5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
77 #ifndef PERL_IN_XSUB_RE
82 #ifdef PERL_IN_XSUB_RE
84 EXTERN_C const struct regexp_engine my_reg_engine;
89 #include "dquote_inline.h"
90 #include "invlist_inline.h"
91 #include "unicode_constants.h"
93 #define HAS_NONLATIN1_FOLD_CLOSURE(i) \
94 _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
95 #define HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(i) \
96 _HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
97 #define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
98 #define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
101 #define STATIC static
104 /* this is a chain of data about sub patterns we are processing that
105 need to be handled separately/specially in study_chunk. Its so
106 we can simulate recursion without losing state. */
108 typedef struct scan_frame {
109 regnode *last_regnode; /* last node to process in this frame */
110 regnode *next_regnode; /* next node to process when last is reached */
111 U32 prev_recursed_depth;
112 I32 stopparen; /* what stopparen do we use */
113 U32 is_top_frame; /* what flags do we use? */
115 struct scan_frame *this_prev_frame; /* this previous frame */
116 struct scan_frame *prev_frame; /* previous frame */
117 struct scan_frame *next_frame; /* next frame */
120 /* Certain characters are output as a sequence with the first being a
122 #define isBACKSLASHED_PUNCT(c) \
123 ((c) == '-' || (c) == ']' || (c) == '\\' || (c) == '^')
126 struct RExC_state_t {
127 U32 flags; /* RXf_* are we folding, multilining? */
128 U32 pm_flags; /* PMf_* stuff from the calling PMOP */
129 char *precomp; /* uncompiled string. */
130 char *precomp_end; /* pointer to end of uncompiled string. */
131 REGEXP *rx_sv; /* The SV that is the regexp. */
132 regexp *rx; /* perl core regexp structure */
133 regexp_internal *rxi; /* internal data for regexp object
135 char *start; /* Start of input for compile */
136 char *end; /* End of input for compile */
137 char *parse; /* Input-scan pointer. */
138 char *adjusted_start; /* 'start', adjusted. See code use */
139 STRLEN precomp_adj; /* an offset beyond precomp. See code use */
140 SSize_t whilem_seen; /* number of WHILEM in this expr */
141 regnode *emit_start; /* Start of emitted-code area */
142 regnode *emit_bound; /* First regnode outside of the
144 regnode *emit; /* Code-emit pointer; if = &emit_dummy,
145 implies compiling, so don't emit */
146 regnode_ssc emit_dummy; /* placeholder for emit to point to;
147 large enough for the largest
148 non-EXACTish node, so can use it as
150 I32 naughty; /* How bad is this pattern? */
151 I32 sawback; /* Did we see \1, ...? */
153 SSize_t size; /* Code size. */
154 I32 npar; /* Capture buffer count, (OPEN) plus
155 one. ("par" 0 is the whole
157 I32 nestroot; /* root parens we are in - used by
161 regnode **open_parens; /* pointers to open parens */
162 regnode **close_parens; /* pointers to close parens */
163 regnode *end_op; /* END node in program */
164 I32 utf8; /* whether the pattern is utf8 or not */
165 I32 orig_utf8; /* whether the pattern was originally in utf8 */
166 /* XXX use this for future optimisation of case
167 * where pattern must be upgraded to utf8. */
168 I32 uni_semantics; /* If a d charset modifier should use unicode
169 rules, even if the pattern is not in
171 HV *paren_names; /* Paren names */
173 regnode **recurse; /* Recurse regops */
174 I32 recurse_count; /* Number of recurse regops we have generated */
175 U8 *study_chunk_recursed; /* bitmap of which subs we have moved
177 U32 study_chunk_recursed_bytes; /* bytes in bitmap */
180 I32 override_recoding;
182 I32 recode_x_to_native;
184 I32 in_multi_char_class;
185 struct reg_code_block *code_blocks; /* positions of literal (?{})
187 int num_code_blocks; /* size of code_blocks[] */
188 int code_index; /* next code_blocks[] slot */
189 SSize_t maxlen; /* mininum possible number of chars in string to match */
190 scan_frame *frame_head;
191 scan_frame *frame_last;
194 #ifdef ADD_TO_REGEXEC
195 char *starttry; /* -Dr: where regtry was called. */
196 #define RExC_starttry (pRExC_state->starttry)
198 SV *runtime_code_qr; /* qr with the runtime code blocks */
200 const char *lastparse;
202 AV *paren_name_list; /* idx -> name */
203 U32 study_chunk_recursed_count;
206 #define RExC_lastparse (pRExC_state->lastparse)
207 #define RExC_lastnum (pRExC_state->lastnum)
208 #define RExC_paren_name_list (pRExC_state->paren_name_list)
209 #define RExC_study_chunk_recursed_count (pRExC_state->study_chunk_recursed_count)
210 #define RExC_mysv (pRExC_state->mysv1)
211 #define RExC_mysv1 (pRExC_state->mysv1)
212 #define RExC_mysv2 (pRExC_state->mysv2)
215 bool seen_unfolded_sharp_s;
220 #define RExC_flags (pRExC_state->flags)
221 #define RExC_pm_flags (pRExC_state->pm_flags)
222 #define RExC_precomp (pRExC_state->precomp)
223 #define RExC_precomp_adj (pRExC_state->precomp_adj)
224 #define RExC_adjusted_start (pRExC_state->adjusted_start)
225 #define RExC_precomp_end (pRExC_state->precomp_end)
226 #define RExC_rx_sv (pRExC_state->rx_sv)
227 #define RExC_rx (pRExC_state->rx)
228 #define RExC_rxi (pRExC_state->rxi)
229 #define RExC_start (pRExC_state->start)
230 #define RExC_end (pRExC_state->end)
231 #define RExC_parse (pRExC_state->parse)
232 #define RExC_whilem_seen (pRExC_state->whilem_seen)
234 /* Set during the sizing pass when there is a LATIN SMALL LETTER SHARP S in any
235 * EXACTF node, hence was parsed under /di rules. If later in the parse,
236 * something forces the pattern into using /ui rules, the sharp s should be
237 * folded into the sequence 'ss', which takes up more space than previously
238 * calculated. This means that the sizing pass needs to be restarted. (The
239 * node also becomes an EXACTFU_SS.) For all other characters, an EXACTF node
240 * that gets converted to /ui (and EXACTFU) occupies the same amount of space,
241 * so there is no need to resize [perl #125990]. */
242 #define RExC_seen_unfolded_sharp_s (pRExC_state->seen_unfolded_sharp_s)
244 #ifdef RE_TRACK_PATTERN_OFFSETS
245 #define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the
248 #define RExC_emit (pRExC_state->emit)
249 #define RExC_emit_dummy (pRExC_state->emit_dummy)
250 #define RExC_emit_start (pRExC_state->emit_start)
251 #define RExC_emit_bound (pRExC_state->emit_bound)
252 #define RExC_sawback (pRExC_state->sawback)
253 #define RExC_seen (pRExC_state->seen)
254 #define RExC_size (pRExC_state->size)
255 #define RExC_maxlen (pRExC_state->maxlen)
256 #define RExC_npar (pRExC_state->npar)
257 #define RExC_nestroot (pRExC_state->nestroot)
258 #define RExC_extralen (pRExC_state->extralen)
259 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
260 #define RExC_utf8 (pRExC_state->utf8)
261 #define RExC_uni_semantics (pRExC_state->uni_semantics)
262 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
263 #define RExC_open_parens (pRExC_state->open_parens)
264 #define RExC_close_parens (pRExC_state->close_parens)
265 #define RExC_end_op (pRExC_state->end_op)
266 #define RExC_paren_names (pRExC_state->paren_names)
267 #define RExC_recurse (pRExC_state->recurse)
268 #define RExC_recurse_count (pRExC_state->recurse_count)
269 #define RExC_study_chunk_recursed (pRExC_state->study_chunk_recursed)
270 #define RExC_study_chunk_recursed_bytes \
271 (pRExC_state->study_chunk_recursed_bytes)
272 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
273 #define RExC_contains_locale (pRExC_state->contains_locale)
275 # define RExC_recode_x_to_native (pRExC_state->recode_x_to_native)
277 #define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
278 #define RExC_frame_head (pRExC_state->frame_head)
279 #define RExC_frame_last (pRExC_state->frame_last)
280 #define RExC_frame_count (pRExC_state->frame_count)
281 #define RExC_strict (pRExC_state->strict)
282 #define RExC_study_started (pRExC_state->study_started)
283 #define RExC_warn_text (pRExC_state->warn_text)
285 /* Heuristic check on the complexity of the pattern: if TOO_NAUGHTY, we set
286 * a flag to disable back-off on the fixed/floating substrings - if it's
287 * a high complexity pattern we assume the benefit of avoiding a full match
288 * is worth the cost of checking for the substrings even if they rarely help.
290 #define RExC_naughty (pRExC_state->naughty)
291 #define TOO_NAUGHTY (10)
292 #define MARK_NAUGHTY(add) \
293 if (RExC_naughty < TOO_NAUGHTY) \
294 RExC_naughty += (add)
295 #define MARK_NAUGHTY_EXP(exp, add) \
296 if (RExC_naughty < TOO_NAUGHTY) \
297 RExC_naughty += RExC_naughty / (exp) + (add)
299 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
300 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
301 ((*s) == '{' && regcurly(s)))
304 * Flags to be passed up and down.
306 #define WORST 0 /* Worst case. */
307 #define HASWIDTH 0x01 /* Known to match non-null strings. */
309 /* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
310 * character. (There needs to be a case: in the switch statement in regexec.c
311 * for any node marked SIMPLE.) Note that this is not the same thing as
314 #define SPSTART 0x04 /* Starts with * or + */
315 #define POSTPONED 0x08 /* (?1),(?&name), (??{...}) or similar */
316 #define TRYAGAIN 0x10 /* Weeded out a declaration. */
317 #define RESTART_PASS1 0x20 /* Need to restart sizing pass */
318 #define NEED_UTF8 0x40 /* In conjunction with RESTART_PASS1, need to
319 calcuate sizes as UTF-8 */
321 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
323 /* whether trie related optimizations are enabled */
324 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
325 #define TRIE_STUDY_OPT
326 #define FULL_TRIE_STUDY
332 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
333 #define PBITVAL(paren) (1 << ((paren) & 7))
334 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
335 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
336 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
338 #define REQUIRE_UTF8(flagp) STMT_START { \
341 *flagp = RESTART_PASS1|NEED_UTF8; \
346 /* Change from /d into /u rules, and restart the parse if we've already seen
347 * something whose size would increase as a result, by setting *flagp and
348 * returning 'restart_retval'. RExC_uni_semantics is a flag that indicates
349 * we've change to /u during the parse. */
350 #define REQUIRE_UNI_RULES(flagp, restart_retval) \
352 if (DEPENDS_SEMANTICS) { \
354 set_regex_charset(&RExC_flags, REGEX_UNICODE_CHARSET); \
355 RExC_uni_semantics = 1; \
356 if (RExC_seen_unfolded_sharp_s) { \
357 *flagp |= RESTART_PASS1; \
358 return restart_retval; \
363 /* This converts the named class defined in regcomp.h to its equivalent class
364 * number defined in handy.h. */
365 #define namedclass_to_classnum(class) ((int) ((class) / 2))
366 #define classnum_to_namedclass(classnum) ((classnum) * 2)
368 #define _invlist_union_complement_2nd(a, b, output) \
369 _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
370 #define _invlist_intersection_complement_2nd(a, b, output) \
371 _invlist_intersection_maybe_complement_2nd(a, b, TRUE, output)
373 /* About scan_data_t.
375 During optimisation we recurse through the regexp program performing
376 various inplace (keyhole style) optimisations. In addition study_chunk
377 and scan_commit populate this data structure with information about
378 what strings MUST appear in the pattern. We look for the longest
379 string that must appear at a fixed location, and we look for the
380 longest string that may appear at a floating location. So for instance
385 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
386 strings (because they follow a .* construct). study_chunk will identify
387 both FOO and BAR as being the longest fixed and floating strings respectively.
389 The strings can be composites, for instance
393 will result in a composite fixed substring 'foo'.
395 For each string some basic information is maintained:
397 - offset or min_offset
398 This is the position the string must appear at, or not before.
399 It also implicitly (when combined with minlenp) tells us how many
400 characters must match before the string we are searching for.
401 Likewise when combined with minlenp and the length of the string it
402 tells us how many characters must appear after the string we have
406 Only used for floating strings. This is the rightmost point that
407 the string can appear at. If set to SSize_t_MAX it indicates that the
408 string can occur infinitely far to the right.
411 A pointer to the minimum number of characters of the pattern that the
412 string was found inside. This is important as in the case of positive
413 lookahead or positive lookbehind we can have multiple patterns
418 The minimum length of the pattern overall is 3, the minimum length
419 of the lookahead part is 3, but the minimum length of the part that
420 will actually match is 1. So 'FOO's minimum length is 3, but the
421 minimum length for the F is 1. This is important as the minimum length
422 is used to determine offsets in front of and behind the string being
423 looked for. Since strings can be composites this is the length of the
424 pattern at the time it was committed with a scan_commit. Note that
425 the length is calculated by study_chunk, so that the minimum lengths
426 are not known until the full pattern has been compiled, thus the
427 pointer to the value.
431 In the case of lookbehind the string being searched for can be
432 offset past the start point of the final matching string.
433 If this value was just blithely removed from the min_offset it would
434 invalidate some of the calculations for how many chars must match
435 before or after (as they are derived from min_offset and minlen and
436 the length of the string being searched for).
437 When the final pattern is compiled and the data is moved from the
438 scan_data_t structure into the regexp structure the information
439 about lookbehind is factored in, with the information that would
440 have been lost precalculated in the end_shift field for the
443 The fields pos_min and pos_delta are used to store the minimum offset
444 and the delta to the maximum offset at the current point in the pattern.
448 typedef struct scan_data_t {
449 /*I32 len_min; unused */
450 /*I32 len_delta; unused */
454 SSize_t last_end; /* min value, <0 unless valid. */
455 SSize_t last_start_min;
456 SSize_t last_start_max;
457 SV **longest; /* Either &l_fixed, or &l_float. */
458 SV *longest_fixed; /* longest fixed string found in pattern */
459 SSize_t offset_fixed; /* offset where it starts */
460 SSize_t *minlen_fixed; /* pointer to the minlen relevant to the string */
461 I32 lookbehind_fixed; /* is the position of the string modfied by LB */
462 SV *longest_float; /* longest floating string found in pattern */
463 SSize_t offset_float_min; /* earliest point in string it can appear */
464 SSize_t offset_float_max; /* latest point in string it can appear */
465 SSize_t *minlen_float; /* pointer to the minlen relevant to the string */
466 SSize_t lookbehind_float; /* is the pos of the string modified by LB */
469 SSize_t *last_closep;
470 regnode_ssc *start_class;
474 * Forward declarations for pregcomp()'s friends.
