3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 * 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
9 * "I wonder what the Entish is for 'yes' and 'no'," he thought.
12 * This file contains the code that creates, manipulates and destroys
13 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
14 * structure of an SV, so their creation and destruction is handled
15 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
16 * level functions (eg. substr, split, join) for each of the types are
28 /* Missing proto on LynxOS */
29 char *gconvert(double, int, int, char *);
32 #ifdef PERL_UTF8_CACHE_ASSERT
33 /* if adding more checks watch out for the following tests:
34 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
35 * lib/utf8.t lib/Unicode/Collate/t/index.t
38 # define ASSERT_UTF8_CACHE(cache) \
39 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
40 assert((cache)[2] <= (cache)[3]); \
41 assert((cache)[3] <= (cache)[1]);} \
44 # define ASSERT_UTF8_CACHE(cache) NOOP
47 #ifdef PERL_OLD_COPY_ON_WRITE
48 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
49 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
50 /* This is a pessimistic view. Scalar must be purely a read-write PV to copy-
54 /* ============================================================================
56 =head1 Allocation and deallocation of SVs.
58 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
59 sv, av, hv...) contains type and reference count information, and for
60 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
61 contains fields specific to each type. Some types store all they need
62 in the head, so don't have a body.
64 In all but the most memory-paranoid configuations (ex: PURIFY), heads
65 and bodies are allocated out of arenas, which by default are
66 approximately 4K chunks of memory parcelled up into N heads or bodies.
67 Sv-bodies are allocated by their sv-type, guaranteeing size
68 consistency needed to allocate safely from arrays.
70 For SV-heads, the first slot in each arena is reserved, and holds a
71 link to the next arena, some flags, and a note of the number of slots.
72 Snaked through each arena chain is a linked list of free items; when
73 this becomes empty, an extra arena is allocated and divided up into N
74 items which are threaded into the free list.
76 SV-bodies are similar, but they use arena-sets by default, which
77 separate the link and info from the arena itself, and reclaim the 1st
78 slot in the arena. SV-bodies are further described later.
80 The following global variables are associated with arenas:
82 PL_sv_arenaroot pointer to list of SV arenas
83 PL_sv_root pointer to list of free SV structures
85 PL_body_arenas head of linked-list of body arenas
86 PL_body_roots[] array of pointers to list of free bodies of svtype
87 arrays are indexed by the svtype needed
89 A few special SV heads are not allocated from an arena, but are
90 instead directly created in the interpreter structure, eg PL_sv_undef.
91 The size of arenas can be changed from the default by setting
92 PERL_ARENA_SIZE appropriately at compile time.
94 The SV arena serves the secondary purpose of allowing still-live SVs
95 to be located and destroyed during final cleanup.
97 At the lowest level, the macros new_SV() and del_SV() grab and free
98 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
99 to return the SV to the free list with error checking.) new_SV() calls
100 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
101 SVs in the free list have their SvTYPE field set to all ones.
103 At the time of very final cleanup, sv_free_arenas() is called from
104 perl_destruct() to physically free all the arenas allocated since the
105 start of the interpreter.
107 The function visit() scans the SV arenas list, and calls a specified
108 function for each SV it finds which is still live - ie which has an SvTYPE
109 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
110 following functions (specified as [function that calls visit()] / [function
111 called by visit() for each SV]):
113 sv_report_used() / do_report_used()
114 dump all remaining SVs (debugging aid)
116 sv_clean_objs() / do_clean_objs(),do_clean_named_objs()
117 Attempt to free all objects pointed to by RVs,
118 and, unless DISABLE_DESTRUCTOR_KLUDGE is defined,
119 try to do the same for all objects indirectly
120 referenced by typeglobs too. Called once from
121 perl_destruct(), prior to calling sv_clean_all()
124 sv_clean_all() / do_clean_all()
125 SvREFCNT_dec(sv) each remaining SV, possibly
126 triggering an sv_free(). It also sets the
127 SVf_BREAK flag on the SV to indicate that the
128 refcnt has been artificially lowered, and thus
129 stopping sv_free() from giving spurious warnings
130 about SVs which unexpectedly have a refcnt
131 of zero. called repeatedly from perl_destruct()
132 until there are no SVs left.
134 =head2 Arena allocator API Summary
136 Private API to rest of sv.c
140 new_XIV(), del_XIV(),
141 new_XNV(), del_XNV(),
146 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
150 ============================================================================ */
153 * "A time to plant, and a time to uproot what was planted..."
157 Perl_offer_nice_chunk(pTHX_ void *chunk, U32 chunk_size)
162 new_chunk = (void *)(chunk);
163 new_chunk_size = (chunk_size);
164 if (new_chunk_size > PL_nice_chunk_size) {
165 Safefree(PL_nice_chunk);
166 PL_nice_chunk = (char *) new_chunk;
167 PL_nice_chunk_size = new_chunk_size;
173 #ifdef DEBUG_LEAKING_SCALARS
174 # define FREE_SV_DEBUG_FILE(sv) Safefree((sv)->sv_debug_file)
176 # define FREE_SV_DEBUG_FILE(sv)
180 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
181 /* Whilst I'd love to do this, it seems that things like to check on
183 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
185 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
186 PoisonNew(&SvREFCNT(sv), 1, U32)
188 # define SvARENA_CHAIN(sv) SvANY(sv)
189 # define POSION_SV_HEAD(sv)
192 #define plant_SV(p) \
194 FREE_SV_DEBUG_FILE(p); \
196 SvARENA_CHAIN(p) = (void *)PL_sv_root; \
197 SvFLAGS(p) = SVTYPEMASK; \
202 #define uproot_SV(p) \
205 PL_sv_root = (SV*)SvARENA_CHAIN(p); \
210 /* make some more SVs by adding another arena */
219 sv_add_arena(PL_nice_chunk, PL_nice_chunk_size, 0);
220 PL_nice_chunk = NULL;
221 PL_nice_chunk_size = 0;
224 char *chunk; /* must use New here to match call to */
225 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
226 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
232 /* new_SV(): return a new, empty SV head */
234 #ifdef DEBUG_LEAKING_SCALARS
235 /* provide a real function for a debugger to play with */
244 sv = S_more_sv(aTHX);
248 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
249 sv->sv_debug_line = (U16) (PL_parser
250 ? PL_parser->copline == NOLINE
256 sv->sv_debug_inpad = 0;
257 sv->sv_debug_cloned = 0;
258 sv->sv_debug_file = PL_curcop ? savepv(CopFILE(PL_curcop)): NULL;
262 # define new_SV(p) (p)=S_new_SV(aTHX)
270 (p) = S_more_sv(aTHX); \
278 /* del_SV(): return an empty SV head to the free list */
291 S_del_sv(pTHX_ SV *p)
297 for (sva = PL_sv_arenaroot; sva; sva = (SV *) SvANY(sva)) {
298 const SV * const sv = sva + 1;
299 const SV * const svend = &sva[SvREFCNT(sva)];
300 if (p >= sv && p < svend) {
306 if (ckWARN_d(WARN_INTERNAL))
307 Perl_warner(aTHX_ packWARN(WARN_INTERNAL),
308 "Attempt to free non-arena SV: 0x%"UVxf
309 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
316 #else /* ! DEBUGGING */
318 #define del_SV(p) plant_SV(p)
320 #endif /* DEBUGGING */
324 =head1 SV Manipulation Functions
326 =for apidoc sv_add_arena
328 Given a chunk of memory, link it to the head of the list of arenas,
329 and split it into a list of free SVs.
335 Perl_sv_add_arena(pTHX_ char *ptr, U32 size, U32 flags)
338 SV* const sva = (SV*)ptr;
342 /* The first SV in an arena isn't an SV. */
343 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
344 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
345 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
347 PL_sv_arenaroot = sva;
348 PL_sv_root = sva + 1;
350 svend = &sva[SvREFCNT(sva) - 1];
353 SvARENA_CHAIN(sv) = (void *)(SV*)(sv + 1);
357 /* Must always set typemask because it's always checked in on cleanup
358 when the arenas are walked looking for objects. */
359 SvFLAGS(sv) = SVTYPEMASK;
362 SvARENA_CHAIN(sv) = 0;
366 SvFLAGS(sv) = SVTYPEMASK;
369 /* visit(): call the named function for each non-free SV in the arenas
370 * whose flags field matches the flags/mask args. */
373 S_visit(pTHX_ SVFUNC_t f, U32 flags, U32 mask)
379 for (sva = PL_sv_arenaroot; sva; sva = (SV*)SvANY(sva)) {
380 register const SV * const svend = &sva[SvREFCNT(sva)];
382 for (sv = sva + 1; sv < svend; ++sv) {
383 if (SvTYPE(sv) != SVTYPEMASK
384 && (sv->sv_flags & mask) == flags
397 /* called by sv_report_used() for each live SV */
400 do_report_used(pTHX_ SV *sv)
402 if (SvTYPE(sv) != SVTYPEMASK) {
403 PerlIO_printf(Perl_debug_log, "****\n");
410 =for apidoc sv_report_used
412 Dump the contents of all SVs not yet freed. (Debugging aid).
418 Perl_sv_report_used(pTHX)
421 visit(do_report_used, 0, 0);
427 /* called by sv_clean_objs() for each live SV */
430 do_clean_objs(pTHX_ SV *ref)
435 SV * const target = SvRV(ref);
436 if (SvOBJECT(target)) {
437 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
438 if (SvWEAKREF(ref)) {
439 sv_del_backref(target, ref);
445 SvREFCNT_dec(target);
450 /* XXX Might want to check arrays, etc. */
453 /* called by sv_clean_objs() for each live SV */
455 #ifndef DISABLE_DESTRUCTOR_KLUDGE
457 do_clean_named_objs(pTHX_ SV *sv)
460 assert(SvTYPE(sv) == SVt_PVGV);
461 assert(isGV_with_GP(sv));
464 #ifdef PERL_DONT_CREATE_GVSV
467 SvOBJECT(GvSV(sv))) ||
468 (GvAV(sv) && SvOBJECT(GvAV(sv))) ||
469 (GvHV(sv) && SvOBJECT(GvHV(sv))) ||
470 /* In certain rare cases GvIOp(sv) can be NULL, which would make SvOBJECT(GvIO(sv)) dereference NULL. */
471 (GvIO(sv) ? (SvFLAGS(GvIOp(sv)) & SVs_OBJECT) : 0) ||
472 (GvCV(sv) && SvOBJECT(GvCV(sv))) )
474 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning named glob object:\n "), sv_dump(sv)));
475 SvFLAGS(sv) |= SVf_BREAK;
483 =for apidoc sv_clean_objs
485 Attempt to destroy all objects not yet freed
491 Perl_sv_clean_objs(pTHX)
494 PL_in_clean_objs = TRUE;
495 visit(do_clean_objs, SVf_ROK, SVf_ROK);
496 #ifndef DISABLE_DESTRUCTOR_KLUDGE
497 /* some barnacles may yet remain, clinging to typeglobs */
498 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
500 PL_in_clean_objs = FALSE;
503 /* called by sv_clean_all() for each live SV */
506 do_clean_all(pTHX_ SV *sv)
509 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
510 SvFLAGS(sv) |= SVf_BREAK;
515 =for apidoc sv_clean_all
517 Decrement the refcnt of each remaining SV, possibly triggering a
518 cleanup. This function may have to be called multiple times to free
519 SVs which are in complex self-referential hierarchies.
525 Perl_sv_clean_all(pTHX)
529 PL_in_clean_all = TRUE;
530 cleaned = visit(do_clean_all, 0,0);
531 PL_in_clean_all = FALSE;
536 ARENASETS: a meta-arena implementation which separates arena-info
537 into struct arena_set, which contains an array of struct
538 arena_descs, each holding info for a single arena. By separating
539 the meta-info from the arena, we recover the 1st slot, formerly
540 borrowed for list management. The arena_set is about the size of an
541 arena, avoiding the needless malloc overhead of a naive linked-list.
543 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
544 memory in the last arena-set (1/2 on average). In trade, we get
545 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
546 smaller types). The recovery of the wasted space allows use of
547 small arenas for large, rare body types, by changing array* fields
548 in body_details_by_type[] below.
551 char *arena; /* the raw storage, allocated aligned */
552 size_t size; /* its size ~4k typ */
553 U32 misc; /* type, and in future other things. */
558 /* Get the maximum number of elements in set[] such that struct arena_set
559 will fit within PERL_ARENA_SIZE, which is probably just under 4K, and
560 therefore likely to be 1 aligned memory page. */
562 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
563 - 2 * sizeof(int)) / sizeof (struct arena_desc))
566 struct arena_set* next;
567 unsigned int set_size; /* ie ARENAS_PER_SET */
568 unsigned int curr; /* index of next available arena-desc */
569 struct arena_desc set[ARENAS_PER_SET];
573 =for apidoc sv_free_arenas
575 Deallocate the memory used by all arenas. Note that all the individual SV
576 heads and bodies within the arenas must already have been freed.
581 Perl_sv_free_arenas(pTHX)
588 /* Free arenas here, but be careful about fake ones. (We assume
589 contiguity of the fake ones with the corresponding real ones.) */
591 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
592 svanext = (SV*) SvANY(sva);
593 while (svanext && SvFAKE(svanext))
594 svanext = (SV*) SvANY(svanext);
601 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
604 struct arena_set *current = aroot;
607 assert(aroot->set[i].arena);
608 Safefree(aroot->set[i].arena);
616 i = PERL_ARENA_ROOTS_SIZE;
618 PL_body_roots[i] = 0;
620 Safefree(PL_nice_chunk);
621 PL_nice_chunk = NULL;
622 PL_nice_chunk_size = 0;
628 Here are mid-level routines that manage the allocation of bodies out
629 of the various arenas. There are 5 kinds of arenas:
631 1. SV-head arenas, which are discussed and handled above
632 2. regular body arenas
633 3. arenas for reduced-size bodies
635 5. pte arenas (thread related)
637 Arena types 2 & 3 are chained by body-type off an array of
638 arena-root pointers, which is indexed by svtype. Some of the
639 larger/less used body types are malloced singly, since a large
640 unused block of them is wasteful. Also, several svtypes dont have
641 bodies; the data fits into the sv-head itself. The arena-root
642 pointer thus has a few unused root-pointers (which may be hijacked
643 later for arena types 4,5)
645 3 differs from 2 as an optimization; some body types have several
646 unused fields in the front of the structure (which are kept in-place
647 for consistency). These bodies can be allocated in smaller chunks,
648 because the leading fields arent accessed. Pointers to such bodies
649 are decremented to point at the unused 'ghost' memory, knowing that
650 the pointers are used with offsets to the real memory.
652 HE, HEK arenas are managed separately, with separate code, but may
653 be merge-able later..
