 PERL_ARGS_ASSERT_SV_UTF8_ENCODE;
3490 sv_force_normal_flags(sv, 0);
3492 if (SvREADONLY(sv)) {
3493 Perl_croak(aTHX_ "%s", PL_no_modify);
3495 (void) sv_utf8_upgrade(sv);
3500 =for apidoc sv_utf8_decode
3502 If the PV of the SV is an octet sequence in UTF-8
3503 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3504 so that it looks like a character. If the PV contains only single-byte
3505 characters, the C<SvUTF8> flag stays being off.
3506 Scans PV for validity and returns false if the PV is invalid UTF-8.
3512 Perl_sv_utf8_decode(pTHX_ register SV *const sv)
3514 PERL_ARGS_ASSERT_SV_UTF8_DECODE;
3520 /* The octets may have got themselves encoded - get them back as
3523 if (!sv_utf8_downgrade(sv, TRUE))
3526 /* it is actually just a matter of turning the utf8 flag on, but
3527 * we want to make sure everything inside is valid utf8 first.
3529 c = (const U8 *) SvPVX_const(sv);
3530 if (!is_utf8_string(c, SvCUR(sv)+1))
3532 e = (const U8 *) SvEND(sv);
3535 if (!UTF8_IS_INVARIANT(ch)) {
3545 =for apidoc sv_setsv
3547 Copies the contents of the source SV C<ssv> into the destination SV
3548 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3549 function if the source SV needs to be reused. Does not handle 'set' magic.
3550 Loosely speaking, it performs a copy-by-value, obliterating any previous
3551 content of the destination.
3553 You probably want to use one of the assortment of wrappers, such as
3554 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3555 C<SvSetMagicSV_nosteal>.
3557 =for apidoc sv_setsv_flags
3559 Copies the contents of the source SV C<ssv> into the destination SV
3560 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3561 function if the source SV needs to be reused. Does not handle 'set' magic.
3562 Loosely speaking, it performs a copy-by-value, obliterating any previous
3563 content of the destination.
3564 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3565 C<ssv> if appropriate, else not. If the C<flags> parameter has the
3566 C<NOSTEAL> bit set then the buffers of temps will not be stolen. <sv_setsv>
3567 and C<sv_setsv_nomg> are implemented in terms of this function.
3569 You probably want to use one of the assortment of wrappers, such as
3570 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3571 C<SvSetMagicSV_nosteal>.
3573 This is the primary function for copying scalars, and most other
3574 copy-ish functions and macros use this underneath.
3580 S_glob_assign_glob(pTHX_ SV *const dstr, SV *const sstr, const int dtype)
3582 I32 mro_changes = 0; /* 1 = method, 2 = isa */
3584 PERL_ARGS_ASSERT_GLOB_ASSIGN_GLOB;
3586 if (dtype != SVt_PVGV) {
3587 const char * const name = GvNAME(sstr);
3588 const STRLEN len = GvNAMELEN(sstr);
3590 if (dtype >= SVt_PV) {
3596 SvUPGRADE(dstr, SVt_PVGV);
3597 (void)SvOK_off(dstr);
3598 /* FIXME - why are we doing this, then turning it off and on again
3600 isGV_with_GP_on(dstr);
3602 GvSTASH(dstr) = GvSTASH(sstr);
3604 Perl_sv_add_backref(aTHX_ MUTABLE_SV(GvSTASH(dstr)), dstr);
3605 gv_name_set(MUTABLE_GV(dstr), name, len, GV_ADD);
3606 SvFAKE_on(dstr); /* can coerce to non-glob */
3609 if(GvGP(MUTABLE_GV(sstr))) {
3610 /* If source has method cache entry, clear it */
3612 SvREFCNT_dec(GvCV(sstr));
3616 /* If source has a real method, then a method is
3618 else if(GvCV((const GV *)sstr)) {
3623 /* If dest already had a real method, that's a change as well */