477 static const scan_data_t zero_scan_data =
478 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
480 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
481 #define SF_BEFORE_SEOL 0x0001
482 #define SF_BEFORE_MEOL 0x0002
483 #define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
484 #define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
486 #define SF_FIX_SHIFT_EOL (+2)
487 #define SF_FL_SHIFT_EOL (+4)
489 #define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
490 #define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
492 #define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
493 #define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
494 #define SF_IS_INF 0x0040
495 #define SF_HAS_PAR 0x0080
496 #define SF_IN_PAR 0x0100
497 #define SF_HAS_EVAL 0x0200
500 /* SCF_DO_SUBSTR is the flag that tells the regexp analyzer to track the
501 * longest substring in the pattern. When it is not set the optimiser keeps
502 * track of position, but does not keep track of the actual strings seen,
504 * So for instance /foo/ will be parsed with SCF_DO_SUBSTR being true, but
507 * Similarly, /foo.*(blah|erm|huh).*fnorble/ will have "foo" and "fnorble"
508 * parsed with SCF_DO_SUBSTR on, but while processing the (...) it will be
509 * turned off because of the alternation (BRANCH). */
510 #define SCF_DO_SUBSTR 0x0400
512 #define SCF_DO_STCLASS_AND 0x0800
513 #define SCF_DO_STCLASS_OR 0x1000
514 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
515 #define SCF_WHILEM_VISITED_POS 0x2000
517 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
518 #define SCF_SEEN_ACCEPT 0x8000
519 #define SCF_TRIE_DOING_RESTUDY 0x10000
520 #define SCF_IN_DEFINE 0x20000
525 #define UTF cBOOL(RExC_utf8)
527 /* The enums for all these are ordered so things work out correctly */
528 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
529 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) \
530 == REGEX_DEPENDS_CHARSET)
531 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
532 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) \
533 >= REGEX_UNICODE_CHARSET)
534 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
535 == REGEX_ASCII_RESTRICTED_CHARSET)
536 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
537 >= REGEX_ASCII_RESTRICTED_CHARSET)
538 #define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) \
539 == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
541 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
543 /* For programs that want to be strictly Unicode compatible by dying if any
544 * attempt is made to match a non-Unicode code point against a Unicode
546 #define ALWAYS_WARN_SUPER ckDEAD(packWARN(WARN_NON_UNICODE))
548 #define OOB_NAMEDCLASS -1
550 /* There is no code point that is out-of-bounds, so this is problematic. But
551 * its only current use is to initialize a variable that is always set before
553 #define OOB_UNICODE 0xDEADBEEF
555 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
558 /* length of regex to show in messages that don't mark a position within */
559 #define RegexLengthToShowInErrorMessages 127
562 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
563 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
564 * op/pragma/warn/regcomp.
566 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
567 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
569 #define REPORT_LOCATION " in regex; marked by " MARKER1 \
570 " in m/%" UTF8f MARKER2 "%" UTF8f "/"
572 /* The code in this file in places uses one level of recursion with parsing
573 * rebased to an alternate string constructed by us in memory. This can take
574 * the form of something that is completely different from the input, or
575 * something that uses the input as part of the alternate. In the first case,
576 * there should be no possibility of an error, as we are in complete control of
577 * the alternate string. But in the second case we don't control the input
578 * portion, so there may be errors in that. Here's an example:
580 * is handled specially because \x{df} folds to a sequence of more than one
581 * character, 'ss'. What is done is to create and parse an alternate string,
582 * which looks like this:
583 * /(?:\x{DF}|[abc\x{DF}def])/ui
584 * where it uses the input unchanged in the middle of something it constructs,
585 * which is a branch for the DF outside the character class, and clustering
586 * parens around the whole thing. (It knows enough to skip the DF inside the
587 * class while in this substitute parse.) 'abc' and 'def' may have errors that
588 * need to be reported. The general situation looks like this:
591 * Input: ----------------------------------------------------
592 * Constructed: ---------------------------------------------------
595 * The input string sI..eI is the input pattern. The string sC..EC is the
596 * constructed substitute parse string. The portions sC..tC and eC..EC are
597 * constructed by us. The portion tC..eC is an exact duplicate of the input
598 * pattern tI..eI. In the diagram, these are vertically aligned. Suppose that
599 * while parsing, we find an error at xC. We want to display a message showing
600 * the real input string. Thus we need to find the point xI in it which
601 * corresponds to xC. xC >= tC, since the portion of the string sC..tC has
602 * been constructed by us, and so shouldn't have errors. We get:
604 * xI = sI + (tI - sI) + (xC - tC)
606 * and, the offset into sI is:
608 * (xI - sI) = (tI - sI) + (xC - tC)
610 * When the substitute is constructed, we save (tI -sI) as RExC_precomp_adj,
611 * and we save tC as RExC_adjusted_start.
613 * During normal processing of the input pattern, everything points to that,
614 * with RExC_precomp_adj set to 0, and RExC_adjusted_start set to sI.
617 #define tI_sI RExC_precomp_adj
618 #define tC RExC_adjusted_start
619 #define sC RExC_precomp
620 #define xI_offset(xC) ((IV) (tI_sI + (xC - tC)))
621 #define xI(xC) (sC + xI_offset(xC))
622 #define eC RExC_precomp_end
624 #define REPORT_LOCATION_ARGS(xC) \
626 (xI(xC) > eC) /* Don't run off end */ \
627 ? eC - sC /* Length before the <--HERE */ \
629 sC), /* The input pattern printed up to the <--HERE */ \
631 (xI(xC) > eC) ? 0 : eC - xI(xC), /* Length after <--HERE */ \
632 (xI(xC) > eC) ? eC : xI(xC)) /* pattern after <--HERE */
634 /* Used to point after bad bytes for an error message, but avoid skipping
635 * past a nul byte. */
636 #define SKIP_IF_CHAR(s) (!*(s) ? 0 : UTF ? UTF8SKIP(s) : 1)
639 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
640 * arg. Show regex, up to a maximum length. If it's too long, chop and add
643 #define _FAIL(code) STMT_START { \
644 const char *ellipses = ""; \
645 IV len = RExC_precomp_end - RExC_precomp; \
648 SAVEFREESV(RExC_rx_sv); \
649 if (len > RegexLengthToShowInErrorMessages) { \
650 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
651 len = RegexLengthToShowInErrorMessages - 10; \
657 #define FAIL(msg) _FAIL( \
658 Perl_croak(aTHX_ "%s in regex m/%" UTF8f "%s/", \
659 msg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
661 #define FAIL2(msg,arg) _FAIL( \
662 Perl_croak(aTHX_ msg " in regex m/%" UTF8f "%s/", \
663 arg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
666 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
668 #define Simple_vFAIL(m) STMT_START { \
669 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
670 m, REPORT_LOCATION_ARGS(RExC_parse)); \
674 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
676 #define vFAIL(m) STMT_START { \
678 SAVEFREESV(RExC_rx_sv); \
683 * Like Simple_vFAIL(), but accepts two arguments.
685 #define Simple_vFAIL2(m,a1) STMT_START { \
686 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
687 REPORT_LOCATION_ARGS(RExC_parse)); \
691 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
693 #define vFAIL2(m,a1) STMT_START { \
695 SAVEFREESV(RExC_rx_sv); \
696 Simple_vFAIL2(m, a1); \
701 * Like Simple_vFAIL(), but accepts three arguments.
703 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
704 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
705 REPORT_LOCATION_ARGS(RExC_parse)); \
709 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
711 #define vFAIL3(m,a1,a2) STMT_START { \
713 SAVEFREESV(RExC_rx_sv); \
714 Simple_vFAIL3(m, a1, a2); \
718 * Like Simple_vFAIL(), but accepts four arguments.
720 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
721 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, a3, \
722 REPORT_LOCATION_ARGS(RExC_parse)); \
725 #define vFAIL4(m,a1,a2,a3) STMT_START { \
727 SAVEFREESV(RExC_rx_sv); \
728 Simple_vFAIL4(m, a1, a2, a3); \
731 /* A specialized version of vFAIL2 that works with UTF8f */
732 #define vFAIL2utf8f(m, a1) STMT_START { \
734 SAVEFREESV(RExC_rx_sv); \
735 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
736 REPORT_LOCATION_ARGS(RExC_parse)); \
739 #define vFAIL3utf8f(m, a1, a2) STMT_START { \
741 SAVEFREESV(RExC_rx_sv); \
742 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
743 REPORT_LOCATION_ARGS(RExC_parse)); \
746 /* These have asserts in them because of [perl #122671] Many warnings in
747 * regcomp.c can occur twice. If they get output in pass1 and later in that
748 * pass, the pattern has to be converted to UTF-8 and the pass restarted, they
749 * would get output again. So they should be output in pass2, and these
750 * asserts make sure new warnings follow that paradigm. */
752 /* m is not necessarily a "literal string", in this macro */
753 #define reg_warn_non_literal_string(loc, m) STMT_START { \
754 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
755 "%s" REPORT_LOCATION, \
756 m, REPORT_LOCATION_ARGS(loc)); \
759 #define ckWARNreg(loc,m) STMT_START { \
760 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
762 REPORT_LOCATION_ARGS(loc)); \
765 #define vWARN(loc, m) STMT_START { \
766 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
768 REPORT_LOCATION_ARGS(loc)); \
771 #define vWARN_dep(loc, m) STMT_START { \
772 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), \
774 REPORT_LOCATION_ARGS(loc)); \
777 #define ckWARNdep(loc,m) STMT_START { \
778 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
780 REPORT_LOCATION_ARGS(loc)); \
783 #define ckWARNregdep(loc,m) STMT_START { \
784 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, \
787 REPORT_LOCATION_ARGS(loc)); \
790 #define ckWARN2reg_d(loc,m, a1) STMT_START { \
791 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_REGEXP), \
793 a1, REPORT_LOCATION_ARGS(loc)); \
796 #define ckWARN2reg(loc, m, a1) STMT_START { \
797 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
799 a1, REPORT_LOCATION_ARGS(loc)); \
802 #define vWARN3(loc, m, a1, a2) STMT_START { \
803 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
805 a1, a2, REPORT_LOCATION_ARGS(loc)); \
808 #define ckWARN3reg(loc, m, a1, a2) STMT_START { \
809 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
812 REPORT_LOCATION_ARGS(loc)); \
815 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \
816 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
819 REPORT_LOCATION_ARGS(loc)); \
822 #define vWARN4dep(loc, m, a1, a2, a3) STMT_START { \
823 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN2(WARN_REGEXP,WARN_DEPRECATED), \
826 REPORT_LOCATION_ARGS(loc)); \
829 #define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
830 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
833 REPORT_LOCATION_ARGS(loc)); \
836 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
837 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
840 REPORT_LOCATION_ARGS(loc)); \
843 /* Macros for recording node offsets. 20001227 mjd@plover.com
844 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
845 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
846 * Element 0 holds the number n.
847 * Position is 1 indexed.
849 #ifndef RE_TRACK_PATTERN_OFFSETS
850 #define Set_Node_Offset_To_R(node,byte)
851 #define Set_Node_Offset(node,byte)
852 #define Set_Cur_Node_Offset
853 #define Set_Node_Length_To_R(node,len)
854 #define Set_Node_Length(node,len)
855 #define Set_Node_Cur_Length(node,start)
856 #define Node_Offset(n)
857 #define Node_Length(n)
858 #define Set_Node_Offset_Length(node,offset,len)
859 #define ProgLen(ri) ri->u.proglen
860 #define SetProgLen(ri,x) ri->u.proglen = x
862 #define ProgLen(ri) ri->u.offsets[0]
863 #define SetProgLen(ri,x) ri->u.offsets[0] = x
864 #define Set_Node_Offset_To_R(node,byte) STMT_START { \
866 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
867 __LINE__, (int)(node), (int)(byte))); \
869 Perl_croak(aTHX_ "value of node is %d in Offset macro", \
872 RExC_offsets[2*(node)-1] = (byte); \
877 #define Set_Node_Offset(node,byte) \
878 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
879 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
881 #define Set_Node_Length_To_R(node,len) STMT_START { \
883 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
884 __LINE__, (int)(node), (int)(len))); \
886 Perl_croak(aTHX_ "value of node is %d in Length macro", \
889 RExC_offsets[2*(node)] = (len); \
894 #define Set_Node_Length(node,len) \
895 Set_Node_Length_To_R((node)-RExC_emit_start, len)
896 #define Set_Node_Cur_Length(node, start) \
897 Set_Node_Length(node, RExC_parse - start)
899 /* Get offsets and lengths */
900 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
901 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
903 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
904 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
905 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
909 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
910 #define EXPERIMENTAL_INPLACESCAN
911 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
915 Perl_re_printf(pTHX_ const char *fmt, ...)
919 PerlIO *f= Perl_debug_log;
920 PERL_ARGS_ASSERT_RE_PRINTF;
922 result = PerlIO_vprintf(f, fmt, ap);
928 Perl_re_indentf(pTHX_ const char *fmt, U32 depth, ...)
932 PerlIO *f= Perl_debug_log;
933 PERL_ARGS_ASSERT_RE_INDENTF;
935 PerlIO_printf(f, "%*s", ( (int)depth % 20 ) * 2, "");
936 result = PerlIO_vprintf(f, fmt, ap);
940 #endif /* DEBUGGING */
942 #define DEBUG_RExC_seen() \
943 DEBUG_OPTIMISE_MORE_r({ \
944 Perl_re_printf( aTHX_ "RExC_seen: "); \
946 if (RExC_seen & REG_ZERO_LEN_SEEN) \
947 Perl_re_printf( aTHX_ "REG_ZERO_LEN_SEEN "); \
949 if (RExC_seen & REG_LOOKBEHIND_SEEN) \
950 Perl_re_printf( aTHX_ "REG_LOOKBEHIND_SEEN "); \
952 if (RExC_seen & REG_GPOS_SEEN) \
953 Perl_re_printf( aTHX_ "REG_GPOS_SEEN "); \
955 if (RExC_seen & REG_RECURSE_SEEN) \
956 Perl_re_printf( aTHX_ "REG_RECURSE_SEEN "); \
958 if (RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN) \
959 Perl_re_printf( aTHX_ "REG_TOP_LEVEL_BRANCHES_SEEN "); \
961 if (RExC_seen & REG_VERBARG_SEEN) \
962 Perl_re_printf( aTHX_ "REG_VERBARG_SEEN "); \
964 if (RExC_seen & REG_CUTGROUP_SEEN) \
965 Perl_re_printf( aTHX_ "REG_CUTGROUP_SEEN "); \
967 if (RExC_seen & REG_RUN_ON_COMMENT_SEEN) \
968 Perl_re_printf( aTHX_ "REG_RUN_ON_COMMENT_SEEN "); \
970 if (RExC_seen & REG_UNFOLDED_MULTI_SEEN) \
971 Perl_re_printf( aTHX_ "REG_UNFOLDED_MULTI_SEEN "); \
973 if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) \
974 Perl_re_printf( aTHX_ "REG_UNBOUNDED_QUANTIFIER_SEEN "); \
976 Perl_re_printf( aTHX_ "\n"); \
979 #define DEBUG_SHOW_STUDY_FLAG(flags,flag) \
980 if ((flags) & flag) Perl_re_printf( aTHX_ "%s ", #flag)
982 #define DEBUG_SHOW_STUDY_FLAGS(flags,open_str,close_str) \
984 Perl_re_printf( aTHX_ "%s", open_str); \
985 DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_SEOL); \
986 DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_MEOL); \
987 DEBUG_SHOW_STUDY_FLAG(flags,SF_IS_INF); \
988 DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_PAR); \
989 DEBUG_SHOW_STUDY_FLAG(flags,SF_IN_PAR); \
990 DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_EVAL); \
991 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_SUBSTR); \
992 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_AND); \
993 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_OR); \
994 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS); \
995 DEBUG_SHOW_STUDY_FLAG(flags,SCF_WHILEM_VISITED_POS); \
996 DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_RESTUDY); \
997 DEBUG_SHOW_STUDY_FLAG(flags,SCF_SEEN_ACCEPT); \
998 DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_DOING_RESTUDY); \
999 DEBUG_SHOW_STUDY_FLAG(flags,SCF_IN_DEFINE); \
1000 Perl_re_printf( aTHX_ "%s", close_str); \
1004 #define DEBUG_STUDYDATA(str,data,depth) \
1005 DEBUG_OPTIMISE_MORE_r(if(data){ \
1006 Perl_re_indentf( aTHX_ "" str "Pos:%" IVdf "/%" IVdf \
1007 " Flags: 0x%" UVXf, \
1009 (IV)((data)->pos_min), \
1010 (IV)((data)->pos_delta), \
1011 (UV)((data)->flags) \
1013 DEBUG_SHOW_STUDY_FLAGS((data)->flags," [ ","]"); \
1014 Perl_re_printf( aTHX_ \
1015 " Whilem_c: %" IVdf " Lcp: %" IVdf " %s", \
1016 (IV)((data)->whilem_c), \
1017 (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
1018 is_inf ? "INF " : "" \
1020 if ((data)->last_found) \
1021 Perl_re_printf( aTHX_ \
1022 "Last:'%s' %" IVdf ":%" IVdf "/%" IVdf \
1023 " %sFixed:'%s' @ %" IVdf \
1024 " %sFloat: '%s' @ %" IVdf "/%" IVdf, \
1025 SvPVX_const((data)->last_found), \
1026 (IV)((data)->last_end), \
1027 (IV)((data)->last_start_min), \
1028 (IV)((data)->last_start_max), \
1029 ((data)->longest && \
1030 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
1031 SvPVX_const((data)->longest_fixed), \
1032 (IV)((data)->offset_fixed), \
1033 ((data)->longest && \
1034 (data)->longest==&((data)->longest_float)) ? "*" : "", \
1035 SvPVX_const((data)->longest_float), \
1036 (IV)((data)->offset_float_min), \
1037 (IV)((data)->offset_float_max) \
1039 Perl_re_printf( aTHX_ "\n"); \
1043 /* =========================================================
1044 * BEGIN edit_distance stuff.