655 PTE arenas are not sv-bodies, but they share these mid-level
656 mechanics, so are considered here. The new mid-level mechanics rely
657 on the sv_type of the body being allocated, so we just reserve one
658 of the unused body-slots for PTEs, then use it in those (2) PTE
659 contexts below (line ~10k)
662 /* get_arena(size): this creates custom-sized arenas
663 TBD: export properly for hv.c: S_more_he().
666 Perl_get_arena(pTHX_ size_t arena_size, U32 misc)
669 struct arena_desc* adesc;
670 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
673 /* shouldnt need this
674 if (!arena_size) arena_size = PERL_ARENA_SIZE;
677 /* may need new arena-set to hold new arena */
678 if (!aroot || aroot->curr >= aroot->set_size) {
679 struct arena_set *newroot;
680 Newxz(newroot, 1, struct arena_set);
681 newroot->set_size = ARENAS_PER_SET;
682 newroot->next = aroot;
684 PL_body_arenas = (void *) newroot;
685 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
688 /* ok, now have arena-set with at least 1 empty/available arena-desc */
689 curr = aroot->curr++;
690 adesc = &(aroot->set[curr]);
691 assert(!adesc->arena);
693 Newx(adesc->arena, arena_size, char);
694 adesc->size = arena_size;
696 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %"UVuf"\n",
697 curr, (void*)adesc->arena, (UV)arena_size));
703 /* return a thing to the free list */
705 #define del_body(thing, root) \
707 void ** const thing_copy = (void **)thing;\
708 *thing_copy = *root; \
709 *root = (void*)thing_copy; \
714 =head1 SV-Body Allocation
716 Allocation of SV-bodies is similar to SV-heads, differing as follows;
717 the allocation mechanism is used for many body types, so is somewhat
718 more complicated, it uses arena-sets, and has no need for still-live
721 At the outermost level, (new|del)_X*V macros return bodies of the
722 appropriate type. These macros call either (new|del)_body_type or
723 (new|del)_body_allocated macro pairs, depending on specifics of the
724 type. Most body types use the former pair, the latter pair is used to
725 allocate body types with "ghost fields".
727 "ghost fields" are fields that are unused in certain types, and
728 consequently dont need to actually exist. They are declared because
729 they're part of a "base type", which allows use of functions as
730 methods. The simplest examples are AVs and HVs, 2 aggregate types
731 which don't use the fields which support SCALAR semantics.
733 For these types, the arenas are carved up into *_allocated size
734 chunks, we thus avoid wasted memory for those unaccessed members.
735 When bodies are allocated, we adjust the pointer back in memory by the
736 size of the bit not allocated, so it's as if we allocated the full
737 structure. (But things will all go boom if you write to the part that
738 is "not there", because you'll be overwriting the last members of the
739 preceding structure in memory.)
741 We calculate the correction using the STRUCT_OFFSET macro. For
742 example, if xpv_allocated is the same structure as XPV then the two
743 OFFSETs sum to zero, and the pointer is unchanged. If the allocated
744 structure is smaller (no initial NV actually allocated) then the net
745 effect is to subtract the size of the NV from the pointer, to return a
746 new pointer as if an initial NV were actually allocated.
748 This is the same trick as was used for NV and IV bodies. Ironically it
749 doesn't need to be used for NV bodies any more, because NV is now at
750 the start of the structure. IV bodies don't need it either, because
751 they are no longer allocated.
753 In turn, the new_body_* allocators call S_new_body(), which invokes
754 new_body_inline macro, which takes a lock, and takes a body off the
755 linked list at PL_body_roots[sv_type], calling S_more_bodies() if
756 necessary to refresh an empty list. Then the lock is released, and
757 the body is returned.
759 S_more_bodies calls get_arena(), and carves it up into an array of N
760 bodies, which it strings into a linked list. It looks up arena-size
761 and body-size from the body_details table described below, thus
762 supporting the multiple body-types.
764 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
765 the (new|del)_X*V macros are mapped directly to malloc/free.
771 For each sv-type, struct body_details bodies_by_type[] carries
772 parameters which control these aspects of SV handling:
774 Arena_size determines whether arenas are used for this body type, and if
775 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
776 zero, forcing individual mallocs and frees.
778 Body_size determines how big a body is, and therefore how many fit into
779 each arena. Offset carries the body-pointer adjustment needed for
780 *_allocated body types, and is used in *_allocated macros.
782 But its main purpose is to parameterize info needed in
783 Perl_sv_upgrade(). The info here dramatically simplifies the function
784 vs the implementation in 5.8.7, making it table-driven. All fields
785 are used for this, except for arena_size.
787 For the sv-types that have no bodies, arenas are not used, so those
788 PL_body_roots[sv_type] are unused, and can be overloaded. In
789 something of a special case, SVt_NULL is borrowed for HE arenas;
790 PL_body_roots[HE_SVSLOT=SVt_NULL] is filled by S_more_he, but the
791 bodies_by_type[SVt_NULL] slot is not used, as the table is not
794 PTEs also use arenas, but are never seen in Perl_sv_upgrade. Nonetheless,
795 they get their own slot in bodies_by_type[PTE_SVSLOT =SVt_IV], so they can
796 just use the same allocation semantics. At first, PTEs were also
797 overloaded to a non-body sv-type, but this yielded hard-to-find malloc
798 bugs, so was simplified by claiming a new slot. This choice has no
799 consequence at this time.
803 struct body_details {
804 U8 body_size; /* Size to allocate */
805 U8 copy; /* Size of structure to copy (may be shorter) */
807 unsigned int type : 4; /* We have space for a sanity check. */
808 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
809 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
810 unsigned int arena : 1; /* Allocated from an arena */
811 size_t arena_size; /* Size of arena to allocate */
819 /* With -DPURFIY we allocate everything directly, and don't use arenas.
820 This seems a rather elegant way to simplify some of the code below. */
821 #define HASARENA FALSE
823 #define HASARENA TRUE
825 #define NOARENA FALSE
827 /* Size the arenas to exactly fit a given number of bodies. A count
828 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
829 simplifying the default. If count > 0, the arena is sized to fit
830 only that many bodies, allowing arenas to be used for large, rare
831 bodies (XPVFM, XPVIO) without undue waste. The arena size is
832 limited by PERL_ARENA_SIZE, so we can safely oversize the
835 #define FIT_ARENA0(body_size) \
836 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
837 #define FIT_ARENAn(count,body_size) \
838 ( count * body_size <= PERL_ARENA_SIZE) \
839 ? count * body_size \
840 : FIT_ARENA0 (body_size)
841 #define FIT_ARENA(count,body_size) \
843 ? FIT_ARENAn (count, body_size) \
844 : FIT_ARENA0 (body_size)
846 /* A macro to work out the offset needed to subtract from a pointer to (say)
853 to make its members accessible via a pointer to (say)
863 #define relative_STRUCT_OFFSET(longer, shorter, member) \
864 (STRUCT_OFFSET(shorter, member) - STRUCT_OFFSET(longer, member))
866 /* Calculate the length to copy. Specifically work out the length less any
867 final padding the compiler needed to add. See the comment in sv_upgrade
868 for why copying the padding proved to be a bug. */
870 #define copy_length(type, last_member) \
871 STRUCT_OFFSET(type, last_member) \
872 + sizeof (((type*)SvANY((SV*)0))->last_member)
874 static const struct body_details bodies_by_type[] = {
875 { sizeof(HE), 0, 0, SVt_NULL,
876 FALSE, NONV, NOARENA, FIT_ARENA(0, sizeof(HE)) },
878 /* The bind placeholder pretends to be an RV for now.
879 Also it's marked as "can't upgrade" to stop anyone using it before it's
881 { 0, 0, 0, SVt_BIND, TRUE, NONV, NOARENA, 0 },
883 /* IVs are in the head, so the allocation size is 0.
884 However, the slot is overloaded for PTEs. */
885 { sizeof(struct ptr_tbl_ent), /* This is used for PTEs. */
886 sizeof(IV), /* This is used to copy out the IV body. */
887 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
888 NOARENA /* IVS don't need an arena */,
889 /* But PTEs need to know the size of their arena */
890 FIT_ARENA(0, sizeof(struct ptr_tbl_ent))
893 /* 8 bytes on most ILP32 with IEEE doubles */
894 { sizeof(NV), sizeof(NV), 0, SVt_NV, FALSE, HADNV, HASARENA,
895 FIT_ARENA(0, sizeof(NV)) },
897 /* 8 bytes on most ILP32 with IEEE doubles */
898 { sizeof(xpv_allocated),
899 copy_length(XPV, xpv_len)
900 - relative_STRUCT_OFFSET(xpv_allocated, XPV, xpv_cur),
901 + relative_STRUCT_OFFSET(xpv_allocated, XPV, xpv_cur),
902 SVt_PV, FALSE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpv_allocated)) },
905 { sizeof(xpviv_allocated),
906 copy_length(XPVIV, xiv_u)
907 - relative_STRUCT_OFFSET(xpviv_allocated, XPVIV, xpv_cur),
908 + relative_STRUCT_OFFSET(xpviv_allocated, XPVIV, xpv_cur),
909 SVt_PVIV, FALSE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpviv_allocated)) },
912 { sizeof(XPVNV), copy_length(XPVNV, xiv_u), 0, SVt_PVNV, FALSE, HADNV,
913 HASARENA, FIT_ARENA(0, sizeof(XPVNV)) },
916 { sizeof(XPVMG), copy_length(XPVMG, xmg_stash), 0, SVt_PVMG, FALSE, HADNV,
917 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
920 { sizeof(struct regexp), sizeof(struct regexp), 0,
921 SVt_REGEXP, FALSE, HADNV, HASARENA, FIT_ARENA(0, sizeof(struct regexp))
925 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
926 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
929 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
930 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
932 { sizeof(xpvav_allocated),
933 copy_length(XPVAV, xmg_stash)
934 - relative_STRUCT_OFFSET(xpvav_allocated, XPVAV, xav_fill),
935 + relative_STRUCT_OFFSET(xpvav_allocated, XPVAV, xav_fill),
936 SVt_PVAV, TRUE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpvav_allocated)) },
938 { sizeof(xpvhv_allocated),
939 copy_length(XPVHV, xmg_stash)
940 - relative_STRUCT_OFFSET(xpvhv_allocated, XPVHV, xhv_fill),
941 + relative_STRUCT_OFFSET(xpvhv_allocated, XPVHV, xhv_fill),
942 SVt_PVHV, TRUE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpvhv_allocated)) },
945 { sizeof(xpvcv_allocated), sizeof(xpvcv_allocated),
946 + relative_STRUCT_OFFSET(xpvcv_allocated, XPVCV, xpv_cur),
947 SVt_PVCV, TRUE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpvcv_allocated)) },
949 { sizeof(xpvfm_allocated), sizeof(xpvfm_allocated),
950 + relative_STRUCT_OFFSET(xpvfm_allocated, XPVFM, xpv_cur),
951 SVt_PVFM, TRUE, NONV, NOARENA, FIT_ARENA(20, sizeof(xpvfm_allocated)) },
953 /* XPVIO is 84 bytes, fits 48x */
954 { sizeof(XPVIO), sizeof(XPVIO), 0, SVt_PVIO, TRUE, HADNV,
955 HASARENA, FIT_ARENA(24, sizeof(XPVIO)) },
958 #define new_body_type(sv_type) \
959 (void *)((char *)S_new_body(aTHX_ sv_type))
961 #define del_body_type(p, sv_type) \
962 del_body(p, &PL_body_roots[sv_type])
965 #define new_body_allocated(sv_type) \
966 (void *)((char *)S_new_body(aTHX_ sv_type) \
967 - bodies_by_type[sv_type].offset)
969 #define del_body_allocated(p, sv_type) \
970 del_body(p + bodies_by_type[sv_type].offset, &PL_body_roots[sv_type])
973 #define my_safemalloc(s) (void*)safemalloc(s)
974 #define my_safecalloc(s) (void*)safecalloc(s, 1)
975 #define my_safefree(p) safefree((char*)p)
979 #define new_XNV() my_safemalloc(sizeof(XPVNV))
980 #define del_XNV(p) my_safefree(p)
982 #define new_XPVNV() my_safemalloc(sizeof(XPVNV))
983 #define del_XPVNV(p) my_safefree(p)
985 #define new_XPVAV() my_safemalloc(sizeof(XPVAV))
986 #define del_XPVAV(p) my_safefree(p)
988 #define new_XPVHV() my_safemalloc(sizeof(XPVHV))
989 #define del_XPVHV(p) my_safefree(p)
991 #define new_XPVMG() my_safemalloc(sizeof(XPVMG))
992 #define del_XPVMG(p) my_safefree(p)
994 #define new_XPVGV() my_safemalloc(sizeof(XPVGV))
995 #define del_XPVGV(p) my_safefree(p)
999 #define new_XNV() new_body_type(SVt_NV)
1000 #define del_XNV(p) del_body_type(p, SVt_NV)
1002 #define new_XPVNV() new_body_type(SVt_PVNV)
1003 #define del_XPVNV(p) del_body_type(p, SVt_PVNV)
1005 #define new_XPVAV() new_body_allocated(SVt_PVAV)
1006 #define del_XPVAV(p) del_body_allocated(p, SVt_PVAV)
1008 #define new_XPVHV() new_body_allocated(SVt_PVHV)
1009 #define del_XPVHV(p) del_body_allocated(p, SVt_PVHV)
1011 #define new_XPVMG() new_body_type(SVt_PVMG)
1012 #define del_XPVMG(p) del_body_type(p, SVt_PVMG)
1014 #define new_XPVGV() new_body_type(SVt_PVGV)
1015 #define del_XPVGV(p) del_body_type(p, SVt_PVGV)
1019 /* no arena for you! */
1021 #define new_NOARENA(details) \
1022 my_safemalloc((details)->body_size + (details)->offset)
1023 #define new_NOARENAZ(details) \
1024 my_safecalloc((details)->body_size + (details)->offset)
1027 S_more_bodies (pTHX_ svtype sv_type)
1030 void ** const root = &PL_body_roots[sv_type];
1031 const struct body_details * const bdp = &bodies_by_type[sv_type];
1032 const size_t body_size = bdp->body_size;
1035 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1036 static bool done_sanity_check;
1038 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1039 * variables like done_sanity_check. */
1040 if (!done_sanity_check) {
1041 unsigned int i = SVt_LAST;
1043 done_sanity_check = TRUE;
1046 assert (bodies_by_type[i].type == i);
1050 assert(bdp->arena_size);
1052 start = (char*) Perl_get_arena(aTHX_ bdp->arena_size, sv_type);
1054 end = start + bdp->arena_size - body_size;
1056 /* computed count doesnt reflect the 1st slot reservation */
1057 DEBUG_m(PerlIO_printf(Perl_debug_log,
1058 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1059 (void*)start, (void*)end,
1060 (int)bdp->arena_size, sv_type, (int)body_size,
1061 (int)bdp->arena_size / (int)body_size));
1063 *root = (void *)start;
1065 while (start < end) {
1066 char * const next = start + body_size;
1067 *(void**) start = (void *)next;
1070 *(void **)start = 0;
1075 /* grab a new thing from the free list, allocating more if necessary.
1076 The inline version is used for speed in hot routines, and the
1077 function using it serves the rest (unless PURIFY).
