3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
12 * 'It all comes from here, the stench and the peril.' --Frodo
14 * [p.719 of _The Lord of the Rings_, IV/ix: "Shelob's Lair"]
18 * This file is the lexer for Perl. It's closely linked to the
21 * The main routine is yylex(), which returns the next token.
25 =head1 Lexer interface
27 This is the lower layer of the Perl parser, managing characters and tokens.
29 =for apidoc AmU|yy_parser *|PL_parser
31 Pointer to a structure encapsulating the state of the parsing operation
32 currently in progress. The pointer can be locally changed to perform
33 a nested parse without interfering with the state of an outer parse.
34 Individual members of C<PL_parser> have their own documentation.
40 #define PERL_IN_TOKE_C
42 #include "dquote_static.c"
44 #define new_constant(a,b,c,d,e,f,g) \
45 S_new_constant(aTHX_ a,b,STR_WITH_LEN(c),d,e,f, g)
47 #define pl_yylval (PL_parser->yylval)
49 /* XXX temporary backwards compatibility */
50 #define PL_lex_brackets (PL_parser->lex_brackets)
51 #define PL_lex_allbrackets (PL_parser->lex_allbrackets)
52 #define PL_lex_fakeeof (PL_parser->lex_fakeeof)
53 #define PL_lex_brackstack (PL_parser->lex_brackstack)
54 #define PL_lex_casemods (PL_parser->lex_casemods)
55 #define PL_lex_casestack (PL_parser->lex_casestack)
56 #define PL_lex_defer (PL_parser->lex_defer)
57 #define PL_lex_dojoin (PL_parser->lex_dojoin)
58 #define PL_lex_expect (PL_parser->lex_expect)
59 #define PL_lex_formbrack (PL_parser->lex_formbrack)
60 #define PL_lex_inpat (PL_parser->lex_inpat)
61 #define PL_lex_inwhat (PL_parser->lex_inwhat)
62 #define PL_lex_op (PL_parser->lex_op)
63 #define PL_lex_repl (PL_parser->lex_repl)
64 #define PL_lex_starts (PL_parser->lex_starts)
65 #define PL_lex_stuff (PL_parser->lex_stuff)
66 #define PL_multi_start (PL_parser->multi_start)
67 #define PL_multi_open (PL_parser->multi_open)
68 #define PL_multi_close (PL_parser->multi_close)
69 #define PL_pending_ident (PL_parser->pending_ident)
70 #define PL_preambled (PL_parser->preambled)
71 #define PL_sublex_info (PL_parser->sublex_info)
72 #define PL_linestr (PL_parser->linestr)
73 #define PL_expect (PL_parser->expect)
74 #define PL_copline (PL_parser->copline)
75 #define PL_bufptr (PL_parser->bufptr)
76 #define PL_oldbufptr (PL_parser->oldbufptr)
77 #define PL_oldoldbufptr (PL_parser->oldoldbufptr)
78 #define PL_linestart (PL_parser->linestart)
79 #define PL_bufend (PL_parser->bufend)
80 #define PL_last_uni (PL_parser->last_uni)
81 #define PL_last_lop (PL_parser->last_lop)
82 #define PL_last_lop_op (PL_parser->last_lop_op)
83 #define PL_lex_state (PL_parser->lex_state)
84 #define PL_rsfp (PL_parser->rsfp)
85 #define PL_rsfp_filters (PL_parser->rsfp_filters)
86 #define PL_in_my (PL_parser->in_my)
87 #define PL_in_my_stash (PL_parser->in_my_stash)
88 #define PL_tokenbuf (PL_parser->tokenbuf)
89 #define PL_multi_end (PL_parser->multi_end)
90 #define PL_error_count (PL_parser->error_count)
93 # define PL_endwhite (PL_parser->endwhite)
94 # define PL_faketokens (PL_parser->faketokens)
95 # define PL_lasttoke (PL_parser->lasttoke)
96 # define PL_nextwhite (PL_parser->nextwhite)
97 # define PL_realtokenstart (PL_parser->realtokenstart)
98 # define PL_skipwhite (PL_parser->skipwhite)
99 # define PL_thisclose (PL_parser->thisclose)
100 # define PL_thismad (PL_parser->thismad)
101 # define PL_thisopen (PL_parser->thisopen)
102 # define PL_thisstuff (PL_parser->thisstuff)
103 # define PL_thistoken (PL_parser->thistoken)
104 # define PL_thiswhite (PL_parser->thiswhite)
105 # define PL_thiswhite (PL_parser->thiswhite)
106 # define PL_nexttoke (PL_parser->nexttoke)
107 # define PL_curforce (PL_parser->curforce)
109 # define PL_nexttoke (PL_parser->nexttoke)
110 # define PL_nexttype (PL_parser->nexttype)
111 # define PL_nextval (PL_parser->nextval)
114 /* This can't be done with embed.fnc, because struct yy_parser contains a
115 member named pending_ident, which clashes with the generated #define */
117 S_pending_ident(pTHX);
119 static const char ident_too_long[] = "Identifier too long";
122 # define CURMAD(slot,sv) if (PL_madskills) { curmad(slot,sv); sv = 0; }
123 # define NEXTVAL_NEXTTOKE PL_nexttoke[PL_curforce].next_val
125 # define CURMAD(slot,sv)
126 # define NEXTVAL_NEXTTOKE PL_nextval[PL_nexttoke]
129 #define XENUMMASK 0x3f
130 #define XFAKEEOF 0x40
131 #define XFAKEBRACK 0x80
133 #ifdef USE_UTF8_SCRIPTS
134 # define UTF (!IN_BYTES)
136 # define UTF ((PL_linestr && DO_UTF8(PL_linestr)) || ( !(PL_parser->lex_flags & LEX_IGNORE_UTF8_HINTS) && (PL_hints & HINT_UTF8)))
139 /* The maximum number of characters preceding the unrecognized one to display */
140 #define UNRECOGNIZED_PRECEDE_COUNT 10
142 /* In variables named $^X, these are the legal values for X.
143 * 1999-02-27 mjd-perl-patch@plover.com */
144 #define isCONTROLVAR(x) (isUPPER(x) || strchr("[\\]^_?", (x)))
146 #define SPACE_OR_TAB(c) ((c)==' '||(c)=='\t')
148 /* LEX_* are values for PL_lex_state, the state of the lexer.
149 * They are arranged oddly so that the guard on the switch statement
150 * can get by with a single comparison (if the compiler is smart enough).
152 * These values refer to the various states within a sublex parse,
153 * i.e. within a double quotish string
156 /* #define LEX_NOTPARSING 11 is done in perl.h. */
158 #define LEX_NORMAL 10 /* normal code (ie not within "...") */
159 #define LEX_INTERPNORMAL 9 /* code within a string, eg "$foo[$x+1]" */
160 #define LEX_INTERPCASEMOD 8 /* expecting a \U, \Q or \E etc */
161 #define LEX_INTERPPUSH 7 /* starting a new sublex parse level */
162 #define LEX_INTERPSTART 6 /* expecting the start of a $var */
164 /* at end of code, eg "$x" followed by: */
165 #define LEX_INTERPEND 5 /* ... eg not one of [, { or -> */
166 #define LEX_INTERPENDMAYBE 4 /* ... eg one of [, { or -> */
168 #define LEX_INTERPCONCAT 3 /* expecting anything, eg at start of
169 string or after \E, $foo, etc */
170 #define LEX_INTERPCONST 2 /* NOT USED */
171 #define LEX_FORMLINE 1 /* expecting a format line */
172 #define LEX_KNOWNEXT 0 /* next token known; just return it */
176 static const char* const lex_state_names[] = {
195 #include "keywords.h"
197 /* CLINE is a macro that ensures PL_copline has a sane value */
202 #define CLINE (PL_copline = (CopLINE(PL_curcop) < PL_copline ? CopLINE(PL_curcop) : PL_copline))
205 # define SKIPSPACE0(s) skipspace0(s)
206 # define SKIPSPACE1(s) skipspace1(s)
207 # define SKIPSPACE2(s,tsv) skipspace2(s,&tsv)
208 # define PEEKSPACE(s) skipspace2(s,0)
210 # define SKIPSPACE0(s) skipspace(s)
211 # define SKIPSPACE1(s) skipspace(s)
212 # define SKIPSPACE2(s,tsv) skipspace(s)
213 # define PEEKSPACE(s) skipspace(s)
217 * Convenience functions to return different tokens and prime the
218 * lexer for the next token. They all take an argument.
220 * TOKEN : generic token (used for '(', DOLSHARP, etc)
221 * OPERATOR : generic operator
222 * AOPERATOR : assignment operator
223 * PREBLOCK : beginning the block after an if, while, foreach, ...
224 * PRETERMBLOCK : beginning a non-code-defining {} block (eg, hash ref)
225 * PREREF : *EXPR where EXPR is not a simple identifier
226 * TERM : expression term
227 * LOOPX : loop exiting command (goto, last, dump, etc)
228 * FTST : file test operator
229 * FUN0 : zero-argument function
230 * FUN0OP : zero-argument function, with its op created in this file
231 * FUN1 : not used, except for not, which isn't a UNIOP
232 * BOop : bitwise or or xor
234 * SHop : shift operator
235 * PWop : power operator
236 * PMop : pattern-matching operator
237 * Aop : addition-level operator
238 * Mop : multiplication-level operator
239 * Eop : equality-testing operator
240 * Rop : relational operator <= != gt
242 * Also see LOP and lop() below.
245 #ifdef DEBUGGING /* Serve -DT. */
246 # define REPORT(retval) tokereport((I32)retval, &pl_yylval)
248 # define REPORT(retval) (retval)
251 #define TOKEN(retval) return ( PL_bufptr = s, REPORT(retval))
252 #define OPERATOR(retval) return (PL_expect = XTERM, PL_bufptr = s, REPORT(retval))
253 #define AOPERATOR(retval) return ao((PL_expect = XTERM, PL_bufptr = s, REPORT(retval)))
254 #define PREBLOCK(retval) return (PL_expect = XBLOCK,PL_bufptr = s, REPORT(retval))
255 #define PRETERMBLOCK(retval) return (PL_expect = XTERMBLOCK,PL_bufptr = s, REPORT(retval))
256 #define PREREF(retval) return (PL_expect = XREF,PL_bufptr = s, REPORT(retval))
257 #define TERM(retval) return (CLINE, PL_expect = XOPERATOR, PL_bufptr = s, REPORT(retval))
258 #define LOOPX(f) return (pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, REPORT((int)LOOPEX))
259 #define FTST(f) return (pl_yylval.ival=f, PL_expect=XTERMORDORDOR, PL_bufptr=s, REPORT((int)UNIOP))
260 #define FUN0(f) return (pl_yylval.ival=f, PL_expect=XOPERATOR, PL_bufptr=s, REPORT((int)FUNC0))
261 #define FUN0OP(f) return (pl_yylval.opval=f, CLINE, PL_expect=XOPERATOR, PL_bufptr=s, REPORT((int)FUNC0OP))
262 #define FUN1(f) return (pl_yylval.ival=f, PL_expect=XOPERATOR, PL_bufptr=s, REPORT((int)FUNC1))
263 #define BOop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, REPORT((int)BITOROP)))
264 #define BAop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, REPORT((int)BITANDOP)))
265 #define SHop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, REPORT((int)SHIFTOP)))
266 #define PWop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, REPORT((int)POWOP)))
267 #define PMop(f) return(pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, REPORT((int)MATCHOP))
268 #define Aop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, REPORT((int)ADDOP)))
269 #define Mop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, REPORT((int)MULOP)))
270 #define Eop(f) return (pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, REPORT((int)EQOP))
271 #define Rop(f) return (pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, REPORT((int)RELOP))
273 /* This bit of chicanery makes a unary function followed by
274 * a parenthesis into a function with one argument, highest precedence.
275 * The UNIDOR macro is for unary functions that can be followed by the //
276 * operator (such as C<shift // 0>).
278 #define UNI3(f,x,have_x) { \
279 pl_yylval.ival = f; \
280 if (have_x) PL_expect = x; \
282 PL_last_uni = PL_oldbufptr; \
283 PL_last_lop_op = f; \
285 return REPORT( (int)FUNC1 ); \
287 return REPORT( *s=='(' ? (int)FUNC1 : (int)UNIOP ); \
289 #define UNI(f) UNI3(f,XTERM,1)
290 #define UNIDOR(f) UNI3(f,XTERMORDORDOR,1)
291 #define UNIPROTO(f,optional) { \
292 if (optional) PL_last_uni = PL_oldbufptr; \
296 #define UNIBRACK(f) UNI3(f,0,0)
298 /* grandfather return to old style */
301 if (!PL_lex_allbrackets && PL_lex_fakeeof > LEX_FAKEEOF_LOWLOGIC) \
302 PL_lex_fakeeof = LEX_FAKEEOF_LOWLOGIC; \
303 pl_yylval.ival = (f); \
311 /* how to interpret the pl_yylval associated with the token */
315 TOKENTYPE_OPNUM, /* pl_yylval.ival contains an opcode number */
321 static struct debug_tokens {
323 enum token_type type;
325 } const debug_tokens[] =
327 { ADDOP, TOKENTYPE_OPNUM, "ADDOP" },
328 { ANDAND, TOKENTYPE_NONE, "ANDAND" },
329 { ANDOP, TOKENTYPE_NONE, "ANDOP" },
330 { ANONSUB, TOKENTYPE_IVAL, "ANONSUB" },
331 { ARROW, TOKENTYPE_NONE, "ARROW" },
332 { ASSIGNOP, TOKENTYPE_OPNUM, "ASSIGNOP" },
333 { BITANDOP, TOKENTYPE_OPNUM, "BITANDOP" },
334 { BITOROP, TOKENTYPE_OPNUM, "BITOROP" },
335 { COLONATTR, TOKENTYPE_NONE, "COLONATTR" },
336 { CONTINUE, TOKENTYPE_NONE, "CONTINUE" },
337 { DEFAULT, TOKENTYPE_NONE, "DEFAULT" },
338 { DO, TOKENTYPE_NONE, "DO" },
339 { DOLSHARP, TOKENTYPE_NONE, "DOLSHARP" },
340 { DORDOR, TOKENTYPE_NONE, "DORDOR" },
341 { DOROP, TOKENTYPE_OPNUM, "DOROP" },
342 { DOTDOT, TOKENTYPE_IVAL, "DOTDOT" },
343 { ELSE, TOKENTYPE_NONE, "ELSE" },
344 { ELSIF, TOKENTYPE_IVAL, "ELSIF" },
345 { EQOP, TOKENTYPE_OPNUM, "EQOP" },
346 { FOR, TOKENTYPE_IVAL, "FOR" },
347 { FORMAT, TOKENTYPE_NONE, "FORMAT" },
348 { FUNC, TOKENTYPE_OPNUM, "FUNC" },
349 { FUNC0, TOKENTYPE_OPNUM, "FUNC0" },
350 { FUNC0OP, TOKENTYPE_OPVAL, "FUNC0OP" },
351 { FUNC0SUB, TOKENTYPE_OPVAL, "FUNC0SUB" },
352 { FUNC1, TOKENTYPE_OPNUM, "FUNC1" },
353 { FUNCMETH, TOKENTYPE_OPVAL, "FUNCMETH" },
354 { GIVEN, TOKENTYPE_IVAL, "GIVEN" },
355 { HASHBRACK, TOKENTYPE_NONE, "HASHBRACK" },
356 { IF, TOKENTYPE_IVAL, "IF" },
357 { LABEL, TOKENTYPE_OPVAL, "LABEL" },
358 { LOCAL, TOKENTYPE_IVAL, "LOCAL" },
359 { LOOPEX, TOKENTYPE_OPNUM, "LOOPEX" },
360 { LSTOP, TOKENTYPE_OPNUM, "LSTOP" },
361 { LSTOPSUB, TOKENTYPE_OPVAL, "LSTOPSUB" },
362 { MATCHOP, TOKENTYPE_OPNUM, "MATCHOP" },
363 { METHOD, TOKENTYPE_OPVAL, "METHOD" },
364 { MULOP, TOKENTYPE_OPNUM, "MULOP" },
365 { MY, TOKENTYPE_IVAL, "MY" },
366 { MYSUB, TOKENTYPE_NONE, "MYSUB" },
367 { NOAMP, TOKENTYPE_NONE, "NOAMP" },
368 { NOTOP, TOKENTYPE_NONE, "NOTOP" },
369 { OROP, TOKENTYPE_IVAL, "OROP" },
370 { OROR, TOKENTYPE_NONE, "OROR" },
371 { PACKAGE, TOKENTYPE_NONE, "PACKAGE" },
372 { PLUGEXPR, TOKENTYPE_OPVAL, "PLUGEXPR" },
373 { PLUGSTMT, TOKENTYPE_OPVAL, "PLUGSTMT" },
374 { PMFUNC, TOKENTYPE_OPVAL, "PMFUNC" },
375 { POSTDEC, TOKENTYPE_NONE, "POSTDEC" },
376 { POSTINC, TOKENTYPE_NONE, "POSTINC" },
377 { POWOP, TOKENTYPE_OPNUM, "POWOP" },
378 { PREDEC, TOKENTYPE_NONE, "PREDEC" },
379 { PREINC, TOKENTYPE_NONE, "PREINC" },
380 { PRIVATEREF, TOKENTYPE_OPVAL, "PRIVATEREF" },
381 { REFGEN, TOKENTYPE_NONE, "REFGEN" },
382 { RELOP, TOKENTYPE_OPNUM, "RELOP" },
383 { SHIFTOP, TOKENTYPE_OPNUM, "SHIFTOP" },
384 { SUB, TOKENTYPE_NONE, "SUB" },
385 { THING, TOKENTYPE_OPVAL, "THING" },
386 { UMINUS, TOKENTYPE_NONE, "UMINUS" },
387 { UNIOP, TOKENTYPE_OPNUM, "UNIOP" },
388 { UNIOPSUB, TOKENTYPE_OPVAL, "UNIOPSUB" },
389 { UNLESS, TOKENTYPE_IVAL, "UNLESS" },
390 { UNTIL, TOKENTYPE_IVAL, "UNTIL" },
391 { USE, TOKENTYPE_IVAL, "USE" },
392 { WHEN, TOKENTYPE_IVAL, "WHEN" },
393 { WHILE, TOKENTYPE_IVAL, "WHILE" },
394 { WORD, TOKENTYPE_OPVAL, "WORD" },
395 { YADAYADA, TOKENTYPE_IVAL, "YADAYADA" },
396 { 0, TOKENTYPE_NONE, NULL }
399 /* dump the returned token in rv, plus any optional arg in pl_yylval */
402 S_tokereport(pTHX_ I32 rv, const YYSTYPE* lvalp)
406 PERL_ARGS_ASSERT_TOKEREPORT;
409 const char *name = NULL;
410 enum token_type type = TOKENTYPE_NONE;
411 const struct debug_tokens *p;
412 SV* const report = newSVpvs("<== ");
414 for (p = debug_tokens; p->token; p++) {
415 if (p->token == (int)rv) {
422 Perl_sv_catpv(aTHX_ report, name);
423 else if ((char)rv > ' ' && (char)rv < '~')
424 Perl_sv_catpvf(aTHX_ report, "'%c'", (char)rv);
426 sv_catpvs(report, "EOF");
428 Perl_sv_catpvf(aTHX_ report, "?? %"IVdf, (IV)rv);
431 case TOKENTYPE_GVVAL: /* doesn't appear to be used */
434 Perl_sv_catpvf(aTHX_ report, "(ival=%"IVdf")", (IV)lvalp->ival);
436 case TOKENTYPE_OPNUM:
437 Perl_sv_catpvf(aTHX_ report, "(ival=op_%s)",
438 PL_op_name[lvalp->ival]);
441 Perl_sv_catpvf(aTHX_ report, "(pval=\"%s\")", lvalp->pval);
443 case TOKENTYPE_OPVAL:
445 Perl_sv_catpvf(aTHX_ report, "(opval=op_%s)",
446 PL_op_name[lvalp->opval->op_type]);
447 if (lvalp->opval->op_type == OP_CONST) {
448 Perl_sv_catpvf(aTHX_ report, " %s",
449 SvPEEK(cSVOPx_sv(lvalp->opval)));
454 sv_catpvs(report, "(opval=null)");
457 PerlIO_printf(Perl_debug_log, "### %s\n\n", SvPV_nolen_const(report));
463 /* print the buffer with suitable escapes */
466 S_printbuf(pTHX_ const char *const fmt, const char *const s)
468 SV* const tmp = newSVpvs("");
470 PERL_ARGS_ASSERT_PRINTBUF;
472 PerlIO_printf(Perl_debug_log, fmt, pv_display(tmp, s, strlen(s), 0, 60));
479 S_deprecate_commaless_var_list(pTHX) {
481 deprecate("comma-less variable list");
482 return REPORT(','); /* grandfather non-comma-format format */
488 * This subroutine detects &&=, ||=, and //= and turns an ANDAND, OROR or DORDOR
489 * into an OP_ANDASSIGN, OP_ORASSIGN, or OP_DORASSIGN
493 S_ao(pTHX_ int toketype)
496 if (*PL_bufptr == '=') {
498 if (toketype == ANDAND)
499 pl_yylval.ival = OP_ANDASSIGN;
500 else if (toketype == OROR)
501 pl_yylval.ival = OP_ORASSIGN;
502 else if (toketype == DORDOR)
503 pl_yylval.ival = OP_DORASSIGN;
511 * When Perl expects an operator and finds something else, no_op
512 * prints the warning. It always prints "<something> found where
513 * operator expected. It prints "Missing semicolon on previous line?"