1046 * This calculates how many single character changes of any type are needed to
1047 * transform a string into another one. It is taken from version 3.1 of
1049 * https://metacpan.org/pod/Text::Levenshtein::Damerau::XS
1052 /* Our unsorted dictionary linked list. */
1053 /* Note we use UVs, not chars. */
1058 struct dictionary* next;
1060 typedef struct dictionary item;
1063 PERL_STATIC_INLINE item*
1064 push(UV key,item* curr)
1067 Newxz(head, 1, item);
1075 PERL_STATIC_INLINE item*
1076 find(item* head, UV key)
1078 item* iterator = head;
1080 if (iterator->key == key){
1083 iterator = iterator->next;
1089 PERL_STATIC_INLINE item*
1090 uniquePush(item* head,UV key)
1092 item* iterator = head;
1095 if (iterator->key == key) {
1098 iterator = iterator->next;
1101 return push(key,head);
1104 PERL_STATIC_INLINE void
1105 dict_free(item* head)
1107 item* iterator = head;
1110 item* temp = iterator;
1111 iterator = iterator->next;
1118 /* End of Dictionary Stuff */
1120 /* All calculations/work are done here */
1122 S_edit_distance(const UV* src,
1124 const STRLEN x, /* length of src[] */
1125 const STRLEN y, /* length of tgt[] */
1126 const SSize_t maxDistance
1130 UV swapCount,swapScore,targetCharCount,i,j;
1132 UV score_ceil = x + y;
1134 PERL_ARGS_ASSERT_EDIT_DISTANCE;
1136 /* intialize matrix start values */
1137 Newxz(scores, ( (x + 2) * (y + 2)), UV);
1138 scores[0] = score_ceil;
1139 scores[1 * (y + 2) + 0] = score_ceil;
1140 scores[0 * (y + 2) + 1] = score_ceil;
1141 scores[1 * (y + 2) + 1] = 0;
1142 head = uniquePush(uniquePush(head,src[0]),tgt[0]);
1147 for (i=1;i<=x;i++) {
1149 head = uniquePush(head,src[i]);
1150 scores[(i+1) * (y + 2) + 1] = i;
1151 scores[(i+1) * (y + 2) + 0] = score_ceil;
1154 for (j=1;j<=y;j++) {
1157 head = uniquePush(head,tgt[j]);
1158 scores[1 * (y + 2) + (j + 1)] = j;
1159 scores[0 * (y + 2) + (j + 1)] = score_ceil;
1162 targetCharCount = find(head,tgt[j-1])->value;
1163 swapScore = scores[targetCharCount * (y + 2) + swapCount] + i - targetCharCount - 1 + j - swapCount;
1165 if (src[i-1] != tgt[j-1]){
1166 scores[(i+1) * (y + 2) + (j + 1)] = MIN(swapScore,(MIN(scores[i * (y + 2) + j], MIN(scores[(i+1) * (y + 2) + j], scores[i * (y + 2) + (j + 1)])) + 1));
1170 scores[(i+1) * (y + 2) + (j + 1)] = MIN(scores[i * (y + 2) + j], swapScore);
1174 find(head,src[i-1])->value = i;
1178 IV score = scores[(x+1) * (y + 2) + (y + 1)];
1181 return (maxDistance != 0 && maxDistance < score)?(-1):score;
1185 /* END of edit_distance() stuff
1186 * ========================================================= */
1188 /* is c a control character for which we have a mnemonic? */
1189 #define isMNEMONIC_CNTRL(c) _IS_MNEMONIC_CNTRL_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
1192 S_cntrl_to_mnemonic(const U8 c)
1194 /* Returns the mnemonic string that represents character 'c', if one
1195 * exists; NULL otherwise. The only ones that exist for the purposes of
1196 * this routine are a few control characters */
1199 case '\a': return "\\a";
1200 case '\b': return "\\b";
1201 case ESC_NATIVE: return "\\e";
1202 case '\f': return "\\f";
1203 case '\n': return "\\n";
1204 case '\r': return "\\r";
1205 case '\t': return "\\t";
1211 /* Mark that we cannot extend a found fixed substring at this point.
1212 Update the longest found anchored substring and the longest found
1213 floating substrings if needed. */
1216 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data,
1217 SSize_t *minlenp, int is_inf)
1219 const STRLEN l = CHR_SVLEN(data->last_found);
1220 const STRLEN old_l = CHR_SVLEN(*data->longest);
1221 GET_RE_DEBUG_FLAGS_DECL;
1223 PERL_ARGS_ASSERT_SCAN_COMMIT;
1225 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
1226 SvSetMagicSV(*data->longest, data->last_found);
1227 if (*data->longest == data->longest_fixed) {
1228 data->offset_fixed = l ? data->last_start_min : data->pos_min;
1229 if (data->flags & SF_BEFORE_EOL)
1231 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
1233 data->flags &= ~SF_FIX_BEFORE_EOL;
1234 data->minlen_fixed=minlenp;
1235 data->lookbehind_fixed=0;
1237 else { /* *data->longest == data->longest_float */
1238 data->offset_float_min = l ? data->last_start_min : data->pos_min;
1239 data->offset_float_max = (l
1240 ? data->last_start_max
1241 : (data->pos_delta > SSize_t_MAX - data->pos_min
1243 : data->pos_min + data->pos_delta));
1245 || (STRLEN)data->offset_float_max > (STRLEN)SSize_t_MAX)
1246 data->offset_float_max = SSize_t_MAX;
1247 if (data->flags & SF_BEFORE_EOL)
1249 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
1251 data->flags &= ~SF_FL_BEFORE_EOL;
1252 data->minlen_float=minlenp;
1253 data->lookbehind_float=0;
1256 SvCUR_set(data->last_found, 0);
1258 SV * const sv = data->last_found;
1259 if (SvUTF8(sv) && SvMAGICAL(sv)) {
1260 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
1265 data->last_end = -1;
1266 data->flags &= ~SF_BEFORE_EOL;
1267 DEBUG_STUDYDATA("commit: ",data,0);
1270 /* An SSC is just a regnode_charclass_posix with an extra field: the inversion
1271 * list that describes which code points it matches */
1274 S_ssc_anything(pTHX_ regnode_ssc *ssc)
1276 /* Set the SSC 'ssc' to match an empty string or any code point */
1278 PERL_ARGS_ASSERT_SSC_ANYTHING;
1280 assert(is_ANYOF_SYNTHETIC(ssc));
1282 /* mortalize so won't leak */
1283 ssc->invlist = sv_2mortal(_add_range_to_invlist(NULL, 0, UV_MAX));
1284 ANYOF_FLAGS(ssc) |= SSC_MATCHES_EMPTY_STRING; /* Plus matches empty */
1288 S_ssc_is_anything(const regnode_ssc *ssc)
1290 /* Returns TRUE if the SSC 'ssc' can match the empty string and any code
1291 * point; FALSE otherwise. Thus, this is used to see if using 'ssc' buys
1292 * us anything: if the function returns TRUE, 'ssc' hasn't been restricted
1293 * in any way, so there's no point in using it */
1298 PERL_ARGS_ASSERT_SSC_IS_ANYTHING;
1300 assert(is_ANYOF_SYNTHETIC(ssc));
1302 if (! (ANYOF_FLAGS(ssc) & SSC_MATCHES_EMPTY_STRING)) {
1306 /* See if the list consists solely of the range 0 - Infinity */
1307 invlist_iterinit(ssc->invlist);
1308 ret = invlist_iternext(ssc->invlist, &start, &end)
1312 invlist_iterfinish(ssc->invlist);
1318 /* If e.g., both \w and \W are set, matches everything */
1319 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1321 for (i = 0; i < ANYOF_POSIXL_MAX; i += 2) {
1322 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i+1)) {
1332 S_ssc_init(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc)
1334 /* Initializes the SSC 'ssc'. This includes setting it to match an empty
1335 * string, any code point, or any posix class under locale */
1337 PERL_ARGS_ASSERT_SSC_INIT;
1339 Zero(ssc, 1, regnode_ssc);
1340 set_ANYOF_SYNTHETIC(ssc);
1341 ARG_SET(ssc, ANYOF_ONLY_HAS_BITMAP);
1344 /* If any portion of the regex is to operate under locale rules that aren't
1345 * fully known at compile time, initialization includes it. The reason
1346 * this isn't done for all regexes is that the optimizer was written under
1347 * the assumption that locale was all-or-nothing. Given the complexity and
1348 * lack of documentation in the optimizer, and that there are inadequate
1349 * test cases for locale, many parts of it may not work properly, it is
1350 * safest to avoid locale unless necessary. */
1351 if (RExC_contains_locale) {
1352 ANYOF_POSIXL_SETALL(ssc);
1355 ANYOF_POSIXL_ZERO(ssc);
1360 S_ssc_is_cp_posixl_init(const RExC_state_t *pRExC_state,
1361 const regnode_ssc *ssc)
1363 /* Returns TRUE if the SSC 'ssc' is in its initial state with regard only
1364 * to the list of code points matched, and locale posix classes; hence does
1365 * not check its flags) */
1370 PERL_ARGS_ASSERT_SSC_IS_CP_POSIXL_INIT;
1372 assert(is_ANYOF_SYNTHETIC(ssc));
1374 invlist_iterinit(ssc->invlist);
1375 ret = invlist_iternext(ssc->invlist, &start, &end)
1379 invlist_iterfinish(ssc->invlist);
1385 if (RExC_contains_locale && ! ANYOF_POSIXL_SSC_TEST_ALL_SET(ssc)) {
1393 S_get_ANYOF_cp_list_for_ssc(pTHX_ const RExC_state_t *pRExC_state,
1394 const regnode_charclass* const node)
1396 /* Returns a mortal inversion list defining which code points are matched
1397 * by 'node', which is of type ANYOF. Handles complementing the result if
1398 * appropriate. If some code points aren't knowable at this time, the
1399 * returned list must, and will, contain every code point that is a
1403 SV* only_utf8_locale_invlist = NULL;
1405 const U32 n = ARG(node);
1406 bool new_node_has_latin1 = FALSE;
1408 PERL_ARGS_ASSERT_GET_ANYOF_CP_LIST_FOR_SSC;
1410 /* Look at the data structure created by S_set_ANYOF_arg() */
1411 if (n != ANYOF_ONLY_HAS_BITMAP) {
1412 SV * const rv = MUTABLE_SV(RExC_rxi->data->data[n]);
1413 AV * const av = MUTABLE_AV(SvRV(rv));
1414 SV **const ary = AvARRAY(av);
1415 assert(RExC_rxi->data->what[n] == 's');
1417 if (ary[1] && ary[1] != &PL_sv_undef) { /* Has compile-time swash */
1418 invlist = sv_2mortal(invlist_clone(_get_swash_invlist(ary[1])));
1420 else if (ary[0] && ary[0] != &PL_sv_undef) {
1422 /* Here, no compile-time swash, and there are things that won't be
1423 * known until runtime -- we have to assume it could be anything */
1424 invlist = sv_2mortal(_new_invlist(1));
1425 return _add_range_to_invlist(invlist, 0, UV_MAX);
1427 else if (ary[3] && ary[3] != &PL_sv_undef) {
1429 /* Here no compile-time swash, and no run-time only data. Use the
1430 * node's inversion list */
1431 invlist = sv_2mortal(invlist_clone(ary[3]));
1434 /* Get the code points valid only under UTF-8 locales */
1435 if ((ANYOF_FLAGS(node) & ANYOFL_FOLD)
1436 && ary[2] && ary[2] != &PL_sv_undef)
1438 only_utf8_locale_invlist = ary[2];
1443 invlist = sv_2mortal(_new_invlist(0));
1446 /* An ANYOF node contains a bitmap for the first NUM_ANYOF_CODE_POINTS
1447 * code points, and an inversion list for the others, but if there are code
1448 * points that should match only conditionally on the target string being
1449 * UTF-8, those are placed in the inversion list, and not the bitmap.