1079 #define new_body_inline(xpv, sv_type) \
1081 void ** const r3wt = &PL_body_roots[sv_type]; \
1082 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1083 ? *((void **)(r3wt)) : more_bodies(sv_type)); \
1084 *(r3wt) = *(void**)(xpv); \
1090 S_new_body(pTHX_ svtype sv_type)
1094 new_body_inline(xpv, sv_type);
1100 static const struct body_details fake_rv =
1101 { 0, 0, 0, SVt_IV, FALSE, NONV, NOARENA, 0 };
1104 =for apidoc sv_upgrade
1106 Upgrade an SV to a more complex form. Generally adds a new body type to the
1107 SV, then copies across as much information as possible from the old body.
1108 You generally want to use the C<SvUPGRADE> macro wrapper. See also C<svtype>.
1114 Perl_sv_upgrade(pTHX_ register SV *sv, svtype new_type)
1119 const svtype old_type = SvTYPE(sv);
1120 const struct body_details *new_type_details;
1121 const struct body_details *old_type_details
1122 = bodies_by_type + old_type;
1123 SV *referant = NULL;
1125 if (new_type != SVt_PV && SvIsCOW(sv)) {
1126 sv_force_normal_flags(sv, 0);
1129 if (old_type == new_type)
1132 old_body = SvANY(sv);
1134 /* Copying structures onto other structures that have been neatly zeroed
1135 has a subtle gotcha. Consider XPVMG
1137 +------+------+------+------+------+-------+-------+
1138 | NV | CUR | LEN | IV | MAGIC | STASH |
1139 +------+------+------+------+------+-------+-------+
1140 0 4 8 12 16 20 24 28
1142 where NVs are aligned to 8 bytes, so that sizeof that structure is
1143 actually 32 bytes long, with 4 bytes of padding at the end:
1145 +------+------+------+------+------+-------+-------+------+
1146 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1147 +------+------+------+------+------+-------+-------+------+
1148 0 4 8 12 16 20 24 28 32
1150 so what happens if you allocate memory for this structure:
1152 +------+------+------+------+------+-------+-------+------+------+...
1153 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1154 +------+------+------+------+------+-------+-------+------+------+...
1155 0 4 8 12 16 20 24 28 32 36
1157 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1158 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1159 started out as zero once, but it's quite possible that it isn't. So now,
1160 rather than a nicely zeroed GP, you have it pointing somewhere random.
1163 (In fact, GP ends up pointing at a previous GP structure, because the
1164 principle cause of the padding in XPVMG getting garbage is a copy of
1165 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1166 this happens to be moot because XPVGV has been re-ordered, with GP
1167 no longer after STASH)
1169 So we are careful and work out the size of used parts of all the
1177 referant = SvRV(sv);
1178 old_type_details = &fake_rv;
1179 if (new_type == SVt_NV)
1180 new_type = SVt_PVNV;
1182 if (new_type < SVt_PVIV) {
1183 new_type = (new_type == SVt_NV)
1184 ? SVt_PVNV : SVt_PVIV;
1189 if (new_type < SVt_PVNV) {
1190 new_type = SVt_PVNV;
1194 assert(new_type > SVt_PV);
1195 assert(SVt_IV < SVt_PV);
1196 assert(SVt_NV < SVt_PV);
1203 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1204 there's no way that it can be safely upgraded, because perl.c
1205 expects to Safefree(SvANY(PL_mess_sv)) */
1206 assert(sv != PL_mess_sv);
1207 /* This flag bit is used to mean other things in other scalar types.
1208 Given that it only has meaning inside the pad, it shouldn't be set
1209 on anything that can get upgraded. */
1210 assert(!SvPAD_TYPED(sv));
1213 if (old_type_details->cant_upgrade)
1214 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1215 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1218 if (old_type > new_type)
1219 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1220 (int)old_type, (int)new_type);
1222 new_type_details = bodies_by_type + new_type;
1224 SvFLAGS(sv) &= ~SVTYPEMASK;
1225 SvFLAGS(sv) |= new_type;
1227 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1228 the return statements above will have triggered. */
1229 assert (new_type != SVt_NULL);
1232 assert(old_type == SVt_NULL);
1233 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1237 assert(old_type == SVt_NULL);
1238 SvANY(sv) = new_XNV();
1243 assert(new_type_details->body_size);
1246 assert(new_type_details->arena);
1247 assert(new_type_details->arena_size);
1248 /* This points to the start of the allocated area. */
1249 new_body_inline(new_body, new_type);
1250 Zero(new_body, new_type_details->body_size, char);
1251 new_body = ((char *)new_body) - new_type_details->offset;
1253 /* We always allocated the full length item with PURIFY. To do this
1254 we fake things so that arena is false for all 16 types.. */
1255 new_body = new_NOARENAZ(new_type_details);
1257 SvANY(sv) = new_body;
1258 if (new_type == SVt_PVAV) {
1262 if (old_type_details->body_size) {
1265 /* It will have been zeroed when the new body was allocated.
1266 Lets not write to it, in case it confuses a write-back
1272 #ifndef NODEFAULT_SHAREKEYS
1273 HvSHAREKEYS_on(sv); /* key-sharing on by default */
1275 HvMAX(sv) = 7; /* (start with 8 buckets) */
1276 if (old_type_details->body_size) {
1279 /* It will have been zeroed when the new body was allocated.
1280 Lets not write to it, in case it confuses a write-back
1285 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1286 The target created by newSVrv also is, and it can have magic.
1287 However, it never has SvPVX set.
1289 if (old_type == SVt_IV) {
1291 } else if (old_type >= SVt_PV) {
1292 assert(SvPVX_const(sv) == 0);
1295 if (old_type >= SVt_PVMG) {
1296 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1297 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1299 sv->sv_u.svu_array = NULL; /* or svu_hash */
1305 /* XXX Is this still needed? Was it ever needed? Surely as there is
1306 no route from NV to PVIV, NOK can never be true */
1307 assert(!SvNOKp(sv));
1319 assert(new_type_details->body_size);
1320 /* We always allocated the full length item with PURIFY. To do this
1321 we fake things so that arena is false for all 16 types.. */
1322 if(new_type_details->arena) {
1323 /* This points to the start of the allocated area. */
1324 new_body_inline(new_body, new_type);
1325 Zero(new_body, new_type_details->body_size, char);
1326 new_body = ((char *)new_body) - new_type_details->offset;
1328 new_body = new_NOARENAZ(new_type_details);
1330 SvANY(sv) = new_body;
1332 if (old_type_details->copy) {
1333 /* There is now the potential for an upgrade from something without
1334 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1335 int offset = old_type_details->offset;
1336 int length = old_type_details->copy;
1338 if (new_type_details->offset > old_type_details->offset) {
1339 const int difference
1340 = new_type_details->offset - old_type_details->offset;
1341 offset += difference;
1342 length -= difference;
1344 assert (length >= 0);
1346 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1350 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1351 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1352 * correct 0.0 for us. Otherwise, if the old body didn't have an
1353 * NV slot, but the new one does, then we need to initialise the
1354 * freshly created NV slot with whatever the correct bit pattern is
1356 if (old_type_details->zero_nv && !new_type_details->zero_nv
1357 && !isGV_with_GP(sv))
1361 if (new_type == SVt_PVIO)
1362 IoPAGE_LEN(sv) = 60;
1363 if (old_type < SVt_PV) {
1364 /* referant will be NULL unless the old type was SVt_IV emulating
1366 sv->sv_u.svu_rv = referant;
1370 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1371 (unsigned long)new_type);
1374 if (old_type_details->arena) {
1375 /* If there was an old body, then we need to free it.
1376 Note that there is an assumption that all bodies of types that
1377 can be upgraded came from arenas. Only the more complex non-
1378 upgradable types are allowed to be directly malloc()ed. */
1380 my_safefree(old_body);
1382 del_body((void*)((char*)old_body + old_type_details->offset),
1383 &PL_body_roots[old_type]);
1389 =for apidoc sv_backoff
1391 Remove any string offset. You should normally use the C<SvOOK_off> macro
1398 Perl_sv_backoff(pTHX_ register SV *sv)
1400 UV delta = sv_read_offset(sv);
1401 const char * const s = SvPVX_const(sv);
1402 PERL_UNUSED_CONTEXT;
1404 assert(SvTYPE(sv) != SVt_PVHV);
1405 assert(SvTYPE(sv) != SVt_PVAV);
1407 SvLEN_set(sv, SvLEN(sv) + delta);
1408 SvPV_set(sv, SvPVX(sv) - delta);
1409 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1410 SvFLAGS(sv) &= ~SVf_OOK;
1417 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1418 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1419 Use the C<SvGROW> wrapper instead.
1425 Perl_sv_grow(pTHX_ register SV *sv, register STRLEN newlen)
1429 if (PL_madskills && newlen >= 0x100000) {
1430 PerlIO_printf(Perl_debug_log,
1431 "Allocation too large: %"UVxf"\n", (UV)newlen);
1433 #ifdef HAS_64K_LIMIT
1434 if (newlen >= 0x10000) {
1435 PerlIO_printf(Perl_debug_log,
1436 "Allocation too large: %"UVxf"\n", (UV)newlen);
1439 #endif /* HAS_64K_LIMIT */
1442 if (SvTYPE(sv) < SVt_PV) {
1443 sv_upgrade(sv, SVt_PV);
1444 s = SvPVX_mutable(sv);
1446 else if (SvOOK(sv)) { /* pv is offset? */
1448 s = SvPVX_mutable(sv);
1449 if (newlen > SvLEN(sv))
1450 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1451 #ifdef HAS_64K_LIMIT
1452 if (newlen >= 0x10000)
1457 s = SvPVX_mutable(sv);
1459 if (newlen > SvLEN(sv)) { /* need more room? */
1460 newlen = PERL_STRLEN_ROUNDUP(newlen);
1461 if (SvLEN(sv) && s) {
1463 const STRLEN l = malloced_size((void*)SvPVX_const(sv));
1469 s = (char*)saferealloc(s, newlen);
1472 s = (char*)safemalloc(newlen);
1473 if (SvPVX_const(sv) && SvCUR(sv)) {
1474 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1478 SvLEN_set(sv, newlen);
1484 =for apidoc sv_setiv
1486 Copies an integer into the given SV, upgrading first if necessary.
1487 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1493 Perl_sv_setiv(pTHX_ register SV *sv, IV i)
1496 SV_CHECK_THINKFIRST_COW_DROP(sv);
1497 switch (SvTYPE(sv)) {
1500 sv_upgrade(sv, SVt_IV);
1503 sv_upgrade(sv, SVt_PVIV);
1512 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1516 (void)SvIOK_only(sv); /* validate number */
1522 =for apidoc sv_setiv_mg
1524 Like C<sv_setiv>, but also handles 'set' magic.
1530 Perl_sv_setiv_mg(pTHX_ register SV *sv, IV i)
1537 =for apidoc sv_setuv
1539 Copies an unsigned integer into the given SV, upgrading first if necessary.
1540 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1546 Perl_sv_setuv(pTHX_ register SV *sv, UV u)
1548 /* With these two if statements:
1549 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1552 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1554 If you wish to remove them, please benchmark to see what the effect is
1556 if (u <= (UV)IV_MAX) {
1557 sv_setiv(sv, (IV)u);
1566 =for apidoc sv_setuv_mg
1568 Like C<sv_setuv>, but also handles 'set' magic.
1574 Perl_sv_setuv_mg(pTHX_ register SV *sv, UV u)
1581 =for apidoc sv_setnv
1583 Copies a double into the given SV, upgrading first if necessary.
1584 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1590 Perl_sv_setnv(pTHX_ register SV *sv, NV num)
1593 SV_CHECK_THINKFIRST_COW_DROP(sv);
1594 switch (SvTYPE(sv)) {
1597 sv_upgrade(sv, SVt_NV);
1601 sv_upgrade(sv, SVt_PVNV);
1610 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1615 (void)SvNOK_only(sv); /* validate number */
1620 =for apidoc sv_setnv_mg
1622 Like C<sv_setnv>, but also handles 'set' magic.
1628 Perl_sv_setnv_mg(pTHX_ register SV *sv, NV num)
1634 /* Print an "isn't numeric" warning, using a cleaned-up,
1635 * printable version of the offending string
1639 S_not_a_number(pTHX_ SV *sv)
1647 dsv = newSVpvs_flags("", SVs_TEMP);
1648 pv = sv_uni_display(dsv, sv, 10, 0);
1651 const char * const limit = tmpbuf + sizeof(tmpbuf) - 8;
1652 /* each *s can expand to 4 chars + "...\0",
1653 i.e. need room for 8 chars */
1655 const char *s = SvPVX_const(sv);
1656 const char * const end = s + SvCUR(sv);
1657 for ( ; s < end && d < limit; s++ ) {
1659 if (ch & 128 && !isPRINT_LC(ch)) {
1668 else if (ch == '\r') {
1672 else if (ch == '\f') {
1676 else if (ch == '\\') {
1680 else if (ch == '\0') {
1684 else if (isPRINT_LC(ch))
1701 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1702 "Argument \"%s\" isn't numeric in %s", pv,
1705 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1706 "Argument \"%s\" isn't numeric", pv);
1710 =for apidoc looks_like_number
1712 Test if the content of an SV looks like a number (or is a number).
1713 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1714 non-numeric warning), even if your atof() doesn't grok them.
1720 Perl_looks_like_number(pTHX_ SV *sv)
1722 register const char *sbegin;
1726 sbegin = SvPVX_const(sv);
1729 else if (SvPOKp(sv))
1730 sbegin = SvPV_const(sv, len);
1732 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1733 return grok_number(sbegin, len, NULL);
1737 S_glob_2number(pTHX_ GV * const gv)
1739 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1740 SV *const buffer = sv_newmortal();
1742 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1745 gv_efullname3(buffer, gv, "*");
1746 SvFLAGS(gv) |= wasfake;
1748 /* We know that all GVs stringify to something that is not-a-number,
1749 so no need to test that. */
1750 if (ckWARN(WARN_NUMERIC))
1751 not_a_number(buffer);
1752 /* We just want something true to return, so that S_sv_2iuv_common
1753 can tail call us and return true. */
1758 S_glob_2pv(pTHX_ GV * const gv, STRLEN * const len)
1760 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1761 SV *const buffer = sv_newmortal();
1763 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1766 gv_efullname3(buffer, gv, "*");
1767 SvFLAGS(gv) |= wasfake;
1769 assert(SvPOK(buffer));
1771 *len = SvCUR(buffer);
1773 return SvPVX(buffer);
1776 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1777 until proven guilty, assume that things are not that bad... */
1782 As 64 bit platforms often have an NV that doesn't preserve all bits of
1783 an IV (an assumption perl has been based on to date) it becomes necessary
1784 to remove the assumption that the NV always carries enough precision to
1785 recreate the IV whenever needed, and that the NV is the canonical form.
1786 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1787 precision as a side effect of conversion (which would lead to insanity
1788 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1789 1) to distinguish between IV/UV/NV slots that have cached a valid
1790 conversion where precision was lost and IV/UV/NV slots that have a
1791 valid conversion which has lost no precision
1792 2) to ensure that if a numeric conversion to one form is requested that
1793 would lose precision, the precise conversion (or differently
1794 imprecise conversion) is also performed and cached, to prevent
1795 requests for different numeric formats on the same SV causing
1796 lossy conversion chains. (lossless conversion chains are perfectly
1801 SvIOKp is true if the IV slot contains a valid value
1802 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1803 SvNOKp is true if the NV slot contains a valid value
1804 SvNOK is true only if the NV value is accurate
1807 while converting from PV to NV, check to see if converting that NV to an
1808 IV(or UV) would lose accuracy over a direct conversion from PV to
1809 IV(or UV). If it would, cache both conversions, return NV, but mark
1810 SV as IOK NOKp (ie not NOK).
1812 While converting from PV to IV, check to see if converting that IV to an
1813 NV would lose accuracy over a direct conversion from PV to NV. If it
1814 would, cache both conversions, flag similarly.