514 * if the surprise occurs at the start of the line. "do you need to
515 * predeclare ..." is printed out for code like "sub bar; foo bar $x"
516 * where the compiler doesn't know if foo is a method call or a function.
517 * It prints "Missing operator before end of line" if there's nothing
518 * after the missing operator, or "... before <...>" if there is something
519 * after the missing operator.
523 S_no_op(pTHX_ const char *const what, char *s)
526 char * const oldbp = PL_bufptr;
527 const bool is_first = (PL_oldbufptr == PL_linestart);
529 PERL_ARGS_ASSERT_NO_OP;
535 yywarn(Perl_form(aTHX_ "%s found where operator expected", what), UTF ? SVf_UTF8 : 0);
536 if (ckWARN_d(WARN_SYNTAX)) {
538 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
539 "\t(Missing semicolon on previous line?)\n");
540 else if (PL_oldoldbufptr && isIDFIRST_lazy_if(PL_oldoldbufptr,UTF)) {
542 for (t = PL_oldoldbufptr; (isALNUM_lazy_if(t,UTF) || *t == ':');
543 t += UTF ? UTF8SKIP(t) : 1)
545 if (t < PL_bufptr && isSPACE(*t))
546 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
547 "\t(Do you need to predeclare %"SVf"?)\n",
548 SVfARG(newSVpvn_flags(PL_oldoldbufptr, (STRLEN)(t - PL_oldoldbufptr),
549 SVs_TEMP | (UTF ? SVf_UTF8 : 0))));
553 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
554 "\t(Missing operator before %"SVf"?)\n",
555 SVfARG(newSVpvn_flags(oldbp, (STRLEN)(s - oldbp),
556 SVs_TEMP | (UTF ? SVf_UTF8 : 0))));
564 * Complain about missing quote/regexp/heredoc terminator.
565 * If it's called with NULL then it cauterizes the line buffer.
566 * If we're in a delimited string and the delimiter is a control
567 * character, it's reformatted into a two-char sequence like ^C.
572 S_missingterm(pTHX_ char *s)
578 char * const nl = strrchr(s,'\n');
582 else if (isCNTRL(PL_multi_close)) {
584 tmpbuf[1] = (char)toCTRL(PL_multi_close);
589 *tmpbuf = (char)PL_multi_close;
593 q = strchr(s,'"') ? '\'' : '"';
594 Perl_croak(aTHX_ "Can't find string terminator %c%s%c anywhere before EOF",q,s,q);
600 * Check whether the named feature is enabled.
603 Perl_feature_is_enabled(pTHX_ const char *const name, STRLEN namelen)
606 char he_name[8 + MAX_FEATURE_LEN] = "feature_";
608 PERL_ARGS_ASSERT_FEATURE_IS_ENABLED;
610 assert(CURRENT_FEATURE_BUNDLE == FEATURE_BUNDLE_CUSTOM);
612 if (namelen > MAX_FEATURE_LEN)
614 memcpy(&he_name[8], name, namelen);
616 return cBOOL(cop_hints_fetch_pvn(PL_curcop, he_name, 8 + namelen, 0,
617 REFCOUNTED_HE_EXISTS));
621 * experimental text filters for win32 carriage-returns, utf16-to-utf8 and
622 * utf16-to-utf8-reversed.
625 #ifdef PERL_CR_FILTER
629 register const char *s = SvPVX_const(sv);
630 register const char * const e = s + SvCUR(sv);
632 PERL_ARGS_ASSERT_STRIP_RETURN;
634 /* outer loop optimized to do nothing if there are no CR-LFs */
636 if (*s++ == '\r' && *s == '\n') {
637 /* hit a CR-LF, need to copy the rest */
638 register char *d = s - 1;
641 if (*s == '\r' && s[1] == '\n')
652 S_cr_textfilter(pTHX_ int idx, SV *sv, int maxlen)
654 const I32 count = FILTER_READ(idx+1, sv, maxlen);
655 if (count > 0 && !maxlen)
662 =for apidoc Amx|void|lex_start|SV *line|PerlIO *rsfp|U32 flags
664 Creates and initialises a new lexer/parser state object, supplying
665 a context in which to lex and parse from a new source of Perl code.
666 A pointer to the new state object is placed in L</PL_parser>. An entry
667 is made on the save stack so that upon unwinding the new state object
668 will be destroyed and the former value of L</PL_parser> will be restored.
669 Nothing else need be done to clean up the parsing context.
671 The code to be parsed comes from I<line> and I<rsfp>. I<line>, if
672 non-null, provides a string (in SV form) containing code to be parsed.
673 A copy of the string is made, so subsequent modification of I<line>
674 does not affect parsing. I<rsfp>, if non-null, provides an input stream
675 from which code will be read to be parsed. If both are non-null, the
676 code in I<line> comes first and must consist of complete lines of input,
677 and I<rsfp> supplies the remainder of the source.
679 The I<flags> parameter is reserved for future use. Currently it is only
680 used by perl internally, so extensions should always pass zero.
685 /* LEX_START_SAME_FILTER indicates that this is not a new file, so it
686 can share filters with the current parser.
687 LEX_START_DONT_CLOSE indicates that the file handle wasn't opened by the
688 caller, hence isn't owned by the parser, so shouldn't be closed on parser
689 destruction. This is used to handle the case of defaulting to reading the
690 script from the standard input because no filename was given on the command
691 line (without getting confused by situation where STDIN has been closed, so
692 the script handle is opened on fd 0) */
695 Perl_lex_start(pTHX_ SV *line, PerlIO *rsfp, U32 flags)
698 const char *s = NULL;
699 yy_parser *parser, *oparser;
700 if (flags && flags & ~LEX_START_FLAGS)
701 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_start");
703 /* create and initialise a parser */
705 Newxz(parser, 1, yy_parser);
706 parser->old_parser = oparser = PL_parser;
709 parser->stack = NULL;
711 parser->stack_size = 0;
713 /* on scope exit, free this parser and restore any outer one */
715 parser->saved_curcop = PL_curcop;
717 /* initialise lexer state */
720 parser->curforce = -1;
722 parser->nexttoke = 0;
724 parser->error_count = oparser ? oparser->error_count : 0;
725 parser->copline = NOLINE;
726 parser->lex_state = LEX_NORMAL;
727 parser->expect = XSTATE;
729 parser->rsfp_filters =
730 !(flags & LEX_START_SAME_FILTER) || !oparser
732 : MUTABLE_AV(SvREFCNT_inc(
733 oparser->rsfp_filters
734 ? oparser->rsfp_filters
735 : (oparser->rsfp_filters = newAV())
738 Newx(parser->lex_brackstack, 120, char);
739 Newx(parser->lex_casestack, 12, char);
740 *parser->lex_casestack = '\0';
744 s = SvPV_const(line, len);
745 parser->linestr = flags & LEX_START_COPIED
746 ? SvREFCNT_inc_simple_NN(line)
747 : newSVpvn_flags(s, len, SvUTF8(line));
748 if (!len || s[len-1] != ';')
749 sv_catpvs(parser->linestr, "\n;");
751 parser->linestr = newSVpvs("\n;");
753 parser->oldoldbufptr =
756 parser->linestart = SvPVX(parser->linestr);
757 parser->bufend = parser->bufptr + SvCUR(parser->linestr);
758 parser->last_lop = parser->last_uni = NULL;
759 parser->lex_flags = flags & (LEX_IGNORE_UTF8_HINTS|LEX_EVALBYTES
760 |LEX_DONT_CLOSE_RSFP);
762 parser->in_pod = parser->filtered = 0;
766 /* delete a parser object */
769 Perl_parser_free(pTHX_ const yy_parser *parser)
771 PERL_ARGS_ASSERT_PARSER_FREE;
773 PL_curcop = parser->saved_curcop;
774 SvREFCNT_dec(parser->linestr);
776 if (PL_parser->lex_flags & LEX_DONT_CLOSE_RSFP)
777 PerlIO_clearerr(parser->rsfp);
778 else if (parser->rsfp && (!parser->old_parser ||
779 (parser->old_parser && parser->rsfp != parser->old_parser->rsfp)))
780 PerlIO_close(parser->rsfp);
781 SvREFCNT_dec(parser->rsfp_filters);
783 Safefree(parser->lex_brackstack);
784 Safefree(parser->lex_casestack);
785 PL_parser = parser->old_parser;
791 =for apidoc AmxU|SV *|PL_parser-E<gt>linestr
793 Buffer scalar containing the chunk currently under consideration of the
794 text currently being lexed. This is always a plain string scalar (for
795 which C<SvPOK> is true). It is not intended to be used as a scalar by
796 normal scalar means; instead refer to the buffer directly by the pointer
797 variables described below.
799 The lexer maintains various C<char*> pointers to things in the
800 C<PL_parser-E<gt>linestr> buffer. If C<PL_parser-E<gt>linestr> is ever
801 reallocated, all of these pointers must be updated. Don't attempt to
802 do this manually, but rather use L</lex_grow_linestr> if you need to
803 reallocate the buffer.
805 The content of the text chunk in the buffer is commonly exactly one
806 complete line of input, up to and including a newline terminator,
807 but there are situations where it is otherwise. The octets of the
808 buffer may be intended to be interpreted as either UTF-8 or Latin-1.
809 The function L</lex_bufutf8> tells you which. Do not use the C<SvUTF8>
810 flag on this scalar, which may disagree with it.
812 For direct examination of the buffer, the variable
813 L</PL_parser-E<gt>bufend> points to the end of the buffer. The current
814 lexing position is pointed to by L</PL_parser-E<gt>bufptr>. Direct use
815 of these pointers is usually preferable to examination of the scalar
816 through normal scalar means.
818 =for apidoc AmxU|char *|PL_parser-E<gt>bufend
820 Direct pointer to the end of the chunk of text currently being lexed, the
821 end of the lexer buffer. This is equal to C<SvPVX(PL_parser-E<gt>linestr)
822 + SvCUR(PL_parser-E<gt>linestr)>. A NUL character (zero octet) is
823 always located at the end of the buffer, and does not count as part of
824 the buffer's contents.
826 =for apidoc AmxU|char *|PL_parser-E<gt>bufptr
828 Points to the current position of lexing inside the lexer buffer.
829 Characters around this point may be freely examined, within
830 the range delimited by C<SvPVX(L</PL_parser-E<gt>linestr>)> and
831 L</PL_parser-E<gt>bufend>. The octets of the buffer may be intended to be
832 interpreted as either UTF-8 or Latin-1, as indicated by L</lex_bufutf8>.
834 Lexing code (whether in the Perl core or not) moves this pointer past
835 the characters that it consumes. It is also expected to perform some
836 bookkeeping whenever a newline character is consumed. This movement
837 can be more conveniently performed by the function L</lex_read_to>,
838 which handles newlines appropriately.
840 Interpretation of the buffer's octets can be abstracted out by
841 using the slightly higher-level functions L</lex_peek_unichar> and
842 L</lex_read_unichar>.
844 =for apidoc AmxU|char *|PL_parser-E<gt>linestart
846 Points to the start of the current line inside the lexer buffer.
847 This is useful for indicating at which column an error occurred, and
848 not much else. This must be updated by any lexing code that consumes
849 a newline; the function L</lex_read_to> handles this detail.
855 =for apidoc Amx|bool|lex_bufutf8
857 Indicates whether the octets in the lexer buffer
858 (L</PL_parser-E<gt>linestr>) should be interpreted as the UTF-8 encoding
859 of Unicode characters. If not, they should be interpreted as Latin-1
860 characters. This is analogous to the C<SvUTF8> flag for scalars.
862 In UTF-8 mode, it is not guaranteed that the lexer buffer actually
863 contains valid UTF-8. Lexing code must be robust in the face of invalid
866 The actual C<SvUTF8> flag of the L</PL_parser-E<gt>linestr> scalar
867 is significant, but not the whole story regarding the input character
868 encoding. Normally, when a file is being read, the scalar contains octets
869 and its C<SvUTF8> flag is off, but the octets should be interpreted as
870 UTF-8 if the C<use utf8> pragma is in effect. During a string eval,
871 however, the scalar may have the C<SvUTF8> flag on, and in this case its
872 octets should be interpreted as UTF-8 unless the C<use bytes> pragma
873 is in effect. This logic may change in the future; use this function
874 instead of implementing the logic yourself.
880 Perl_lex_bufutf8(pTHX)
886 =for apidoc Amx|char *|lex_grow_linestr|STRLEN len
888 Reallocates the lexer buffer (L</PL_parser-E<gt>linestr>) to accommodate
889 at least I<len> octets (including terminating NUL). Returns a
890 pointer to the reallocated buffer. This is necessary before making
891 any direct modification of the buffer that would increase its length.
892 L</lex_stuff_pvn> provides a more convenient way to insert text into
895 Do not use C<SvGROW> or C<sv_grow> directly on C<PL_parser-E<gt>linestr>;
896 this function updates all of the lexer's variables that point directly
903 Perl_lex_grow_linestr(pTHX_ STRLEN len)
907 STRLEN bufend_pos, bufptr_pos, oldbufptr_pos, oldoldbufptr_pos;
908 STRLEN linestart_pos, last_uni_pos, last_lop_pos, re_eval_start_pos;
909 linestr = PL_parser->linestr;
910 buf = SvPVX(linestr);
911 if (len <= SvLEN(linestr))
913 bufend_pos = PL_parser->bufend - buf;
914 bufptr_pos = PL_parser->bufptr - buf;
915 oldbufptr_pos = PL_parser->oldbufptr - buf;
916 oldoldbufptr_pos = PL_parser->oldoldbufptr - buf;
917 linestart_pos = PL_parser->linestart - buf;
918 last_uni_pos = PL_parser->last_uni ? PL_parser->last_uni - buf : 0;
919 last_lop_pos = PL_parser->last_lop ? PL_parser->last_lop - buf : 0;
920 re_eval_start_pos = PL_sublex_info.re_eval_start ?