3624 if(!mro_changes && GvGP(MUTABLE_GV(dstr)) && GvCVu((const GV *)dstr)) {
3628 if(strEQ(GvNAME((const GV *)dstr),"ISA"))
3631 gp_free(MUTABLE_GV(dstr));
3632 isGV_with_GP_off(dstr);
3633 (void)SvOK_off(dstr);
3634 isGV_with_GP_on(dstr);
3635 GvINTRO_off(dstr); /* one-shot flag */
3636 GvGP(dstr) = gp_ref(GvGP(sstr));
3637 if (SvTAINTED(sstr))
3639 if (GvIMPORTED(dstr) != GVf_IMPORTED
3640 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3642 GvIMPORTED_on(dstr);
3645 if(mro_changes == 2) mro_isa_changed_in(GvSTASH(dstr));
3646 else if(mro_changes) mro_method_changed_in(GvSTASH(dstr));
3651 S_glob_assign_ref(pTHX_ SV *const dstr, SV *const sstr)
3653 SV * const sref = SvREFCNT_inc(SvRV(sstr));
3655 const int intro = GvINTRO(dstr);
3658 const U32 stype = SvTYPE(sref);
3659 bool mro_changes = FALSE;
3661 PERL_ARGS_ASSERT_GLOB_ASSIGN_REF;
3664 GvINTRO_off(dstr); /* one-shot flag */
3665 GvLINE(dstr) = CopLINE(PL_curcop);
3666 GvEGV(dstr) = MUTABLE_GV(dstr);
3671 location = (SV **) &GvCV(dstr);
3672 import_flag = GVf_IMPORTED_CV;
3675 location = (SV **) &GvHV(dstr);
3676 import_flag = GVf_IMPORTED_HV;
3679 location = (SV **) &GvAV(dstr);
3680 if (strEQ(GvNAME((GV*)dstr), "ISA"))
3682 import_flag = GVf_IMPORTED_AV;
3685 location = (SV **) &GvIOp(dstr);
3688 location = (SV **) &GvFORM(dstr);
3691 location = &GvSV(dstr);
3692 import_flag = GVf_IMPORTED_SV;
3695 if (stype == SVt_PVCV) {
3696 /*if (GvCVGEN(dstr) && (GvCV(dstr) != (const CV *)sref || GvCVGEN(dstr))) {*/
3697 if (GvCVGEN(dstr)) {
3698 SvREFCNT_dec(GvCV(dstr));
3700 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3703 SAVEGENERICSV(*location);
3707 if (stype == SVt_PVCV && (*location != sref || GvCVGEN(dstr))) {
3708 CV* const cv = MUTABLE_CV(*location);
3710 if (!GvCVGEN((const GV *)dstr) &&
3711 (CvROOT(cv) || CvXSUB(cv)))
3713 /* Redefining a sub - warning is mandatory if
3714 it was a const and its value changed. */
3715 if (CvCONST(cv) && CvCONST((const CV *)sref)
3717 == cv_const_sv((const CV *)sref)) {
3719 /* They are 2 constant subroutines generated from
3720 the same constant. This probably means that
3721 they are really the "same" proxy subroutine
3722 instantiated in 2 places. Most likely this is
3723 when a constant is exported twice. Don't warn.
3726 else if (ckWARN(WARN_REDEFINE)
3728 && (!CvCONST((const CV *)sref)
3729 || sv_cmp(cv_const_sv(cv),
3730 cv_const_sv((const CV *)
3732 Perl_warner(aTHX_ packWARN(WARN_REDEFINE),
3735 ? "Constant subroutine %s::%s redefined"
3736 : "Subroutine %s::%s redefined"),
3737 HvNAME_get(GvSTASH((const GV *)dstr)),
3738 GvENAME(MUTABLE_GV(dstr)));
3742 cv_ckproto_len(cv, (const GV *)dstr,
3743 SvPOK(sref) ? SvPVX_const(sref) : NULL,
3744 SvPOK(sref) ? SvCUR(sref) : 0);
3746 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3747 GvASSUMECV_on(dstr);
3748 if(GvSTASH(dstr)) mro_method_changed_in(GvSTASH(dstr)); /* sub foo { 1 } sub bar { 2 } *bar = \&foo */
3751 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3752 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3753 GvFLAGS(dstr) |= import_flag;
3758 if (SvTAINTED(sstr))
3760 if (mro_changes) mro_isa_changed_in(GvSTASH(dstr));
3765 Perl_sv_setsv_flags(pTHX_ SV *dstr, register SV* sstr, const I32 flags)
3768 register U32 sflags;
3770 register svtype stype;
3772 PERL_ARGS_ASSERT_SV_SETSV_FLAGS;
3777 if (SvIS_FREED(dstr)) {
3778 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