1450 * Since there are circumstances under which they could match, they are
1451 * included in the SSC. But if the ANYOF node is to be inverted, we have
1452 * to exclude them here, so that when we invert below, the end result
1453 * actually does include them. (Think about "\xe0" =~ /[^\xc0]/di;). We
1454 * have to do this here before we add the unconditionally matched code
1456 if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
1457 _invlist_intersection_complement_2nd(invlist,
1462 /* Add in the points from the bit map */
1463 for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
1464 if (ANYOF_BITMAP_TEST(node, i)) {
1465 unsigned int start = i++;
1467 for (; i < NUM_ANYOF_CODE_POINTS && ANYOF_BITMAP_TEST(node, i); ++i) {
1470 invlist = _add_range_to_invlist(invlist, start, i-1);
1471 new_node_has_latin1 = TRUE;
1475 /* If this can match all upper Latin1 code points, have to add them
1476 * as well. But don't add them if inverting, as when that gets done below,
1477 * it would exclude all these characters, including the ones it shouldn't
1478 * that were added just above */
1479 if (! (ANYOF_FLAGS(node) & ANYOF_INVERT) && OP(node) == ANYOFD
1480 && (ANYOF_FLAGS(node) & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER))
1482 _invlist_union(invlist, PL_UpperLatin1, &invlist);
1485 /* Similarly for these */
1486 if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
1487 _invlist_union_complement_2nd(invlist, PL_InBitmap, &invlist);
1490 if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
1491 _invlist_invert(invlist);
1493 else if (new_node_has_latin1 && ANYOF_FLAGS(node) & ANYOFL_FOLD) {
1495 /* Under /li, any 0-255 could fold to any other 0-255, depending on the
1496 * locale. We can skip this if there are no 0-255 at all. */
1497 _invlist_union(invlist, PL_Latin1, &invlist);
1500 /* Similarly add the UTF-8 locale possible matches. These have to be
1501 * deferred until after the non-UTF-8 locale ones are taken care of just
1502 * above, or it leads to wrong results under ANYOF_INVERT */
1503 if (only_utf8_locale_invlist) {
1504 _invlist_union_maybe_complement_2nd(invlist,
1505 only_utf8_locale_invlist,
1506 ANYOF_FLAGS(node) & ANYOF_INVERT,
1513 /* These two functions currently do the exact same thing */
1514 #define ssc_init_zero ssc_init
1516 #define ssc_add_cp(ssc, cp) ssc_add_range((ssc), (cp), (cp))
1517 #define ssc_match_all_cp(ssc) ssc_add_range(ssc, 0, UV_MAX)
1519 /* 'AND' a given class with another one. Can create false positives. 'ssc'
1520 * should not be inverted. 'and_with->flags & ANYOF_MATCHES_POSIXL' should be
1521 * 0 if 'and_with' is a regnode_charclass instead of a regnode_ssc. */
1524 S_ssc_and(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1525 const regnode_charclass *and_with)
1527 /* Accumulate into SSC 'ssc' its 'AND' with 'and_with', which is either
1528 * another SSC or a regular ANYOF class. Can create false positives. */
1533 PERL_ARGS_ASSERT_SSC_AND;
1535 assert(is_ANYOF_SYNTHETIC(ssc));
1537 /* 'and_with' is used as-is if it too is an SSC; otherwise have to extract
1538 * the code point inversion list and just the relevant flags */
1539 if (is_ANYOF_SYNTHETIC(and_with)) {
1540 anded_cp_list = ((regnode_ssc *)and_with)->invlist;
1541 anded_flags = ANYOF_FLAGS(and_with);
1543 /* XXX This is a kludge around what appears to be deficiencies in the
1544 * optimizer. If we make S_ssc_anything() add in the WARN_SUPER flag,
1545 * there are paths through the optimizer where it doesn't get weeded
1546 * out when it should. And if we don't make some extra provision for
1547 * it like the code just below, it doesn't get added when it should.
1548 * This solution is to add it only when AND'ing, which is here, and
1549 * only when what is being AND'ed is the pristine, original node
1550 * matching anything. Thus it is like adding it to ssc_anything() but
1551 * only when the result is to be AND'ed. Probably the same solution
1552 * could be adopted for the same problem we have with /l matching,
1553 * which is solved differently in S_ssc_init(), and that would lead to
1554 * fewer false positives than that solution has. But if this solution
1555 * creates bugs, the consequences are only that a warning isn't raised
1556 * that should be; while the consequences for having /l bugs is
1557 * incorrect matches */
1558 if (ssc_is_anything((regnode_ssc *)and_with)) {
1559 anded_flags |= ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER;
1563 anded_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, and_with);
1564 if (OP(and_with) == ANYOFD) {
1565 anded_flags = ANYOF_FLAGS(and_with) & ANYOF_COMMON_FLAGS;
1568 anded_flags = ANYOF_FLAGS(and_with)
1569 &( ANYOF_COMMON_FLAGS
1570 |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1571 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
1572 if (ANYOFL_UTF8_LOCALE_REQD(ANYOF_FLAGS(and_with))) {
1574 ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
1579 ANYOF_FLAGS(ssc) &= anded_flags;
1581 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1582 * C2 is the list of code points in 'and-with'; P2, its posix classes.
1583 * 'and_with' may be inverted. When not inverted, we have the situation of
1585 * (C1 | P1) & (C2 | P2)
1586 * = (C1 & (C2 | P2)) | (P1 & (C2 | P2))
1587 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1588 * <= ((C1 & C2) | P2)) | ( P1 | (P1 & P2))
1589 * <= ((C1 & C2) | P1 | P2)
1590 * Alternatively, the last few steps could be:
1591 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1592 * <= ((C1 & C2) | C1 ) | ( C2 | (P1 & P2))
1593 * <= (C1 | C2 | (P1 & P2))
1594 * We favor the second approach if either P1 or P2 is non-empty. This is
1595 * because these components are a barrier to doing optimizations, as what
1596 * they match cannot be known until the moment of matching as they are
1597 * dependent on the current locale, 'AND"ing them likely will reduce or
1599 * But we can do better if we know that C1,P1 are in their initial state (a
1600 * frequent occurrence), each matching everything:
1601 * (<everything>) & (C2 | P2) = C2 | P2
1602 * Similarly, if C2,P2 are in their initial state (again a frequent
1603 * occurrence), the result is a no-op
1604 * (C1 | P1) & (<everything>) = C1 | P1
1607 * (C1 | P1) & ~(C2 | P2) = (C1 | P1) & (~C2 & ~P2)
1608 * = (C1 & (~C2 & ~P2)) | (P1 & (~C2 & ~P2))
1609 * <= (C1 & ~C2) | (P1 & ~P2)
1612 if ((ANYOF_FLAGS(and_with) & ANYOF_INVERT)
1613 && ! is_ANYOF_SYNTHETIC(and_with))
1617 ssc_intersection(ssc,
1619 FALSE /* Has already been inverted */
1622 /* If either P1 or P2 is empty, the intersection will be also; can skip
1624 if (! (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL)) {
1625 ANYOF_POSIXL_ZERO(ssc);
1627 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1629 /* Note that the Posix class component P from 'and_with' actually
1631 * P = Pa | Pb | ... | Pn
1632 * where each component is one posix class, such as in [\w\s].
1634 * ~P = ~(Pa | Pb | ... | Pn)
1635 * = ~Pa & ~Pb & ... & ~Pn
1636 * <= ~Pa | ~Pb | ... | ~Pn
1637 * The last is something we can easily calculate, but unfortunately
1638 * is likely to have many false positives. We could do better
1639 * in some (but certainly not all) instances if two classes in
1640 * P have known relationships. For example
1641 * :lower: <= :alpha: <= :alnum: <= \w <= :graph: <= :print:
1643 * :lower: & :print: = :lower:
1644 * And similarly for classes that must be disjoint. For example,
1645 * since \s and \w can have no elements in common based on rules in
1646 * the POSIX standard,
1647 * \w & ^\S = nothing
1648 * Unfortunately, some vendor locales do not meet the Posix
1649 * standard, in particular almost everything by Microsoft.
1650 * The loop below just changes e.g., \w into \W and vice versa */
1652 regnode_charclass_posixl temp;
1653 int add = 1; /* To calculate the index of the complement */
1655 ANYOF_POSIXL_ZERO(&temp);
1656 for (i = 0; i < ANYOF_MAX; i++) {
1658 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)
1659 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i + 1));
1661 if (ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)) {
1662 ANYOF_POSIXL_SET(&temp, i + add);
1664 add = 0 - add; /* 1 goes to -1; -1 goes to 1 */
1666 ANYOF_POSIXL_AND(&temp, ssc);
1668 } /* else ssc already has no posixes */
1669 } /* else: Not inverted. This routine is a no-op if 'and_with' is an SSC
1670 in its initial state */
1671 else if (! is_ANYOF_SYNTHETIC(and_with)
1672 || ! ssc_is_cp_posixl_init(pRExC_state, (regnode_ssc *)and_with))
1674 /* But if 'ssc' is in its initial state, the result is just 'and_with';
1675 * copy it over 'ssc' */
1676 if (ssc_is_cp_posixl_init(pRExC_state, ssc)) {
1677 if (is_ANYOF_SYNTHETIC(and_with)) {
1678 StructCopy(and_with, ssc, regnode_ssc);
1681 ssc->invlist = anded_cp_list;
1682 ANYOF_POSIXL_ZERO(ssc);
1683 if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
1684 ANYOF_POSIXL_OR((regnode_charclass_posixl*) and_with, ssc);
1688 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)
1689 || (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL))
1691 /* One or the other of P1, P2 is non-empty. */
1692 if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
1693 ANYOF_POSIXL_AND((regnode_charclass_posixl*) and_with, ssc);
1695 ssc_union(ssc, anded_cp_list, FALSE);
1697 else { /* P1 = P2 = empty */
1698 ssc_intersection(ssc, anded_cp_list, FALSE);
1704 S_ssc_or(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1705 const regnode_charclass *or_with)
1707 /* Accumulate into SSC 'ssc' its 'OR' with 'or_with', which is either
1708 * another SSC or a regular ANYOF class. Can create false positives if
1709 * 'or_with' is to be inverted. */
1714 PERL_ARGS_ASSERT_SSC_OR;
1716 assert(is_ANYOF_SYNTHETIC(ssc));
1718 /* 'or_with' is used as-is if it too is an SSC; otherwise have to extract
1719 * the code point inversion list and just the relevant flags */
1720 if (is_ANYOF_SYNTHETIC(or_with)) {
1721 ored_cp_list = ((regnode_ssc*) or_with)->invlist;
1722 ored_flags = ANYOF_FLAGS(or_with);
1725 ored_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, or_with);
1726 ored_flags = ANYOF_FLAGS(or_with) & ANYOF_COMMON_FLAGS;
1727 if (OP(or_with) != ANYOFD) {
1729 |= ANYOF_FLAGS(or_with)
1730 & ( ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1731 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
1732 if (ANYOFL_UTF8_LOCALE_REQD(ANYOF_FLAGS(or_with))) {
1734 ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
1739 ANYOF_FLAGS(ssc) |= ored_flags;
1741 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1742 * C2 is the list of code points in 'or-with'; P2, its posix classes.
1743 * 'or_with' may be inverted. When not inverted, we have the simple
1744 * situation of computing:
1745 * (C1 | P1) | (C2 | P2) = (C1 | C2) | (P1 | P2)
1746 * If P1|P2 yields a situation with both a class and its complement are
1747 * set, like having both \w and \W, this matches all code points, and we
1748 * can delete these from the P component of the ssc going forward. XXX We
1749 * might be able to delete all the P components, but I (khw) am not certain
1750 * about this, and it is better to be safe.
1753 * (C1 | P1) | ~(C2 | P2) = (C1 | P1) | (~C2 & ~P2)
1754 * <= (C1 | P1) | ~C2
1755 * <= (C1 | ~C2) | P1
1756 * (which results in actually simpler code than the non-inverted case)
1759 if ((ANYOF_FLAGS(or_with) & ANYOF_INVERT)
1760 && ! is_ANYOF_SYNTHETIC(or_with))
1762 /* We ignore P2, leaving P1 going forward */
1763 } /* else Not inverted */
1764 else if (ANYOF_FLAGS(or_with) & ANYOF_MATCHES_POSIXL) {
1765 ANYOF_POSIXL_OR((regnode_charclass_posixl*)or_with, ssc);
1766 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1768 for (i = 0; i < ANYOF_MAX; i += 2) {
1769 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i + 1))
1771 ssc_match_all_cp(ssc);
1772 ANYOF_POSIXL_CLEAR(ssc, i);
1773 ANYOF_POSIXL_CLEAR(ssc, i+1);
1781 FALSE /* Already has been inverted */
1785 PERL_STATIC_INLINE void
1786 S_ssc_union(pTHX_ regnode_ssc *ssc, SV* const invlist, const bool invert2nd)
1788 PERL_ARGS_ASSERT_SSC_UNION;
1790 assert(is_ANYOF_SYNTHETIC(ssc));
1792 _invlist_union_maybe_complement_2nd(ssc->invlist,
1798 PERL_STATIC_INLINE void
1799 S_ssc_intersection(pTHX_ regnode_ssc *ssc,
1801 const bool invert2nd)
1803 PERL_ARGS_ASSERT_SSC_INTERSECTION;
1805 assert(is_ANYOF_SYNTHETIC(ssc));
1807 _invlist_intersection_maybe_complement_2nd(ssc->invlist,
1813 PERL_STATIC_INLINE void
1814 S_ssc_add_range(pTHX_ regnode_ssc *ssc, const UV start, const UV end)
1816 PERL_ARGS_ASSERT_SSC_ADD_RANGE;
1818 assert(is_ANYOF_SYNTHETIC(ssc));
1820 ssc->invlist = _add_range_to_invlist(ssc->invlist, start, end);
1823 PERL_STATIC_INLINE void
1824 S_ssc_cp_and(pTHX_ regnode_ssc *ssc, const UV cp)
1826 /* AND just the single code point 'cp' into the SSC 'ssc' */
1828 SV* cp_list = _new_invlist(2);
1830 PERL_ARGS_ASSERT_SSC_CP_AND;
1832 assert(is_ANYOF_SYNTHETIC(ssc));
1834 cp_list = add_cp_to_invlist(cp_list, cp);
1835 ssc_intersection(ssc, cp_list,
1836 FALSE /* Not inverted */
1838 SvREFCNT_dec_NN(cp_list);
1841 PERL_STATIC_INLINE void
1842 S_ssc_clear_locale(regnode_ssc *ssc)
1844 /* Set the SSC 'ssc' to not match any locale things */
1845 PERL_ARGS_ASSERT_SSC_CLEAR_LOCALE;
1847 assert(is_ANYOF_SYNTHETIC(ssc));
1849 ANYOF_POSIXL_ZERO(ssc);
1850 ANYOF_FLAGS(ssc) &= ~ANYOF_LOCALE_FLAGS;
1853 #define NON_OTHER_COUNT NON_OTHER_COUNT_FOR_USE_ONLY_BY_REGCOMP_DOT_C
1856 S_is_ssc_worth_it(const RExC_state_t * pRExC_state, const regnode_ssc * ssc)
1858 /* The synthetic start class is used to hopefully quickly winnow down
1859 * places where a pattern could start a match in the target string. If it
1860 * doesn't really narrow things down that much, there isn't much point to
1861 * having the overhead of using it. This function uses some very crude
1862 * heuristics to decide if to use the ssc or not.