1816 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1817 correctly because if IV & NV were set NV *always* overruled.
1818 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1819 changes - now IV and NV together means that the two are interchangeable:
1820 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1822 The benefit of this is that operations such as pp_add know that if
1823 SvIOK is true for both left and right operands, then integer addition
1824 can be used instead of floating point (for cases where the result won't
1825 overflow). Before, floating point was always used, which could lead to
1826 loss of precision compared with integer addition.
1828 * making IV and NV equal status should make maths accurate on 64 bit
1830 * may speed up maths somewhat if pp_add and friends start to use
1831 integers when possible instead of fp. (Hopefully the overhead in
1832 looking for SvIOK and checking for overflow will not outweigh the
1833 fp to integer speedup)
1834 * will slow down integer operations (callers of SvIV) on "inaccurate"
1835 values, as the change from SvIOK to SvIOKp will cause a call into
1836 sv_2iv each time rather than a macro access direct to the IV slot
1837 * should speed up number->string conversion on integers as IV is
1838 favoured when IV and NV are equally accurate
1840 ####################################################################
1841 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1842 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1843 On the other hand, SvUOK is true iff UV.
1844 ####################################################################
1846 Your mileage will vary depending your CPU's relative fp to integer
1850 #ifndef NV_PRESERVES_UV
1851 # define IS_NUMBER_UNDERFLOW_IV 1
1852 # define IS_NUMBER_UNDERFLOW_UV 2
1853 # define IS_NUMBER_IV_AND_UV 2
1854 # define IS_NUMBER_OVERFLOW_IV 4
1855 # define IS_NUMBER_OVERFLOW_UV 5
1857 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1859 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1861 S_sv_2iuv_non_preserve(pTHX_ register SV *sv, I32 numtype)
1864 PERL_UNUSED_ARG(numtype); /* Used only under DEBUGGING? */
1865 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1866 if (SvNVX(sv) < (NV)IV_MIN) {
1867 (void)SvIOKp_on(sv);
1869 SvIV_set(sv, IV_MIN);
1870 return IS_NUMBER_UNDERFLOW_IV;
1872 if (SvNVX(sv) > (NV)UV_MAX) {
1873 (void)SvIOKp_on(sv);
1876 SvUV_set(sv, UV_MAX);
1877 return IS_NUMBER_OVERFLOW_UV;
1879 (void)SvIOKp_on(sv);
1881 /* Can't use strtol etc to convert this string. (See truth table in
1883 if (SvNVX(sv) <= (UV)IV_MAX) {
1884 SvIV_set(sv, I_V(SvNVX(sv)));
1885 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1886 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1888 /* Integer is imprecise. NOK, IOKp */
1890 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
1893 SvUV_set(sv, U_V(SvNVX(sv)));
1894 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
1895 if (SvUVX(sv) == UV_MAX) {
1896 /* As we know that NVs don't preserve UVs, UV_MAX cannot
1897 possibly be preserved by NV. Hence, it must be overflow.
1899 return IS_NUMBER_OVERFLOW_UV;
1901 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
1903 /* Integer is imprecise. NOK, IOKp */
1905 return IS_NUMBER_OVERFLOW_IV;
1907 #endif /* !NV_PRESERVES_UV*/
1910 S_sv_2iuv_common(pTHX_ SV *sv) {
1913 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
1914 * without also getting a cached IV/UV from it at the same time
1915 * (ie PV->NV conversion should detect loss of accuracy and cache
1916 * IV or UV at same time to avoid this. */
1917 /* IV-over-UV optimisation - choose to cache IV if possible */
1919 if (SvTYPE(sv) == SVt_NV)
1920 sv_upgrade(sv, SVt_PVNV);
1922 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
1923 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
1924 certainly cast into the IV range at IV_MAX, whereas the correct
1925 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
1927 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
1928 if (Perl_isnan(SvNVX(sv))) {
1934 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
1935 SvIV_set(sv, I_V(SvNVX(sv)));
1936 if (SvNVX(sv) == (NV) SvIVX(sv)
1937 #ifndef NV_PRESERVES_UV
1938 && (((UV)1 << NV_PRESERVES_UV_BITS) >
1939 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
1940 /* Don't flag it as "accurately an integer" if the number
1941 came from a (by definition imprecise) NV operation, and
1942 we're outside the range of NV integer precision */
1945 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
1946 DEBUG_c(PerlIO_printf(Perl_debug_log,
1947 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
1953 /* IV not precise. No need to convert from PV, as NV
1954 conversion would already have cached IV if it detected
1955 that PV->IV would be better than PV->NV->IV
1956 flags already correct - don't set public IOK. */
1957 DEBUG_c(PerlIO_printf(Perl_debug_log,
1958 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
1963 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
1964 but the cast (NV)IV_MIN rounds to a the value less (more
1965 negative) than IV_MIN which happens to be equal to SvNVX ??
1966 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
1967 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
1968 (NV)UVX == NVX are both true, but the values differ. :-(
1969 Hopefully for 2s complement IV_MIN is something like
1970 0x8000000000000000 which will be exact. NWC */
1973 SvUV_set(sv, U_V(SvNVX(sv)));
1975 (SvNVX(sv) == (NV) SvUVX(sv))
1976 #ifndef NV_PRESERVES_UV
1977 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
1978 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
1979 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
1980 /* Don't flag it as "accurately an integer" if the number
1981 came from a (by definition imprecise) NV operation, and
1982 we're outside the range of NV integer precision */
1987 DEBUG_c(PerlIO_printf(Perl_debug_log,
1988 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
1994 else if (SvPOKp(sv) && SvLEN(sv)) {
1996 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
1997 /* We want to avoid a possible problem when we cache an IV/ a UV which
1998 may be later translated to an NV, and the resulting NV is not
1999 the same as the direct translation of the initial string
2000 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
2001 be careful to ensure that the value with the .456 is around if the
2002 NV value is requested in the future).
2004 This means that if we cache such an IV/a UV, we need to cache the
2005 NV as well. Moreover, we trade speed for space, and do not
2006 cache the NV if we are sure it's not needed.
2009 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
2010 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2011 == IS_NUMBER_IN_UV) {
2012 /* It's definitely an integer, only upgrade to PVIV */
2013 if (SvTYPE(sv) < SVt_PVIV)
2014 sv_upgrade(sv, SVt_PVIV);
2016 } else if (SvTYPE(sv) < SVt_PVNV)
2017 sv_upgrade(sv, SVt_PVNV);
2019 /* If NVs preserve UVs then we only use the UV value if we know that
2020 we aren't going to call atof() below. If NVs don't preserve UVs
2021 then the value returned may have more precision than atof() will
2022 return, even though value isn't perfectly accurate. */
2023 if ((numtype & (IS_NUMBER_IN_UV
2024 #ifdef NV_PRESERVES_UV
2027 )) == IS_NUMBER_IN_UV) {
2028 /* This won't turn off the public IOK flag if it was set above */
2029 (void)SvIOKp_on(sv);
2031 if (!(numtype & IS_NUMBER_NEG)) {
2033 if (value <= (UV)IV_MAX) {
2034 SvIV_set(sv, (IV)value);
2036 /* it didn't overflow, and it was positive. */
2037 SvUV_set(sv, value);
2041 /* 2s complement assumption */
2042 if (value <= (UV)IV_MIN) {
2043 SvIV_set(sv, -(IV)value);
2045 /* Too negative for an IV. This is a double upgrade, but
2046 I'm assuming it will be rare. */
2047 if (SvTYPE(sv) < SVt_PVNV)
2048 sv_upgrade(sv, SVt_PVNV);
2052 SvNV_set(sv, -(NV)value);
2053 SvIV_set(sv, IV_MIN);
2057 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2058 will be in the previous block to set the IV slot, and the next
2059 block to set the NV slot. So no else here. */
2061 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2062 != IS_NUMBER_IN_UV) {
2063 /* It wasn't an (integer that doesn't overflow the UV). */
2064 SvNV_set(sv, Atof(SvPVX_const(sv)));
2066 if (! numtype && ckWARN(WARN_NUMERIC))
2069 #if defined(USE_LONG_DOUBLE)
2070 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2071 PTR2UV(sv), SvNVX(sv)));
2073 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2074 PTR2UV(sv), SvNVX(sv)));
2077 #ifdef NV_PRESERVES_UV
2078 (void)SvIOKp_on(sv);
2080 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2081 SvIV_set(sv, I_V(SvNVX(sv)));
2082 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2085 NOOP; /* Integer is imprecise. NOK, IOKp */
2087 /* UV will not work better than IV */
2089 if (SvNVX(sv) > (NV)UV_MAX) {
2091 /* Integer is inaccurate. NOK, IOKp, is UV */
2092 SvUV_set(sv, UV_MAX);
2094 SvUV_set(sv, U_V(SvNVX(sv)));
2095 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2096 NV preservse UV so can do correct comparison. */
2097 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2100 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2105 #else /* NV_PRESERVES_UV */
2106 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2107 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2108 /* The IV/UV slot will have been set from value returned by
2109 grok_number above. The NV slot has just been set using
2112 assert (SvIOKp(sv));
2114 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2115 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2116 /* Small enough to preserve all bits. */
2117 (void)SvIOKp_on(sv);
2119 SvIV_set(sv, I_V(SvNVX(sv)));
2120 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2122 /* Assumption: first non-preserved integer is < IV_MAX,
2123 this NV is in the preserved range, therefore: */
2124 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2126 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2130 0 0 already failed to read UV.
2131 0 1 already failed to read UV.
2132 1 0 you won't get here in this case. IV/UV
2133 slot set, public IOK, Atof() unneeded.
2134 1 1 already read UV.
2135 so there's no point in sv_2iuv_non_preserve() attempting
2136 to use atol, strtol, strtoul etc. */
2137 sv_2iuv_non_preserve (sv, numtype);
2140 #endif /* NV_PRESERVES_UV */
2144 if (isGV_with_GP(sv))
2145 return glob_2number((GV *)sv);
2147 if (!(SvFLAGS(sv) & SVs_PADTMP)) {
2148 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2151 if (SvTYPE(sv) < SVt_IV)
2152 /* Typically the caller expects that sv_any is not NULL now. */
2153 sv_upgrade(sv, SVt_IV);
2154 /* Return 0 from the caller. */
2161 =for apidoc sv_2iv_flags
2163 Return the integer value of an SV, doing any necessary string
2164 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2165 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2171 Perl_sv_2iv_flags(pTHX_ register SV *sv, I32 flags)
2176 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2177 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2178 cache IVs just in case. In practice it seems that they never
2179 actually anywhere accessible by user Perl code, let alone get used
2180 in anything other than a string context. */
2181 if (flags & SV_GMAGIC)
2186 return I_V(SvNVX(sv));
2188 if (SvPOKp(sv) && SvLEN(sv)) {
2191 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2193 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2194 == IS_NUMBER_IN_UV) {
2195 /* It's definitely an integer */
2196 if (numtype & IS_NUMBER_NEG) {
2197 if (value < (UV)IV_MIN)
2200 if (value < (UV)IV_MAX)
2205 if (ckWARN(WARN_NUMERIC))
2208 return I_V(Atof(SvPVX_const(sv)));
2213 assert(SvTYPE(sv) >= SVt_PVMG);
2214 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2215 } else if (SvTHINKFIRST(sv)) {
2219 SV * const tmpstr=AMG_CALLun(sv,numer);
2220 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2221 return SvIV(tmpstr);
2224 return PTR2IV(SvRV(sv));
2227 sv_force_normal_flags(sv, 0);
2229 if (SvREADONLY(sv) && !SvOK(sv)) {
2230 if (ckWARN(WARN_UNINITIALIZED))
2236 if (S_sv_2iuv_common(aTHX_ sv))
2239 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2240 PTR2UV(sv),SvIVX(sv)));
2241 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2245 =for apidoc sv_2uv_flags
2247 Return the unsigned integer value of an SV, doing any necessary string
2248 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2249 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2255 Perl_sv_2uv_flags(pTHX_ register SV *sv, I32 flags)
2260 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2261 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2262 cache IVs just in case. */
2263 if (flags & SV_GMAGIC)
2268 return U_V(SvNVX(sv));
2269 if (SvPOKp(sv) && SvLEN(sv)) {
2272 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2274 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2275 == IS_NUMBER_IN_UV) {
2276 /* It's definitely an integer */
2277 if (!(numtype & IS_NUMBER_NEG))
2281 if (ckWARN(WARN_NUMERIC))
2284 return U_V(Atof(SvPVX_const(sv)));
2289 assert(SvTYPE(sv) >= SVt_PVMG);
2290 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2291 } else if (SvTHINKFIRST(sv)) {
2295 SV *const tmpstr = AMG_CALLun(sv,numer);
2296 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2297 return SvUV(tmpstr);
2300 return PTR2UV(SvRV(sv));
2303 sv_force_normal_flags(sv, 0);
2305 if (SvREADONLY(sv) && !SvOK(sv)) {
2306 if (ckWARN(WARN_UNINITIALIZED))
2312 if (S_sv_2iuv_common(aTHX_ sv))
2316 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2317 PTR2UV(sv),SvUVX(sv)));
2318 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2324 Return the num value of an SV, doing any necessary string or integer
2325 conversion, magic etc. Normally used via the C<SvNV(sv)> and C<SvNVx(sv)>
2332 Perl_sv_2nv(pTHX_ register SV *sv)
2337 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2338 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2339 cache IVs just in case. */
2343 if ((SvPOKp(sv) && SvLEN(sv)) && !SvIOKp(sv)) {
2344 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2345 !grok_number(SvPVX_const(sv), SvCUR(sv), NULL))
2347 return Atof(SvPVX_const(sv));
2351 return (NV)SvUVX(sv);
2353 return (NV)SvIVX(sv);
2358 assert(SvTYPE(sv) >= SVt_PVMG);
2359 /* This falls through to the report_uninit near the end of the
2361 } else if (SvTHINKFIRST(sv)) {
2365 SV *const tmpstr = AMG_CALLun(sv,numer);
2366 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2367 return SvNV(tmpstr);
2370 return PTR2NV(SvRV(sv));
2373 sv_force_normal_flags(sv, 0);
2375 if (SvREADONLY(sv) && !SvOK(sv)) {
2376 if (ckWARN(WARN_UNINITIALIZED))
2381 if (SvTYPE(sv) < SVt_NV) {
2382 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2383 sv_upgrade(sv, SVt_NV);
2384 #ifdef USE_LONG_DOUBLE
2386 STORE_NUMERIC_LOCAL_SET_STANDARD();
2387 PerlIO_printf(Perl_debug_log,
2388 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2389 PTR2UV(sv), SvNVX(sv));
2390 RESTORE_NUMERIC_LOCAL();
2394 STORE_NUMERIC_LOCAL_SET_STANDARD();
2395 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2396 PTR2UV(sv), SvNVX(sv));
2397 RESTORE_NUMERIC_LOCAL();
2401 else if (SvTYPE(sv) < SVt_PVNV)
2402 sv_upgrade(sv, SVt_PVNV);
2407 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2408 #ifdef NV_PRESERVES_UV
2411 /* Only set the public NV OK flag if this NV preserves the IV */
2412 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2413 if (SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2414 : (SvIVX(sv) == I_V(SvNVX(sv))))
2420 else if (SvPOKp(sv) && SvLEN(sv)) {
2422 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2423 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2425 #ifdef NV_PRESERVES_UV
2426 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2427 == IS_NUMBER_IN_UV) {
2428 /* It's definitely an integer */
2429 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2431 SvNV_set(sv, Atof(SvPVX_const(sv)));
2434 SvNV_set(sv, Atof(SvPVX_const(sv)));
2435 /* Only set the public NV OK flag if this NV preserves the value in
2436 the PV at least as well as an IV/UV would.