3779 " to a freed scalar %p", SVfARG(sstr), (void *)dstr);
3781 SV_CHECK_THINKFIRST_COW_DROP(dstr);
3783 sstr = &PL_sv_undef;
3784 if (SvIS_FREED(sstr)) {
3785 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
3786 (void*)sstr, (void*)dstr);
3788 stype = SvTYPE(sstr);
3789 dtype = SvTYPE(dstr);
3791 (void)SvAMAGIC_off(dstr);
3794 /* need to nuke the magic */
3798 /* There's a lot of redundancy below but we're going for speed here */
3803 if (dtype != SVt_PVGV) {
3804 (void)SvOK_off(dstr);
3812 sv_upgrade(dstr, SVt_IV);
3816 sv_upgrade(dstr, SVt_PVIV);
3819 goto end_of_first_switch;
3821 (void)SvIOK_only(dstr);
3822 SvIV_set(dstr, SvIVX(sstr));
3825 /* SvTAINTED can only be true if the SV has taint magic, which in
3826 turn means that the SV type is PVMG (or greater). This is the
3827 case statement for SVt_IV, so this cannot be true (whatever gcov
3829 assert(!SvTAINTED(sstr));
3834 if (dtype < SVt_PV && dtype != SVt_IV)
3835 sv_upgrade(dstr, SVt_IV);
3843 sv_upgrade(dstr, SVt_NV);
3847 sv_upgrade(dstr, SVt_PVNV);
3850 goto end_of_first_switch;
3852 SvNV_set(dstr, SvNVX(sstr));
3853 (void)SvNOK_only(dstr);
3854 /* SvTAINTED can only be true if the SV has taint magic, which in
3855 turn means that the SV type is PVMG (or greater). This is the
3856 case statement for SVt_NV, so this cannot be true (whatever gcov
3858 assert(!SvTAINTED(sstr));
3864 #ifdef PERL_OLD_COPY_ON_WRITE
3865 if ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS) {
3866 if (dtype < SVt_PVIV)
3867 sv_upgrade(dstr, SVt_PVIV);
3875 sv_upgrade(dstr, SVt_PV);
3878 if (dtype < SVt_PVIV)
3879 sv_upgrade(dstr, SVt_PVIV);
3882 if (dtype < SVt_PVNV)
3883 sv_upgrade(dstr, SVt_PVNV);
3887 const char * const type = sv_reftype(sstr,0);
3889 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_NAME(PL_op));
3891 Perl_croak(aTHX_ "Bizarre copy of %s", type);
3895 /* case SVt_BIND: */
3898 if (isGV_with_GP(sstr) && dtype <= SVt_PVGV) {
3899 glob_assign_glob(dstr, sstr, dtype);
3902 /* SvVALID means that this PVGV is playing at being an FBM. */
3906 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
3908 if (SvTYPE(sstr) != stype) {
3909 stype = SvTYPE(sstr);
3910 if (isGV_with_GP(sstr) && stype == SVt_PVGV && dtype <= SVt_PVGV) {
3911 glob_assign_glob(dstr, sstr, dtype);
3916 if (stype == SVt_PVLV)
3917 SvUPGRADE(dstr, SVt_PVNV);
3919 SvUPGRADE(dstr, (svtype)stype);
3921 end_of_first_switch:
3923 /* dstr may have been upgraded. */
3924 dtype = SvTYPE(dstr);
3925 sflags = SvFLAGS(sstr);
3927 if (dtype == SVt_PVCV || dtype == SVt_PVFM) {
3928 /* Assigning to a subroutine sets the prototype. */
3931 const char *const ptr = SvPV_const(sstr, len);
3933 SvGROW(dstr, len + 1);
3934 Copy(ptr, SvPVX(dstr), len + 1, char);
3935 SvCUR_set(dstr, len);
3937 SvFLAGS(dstr) |= sflags & SVf_UTF8;
3941 } else if (dtype == SVt_PVAV || dtype == SVt_PVHV) {
3942 const char * const type = sv_reftype(dstr,0);
3944 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_NAME(PL_op));
3946 Perl_croak(aTHX_ "Cannot copy to %s", type);
3947 } else if (sflags & SVf_ROK) {
3948 if (isGV_with_GP(dstr) && dtype == SVt_PVGV
3949 && SvTYPE(SvRV(sstr)) == SVt_PVGV && isGV_with_GP(SvRV(sstr))) {
3952 if (GvIMPORTED(dstr) != GVf_IMPORTED
3953 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3955 GvIMPORTED_on(dstr);
3960 glob_assign_glob(dstr, sstr, dtype);
3964 if (dtype >= SVt_PV) {