921 PL_sublex_info.re_eval_start - buf : 0;
923 buf = sv_grow(linestr, len);
925 PL_parser->bufend = buf + bufend_pos;
926 PL_parser->bufptr = buf + bufptr_pos;
927 PL_parser->oldbufptr = buf + oldbufptr_pos;
928 PL_parser->oldoldbufptr = buf + oldoldbufptr_pos;
929 PL_parser->linestart = buf + linestart_pos;
930 if (PL_parser->last_uni)
931 PL_parser->last_uni = buf + last_uni_pos;
932 if (PL_parser->last_lop)
933 PL_parser->last_lop = buf + last_lop_pos;
934 if (PL_sublex_info.re_eval_start)
935 PL_sublex_info.re_eval_start = buf + re_eval_start_pos;
940 =for apidoc Amx|void|lex_stuff_pvn|const char *pv|STRLEN len|U32 flags
942 Insert characters into the lexer buffer (L</PL_parser-E<gt>linestr>),
943 immediately after the current lexing point (L</PL_parser-E<gt>bufptr>),
944 reallocating the buffer if necessary. This means that lexing code that
945 runs later will see the characters as if they had appeared in the input.
946 It is not recommended to do this as part of normal parsing, and most
947 uses of this facility run the risk of the inserted characters being
948 interpreted in an unintended manner.
950 The string to be inserted is represented by I<len> octets starting
951 at I<pv>. These octets are interpreted as either UTF-8 or Latin-1,
952 according to whether the C<LEX_STUFF_UTF8> flag is set in I<flags>.
953 The characters are recoded for the lexer buffer, according to how the
954 buffer is currently being interpreted (L</lex_bufutf8>). If a string
955 to be inserted is available as a Perl scalar, the L</lex_stuff_sv>
956 function is more convenient.
962 Perl_lex_stuff_pvn(pTHX_ const char *pv, STRLEN len, U32 flags)
966 PERL_ARGS_ASSERT_LEX_STUFF_PVN;
967 if (flags & ~(LEX_STUFF_UTF8))
968 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_stuff_pvn");
970 if (flags & LEX_STUFF_UTF8) {
974 const char *p, *e = pv+len;
975 for (p = pv; p != e; p++)
976 highhalf += !!(((U8)*p) & 0x80);
979 lex_grow_linestr(SvCUR(PL_parser->linestr)+1+len+highhalf);
980 bufptr = PL_parser->bufptr;
981 Move(bufptr, bufptr+len+highhalf, PL_parser->bufend+1-bufptr, char);
982 SvCUR_set(PL_parser->linestr,
983 SvCUR(PL_parser->linestr) + len+highhalf);
984 PL_parser->bufend += len+highhalf;
985 for (p = pv; p != e; p++) {
988 *bufptr++ = (char)(0xc0 | (c >> 6));
989 *bufptr++ = (char)(0x80 | (c & 0x3f));
996 if (flags & LEX_STUFF_UTF8) {
998 const char *p, *e = pv+len;
999 for (p = pv; p != e; p++) {
1002 Perl_croak(aTHX_ "Lexing code attempted to stuff "
1003 "non-Latin-1 character into Latin-1 input");
1004 } else if (c >= 0xc2 && p+1 != e &&
1005 (((U8)p[1]) & 0xc0) == 0x80) {
1008 } else if (c >= 0x80) {
1009 /* malformed UTF-8 */
1011 SAVESPTR(PL_warnhook);
1012 PL_warnhook = PERL_WARNHOOK_FATAL;
1013 utf8n_to_uvuni((U8*)p, e-p, NULL, 0);
1019 lex_grow_linestr(SvCUR(PL_parser->linestr)+1+len-highhalf);
1020 bufptr = PL_parser->bufptr;
1021 Move(bufptr, bufptr+len-highhalf, PL_parser->bufend+1-bufptr, char);
1022 SvCUR_set(PL_parser->linestr,
1023 SvCUR(PL_parser->linestr) + len-highhalf);
1024 PL_parser->bufend += len-highhalf;
1025 for (p = pv; p != e; p++) {
1028 *bufptr++ = (char)(((c & 0x3) << 6) | (p[1] & 0x3f));
1031 *bufptr++ = (char)c;
1036 lex_grow_linestr(SvCUR(PL_parser->linestr)+1+len);
1037 bufptr = PL_parser->bufptr;
1038 Move(bufptr, bufptr+len, PL_parser->bufend+1-bufptr, char);
1039 SvCUR_set(PL_parser->linestr, SvCUR(PL_parser->linestr) + len);
1040 PL_parser->bufend += len;
1041 Copy(pv, bufptr, len, char);
1047 =for apidoc Amx|void|lex_stuff_pv|const char *pv|U32 flags
1049 Insert characters into the lexer buffer (L</PL_parser-E<gt>linestr>),
1050 immediately after the current lexing point (L</PL_parser-E<gt>bufptr>),
1051 reallocating the buffer if necessary. This means that lexing code that
1052 runs later will see the characters as if they had appeared in the input.
1053 It is not recommended to do this as part of normal parsing, and most
1054 uses of this facility run the risk of the inserted characters being
1055 interpreted in an unintended manner.
1057 The string to be inserted is represented by octets starting at I<pv>
1058 and continuing to the first nul. These octets are interpreted as either
1059 UTF-8 or Latin-1, according to whether the C<LEX_STUFF_UTF8> flag is set
1060 in I<flags>. The characters are recoded for the lexer buffer, according
1061 to how the buffer is currently being interpreted (L</lex_bufutf8>).
1062 If it is not convenient to nul-terminate a string to be inserted, the
1063 L</lex_stuff_pvn> function is more appropriate.
1069 Perl_lex_stuff_pv(pTHX_ const char *pv, U32 flags)
1071 PERL_ARGS_ASSERT_LEX_STUFF_PV;
1072 lex_stuff_pvn(pv, strlen(pv), flags);
1076 =for apidoc Amx|void|lex_stuff_sv|SV *sv|U32 flags
1078 Insert characters into the lexer buffer (L</PL_parser-E<gt>linestr>),
1079 immediately after the current lexing point (L</PL_parser-E<gt>bufptr>),
1080 reallocating the buffer if necessary. This means that lexing code that
1081 runs later will see the characters as if they had appeared in the input.
1082 It is not recommended to do this as part of normal parsing, and most
1083 uses of this facility run the risk of the inserted characters being
1084 interpreted in an unintended manner.
1086 The string to be inserted is the string value of I<sv>. The characters
1087 are recoded for the lexer buffer, according to how the buffer is currently
1088 being interpreted (L</lex_bufutf8>). If a string to be inserted is
1089 not already a Perl scalar, the L</lex_stuff_pvn> function avoids the
1090 need to construct a scalar.
1096 Perl_lex_stuff_sv(pTHX_ SV *sv, U32 flags)
1100 PERL_ARGS_ASSERT_LEX_STUFF_SV;
1102 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_stuff_sv");
1104 lex_stuff_pvn(pv, len, flags | (SvUTF8(sv) ? LEX_STUFF_UTF8 : 0));
1108 =for apidoc Amx|void|lex_unstuff|char *ptr
1110 Discards text about to be lexed, from L</PL_parser-E<gt>bufptr> up to
1111 I<ptr>. Text following I<ptr> will be moved, and the buffer shortened.
1112 This hides the discarded text from any lexing code that runs later,
1113 as if the text had never appeared.
1115 This is not the normal way to consume lexed text. For that, use
1122 Perl_lex_unstuff(pTHX_ char *ptr)
1126 PERL_ARGS_ASSERT_LEX_UNSTUFF;
1127 buf = PL_parser->bufptr;
1129 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_unstuff");
1132 bufend = PL_parser->bufend;
1134 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_unstuff");
1135 unstuff_len = ptr - buf;
1136 Move(ptr, buf, bufend+1-ptr, char);
1137 SvCUR_set(PL_parser->linestr, SvCUR(PL_parser->linestr) - unstuff_len);
1138 PL_parser->bufend = bufend - unstuff_len;
1142 =for apidoc Amx|void|lex_read_to|char *ptr
1144 Consume text in the lexer buffer, from L</PL_parser-E<gt>bufptr> up
1145 to I<ptr>. This advances L</PL_parser-E<gt>bufptr> to match I<ptr>,
1146 performing the correct bookkeeping whenever a newline character is passed.
1147 This is the normal way to consume lexed text.
1149 Interpretation of the buffer's octets can be abstracted out by
1150 using the slightly higher-level functions L</lex_peek_unichar> and
1151 L</lex_read_unichar>.
1157 Perl_lex_read_to(pTHX_ char *ptr)
1160 PERL_ARGS_ASSERT_LEX_READ_TO;
1161 s = PL_parser->bufptr;
1162 if (ptr < s || ptr > PL_parser->bufend)
1163 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_read_to");
1164 for (; s != ptr; s++)
1166 CopLINE_inc(PL_curcop);
1167 PL_parser->linestart = s+1;
1169 PL_parser->bufptr = ptr;
1173 =for apidoc Amx|void|lex_discard_to|char *ptr
1175 Discards the first part of the L</PL_parser-E<gt>linestr> buffer,
1176 up to I<ptr>. The remaining content of the buffer will be moved, and
1177 all pointers into the buffer updated appropriately. I<ptr> must not
1178 be later in the buffer than the position of L</PL_parser-E<gt>bufptr>:
1179 it is not permitted to discard text that has yet to be lexed.
1181 Normally it is not necessarily to do this directly, because it suffices to
1182 use the implicit discarding behaviour of L</lex_next_chunk> and things
1183 based on it. However, if a token stretches across multiple lines,
1184 and the lexing code has kept multiple lines of text in the buffer for
1185 that purpose, then after completion of the token it would be wise to
1186 explicitly discard the now-unneeded earlier lines, to avoid future
1187 multi-line tokens growing the buffer without bound.
1193 Perl_lex_discard_to(pTHX_ char *ptr)
1197 PERL_ARGS_ASSERT_LEX_DISCARD_TO;
1198 buf = SvPVX(PL_parser->linestr);
1200 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_discard_to");
1203 if (ptr > PL_parser->bufptr)
1204 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_discard_to");
1205 discard_len = ptr - buf;
1206 if (PL_parser->oldbufptr < ptr)
1207 PL_parser->oldbufptr = ptr;
1208 if (PL_parser->oldoldbufptr < ptr)
1209 PL_parser->oldoldbufptr = ptr;
1210 if (PL_parser->last_uni && PL_parser->last_uni < ptr)
1211 PL_parser->last_uni = NULL;
1212 if (PL_parser->last_lop && PL_parser->last_lop < ptr)
1213 PL_parser->last_lop = NULL;
1214 Move(ptr, buf, PL_parser->bufend+1-ptr, char);
1215 SvCUR_set(PL_parser->linestr, SvCUR(PL_parser->linestr) - discard_len);
1216 PL_parser->bufend -= discard_len;
1217 PL_parser->bufptr -= discard_len;
1218 PL_parser->oldbufptr -= discard_len;
1219 PL_parser->oldoldbufptr -= discard_len;
1220 if (PL_parser->last_uni)
1221 PL_parser->last_uni -= discard_len;
1222 if (PL_parser->last_lop)
1223 PL_parser->last_lop -= discard_len;
1227 =for apidoc Amx|bool|lex_next_chunk|U32 flags
1229 Reads in the next chunk of text to be lexed, appending it to
1230 L</PL_parser-E<gt>linestr>. This should be called when lexing code has
1231 looked to the end of the current chunk and wants to know more. It is
1232 usual, but not necessary, for lexing to have consumed the entirety of
1233 the current chunk at this time.
1235 If L</PL_parser-E<gt>bufptr> is pointing to the very end of the current
1236 chunk (i.e., the current chunk has been entirely consumed), normally the
1237 current chunk will be discarded at the same time that the new chunk is
1238 read in. If I<flags> includes C<LEX_KEEP_PREVIOUS>, the current chunk
1239 will not be discarded. If the current chunk has not been entirely
1240 consumed, then it will not be discarded regardless of the flag.
1242 Returns true if some new text was added to the buffer, or false if the
1243 buffer has reached the end of the input text.
1248 #define LEX_FAKE_EOF 0x80000000
1251 Perl_lex_next_chunk(pTHX_ U32 flags)
1255 STRLEN old_bufend_pos, new_bufend_pos;
1256 STRLEN bufptr_pos, oldbufptr_pos, oldoldbufptr_pos;
1257 STRLEN linestart_pos, last_uni_pos, last_lop_pos;
1258 bool got_some_for_debugger = 0;
1260 if (flags & ~(LEX_KEEP_PREVIOUS|LEX_FAKE_EOF))
1261 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_next_chunk");
1262 linestr = PL_parser->linestr;
1263 buf = SvPVX(linestr);
1264 if (!(flags & LEX_KEEP_PREVIOUS) &&
1265 PL_parser->bufptr == PL_parser->bufend) {
1266 old_bufend_pos = bufptr_pos = oldbufptr_pos = oldoldbufptr_pos = 0;
1268 if (PL_parser->last_uni != PL_parser->bufend)
1269 PL_parser->last_uni = NULL;
1270 if (PL_parser->last_lop != PL_parser->bufend)
1271 PL_parser->last_lop = NULL;
1272 last_uni_pos = last_lop_pos = 0;
1276 old_bufend_pos = PL_parser->bufend - buf;
1277 bufptr_pos = PL_parser->bufptr - buf;
1278 oldbufptr_pos = PL_parser->oldbufptr - buf;
1279 oldoldbufptr_pos = PL_parser->oldoldbufptr - buf;
1280 linestart_pos = PL_parser->linestart - buf;
1281 last_uni_pos = PL_parser->last_uni ? PL_parser->last_uni - buf : 0;
1282 last_lop_pos = PL_parser->last_lop ? PL_parser->last_lop - buf : 0;
1284 if (flags & LEX_FAKE_EOF) {
1286 } else if (!PL_parser->rsfp && !PL_parser->filtered) {
1288 } else if (filter_gets(linestr, old_bufend_pos)) {
1290 got_some_for_debugger = 1;
1292 if (!SvPOK(linestr)) /* can get undefined by filter_gets */
1293 sv_setpvs(linestr, "");
1295 /* End of real input. Close filehandle (unless it was STDIN),
1296 * then add implicit termination.
1298 if (PL_parser->lex_flags & LEX_DONT_CLOSE_RSFP)
1299 PerlIO_clearerr(PL_parser->rsfp);
1300 else if (PL_parser->rsfp)
1301 (void)PerlIO_close(PL_parser->rsfp);
1302 PL_parser->rsfp = NULL;
1303 PL_parser->in_pod = PL_parser->filtered = 0;
1305 if (PL_madskills && !PL_in_eval && (PL_minus_p || PL_minus_n))
1308 if (!PL_in_eval && PL_minus_p) {
1310 /*{*/";}continue{print or die qq(-p destination: $!\\n);}");
1311 PL_minus_n = PL_minus_p = 0;
1312 } else if (!PL_in_eval && PL_minus_n) {
1313 sv_catpvs(linestr, /*{*/";}");
1316 sv_catpvs(linestr, ";");
1319 buf = SvPVX(linestr);
1320 new_bufend_pos = SvCUR(linestr);
1321 PL_parser->bufend = buf + new_bufend_pos;
1322 PL_parser->bufptr = buf + bufptr_pos;
1323 PL_parser->oldbufptr = buf + oldbufptr_pos;
1324 PL_parser->oldoldbufptr = buf + oldoldbufptr_pos;
1325 PL_parser->linestart = buf + linestart_pos;
1326 if (PL_parser->last_uni)
1327 PL_parser->last_uni = buf + last_uni_pos;
1328 if (PL_parser->last_lop)
1329 PL_parser->last_lop = buf + last_lop_pos;
1330 if (got_some_for_debugger && (PERLDB_LINE || PERLDB_SAVESRC) &&
1331 PL_curstash != PL_debstash) {
1332 /* debugger active and we're not compiling the debugger code,
1333 * so store the line into the debugger's array of lines
1335 update_debugger_info(NULL, buf+old_bufend_pos,
1336 new_bufend_pos-old_bufend_pos);
1342 =for apidoc Amx|I32|lex_peek_unichar|U32 flags
1344 Looks ahead one (Unicode) character in the text currently being lexed.
1345 Returns the codepoint (unsigned integer value) of the next character,
1346 or -1 if lexing has reached the end of the input text. To consume the
1347 peeked character, use L</lex_read_unichar>.
1349 If the next character is in (or extends into) the next chunk of input
1350 text, the next chunk will be read in. Normally the current chunk will be
1351 discarded at the same time, but if I<flags> includes C<LEX_KEEP_PREVIOUS>
1352 then the current chunk will not be discarded.
1354 If the input is being interpreted as UTF-8 and a UTF-8 encoding error
1355 is encountered, an exception is generated.