2437 Not sure how to do this 100% reliably. */
2438 /* if that shift count is out of range then Configure's test is
2439 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2441 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2442 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2443 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2444 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2445 /* Can't use strtol etc to convert this string, so don't try.
2446 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2449 /* value has been set. It may not be precise. */
2450 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2451 /* 2s complement assumption for (UV)IV_MIN */
2452 SvNOK_on(sv); /* Integer is too negative. */
2457 if (numtype & IS_NUMBER_NEG) {
2458 SvIV_set(sv, -(IV)value);
2459 } else if (value <= (UV)IV_MAX) {
2460 SvIV_set(sv, (IV)value);
2462 SvUV_set(sv, value);
2466 if (numtype & IS_NUMBER_NOT_INT) {
2467 /* I believe that even if the original PV had decimals,
2468 they are lost beyond the limit of the FP precision.
2469 However, neither is canonical, so both only get p
2470 flags. NWC, 2000/11/25 */
2471 /* Both already have p flags, so do nothing */
2473 const NV nv = SvNVX(sv);
2474 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2475 if (SvIVX(sv) == I_V(nv)) {
2478 /* It had no "." so it must be integer. */
2482 /* between IV_MAX and NV(UV_MAX).
2483 Could be slightly > UV_MAX */
2485 if (numtype & IS_NUMBER_NOT_INT) {
2486 /* UV and NV both imprecise. */
2488 const UV nv_as_uv = U_V(nv);
2490 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2499 #endif /* NV_PRESERVES_UV */
2502 if (isGV_with_GP(sv)) {
2503 glob_2number((GV *)sv);
2507 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2509 assert (SvTYPE(sv) >= SVt_NV);
2510 /* Typically the caller expects that sv_any is not NULL now. */
2511 /* XXX Ilya implies that this is a bug in callers that assume this
2512 and ideally should be fixed. */
2515 #if defined(USE_LONG_DOUBLE)
2517 STORE_NUMERIC_LOCAL_SET_STANDARD();
2518 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2519 PTR2UV(sv), SvNVX(sv));
2520 RESTORE_NUMERIC_LOCAL();
2524 STORE_NUMERIC_LOCAL_SET_STANDARD();
2525 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2526 PTR2UV(sv), SvNVX(sv));
2527 RESTORE_NUMERIC_LOCAL();
2536 Return an SV with the numeric value of the source SV, doing any necessary
2537 reference or overload conversion. You must use the C<SvNUM(sv)> macro to
2538 access this function.
2544 Perl_sv_2num(pTHX_ register SV *sv)
2549 SV * const tmpsv = AMG_CALLun(sv,numer);
2550 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2551 return sv_2num(tmpsv);
2553 return sv_2mortal(newSVuv(PTR2UV(SvRV(sv))));
2556 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2557 * UV as a string towards the end of buf, and return pointers to start and
2560 * We assume that buf is at least TYPE_CHARS(UV) long.
2564 S_uiv_2buf(char *buf, IV iv, UV uv, int is_uv, char **peob)
2566 char *ptr = buf + TYPE_CHARS(UV);
2567 char * const ebuf = ptr;
2580 *--ptr = '0' + (char)(uv % 10);
2589 =for apidoc sv_2pv_flags
2591 Returns a pointer to the string value of an SV, and sets *lp to its length.
2592 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a string
2594 Normally invoked via the C<SvPV_flags> macro. C<sv_2pv()> and C<sv_2pv_nomg>
2595 usually end up here too.
2601 Perl_sv_2pv_flags(pTHX_ register SV *sv, STRLEN *lp, I32 flags)
2611 if (SvGMAGICAL(sv)) {
2612 if (flags & SV_GMAGIC)
2617 if (flags & SV_MUTABLE_RETURN)
2618 return SvPVX_mutable(sv);
2619 if (flags & SV_CONST_RETURN)
2620 return (char *)SvPVX_const(sv);
2623 if (SvIOKp(sv) || SvNOKp(sv)) {
2624 char tbuf[64]; /* Must fit sprintf/Gconvert of longest IV/NV */
2629 ? my_snprintf(tbuf, sizeof(tbuf), "%"UVuf, (UV)SvUVX(sv))
2630 : my_snprintf(tbuf, sizeof(tbuf), "%"IVdf, (IV)SvIVX(sv));
2632 Gconvert(SvNVX(sv), NV_DIG, 0, tbuf);
2639 #ifdef FIXNEGATIVEZERO
2640 if (len == 2 && tbuf[0] == '-' && tbuf[1] == '0') {
2646 SvUPGRADE(sv, SVt_PV);
2649 s = SvGROW_mutable(sv, len + 1);
2652 return (char*)memcpy(s, tbuf, len + 1);
2658 assert(SvTYPE(sv) >= SVt_PVMG);
2659 /* This falls through to the report_uninit near the end of the
2661 } else if (SvTHINKFIRST(sv)) {
2665 SV *const tmpstr = AMG_CALLun(sv,string);
2666 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2668 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2672 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2673 if (flags & SV_CONST_RETURN) {
2674 pv = (char *) SvPVX_const(tmpstr);
2676 pv = (flags & SV_MUTABLE_RETURN)
2677 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2680 *lp = SvCUR(tmpstr);
2682 pv = sv_2pv_flags(tmpstr, lp, flags);
2695 const SV *const referent = (SV*)SvRV(sv);
2699 retval = buffer = savepvn("NULLREF", len);
2700 } else if (SvTYPE(referent) == SVt_REGEXP) {
2705 /* FIXME - get rid of this cast away of const, or work out
2706 how to do it better. */
2707 temp.mg_obj = (SV *)referent;
2708 assert(temp.mg_obj);
2709 (str) = CALLREG_AS_STR(&temp,lp,&flags,&haseval);
2714 PL_reginterp_cnt += haseval;
2717 const char *const typestr = sv_reftype(referent, 0);
2718 const STRLEN typelen = strlen(typestr);
2719 UV addr = PTR2UV(referent);
2720 const char *stashname = NULL;
2721 STRLEN stashnamelen = 0; /* hush, gcc */
2722 const char *buffer_end;
2724 if (SvOBJECT(referent)) {
2725 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2728 stashname = HEK_KEY(name);
2729 stashnamelen = HEK_LEN(name);
2731 if (HEK_UTF8(name)) {
2737 stashname = "__ANON__";
2740 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2741 + 2 * sizeof(UV) + 2 /* )\0 */;
2743 len = typelen + 3 /* (0x */
2744 + 2 * sizeof(UV) + 2 /* )\0 */;
2747 Newx(buffer, len, char);
2748 buffer_end = retval = buffer + len;
2750 /* Working backwards */
2754 *--retval = PL_hexdigit[addr & 15];
2755 } while (addr >>= 4);
2761 memcpy(retval, typestr, typelen);
2765 retval -= stashnamelen;
2766 memcpy(retval, stashname, stashnamelen);
2768 /* retval may not neccesarily have reached the start of the
2770 assert (retval >= buffer);
2772 len = buffer_end - retval - 1; /* -1 for that \0 */
2780 if (SvREADONLY(sv) && !SvOK(sv)) {
2781 if (ckWARN(WARN_UNINITIALIZED))
2788 if (SvIOK(sv) || ((SvIOKp(sv) && !SvNOKp(sv)))) {
2789 /* I'm assuming that if both IV and NV are equally valid then
2790 converting the IV is going to be more efficient */
2791 const U32 isUIOK = SvIsUV(sv);
2792 char buf[TYPE_CHARS(UV)];
2796 if (SvTYPE(sv) < SVt_PVIV)
2797 sv_upgrade(sv, SVt_PVIV);
2798 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2800 /* inlined from sv_setpvn */
2801 s = SvGROW_mutable(sv, len + 1);
2802 Move(ptr, s, len, char);
2806 else if (SvNOKp(sv)) {
2807 const int olderrno = errno;
2808 if (SvTYPE(sv) < SVt_PVNV)
2809 sv_upgrade(sv, SVt_PVNV);
2810 /* The +20 is pure guesswork. Configure test needed. --jhi */
2811 s = SvGROW_mutable(sv, NV_DIG + 20);
2812 /* some Xenix systems wipe out errno here */
2814 if (SvNVX(sv) == 0.0)
2815 my_strlcpy(s, "0", SvLEN(sv));
2819 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2822 #ifdef FIXNEGATIVEZERO
2823 if (*s == '-' && s[1] == '0' && !s[2]) {
2835 if (isGV_with_GP(sv))
2836 return glob_2pv((GV *)sv, lp);
2838 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2842 if (SvTYPE(sv) < SVt_PV)
2843 /* Typically the caller expects that sv_any is not NULL now. */
2844 sv_upgrade(sv, SVt_PV);
2848 const STRLEN len = s - SvPVX_const(sv);
2854 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
2855 PTR2UV(sv),SvPVX_const(sv)));
2856 if (flags & SV_CONST_RETURN)
2857 return (char *)SvPVX_const(sv);
2858 if (flags & SV_MUTABLE_RETURN)
2859 return SvPVX_mutable(sv);
2864 =for apidoc sv_copypv
2866 Copies a stringified representation of the source SV into the
2867 destination SV. Automatically performs any necessary mg_get and
2868 coercion of numeric values into strings. Guaranteed to preserve
2869 UTF8 flag even from overloaded objects. Similar in nature to
2870 sv_2pv[_flags] but operates directly on an SV instead of just the
2871 string. Mostly uses sv_2pv_flags to do its work, except when that
2872 would lose the UTF-8'ness of the PV.
2878 Perl_sv_copypv(pTHX_ SV *dsv, register SV *ssv)
2881 const char * const s = SvPV_const(ssv,len);
2882 sv_setpvn(dsv,s,len);
2890 =for apidoc sv_2pvbyte
2892 Return a pointer to the byte-encoded representation of the SV, and set *lp
2893 to its length. May cause the SV to be downgraded from UTF-8 as a
2896 Usually accessed via the C<SvPVbyte> macro.
2902 Perl_sv_2pvbyte(pTHX_ register SV *sv, STRLEN *lp)
2904 sv_utf8_downgrade(sv,0);
2905 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
2909 =for apidoc sv_2pvutf8
2911 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
2912 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
2914 Usually accessed via the C<SvPVutf8> macro.
2920 Perl_sv_2pvutf8(pTHX_ register SV *sv, STRLEN *lp)
2922 sv_utf8_upgrade(sv);
2923 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
2928 =for apidoc sv_2bool
2930 This function is only called on magical items, and is only used by
2931 sv_true() or its macro equivalent.
2937 Perl_sv_2bool(pTHX_ register SV *sv)
2946 SV * const tmpsv = AMG_CALLun(sv,bool_);
2947 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2948 return (bool)SvTRUE(tmpsv);
2950 return SvRV(sv) != 0;
2953 register XPV* const Xpvtmp = (XPV*)SvANY(sv);
2955 (*sv->sv_u.svu_pv > '0' ||
2956 Xpvtmp->xpv_cur > 1 ||
2957 (Xpvtmp->xpv_cur && *sv->sv_u.svu_pv != '0')))
2964 return SvIVX(sv) != 0;
2967 return SvNVX(sv) != 0.0;
2969 if (isGV_with_GP(sv))
2979 =for apidoc sv_utf8_upgrade
2981 Converts the PV of an SV to its UTF-8-encoded form.
2982 Forces the SV to string form if it is not already.
2983 Always sets the SvUTF8 flag to avoid future validity checks even
2984 if all the bytes have hibit clear.
2986 This is not as a general purpose byte encoding to Unicode interface:
2987 use the Encode extension for that.
2989 =for apidoc sv_utf8_upgrade_flags
2991 Converts the PV of an SV to its UTF-8-encoded form.
2992 Forces the SV to string form if it is not already.
2993 Always sets the SvUTF8 flag to avoid future validity checks even
2994 if all the bytes have hibit clear. If C<flags> has C<SV_GMAGIC> bit set,
2995 will C<mg_get> on C<sv> if appropriate, else not. C<sv_utf8_upgrade> and
2996 C<sv_utf8_upgrade_nomg> are implemented in terms of this function.
2998 This is not as a general purpose byte encoding to Unicode interface:
2999 use the Encode extension for that.
3005 Perl_sv_utf8_upgrade_flags(pTHX_ register SV *sv, I32 flags)
3008 if (sv == &PL_sv_undef)
3012 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
3013 (void) sv_2pv_flags(sv,&len, flags);
3017 (void) SvPV_force(sv,len);
3026 sv_force_normal_flags(sv, 0);
3029 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING))
3030 sv_recode_to_utf8(sv, PL_encoding);
3031 else { /* Assume Latin-1/EBCDIC */
3032 /* This function could be much more efficient if we
3033 * had a FLAG in SVs to signal if there are any hibit
3034 * chars in the PV. Given that there isn't such a flag
3035 * make the loop as fast as possible. */
3036 const U8 * const s = (U8 *) SvPVX_const(sv);
3037 const U8 * const e = (U8 *) SvEND(sv);
3042 /* Check for hi bit */
3043 if (!NATIVE_IS_INVARIANT(ch)) {
3044 STRLEN len = SvCUR(sv) + 1; /* Plus the \0 */
3045 U8 * const recoded = bytes_to_utf8((U8*)s, &len);
3047 SvPV_free(sv); /* No longer using what was there before. */
3048 SvPV_set(sv, (char*)recoded);
3049 SvCUR_set(sv, len - 1);
3050 SvLEN_set(sv, len); /* No longer know the real size. */
3054 /* Mark as UTF-8 even if no hibit - saves scanning loop */
3061 =for apidoc sv_utf8_downgrade
3063 Attempts to convert the PV of an SV from characters to bytes.
3064 If the PV contains a character beyond byte, this conversion will fail;
3065 in this case, either returns false or, if C<fail_ok> is not
3068 This is not as a general purpose Unicode to byte encoding interface:
3069 use the Encode extension for that.
3075 Perl_sv_utf8_downgrade(pTHX_ register SV* sv, bool fail_ok)
3078 if (SvPOKp(sv) && SvUTF8(sv)) {
3084 sv_force_normal_flags(sv, 0);
3086 s = (U8 *) SvPV(sv, len);
3087 if (!utf8_to_bytes(s, &len)) {
3092 Perl_croak(aTHX_ "Wide character in %s",
3095 Perl_croak(aTHX_ "Wide character");
3106 =for apidoc sv_utf8_encode
3108 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3109 flag off so that it looks like octets again.
3115 Perl_sv_utf8_encode(pTHX_ register SV *sv)
3118 sv_force_normal_flags(sv, 0);
3120 if (SvREADONLY(sv)) {
3121 Perl_croak(aTHX_ PL_no_modify);
3123 (void) sv_utf8_upgrade(sv);
3128 =for apidoc sv_utf8_decode
3130 If the PV of the SV is an octet sequence in UTF-8
3131 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3132 so that it looks like a character. If the PV contains only single-byte
3133 characters, the C<SvUTF8> flag stays being off.