3965 if (dtype == SVt_PVGV && isGV_with_GP(dstr)) {
3966 glob_assign_ref(dstr, sstr);
3969 if (SvPVX_const(dstr)) {
3975 (void)SvOK_off(dstr);
3976 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
3977 SvFLAGS(dstr) |= sflags & SVf_ROK;
3978 assert(!(sflags & SVp_NOK));
3979 assert(!(sflags & SVp_IOK));
3980 assert(!(sflags & SVf_NOK));
3981 assert(!(sflags & SVf_IOK));
3983 else if (dtype == SVt_PVGV && isGV_with_GP(dstr)) {
3984 if (!(sflags & SVf_OK)) {
3985 if (ckWARN(WARN_MISC))
3986 Perl_warner(aTHX_ packWARN(WARN_MISC),
3987 "Undefined value assigned to typeglob");
3990 GV *gv = gv_fetchsv(sstr, GV_ADD, SVt_PVGV);
3991 if (dstr != (const SV *)gv) {
3993 gp_free(MUTABLE_GV(dstr));
3994 GvGP(dstr) = gp_ref(GvGP(gv));
3998 else if (sflags & SVp_POK) {
4002 * Check to see if we can just swipe the string. If so, it's a
4003 * possible small lose on short strings, but a big win on long ones.
4004 * It might even be a win on short strings if SvPVX_const(dstr)
4005 * has to be allocated and SvPVX_const(sstr) has to be freed.
4006 * Likewise if we can set up COW rather than doing an actual copy, we
4007 * drop to the else clause, as the swipe code and the COW setup code
4008 * have much in common.
4011 /* Whichever path we take through the next code, we want this true,
4012 and doing it now facilitates the COW check. */
4013 (void)SvPOK_only(dstr);
4016 /* If we're already COW then this clause is not true, and if COW
4017 is allowed then we drop down to the else and make dest COW
4018 with us. If caller hasn't said that we're allowed to COW
4019 shared hash keys then we don't do the COW setup, even if the
4020 source scalar is a shared hash key scalar. */
4021 (((flags & SV_COW_SHARED_HASH_KEYS)
4022 ? (sflags & (SVf_FAKE|SVf_READONLY)) != (SVf_FAKE|SVf_READONLY)
4023 : 1 /* If making a COW copy is forbidden then the behaviour we
4024 desire is as if the source SV isn't actually already
4025 COW, even if it is. So we act as if the source flags
4026 are not COW, rather than actually testing them. */
4028 #ifndef PERL_OLD_COPY_ON_WRITE
4029 /* The change that added SV_COW_SHARED_HASH_KEYS makes the logic
4030 when PERL_OLD_COPY_ON_WRITE is defined a little wrong.
4031 Conceptually PERL_OLD_COPY_ON_WRITE being defined should
4032 override SV_COW_SHARED_HASH_KEYS, because it means "always COW"
4033 but in turn, it's somewhat dead code, never expected to go
4034 live, but more kept as a placeholder on how to do it better
4035 in a newer implementation. */
4036 /* If we are COW and dstr is a suitable target then we drop down
4037 into the else and make dest a COW of us. */
4038 || (SvFLAGS(dstr) & CAN_COW_MASK) != CAN_COW_FLAGS
4043 (sflags & SVs_TEMP) && /* slated for free anyway? */
4044 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
4045 (!(flags & SV_NOSTEAL)) &&
4046 /* and we're allowed to steal temps */
4047 SvREFCNT(sstr) == 1 && /* and no other references to it? */
4048 SvLEN(sstr) && /* and really is a string */
4049 /* and won't be needed again, potentially */
4050 !(PL_op && PL_op->op_type == OP_AASSIGN))
4051 #ifdef PERL_OLD_COPY_ON_WRITE
4052 && ((flags & SV_COW_SHARED_HASH_KEYS)
4053 ? (!((sflags & CAN_COW_MASK) == CAN_COW_FLAGS
4054 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
4055 && SvTYPE(sstr) >= SVt_PVIV && SvTYPE(sstr) != SVt_PVFM))
4059 /* Failed the swipe test, and it's not a shared hash key either.