1361 Perl_lex_peek_unichar(pTHX_ U32 flags)
1365 if (flags & ~(LEX_KEEP_PREVIOUS))
1366 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_peek_unichar");
1367 s = PL_parser->bufptr;
1368 bufend = PL_parser->bufend;
1374 if (!lex_next_chunk(flags))
1376 s = PL_parser->bufptr;
1377 bufend = PL_parser->bufend;
1383 len = PL_utf8skip[head];
1384 while ((STRLEN)(bufend-s) < len) {
1385 if (!lex_next_chunk(flags | LEX_KEEP_PREVIOUS))
1387 s = PL_parser->bufptr;
1388 bufend = PL_parser->bufend;
1391 unichar = utf8n_to_uvuni((U8*)s, bufend-s, &retlen, UTF8_CHECK_ONLY);
1392 if (retlen == (STRLEN)-1) {
1393 /* malformed UTF-8 */
1395 SAVESPTR(PL_warnhook);
1396 PL_warnhook = PERL_WARNHOOK_FATAL;
1397 utf8n_to_uvuni((U8*)s, bufend-s, NULL, 0);
1403 if (!lex_next_chunk(flags))
1405 s = PL_parser->bufptr;
1412 =for apidoc Amx|I32|lex_read_unichar|U32 flags
1414 Reads the next (Unicode) character in the text currently being lexed.
1415 Returns the codepoint (unsigned integer value) of the character read,
1416 and moves L</PL_parser-E<gt>bufptr> past the character, or returns -1
1417 if lexing has reached the end of the input text. To non-destructively
1418 examine the next character, use L</lex_peek_unichar> instead.
1420 If the next character is in (or extends into) the next chunk of input
1421 text, the next chunk will be read in. Normally the current chunk will be
1422 discarded at the same time, but if I<flags> includes C<LEX_KEEP_PREVIOUS>
1423 then the current chunk will not be discarded.
1425 If the input is being interpreted as UTF-8 and a UTF-8 encoding error
1426 is encountered, an exception is generated.
1432 Perl_lex_read_unichar(pTHX_ U32 flags)
1435 if (flags & ~(LEX_KEEP_PREVIOUS))
1436 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_read_unichar");
1437 c = lex_peek_unichar(flags);
1440 CopLINE_inc(PL_curcop);
1442 PL_parser->bufptr += UTF8SKIP(PL_parser->bufptr);
1444 ++(PL_parser->bufptr);
1450 =for apidoc Amx|void|lex_read_space|U32 flags
1452 Reads optional spaces, in Perl style, in the text currently being
1453 lexed. The spaces may include ordinary whitespace characters and
1454 Perl-style comments. C<#line> directives are processed if encountered.
1455 L</PL_parser-E<gt>bufptr> is moved past the spaces, so that it points
1456 at a non-space character (or the end of the input text).
1458 If spaces extend into the next chunk of input text, the next chunk will
1459 be read in. Normally the current chunk will be discarded at the same
1460 time, but if I<flags> includes C<LEX_KEEP_PREVIOUS> then the current
1461 chunk will not be discarded.
1466 #define LEX_NO_NEXT_CHUNK 0x80000000
1469 Perl_lex_read_space(pTHX_ U32 flags)
1472 bool need_incline = 0;
1473 if (flags & ~(LEX_KEEP_PREVIOUS|LEX_NO_NEXT_CHUNK))
1474 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_read_space");
1477 sv_free(PL_skipwhite);
1478 PL_skipwhite = NULL;
1481 PL_skipwhite = newSVpvs("");
1482 #endif /* PERL_MAD */
1483 s = PL_parser->bufptr;
1484 bufend = PL_parser->bufend;
1490 } while (!(c == '\n' || (c == 0 && s == bufend)));
1491 } else if (c == '\n') {
1493 PL_parser->linestart = s;
1498 } else if (isSPACE(c)) {
1500 } else if (c == 0 && s == bufend) {
1504 sv_catpvn(PL_skipwhite, PL_parser->bufptr, s-PL_parser->bufptr);
1505 #endif /* PERL_MAD */
1506 if (flags & LEX_NO_NEXT_CHUNK)
1508 PL_parser->bufptr = s;
1509 CopLINE_inc(PL_curcop);
1510 got_more = lex_next_chunk(flags);
1511 CopLINE_dec(PL_curcop);
1512 s = PL_parser->bufptr;
1513 bufend = PL_parser->bufend;
1516 if (need_incline && PL_parser->rsfp) {
1526 sv_catpvn(PL_skipwhite, PL_parser->bufptr, s-PL_parser->bufptr);
1527 #endif /* PERL_MAD */
1528 PL_parser->bufptr = s;
1533 * This subroutine has nothing to do with tilting, whether at windmills
1534 * or pinball tables. Its name is short for "increment line". It
1535 * increments the current line number in CopLINE(PL_curcop) and checks
1536 * to see whether the line starts with a comment of the form
1537 * # line 500 "foo.pm"
1538 * If so, it sets the current line number and file to the values in the comment.
1542 S_incline(pTHX_ const char *s)
1550 PERL_ARGS_ASSERT_INCLINE;
1552 CopLINE_inc(PL_curcop);
1555 while (SPACE_OR_TAB(*s))
1557 if (strnEQ(s, "line", 4))
1561 if (SPACE_OR_TAB(*s))
1565 while (SPACE_OR_TAB(*s))
1573 if (!SPACE_OR_TAB(*s) && *s != '\r' && *s != '\n' && *s != '\0')
1575 while (SPACE_OR_TAB(*s))
1577 if (*s == '"' && (t = strchr(s+1, '"'))) {
1583 while (!isSPACE(*t))
1587 while (SPACE_OR_TAB(*e) || *e == '\r' || *e == '\f')
1589 if (*e != '\n' && *e != '\0')
1590 return; /* false alarm */
1592 line_num = atoi(n)-1;
1595 const STRLEN len = t - s;
1596 SV *const temp_sv = CopFILESV(PL_curcop);
1601 cf = SvPVX(temp_sv);
1602 tmplen = SvCUR(temp_sv);
1608 if (!PL_rsfp && !PL_parser->filtered) {
1609 /* must copy *{"::_<(eval N)[oldfilename:L]"}
1610 * to *{"::_<newfilename"} */
1611 /* However, the long form of evals is only turned on by the
1612 debugger - usually they're "(eval %lu)" */
1616 STRLEN tmplen2 = len;
1617 if (tmplen + 2 <= sizeof smallbuf)
1620 Newx(tmpbuf, tmplen + 2, char);
1623 memcpy(tmpbuf + 2, cf, tmplen);
1625 gvp = (GV**)hv_fetch(PL_defstash, tmpbuf, tmplen, FALSE);
1630 if (tmplen2 + 2 <= sizeof smallbuf)
1633 Newx(tmpbuf2, tmplen2 + 2, char);
1635 if (tmpbuf2 != smallbuf || tmpbuf != smallbuf) {
1636 /* Either they malloc'd it, or we malloc'd it,
1637 so no prefix is present in ours. */
1642 memcpy(tmpbuf2 + 2, s, tmplen2);
1645 gv2 = *(GV**)hv_fetch(PL_defstash, tmpbuf2, tmplen2, TRUE);
1647 gv_init(gv2, PL_defstash, tmpbuf2, tmplen2, FALSE);
1648 /* adjust ${"::_<newfilename"} to store the new file name */
1649 GvSV(gv2) = newSVpvn(tmpbuf2 + 2, tmplen2 - 2);
1650 /* The line number may differ. If that is the case,
1651 alias the saved lines that are in the array.
1652 Otherwise alias the whole array. */
1653 if (CopLINE(PL_curcop) == line_num) {
1654 GvHV(gv2) = MUTABLE_HV(SvREFCNT_inc(GvHV(*gvp)));
1655 GvAV(gv2) = MUTABLE_AV(SvREFCNT_inc(GvAV(*gvp)));
1657 else if (GvAV(*gvp)) {
1658 AV * const av = GvAV(*gvp);
1659 const I32 start = CopLINE(PL_curcop)+1;
1660 I32 items = AvFILLp(av) - start;
1662 AV * const av2 = GvAVn(gv2);
1663 SV **svp = AvARRAY(av) + start;
1664 I32 l = (I32)line_num+1;
1666 av_store(av2, l++, SvREFCNT_inc(*svp++));
1671 if (tmpbuf2 != smallbuf) Safefree(tmpbuf2);
1673 if (tmpbuf != smallbuf) Safefree(tmpbuf);
1675 CopFILE_free(PL_curcop);
1676 CopFILE_setn(PL_curcop, s, len);
1678 CopLINE_set(PL_curcop, line_num);
1682 /* skip space before PL_thistoken */
1685 S_skipspace0(pTHX_ register char *s)
1687 PERL_ARGS_ASSERT_SKIPSPACE0;
1694 PL_thiswhite = newSVpvs("");
1695 sv_catsv(PL_thiswhite, PL_skipwhite);
1696 sv_free(PL_skipwhite);
1699 PL_realtokenstart = s - SvPVX(PL_linestr);
1703 /* skip space after PL_thistoken */
1706 S_skipspace1(pTHX_ register char *s)
1708 const char *start = s;
1709 I32 startoff = start - SvPVX(PL_linestr);
1711 PERL_ARGS_ASSERT_SKIPSPACE1;
1716 start = SvPVX(PL_linestr) + startoff;
1717 if (!PL_thistoken && PL_realtokenstart >= 0) {
1718 const char * const tstart = SvPVX(PL_linestr) + PL_realtokenstart;
1719 PL_thistoken = newSVpvn(tstart, start - tstart);
1721 PL_realtokenstart = -1;
1724 PL_nextwhite = newSVpvs("");
1725 sv_catsv(PL_nextwhite, PL_skipwhite);
1726 sv_free(PL_skipwhite);
1733 S_skipspace2(pTHX_ register char *s, SV **svp)
1736 const I32 bufptroff = PL_bufptr - SvPVX(PL_linestr);
1737 const I32 startoff = s - SvPVX(PL_linestr);
1739 PERL_ARGS_ASSERT_SKIPSPACE2;
1742 PL_bufptr = SvPVX(PL_linestr) + bufptroff;
1743 if (!PL_madskills || !svp)
1745 start = SvPVX(PL_linestr) + startoff;
1746 if (!PL_thistoken && PL_realtokenstart >= 0) {
1747 char * const tstart = SvPVX(PL_linestr) + PL_realtokenstart;
1748 PL_thistoken = newSVpvn(tstart, start - tstart);
1749 PL_realtokenstart = -1;
1753 *svp = newSVpvs("");
1754 sv_setsv(*svp, PL_skipwhite);
1755 sv_free(PL_skipwhite);
1764 S_update_debugger_info(pTHX_ SV *orig_sv, const char *const buf, STRLEN len)
1766 AV *av = CopFILEAVx(PL_curcop);
1768 SV * const sv = newSV_type(SVt_PVMG);
1770 sv_setsv(sv, orig_sv);
1772 sv_setpvn(sv, buf, len);
1775 av_store(av, (I32)CopLINE(PL_curcop), sv);
1781 * Called to gobble the appropriate amount and type of whitespace.
1782 * Skips comments as well.
1786 S_skipspace(pTHX_ register char *s)
1790 #endif /* PERL_MAD */
1791 PERL_ARGS_ASSERT_SKIPSPACE;
1794 sv_free(PL_skipwhite);
1795 PL_skipwhite = NULL;
1797 #endif /* PERL_MAD */
1798 if (PL_lex_formbrack && PL_lex_brackets <= PL_lex_formbrack) {
1799 while (s < PL_bufend && SPACE_OR_TAB(*s))
1802 STRLEN bufptr_pos = PL_bufptr - SvPVX(PL_linestr);
1804 lex_read_space(LEX_KEEP_PREVIOUS |
1805 (PL_sublex_info.sub_inwhat || PL_lex_state == LEX_FORMLINE ?
1806 LEX_NO_NEXT_CHUNK : 0));
1808 PL_bufptr = SvPVX(PL_linestr) + bufptr_pos;
1809 if (PL_linestart > PL_bufptr)
1810 PL_bufptr = PL_linestart;
1815 PL_skipwhite = newSVpvn(start, s-start);
1816 #endif /* PERL_MAD */
1822 * Check the unary operators to ensure there's no ambiguity in how they're
1823 * used. An ambiguous piece of code would be:
1825 * This doesn't mean rand() + 5. Because rand() is a unary operator,
1826 * the +5 is its argument.
1836 if (PL_oldoldbufptr != PL_last_uni)
1838 while (isSPACE(*PL_last_uni))
1841 while (isALNUM_lazy_if(s,UTF) || *s == '-')
1843 if ((t = strchr(s, '(')) && t < PL_bufptr)
1846 Perl_ck_warner_d(aTHX_ packWARN(WARN_AMBIGUOUS),
1847 "Warning: Use of \"%.*s\" without parentheses is ambiguous",
1848 (int)(s - PL_last_uni), PL_last_uni);
1852 * LOP : macro to build a list operator. Its behaviour has been replaced
1853 * with a subroutine, S_lop() for which LOP is just another name.
1856 #define LOP(f,x) return lop(f,x,s)
1860 * Build a list operator (or something that might be one). The rules:
1861 * - if we have a next token, then it's a list operator [why?]
1862 * - if the next thing is an opening paren, then it's a function
1863 * - else it's a list operator
1867 S_lop(pTHX_ I32 f, int x, char *s)
1871 PERL_ARGS_ASSERT_LOP;
1877 PL_last_lop = PL_oldbufptr;
1878 PL_last_lop_op = (OPCODE)f;
1887 return REPORT(FUNC);
1890 return REPORT(FUNC);
1893 if (!PL_lex_allbrackets && PL_lex_fakeeof > LEX_FAKEEOF_LOWLOGIC)
1894 PL_lex_fakeeof = LEX_FAKEEOF_LOWLOGIC;
1895 return REPORT(LSTOP);
1902 * Sets up for an eventual force_next(). start_force(0) basically does
1903 * an unshift, while start_force(-1) does a push. yylex removes items
1908 S_start_force(pTHX_ int where)
1912 if (where < 0) /* so people can duplicate start_force(PL_curforce) */
1913 where = PL_lasttoke;
1914 assert(PL_curforce < 0 || PL_curforce == where);
1915 if (PL_curforce != where) {
1916 for (i = PL_lasttoke; i > where; --i) {
1917 PL_nexttoke[i] = PL_nexttoke[i-1];
1921 if (PL_curforce < 0) /* in case of duplicate start_force() */
1922 Zero(&PL_nexttoke[where], 1, NEXTTOKE);
1923 PL_curforce = where;
1926 curmad('^', newSVpvs(""));
1927 CURMAD('_', PL_nextwhite);
1932 S_curmad(pTHX_ char slot, SV *sv)
1938 if (PL_curforce < 0)
1939 where = &PL_thismad;
1941 where = &PL_nexttoke[PL_curforce].next_mad;
1947 if (UTF && is_utf8_string((U8*)SvPVX(sv), SvCUR(sv)))
1949 else if (PL_encoding) {
1950 sv_recode_to_utf8(sv, PL_encoding);
1955 /* keep a slot open for the head of the list? */
1956 if (slot != '_' && *where && (*where)->mad_key == '^') {
1957 (*where)->mad_key = slot;
1958 sv_free(MUTABLE_SV(((*where)->mad_val)));
1959 (*where)->mad_val = (void*)sv;
1962 addmad(newMADsv(slot, sv), where, 0);
1965 # define start_force(where) NOOP
1966 # define curmad(slot, sv) NOOP
1971 * When the lexer realizes it knows the next token (for instance,
1972 * it is reordering tokens for the parser) then it can call S_force_next
1973 * to know what token to return the next time the lexer is called. Caller
1974 * will need to set PL_nextval[] (or PL_nexttoke[].next_val with PERL_MAD),
1975 * and possibly PL_expect to ensure the lexer handles the token correctly.
1979 S_force_next(pTHX_ I32 type)
1984 PerlIO_printf(Perl_debug_log, "### forced token:\n");
1985 tokereport(type, &NEXTVAL_NEXTTOKE);
1989 if (PL_curforce < 0)
1990 start_force(PL_lasttoke);
1991 PL_nexttoke[PL_curforce].next_type = type;
1992 if (PL_lex_state != LEX_KNOWNEXT)
1993 PL_lex_defer = PL_lex_state;
1994 PL_lex_state = LEX_KNOWNEXT;
1995 PL_lex_expect = PL_expect;
1998 PL_nexttype[PL_nexttoke] = type;
2000 if (PL_lex_state != LEX_KNOWNEXT) {
2001 PL_lex_defer = PL_lex_state;
2002 PL_lex_expect = PL_expect;
2003 PL_lex_state = LEX_KNOWNEXT;
2011 int yyc = PL_parser->yychar;
2012 if (yyc != YYEMPTY) {
2015 NEXTVAL_NEXTTOKE = PL_parser->yylval;
2016 if (yyc == '{'/*}*/ || yyc == HASHBRACK || yyc == '['/*]*/) {
2017 PL_lex_allbrackets--;
2019 yyc |= (3<<24) | (PL_lex_brackstack[PL_lex_brackets] << 16);
2020 } else if (yyc == '('/*)*/) {
2021 PL_lex_allbrackets--;
2026 PL_parser->yychar = YYEMPTY;
2031 S_newSV_maybe_utf8(pTHX_ const char *const start, STRLEN len)
2034 SV * const sv = newSVpvn_utf8(start, len,
2037 && !is_ascii_string((const U8*)start, len)
2038 && is_utf8_string((const U8*)start, len));
2044 * When the lexer knows the next thing is a word (for instance, it has
2045 * just seen -> and it knows that the next char is a word char, then
2046 * it calls S_force_word to stick the next word into the PL_nexttoke/val
2050 * char *start : buffer position (must be within PL_linestr)
2051 * int token : PL_next* will be this type of bare word (e.g., METHOD,WORD)
2052 * int check_keyword : if true, Perl checks to make sure the word isn't
2053 * a keyword (do this if the word is a label, e.g. goto FOO)
2054 * int allow_pack : if true, : characters will also be allowed (require,
2055 * use, etc. do this)
2056 * int allow_initial_tick : used by the "sub" lexer only.