3134 Scans PV for validity and returns false if the PV is invalid UTF-8.
3140 Perl_sv_utf8_decode(pTHX_ register SV *sv)
3146 /* The octets may have got themselves encoded - get them back as
3149 if (!sv_utf8_downgrade(sv, TRUE))
3152 /* it is actually just a matter of turning the utf8 flag on, but
3153 * we want to make sure everything inside is valid utf8 first.
3155 c = (const U8 *) SvPVX_const(sv);
3156 if (!is_utf8_string(c, SvCUR(sv)+1))
3158 e = (const U8 *) SvEND(sv);
3161 if (!UTF8_IS_INVARIANT(ch)) {
3171 =for apidoc sv_setsv
3173 Copies the contents of the source SV C<ssv> into the destination SV
3174 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3175 function if the source SV needs to be reused. Does not handle 'set' magic.
3176 Loosely speaking, it performs a copy-by-value, obliterating any previous
3177 content of the destination.
3179 You probably want to use one of the assortment of wrappers, such as
3180 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3181 C<SvSetMagicSV_nosteal>.
3183 =for apidoc sv_setsv_flags
3185 Copies the contents of the source SV C<ssv> into the destination SV
3186 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3187 function if the source SV needs to be reused. Does not handle 'set' magic.
3188 Loosely speaking, it performs a copy-by-value, obliterating any previous
3189 content of the destination.
3190 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3191 C<ssv> if appropriate, else not. If the C<flags> parameter has the
3192 C<NOSTEAL> bit set then the buffers of temps will not be stolen. <sv_setsv>
3193 and C<sv_setsv_nomg> are implemented in terms of this function.
3195 You probably want to use one of the assortment of wrappers, such as
3196 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3197 C<SvSetMagicSV_nosteal>.
3199 This is the primary function for copying scalars, and most other
3200 copy-ish functions and macros use this underneath.
3206 S_glob_assign_glob(pTHX_ SV *dstr, SV *sstr, const int dtype)
3208 I32 mro_changes = 0; /* 1 = method, 2 = isa */
3210 if (dtype != SVt_PVGV) {
3211 const char * const name = GvNAME(sstr);
3212 const STRLEN len = GvNAMELEN(sstr);
3214 if (dtype >= SVt_PV) {
3220 SvUPGRADE(dstr, SVt_PVGV);
3221 (void)SvOK_off(dstr);
3222 /* FIXME - why are we doing this, then turning it off and on again
3224 isGV_with_GP_on(dstr);
3226 GvSTASH(dstr) = GvSTASH(sstr);
3228 Perl_sv_add_backref(aTHX_ (SV*)GvSTASH(dstr), dstr);
3229 gv_name_set((GV *)dstr, name, len, GV_ADD);
3230 SvFAKE_on(dstr); /* can coerce to non-glob */
3233 #ifdef GV_UNIQUE_CHECK
3234 if (GvUNIQUE((GV*)dstr)) {
3235 Perl_croak(aTHX_ PL_no_modify);
3239 if(GvGP((GV*)sstr)) {
3240 /* If source has method cache entry, clear it */
3242 SvREFCNT_dec(GvCV(sstr));
3246 /* If source has a real method, then a method is
3248 else if(GvCV((GV*)sstr)) {
3253 /* If dest already had a real method, that's a change as well */
3254 if(!mro_changes && GvGP((GV*)dstr) && GvCVu((GV*)dstr)) {
3258 if(strEQ(GvNAME((GV*)dstr),"ISA"))
3262 isGV_with_GP_off(dstr);
3263 (void)SvOK_off(dstr);
3264 isGV_with_GP_on(dstr);
3265 GvINTRO_off(dstr); /* one-shot flag */
3266 GvGP(dstr) = gp_ref(GvGP(sstr));
3267 if (SvTAINTED(sstr))
3269 if (GvIMPORTED(dstr) != GVf_IMPORTED
3270 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3272 GvIMPORTED_on(dstr);
3275 if(mro_changes == 2) mro_isa_changed_in(GvSTASH(dstr));
3276 else if(mro_changes) mro_method_changed_in(GvSTASH(dstr));
3281 S_glob_assign_ref(pTHX_ SV *dstr, SV *sstr) {
3282 SV * const sref = SvREFCNT_inc(SvRV(sstr));
3284 const int intro = GvINTRO(dstr);
3287 const U32 stype = SvTYPE(sref);
3290 #ifdef GV_UNIQUE_CHECK
3291 if (GvUNIQUE((GV*)dstr)) {
3292 Perl_croak(aTHX_ PL_no_modify);
3297 GvINTRO_off(dstr); /* one-shot flag */
3298 GvLINE(dstr) = CopLINE(PL_curcop);
3299 GvEGV(dstr) = (GV*)dstr;
3304 location = (SV **) &GvCV(dstr);
3305 import_flag = GVf_IMPORTED_CV;
3308 location = (SV **) &GvHV(dstr);
3309 import_flag = GVf_IMPORTED_HV;
3312 location = (SV **) &GvAV(dstr);
3313 import_flag = GVf_IMPORTED_AV;
3316 location = (SV **) &GvIOp(dstr);
3319 location = (SV **) &GvFORM(dstr);
3321 location = &GvSV(dstr);
3322 import_flag = GVf_IMPORTED_SV;
3325 if (stype == SVt_PVCV) {
3326 /*if (GvCVGEN(dstr) && (GvCV(dstr) != (CV*)sref || GvCVGEN(dstr))) {*/
3327 if (GvCVGEN(dstr)) {
3328 SvREFCNT_dec(GvCV(dstr));
3330 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3333 SAVEGENERICSV(*location);
3337 if (stype == SVt_PVCV && (*location != sref || GvCVGEN(dstr))) {
3338 CV* const cv = (CV*)*location;
3340 if (!GvCVGEN((GV*)dstr) &&
3341 (CvROOT(cv) || CvXSUB(cv)))
3343 /* Redefining a sub - warning is mandatory if
3344 it was a const and its value changed. */
3345 if (CvCONST(cv) && CvCONST((CV*)sref)
3346 && cv_const_sv(cv) == cv_const_sv((CV*)sref)) {
3348 /* They are 2 constant subroutines generated from
3349 the same constant. This probably means that
3350 they are really the "same" proxy subroutine
3351 instantiated in 2 places. Most likely this is
3352 when a constant is exported twice. Don't warn.
3355 else if (ckWARN(WARN_REDEFINE)
3357 && (!CvCONST((CV*)sref)
3358 || sv_cmp(cv_const_sv(cv),
3359 cv_const_sv((CV*)sref))))) {
3360 Perl_warner(aTHX_ packWARN(WARN_REDEFINE),
3363 ? "Constant subroutine %s::%s redefined"
3364 : "Subroutine %s::%s redefined"),
3365 HvNAME_get(GvSTASH((GV*)dstr)),
3366 GvENAME((GV*)dstr));
3370 cv_ckproto_len(cv, (GV*)dstr,
3371 SvPOK(sref) ? SvPVX_const(sref) : NULL,
3372 SvPOK(sref) ? SvCUR(sref) : 0);
3374 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3375 GvASSUMECV_on(dstr);
3376 if(GvSTASH(dstr)) mro_method_changed_in(GvSTASH(dstr)); /* sub foo { 1 } sub bar { 2 } *bar = \&foo */
3379 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3380 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3381 GvFLAGS(dstr) |= import_flag;
3386 if (SvTAINTED(sstr))
3392 Perl_sv_setsv_flags(pTHX_ SV *dstr, register SV *sstr, I32 flags)
3395 register U32 sflags;
3397 register svtype stype;
3402 if (SvIS_FREED(dstr)) {
3403 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
3404 " to a freed scalar %p", SVfARG(sstr), (void *)dstr);
3406 SV_CHECK_THINKFIRST_COW_DROP(dstr);
3408 sstr = &PL_sv_undef;
3409 if (SvIS_FREED(sstr)) {
3410 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
3411 (void*)sstr, (void*)dstr);
3413 stype = SvTYPE(sstr);
3414 dtype = SvTYPE(dstr);
3416 (void)SvAMAGIC_off(dstr);
3419 /* need to nuke the magic */
3421 SvRMAGICAL_off(dstr);
3424 /* There's a lot of redundancy below but we're going for speed here */
3429 if (dtype != SVt_PVGV) {
3430 (void)SvOK_off(dstr);
3438 sv_upgrade(dstr, SVt_IV);
3442 sv_upgrade(dstr, SVt_PVIV);
3445 goto end_of_first_switch;
3447 (void)SvIOK_only(dstr);
3448 SvIV_set(dstr, SvIVX(sstr));
3451 /* SvTAINTED can only be true if the SV has taint magic, which in
3452 turn means that the SV type is PVMG (or greater). This is the
3453 case statement for SVt_IV, so this cannot be true (whatever gcov
3455 assert(!SvTAINTED(sstr));
3460 if (dtype < SVt_PV && dtype != SVt_IV)
3461 sv_upgrade(dstr, SVt_IV);
3469 sv_upgrade(dstr, SVt_NV);
3473 sv_upgrade(dstr, SVt_PVNV);
3476 goto end_of_first_switch;
3478 SvNV_set(dstr, SvNVX(sstr));
3479 (void)SvNOK_only(dstr);
3480 /* SvTAINTED can only be true if the SV has taint magic, which in
3481 turn means that the SV type is PVMG (or greater). This is the
3482 case statement for SVt_NV, so this cannot be true (whatever gcov
3484 assert(!SvTAINTED(sstr));
3490 #ifdef PERL_OLD_COPY_ON_WRITE
3491 if ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS) {
3492 if (dtype < SVt_PVIV)
3493 sv_upgrade(dstr, SVt_PVIV);
3500 sv_upgrade(dstr, SVt_PV);
3503 if (dtype < SVt_PVIV)
3504 sv_upgrade(dstr, SVt_PVIV);
3507 if (dtype < SVt_PVNV)
3508 sv_upgrade(dstr, SVt_PVNV);
3512 const char * const type = sv_reftype(sstr,0);
3514 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_NAME(PL_op));
3516 Perl_croak(aTHX_ "Bizarre copy of %s", type);
3520 /* case SVt_BIND: */
3523 if (isGV_with_GP(sstr) && dtype <= SVt_PVGV) {
3524 glob_assign_glob(dstr, sstr, dtype);
3527 /* SvVALID means that this PVGV is playing at being an FBM. */
3531 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
3533 if (SvTYPE(sstr) != stype) {
3534 stype = SvTYPE(sstr);
3535 if (isGV_with_GP(sstr) && stype == SVt_PVGV && dtype <= SVt_PVGV) {
3536 glob_assign_glob(dstr, sstr, dtype);
3541 if (stype == SVt_PVLV)
3542 SvUPGRADE(dstr, SVt_PVNV);
3544 SvUPGRADE(dstr, (svtype)stype);
3546 end_of_first_switch:
3548 /* dstr may have been upgraded. */
3549 dtype = SvTYPE(dstr);
3550 sflags = SvFLAGS(sstr);
3552 if (dtype == SVt_PVCV || dtype == SVt_PVFM) {
3553 /* Assigning to a subroutine sets the prototype. */
3556 const char *const ptr = SvPV_const(sstr, len);
3558 SvGROW(dstr, len + 1);
3559 Copy(ptr, SvPVX(dstr), len + 1, char);
3560 SvCUR_set(dstr, len);
3562 SvFLAGS(dstr) |= sflags & SVf_UTF8;
3566 } else if (dtype == SVt_PVAV || dtype == SVt_PVHV) {
3567 const char * const type = sv_reftype(dstr,0);
3569 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_NAME(PL_op));
3571 Perl_croak(aTHX_ "Cannot copy to %s", type);
3572 } else if (sflags & SVf_ROK) {
3573 if (isGV_with_GP(dstr) && dtype == SVt_PVGV
3574 && SvTYPE(SvRV(sstr)) == SVt_PVGV) {
3577 if (GvIMPORTED(dstr) != GVf_IMPORTED
3578 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3580 GvIMPORTED_on(dstr);
3585 glob_assign_glob(dstr, sstr, dtype);
3589 if (dtype >= SVt_PV) {
3590 if (dtype == SVt_PVGV && isGV_with_GP(dstr)) {
3591 glob_assign_ref(dstr, sstr);
3594 if (SvPVX_const(dstr)) {
3600 (void)SvOK_off(dstr);
3601 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
3602 SvFLAGS(dstr) |= sflags & SVf_ROK;
3603 assert(!(sflags & SVp_NOK));
3604 assert(!(sflags & SVp_IOK));
3605 assert(!(sflags & SVf_NOK));
3606 assert(!(sflags & SVf_IOK));
3608 else if (dtype == SVt_PVGV && isGV_with_GP(dstr)) {
3609 if (!(sflags & SVf_OK)) {
3610 if (ckWARN(WARN_MISC))
3611 Perl_warner(aTHX_ packWARN(WARN_MISC),
3612 "Undefined value assigned to typeglob");
3615 GV *gv = gv_fetchsv(sstr, GV_ADD, SVt_PVGV);
3616 if (dstr != (SV*)gv) {
3619 GvGP(dstr) = gp_ref(GvGP(gv));
3623 else if (sflags & SVp_POK) {
3627 * Check to see if we can just swipe the string. If so, it's a
3628 * possible small lose on short strings, but a big win on long ones.
3629 * It might even be a win on short strings if SvPVX_const(dstr)
3630 * has to be allocated and SvPVX_const(sstr) has to be freed.
3631 * Likewise if we can set up COW rather than doing an actual copy, we
3632 * drop to the else clause, as the swipe code and the COW setup code
3633 * have much in common.
3636 /* Whichever path we take through the next code, we want this true,
3637 and doing it now facilitates the COW check. */
3638 (void)SvPOK_only(dstr);
3641 /* If we're already COW then this clause is not true, and if COW
3642 is allowed then we drop down to the else and make dest COW
3643 with us. If caller hasn't said that we're allowed to COW
3644 shared hash keys then we don't do the COW setup, even if the
3645 source scalar is a shared hash key scalar. */
3646 (((flags & SV_COW_SHARED_HASH_KEYS)
3647 ? (sflags & (SVf_FAKE|SVf_READONLY)) != (SVf_FAKE|SVf_READONLY)
3648 : 1 /* If making a COW copy is forbidden then the behaviour we
3649 desire is as if the source SV isn't actually already
3650 COW, even if it is. So we act as if the source flags
3651 are not COW, rather than actually testing them. */
3653 #ifndef PERL_OLD_COPY_ON_WRITE
3654 /* The change that added SV_COW_SHARED_HASH_KEYS makes the logic
3655 when PERL_OLD_COPY_ON_WRITE is defined a little wrong.
3656 Conceptually PERL_OLD_COPY_ON_WRITE being defined should
3657 override SV_COW_SHARED_HASH_KEYS, because it means "always COW"
3658 but in turn, it's somewhat dead code, never expected to go
3659 live, but more kept as a placeholder on how to do it better
3660 in a newer implementation. */
3661 /* If we are COW and dstr is a suitable target then we drop down
3662 into the else and make dest a COW of us. */
3663 || (SvFLAGS(dstr) & CAN_COW_MASK) != CAN_COW_FLAGS
3668 (sflags & SVs_TEMP) && /* slated for free anyway? */
3669 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
3670 (!(flags & SV_NOSTEAL)) &&
3671 /* and we're allowed to steal temps */
3672 SvREFCNT(sstr) == 1 && /* and no other references to it? */
3673 SvLEN(sstr) && /* and really is a string */
3674 /* and won't be needed again, potentially */
3675 !(PL_op && PL_op->op_type == OP_AASSIGN))
3676 #ifdef PERL_OLD_COPY_ON_WRITE
3677 && ((flags & SV_COW_SHARED_HASH_KEYS)
3678 ? (!((sflags & CAN_COW_MASK) == CAN_COW_FLAGS
3679 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
3680 && SvTYPE(sstr) >= SVt_PVIV))
3684 /* Failed the swipe test, and it's not a shared hash key either.