4060 Have to copy the string. */
4061 STRLEN len = SvCUR(sstr);
4062 SvGROW(dstr, len + 1); /* inlined from sv_setpvn */
4063 Move(SvPVX_const(sstr),SvPVX(dstr),len,char);
4064 SvCUR_set(dstr, len);
4065 *SvEND(dstr) = '\0';
4067 /* If PERL_OLD_COPY_ON_WRITE is not defined, then isSwipe will always
4069 /* Either it's a shared hash key, or it's suitable for
4070 copy-on-write or we can swipe the string. */
4072 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
4076 #ifdef PERL_OLD_COPY_ON_WRITE
4078 if ((sflags & (SVf_FAKE | SVf_READONLY))
4079 != (SVf_FAKE | SVf_READONLY)) {
4080 SvREADONLY_on(sstr);
4082 /* Make the source SV into a loop of 1.
4083 (about to become 2) */
4084 SV_COW_NEXT_SV_SET(sstr, sstr);
4088 /* Initial code is common. */
4089 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
4094 /* making another shared SV. */
4095 STRLEN cur = SvCUR(sstr);
4096 STRLEN len = SvLEN(sstr);
4097 #ifdef PERL_OLD_COPY_ON_WRITE
4099 assert (SvTYPE(dstr) >= SVt_PVIV);
4100 /* SvIsCOW_normal */
4101 /* splice us in between source and next-after-source. */
4102 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4103 SV_COW_NEXT_SV_SET(sstr, dstr);
4104 SvPV_set(dstr, SvPVX_mutable(sstr));
4108 /* SvIsCOW_shared_hash */
4109 DEBUG_C(PerlIO_printf(Perl_debug_log,
4110 "Copy on write: Sharing hash\n"));
4112 assert (SvTYPE(dstr) >= SVt_PV);
4114 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
4116 SvLEN_set(dstr, len);
4117 SvCUR_set(dstr, cur);
4118 SvREADONLY_on(dstr);
4122 { /* Passes the swipe test. */
4123 SvPV_set(dstr, SvPVX_mutable(sstr));
4124 SvLEN_set(dstr, SvLEN(sstr));
4125 SvCUR_set(dstr, SvCUR(sstr));
4128 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
4129 SvPV_set(sstr, NULL);
4135 if (sflags & SVp_NOK) {
4136 SvNV_set(dstr, SvNVX(sstr));
4138 if (sflags & SVp_IOK) {
4139 SvIV_set(dstr, SvIVX(sstr));
4140 /* Must do this otherwise some other overloaded use of 0x80000000
4141 gets confused. I guess SVpbm_VALID */
4142 if (sflags & SVf_IVisUV)
4145 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8);
4147 const MAGIC * const smg = SvVSTRING_mg(sstr);
4149 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
4150 smg->mg_ptr, smg->mg_len);
4151 SvRMAGICAL_on(dstr);
4155 else if (sflags & (SVp_IOK|SVp_NOK)) {
4156 (void)SvOK_off(dstr);
4157 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK);
4158 if (sflags & SVp_IOK) {
4159 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
4160 SvIV_set(dstr, SvIVX(sstr));
4162 if (sflags & SVp_NOK) {
4163 SvNV_set(dstr, SvNVX(sstr));
4167 if (isGV_with_GP(sstr)) {
4168 /* This stringification rule for globs is spread in 3 places.
4169 This feels bad. FIXME. */
4170 const U32 wasfake = sflags & SVf_FAKE;
4172 /* FAKE globs can get coerced, so need to turn this off
4173 temporarily if it is on. */
4175 gv_efullname3(dstr, MUTABLE_GV(sstr), "*");
4176 SvFLAGS(sstr) |= wasfake;
4179 (void)SvOK_off(dstr);
4181 if (SvTAINTED(sstr))