1864 * It returns TRUE if 'ssc' rules out more than half what it considers to
1865 * be the "likely" possible matches, but of course it doesn't know what the
1866 * actual things being matched are going to be; these are only guesses
1868 * For /l matches, it assumes that the only likely matches are going to be
1869 * in the 0-255 range, uniformly distributed, so half of that is 127
1870 * For /a and /d matches, it assumes that the likely matches will be just
1871 * the ASCII range, so half of that is 63
1872 * For /u and there isn't anything matching above the Latin1 range, it
1873 * assumes that that is the only range likely to be matched, and uses
1874 * half that as the cut-off: 127. If anything matches above Latin1,
1875 * it assumes that all of Unicode could match (uniformly), except for
1876 * non-Unicode code points and things in the General Category "Other"
1877 * (unassigned, private use, surrogates, controls and formats). This
1878 * is a much large number. */
1880 U32 count = 0; /* Running total of number of code points matched by
1882 UV start, end; /* Start and end points of current range in inversion
1884 const U32 max_code_points = (LOC)
1886 : (( ! UNI_SEMANTICS
1887 || invlist_highest(ssc->invlist) < 256)
1890 const U32 max_match = max_code_points / 2;
1892 PERL_ARGS_ASSERT_IS_SSC_WORTH_IT;
1894 invlist_iterinit(ssc->invlist);
1895 while (invlist_iternext(ssc->invlist, &start, &end)) {
1896 if (start >= max_code_points) {
1899 end = MIN(end, max_code_points - 1);
1900 count += end - start + 1;
1901 if (count >= max_match) {
1902 invlist_iterfinish(ssc->invlist);
1912 S_ssc_finalize(pTHX_ RExC_state_t *pRExC_state, regnode_ssc *ssc)
1914 /* The inversion list in the SSC is marked mortal; now we need a more
1915 * permanent copy, which is stored the same way that is done in a regular
1916 * ANYOF node, with the first NUM_ANYOF_CODE_POINTS code points in a bit
1919 SV* invlist = invlist_clone(ssc->invlist);
1921 PERL_ARGS_ASSERT_SSC_FINALIZE;
1923 assert(is_ANYOF_SYNTHETIC(ssc));
1925 /* The code in this file assumes that all but these flags aren't relevant
1926 * to the SSC, except SSC_MATCHES_EMPTY_STRING, which should be cleared
1927 * by the time we reach here */
1928 assert(! (ANYOF_FLAGS(ssc)
1929 & ~( ANYOF_COMMON_FLAGS
1930 |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1931 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP)));
1933 populate_ANYOF_from_invlist( (regnode *) ssc, &invlist);
1935 set_ANYOF_arg(pRExC_state, (regnode *) ssc, invlist,
1936 NULL, NULL, NULL, FALSE);
1938 /* Make sure is clone-safe */
1939 ssc->invlist = NULL;
1941 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1942 ANYOF_FLAGS(ssc) |= ANYOF_MATCHES_POSIXL;
1945 if (RExC_contains_locale) {
1949 assert(! (ANYOF_FLAGS(ssc) & ANYOF_LOCALE_FLAGS) || RExC_contains_locale);
1952 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
1953 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
1954 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
1955 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list \
1956 ? (TRIE_LIST_CUR( idx ) - 1) \
1962 dump_trie(trie,widecharmap,revcharmap)
1963 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
1964 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
1966 These routines dump out a trie in a somewhat readable format.
1967 The _interim_ variants are used for debugging the interim
1968 tables that are used to generate the final compressed
1969 representation which is what dump_trie expects.
1971 Part of the reason for their existence is to provide a form
1972 of documentation as to how the different representations function.
1977 Dumps the final compressed table form of the trie to Perl_debug_log.
1978 Used for debugging make_trie().
1982 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
1983 AV *revcharmap, U32 depth)
1986 SV *sv=sv_newmortal();
1987 int colwidth= widecharmap ? 6 : 4;
1989 GET_RE_DEBUG_FLAGS_DECL;
1991 PERL_ARGS_ASSERT_DUMP_TRIE;
1993 Perl_re_indentf( aTHX_ "Char : %-6s%-6s%-4s ",
1994 depth+1, "Match","Base","Ofs" );
1996 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
1997 SV ** const tmp = av_fetch( revcharmap, state, 0);
1999 Perl_re_printf( aTHX_ "%*s",
2001 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
2002 PL_colors[0], PL_colors[1],
2003 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2004 PERL_PV_ESCAPE_FIRSTCHAR
2009 Perl_re_printf( aTHX_ "\n");
2010 Perl_re_indentf( aTHX_ "State|-----------------------", depth+1);
2012 for( state = 0 ; state < trie->uniquecharcount ; state++ )
2013 Perl_re_printf( aTHX_ "%.*s", colwidth, "--------");
2014 Perl_re_printf( aTHX_ "\n");
2016 for( state = 1 ; state < trie->statecount ; state++ ) {
2017 const U32 base = trie->states[ state ].trans.base;
2019 Perl_re_indentf( aTHX_ "#%4" UVXf "|", depth+1, (UV)state);
2021 if ( trie->states[ state ].wordnum ) {
2022 Perl_re_printf( aTHX_ " W%4X", trie->states[ state ].wordnum );
2024 Perl_re_printf( aTHX_ "%6s", "" );
2027 Perl_re_printf( aTHX_ " @%4" UVXf " ", (UV)base );
2032 while( ( base + ofs < trie->uniquecharcount ) ||
2033 ( base + ofs - trie->uniquecharcount < trie->lasttrans
2034 && trie->trans[ base + ofs - trie->uniquecharcount ].check
2038 Perl_re_printf( aTHX_ "+%2" UVXf "[ ", (UV)ofs);
2040 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2041 if ( ( base + ofs >= trie->uniquecharcount )
2042 && ( base + ofs - trie->uniquecharcount
2044 && trie->trans[ base + ofs
2045 - trie->uniquecharcount ].check == state )
2047 Perl_re_printf( aTHX_ "%*" UVXf, colwidth,
2048 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next
2051 Perl_re_printf( aTHX_ "%*s",colwidth," ." );
2055 Perl_re_printf( aTHX_ "]");
2058 Perl_re_printf( aTHX_ "\n" );
2060 Perl_re_indentf( aTHX_ "word_info N:(prev,len)=",
2062 for (word=1; word <= trie->wordcount; word++) {
2063 Perl_re_printf( aTHX_ " %d:(%d,%d)",
2064 (int)word, (int)(trie->wordinfo[word].prev),
2065 (int)(trie->wordinfo[word].len));
2067 Perl_re_printf( aTHX_ "\n" );
2070 Dumps a fully constructed but uncompressed trie in list form.
2071 List tries normally only are used for construction when the number of
2072 possible chars (trie->uniquecharcount) is very high.
2073 Used for debugging make_trie().
2076 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
2077 HV *widecharmap, AV *revcharmap, U32 next_alloc,
2081 SV *sv=sv_newmortal();
2082 int colwidth= widecharmap ? 6 : 4;
2083 GET_RE_DEBUG_FLAGS_DECL;
2085 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
2087 /* print out the table precompression. */
2088 Perl_re_indentf( aTHX_ "State :Word | Transition Data\n",
2090 Perl_re_indentf( aTHX_ "%s",
2091 depth+1, "------:-----+-----------------\n" );
2093 for( state=1 ; state < next_alloc ; state ++ ) {
2096 Perl_re_indentf( aTHX_ " %4" UVXf " :",
2097 depth+1, (UV)state );
2098 if ( ! trie->states[ state ].wordnum ) {
2099 Perl_re_printf( aTHX_ "%5s| ","");
2101 Perl_re_printf( aTHX_ "W%4x| ",
2102 trie->states[ state ].wordnum
2105 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
2106 SV ** const tmp = av_fetch( revcharmap,
2107 TRIE_LIST_ITEM(state,charid).forid, 0);
2109 Perl_re_printf( aTHX_ "%*s:%3X=%4" UVXf " | ",
2111 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp),
2113 PL_colors[0], PL_colors[1],
2114 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
2115 | PERL_PV_ESCAPE_FIRSTCHAR
2117 TRIE_LIST_ITEM(state,charid).forid,
2118 (UV)TRIE_LIST_ITEM(state,charid).newstate
2121 Perl_re_printf( aTHX_ "\n%*s| ",
2122 (int)((depth * 2) + 14), "");
2125 Perl_re_printf( aTHX_ "\n");
2130 Dumps a fully constructed but uncompressed trie in table form.
2131 This is the normal DFA style state transition table, with a few
2132 twists to facilitate compression later.
2133 Used for debugging make_trie().
2136 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
2137 HV *widecharmap, AV *revcharmap, U32 next_alloc,
2142 SV *sv=sv_newmortal();
2143 int colwidth= widecharmap ? 6 : 4;
2144 GET_RE_DEBUG_FLAGS_DECL;
2146 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
2149 print out the table precompression so that we can do a visual check
2150 that they are identical.
2153 Perl_re_indentf( aTHX_ "Char : ", depth+1 );
2155 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
2156 SV ** const tmp = av_fetch( revcharmap, charid, 0);
2158 Perl_re_printf( aTHX_ "%*s",
2160 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
2161 PL_colors[0], PL_colors[1],
2162 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2163 PERL_PV_ESCAPE_FIRSTCHAR
2169 Perl_re_printf( aTHX_ "\n");
2170 Perl_re_indentf( aTHX_ "State+-", depth+1 );
2172 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
2173 Perl_re_printf( aTHX_ "%.*s", colwidth,"--------");
2176 Perl_re_printf( aTHX_ "\n" );
2178 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
2180 Perl_re_indentf( aTHX_ "%4" UVXf " : ",
2182 (UV)TRIE_NODENUM( state ) );
2184 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
2185 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
2187 Perl_re_printf( aTHX_ "%*" UVXf, colwidth, v );
2189 Perl_re_printf( aTHX_ "%*s", colwidth, "." );
2191 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
2192 Perl_re_printf( aTHX_ " (%4" UVXf ")\n",
2193 (UV)trie->trans[ state ].check );
2195 Perl_re_printf( aTHX_ " (%4" UVXf ") W%4X\n",
2196 (UV)trie->trans[ state ].check,
2197 trie->states[ TRIE_NODENUM( state ) ].wordnum );
2205 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
2206 startbranch: the first branch in the whole branch sequence
2207 first : start branch of sequence of branch-exact nodes.
2208 May be the same as startbranch
2209 last : Thing following the last branch.
2210 May be the same as tail.
2211 tail : item following the branch sequence
2212 count : words in the sequence
2213 flags : currently the OP() type we will be building one of /EXACT(|F|FA|FU|FU_SS|L|FLU8)/
2214 depth : indent depth
2216 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
2218 A trie is an N'ary tree where the branches are determined by digital
2219 decomposition of the key. IE, at the root node you look up the 1st character and
2220 follow that branch repeat until you find the end of the branches. Nodes can be
2221 marked as "accepting" meaning they represent a complete word. Eg:
2225 would convert into the following structure. Numbers represent states, letters
2226 following numbers represent valid transitions on the letter from that state, if
2227 the number is in square brackets it represents an accepting state, otherwise it
2228 will be in parenthesis.
2230 +-h->+-e->[3]-+-r->(8)-+-s->[9]
2234 (1) +-i->(6)-+-s->[7]
2236 +-s->(3)-+-h->(4)-+-e->[5]
2238 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
2240 This shows that when matching against the string 'hers' we will begin at state 1
2241 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
2242 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
2243 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
2244 single traverse. We store a mapping from accepting to state to which word was
2245 matched, and then when we have multiple possibilities we try to complete the
2246 rest of the regex in the order in which they occurred in the alternation.
2248 The only prior NFA like behaviour that would be changed by the TRIE support is
2249 the silent ignoring of duplicate alternations which are of the form:
2251 / (DUPE|DUPE) X? (?{ ... }) Y /x
2253 Thus EVAL blocks following a trie may be called a different number of times with
2254 and without the optimisation. With the optimisations dupes will be silently
2255 ignored. This inconsistent behaviour of EVAL type nodes is well established as
2256 the following demonstrates:
2258 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
2260 which prints out 'word' three times, but
2262 'words'=~/(word|word|word)(?{ print $1 })S/
2264 which doesnt print it out at all. This is due to other optimisations kicking in.
2266 Example of what happens on a structural level:
2268 The regexp /(ac|ad|ab)+/ will produce the following debug output:
2270 1: CURLYM[1] {1,32767}(18)
2281 This would be optimizable with startbranch=5, first=5, last=16, tail=16
2282 and should turn into:
2284 1: CURLYM[1] {1,32767}(18)
2286 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
2294 Cases where tail != last would be like /(?foo|bar)baz/:
2304 which would be optimizable with startbranch=1, first=1, last=7, tail=8
2305 and would end up looking like:
2308 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
2315 d = uvchr_to_utf8_flags(d, uv, 0);
2317 is the recommended Unicode-aware way of saying
2322 #define TRIE_STORE_REVCHAR(val) \
2325 SV *zlopp = newSV(UTF8_MAXBYTES); \
2326 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
2327 unsigned const char *const kapow = uvchr_to_utf8(flrbbbbb, val); \
2328 SvCUR_set(zlopp, kapow - flrbbbbb); \
2331 av_push(revcharmap, zlopp); \
2333 char ooooff = (char)val; \
2334 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
2338 /* This gets the next character from the input, folding it if not already
2340 #define TRIE_READ_CHAR STMT_START { \
2343 /* if it is UTF then it is either already folded, or does not need \
2345 uvc = valid_utf8_to_uvchr( (const U8*) uc, &len); \
2347 else if (folder == PL_fold_latin1) { \
2348 /* This folder implies Unicode rules, which in the range expressible \
2349 * by not UTF is the lower case, with the two exceptions, one of \
2350 * which should have been taken care of before calling this */ \
2351 assert(*uc != LATIN_SMALL_LETTER_SHARP_S); \
2352 uvc = toLOWER_L1(*uc); \
2353 if (UNLIKELY(uvc == MICRO_SIGN)) uvc = GREEK_SMALL_LETTER_MU; \
2356 /* raw data, will be folded later if needed */ \
2364 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
2365 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
2366 U32 ging = TRIE_LIST_LEN( state ) *= 2; \
2367 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
2369 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
2370 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
2371 TRIE_LIST_CUR( state )++; \
2374 #define TRIE_LIST_NEW(state) STMT_START { \
2375 Newxz( trie->states[ state ].trans.list, \
2376 4, reg_trie_trans_le ); \
2377 TRIE_LIST_CUR( state ) = 1; \
2378 TRIE_LIST_LEN( state ) = 4; \
2381 #define TRIE_HANDLE_WORD(state) STMT_START { \
2382 U16 dupe= trie->states[ state ].wordnum; \
2383 regnode * const noper_next = regnext( noper ); \
2386 /* store the word for dumping */ \
2388 if (OP(noper) != NOTHING) \
2389 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
2391 tmp = newSVpvn_utf8( "", 0, UTF ); \
2392 av_push( trie_words, tmp ); \
2396 trie->wordinfo[curword].prev = 0; \
2397 trie->wordinfo[curword].len = wordlen; \
2398 trie->wordinfo[curword].accept = state; \
2400 if ( noper_next < tail ) { \
2402 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, \
2404 trie->jump[curword] = (U16)(noper_next - convert); \
2406 jumper = noper_next; \
2408 nextbranch= regnext(cur); \
2412 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
2413 /* chain, so that when the bits of chain are later */\
2414 /* linked together, the dups appear in the chain */\
2415 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
2416 trie->wordinfo[dupe].prev = curword; \
2418 /* we haven't inserted this word yet. */ \
2419 trie->states[ state ].wordnum = curword; \
2424 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
2425 ( ( base + charid >= ucharcount \
2426 && base + charid < ubound \
2427 && state == trie->trans[ base - ucharcount + charid ].check \
2428 && trie->trans[ base - ucharcount + charid ].next ) \
2429 ? trie->trans[ base - ucharcount + charid ].next \
2430 : ( state==1 ? special : 0 ) \
2433 #define TRIE_BITMAP_SET_FOLDED(trie, uvc, folder) \
2435 TRIE_BITMAP_SET(trie, uvc); \
2436 /* store the folded codepoint */ \
2438 TRIE_BITMAP_SET(trie, folder[(U8) uvc ]); \
2441 /* store first byte of utf8 representation of */ \
2442 /* variant codepoints */ \
2443 if (! UVCHR_IS_INVARIANT(uvc)) { \
2444 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc)); \
2449 #define MADE_JUMP_TRIE 2
2450 #define MADE_EXACT_TRIE 4
2453 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch,
2454 regnode *first, regnode *last, regnode *tail,
2455 U32 word_count, U32 flags, U32 depth)
2457 /* first pass, loop through and scan words */
2458 reg_trie_data *trie;
2459 HV *widecharmap = NULL;
2460 AV *revcharmap = newAV();
2466 regnode *jumper = NULL;
2467 regnode *nextbranch = NULL;
2468 regnode *convert = NULL;
2469 U32 *prev_states; /* temp array mapping each state to previous one */
2470 /* we just use folder as a flag in utf8 */
2471 const U8 * folder = NULL;
2474 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tuuu"));
2475 AV *trie_words = NULL;
2476 /* along with revcharmap, this only used during construction but both are
2477 * useful during debugging so we store them in the struct when debugging.