2060 S_force_word(pTHX_ register char *start, int token, int check_keyword, int allow_pack, int allow_initial_tick)
2066 PERL_ARGS_ASSERT_FORCE_WORD;
2068 start = SKIPSPACE1(start);
2070 if (isIDFIRST_lazy_if(s,UTF) ||
2071 (allow_pack && *s == ':') ||
2072 (allow_initial_tick && *s == '\'') )
2074 s = scan_word(s, PL_tokenbuf, sizeof PL_tokenbuf, allow_pack, &len);
2075 if (check_keyword && keyword(PL_tokenbuf, len, 0))
2077 start_force(PL_curforce);
2079 curmad('X', newSVpvn(start,s-start));
2080 if (token == METHOD) {
2085 PL_expect = XOPERATOR;
2089 curmad('g', newSVpvs( "forced" ));
2090 NEXTVAL_NEXTTOKE.opval
2091 = (OP*)newSVOP(OP_CONST,0,
2092 S_newSV_maybe_utf8(aTHX_ PL_tokenbuf, len));
2093 NEXTVAL_NEXTTOKE.opval->op_private |= OPpCONST_BARE;
2101 * Called when the lexer wants $foo *foo &foo etc, but the program
2102 * text only contains the "foo" portion. The first argument is a pointer
2103 * to the "foo", and the second argument is the type symbol to prefix.
2104 * Forces the next token to be a "WORD".
2105 * Creates the symbol if it didn't already exist (via gv_fetchpv()).
2109 S_force_ident(pTHX_ register const char *s, int kind)
2113 PERL_ARGS_ASSERT_FORCE_IDENT;
2116 const STRLEN len = strlen(s);
2117 OP* const o = (OP*)newSVOP(OP_CONST, 0, newSVpvn_flags(s, len,
2118 UTF ? SVf_UTF8 : 0));
2119 start_force(PL_curforce);
2120 NEXTVAL_NEXTTOKE.opval = o;
2123 o->op_private = OPpCONST_ENTERED;
2124 /* XXX see note in pp_entereval() for why we forgo typo
2125 warnings if the symbol must be introduced in an eval.
2127 gv_fetchpvn_flags(s, len,
2128 (PL_in_eval ? (GV_ADDMULTI | GV_ADDINEVAL)
2129 : GV_ADD) | ( UTF ? SVf_UTF8 : 0 ),
2130 kind == '$' ? SVt_PV :
2131 kind == '@' ? SVt_PVAV :
2132 kind == '%' ? SVt_PVHV :
2140 Perl_str_to_version(pTHX_ SV *sv)
2145 const char *start = SvPV_const(sv,len);
2146 const char * const end = start + len;
2147 const bool utf = SvUTF8(sv) ? TRUE : FALSE;
2149 PERL_ARGS_ASSERT_STR_TO_VERSION;
2151 while (start < end) {
2155 n = utf8n_to_uvchr((U8*)start, len, &skip, 0);
2160 retval += ((NV)n)/nshift;
2169 * Forces the next token to be a version number.
2170 * If the next token appears to be an invalid version number, (e.g. "v2b"),
2171 * and if "guessing" is TRUE, then no new token is created (and the caller
2172 * must use an alternative parsing method).
2176 S_force_version(pTHX_ char *s, int guessing)
2182 I32 startoff = s - SvPVX(PL_linestr);
2185 PERL_ARGS_ASSERT_FORCE_VERSION;
2193 while (isDIGIT(*d) || *d == '_' || *d == '.')
2197 start_force(PL_curforce);
2198 curmad('X', newSVpvn(s,d-s));
2201 if (*d == ';' || isSPACE(*d) || *d == '{' || *d == '}' || !*d) {
2203 #ifdef USE_LOCALE_NUMERIC
2204 char *loc = savepv(setlocale(LC_NUMERIC, NULL));
2205 setlocale(LC_NUMERIC, "C");
2207 s = scan_num(s, &pl_yylval);
2208 #ifdef USE_LOCALE_NUMERIC
2209 setlocale(LC_NUMERIC, loc);
2212 version = pl_yylval.opval;
2213 ver = cSVOPx(version)->op_sv;
2214 if (SvPOK(ver) && !SvNIOK(ver)) {
2215 SvUPGRADE(ver, SVt_PVNV);
2216 SvNV_set(ver, str_to_version(ver));
2217 SvNOK_on(ver); /* hint that it is a version */
2220 else if (guessing) {
2223 sv_free(PL_nextwhite); /* let next token collect whitespace */
2225 s = SvPVX(PL_linestr) + startoff;
2233 if (PL_madskills && !version) {
2234 sv_free(PL_nextwhite); /* let next token collect whitespace */
2236 s = SvPVX(PL_linestr) + startoff;
2239 /* NOTE: The parser sees the package name and the VERSION swapped */
2240 start_force(PL_curforce);
2241 NEXTVAL_NEXTTOKE.opval = version;
2248 * S_force_strict_version
2249 * Forces the next token to be a version number using strict syntax rules.
2253 S_force_strict_version(pTHX_ char *s)
2258 I32 startoff = s - SvPVX(PL_linestr);
2260 const char *errstr = NULL;
2262 PERL_ARGS_ASSERT_FORCE_STRICT_VERSION;
2264 while (isSPACE(*s)) /* leading whitespace */
2267 if (is_STRICT_VERSION(s,&errstr)) {
2269 s = (char *)scan_version(s, ver, 0);
2270 version = newSVOP(OP_CONST, 0, ver);
2272 else if ( (*s != ';' && *s != '{' && *s != '}' ) &&
2273 (s = SKIPSPACE1(s), (*s != ';' && *s != '{' && *s != '}' )))
2277 yyerror(errstr); /* version required */
2282 if (PL_madskills && !version) {
2283 sv_free(PL_nextwhite); /* let next token collect whitespace */
2285 s = SvPVX(PL_linestr) + startoff;
2288 /* NOTE: The parser sees the package name and the VERSION swapped */
2289 start_force(PL_curforce);
2290 NEXTVAL_NEXTTOKE.opval = version;
2298 * Tokenize a quoted string passed in as an SV. It finds the next
2299 * chunk, up to end of string or a backslash. It may make a new
2300 * SV containing that chunk (if HINT_NEW_STRING is on). It also
2305 S_tokeq(pTHX_ SV *sv)
2309 register char *send;
2314 PERL_ARGS_ASSERT_TOKEQ;
2319 s = SvPV_force(sv, len);
2320 if (SvTYPE(sv) >= SVt_PVIV && SvIVX(sv) == -1)
2323 /* This is relying on the SV being "well formed" with a trailing '\0' */
2324 while (s < send && !(*s == '\\' && s[1] == '\\'))
2329 if ( PL_hints & HINT_NEW_STRING ) {
2330 pv = newSVpvn_flags(SvPVX_const(pv), len, SVs_TEMP | SvUTF8(sv));
2334 if (s + 1 < send && (s[1] == '\\'))
2335 s++; /* all that, just for this */
2340 SvCUR_set(sv, d - SvPVX_const(sv));
2342 if ( PL_hints & HINT_NEW_STRING )
2343 return new_constant(NULL, 0, "q", sv, pv, "q", 1);
2348 * Now come three functions related to double-quote context,
2349 * S_sublex_start, S_sublex_push, and S_sublex_done. They're used when
2350 * converting things like "\u\Lgnat" into ucfirst(lc("gnat")). They
2351 * interact with PL_lex_state, and create fake ( ... ) argument lists
2352 * to handle functions and concatenation.
2356 * stringify ( const[foo] concat lcfirst ( const[bar] ) )
2361 * Assumes that pl_yylval.ival is the op we're creating (e.g. OP_LCFIRST).
2363 * Pattern matching will set PL_lex_op to the pattern-matching op to
2364 * make (we return THING if pl_yylval.ival is OP_NULL, PMFUNC otherwise).
2366 * OP_CONST and OP_READLINE are easy--just make the new op and return.
2368 * Everything else becomes a FUNC.
2370 * Sets PL_lex_state to LEX_INTERPPUSH unless (ival was OP_NULL or we
2371 * had an OP_CONST or OP_READLINE). This just sets us up for a
2372 * call to S_sublex_push().
2376 S_sublex_start(pTHX)
2379 register const I32 op_type = pl_yylval.ival;
2381 if (op_type == OP_NULL) {
2382 pl_yylval.opval = PL_lex_op;
2386 if (op_type == OP_CONST || op_type == OP_READLINE) {
2387 SV *sv = tokeq(PL_lex_stuff);
2389 if (SvTYPE(sv) == SVt_PVIV) {
2390 /* Overloaded constants, nothing fancy: Convert to SVt_PV: */
2392 const char * const p = SvPV_const(sv, len);
2393 SV * const nsv = newSVpvn_flags(p, len, SvUTF8(sv));
2397 pl_yylval.opval = (OP*)newSVOP(op_type, 0, sv);
2398 PL_lex_stuff = NULL;
2399 /* Allow <FH> // "foo" */
2400 if (op_type == OP_READLINE)
2401 PL_expect = XTERMORDORDOR;
2404 else if (op_type == OP_BACKTICK && PL_lex_op) {
2405 /* readpipe() vas overriden */
2406 cSVOPx(cLISTOPx(cUNOPx(PL_lex_op)->op_first)->op_first->op_sibling)->op_sv = tokeq(PL_lex_stuff);
2407 pl_yylval.opval = PL_lex_op;
2409 PL_lex_stuff = NULL;
2413 PL_sublex_info.super_state = PL_lex_state;
2414 PL_sublex_info.sub_inwhat = (U16)op_type;
2415 PL_sublex_info.sub_op = PL_lex_op;
2416 PL_lex_state = LEX_INTERPPUSH;
2420 pl_yylval.opval = PL_lex_op;
2430 * Create a new scope to save the lexing state. The scope will be
2431 * ended in S_sublex_done. Returns a '(', starting the function arguments
2432 * to the uc, lc, etc. found before.
2433 * Sets PL_lex_state to LEX_INTERPCONCAT.
2442 PL_lex_state = PL_sublex_info.super_state;
2443 SAVEBOOL(PL_lex_dojoin);
2444 SAVEI32(PL_lex_brackets);
2445 SAVEI32(PL_lex_allbrackets);
2446 SAVEI8(PL_lex_fakeeof);
2447 SAVEI32(PL_lex_casemods);
2448 SAVEI32(PL_lex_starts);
2449 SAVEI8(PL_lex_state);
2450 SAVEPPTR(PL_sublex_info.re_eval_start);
2451 SAVEVPTR(PL_lex_inpat);
2452 SAVEI16(PL_lex_inwhat);
2453 SAVECOPLINE(PL_curcop);
2454 SAVEPPTR(PL_bufptr);
2455 SAVEPPTR(PL_bufend);
2456 SAVEPPTR(PL_oldbufptr);
2457 SAVEPPTR(PL_oldoldbufptr);
2458 SAVEPPTR(PL_last_lop);
2459 SAVEPPTR(PL_last_uni);
2460 SAVEPPTR(PL_linestart);
2461 SAVESPTR(PL_linestr);
2462 SAVEGENERICPV(PL_lex_brackstack);
2463 SAVEGENERICPV(PL_lex_casestack);
2465 PL_linestr = PL_lex_stuff;
2466 PL_lex_stuff = NULL;
2467 PL_sublex_info.re_eval_start = NULL;
2469 PL_bufend = PL_bufptr = PL_oldbufptr = PL_oldoldbufptr = PL_linestart
2470 = SvPVX(PL_linestr);
2471 PL_bufend += SvCUR(PL_linestr);
2472 PL_last_lop = PL_last_uni = NULL;
2473 SAVEFREESV(PL_linestr);
2475 PL_lex_dojoin = FALSE;
2476 PL_lex_brackets = 0;
2477 PL_lex_allbrackets = 0;
2478 PL_lex_fakeeof = LEX_FAKEEOF_NEVER;
2479 Newx(PL_lex_brackstack, 120, char);
2480 Newx(PL_lex_casestack, 12, char);
2481 PL_lex_casemods = 0;
2482 *PL_lex_casestack = '\0';
2484 PL_lex_state = LEX_INTERPCONCAT;
2485 CopLINE_set(PL_curcop, (line_t)PL_multi_start);
2487 PL_lex_inwhat = PL_sublex_info.sub_inwhat;
2488 if (PL_lex_inwhat == OP_TRANSR) PL_lex_inwhat = OP_TRANS;
2489 if (PL_lex_inwhat == OP_MATCH || PL_lex_inwhat == OP_QR || PL_lex_inwhat == OP_SUBST)
2490 PL_lex_inpat = PL_sublex_info.sub_op;
2492 PL_lex_inpat = NULL;
2499 * Restores lexer state after a S_sublex_push.
2506 if (!PL_lex_starts++) {
2507 SV * const sv = newSVpvs("");
2508 if (SvUTF8(PL_linestr))
2510 PL_expect = XOPERATOR;
2511 pl_yylval.opval = (OP*)newSVOP(OP_CONST, 0, sv);
2515 if (PL_lex_casemods) { /* oops, we've got some unbalanced parens */
2516 PL_lex_state = LEX_INTERPCASEMOD;
2520 /* Is there a right-hand side to take care of? (s//RHS/ or tr//RHS/) */
2521 assert(PL_lex_inwhat != OP_TRANSR);
2522 if (PL_lex_repl && (PL_lex_inwhat == OP_SUBST || PL_lex_inwhat == OP_TRANS)) {
2523 PL_linestr = PL_lex_repl;
2525 PL_bufend = PL_bufptr = PL_oldbufptr = PL_oldoldbufptr = PL_linestart = SvPVX(PL_linestr);
2526 PL_bufend += SvCUR(PL_linestr);
2527 PL_last_lop = PL_last_uni = NULL;
2528 SAVEFREESV(PL_linestr);
2529 PL_lex_dojoin = FALSE;
2530 PL_lex_brackets = 0;
2531 PL_lex_allbrackets = 0;
2532 PL_lex_fakeeof = LEX_FAKEEOF_NEVER;
2533 PL_lex_casemods = 0;
2534 *PL_lex_casestack = '\0';
2536 if (SvEVALED(PL_lex_repl)) {
2537 PL_lex_state = LEX_INTERPNORMAL;
2539 /* we don't clear PL_lex_repl here, so that we can check later
2540 whether this is an evalled subst; that means we rely on the
2541 logic to ensure sublex_done() is called again only via the
2542 branch (in yylex()) that clears PL_lex_repl, else we'll loop */
2545 PL_lex_state = LEX_INTERPCONCAT;
2555 PL_endwhite = newSVpvs("");
2556 sv_catsv(PL_endwhite, PL_thiswhite);
2560 sv_setpvs(PL_thistoken,"");
2562 PL_realtokenstart = -1;
2566 PL_bufend = SvPVX(PL_linestr);
2567 PL_bufend += SvCUR(PL_linestr);
2568 PL_expect = XOPERATOR;
2569 PL_sublex_info.sub_inwhat = 0;
2577 Extracts the next constant part of a pattern, double-quoted string,
2578 or transliteration. This is terrifying code.
2580 For example, in parsing the double-quoted string "ab\x63$d", it would
2581 stop at the '$' and return an OP_CONST containing 'abc'.
2583 It looks at PL_lex_inwhat and PL_lex_inpat to find out whether it's
2584 processing a pattern (PL_lex_inpat is true), a transliteration
2585 (PL_lex_inwhat == OP_TRANS is true), or a double-quoted string.
2587 Returns a pointer to the character scanned up to. If this is
2588 advanced from the start pointer supplied (i.e. if anything was
2589 successfully parsed), will leave an OP_CONST for the substring scanned
2590 in pl_yylval. Caller must intuit reason for not parsing further
2591 by looking at the next characters herself.
2595 \N{ABC} => \N{U+41.42.43}
2598 all other \-char, including \N and \N{ apart from \N{ABC}
2601 @ and $ where it appears to be a var, but not for $ as tail anchor
2606 In transliterations:
2607 characters are VERY literal, except for - not at the start or end
2608 of the string, which indicates a range. If the range is in bytes,
2609 scan_const expands the range to the full set of intermediate
2610 characters. If the range is in utf8, the hyphen is replaced with
2611 a certain range mark which will be handled by pmtrans() in op.c.
2613 In double-quoted strings:
2615 double-quoted style: \r and \n
2616 constants: \x31, etc.
2617 deprecated backrefs: \1 (in substitution replacements)
2618 case and quoting: \U \Q \E
2621 scan_const does *not* construct ops to handle interpolated strings.
2622 It stops processing as soon as it finds an embedded $ or @ variable
2623 and leaves it to the caller to work out what's going on.
2625 embedded arrays (whether in pattern or not) could be:
2626 @foo, @::foo, @'foo, @{foo}, @$foo, @+, @-.
2628 $ in double-quoted strings must be the symbol of an embedded scalar.
2630 $ in pattern could be $foo or could be tail anchor. Assumption:
2631 it's a tail anchor if $ is the last thing in the string, or if it's
2632 followed by one of "()| \r\n\t"
2634 \1 (backreferences) are turned into $1 in substitutions
2636 The structure of the code is
2637 while (there's a character to process) {
2638 handle transliteration ranges
2639 skip regexp comments /(?#comment)/ and codes /(?{code})/
2640 skip #-initiated comments in //x patterns
2641 check for embedded arrays
2642 check for embedded scalars
2644 deprecate \1 in substitution replacements
2645 handle string-changing backslashes \l \U \Q \E, etc.