4186 =for apidoc sv_setsv_mg
4188 Like C<sv_setsv>, but also handles 'set' magic.
4194 Perl_sv_setsv_mg(pTHX_ SV *const dstr, register SV *const sstr)
4196 PERL_ARGS_ASSERT_SV_SETSV_MG;
4198 sv_setsv(dstr,sstr);
4202 #ifdef PERL_OLD_COPY_ON_WRITE
4204 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
4206 STRLEN cur = SvCUR(sstr);
4207 STRLEN len = SvLEN(sstr);
4208 register char *new_pv;
4210 PERL_ARGS_ASSERT_SV_SETSV_COW;
4213 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
4214 (void*)sstr, (void*)dstr);
4221 if (SvTHINKFIRST(dstr))
4222 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
4223 else if (SvPVX_const(dstr))
4224 Safefree(SvPVX_const(dstr));
4228 SvUPGRADE(dstr, SVt_PVIV);
4230 assert (SvPOK(sstr));
4231 assert (SvPOKp(sstr));
4232 assert (!SvIOK(sstr));
4233 assert (!SvIOKp(sstr));
4234 assert (!SvNOK(sstr));
4235 assert (!SvNOKp(sstr));
4237 if (SvIsCOW(sstr)) {
4239 if (SvLEN(sstr) == 0) {
4240 /* source is a COW shared hash key. */
4241 DEBUG_C(PerlIO_printf(Perl_debug_log,
4242 "Fast copy on write: Sharing hash\n"));
4243 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
4246 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4248 assert ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS);
4249 SvUPGRADE(sstr, SVt_PVIV);
4250 SvREADONLY_on(sstr);
4252 DEBUG_C(PerlIO_printf(Perl_debug_log,
4253 "Fast copy on write: Converting sstr to COW\n"));
4254 SV_COW_NEXT_SV_SET(dstr, sstr);
4256 SV_COW_NEXT_SV_SET(sstr, dstr);
4257 new_pv = SvPVX_mutable(sstr);
4260 SvPV_set(dstr, new_pv);
4261 SvFLAGS(dstr) = (SVt_PVIV|SVf_POK|SVp_POK|SVf_FAKE|SVf_READONLY);
4264 SvLEN_set(dstr, len);
4265 SvCUR_set(dstr, cur);
4274 =for apidoc sv_setpvn
4276 Copies a string into an SV. The C<len> parameter indicates the number of
4277 bytes to be copied. If the C<ptr> argument is NULL the SV will become
4278 undefined. Does not handle 'set' magic. See C<sv_setpvn_mg>.
4284 Perl_sv_setpvn(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4287 register char *dptr;
4289 PERL_ARGS_ASSERT_SV_SETPVN;
4291 SV_CHECK_THINKFIRST_COW_DROP(sv);
4297 /* len is STRLEN which is unsigned, need to copy to signed */
4300 Perl_croak(aTHX_ "panic: sv_setpvn called with negative strlen");
4302 SvUPGRADE(sv, SVt_PV);
4304 dptr = SvGROW(sv, len + 1);
4305 Move(ptr,dptr,len,char);
4308 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4313 =for apidoc sv_setpvn_mg
4315 Like C<sv_setpvn>, but also handles 'set' magic.
4321 Perl_sv_setpvn_mg(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4323 PERL_ARGS_ASSERT_SV_SETPVN_MG;
4325 sv_setpvn(sv,ptr,len);
4330 =for apidoc sv_setpv
4332 Copies a string into an SV. The string must be null-terminated. Does not
4333 handle 'set' magic. See C<sv_setpv_mg>.
4339 Perl_sv_setpv(pTHX_ register SV *const sv, register const char *const ptr)
4342 register STRLEN len;
4344 PERL_ARGS_ASSERT_SV_SETPV;
4346 SV_CHECK_THINKFIRST_COW_DROP(sv);
4352 SvUPGRADE(sv, SVt_PV);
4354 SvGROW(sv, len + 1);
4355 Move(ptr,SvPVX(sv),len+1,char);
4357 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4362 =for apidoc sv_setpv_mg
4364 Like C<sv_setpv>, but also handles 'set' magic.
4370 Perl_sv_setpv_mg(pTHX_ register SV *const sv, register const char *const ptr)
4372 PERL_ARGS_ASSERT_SV_SETPV_MG;
4379 =for apidoc sv_usepvn_flags
4381 Tells an SV to use C<ptr> to find its string value. Normally the
4382 string is stored inside the SV but sv_usepvn allows the SV to use an
4383 outside string. The C<ptr> should point to memory that was allocated
4384 by C<malloc>. The string length, C<len>, must be supplied. By default
4385 this function will realloc (i.e. move) the memory pointed to by C<ptr>,
4386 so that pointer should not be freed or used by the programmer after
4387 giving it to sv_usepvn, and neither should any pointers from "behind"
4388 that pointer (e.g. ptr + 1) be used.