2480 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tu"));
2481 STRLEN trie_charcount=0;
2483 SV *re_trie_maxbuff;
2484 GET_RE_DEBUG_FLAGS_DECL;
2486 PERL_ARGS_ASSERT_MAKE_TRIE;
2488 PERL_UNUSED_ARG(depth);
2492 case EXACT: case EXACTL: break;
2496 case EXACTFLU8: folder = PL_fold_latin1; break;
2497 case EXACTF: folder = PL_fold; break;
2498 default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
2501 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
2503 trie->startstate = 1;
2504 trie->wordcount = word_count;
2505 RExC_rxi->data->data[ data_slot ] = (void*)trie;
2506 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
2507 if (flags == EXACT || flags == EXACTL)
2508 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
2509 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
2510 trie->wordcount+1, sizeof(reg_trie_wordinfo));
2513 trie_words = newAV();
2516 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
2517 assert(re_trie_maxbuff);
2518 if (!SvIOK(re_trie_maxbuff)) {
2519 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
2521 DEBUG_TRIE_COMPILE_r({
2522 Perl_re_indentf( aTHX_
2523 "make_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
2525 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
2526 REG_NODE_NUM(last), REG_NODE_NUM(tail), (int)depth);
2529 /* Find the node we are going to overwrite */
2530 if ( first == startbranch && OP( last ) != BRANCH ) {
2531 /* whole branch chain */
2534 /* branch sub-chain */
2535 convert = NEXTOPER( first );
2538 /* -- First loop and Setup --
2540 We first traverse the branches and scan each word to determine if it
2541 contains widechars, and how many unique chars there are, this is
2542 important as we have to build a table with at least as many columns as we
2545 We use an array of integers to represent the character codes 0..255
2546 (trie->charmap) and we use a an HV* to store Unicode characters. We use
2547 the native representation of the character value as the key and IV's for
2550 *TODO* If we keep track of how many times each character is used we can
2551 remap the columns so that the table compression later on is more
2552 efficient in terms of memory by ensuring the most common value is in the
2553 middle and the least common are on the outside. IMO this would be better
2554 than a most to least common mapping as theres a decent chance the most
2555 common letter will share a node with the least common, meaning the node
2556 will not be compressible. With a middle is most common approach the worst
2557 case is when we have the least common nodes twice.
2561 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2562 regnode *noper = NEXTOPER( cur );
2566 U32 wordlen = 0; /* required init */
2567 STRLEN minchars = 0;
2568 STRLEN maxchars = 0;
2569 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the
2572 if (OP(noper) == NOTHING) {
2573 /* skip past a NOTHING at the start of an alternation
2574 * eg, /(?:)a|(?:b)/ should be the same as /a|b/
2576 regnode *noper_next= regnext(noper);
2577 if (noper_next < tail)
2581 if ( noper < tail &&
2583 OP(noper) == flags ||
2586 OP(noper) == EXACTFU_SS
2590 uc= (U8*)STRING(noper);
2591 e= uc + STR_LEN(noper);
2598 if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
2599 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
2600 regardless of encoding */
2601 if (OP( noper ) == EXACTFU_SS) {
2602 /* false positives are ok, so just set this */
2603 TRIE_BITMAP_SET(trie, LATIN_SMALL_LETTER_SHARP_S);
2607 for ( ; uc < e ; uc += len ) { /* Look at each char in the current
2609 TRIE_CHARCOUNT(trie)++;
2612 /* TRIE_READ_CHAR returns the current character, or its fold if /i
2613 * is in effect. Under /i, this character can match itself, or
2614 * anything that folds to it. If not under /i, it can match just
2615 * itself. Most folds are 1-1, for example k, K, and KELVIN SIGN
2616 * all fold to k, and all are single characters. But some folds
2617 * expand to more than one character, so for example LATIN SMALL
2618 * LIGATURE FFI folds to the three character sequence 'ffi'. If
2619 * the string beginning at 'uc' is 'ffi', it could be matched by
2620 * three characters, or just by the one ligature character. (It
2621 * could also be matched by two characters: LATIN SMALL LIGATURE FF
2622 * followed by 'i', or by 'f' followed by LATIN SMALL LIGATURE FI).
2623 * (Of course 'I' and/or 'F' instead of 'i' and 'f' can also
2624 * match.) The trie needs to know the minimum and maximum number
2625 * of characters that could match so that it can use size alone to
2626 * quickly reject many match attempts. The max is simple: it is
2627 * the number of folded characters in this branch (since a fold is
2628 * never shorter than what folds to it. */
2632 /* And the min is equal to the max if not under /i (indicated by
2633 * 'folder' being NULL), or there are no multi-character folds. If
2634 * there is a multi-character fold, the min is incremented just
2635 * once, for the character that folds to the sequence. Each
2636 * character in the sequence needs to be added to the list below of
2637 * characters in the trie, but we count only the first towards the
2638 * min number of characters needed. This is done through the
2639 * variable 'foldlen', which is returned by the macros that look
2640 * for these sequences as the number of bytes the sequence
2641 * occupies. Each time through the loop, we decrement 'foldlen' by
2642 * how many bytes the current char occupies. Only when it reaches
2643 * 0 do we increment 'minchars' or look for another multi-character
2645 if (folder == NULL) {
2648 else if (foldlen > 0) {
2649 foldlen -= (UTF) ? UTF8SKIP(uc) : 1;
2654 /* See if *uc is the beginning of a multi-character fold. If
2655 * so, we decrement the length remaining to look at, to account
2656 * for the current character this iteration. (We can use 'uc'
2657 * instead of the fold returned by TRIE_READ_CHAR because for
2658 * non-UTF, the latin1_safe macro is smart enough to account
2659 * for all the unfolded characters, and because for UTF, the
2660 * string will already have been folded earlier in the
2661 * compilation process */
2663 if ((foldlen = is_MULTI_CHAR_FOLD_utf8_safe(uc, e))) {
2664 foldlen -= UTF8SKIP(uc);
2667 else if ((foldlen = is_MULTI_CHAR_FOLD_latin1_safe(uc, e))) {
2672 /* The current character (and any potential folds) should be added
2673 * to the possible matching characters for this position in this
2677 U8 folded= folder[ (U8) uvc ];
2678 if ( !trie->charmap[ folded ] ) {
2679 trie->charmap[ folded ]=( ++trie->uniquecharcount );
2680 TRIE_STORE_REVCHAR( folded );
2683 if ( !trie->charmap[ uvc ] ) {
2684 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
2685 TRIE_STORE_REVCHAR( uvc );
2688 /* store the codepoint in the bitmap, and its folded
2690 TRIE_BITMAP_SET_FOLDED(trie, uvc, folder);
2691 set_bit = 0; /* We've done our bit :-) */
2695 /* XXX We could come up with the list of code points that fold
2696 * to this using PL_utf8_foldclosures, except not for
2697 * multi-char folds, as there may be multiple combinations
2698 * there that could work, which needs to wait until runtime to
2699 * resolve (The comment about LIGATURE FFI above is such an
2704 widecharmap = newHV();
2706 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
2709 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%" UVXf, uvc );
2711 if ( !SvTRUE( *svpp ) ) {
2712 sv_setiv( *svpp, ++trie->uniquecharcount );
2713 TRIE_STORE_REVCHAR(uvc);
2716 } /* end loop through characters in this branch of the trie */
2718 /* We take the min and max for this branch and combine to find the min
2719 * and max for all branches processed so far */
2720 if( cur == first ) {
2721 trie->minlen = minchars;
2722 trie->maxlen = maxchars;
2723 } else if (minchars < trie->minlen) {
2724 trie->minlen = minchars;
2725 } else if (maxchars > trie->maxlen) {
2726 trie->maxlen = maxchars;
2728 } /* end first pass */
2729 DEBUG_TRIE_COMPILE_r(
2730 Perl_re_indentf( aTHX_
2731 "TRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
2733 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
2734 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
2735 (int)trie->minlen, (int)trie->maxlen )
2739 We now know what we are dealing with in terms of unique chars and
2740 string sizes so we can calculate how much memory a naive
2741 representation using a flat table will take. If it's over a reasonable
2742 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
2743 conservative but potentially much slower representation using an array
2746 At the end we convert both representations into the same compressed
2747 form that will be used in regexec.c for matching with. The latter
2748 is a form that cannot be used to construct with but has memory
2749 properties similar to the list form and access properties similar
2750 to the table form making it both suitable for fast searches and
2751 small enough that its feasable to store for the duration of a program.
2753 See the comment in the code where the compressed table is produced
2754 inplace from the flat tabe representation for an explanation of how
2755 the compression works.
2760 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
2763 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1)
2764 > SvIV(re_trie_maxbuff) )
2767 Second Pass -- Array Of Lists Representation
2769 Each state will be represented by a list of charid:state records
2770 (reg_trie_trans_le) the first such element holds the CUR and LEN
2771 points of the allocated array. (See defines above).
2773 We build the initial structure using the lists, and then convert
2774 it into the compressed table form which allows faster lookups
2775 (but cant be modified once converted).
2778 STRLEN transcount = 1;
2780 DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_ "Compiling trie using list compiler\n",
2783 trie->states = (reg_trie_state *)
2784 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2785 sizeof(reg_trie_state) );
2789 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2791 regnode *noper = NEXTOPER( cur );
2792 U32 state = 1; /* required init */
2793 U16 charid = 0; /* sanity init */
2794 U32 wordlen = 0; /* required init */
2796 if (OP(noper) == NOTHING) {
2797 regnode *noper_next= regnext(noper);
2798 if (noper_next < tail)
2802 if ( noper < tail && ( OP(noper) == flags || ( flags == EXACTFU && OP(noper) == EXACTFU_SS ) ) ) {
2803 const U8 *uc= (U8*)STRING(noper);
2804 const U8 *e= uc + STR_LEN(noper);
2806 for ( ; uc < e ; uc += len ) {
2811 charid = trie->charmap[ uvc ];
2813 SV** const svpp = hv_fetch( widecharmap,
2820 charid=(U16)SvIV( *svpp );
2823 /* charid is now 0 if we dont know the char read, or
2824 * nonzero if we do */
2831 if ( !trie->states[ state ].trans.list ) {
2832 TRIE_LIST_NEW( state );
2835 check <= TRIE_LIST_USED( state );
2838 if ( TRIE_LIST_ITEM( state, check ).forid
2841 newstate = TRIE_LIST_ITEM( state, check ).newstate;
2846 newstate = next_alloc++;
2847 prev_states[newstate] = state;
2848 TRIE_LIST_PUSH( state, charid, newstate );
2853 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %" IVdf, uvc );
2857 TRIE_HANDLE_WORD(state);
2859 } /* end second pass */
2861 /* next alloc is the NEXT state to be allocated */
2862 trie->statecount = next_alloc;
2863 trie->states = (reg_trie_state *)
2864 PerlMemShared_realloc( trie->states,
2866 * sizeof(reg_trie_state) );
2868 /* and now dump it out before we compress it */
2869 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
2870 revcharmap, next_alloc,
2874 trie->trans = (reg_trie_trans *)
2875 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
2882 for( state=1 ; state < next_alloc ; state ++ ) {
2886 DEBUG_TRIE_COMPILE_MORE_r(
2887 Perl_re_printf( aTHX_ "tp: %d zp: %d ",tp,zp)
2891 if (trie->states[state].trans.list) {
2892 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
2896 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
2897 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
2898 if ( forid < minid ) {
2900 } else if ( forid > maxid ) {
2904 if ( transcount < tp + maxid - minid + 1) {
2906 trie->trans = (reg_trie_trans *)
2907 PerlMemShared_realloc( trie->trans,
2909 * sizeof(reg_trie_trans) );
2910 Zero( trie->trans + (transcount / 2),
2914 base = trie->uniquecharcount + tp - minid;
2915 if ( maxid == minid ) {
2917 for ( ; zp < tp ; zp++ ) {
2918 if ( ! trie->trans[ zp ].next ) {
2919 base = trie->uniquecharcount + zp - minid;
2920 trie->trans[ zp ].next = TRIE_LIST_ITEM( state,
2922 trie->trans[ zp ].check = state;
2928 trie->trans[ tp ].next = TRIE_LIST_ITEM( state,
2930 trie->trans[ tp ].check = state;
2935 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
2936 const U32 tid = base
2937 - trie->uniquecharcount
2938 + TRIE_LIST_ITEM( state, idx ).forid;
2939 trie->trans[ tid ].next = TRIE_LIST_ITEM( state,
2941 trie->trans[ tid ].check = state;
2943 tp += ( maxid - minid + 1 );
2945 Safefree(trie->states[ state ].trans.list);
2948 DEBUG_TRIE_COMPILE_MORE_r(
2949 Perl_re_printf( aTHX_ " base: %d\n",base);
2952 trie->states[ state ].trans.base=base;
2954 trie->lasttrans = tp + 1;
2958 Second Pass -- Flat Table Representation.
2960 we dont use the 0 slot of either trans[] or states[] so we add 1 to
2961 each. We know that we will need Charcount+1 trans at most to store
2962 the data (one row per char at worst case) So we preallocate both
2963 structures assuming worst case.
2965 We then construct the trie using only the .next slots of the entry
2968 We use the .check field of the first entry of the node temporarily
2969 to make compression both faster and easier by keeping track of how
2970 many non zero fields are in the node.
2972 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
2975 There are two terms at use here: state as a TRIE_NODEIDX() which is
2976 a number representing the first entry of the node, and state as a
2977 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1)
2978 and TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3)
2979 if there are 2 entrys per node. eg:
2987 The table is internally in the right hand, idx form. However as we
2988 also have to deal with the states array which is indexed by nodenum
2989 we have to use TRIE_NODENUM() to convert.
2992 DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_ "Compiling trie using table compiler\n",
2995 trie->trans = (reg_trie_trans *)
2996 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
2997 * trie->uniquecharcount + 1,
2998 sizeof(reg_trie_trans) );
2999 trie->states = (reg_trie_state *)
3000 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
3001 sizeof(reg_trie_state) );
3002 next_alloc = trie->uniquecharcount + 1;
3005 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
3007 regnode *noper = NEXTOPER( cur );
3009 U32 state = 1; /* required init */
3011 U16 charid = 0; /* sanity init */
3012 U32 accept_state = 0; /* sanity init */
3014 U32 wordlen = 0; /* required init */
3016 if (OP(noper) == NOTHING) {
3017 regnode *noper_next= regnext(noper);
3018 if (noper_next < tail)
3022 if ( noper < tail && ( OP(noper) == flags || ( flags == EXACTFU && OP(noper) == EXACTFU_SS ) ) ) {
3023 const U8 *uc= (U8*)STRING(noper);
3024 const U8 *e= uc + STR_LEN(noper);
3026 for ( ; uc < e ; uc += len ) {
3031 charid = trie->charmap[ uvc ];
3033 SV* const * const svpp = hv_fetch( widecharmap,
3037 charid = svpp ? (U16)SvIV(*svpp) : 0;
3041 if ( !trie->trans[ state + charid ].next ) {
3042 trie->trans[ state + charid ].next = next_alloc;
3043 trie->trans[ state ].check++;
3044 prev_states[TRIE_NODENUM(next_alloc)]
3045 = TRIE_NODENUM(state);
3046 next_alloc += trie->uniquecharcount;
3048 state = trie->trans[ state + charid ].next;
3050 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %" IVdf, uvc );
3052 /* charid is now 0 if we dont know the char read, or
3053 * nonzero if we do */
3056 accept_state = TRIE_NODENUM( state );
3057 TRIE_HANDLE_WORD(accept_state);
3059 } /* end second pass */
3061 /* and now dump it out before we compress it */
3062 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
3064 next_alloc, depth+1));
3068 * Inplace compress the table.*
3070 For sparse data sets the table constructed by the trie algorithm will
3071 be mostly 0/FAIL transitions or to put it another way mostly empty.