3685 Have to copy the string. */
3686 STRLEN len = SvCUR(sstr);
3687 SvGROW(dstr, len + 1); /* inlined from sv_setpvn */
3688 Move(SvPVX_const(sstr),SvPVX(dstr),len,char);
3689 SvCUR_set(dstr, len);
3690 *SvEND(dstr) = '\0';
3692 /* If PERL_OLD_COPY_ON_WRITE is not defined, then isSwipe will always
3694 /* Either it's a shared hash key, or it's suitable for
3695 copy-on-write or we can swipe the string. */
3697 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
3701 #ifdef PERL_OLD_COPY_ON_WRITE
3703 /* I believe I should acquire a global SV mutex if
3704 it's a COW sv (not a shared hash key) to stop
3705 it going un copy-on-write.
3706 If the source SV has gone un copy on write between up there
3707 and down here, then (assert() that) it is of the correct
3708 form to make it copy on write again */
3709 if ((sflags & (SVf_FAKE | SVf_READONLY))
3710 != (SVf_FAKE | SVf_READONLY)) {
3711 SvREADONLY_on(sstr);
3713 /* Make the source SV into a loop of 1.
3714 (about to become 2) */
3715 SV_COW_NEXT_SV_SET(sstr, sstr);
3719 /* Initial code is common. */
3720 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
3725 /* making another shared SV. */
3726 STRLEN cur = SvCUR(sstr);
3727 STRLEN len = SvLEN(sstr);
3728 #ifdef PERL_OLD_COPY_ON_WRITE
3730 assert (SvTYPE(dstr) >= SVt_PVIV);
3731 /* SvIsCOW_normal */
3732 /* splice us in between source and next-after-source. */
3733 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
3734 SV_COW_NEXT_SV_SET(sstr, dstr);
3735 SvPV_set(dstr, SvPVX_mutable(sstr));
3739 /* SvIsCOW_shared_hash */
3740 DEBUG_C(PerlIO_printf(Perl_debug_log,
3741 "Copy on write: Sharing hash\n"));
3743 assert (SvTYPE(dstr) >= SVt_PV);
3745 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
3747 SvLEN_set(dstr, len);
3748 SvCUR_set(dstr, cur);
3749 SvREADONLY_on(dstr);
3751 /* Relesase a global SV mutex. */
3754 { /* Passes the swipe test. */
3755 SvPV_set(dstr, SvPVX_mutable(sstr));
3756 SvLEN_set(dstr, SvLEN(sstr));
3757 SvCUR_set(dstr, SvCUR(sstr));
3760 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
3761 SvPV_set(sstr, NULL);
3767 if (sflags & SVp_NOK) {
3768 SvNV_set(dstr, SvNVX(sstr));
3770 if (sflags & SVp_IOK) {
3771 SvIV_set(dstr, SvIVX(sstr));
3772 /* Must do this otherwise some other overloaded use of 0x80000000
3773 gets confused. I guess SVpbm_VALID */
3774 if (sflags & SVf_IVisUV)
3777 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8);
3779 const MAGIC * const smg = SvVSTRING_mg(sstr);
3781 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
3782 smg->mg_ptr, smg->mg_len);
3783 SvRMAGICAL_on(dstr);
3787 else if (sflags & (SVp_IOK|SVp_NOK)) {
3788 (void)SvOK_off(dstr);
3789 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK);
3790 if (sflags & SVp_IOK) {
3791 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
3792 SvIV_set(dstr, SvIVX(sstr));
3794 if (sflags & SVp_NOK) {
3795 SvNV_set(dstr, SvNVX(sstr));
3799 if (isGV_with_GP(sstr)) {
3800 /* This stringification rule for globs is spread in 3 places.
3801 This feels bad. FIXME. */
3802 const U32 wasfake = sflags & SVf_FAKE;
3804 /* FAKE globs can get coerced, so need to turn this off
3805 temporarily if it is on. */
3807 gv_efullname3(dstr, (GV *)sstr, "*");
3808 SvFLAGS(sstr) |= wasfake;
3811 (void)SvOK_off(dstr);
3813 if (SvTAINTED(sstr))
3818 =for apidoc sv_setsv_mg
3820 Like C<sv_setsv>, but also handles 'set' magic.
3826 Perl_sv_setsv_mg(pTHX_ SV *dstr, register SV *sstr)
3828 sv_setsv(dstr,sstr);
3832 #ifdef PERL_OLD_COPY_ON_WRITE
3834 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
3836 STRLEN cur = SvCUR(sstr);
3837 STRLEN len = SvLEN(sstr);
3838 register char *new_pv;
3841 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
3842 (void*)sstr, (void*)dstr);
3849 if (SvTHINKFIRST(dstr))
3850 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
3851 else if (SvPVX_const(dstr))
3852 Safefree(SvPVX_const(dstr));
3856 SvUPGRADE(dstr, SVt_PVIV);
3858 assert (SvPOK(sstr));
3859 assert (SvPOKp(sstr));
3860 assert (!SvIOK(sstr));
3861 assert (!SvIOKp(sstr));
3862 assert (!SvNOK(sstr));
3863 assert (!SvNOKp(sstr));
3865 if (SvIsCOW(sstr)) {
3867 if (SvLEN(sstr) == 0) {
3868 /* source is a COW shared hash key. */
3869 DEBUG_C(PerlIO_printf(Perl_debug_log,
3870 "Fast copy on write: Sharing hash\n"));
3871 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
3874 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
3876 assert ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS);
3877 SvUPGRADE(sstr, SVt_PVIV);
3878 SvREADONLY_on(sstr);
3880 DEBUG_C(PerlIO_printf(Perl_debug_log,
3881 "Fast copy on write: Converting sstr to COW\n"));
3882 SV_COW_NEXT_SV_SET(dstr, sstr);
3884 SV_COW_NEXT_SV_SET(sstr, dstr);
3885 new_pv = SvPVX_mutable(sstr);
3888 SvPV_set(dstr, new_pv);
3889 SvFLAGS(dstr) = (SVt_PVIV|SVf_POK|SVp_POK|SVf_FAKE|SVf_READONLY);
3892 SvLEN_set(dstr, len);
3893 SvCUR_set(dstr, cur);
3902 =for apidoc sv_setpvn
3904 Copies a string into an SV. The C<len> parameter indicates the number of
3905 bytes to be copied. If the C<ptr> argument is NULL the SV will become
3906 undefined. Does not handle 'set' magic. See C<sv_setpvn_mg>.
3912 Perl_sv_setpvn(pTHX_ register SV *sv, register const char *ptr, register STRLEN len)
3915 register char *dptr;
3917 SV_CHECK_THINKFIRST_COW_DROP(sv);
3923 /* len is STRLEN which is unsigned, need to copy to signed */
3926 Perl_croak(aTHX_ "panic: sv_setpvn called with negative strlen");
3928 SvUPGRADE(sv, SVt_PV);
3930 dptr = SvGROW(sv, len + 1);
3931 Move(ptr,dptr,len,char);
3934 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3939 =for apidoc sv_setpvn_mg
3941 Like C<sv_setpvn>, but also handles 'set' magic.
3947 Perl_sv_setpvn_mg(pTHX_ register SV *sv, register const char *ptr, register STRLEN len)
3949 sv_setpvn(sv,ptr,len);
3954 =for apidoc sv_setpv
3956 Copies a string into an SV. The string must be null-terminated. Does not
3957 handle 'set' magic. See C<sv_setpv_mg>.
3963 Perl_sv_setpv(pTHX_ register SV *sv, register const char *ptr)
3966 register STRLEN len;
3968 SV_CHECK_THINKFIRST_COW_DROP(sv);
3974 SvUPGRADE(sv, SVt_PV);
3976 SvGROW(sv, len + 1);
3977 Move(ptr,SvPVX(sv),len+1,char);
3979 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3984 =for apidoc sv_setpv_mg
3986 Like C<sv_setpv>, but also handles 'set' magic.
3992 Perl_sv_setpv_mg(pTHX_ register SV *sv, register const char *ptr)
3999 =for apidoc sv_usepvn_flags
4001 Tells an SV to use C<ptr> to find its string value. Normally the
4002 string is stored inside the SV but sv_usepvn allows the SV to use an
4003 outside string. The C<ptr> should point to memory that was allocated
4004 by C<malloc>. The string length, C<len>, must be supplied. By default
4005 this function will realloc (i.e. move) the memory pointed to by C<ptr>,
4006 so that pointer should not be freed or used by the programmer after
4007 giving it to sv_usepvn, and neither should any pointers from "behind"
4008 that pointer (e.g. ptr + 1) be used.
4010 If C<flags> & SV_SMAGIC is true, will call SvSETMAGIC. If C<flags> &
4011 SV_HAS_TRAILING_NUL is true, then C<ptr[len]> must be NUL, and the realloc
4012 will be skipped. (i.e. the buffer is actually at least 1 byte longer than
4013 C<len>, and already meets the requirements for storing in C<SvPVX>)
4019 Perl_sv_usepvn_flags(pTHX_ SV *sv, char *ptr, STRLEN len, U32 flags)
4023 SV_CHECK_THINKFIRST_COW_DROP(sv);
4024 SvUPGRADE(sv, SVt_PV);
4027 if (flags & SV_SMAGIC)
4031 if (SvPVX_const(sv))
4035 if (flags & SV_HAS_TRAILING_NUL)
4036 assert(ptr[len] == '\0');
4039 allocate = (flags & SV_HAS_TRAILING_NUL)
4040 ? len + 1: PERL_STRLEN_ROUNDUP(len + 1);
4041 if (flags & SV_HAS_TRAILING_NUL) {
4042 /* It's long enough - do nothing.
4043 Specfically Perl_newCONSTSUB is relying on this. */
4046 /* Force a move to shake out bugs in callers. */
4047 char *new_ptr = (char*)safemalloc(allocate);
4048 Copy(ptr, new_ptr, len, char);
4049 PoisonFree(ptr,len,char);
4053 ptr = (char*) saferealloc (ptr, allocate);
4058 SvLEN_set(sv, allocate);
4059 if (!(flags & SV_HAS_TRAILING_NUL)) {
4062 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4064 if (flags & SV_SMAGIC)
4068 #ifdef PERL_OLD_COPY_ON_WRITE
4069 /* Need to do this *after* making the SV normal, as we need the buffer
4070 pointer to remain valid until after we've copied it. If we let go too early,
4071 another thread could invalidate it by unsharing last of the same hash key
4072 (which it can do by means other than releasing copy-on-write Svs)
4073 or by changing the other copy-on-write SVs in the loop. */
4075 S_sv_release_COW(pTHX_ register SV *sv, const char *pvx, SV *after)
4077 { /* this SV was SvIsCOW_normal(sv) */
4078 /* we need to find the SV pointing to us. */
4079 SV *current = SV_COW_NEXT_SV(after);
4081 if (current == sv) {
4082 /* The SV we point to points back to us (there were only two of us
4084 Hence other SV is no longer copy on write either. */
4086 SvREADONLY_off(after);
4088 /* We need to follow the pointers around the loop. */
4090 while ((next = SV_COW_NEXT_SV(current)) != sv) {
4093 /* don't loop forever if the structure is bust, and we have
4094 a pointer into a closed loop. */
4095 assert (current != after);
4096 assert (SvPVX_const(current) == pvx);
4098 /* Make the SV before us point to the SV after us. */
4099 SV_COW_NEXT_SV_SET(current, after);
4105 =for apidoc sv_force_normal_flags
4107 Undo various types of fakery on an SV: if the PV is a shared string, make
4108 a private copy; if we're a ref, stop refing; if we're a glob, downgrade to
4109 an xpvmg; if we're a copy-on-write scalar, this is the on-write time when
4110 we do the copy, and is also used locally. If C<SV_COW_DROP_PV> is set
4111 then a copy-on-write scalar drops its PV buffer (if any) and becomes
4112 SvPOK_off rather than making a copy. (Used where this scalar is about to be
4113 set to some other value.) In addition, the C<flags> parameter gets passed to
4114 C<sv_unref_flags()> when unrefing. C<sv_force_normal> calls this function
4115 with flags set to 0.
4121 Perl_sv_force_normal_flags(pTHX_ register SV *sv, U32 flags)
4124 #ifdef PERL_OLD_COPY_ON_WRITE
4125 if (SvREADONLY(sv)) {
4126 /* At this point I believe I should acquire a global SV mutex. */
4128 const char * const pvx = SvPVX_const(sv);
4129 const STRLEN len = SvLEN(sv);
4130 const STRLEN cur = SvCUR(sv);
4131 /* next COW sv in the loop. If len is 0 then this is a shared-hash
4132 key scalar, so we mustn't attempt to call SV_COW_NEXT_SV(), as
4133 we'll fail an assertion. */
4134 SV * const next = len ? SV_COW_NEXT_SV(sv) : 0;
4137 PerlIO_printf(Perl_debug_log,
4138 "Copy on write: Force normal %ld\n",
4144 /* This SV doesn't own the buffer, so need to Newx() a new one: */
4147 if (flags & SV_COW_DROP_PV) {
4148 /* OK, so we don't need to copy our buffer. */
4151 SvGROW(sv, cur + 1);
4152 Move(pvx,SvPVX(sv),cur,char);
4157 sv_release_COW(sv, pvx, next);
4159 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4165 else if (IN_PERL_RUNTIME)
4166 Perl_croak(aTHX_ PL_no_modify);
4167 /* At this point I believe that I can drop the global SV mutex. */
4170 if (SvREADONLY(sv)) {
4172 const char * const pvx = SvPVX_const(sv);
4173 const STRLEN len = SvCUR(sv);
4178 SvGROW(sv, len + 1);
4179 Move(pvx,SvPVX(sv),len,char);
4181 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4183 else if (IN_PERL_RUNTIME)
4184 Perl_croak(aTHX_ PL_no_modify);
4188 sv_unref_flags(sv, flags);
4189 else if (SvFAKE(sv) && SvTYPE(sv) == SVt_PVGV)
4194 Perl_sv_read_offset(pTHX_ const SV *const sv) {
4201 p = (U8*)SvPVX_const(sv);
4207 while ((c & 0x80)) {
4208 UV const last_delta = delta;
4210 if (delta < last_delta)
4211 Perl_croak(aTHX_ "panic: overflow in sv_read_offset from %"UVuf
4212 " to %"UVuf, last_delta, delta);
4218 /* Validate the preceding buffer's sentinels to verify that no-one is
4220 const U8 *const real_start = (U8 *) SvPVX_const(sv) - delta;
4221 while (p > real_start) {
4223 assert (*p == (U8)PTR2UV(p));
4233 Efficient removal of characters from the beginning of the string buffer.
4234 SvPOK(sv) must be true and the C<ptr> must be a pointer to somewhere inside
4235 the string buffer. The C<ptr> becomes the first character of the adjusted
4236 string. Uses the "OOK hack".