4390 If C<flags> & SV_SMAGIC is true, will call SvSETMAGIC. If C<flags> &
4391 SV_HAS_TRAILING_NUL is true, then C<ptr[len]> must be NUL, and the realloc
4392 will be skipped. (i.e. the buffer is actually at least 1 byte longer than
4393 C<len>, and already meets the requirements for storing in C<SvPVX>)
4399 Perl_sv_usepvn_flags(pTHX_ SV *const sv, char *ptr, const STRLEN len, const U32 flags)
4404 PERL_ARGS_ASSERT_SV_USEPVN_FLAGS;
4406 SV_CHECK_THINKFIRST_COW_DROP(sv);
4407 SvUPGRADE(sv, SVt_PV);
4410 if (flags & SV_SMAGIC)
4414 if (SvPVX_const(sv))
4418 if (flags & SV_HAS_TRAILING_NUL)
4419 assert(ptr[len] == '\0');
4422 allocate = (flags & SV_HAS_TRAILING_NUL)
4424 #ifdef Perl_safesysmalloc_size
4427 PERL_STRLEN_ROUNDUP(len + 1);
4429 if (flags & SV_HAS_TRAILING_NUL) {
4430 /* It's long enough - do nothing.
4431 Specfically Perl_newCONSTSUB is relying on this. */
4434 /* Force a move to shake out bugs in callers. */
4435 char *new_ptr = (char*)safemalloc(allocate);
4436 Copy(ptr, new_ptr, len, char);
4437 PoisonFree(ptr,len,char);
4441 ptr = (char*) saferealloc (ptr, allocate);
4444 #ifdef Perl_safesysmalloc_size
4445 SvLEN_set(sv, Perl_safesysmalloc_size(ptr));
4447 SvLEN_set(sv, allocate);
4451 if (!(flags & SV_HAS_TRAILING_NUL)) {
4454 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4456 if (flags & SV_SMAGIC)
4460 #ifdef PERL_OLD_COPY_ON_WRITE
4461 /* Need to do this *after* making the SV normal, as we need the buffer
4462 pointer to remain valid until after we've copied it. If we let go too early,
4463 another thread could invalidate it by unsharing last of the same hash key
4464 (which it can do by means other than releasing copy-on-write Svs)
4465 or by changing the other copy-on-write SVs in the loop. */
4467 S_sv_release_COW(pTHX_ register SV *sv, const char *pvx, SV *after)
4469 PERL_ARGS_ASSERT_SV_RELEASE_COW;
4471 { /* this SV was SvIsCOW_normal(sv) */
4472 /* we need to find the SV pointing to us. */
4473 SV *current = SV_COW_NEXT_SV(after);
4475 if (current == sv) {
4476 /* The SV we point to points back to us (there were only two of us
4478 Hence other SV is no longer copy on write either. */
4480 SvREADONLY_off(after);
4482 /* We need to follow the pointers around the loop. */
4484 while ((next = SV_COW_NEXT_SV(current)) != sv) {
4487 /* don't loop forever if the structure is bust, and we have
4488 a pointer into a closed loop. */
4489 assert (current != after);
4490 assert (SvPVX_const(current) == pvx);
4492 /* Make the SV before us point to the SV after us. */
4493 SV_COW_NEXT_SV_SET(current, after);
4499 =for apidoc sv_force_normal_flags
4501 Undo various types of fakery on an SV: if the PV is a shared string, make
4502 a private copy; if we're a ref, stop refing; if we're a glob, downgrade to
4503 an xpvmg; if we're a copy-on-write scalar, this is the on-write time when
4504 we do the copy, and is also used locally. If C<SV_COW_DROP_PV> is set
4505 then a copy-on-write scalar drops its PV buffer (if any) and becomes
4506 SvPOK_off rather than making a copy. (Used where this scalar is about to be
4507 set to some other value.) In addition, the C<flags> parameter gets passed to
4508 C<sv_unref_flags()> when unrefing. C<sv_force_normal> calls this function
4509 with flags set to 0.