3072 (Note that leaf nodes will not contain any transitions.)
3074 This algorithm compresses the tables by eliminating most such
3075 transitions, at the cost of a modest bit of extra work during lookup:
3077 - Each states[] entry contains a .base field which indicates the
3078 index in the state[] array wheres its transition data is stored.
3080 - If .base is 0 there are no valid transitions from that node.
3082 - If .base is nonzero then charid is added to it to find an entry in
3085 -If trans[states[state].base+charid].check!=state then the
3086 transition is taken to be a 0/Fail transition. Thus if there are fail
3087 transitions at the front of the node then the .base offset will point
3088 somewhere inside the previous nodes data (or maybe even into a node
3089 even earlier), but the .check field determines if the transition is
3093 The following process inplace converts the table to the compressed
3094 table: We first do not compress the root node 1,and mark all its
3095 .check pointers as 1 and set its .base pointer as 1 as well. This
3096 allows us to do a DFA construction from the compressed table later,
3097 and ensures that any .base pointers we calculate later are greater
3100 - We set 'pos' to indicate the first entry of the second node.
3102 - We then iterate over the columns of the node, finding the first and
3103 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
3104 and set the .check pointers accordingly, and advance pos
3105 appropriately and repreat for the next node. Note that when we copy
3106 the next pointers we have to convert them from the original
3107 NODEIDX form to NODENUM form as the former is not valid post
3110 - If a node has no transitions used we mark its base as 0 and do not
3111 advance the pos pointer.
3113 - If a node only has one transition we use a second pointer into the
3114 structure to fill in allocated fail transitions from other states.
3115 This pointer is independent of the main pointer and scans forward
3116 looking for null transitions that are allocated to a state. When it
3117 finds one it writes the single transition into the "hole". If the
3118 pointer doesnt find one the single transition is appended as normal.
3120 - Once compressed we can Renew/realloc the structures to release the
3123 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
3124 specifically Fig 3.47 and the associated pseudocode.
3128 const U32 laststate = TRIE_NODENUM( next_alloc );
3131 trie->statecount = laststate;
3133 for ( state = 1 ; state < laststate ; state++ ) {
3135 const U32 stateidx = TRIE_NODEIDX( state );
3136 const U32 o_used = trie->trans[ stateidx ].check;
3137 U32 used = trie->trans[ stateidx ].check;
3138 trie->trans[ stateidx ].check = 0;
3141 used && charid < trie->uniquecharcount;
3144 if ( flag || trie->trans[ stateidx + charid ].next ) {
3145 if ( trie->trans[ stateidx + charid ].next ) {
3147 for ( ; zp < pos ; zp++ ) {
3148 if ( ! trie->trans[ zp ].next ) {
3152 trie->states[ state ].trans.base
3154 + trie->uniquecharcount
3156 trie->trans[ zp ].next
3157 = SAFE_TRIE_NODENUM( trie->trans[ stateidx
3159 trie->trans[ zp ].check = state;
3160 if ( ++zp > pos ) pos = zp;
3167 trie->states[ state ].trans.base
3168 = pos + trie->uniquecharcount - charid ;
3170 trie->trans[ pos ].next
3171 = SAFE_TRIE_NODENUM(
3172 trie->trans[ stateidx + charid ].next );
3173 trie->trans[ pos ].check = state;
3178 trie->lasttrans = pos + 1;
3179 trie->states = (reg_trie_state *)
3180 PerlMemShared_realloc( trie->states, laststate
3181 * sizeof(reg_trie_state) );
3182 DEBUG_TRIE_COMPILE_MORE_r(
3183 Perl_re_indentf( aTHX_ "Alloc: %d Orig: %" IVdf " elements, Final:%" IVdf ". Savings of %%%5.2f\n",
3185 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount
3189 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
3192 } /* end table compress */
3194 DEBUG_TRIE_COMPILE_MORE_r(
3195 Perl_re_indentf( aTHX_ "Statecount:%" UVxf " Lasttrans:%" UVxf "\n",
3197 (UV)trie->statecount,
3198 (UV)trie->lasttrans)
3200 /* resize the trans array to remove unused space */
3201 trie->trans = (reg_trie_trans *)
3202 PerlMemShared_realloc( trie->trans, trie->lasttrans
3203 * sizeof(reg_trie_trans) );
3205 { /* Modify the program and insert the new TRIE node */
3206 U8 nodetype =(U8)(flags & 0xFF);
3210 regnode *optimize = NULL;
3211 #ifdef RE_TRACK_PATTERN_OFFSETS
3214 U32 mjd_nodelen = 0;
3215 #endif /* RE_TRACK_PATTERN_OFFSETS */
3216 #endif /* DEBUGGING */
3218 This means we convert either the first branch or the first Exact,
3219 depending on whether the thing following (in 'last') is a branch
3220 or not and whther first is the startbranch (ie is it a sub part of
3221 the alternation or is it the whole thing.)
3222 Assuming its a sub part we convert the EXACT otherwise we convert
3223 the whole branch sequence, including the first.
3225 /* Find the node we are going to overwrite */
3226 if ( first != startbranch || OP( last ) == BRANCH ) {
3227 /* branch sub-chain */
3228 NEXT_OFF( first ) = (U16)(last - first);
3229 #ifdef RE_TRACK_PATTERN_OFFSETS
3231 mjd_offset= Node_Offset((convert));
3232 mjd_nodelen= Node_Length((convert));
3235 /* whole branch chain */
3237 #ifdef RE_TRACK_PATTERN_OFFSETS
3240 const regnode *nop = NEXTOPER( convert );
3241 mjd_offset= Node_Offset((nop));
3242 mjd_nodelen= Node_Length((nop));
3246 Perl_re_indentf( aTHX_ "MJD offset:%" UVuf " MJD length:%" UVuf "\n",
3248 (UV)mjd_offset, (UV)mjd_nodelen)
3251 /* But first we check to see if there is a common prefix we can
3252 split out as an EXACT and put in front of the TRIE node. */
3253 trie->startstate= 1;
3254 if ( trie->bitmap && !widecharmap && !trie->jump ) {
3255 /* we want to find the first state that has more than
3256 * one transition, if that state is not the first state
3257 * then we have a common prefix which we can remove.
3260 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
3262 I32 first_ofs = -1; /* keeps track of the ofs of the first
3263 transition, -1 means none */
3265 const U32 base = trie->states[ state ].trans.base;
3267 /* does this state terminate an alternation? */
3268 if ( trie->states[state].wordnum )
3271 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
3272 if ( ( base + ofs >= trie->uniquecharcount ) &&
3273 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
3274 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
3276 if ( ++count > 1 ) {
3277 /* we have more than one transition */
3280 /* if this is the first state there is no common prefix
3281 * to extract, so we can exit */
3282 if ( state == 1 ) break;
3283 tmp = av_fetch( revcharmap, ofs, 0);
3284 ch = (U8*)SvPV_nolen_const( *tmp );
3286 /* if we are on count 2 then we need to initialize the
3287 * bitmap, and store the previous char if there was one
3290 /* clear the bitmap */
3291 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
3293 Perl_re_indentf( aTHX_ "New Start State=%" UVuf " Class: [",
3296 if (first_ofs >= 0) {
3297 SV ** const tmp = av_fetch( revcharmap, first_ofs, 0);
3298 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
3300 TRIE_BITMAP_SET_FOLDED(trie,*ch,folder);
3302 Perl_re_printf( aTHX_ "%s", (char*)ch)
3306 /* store the current firstchar in the bitmap */
3307 TRIE_BITMAP_SET_FOLDED(trie,*ch,folder);
3308 DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "%s", ch));
3314 /* This state has only one transition, its transition is part
3315 * of a common prefix - we need to concatenate the char it
3316 * represents to what we have so far. */
3317 SV **tmp = av_fetch( revcharmap, first_ofs, 0);
3319 char *ch = SvPV( *tmp, len );
3321 SV *sv=sv_newmortal();
3322 Perl_re_indentf( aTHX_ "Prefix State: %" UVuf " Ofs:%" UVuf " Char='%s'\n",
3324 (UV)state, (UV)first_ofs,
3325 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
3326 PL_colors[0], PL_colors[1],
3327 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
3328 PERL_PV_ESCAPE_FIRSTCHAR
3333 OP( convert ) = nodetype;
3334 str=STRING(convert);
3337 STR_LEN(convert) += len;
3343 DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "]\n"));
3348 trie->prefixlen = (state-1);
3350 regnode *n = convert+NODE_SZ_STR(convert);
3351 NEXT_OFF(convert) = NODE_SZ_STR(convert);
3352 trie->startstate = state;
3353 trie->minlen -= (state - 1);
3354 trie->maxlen -= (state - 1);
3356 /* At least the UNICOS C compiler choked on this
3357 * being argument to DEBUG_r(), so let's just have
3360 #ifdef PERL_EXT_RE_BUILD
3366 regnode *fix = convert;
3367 U32 word = trie->wordcount;
3369 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
3370 while( ++fix < n ) {
3371 Set_Node_Offset_Length(fix, 0, 0);
3374 SV ** const tmp = av_fetch( trie_words, word, 0 );
3376 if ( STR_LEN(convert) <= SvCUR(*tmp) )
3377 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
3379 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
3387 NEXT_OFF(convert) = (U16)(tail - convert);
3388 DEBUG_r(optimize= n);
3394 if ( trie->maxlen ) {
3395 NEXT_OFF( convert ) = (U16)(tail - convert);
3396 ARG_SET( convert, data_slot );
3397 /* Store the offset to the first unabsorbed branch in
3398 jump[0], which is otherwise unused by the jump logic.
3399 We use this when dumping a trie and during optimisation. */
3401 trie->jump[0] = (U16)(nextbranch - convert);
3403 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
3404 * and there is a bitmap
3405 * and the first "jump target" node we found leaves enough room
3406 * then convert the TRIE node into a TRIEC node, with the bitmap
3407 * embedded inline in the opcode - this is hypothetically faster.
3409 if ( !trie->states[trie->startstate].wordnum
3411 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
3413 OP( convert ) = TRIEC;
3414 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
3415 PerlMemShared_free(trie->bitmap);
3418 OP( convert ) = TRIE;
3420 /* store the type in the flags */
3421 convert->flags = nodetype;
3425 + regarglen[ OP( convert ) ];
3427 /* XXX We really should free up the resource in trie now,
3428 as we won't use them - (which resources?) dmq */
3430 /* needed for dumping*/
3431 DEBUG_r(if (optimize) {
3432 regnode *opt = convert;
3434 while ( ++opt < optimize) {
3435 Set_Node_Offset_Length(opt,0,0);
3438 Try to clean up some of the debris left after the
3441 while( optimize < jumper ) {
3442 mjd_nodelen += Node_Length((optimize));
3443 OP( optimize ) = OPTIMIZED;
3444 Set_Node_Offset_Length(optimize,0,0);
3447 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
3449 } /* end node insert */
3451 /* Finish populating the prev field of the wordinfo array. Walk back
3452 * from each accept state until we find another accept state, and if
3453 * so, point the first word's .prev field at the second word. If the
3454 * second already has a .prev field set, stop now. This will be the
3455 * case either if we've already processed that word's accept state,
3456 * or that state had multiple words, and the overspill words were
3457 * already linked up earlier.
3464 for (word=1; word <= trie->wordcount; word++) {
3466 if (trie->wordinfo[word].prev)
3468 state = trie->wordinfo[word].accept;
3470 state = prev_states[state];
3473 prev = trie->states[state].wordnum;
3477 trie->wordinfo[word].prev = prev;
3479 Safefree(prev_states);
3483 /* and now dump out the compressed format */
3484 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
3486 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
3488 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
3489 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
3491 SvREFCNT_dec_NN(revcharmap);
3495 : trie->startstate>1
3501 S_construct_ahocorasick_from_trie(pTHX_ RExC_state_t *pRExC_state, regnode *source, U32 depth)
3503 /* The Trie is constructed and compressed now so we can build a fail array if
3506 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and
3508 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi,
3512 We find the fail state for each state in the trie, this state is the longest
3513 proper suffix of the current state's 'word' that is also a proper prefix of
3514 another word in our trie. State 1 represents the word '' and is thus the
3515 default fail state. This allows the DFA not to have to restart after its
3516 tried and failed a word at a given point, it simply continues as though it
3517 had been matching the other word in the first place.
3519 'abcdgu'=~/abcdefg|cdgu/
3520 When we get to 'd' we are still matching the first word, we would encounter
3521 'g' which would fail, which would bring us to the state representing 'd' in
3522 the second word where we would try 'g' and succeed, proceeding to match
3525 /* add a fail transition */
3526 const U32 trie_offset = ARG(source);
3527 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
3529 const U32 ucharcount = trie->uniquecharcount;
3530 const U32 numstates = trie->statecount;
3531 const U32 ubound = trie->lasttrans + ucharcount;
3535 U32 base = trie->states[ 1 ].trans.base;
3538 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("T"));
3540 GET_RE_DEBUG_FLAGS_DECL;
3542 PERL_ARGS_ASSERT_CONSTRUCT_AHOCORASICK_FROM_TRIE;
3543 PERL_UNUSED_CONTEXT;
3545 PERL_UNUSED_ARG(depth);
3548 if ( OP(source) == TRIE ) {
3549 struct regnode_1 *op = (struct regnode_1 *)
3550 PerlMemShared_calloc(1, sizeof(struct regnode_1));
3551 StructCopy(source,op,struct regnode_1);
3552 stclass = (regnode *)op;
3554 struct regnode_charclass *op = (struct regnode_charclass *)
3555 PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
3556 StructCopy(source,op,struct regnode_charclass);
3557 stclass = (regnode *)op;
3559 OP(stclass)+=2; /* convert the TRIE type to its AHO-CORASICK equivalent */
3561 ARG_SET( stclass, data_slot );
3562 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
3563 RExC_rxi->data->data[ data_slot ] = (void*)aho;
3564 aho->trie=trie_offset;
3565 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
3566 Copy( trie->states, aho->states, numstates, reg_trie_state );
3567 Newxz( q, numstates, U32);
3568 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
3571 /* initialize fail[0..1] to be 1 so that we always have
3572 a valid final fail state */
3573 fail[ 0 ] = fail[ 1 ] = 1;
3575 for ( charid = 0; charid < ucharcount ; charid++ ) {
3576 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
3578 q[ q_write ] = newstate;
3579 /* set to point at the root */
3580 fail[ q[ q_write++ ] ]=1;
3583 while ( q_read < q_write) {
3584 const U32 cur = q[ q_read++ % numstates ];
3585 base = trie->states[ cur ].trans.base;
3587 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
3588 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
3590 U32 fail_state = cur;
3593 fail_state = fail[ fail_state ];
3594 fail_base = aho->states[ fail_state ].trans.base;
3595 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
3597 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
3598 fail[ ch_state ] = fail_state;
3599 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
3601 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
3603 q[ q_write++ % numstates] = ch_state;
3607 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
3608 when we fail in state 1, this allows us to use the
3609 charclass scan to find a valid start char. This is based on the principle
3610 that theres a good chance the string being searched contains lots of stuff
3611 that cant be a start char.