2646 switch (what was escaped) {
2647 handle \- in a transliteration (becomes a literal -)
2648 if a pattern and not \N{, go treat as regular character
2649 handle \132 (octal characters)
2650 handle \x15 and \x{1234} (hex characters)
2651 handle \N{name} (named characters, also \N{3,5} in a pattern)
2652 handle \cV (control characters)
2653 handle printf-style backslashes (\f, \r, \n, etc)
2656 } (end if backslash)
2657 handle regular character
2658 } (end while character to read)
2663 S_scan_const(pTHX_ char *start)
2666 register char *send = PL_bufend; /* end of the constant */
2667 SV *sv = newSV(send - start); /* sv for the constant. See
2668 note below on sizing. */
2669 register char *s = start; /* start of the constant */
2670 register char *d = SvPVX(sv); /* destination for copies */
2671 bool dorange = FALSE; /* are we in a translit range? */
2672 bool didrange = FALSE; /* did we just finish a range? */
2673 bool in_charclass = FALSE; /* within /[...]/ */
2674 bool has_utf8 = FALSE; /* Output constant is UTF8 */
2675 bool this_utf8 = cBOOL(UTF); /* Is the source string assumed
2676 to be UTF8? But, this can
2677 show as true when the source
2678 isn't utf8, as for example
2679 when it is entirely composed
2682 /* Note on sizing: The scanned constant is placed into sv, which is
2683 * initialized by newSV() assuming one byte of output for every byte of
2684 * input. This routine expects newSV() to allocate an extra byte for a
2685 * trailing NUL, which this routine will append if it gets to the end of
2686 * the input. There may be more bytes of input than output (eg., \N{LATIN
2687 * CAPITAL LETTER A}), or more output than input if the constant ends up
2688 * recoded to utf8, but each time a construct is found that might increase
2689 * the needed size, SvGROW() is called. Its size parameter each time is
2690 * based on the best guess estimate at the time, namely the length used so
2691 * far, plus the length the current construct will occupy, plus room for
2692 * the trailing NUL, plus one byte for every input byte still unscanned */
2696 UV literal_endpoint = 0;
2697 bool native_range = TRUE; /* turned to FALSE if the first endpoint is Unicode. */
2700 PERL_ARGS_ASSERT_SCAN_CONST;
2702 assert(PL_lex_inwhat != OP_TRANSR);
2703 if (PL_lex_inwhat == OP_TRANS && PL_sublex_info.sub_op) {
2704 /* If we are doing a trans and we know we want UTF8 set expectation */
2705 has_utf8 = PL_sublex_info.sub_op->op_private & (OPpTRANS_FROM_UTF|OPpTRANS_TO_UTF);
2706 this_utf8 = PL_sublex_info.sub_op->op_private & (PL_lex_repl ? OPpTRANS_FROM_UTF : OPpTRANS_TO_UTF);
2710 while (s < send || dorange) {
2712 /* get transliterations out of the way (they're most literal) */
2713 if (PL_lex_inwhat == OP_TRANS) {
2714 /* expand a range A-Z to the full set of characters. AIE! */
2716 I32 i; /* current expanded character */
2717 I32 min; /* first character in range */
2718 I32 max; /* last character in range */
2729 char * const c = (char*)utf8_hop((U8*)d, -1);
2733 *c = (char)UTF_TO_NATIVE(0xff);
2734 /* mark the range as done, and continue */
2740 i = d - SvPVX_const(sv); /* remember current offset */
2743 SvLEN(sv) + (has_utf8 ?
2744 (512 - UTF_CONTINUATION_MARK +
2747 /* How many two-byte within 0..255: 128 in UTF-8,
2748 * 96 in UTF-8-mod. */
2750 SvGROW(sv, SvLEN(sv) + 256); /* never more than 256 chars in a range */
2752 d = SvPVX(sv) + i; /* refresh d after realloc */
2756 for (j = 0; j <= 1; j++) {
2757 char * const c = (char*)utf8_hop((U8*)d, -1);
2758 const UV uv = utf8n_to_uvchr((U8*)c, d - c, NULL, 0);
2764 max = (U8)0xff; /* only to \xff */
2765 uvmax = uv; /* \x{100} to uvmax */
2767 d = c; /* eat endpoint chars */
2772 d -= 2; /* eat the first char and the - */
2773 min = (U8)*d; /* first char in range */
2774 max = (U8)d[1]; /* last char in range */
2781 "Invalid range \"%c-%c\" in transliteration operator",
2782 (char)min, (char)max);
2786 if (literal_endpoint == 2 &&
2787 ((isLOWER(min) && isLOWER(max)) ||
2788 (isUPPER(min) && isUPPER(max)))) {
2790 for (i = min; i <= max; i++)
2792 *d++ = NATIVE_TO_NEED(has_utf8,i);
2794 for (i = min; i <= max; i++)
2796 *d++ = NATIVE_TO_NEED(has_utf8,i);
2801 for (i = min; i <= max; i++)
2804 const U8 ch = (U8)NATIVE_TO_UTF(i);
2805 if (UNI_IS_INVARIANT(ch))
2808 *d++ = (U8)UTF8_EIGHT_BIT_HI(ch);
2809 *d++ = (U8)UTF8_EIGHT_BIT_LO(ch);
2818 d = (char*)uvchr_to_utf8((U8*)d, 0x100);
2820 *d++ = (char)UTF_TO_NATIVE(0xff);
2822 d = (char*)uvchr_to_utf8((U8*)d, uvmax);
2826 /* mark the range as done, and continue */
2830 literal_endpoint = 0;
2835 /* range begins (ignore - as first or last char) */
2836 else if (*s == '-' && s+1 < send && s != start) {
2838 Perl_croak(aTHX_ "Ambiguous range in transliteration operator");
2845 *d++ = (char)UTF_TO_NATIVE(0xff); /* use illegal utf8 byte--see pmtrans */
2855 literal_endpoint = 0;
2856 native_range = TRUE;
2861 /* if we get here, we're not doing a transliteration */
2863 else if (*s == '[' && PL_lex_inpat && !in_charclass) {
2866 while (s1 >= start && *s1-- == '\\')
2869 in_charclass = TRUE;
2872 else if (*s == ']' && PL_lex_inpat && in_charclass) {
2875 while (s1 >= start && *s1-- == '\\')
2878 in_charclass = FALSE;
2881 /* skip for regexp comments /(?#comment)/, except for the last
2882 * char, which will be done separately.
2883 * Stop on (?{..}) and friends */
2885 else if (*s == '(' && PL_lex_inpat && s[1] == '?') {
2887 while (s+1 < send && *s != ')')
2888 *d++ = NATIVE_TO_NEED(has_utf8,*s++);
2890 else if (!PL_lex_casemods && !in_charclass &&
2891 ( s[2] == '{' /* This should match regcomp.c */
2892 || (s[2] == '?' && s[3] == '{')))
2898 /* likewise skip #-initiated comments in //x patterns */
2899 else if (*s == '#' && PL_lex_inpat &&
2900 ((PMOP*)PL_lex_inpat)->op_pmflags & RXf_PMf_EXTENDED) {
2901 while (s+1 < send && *s != '\n')
2902 *d++ = NATIVE_TO_NEED(has_utf8,*s++);
2905 /* no further processing of single-quoted regex */
2906 else if (PL_lex_inpat && SvIVX(PL_linestr) == '\'')
2907 goto default_action;
2909 /* check for embedded arrays
2910 (@foo, @::foo, @'foo, @{foo}, @$foo, @+, @-)
2912 else if (*s == '@' && s[1]) {
2913 if (isALNUM_lazy_if(s+1,UTF))
2915 if (strchr(":'{$", s[1]))
2917 if (!PL_lex_inpat && (s[1] == '+' || s[1] == '-'))
2918 break; /* in regexp, neither @+ nor @- are interpolated */
2921 /* check for embedded scalars. only stop if we're sure it's a
2924 else if (*s == '$') {
2925 if (!PL_lex_inpat) /* not a regexp, so $ must be var */
2927 if (s + 1 < send && !strchr("()| \r\n\t", s[1])) {
2929 Perl_ck_warner(aTHX_ packWARN(WARN_AMBIGUOUS),
2930 "Possible unintended interpolation of $\\ in regex");
2932 break; /* in regexp, $ might be tail anchor */
2936 /* End of else if chain - OP_TRANS rejoin rest */
2939 if (*s == '\\' && s+1 < send) {
2940 char* e; /* Can be used for ending '}', etc. */
2944 /* warn on \1 - \9 in substitution replacements, but note that \11
2945 * is an octal; and \19 is \1 followed by '9' */
2946 if (PL_lex_inwhat == OP_SUBST && !PL_lex_inpat &&
2947 isDIGIT(*s) && *s != '0' && !isDIGIT(s[1]))
2949 Perl_ck_warner(aTHX_ packWARN(WARN_SYNTAX), "\\%c better written as $%c", *s, *s);
2954 /* string-change backslash escapes */
2955 if (PL_lex_inwhat != OP_TRANS && *s && strchr("lLuUEQF", *s)) {
2959 /* In a pattern, process \N, but skip any other backslash escapes.
2960 * This is because we don't want to translate an escape sequence
2961 * into a meta symbol and have the regex compiler use the meta
2962 * symbol meaning, e.g. \x{2E} would be confused with a dot. But
2963 * in spite of this, we do have to process \N here while the proper
2964 * charnames handler is in scope. See bugs #56444 and #62056.
2965 * There is a complication because \N in a pattern may also stand
2966 * for 'match a non-nl', and not mean a charname, in which case its
2967 * processing should be deferred to the regex compiler. To be a
2968 * charname it must be followed immediately by a '{', and not look
2969 * like \N followed by a curly quantifier, i.e., not something like
2970 * \N{3,}. regcurly returns a boolean indicating if it is a legal
2972 else if (PL_lex_inpat
2975 || regcurly(s + 1)))
2977 *d++ = NATIVE_TO_NEED(has_utf8,'\\');
2978 goto default_action;
2983 /* quoted - in transliterations */
2985 if (PL_lex_inwhat == OP_TRANS) {
2993 Perl_ck_warner(aTHX_ packWARN(WARN_MISC),
2994 "Unrecognized escape \\%c passed through",
2996 /* default action is to copy the quoted character */
2997 goto default_action;
3000 /* eg. \132 indicates the octal constant 0132 */
3001 case '0': case '1': case '2': case '3':
3002 case '4': case '5': case '6': case '7':
3006 uv = NATIVE_TO_UNI(grok_oct(s, &len, &flags, NULL));
3009 goto NUM_ESCAPE_INSERT;
3011 /* eg. \o{24} indicates the octal constant \024 */
3017 bool valid = grok_bslash_o(s, &uv, &len, &error, 1);
3023 goto NUM_ESCAPE_INSERT;
3026 /* eg. \x24 indicates the hex constant 0x24 */
3032 bool valid = grok_bslash_x(s, &uv, &len, &error, 1);
3041 /* Insert oct or hex escaped character. There will always be
3042 * enough room in sv since such escapes will be longer than any
3043 * UTF-8 sequence they can end up as, except if they force us
3044 * to recode the rest of the string into utf8 */
3046 /* Here uv is the ordinal of the next character being added in
3047 * unicode (converted from native). */
3048 if (!UNI_IS_INVARIANT(uv)) {
3049 if (!has_utf8 && uv > 255) {
3050 /* Might need to recode whatever we have accumulated so
3051 * far if it contains any chars variant in utf8 or
3054 SvCUR_set(sv, d - SvPVX_const(sv));
3057 /* See Note on sizing above. */
3058 sv_utf8_upgrade_flags_grow(sv,
3059 SV_GMAGIC|SV_FORCE_UTF8_UPGRADE,
3060 UNISKIP(uv) + (STRLEN)(send - s) + 1);
3061 d = SvPVX(sv) + SvCUR(sv);
3066 d = (char*)uvuni_to_utf8((U8*)d, uv);
3067 if (PL_lex_inwhat == OP_TRANS &&
3068 PL_sublex_info.sub_op) {
3069 PL_sublex_info.sub_op->op_private |=
3070 (PL_lex_repl ? OPpTRANS_FROM_UTF
3074 if (uv > 255 && !dorange)
3075 native_range = FALSE;
3088 /* In a non-pattern \N must be a named character, like \N{LATIN
3089 * SMALL LETTER A} or \N{U+0041}. For patterns, it also can
3090 * mean to match a non-newline. For non-patterns, named
3091 * characters are converted to their string equivalents. In
3092 * patterns, named characters are not converted to their
3093 * ultimate forms for the same reasons that other escapes
3094 * aren't. Instead, they are converted to the \N{U+...} form
3095 * to get the value from the charnames that is in effect right
3096 * now, while preserving the fact that it was a named character
3097 * so that the regex compiler knows this */
3099 /* This section of code doesn't generally use the
3100 * NATIVE_TO_NEED() macro to transform the input. I (khw) did
3101 * a close examination of this macro and determined it is a
3102 * no-op except on utfebcdic variant characters. Every
3103 * character generated by this that would normally need to be
3104 * enclosed by this macro is invariant, so the macro is not
3105 * needed, and would complicate use of copy(). XXX There are
3106 * other parts of this file where the macro is used
3107 * inconsistently, but are saved by it being a no-op */
3109 /* The structure of this section of code (besides checking for
3110 * errors and upgrading to utf8) is:
3111 * Further disambiguate between the two meanings of \N, and if
3112 * not a charname, go process it elsewhere
3113 * If of form \N{U+...}, pass it through if a pattern;
3114 * otherwise convert to utf8
3115 * Otherwise must be \N{NAME}: convert to \N{U+c1.c2...} if a
3116 * pattern; otherwise convert to utf8 */
3118 /* Here, s points to the 'N'; the test below is guaranteed to
3119 * succeed if we are being called on a pattern as we already
3120 * know from a test above that the next character is a '{'.