4515 Perl_sv_force_normal_flags(pTHX_ register SV *const sv, const U32 flags)
4519 PERL_ARGS_ASSERT_SV_FORCE_NORMAL_FLAGS;
4521 #ifdef PERL_OLD_COPY_ON_WRITE
4522 if (SvREADONLY(sv)) {
4524 const char * const pvx = SvPVX_const(sv);
4525 const STRLEN len = SvLEN(sv);
4526 const STRLEN cur = SvCUR(sv);
4527 /* next COW sv in the loop. If len is 0 then this is a shared-hash
4528 key scalar, so we mustn't attempt to call SV_COW_NEXT_SV(), as
4529 we'll fail an assertion. */
4530 SV * const next = len ? SV_COW_NEXT_SV(sv) : 0;
4533 PerlIO_printf(Perl_debug_log,
4534 "Copy on write: Force normal %ld\n",
4540 /* This SV doesn't own the buffer, so need to Newx() a new one: */
4543 if (flags & SV_COW_DROP_PV) {
4544 /* OK, so we don't need to copy our buffer. */
4547 SvGROW(sv, cur + 1);
4548 Move(pvx,SvPVX(sv),cur,char);
4553 sv_release_COW(sv, pvx, next);
4555 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4561 else if (IN_PERL_RUNTIME)
4562 Perl_croak(aTHX_ "%s", PL_no_modify);
4565 if (SvREADONLY(sv)) {
4567 const char * const pvx = SvPVX_const(sv);
4568 const STRLEN len = SvCUR(sv);
4573 SvGROW(sv, len + 1);
4574 Move(pvx,SvPVX(sv),len,char);
4576 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4578 else if (IN_PERL_RUNTIME)
4579 Perl_croak(aTHX_ "%s", PL_no_modify);
4583 sv_unref_flags(sv, flags);
4584 else if (SvFAKE(sv) && SvTYPE(sv) == SVt_PVGV)
4591 Efficient removal of characters from the beginning of the string buffer.
4592 SvPOK(sv) must be true and the C<ptr> must be a pointer to somewhere inside
4593 the string buffer. The C<ptr> becomes the first character of the adjusted
4594 string. Uses the "OOK hack".
4595 Beware: after this function returns, C<ptr> and SvPVX_const(sv) may no longer
4596 refer to the same chunk of data.
4602 Perl_sv_chop(pTHX_ register SV *const sv, register const char *const ptr)
4608 const U8 *real_start;
4612 PERL_ARGS_ASSERT_SV_CHOP;
4614 if (!ptr || !SvPOKp(sv))
4616 delta = ptr - SvPVX_const(sv);
4618 /* Nothing to do. */
4621 /* SvPVX(sv) may move in SV_CHECK_THINKFIRST(sv), but after this line,
4622 nothing uses the value of ptr any more. */
4623 max_delta = SvLEN(sv) ? SvLEN(sv) : SvCUR(sv);
4624 if (ptr <= SvPVX_const(sv))
4625 Perl_croak(aTHX_ "panic: sv_chop ptr=%p, start=%p, end=%p",
4626 ptr, SvPVX_const(sv), SvPVX_const(sv) + max_delta);
4627 SV_CHECK_THINKFIRST(sv);
4628 if (delta > max_delta)
4629 Perl_croak(aTHX_ "panic: sv_chop ptr=%p (was %p), start=%p, end=%p",
4630 SvPVX_const(sv) + delta, ptr, SvPVX_const(sv),
4631 SvPVX_const(sv) + max_delta);
4634 if (!SvLEN(sv)) { /* make copy of shared string */
4635 const char *pvx = SvPVX_const(sv);
4636 const STRLEN len = SvCUR(sv);
4637 SvGROW(sv, len + 1);
4638 Move(pvx,SvPVX(sv),len,char);
4641 SvFLAGS(sv) |= SVf_OOK;
4644 SvOOK_offset(sv, old_delta);
4646 SvLEN_set(sv, SvLEN(sv) - delta);
4647 SvCUR_set(sv, SvCUR(sv) - delta);
4648 SvPV_set(sv, SvPVX(sv) + delta);
4650 p = (U8 *)SvPVX_const(sv);
4655 real_start = p - delta;
4659 if (delta < 0x100) {
4663 p -= sizeof(STRLEN);
4664 Copy((U8*)&delta, p, sizeof(STRLEN), U8);
4668 /* Fill the preceding buffer with sentinals to verify that no-one is
4670 while (p > real_start) {