3613 fail[ 0 ] = fail[ 1 ] = 0;
3614 DEBUG_TRIE_COMPILE_r({
3615 Perl_re_indentf( aTHX_ "Stclass Failtable (%" UVuf " states): 0",
3616 depth, (UV)numstates
3618 for( q_read=1; q_read<numstates; q_read++ ) {
3619 Perl_re_printf( aTHX_ ", %" UVuf, (UV)fail[q_read]);
3621 Perl_re_printf( aTHX_ "\n");
3624 /*RExC_seen |= REG_TRIEDFA_SEEN;*/
3629 #define DEBUG_PEEP(str,scan,depth) \
3630 DEBUG_OPTIMISE_r({if (scan){ \
3631 regnode *Next = regnext(scan); \
3632 regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);\
3633 Perl_re_indentf( aTHX_ "" str ">%3d: %s (%d)", \
3634 depth, REG_NODE_NUM(scan), SvPV_nolen_const(RExC_mysv),\
3635 Next ? (REG_NODE_NUM(Next)) : 0 );\
3636 DEBUG_SHOW_STUDY_FLAGS(flags," [ ","]");\
3637 Perl_re_printf( aTHX_ "\n"); \
3640 /* The below joins as many adjacent EXACTish nodes as possible into a single
3641 * one. The regop may be changed if the node(s) contain certain sequences that
3642 * require special handling. The joining is only done if:
3643 * 1) there is room in the current conglomerated node to entirely contain the
3645 * 2) they are the exact same node type
3647 * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
3648 * these get optimized out
3650 * XXX khw thinks this should be enhanced to fill EXACT (at least) nodes as full
3651 * as possible, even if that means splitting an existing node so that its first
3652 * part is moved to the preceeding node. This would maximise the efficiency of
3653 * memEQ during matching. Elsewhere in this file, khw proposes splitting
3654 * EXACTFish nodes into portions that don't change under folding vs those that
3655 * do. Those portions that don't change may be the only things in the pattern that
3656 * could be used to find fixed and floating strings.
3658 * If a node is to match under /i (folded), the number of characters it matches
3659 * can be different than its character length if it contains a multi-character
3660 * fold. *min_subtract is set to the total delta number of characters of the
3663 * And *unfolded_multi_char is set to indicate whether or not the node contains
3664 * an unfolded multi-char fold. This happens when whether the fold is valid or
3665 * not won't be known until runtime; namely for EXACTF nodes that contain LATIN
3666 * SMALL LETTER SHARP S, as only if the target string being matched against
3667 * turns out to be UTF-8 is that fold valid; and also for EXACTFL nodes whose
3668 * folding rules depend on the locale in force at runtime. (Multi-char folds
3669 * whose components are all above the Latin1 range are not run-time locale
3670 * dependent, and have already been folded by the time this function is
3673 * This is as good a place as any to discuss the design of handling these
3674 * multi-character fold sequences. It's been wrong in Perl for a very long
3675 * time. There are three code points in Unicode whose multi-character folds
3676 * were long ago discovered to mess things up. The previous designs for
3677 * dealing with these involved assigning a special node for them. This
3678 * approach doesn't always work, as evidenced by this example:
3679 * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
3680 * Both sides fold to "sss", but if the pattern is parsed to create a node that
3681 * would match just the \xDF, it won't be able to handle the case where a
3682 * successful match would have to cross the node's boundary. The new approach
3683 * that hopefully generally solves the problem generates an EXACTFU_SS node
3684 * that is "sss" in this case.
3686 * It turns out that there are problems with all multi-character folds, and not
3687 * just these three. Now the code is general, for all such cases. The
3688 * approach taken is:
3689 * 1) This routine examines each EXACTFish node that could contain multi-
3690 * character folded sequences. Since a single character can fold into
3691 * such a sequence, the minimum match length for this node is less than
3692 * the number of characters in the node. This routine returns in
3693 * *min_subtract how many characters to subtract from the the actual
3694 * length of the string to get a real minimum match length; it is 0 if
3695 * there are no multi-char foldeds. This delta is used by the caller to
3696 * adjust the min length of the match, and the delta between min and max,
3697 * so that the optimizer doesn't reject these possibilities based on size
3699 * 2) For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS
3700 * is used for an EXACTFU node that contains at least one "ss" sequence in
3701 * it. For non-UTF-8 patterns and strings, this is the only case where
3702 * there is a possible fold length change. That means that a regular
3703 * EXACTFU node without UTF-8 involvement doesn't have to concern itself
3704 * with length changes, and so can be processed faster. regexec.c takes
3705 * advantage of this. Generally, an EXACTFish node that is in UTF-8 is
3706 * pre-folded by regcomp.c (except EXACTFL, some of whose folds aren't
3707 * known until runtime). This saves effort in regex matching. However,
3708 * the pre-folding isn't done for non-UTF8 patterns because the fold of
3709 * the MICRO SIGN requires UTF-8, and we don't want to slow things down by
3710 * forcing the pattern into UTF8 unless necessary. Also what EXACTF (and,
3711 * again, EXACTFL) nodes fold to isn't known until runtime. The fold
3712 * possibilities for the non-UTF8 patterns are quite simple, except for
3713 * the sharp s. All the ones that don't involve a UTF-8 target string are
3714 * members of a fold-pair, and arrays are set up for all of them so that
3715 * the other member of the pair can be found quickly. Code elsewhere in
3716 * this file makes sure that in EXACTFU nodes, the sharp s gets folded to
3717 * 'ss', even if the pattern isn't UTF-8. This avoids the issues
3718 * described in the next item.
3719 * 3) A problem remains for unfolded multi-char folds. (These occur when the
3720 * validity of the fold won't be known until runtime, and so must remain
3721 * unfolded for now. This happens for the sharp s in EXACTF and EXACTFA
3722 * nodes when the pattern isn't in UTF-8. (Note, BTW, that there cannot
3723 * be an EXACTF node with a UTF-8 pattern.) They also occur for various
3724 * folds in EXACTFL nodes, regardless of the UTF-ness of the pattern.)
3725 * The reason this is a problem is that the optimizer part of regexec.c
3726 * (probably unwittingly, in Perl_regexec_flags()) makes an assumption
3727 * that a character in the pattern corresponds to at most a single
3728 * character in the target string. (And I do mean character, and not byte
3729 * here, unlike other parts of the documentation that have never been
3730 * updated to account for multibyte Unicode.) sharp s in EXACTF and
3731 * EXACTFL nodes can match the two character string 'ss'; in EXACTFA nodes
3732 * it can match "\x{17F}\x{17F}". These, along with other ones in EXACTFL
3733 * nodes, violate the assumption, and they are the only instances where it
3734 * is violated. I'm reluctant to try to change the assumption, as the
3735 * code involved is impenetrable to me (khw), so instead the code here
3736 * punts. This routine examines EXACTFL nodes, and (when the pattern
3737 * isn't UTF-8) EXACTF and EXACTFA for such unfolded folds, and returns a
3738 * boolean indicating whether or not the node contains such a fold. When
3739 * it is true, the caller sets a flag that later causes the optimizer in
3740 * this file to not set values for the floating and fixed string lengths,
3741 * and thus avoids the optimizer code in regexec.c that makes the invalid
3742 * assumption. Thus, there is no optimization based on string lengths for
3743 * EXACTFL nodes that contain these few folds, nor for non-UTF8-pattern
3744 * EXACTF and EXACTFA nodes that contain the sharp s. (The reason the
3745 * assumption is wrong only in these cases is that all other non-UTF-8
3746 * folds are 1-1; and, for UTF-8 patterns, we pre-fold all other folds to
3747 * their expanded versions. (Again, we can't prefold sharp s to 'ss' in
3748 * EXACTF nodes because we don't know at compile time if it actually
3749 * matches 'ss' or not. For EXACTF nodes it will match iff the target
3750 * string is in UTF-8. This is in contrast to EXACTFU nodes, where it
3751 * always matches; and EXACTFA where it never does. In an EXACTFA node in
3752 * a UTF-8 pattern, sharp s is folded to "\x{17F}\x{17F}, avoiding the
3753 * problem; but in a non-UTF8 pattern, folding it to that above-Latin1
3754 * string would require the pattern to be forced into UTF-8, the overhead
3755 * of which we want to avoid. Similarly the unfolded multi-char folds in
3756 * EXACTFL nodes will match iff the locale at the time of match is a UTF-8
3759 * Similarly, the code that generates tries doesn't currently handle
3760 * not-already-folded multi-char folds, and it looks like a pain to change
3761 * that. Therefore, trie generation of EXACTFA nodes with the sharp s
3762 * doesn't work. Instead, such an EXACTFA is turned into a new regnode,
3763 * EXACTFA_NO_TRIE, which the trie code knows not to handle. Most people
3764 * using /iaa matching will be doing so almost entirely with ASCII
3765 * strings, so this should rarely be encountered in practice */
3767 #define JOIN_EXACT(scan,min_subtract,unfolded_multi_char, flags) \
3768 if (PL_regkind[OP(scan)] == EXACT) \
3769 join_exact(pRExC_state,(scan),(min_subtract),unfolded_multi_char, (flags),NULL,depth+1)
3772 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan,
3773 UV *min_subtract, bool *unfolded_multi_char,
3774 U32 flags,regnode *val, U32 depth)
3776 /* Merge several consecutive EXACTish nodes into one. */
3777 regnode *n = regnext(scan);
3779 regnode *next = scan + NODE_SZ_STR(scan);
3783 regnode *stop = scan;
3784 GET_RE_DEBUG_FLAGS_DECL;
3786 PERL_UNUSED_ARG(depth);
3789 PERL_ARGS_ASSERT_JOIN_EXACT;
3790 #ifndef EXPERIMENTAL_INPLACESCAN
3791 PERL_UNUSED_ARG(flags);
3792 PERL_UNUSED_ARG(val);
3794 DEBUG_PEEP("join",scan,depth);
3796 /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
3797 * EXACT ones that are mergeable to the current one. */
3799 && (PL_regkind[OP(n)] == NOTHING
3800 || (stringok && OP(n) == OP(scan)))
3802 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
3805 if (OP(n) == TAIL || n > next)
3807 if (PL_regkind[OP(n)] == NOTHING) {
3808 DEBUG_PEEP("skip:",n,depth);
3809 NEXT_OFF(scan) += NEXT_OFF(n);
3810 next = n + NODE_STEP_REGNODE;
3817 else if (stringok) {
3818 const unsigned int oldl = STR_LEN(scan);
3819 regnode * const nnext = regnext(n);
3821 /* XXX I (khw) kind of doubt that this works on platforms (should
3822 * Perl ever run on one) where U8_MAX is above 255 because of lots
3823 * of other assumptions */
3824 /* Don't join if the sum can't fit into a single node */
3825 if (oldl + STR_LEN(n) > U8_MAX)
3828 DEBUG_PEEP("merg",n,depth);
3831 NEXT_OFF(scan) += NEXT_OFF(n);
3832 STR_LEN(scan) += STR_LEN(n);
3833 next = n + NODE_SZ_STR(n);
3834 /* Now we can overwrite *n : */
3835 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
3843 #ifdef EXPERIMENTAL_INPLACESCAN
3844 if (flags && !NEXT_OFF(n)) {
3845 DEBUG_PEEP("atch", val, depth);
3846 if (reg_off_by_arg[OP(n)]) {
3847 ARG_SET(n, val - n);
3850 NEXT_OFF(n) = val - n;
3858 *unfolded_multi_char = FALSE;
3860 /* Here, all the adjacent mergeable EXACTish nodes have been merged. We
3861 * can now analyze for sequences of problematic code points. (Prior to
3862 * this final joining, sequences could have been split over boundaries, and
3863 * hence missed). The sequences only happen in folding, hence for any
3864 * non-EXACT EXACTish node */
3865 if (OP(scan) != EXACT && OP(scan) != EXACTL) {
3866 U8* s0 = (U8*) STRING(scan);
3868 U8* s_end = s0 + STR_LEN(scan);
3870 int total_count_delta = 0; /* Total delta number of characters that
3871 multi-char folds expand to */
3873 /* One pass is made over the node's string looking for all the
3874 * possibilities. To avoid some tests in the loop, there are two main
3875 * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
3880 if (OP(scan) == EXACTFL) {
3883 /* An EXACTFL node would already have been changed to another
3884 * node type unless there is at least one character in it that
3885 * is problematic; likely a character whose fold definition
3886 * won't be known until runtime, and so has yet to be folded.
3887 * For all but the UTF-8 locale, folds are 1-1 in length, but
3888 * to handle the UTF-8 case, we need to create a temporary
3889 * folded copy using UTF-8 locale rules in order to analyze it.
3890 * This is because our macros that look to see if a sequence is
3891 * a multi-char fold assume everything is folded (otherwise the
3892 * tests in those macros would be too complicated and slow).
3893 * Note that here, the non-problematic folds will have already
3894 * been done, so we can just copy such characters. We actually
3895 * don't completely fold the EXACTFL string. We skip the
3896 * unfolded multi-char folds, as that would just create work
3897 * below to figure out the size they already are */
3899 Newx(folded, UTF8_MAX_FOLD_CHAR_EXPAND * STR_LEN(scan) + 1, U8);
3902 STRLEN s_len = UTF8SKIP(s);
3903 if (! is_PROBLEMATIC_LOCALE_FOLD_utf8(s)) {
3904 Copy(s, d, s_len, U8);
3907 else if (is_FOLDS_TO_MULTI_utf8(s)) {
3908 *unfolded_multi_char = TRUE;
3909 Copy(s, d, s_len, U8);
3912 else if (isASCII(*s)) {
3913 *(d++) = toFOLD(*s);
3917 _toFOLD_utf8_flags(s, s_end, d, &len, FOLD_FLAGS_FULL);
3923 /* Point the remainder of the routine to look at our temporary
3927 } /* End of creating folded copy of EXACTFL string */
3929 /* Examine the string for a multi-character fold sequence. UTF-8
3930 * patterns have all characters pre-folded by the time this code is
3932 while (s < s_end - 1) /* Can stop 1 before the end, as minimum
3933 length sequence we are looking for is 2 */
3935 int count = 0; /* How many characters in a multi-char fold */
3936 int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end);
3937 if (! len) { /* Not a multi-char fold: get next char */
3942 /* Nodes with 'ss' require special handling, except for
3943 * EXACTFA-ish for which there is no multi-char fold to this */
3944 if (len == 2 && *s == 's' && *(s+1) == 's'
3945 && OP(scan) != EXACTFA
3946 && OP(scan) != EXACTFA_NO_TRIE)
3949 if (OP(scan) != EXACTFL) {
3950 OP(scan) = EXACTFU_SS;
3954 else { /* Here is a generic multi-char fold. */
3955 U8* multi_end = s + len;
3957 /* Count how many characters are in it. In the case of
3958 * /aa, no folds which contain ASCII code points are
3959 * allowed, so check for those, and skip if found. */
3960 if (OP(scan) != EXACTFA && OP(scan) != EXACTFA_NO_TRIE) {
3961 count = utf8_length(s, multi_end);
3965 while (s < multi_end) {
3968 goto next_iteration;