3121 * On a non-pattern \N must mean 'named sequence, which
3122 * requires braces */
3125 yyerror("Missing braces on \\N{}");
3130 /* If there is no matching '}', it is an error. */
3131 if (! (e = strchr(s, '}'))) {
3132 if (! PL_lex_inpat) {
3133 yyerror("Missing right brace on \\N{}");
3135 yyerror("Missing right brace on \\N{} or unescaped left brace after \\N.");
3140 /* Here it looks like a named character */
3144 /* XXX This block is temporary code. \N{} implies that the
3145 * pattern is to have Unicode semantics, and therefore
3146 * currently has to be encoded in utf8. By putting it in
3147 * utf8 now, we save a whole pass in the regular expression
3148 * compiler. Once that code is changed so Unicode
3149 * semantics doesn't necessarily have to be in utf8, this
3150 * block should be removed. However, the code that parses
3151 * the output of this would have to be changed to not
3152 * necessarily expect utf8 */
3154 SvCUR_set(sv, d - SvPVX_const(sv));
3157 /* See Note on sizing above. */
3158 sv_utf8_upgrade_flags_grow(sv,
3159 SV_GMAGIC|SV_FORCE_UTF8_UPGRADE,
3160 /* 5 = '\N{' + cur char + NUL */
3161 (STRLEN)(send - s) + 5);
3162 d = SvPVX(sv) + SvCUR(sv);
3167 if (*s == 'U' && s[1] == '+') { /* \N{U+...} */
3168 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
3169 | PERL_SCAN_DISALLOW_PREFIX;
3172 /* For \N{U+...}, the '...' is a unicode value even on
3173 * EBCDIC machines */
3174 s += 2; /* Skip to next char after the 'U+' */
3176 uv = grok_hex(s, &len, &flags, NULL);
3177 if (len == 0 || len != (STRLEN)(e - s)) {
3178 yyerror("Invalid hexadecimal number in \\N{U+...}");
3185 /* On non-EBCDIC platforms, pass through to the regex
3186 * compiler unchanged. The reason we evaluated the
3187 * number above is to make sure there wasn't a syntax
3188 * error. But on EBCDIC we convert to native so
3189 * downstream code can continue to assume it's native
3191 s -= 5; /* Include the '\N{U+' */
3193 d += my_snprintf(d, e - s + 1 + 1, /* includes the }
3196 (unsigned int) UNI_TO_NATIVE(uv));
3198 Copy(s, d, e - s + 1, char); /* 1 = include the } */
3202 else { /* Not a pattern: convert the hex to string */
3204 /* If destination is not in utf8, unconditionally
3205 * recode it to be so. This is because \N{} implies
3206 * Unicode semantics, and scalars have to be in utf8
3207 * to guarantee those semantics */
3209 SvCUR_set(sv, d - SvPVX_const(sv));
3212 /* See Note on sizing above. */
3213 sv_utf8_upgrade_flags_grow(
3215 SV_GMAGIC|SV_FORCE_UTF8_UPGRADE,
3216 UNISKIP(uv) + (STRLEN)(send - e) + 1);
3217 d = SvPVX(sv) + SvCUR(sv);
3221 /* Add the string to the output */
3222 if (UNI_IS_INVARIANT(uv)) {
3225 else d = (char*)uvuni_to_utf8((U8*)d, uv);
3228 else { /* Here is \N{NAME} but not \N{U+...}. */
3230 SV *res; /* result from charnames */
3231 const char *str; /* the string in 'res' */
3232 STRLEN len; /* its length */
3234 /* Get the value for NAME */
3235 res = newSVpvn(s, e - s);
3236 res = new_constant( NULL, 0, "charnames",
3237 /* includes all of: \N{...} */
3238 res, NULL, s - 3, e - s + 4 );
3240 /* Most likely res will be in utf8 already since the
3241 * standard charnames uses pack U, but a custom translator
3242 * can leave it otherwise, so make sure. XXX This can be
3243 * revisited to not have charnames use utf8 for characters
3244 * that don't need it when regexes don't have to be in utf8
3245 * for Unicode semantics. If doing so, remember EBCDIC */
3246 sv_utf8_upgrade(res);
3247 str = SvPV_const(res, len);
3249 /* Don't accept malformed input */
3250 if (! is_utf8_string((U8 *) str, len)) {
3251 yyerror("Malformed UTF-8 returned by \\N");
3253 else if (PL_lex_inpat) {
3255 if (! len) { /* The name resolved to an empty string */
3256 Copy("\\N{}", d, 4, char);
3260 /* In order to not lose information for the regex
3261 * compiler, pass the result in the specially made
3262 * syntax: \N{U+c1.c2.c3...}, where c1 etc. are
3263 * the code points in hex of each character
3264 * returned by charnames */
3266 const char *str_end = str + len;
3267 STRLEN char_length; /* cur char's byte length */
3268 STRLEN output_length; /* and the number of bytes
3269 after this is translated
3271 const STRLEN off = d - SvPVX_const(sv);
3273 /* 2 hex per byte; 2 chars for '\N'; 2 chars for
3274 * max('U+', '.'); and 1 for NUL */
3275 char hex_string[2 * UTF8_MAXBYTES + 5];
3277 /* Get the first character of the result. */
3278 U32 uv = utf8n_to_uvuni((U8 *) str,
3283 /* The call to is_utf8_string() above hopefully
3284 * guarantees that there won't be an error. But
3285 * it's easy here to make sure. The function just
3286 * above warns and returns 0 if invalid utf8, but
3287 * it can also return 0 if the input is validly a
3288 * NUL. Disambiguate */
3289 if (uv == 0 && NATIVE_TO_ASCII(*str) != '\0') {
3290 uv = UNICODE_REPLACEMENT;
3293 /* Convert first code point to hex, including the
3294 * boiler plate before it. For all these, we
3295 * convert to native format so that downstream code
3296 * can continue to assume the input is native */
3298 my_snprintf(hex_string, sizeof(hex_string),
3300 (unsigned int) UNI_TO_NATIVE(uv));
3302 /* Make sure there is enough space to hold it */
3303 d = off + SvGROW(sv, off
3305 + (STRLEN)(send - e)
3306 + 2); /* '}' + NUL */
3308 Copy(hex_string, d, output_length, char);
3311 /* For each subsequent character, append dot and
3312 * its ordinal in hex */
3313 while ((str += char_length) < str_end) {
3314 const STRLEN off = d - SvPVX_const(sv);
3315 U32 uv = utf8n_to_uvuni((U8 *) str,
3319 if (uv == 0 && NATIVE_TO_ASCII(*str) != '\0') {
3320 uv = UNICODE_REPLACEMENT;
3324 my_snprintf(hex_string, sizeof(hex_string),
3326 (unsigned int) UNI_TO_NATIVE(uv));
3328 d = off + SvGROW(sv, off
3330 + (STRLEN)(send - e)
3331 + 2); /* '}' + NUL */
3332 Copy(hex_string, d, output_length, char);
3336 *d++ = '}'; /* Done. Add the trailing brace */
3339 else { /* Here, not in a pattern. Convert the name to a
3342 /* If destination is not in utf8, unconditionally
3343 * recode it to be so. This is because \N{} implies
3344 * Unicode semantics, and scalars have to be in utf8
3345 * to guarantee those semantics */
3347 SvCUR_set(sv, d - SvPVX_const(sv));
3350 /* See Note on sizing above. */
3351 sv_utf8_upgrade_flags_grow(sv,
3352 SV_GMAGIC|SV_FORCE_UTF8_UPGRADE,
3353 len + (STRLEN)(send - s) + 1);
3354 d = SvPVX(sv) + SvCUR(sv);
3356 } else if (len > (STRLEN)(e - s + 4)) { /* I _guess_ 4 is \N{} --jhi */
3358 /* See Note on sizing above. (NOTE: SvCUR() is not
3359 * set correctly here). */
3360 const STRLEN off = d - SvPVX_const(sv);
3361 d = off + SvGROW(sv, off + len + (STRLEN)(send - s) + 1);
3363 Copy(str, d, len, char);
3368 /* Deprecate non-approved name syntax */
3369 if (ckWARN_d(WARN_DEPRECATED)) {
3370 bool problematic = FALSE;
3373 /* For non-ut8 input, look to see that the first
3374 * character is an alpha, then loop through the rest
3375 * checking that each is a continuation */
3377 if (! isALPHAU(*i)) problematic = TRUE;
3378 else for (i = s + 1; i < e; i++) {
3379 if (isCHARNAME_CONT(*i)) continue;
3385 /* Similarly for utf8. For invariants can check
3386 * directly. We accept anything above the latin1
3387 * range because it is immaterial to Perl if it is
3388 * correct or not, and is expensive to check. But
3389 * it is fairly easy in the latin1 range to convert
3390 * the variants into a single character and check
3392 if (UTF8_IS_INVARIANT(*i)) {
3393 if (! isALPHAU(*i)) problematic = TRUE;
3394 } else if (UTF8_IS_DOWNGRADEABLE_START(*i)) {
3395 if (! isALPHAU(UNI_TO_NATIVE(TWO_BYTE_UTF8_TO_UNI(*i,
3401 if (! problematic) for (i = s + UTF8SKIP(s);
3405 if (UTF8_IS_INVARIANT(*i)) {
3406 if (isCHARNAME_CONT(*i)) continue;
3407 } else if (! UTF8_IS_DOWNGRADEABLE_START(*i)) {
3409 } else if (isCHARNAME_CONT(
3411 TWO_BYTE_UTF8_TO_UNI(*i, *(i+1)))))
3420 /* The e-i passed to the final %.*s makes sure that
3421 * should the trailing NUL be missing that this
3422 * print won't run off the end of the string */
3423 Perl_warner(aTHX_ packWARN(WARN_DEPRECATED),
3424 "Deprecated character in \\N{...}; marked by <-- HERE in \\N{%.*s<-- HERE %.*s",
3425 (int)(i - s + 1), s, (int)(e - i), i + 1);
3428 } /* End \N{NAME} */
3431 native_range = FALSE; /* \N{} is defined to be Unicode */
3433 s = e + 1; /* Point to just after the '}' */
3436 /* \c is a control character */
3440 *d++ = grok_bslash_c(*s++, has_utf8, 1);
3443 yyerror("Missing control char name in \\c");
3447 /* printf-style backslashes, formfeeds, newlines, etc */
3449 *d++ = NATIVE_TO_NEED(has_utf8,'\b');
3452 *d++ = NATIVE_TO_NEED(has_utf8,'\n');
3455 *d++ = NATIVE_TO_NEED(has_utf8,'\r');
3458 *d++ = NATIVE_TO_NEED(has_utf8,'\f');
3461 *d++ = NATIVE_TO_NEED(has_utf8,'\t');
3464 *d++ = ASCII_TO_NEED(has_utf8,'\033');
3467 *d++ = ASCII_TO_NEED(has_utf8,'\007');
3473 } /* end if (backslash) */
3480 /* If we started with encoded form, or already know we want it,
3481 then encode the next character */
3482 if (! NATIVE_IS_INVARIANT((U8)(*s)) && (this_utf8 || has_utf8)) {
3486 /* One might think that it is wasted effort in the case of the
3487 * source being utf8 (this_utf8 == TRUE) to take the next character
3488 * in the source, convert it to an unsigned value, and then convert
3489 * it back again. But the source has not been validated here. The
3490 * routine that does the conversion checks for errors like
3493 const UV nextuv = (this_utf8) ? utf8n_to_uvchr((U8*)s, send - s, &len, 0) : (UV) ((U8) *s);
3494 const STRLEN need = UNISKIP(NATIVE_TO_UNI(nextuv));
3496 SvCUR_set(sv, d - SvPVX_const(sv));
3499 /* See Note on sizing above. */
3500 sv_utf8_upgrade_flags_grow(sv,
3501 SV_GMAGIC|SV_FORCE_UTF8_UPGRADE,
3502 need + (STRLEN)(send - s) + 1);
3503 d = SvPVX(sv) + SvCUR(sv);
3505 } else if (need > len) {
3506 /* encoded value larger than old, may need extra space (NOTE:
3507 * SvCUR() is not set correctly here). See Note on sizing
3509 const STRLEN off = d - SvPVX_const(sv);
3510 d = SvGROW(sv, off + need + (STRLEN)(send - s) + 1) + off;
3514 d = (char*)uvchr_to_utf8((U8*)d, nextuv);
3516 if (uv > 255 && !dorange)
3517 native_range = FALSE;
3521 *d++ = NATIVE_TO_NEED(has_utf8,*s++);
3523 } /* while loop to process each character */
3525 /* terminate the string and set up the sv */
3527 SvCUR_set(sv, d - SvPVX_const(sv));
3528 if (SvCUR(sv) >= SvLEN(sv))
3529 Perl_croak(aTHX_ "panic: constant overflowed allocated space, %"UVuf
3530 " >= %"UVuf, (UV)SvCUR(sv), (UV)SvLEN(sv));
3533 if (PL_encoding && !has_utf8) {
3534 sv_recode_to_utf8(sv, PL_encoding);
3540 if (PL_lex_inwhat == OP_TRANS && PL_sublex_info.sub_op) {
3541 PL_sublex_info.sub_op->op_private |=
3542 (PL_lex_repl ? OPpTRANS_FROM_UTF : OPpTRANS_TO_UTF);
3546 /* shrink the sv if we allocated more than we used */
3547 if (SvCUR(sv) + 5 < SvLEN(sv)) {
3548 SvPV_shrink_to_cur(sv);
3551 /* return the substring (via pl_yylval) only if we parsed anything */
3552 if (s > PL_bufptr) {
3553 if ( PL_hints & ( PL_lex_inpat ? HINT_NEW_RE : HINT_NEW_STRING ) ) {
3554 const char *const key = PL_lex_inpat ? "qr" : "q";
3555 const STRLEN keylen = PL_lex_inpat ? 2 : 1;
3559 if (PL_lex_inwhat == OP_TRANS) {
3562 } else if (PL_lex_inwhat == OP_SUBST && !PL_lex_inpat) {
3565 } else if (PL_lex_inpat && SvIVX(PL_linestr) == '\'') {
3573 sv = S_new_constant(aTHX_ start, s - start, key, keylen, sv, NULL,
3576 pl_yylval.opval = (OP*)newSVOP(OP_CONST, 0, sv);
3583 * Returns TRUE if there's more to the expression (e.g., a subscript),
3586 * It deals with "$foo[3]" and /$foo[3]/ and /$foo[0123456789$]+/
3588 * ->[ and ->{ return TRUE
3589 * { and [ outside a pattern are always subscripts, so return TRUE
3590 * if we're outside a pattern and it's not { or [, then return FALSE
3591 * if we're in a pattern and the first char is a {
3592 * {4,5} (any digits around the comma) returns FALSE
3593 * if we're in a pattern and the first char is a [
3595 * [SOMETHING] has a funky algorithm to decide whether it's a
3596 * character class or not. It has to deal with things like
3597 * /$foo[-3]/ and /$foo[$bar]/ as well as /$foo[$\d]+/
3598 * anything else returns TRUE
3601 /* This is the one truly awful dwimmer necessary to conflate C and sed. */
3604 S_intuit_more(pTHX_ register char *s)
3608 PERL_ARGS_ASSERT_INTUIT_MORE;
3610 if (PL_lex_brackets)
3612 if (*s == '-' && s[1] == '>' && (s[2] == '[' || s[2] == '{'))
3614 if (*s != '{' && *s != '[')
3619 /* In a pattern, so maybe we have {n,m}. */
3627 /* On the other hand, maybe we have a character class */
3630 if (*s == ']' || *s == '^')
3633 /* this is terrifying, and it works */
3634 int weight = 2; /* let's weigh the evidence */
3636 unsigned char un_char = 255, last_un_char;
3637 const char * const send = strchr(s,']');
3638 char tmpbuf[sizeof PL_tokenbuf * 4];
3640 if (!send) /* has to be an expression */
3643 Zero(seen,256,char);
3646 else if (isDIGIT(*s)) {
3648 if (isDIGIT(s[1]) && s[2] == ']')
3654 for (; s < send; s++) {
3655 last_un_char = un_char;
3656 un_char = (unsigned char)*s;
3661 weight -= seen[un_char] * 10;
3662 if (isALNUM_lazy_if(s+1,UTF)) {
3664 scan_ident(s, send, tmpbuf, sizeof tmpbuf, FALSE);
3665 len = (int)strlen(tmpbuf);
3666 if (len > 1 && gv_fetchpvn_flags(tmpbuf, len,
3667 UTF ? SVf_UTF8 : 0, SVt_PV))
3672 else if (*s == '$' && s[1] &&
3673 strchr("[#!%*<>()-=",s[1])) {
3674 if (/*{*/ strchr("])} =",s[2]))
3683 if (strchr("wds]",s[1]))
3685 else if (seen[(U8)'\''] || seen[(U8)'"'])
3687 else if (strchr("rnftbxcav",s[1]))
3689 else if (isDIGIT(s[1])) {
3691 while (s[1] && isDIGIT(s[1]))
3701 if (strchr("aA01! ",last_un_char))
3703 if (strchr("zZ79~",s[1]))
3705 if (last_un_char == 255 && (isDIGIT(s[1]) || s[1] == '$'))
3706 weight -= 5; /* cope with negative subscript */
3709 if (!isALNUM(last_un_char)
3710 && !(last_un_char == '$' || last_un_char == '@'
3711 || last_un_char == '&')
3712 && isALPHA(*s) && s[1] && isALPHA(s[1])) {
3717 if (keyword(tmpbuf, d - tmpbuf, 0))
3720 if (un_char == last_un_char + 1)
3722 weight -= seen[un_char];
3727 if (weight >= 0) /* probably a character class */
3737 * Does all the checking to disambiguate
3739 * between foo(bar) and bar->foo. Returns 0 if not a method, otherwise
3740 * FUNCMETH (bar->foo(args)) or METHOD (bar->foo args).
3742 * First argument is the stuff after the first token, e.g. "bar".
3744 * Not a method if foo is a filehandle.
3745 * Not a method if foo is a subroutine prototyped to take a filehandle.
3746 * Not a method if it's really "Foo $bar"
3747 * Method if it's "foo $bar"
3748 * Not a method if it's really "print foo $bar"
3749 * Method if it's really "foo package::" (interpreted as package->foo)
3750 * Not a method if bar is known to be a subroutine ("sub bar; foo bar")
3751 * Not a method if bar is a filehandle or package, but is quoted with
3756 S_intuit_method(pTHX_ char *start, GV *gv, CV *cv)
3759 char *s = start + (*start == '$');
3760 char tmpbuf[sizeof PL_tokenbuf];
3767 PERL_ARGS_ASSERT_INTUIT_METHOD;
3769 if (gv && SvTYPE(gv) == SVt_PVGV && GvIO(gv))
3771 if (cv && SvPOK(cv)) {
3772 const char *proto = CvPROTO(cv);
3780 s = scan_word(s, tmpbuf, sizeof tmpbuf, TRUE, &len);
3781 /* start is the beginning of the possible filehandle/object,
3782 * and s is the end of it
3783 * tmpbuf is a copy of it
3786 if (*start == '$') {
3787 if (cv || PL_last_lop_op == OP_PRINT || PL_last_lop_op == OP_SAY ||
3788 isUPPER(*PL_tokenbuf))
3791 len = start - SvPVX(PL_linestr);
3795 start = SvPVX(PL_linestr) + len;
3799 return *s == '(' ? FUNCMETH : METHOD;
3801 if (!keyword(tmpbuf, len, 0)) {
3802 if (len > 2 && tmpbuf[len - 2] == ':' && tmpbuf[len - 1] == ':') {
3806 soff = s - SvPVX(PL_linestr);
3810 indirgv = gv_fetchpvn_flags(tmpbuf, len, ( UTF ? SVf_UTF8 : 0 ), SVt_PVCV);
3811 if (indirgv && GvCVu(indirgv))
3813 /* filehandle or package name makes it a method */
3814 if (!cv || GvIO(indirgv) || gv_stashpvn(tmpbuf, len, UTF ? SVf_UTF8 : 0)) {
3816 soff = s - SvPVX(PL_linestr);
3819 if ((PL_bufend - s) >= 2 && *s == '=' && *(s+1) == '>')
3820 return 0; /* no assumptions -- "=>" quotes bareword */
3822 start_force(PL_curforce);
3823 NEXTVAL_NEXTTOKE.opval = (OP*)newSVOP(OP_CONST, 0,
3824 S_newSV_maybe_utf8(aTHX_ tmpbuf, len));
3825 NEXTVAL_NEXTTOKE.opval->op_private = OPpCONST_BARE;
3827 curmad('X', newSVpvn_flags(start,SvPVX(PL_linestr) + soff - start,
3828 ( UTF ? SVf_UTF8 : 0 )));
3833 PL_bufptr = SvPVX(PL_linestr) + soff; /* restart before space */
3835 return *s == '(' ? FUNCMETH : METHOD;
3841 /* Encoded script support. filter_add() effectively inserts a
3842 * 'pre-processing' function into the current source input stream.
3843 * Note that the filter function only applies to the current source file
3844 * (e.g., it will not affect files 'require'd or 'use'd by this one).
3846 * The datasv parameter (which may be NULL) can be used to pass
3847 * private data to this instance of the filter. The filter function
3848 * can recover the SV using the FILTER_DATA macro and use it to
3849 * store private buffers and state information.
3851 * The supplied datasv parameter is upgraded to a PVIO type
3852 * and the IoDIRP/IoANY field is used to store the function pointer,
3853 * and IOf_FAKE_DIRP is enabled on datasv to mark this as such.
3854 * Note that IoTOP_NAME, IoFMT_NAME, IoBOTTOM_NAME, if set for
3855 * private use must be set using malloc'd pointers.