4237 Beware: after this function returns, C<ptr> and SvPVX_const(sv) may no longer
4238 refer to the same chunk of data.
4244 Perl_sv_chop(pTHX_ register SV *sv, register const char *ptr)
4246 register STRLEN delta;
4250 const U8 *real_start;
4253 if (!ptr || !SvPOKp(sv))
4255 delta = ptr - SvPVX_const(sv);
4257 /* Nothing to do. */
4260 assert(ptr > SvPVX_const(sv));
4261 SV_CHECK_THINKFIRST(sv);
4264 if (!SvLEN(sv)) { /* make copy of shared string */
4265 const char *pvx = SvPVX_const(sv);
4266 const STRLEN len = SvCUR(sv);
4267 SvGROW(sv, len + 1);
4268 Move(pvx,SvPVX(sv),len,char);
4271 SvFLAGS(sv) |= SVf_OOK;
4274 old_delta = sv_read_offset(sv);
4276 SvLEN_set(sv, SvLEN(sv) - delta);
4277 SvCUR_set(sv, SvCUR(sv) - delta);
4278 SvPV_set(sv, SvPVX(sv) + delta);
4280 p = (U8 *)SvPVX_const(sv);
4285 real_start = p - delta;
4291 /* Code lovingly ripped from pp_pack.c: */
4292 U8 buf[(sizeof(UV)*CHAR_BIT)/7+1];
4296 *in++ = (U8)((delta & 0x7f) | 0x80);
4299 buf[0] &= 0x7f; /* clear continue bit */
4303 Copy(buf, p, len, U8);
4307 /* Fill the preceding buffer with sentinals to verify that no-one is
4309 while (p > real_start) {
4317 =for apidoc sv_catpvn
4319 Concatenates the string onto the end of the string which is in the SV. The
4320 C<len> indicates number of bytes to copy. If the SV has the UTF-8
4321 status set, then the bytes appended should be valid UTF-8.
4322 Handles 'get' magic, but not 'set' magic. See C<sv_catpvn_mg>.
4324 =for apidoc sv_catpvn_flags
4326 Concatenates the string onto the end of the string which is in the SV. The
4327 C<len> indicates number of bytes to copy. If the SV has the UTF-8
4328 status set, then the bytes appended should be valid UTF-8.
4329 If C<flags> has C<SV_GMAGIC> bit set, will C<mg_get> on C<dsv> if
4330 appropriate, else not. C<sv_catpvn> and C<sv_catpvn_nomg> are implemented
4331 in terms of this function.
4337 Perl_sv_catpvn_flags(pTHX_ register SV *dsv, register const char *sstr, register STRLEN slen, I32 flags)
4341 const char * const dstr = SvPV_force_flags(dsv, dlen, flags);
4343 SvGROW(dsv, dlen + slen + 1);
4345 sstr = SvPVX_const(dsv);
4346 Move(sstr, SvPVX(dsv) + dlen, slen, char);
4347 SvCUR_set(dsv, SvCUR(dsv) + slen);
4349 (void)SvPOK_only_UTF8(dsv); /* validate pointer */
4351 if (flags & SV_SMAGIC)
4356 =for apidoc sv_catsv
4358 Concatenates the string from SV C<ssv> onto the end of the string in
4359 SV C<dsv>. Modifies C<dsv> but not C<ssv>. Handles 'get' magic, but
4360 not 'set' magic. See C<sv_catsv_mg>.
4362 =for apidoc sv_catsv_flags
4364 Concatenates the string from SV C<ssv> onto the end of the string in
4365 SV C<dsv>. Modifies C<dsv> but not C<ssv>. If C<flags> has C<SV_GMAGIC>
4366 bit set, will C<mg_get> on the SVs if appropriate, else not. C<sv_catsv>
4367 and C<sv_catsv_nomg> are implemented in terms of this function.
4372 Perl_sv_catsv_flags(pTHX_ SV *dsv, register SV *ssv, I32 flags)
4377 const char *spv = SvPV_const(ssv, slen);
4379 /* sutf8 and dutf8 were type bool, but under USE_ITHREADS,
4380 gcc version 2.95.2 20000220 (Debian GNU/Linux) for
4381 Linux xxx 2.2.17 on sparc64 with gcc -O2, we erroneously
4382 get dutf8 = 0x20000000, (i.e. SVf_UTF8) even though
4383 dsv->sv_flags doesn't have that bit set.
4384 Andy Dougherty 12 Oct 2001
4386 const I32 sutf8 = DO_UTF8(ssv);
4389 if (SvGMAGICAL(dsv) && (flags & SV_GMAGIC))
4391 dutf8 = DO_UTF8(dsv);
4393 if (dutf8 != sutf8) {
4395 /* Not modifying source SV, so taking a temporary copy. */
4396 SV* const csv = newSVpvn_flags(spv, slen, SVs_TEMP);
4398 sv_utf8_upgrade(csv);
4399 spv = SvPV_const(csv, slen);
4402 sv_utf8_upgrade_nomg(dsv);
4404 sv_catpvn_nomg(dsv, spv, slen);
4407 if (flags & SV_SMAGIC)
4412 =for apidoc sv_catpv
4414 Concatenates the string onto the end of the string which is in the SV.
4415 If the SV has the UTF-8 status set, then the bytes appended should be
4416 valid UTF-8. Handles 'get' magic, but not 'set' magic. See C<sv_catpv_mg>.
4421 Perl_sv_catpv(pTHX_ register SV *sv, register const char *ptr)
4424 register STRLEN len;
4430 junk = SvPV_force(sv, tlen);
4432 SvGROW(sv, tlen + len + 1);
4434 ptr = SvPVX_const(sv);
4435 Move(ptr,SvPVX(sv)+tlen,len+1,char);
4436 SvCUR_set(sv, SvCUR(sv) + len);
4437 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4442 =for apidoc sv_catpv_mg
4444 Like C<sv_catpv>, but also handles 'set' magic.
4450 Perl_sv_catpv_mg(pTHX_ register SV *sv, register const char *ptr)
4459 Creates a new SV. A non-zero C<len> parameter indicates the number of
4460 bytes of preallocated string space the SV should have. An extra byte for a
4461 trailing NUL is also reserved. (SvPOK is not set for the SV even if string
4462 space is allocated.) The reference count for the new SV is set to 1.
4464 In 5.9.3, newSV() replaces the older NEWSV() API, and drops the first
4465 parameter, I<x>, a debug aid which allowed callers to identify themselves.
4466 This aid has been superseded by a new build option, PERL_MEM_LOG (see
4467 L<perlhack/PERL_MEM_LOG>). The older API is still there for use in XS
4468 modules supporting older perls.
4474 Perl_newSV(pTHX_ STRLEN len)
4481 sv_upgrade(sv, SVt_PV);
4482 SvGROW(sv, len + 1);
4487 =for apidoc sv_magicext
4489 Adds magic to an SV, upgrading it if necessary. Applies the
4490 supplied vtable and returns a pointer to the magic added.
4492 Note that C<sv_magicext> will allow things that C<sv_magic> will not.
4493 In particular, you can add magic to SvREADONLY SVs, and add more than
4494 one instance of the same 'how'.
4496 If C<namlen> is greater than zero then a C<savepvn> I<copy> of C<name> is
4497 stored, if C<namlen> is zero then C<name> is stored as-is and - as another
4498 special case - if C<(name && namlen == HEf_SVKEY)> then C<name> is assumed
4499 to contain an C<SV*> and is stored as-is with its REFCNT incremented.
4501 (This is now used as a subroutine by C<sv_magic>.)
4506 Perl_sv_magicext(pTHX_ SV* sv, SV* obj, int how, const MGVTBL *vtable,
4507 const char* name, I32 namlen)
4512 SvUPGRADE(sv, SVt_PVMG);
4513 Newxz(mg, 1, MAGIC);
4514 mg->mg_moremagic = SvMAGIC(sv);
4515 SvMAGIC_set(sv, mg);
4517 /* Sometimes a magic contains a reference loop, where the sv and
4518 object refer to each other. To prevent a reference loop that
4519 would prevent such objects being freed, we look for such loops
4520 and if we find one we avoid incrementing the object refcount.
4522 Note we cannot do this to avoid self-tie loops as intervening RV must
4523 have its REFCNT incremented to keep it in existence.
4526 if (!obj || obj == sv ||
4527 how == PERL_MAGIC_arylen ||
4528 how == PERL_MAGIC_symtab ||
4529 (SvTYPE(obj) == SVt_PVGV &&
4530 (GvSV(obj) == sv || GvHV(obj) == (HV*)sv || GvAV(obj) == (AV*)sv ||
4531 GvCV(obj) == (CV*)sv || GvIOp(obj) == (IO*)sv ||
4532 GvFORM(obj) == (CV*)sv)))
4537 mg->mg_obj = SvREFCNT_inc_simple(obj);
4538 mg->mg_flags |= MGf_REFCOUNTED;
4541 /* Normal self-ties simply pass a null object, and instead of
4542 using mg_obj directly, use the SvTIED_obj macro to produce a
4543 new RV as needed. For glob "self-ties", we are tieing the PVIO
4544 with an RV obj pointing to the glob containing the PVIO. In
4545 this case, to avoid a reference loop, we need to weaken the
4549 if (how == PERL_MAGIC_tiedscalar && SvTYPE(sv) == SVt_PVIO &&
4550 obj && SvROK(obj) && GvIO(SvRV(obj)) == (IO*)sv)
4556 mg->mg_len = namlen;
4559 mg->mg_ptr = savepvn(name, namlen);
4560 else if (namlen == HEf_SVKEY)
4561 mg->mg_ptr = (char*)SvREFCNT_inc_simple_NN((SV*)name);
4563 mg->mg_ptr = (char *) name;
4565 mg->mg_virtual = (MGVTBL *) vtable;
4569 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK|SVf_POK);
4574 =for apidoc sv_magic
4576 Adds magic to an SV. First upgrades C<sv> to type C<SVt_PVMG> if necessary,
4577 then adds a new magic item of type C<how> to the head of the magic list.
4579 See C<sv_magicext> (which C<sv_magic> now calls) for a description of the
4580 handling of the C<name> and C<namlen> arguments.
4582 You need to use C<sv_magicext> to add magic to SvREADONLY SVs and also
4583 to add more than one instance of the same 'how'.
4589 Perl_sv_magic(pTHX_ register SV *sv, SV *obj, int how, const char *name, I32 namlen)
4592 const MGVTBL *vtable;
4595 #ifdef PERL_OLD_COPY_ON_WRITE
4597 sv_force_normal_flags(sv, 0);
4599 if (SvREADONLY(sv)) {
4601 /* its okay to attach magic to shared strings; the subsequent
4602 * upgrade to PVMG will unshare the string */
4603 !(SvFAKE(sv) && SvTYPE(sv) < SVt_PVMG)
4606 && how != PERL_MAGIC_regex_global
4607 && how != PERL_MAGIC_bm
4608 && how != PERL_MAGIC_fm
4609 && how != PERL_MAGIC_sv
4610 && how != PERL_MAGIC_backref
4613 Perl_croak(aTHX_ PL_no_modify);
4616 if (SvMAGICAL(sv) || (how == PERL_MAGIC_taint && SvTYPE(sv) >= SVt_PVMG)) {
4617 if (SvMAGIC(sv) && (mg = mg_find(sv, how))) {
4618 /* sv_magic() refuses to add a magic of the same 'how' as an
4621 if (how == PERL_MAGIC_taint) {
4623 /* Any scalar which already had taint magic on which someone
4624 (erroneously?) did SvIOK_on() or similar will now be
4625 incorrectly sporting public "OK" flags. */
4626 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK|SVf_POK);
4634 vtable = &PL_vtbl_sv;
4636 case PERL_MAGIC_overload:
4637 vtable = &PL_vtbl_amagic;
4639 case PERL_MAGIC_overload_elem:
4640 vtable = &PL_vtbl_amagicelem;
4642 case PERL_MAGIC_overload_table:
4643 vtable = &PL_vtbl_ovrld;
4646 vtable = &PL_vtbl_bm;
4648 case PERL_MAGIC_regdata:
4649 vtable = &PL_vtbl_regdata;
4651 case PERL_MAGIC_regdatum:
4652 vtable = &PL_vtbl_regdatum;
4654 case PERL_MAGIC_env:
4655 vtable = &PL_vtbl_env;
4658 vtable = &PL_vtbl_fm;
4660 case PERL_MAGIC_envelem:
4661 vtable = &PL_vtbl_envelem;
4663 case PERL_MAGIC_regex_global:
4664 vtable = &PL_vtbl_mglob;
4666 case PERL_MAGIC_isa:
4667 vtable = &PL_vtbl_isa;
4669 case PERL_MAGIC_isaelem:
4670 vtable = &PL_vtbl_isaelem;
4672 case PERL_MAGIC_nkeys:
4673 vtable = &PL_vtbl_nkeys;
4675 case PERL_MAGIC_dbfile:
4678 case PERL_MAGIC_dbline:
4679 vtable = &PL_vtbl_dbline;
4681 #ifdef USE_LOCALE_COLLATE
4682 case PERL_MAGIC_collxfrm:
4683 vtable = &PL_vtbl_collxfrm;
4685 #endif /* USE_LOCALE_COLLATE */
4686 case PERL_MAGIC_tied:
4687 vtable = &PL_vtbl_pack;
4689 case PERL_MAGIC_tiedelem:
4690 case PERL_MAGIC_tiedscalar:
4691 vtable = &PL_vtbl_packelem;
4694 vtable = &PL_vtbl_regexp;
4696 case PERL_MAGIC_hints:
4697 /* As this vtable is all NULL, we can reuse it. */
4698 case PERL_MAGIC_sig:
4699 vtable = &PL_vtbl_sig;
4701 case PERL_MAGIC_sigelem:
4702 vtable = &PL_vtbl_sigelem;
4704 case PERL_MAGIC_taint:
4705 vtable = &PL_vtbl_taint;
4707 case PERL_MAGIC_uvar:
4708 vtable = &PL_vtbl_uvar;
4710 case PERL_MAGIC_vec:
4711 vtable = &PL_vtbl_vec;
4713 case PERL_MAGIC_arylen_p:
4714 case PERL_MAGIC_rhash:
4715 case PERL_MAGIC_symtab:
4716 case PERL_MAGIC_vstring:
4719 case PERL_MAGIC_utf8:
4720 vtable = &PL_vtbl_utf8;
4722 case PERL_MAGIC_substr:
4723 vtable = &PL_vtbl_substr;
4725 case PERL_MAGIC_defelem:
4726 vtable = &PL_vtbl_defelem;
4728 case PERL_MAGIC_arylen:
4729 vtable = &PL_vtbl_arylen;
4731 case PERL_MAGIC_pos:
4732 vtable = &PL_vtbl_pos;
4734 case PERL_MAGIC_backref:
4735 vtable = &PL_vtbl_backref;
4737 case PERL_MAGIC_hintselem:
4738 vtable = &PL_vtbl_hintselem;
4740 case PERL_MAGIC_ext:
4741 /* Reserved for use by extensions not perl internals. */
4742 /* Useful for attaching extension internal data to perl vars. */
4743 /* Note that multiple extensions may clash if magical scalars */
4744 /* etc holding private data from one are passed to another. */