3859 Perl_filter_add(pTHX_ filter_t funcp, SV *datasv)
3868 if (PL_parser->lex_flags & LEX_IGNORE_UTF8_HINTS)
3869 Perl_croak(aTHX_ "Source filters apply only to byte streams");
3871 if (!PL_rsfp_filters)
3872 PL_rsfp_filters = newAV();
3875 SvUPGRADE(datasv, SVt_PVIO);
3876 IoANY(datasv) = FPTR2DPTR(void *, funcp); /* stash funcp into spare field */
3877 IoFLAGS(datasv) |= IOf_FAKE_DIRP;
3878 DEBUG_P(PerlIO_printf(Perl_debug_log, "filter_add func %p (%s)\n",
3879 FPTR2DPTR(void *, IoANY(datasv)),
3880 SvPV_nolen(datasv)));
3881 av_unshift(PL_rsfp_filters, 1);
3882 av_store(PL_rsfp_filters, 0, datasv) ;
3884 !PL_parser->filtered
3885 && PL_parser->lex_flags & LEX_EVALBYTES
3886 && PL_bufptr < PL_bufend
3888 const char *s = PL_bufptr;
3889 while (s < PL_bufend) {
3891 SV *linestr = PL_parser->linestr;
3892 char *buf = SvPVX(linestr);
3893 STRLEN const bufptr_pos = PL_parser->bufptr - buf;
3894 STRLEN const oldbufptr_pos = PL_parser->oldbufptr - buf;
3895 STRLEN const oldoldbufptr_pos=PL_parser->oldoldbufptr-buf;
3896 STRLEN const linestart_pos = PL_parser->linestart - buf;
3897 STRLEN const last_uni_pos =
3898 PL_parser->last_uni ? PL_parser->last_uni - buf : 0;
3899 STRLEN const last_lop_pos =
3900 PL_parser->last_lop ? PL_parser->last_lop - buf : 0;
3901 av_push(PL_rsfp_filters, linestr);
3902 PL_parser->linestr =
3903 newSVpvn(SvPVX(linestr), ++s-SvPVX(linestr));
3904 buf = SvPVX(PL_parser->linestr);
3905 PL_parser->bufend = buf + SvCUR(PL_parser->linestr);
3906 PL_parser->bufptr = buf + bufptr_pos;
3907 PL_parser->oldbufptr = buf + oldbufptr_pos;
3908 PL_parser->oldoldbufptr = buf + oldoldbufptr_pos;
3909 PL_parser->linestart = buf + linestart_pos;
3910 if (PL_parser->last_uni)
3911 PL_parser->last_uni = buf + last_uni_pos;
3912 if (PL_parser->last_lop)
3913 PL_parser->last_lop = buf + last_lop_pos;
3914 SvLEN(linestr) = SvCUR(linestr);
3915 SvCUR(linestr) = s-SvPVX(linestr);
3916 PL_parser->filtered = 1;
3926 /* Delete most recently added instance of this filter function. */
3928 Perl_filter_del(pTHX_ filter_t funcp)
3933 PERL_ARGS_ASSERT_FILTER_DEL;
3936 DEBUG_P(PerlIO_printf(Perl_debug_log, "filter_del func %p",
3937 FPTR2DPTR(void*, funcp)));
3939 if (!PL_parser || !PL_rsfp_filters || AvFILLp(PL_rsfp_filters)<0)
3941 /* if filter is on top of stack (usual case) just pop it off */
3942 datasv = FILTER_DATA(AvFILLp(PL_rsfp_filters));
3943 if (IoANY(datasv) == FPTR2DPTR(void *, funcp)) {
3944 sv_free(av_pop(PL_rsfp_filters));
3948 /* we need to search for the correct entry and clear it */
3949 Perl_die(aTHX_ "filter_del can only delete in reverse order (currently)");
3953 /* Invoke the idxth filter function for the current rsfp. */
3954 /* maxlen 0 = read one text line */
3956 Perl_filter_read(pTHX_ int idx, SV *buf_sv, int maxlen)
3961 /* This API is bad. It should have been using unsigned int for maxlen.
3962 Not sure if we want to change the API, but if not we should sanity
3963 check the value here. */
3964 unsigned int correct_length
3973 PERL_ARGS_ASSERT_FILTER_READ;
3975 if (!PL_parser || !PL_rsfp_filters)
3977 if (idx > AvFILLp(PL_rsfp_filters)) { /* Any more filters? */
3978 /* Provide a default input filter to make life easy. */
3979 /* Note that we append to the line. This is handy. */
3980 DEBUG_P(PerlIO_printf(Perl_debug_log,
3981 "filter_read %d: from rsfp\n", idx));
3982 if (correct_length) {
3985 const int old_len = SvCUR(buf_sv);
3987 /* ensure buf_sv is large enough */
3988 SvGROW(buf_sv, (STRLEN)(old_len + correct_length + 1)) ;
3989 if ((len = PerlIO_read(PL_rsfp, SvPVX(buf_sv) + old_len,
3990 correct_length)) <= 0) {
3991 if (PerlIO_error(PL_rsfp))
3992 return -1; /* error */
3994 return 0 ; /* end of file */
3996 SvCUR_set(buf_sv, old_len + len) ;
3997 SvPVX(buf_sv)[old_len + len] = '\0';
4000 if (sv_gets(buf_sv, PL_rsfp, SvCUR(buf_sv)) == NULL) {
4001 if (PerlIO_error(PL_rsfp))
4002 return -1; /* error */
4004 return 0 ; /* end of file */
4007 return SvCUR(buf_sv);
4009 /* Skip this filter slot if filter has been deleted */
4010 if ( (datasv = FILTER_DATA(idx)) == &PL_sv_undef) {
4011 DEBUG_P(PerlIO_printf(Perl_debug_log,
4012 "filter_read %d: skipped (filter deleted)\n",
4014 return FILTER_READ(idx+1, buf_sv, correct_length); /* recurse */
4016 if (SvTYPE(datasv) != SVt_PVIO) {
4017 if (correct_length) {
4019 const STRLEN remainder = SvLEN(datasv) - SvCUR(datasv);
4020 if (!remainder) return 0; /* eof */
4021 if (correct_length > remainder) correct_length = remainder;
4022 sv_catpvn(buf_sv, SvEND(datasv), correct_length);
4023 SvCUR_set(datasv, SvCUR(datasv) + correct_length);
4026 const char *s = SvEND(datasv);
4027 const char *send = SvPVX(datasv) + SvLEN(datasv);
4035 if (s == send) return 0; /* eof */
4036 sv_catpvn(buf_sv, SvEND(datasv), s-SvEND(datasv));
4037 SvCUR_set(datasv, s-SvPVX(datasv));
4039 return SvCUR(buf_sv);
4041 /* Get function pointer hidden within datasv */
4042 funcp = DPTR2FPTR(filter_t, IoANY(datasv));
4043 DEBUG_P(PerlIO_printf(Perl_debug_log,
4044 "filter_read %d: via function %p (%s)\n",
4045 idx, (void*)datasv, SvPV_nolen_const(datasv)));
4046 /* Call function. The function is expected to */
4047 /* call "FILTER_READ(idx+1, buf_sv)" first. */
4048 /* Return: <0:error, =0:eof, >0:not eof */
4049 return (*funcp)(aTHX_ idx, buf_sv, correct_length);
4053 S_filter_gets(pTHX_ register SV *sv, STRLEN append)
4057 PERL_ARGS_ASSERT_FILTER_GETS;
4059 #ifdef PERL_CR_FILTER
4060 if (!PL_rsfp_filters) {
4061 filter_add(S_cr_textfilter,NULL);
4064 if (PL_rsfp_filters) {
4066 SvCUR_set(sv, 0); /* start with empty line */
4067 if (FILTER_READ(0, sv, 0) > 0)
4068 return ( SvPVX(sv) ) ;
4073 return (sv_gets(sv, PL_rsfp, append));
4077 S_find_in_my_stash(pTHX_ const char *pkgname, STRLEN len)
4082 PERL_ARGS_ASSERT_FIND_IN_MY_STASH;
4084 if (len == 11 && *pkgname == '_' && strEQ(pkgname, "__PACKAGE__"))
4088 (pkgname[len - 2] == ':' && pkgname[len - 1] == ':') &&
4089 (gv = gv_fetchpvn_flags(pkgname, len, ( UTF ? SVf_UTF8 : 0 ), SVt_PVHV)))
4091 return GvHV(gv); /* Foo:: */
4094 /* use constant CLASS => 'MyClass' */
4095 gv = gv_fetchpvn_flags(pkgname, len, UTF ? SVf_UTF8 : 0, SVt_PVCV);
4096 if (gv && GvCV(gv)) {
4097 SV * const sv = cv_const_sv(GvCV(gv));
4099 pkgname = SvPV_const(sv, len);
4102 return gv_stashpvn(pkgname, len, UTF ? SVf_UTF8 : 0);
4106 * S_readpipe_override
4107 * Check whether readpipe() is overridden, and generates the appropriate
4108 * optree, provided sublex_start() is called afterwards.
4111 S_readpipe_override(pTHX)
4114 GV *gv_readpipe = gv_fetchpvs("readpipe", GV_NOTQUAL, SVt_PVCV);
4115 pl_yylval.ival = OP_BACKTICK;
4117 && GvCVu(gv_readpipe) && GvIMPORTED_CV(gv_readpipe))
4119 ((gvp = (GV**)hv_fetchs(PL_globalstash, "readpipe", FALSE))
4120 && (gv_readpipe = *gvp) && isGV_with_GP(gv_readpipe)
4121 && GvCVu(gv_readpipe) && GvIMPORTED_CV(gv_readpipe)))
4123 PL_lex_op = (OP*)newUNOP(OP_ENTERSUB, OPf_STACKED,
4124 op_append_elem(OP_LIST,
4125 newSVOP(OP_CONST, 0, &PL_sv_undef), /* value will be read later */
4126 newCVREF(0, newGVOP(OP_GV, 0, gv_readpipe))));
4133 * The intent of this yylex wrapper is to minimize the changes to the
4134 * tokener when we aren't interested in collecting madprops. It remains
4135 * to be seen how successful this strategy will be...
4142 char *s = PL_bufptr;
4144 /* make sure PL_thiswhite is initialized */
4148 /* just do what yylex would do on pending identifier; leave PL_thiswhite alone */
4149 if (PL_lex_state != LEX_KNOWNEXT && PL_pending_ident)
4150 return S_pending_ident(aTHX);
4152 /* previous token ate up our whitespace? */
4153 if (!PL_lasttoke && PL_nextwhite) {
4154 PL_thiswhite = PL_nextwhite;
4158 /* isolate the token, and figure out where it is without whitespace */
4159 PL_realtokenstart = -1;
4163 assert(PL_curforce < 0);
4165 if (!PL_thismad || PL_thismad->mad_key == '^') { /* not forced already? */
4166 if (!PL_thistoken) {
4167 if (PL_realtokenstart < 0 || !CopLINE(PL_curcop))
4168 PL_thistoken = newSVpvs("");
4170 char * const tstart = SvPVX(PL_linestr) + PL_realtokenstart;
4171 PL_thistoken = newSVpvn(tstart, s - tstart);
4174 if (PL_thismad) /* install head */
4175 CURMAD('X', PL_thistoken);
4178 /* last whitespace of a sublex? */
4179 if (optype == ')' && PL_endwhite) {
4180 CURMAD('X', PL_endwhite);
4185 /* if no whitespace and we're at EOF, bail. Otherwise fake EOF below. */
4186 if (!PL_thiswhite && !PL_endwhite && !optype) {
4187 sv_free(PL_thistoken);
4192 /* put off final whitespace till peg */
4193 if (optype == ';' && !PL_rsfp && !PL_parser->filtered) {
4194 PL_nextwhite = PL_thiswhite;
4197 else if (PL_thisopen) {
4198 CURMAD('q', PL_thisopen);
4200 sv_free(PL_thistoken);
4204 /* Store actual token text as madprop X */
4205 CURMAD('X', PL_thistoken);
4209 /* add preceding whitespace as madprop _ */
4210 CURMAD('_', PL_thiswhite);
4214 /* add quoted material as madprop = */
4215 CURMAD('=', PL_thisstuff);
4219 /* add terminating quote as madprop Q */
4220 CURMAD('Q', PL_thisclose);
4224 /* special processing based on optype */
4228 /* opval doesn't need a TOKEN since it can already store mp */
4239 if (pl_yylval.opval)
4240 append_madprops(PL_thismad, pl_yylval.opval, 0);
4248 addmad(newMADsv('p', PL_endwhite), &PL_thismad, 0);
4257 /* remember any fake bracket that lexer is about to discard */
4258 if (PL_lex_brackets == 1 &&
4259 ((expectation)PL_lex_brackstack[0] & XFAKEBRACK))
4262 while (s < PL_bufend && (*s == ' ' || *s == '\t'))
4265 PL_thiswhite = newSVpvn(PL_bufptr, ++s - PL_bufptr);
4266 addmad(newMADsv('#', PL_thiswhite), &PL_thismad, 0);
4269 break; /* don't bother looking for trailing comment */
4278 /* attach a trailing comment to its statement instead of next token */
4282 if (PL_bufptr > PL_oldbufptr && PL_bufptr[-1] == optype) {
4284 while (s < PL_bufend && (*s == ' ' || *s == '\t'))
4286 if (*s == '\n' || *s == '#') {
4287 while (s < PL_bufend && *s != '\n')
4291 PL_thiswhite = newSVpvn(PL_bufptr, s - PL_bufptr);
4292 addmad(newMADsv('#', PL_thiswhite), &PL_thismad, 0);
4305 /* Create new token struct. Note: opvals return early above. */
4306 pl_yylval.tkval = newTOKEN(optype, pl_yylval, PL_thismad);
4313 S_tokenize_use(pTHX_ int is_use, char *s) {
4316 PERL_ARGS_ASSERT_TOKENIZE_USE;
4318 if (PL_expect != XSTATE)
4319 yyerror(Perl_form(aTHX_ "\"%s\" not allowed in expression",
4320 is_use ? "use" : "no"));
4323 if (isDIGIT(*s) || (*s == 'v' && isDIGIT(s[1]))) {
4324 s = force_version(s, TRUE);
4325 if (*s == ';' || *s == '}'
4326 || (s = SKIPSPACE1(s), (*s == ';' || *s == '}'))) {
4327 start_force(PL_curforce);
4328 NEXTVAL_NEXTTOKE.opval = NULL;
4331 else if (*s == 'v') {
4332 s = force_word(s,WORD,FALSE,TRUE,FALSE);
4333 s = force_version(s, FALSE);
4337 s = force_word(s,WORD,FALSE,TRUE,FALSE);
4338 s = force_version(s, FALSE);
4340 pl_yylval.ival = is_use;
4344 static const char* const exp_name[] =
4345 { "OPERATOR", "TERM", "REF", "STATE", "BLOCK", "ATTRBLOCK",
4346 "ATTRTERM", "TERMBLOCK", "TERMORDORDOR"
4350 #define word_takes_any_delimeter(p,l) S_word_takes_any_delimeter(p,l)
4352 S_word_takes_any_delimeter(char *p, STRLEN len)
4354 return (len == 1 && strchr("msyq", p[0])) ||
4356 (p[0] == 't' && p[1] == 'r') ||
4357 (p[0] == 'q' && strchr("qwxr", p[1]))));
4363 Works out what to call the token just pulled out of the input
4364 stream. The yacc parser takes care of taking the ops we return and
4365 stitching them into a tree.
4371 if read an identifier
4372 if we're in a my declaration
4373 croak if they tried to say my($foo::bar)
4374 build the ops for a my() declaration
4375 if it's an access to a my() variable
4376 are we in a sort block?
4377 croak if my($a); $a <=> $b
4378 build ops for access to a my() variable
4379 if in a dq string, and they've said @foo and we can't find @foo
4381 build ops for a bareword
4382 if we already built the token before, use it.
4387 #pragma segment Perl_yylex
4393 register char *s = PL_bufptr;
4396 bool bof = FALSE, formbrack = FALSE;
4399 /* orig_keyword, gvp, and gv are initialized here because
4400 * jump to the label just_a_word_zero can bypass their
4401 * initialization later. */
4402 I32 orig_keyword = 0;
4407 SV* tmp = newSVpvs("");
4408 PerlIO_printf(Perl_debug_log, "### %"IVdf":LEX_%s/X%s %s\n",
4409 (IV)CopLINE(PL_curcop),
4410 lex_state_names[PL_lex_state],
4411 exp_name[PL_expect],
4412 pv_display(tmp, s, strlen(s), 0, 60));
4415 /* check if there's an identifier for us to look at */
4416 if (PL_lex_state != LEX_KNOWNEXT && PL_pending_ident)
4417 return REPORT(S_pending_ident(aTHX));
4419 /* no identifier pending identification */
4421 switch (PL_lex_state) {
4423 case LEX_NORMAL: /* Some compilers will produce faster */
4424 case LEX_INTERPNORMAL: /* code if we comment these out. */
4428 /* when we've already built the next token, just pull it out of the queue */
4432 pl_yylval = PL_nexttoke[PL_lasttoke].next_val;
4434 PL_thismad = PL_nexttoke[PL_lasttoke].next_mad;
4435 PL_nexttoke[PL_lasttoke].next_mad = 0;
4436 if (PL_thismad && PL_thismad->mad_key == '_') {
4437 PL_thiswhite = MUTABLE_SV(PL_thismad->mad_val);
4438 PL_thismad->mad_val = 0;
4439 mad_free(PL_thismad);
4444 PL_lex_state = PL_lex_defer;
4445 PL_expect = PL_lex_expect;
4446 PL_lex_defer = LEX_NORMAL;
4447 if (!PL_nexttoke[PL_lasttoke].next_type)
4452 pl_yylval = PL_nextval[PL_nexttoke];