3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by Larry Wall
7 * You may distribute under the terms of either the GNU General Public
8 * License or the Artistic License, as specified in the README file.
13 * 'I wonder what the Entish is for "yes" and "no",' he thought.
16 * [p.480 of _The Lord of the Rings_, III/iv: "Treebeard"]
22 * This file contains the code that creates, manipulates and destroys
23 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
24 * structure of an SV, so their creation and destruction is handled
25 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
26 * level functions (eg. substr, split, join) for each of the types are
38 /* Missing proto on LynxOS */
39 char *gconvert(double, int, int, char *);
42 #ifdef PERL_UTF8_CACHE_ASSERT
43 /* if adding more checks watch out for the following tests:
44 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
45 * lib/utf8.t lib/Unicode/Collate/t/index.t
48 # define ASSERT_UTF8_CACHE(cache) \
49 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
50 assert((cache)[2] <= (cache)[3]); \
51 assert((cache)[3] <= (cache)[1]);} \
54 # define ASSERT_UTF8_CACHE(cache) NOOP
57 #ifdef PERL_OLD_COPY_ON_WRITE
58 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
59 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
60 /* This is a pessimistic view. Scalar must be purely a read-write PV to copy-
64 /* ============================================================================
66 =head1 Allocation and deallocation of SVs.
68 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
69 sv, av, hv...) contains type and reference count information, and for
70 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
71 contains fields specific to each type. Some types store all they need
72 in the head, so don't have a body.
74 In all but the most memory-paranoid configuations (ex: PURIFY), heads
75 and bodies are allocated out of arenas, which by default are
76 approximately 4K chunks of memory parcelled up into N heads or bodies.
77 Sv-bodies are allocated by their sv-type, guaranteeing size
78 consistency needed to allocate safely from arrays.
80 For SV-heads, the first slot in each arena is reserved, and holds a
81 link to the next arena, some flags, and a note of the number of slots.
82 Snaked through each arena chain is a linked list of free items; when
83 this becomes empty, an extra arena is allocated and divided up into N
84 items which are threaded into the free list.
86 SV-bodies are similar, but they use arena-sets by default, which
87 separate the link and info from the arena itself, and reclaim the 1st
88 slot in the arena. SV-bodies are further described later.
90 The following global variables are associated with arenas:
92 PL_sv_arenaroot pointer to list of SV arenas
93 PL_sv_root pointer to list of free SV structures
95 PL_body_arenas head of linked-list of body arenas
96 PL_body_roots[] array of pointers to list of free bodies of svtype
97 arrays are indexed by the svtype needed
99 A few special SV heads are not allocated from an arena, but are
100 instead directly created in the interpreter structure, eg PL_sv_undef.
101 The size of arenas can be changed from the default by setting
102 PERL_ARENA_SIZE appropriately at compile time.
104 The SV arena serves the secondary purpose of allowing still-live SVs
105 to be located and destroyed during final cleanup.
107 At the lowest level, the macros new_SV() and del_SV() grab and free
108 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
109 to return the SV to the free list with error checking.) new_SV() calls
110 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
111 SVs in the free list have their SvTYPE field set to all ones.
113 At the time of very final cleanup, sv_free_arenas() is called from
114 perl_destruct() to physically free all the arenas allocated since the
115 start of the interpreter.
117 The function visit() scans the SV arenas list, and calls a specified
118 function for each SV it finds which is still live - ie which has an SvTYPE
119 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
120 following functions (specified as [function that calls visit()] / [function
121 called by visit() for each SV]):
123 sv_report_used() / do_report_used()
124 dump all remaining SVs (debugging aid)
126 sv_clean_objs() / do_clean_objs(),do_clean_named_objs()
127 Attempt to free all objects pointed to by RVs,
128 and, unless DISABLE_DESTRUCTOR_KLUDGE is defined,
129 try to do the same for all objects indirectly
130 referenced by typeglobs too. Called once from
131 perl_destruct(), prior to calling sv_clean_all()
134 sv_clean_all() / do_clean_all()
135 SvREFCNT_dec(sv) each remaining SV, possibly
136 triggering an sv_free(). It also sets the
137 SVf_BREAK flag on the SV to indicate that the
138 refcnt has been artificially lowered, and thus
139 stopping sv_free() from giving spurious warnings
140 about SVs which unexpectedly have a refcnt
141 of zero. called repeatedly from perl_destruct()
142 until there are no SVs left.
144 =head2 Arena allocator API Summary
146 Private API to rest of sv.c
150 new_XIV(), del_XIV(),
151 new_XNV(), del_XNV(),
156 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
160 * ========================================================================= */
163 * "A time to plant, and a time to uproot what was planted..."
167 Perl_offer_nice_chunk(pTHX_ void *const chunk, const U32 chunk_size)
173 PERL_ARGS_ASSERT_OFFER_NICE_CHUNK;
175 new_chunk = (void *)(chunk);
176 new_chunk_size = (chunk_size);
177 if (new_chunk_size > PL_nice_chunk_size) {
178 Safefree(PL_nice_chunk);
179 PL_nice_chunk = (char *) new_chunk;
180 PL_nice_chunk_size = new_chunk_size;
187 # define MEM_LOG_NEW_SV(sv, file, line, func) \
188 Perl_mem_log_new_sv(sv, file, line, func)
189 # define MEM_LOG_DEL_SV(sv, file, line, func) \
190 Perl_mem_log_del_sv(sv, file, line, func)
192 # define MEM_LOG_NEW_SV(sv, file, line, func) NOOP
193 # define MEM_LOG_DEL_SV(sv, file, line, func) NOOP
196 #ifdef DEBUG_LEAKING_SCALARS
197 # define FREE_SV_DEBUG_FILE(sv) Safefree((sv)->sv_debug_file)
198 # define DEBUG_SV_SERIAL(sv) \
199 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) del_SV\n", \
200 PTR2UV(sv), (long)(sv)->sv_debug_serial))
202 # define FREE_SV_DEBUG_FILE(sv)
203 # define DEBUG_SV_SERIAL(sv) NOOP
207 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
208 # define SvARENA_CHAIN_SET(sv,val) (sv)->sv_u.svu_rv = MUTABLE_SV((val))
209 /* Whilst I'd love to do this, it seems that things like to check on
211 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
213 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
214 PoisonNew(&SvREFCNT(sv), 1, U32)
216 # define SvARENA_CHAIN(sv) SvANY(sv)
217 # define SvARENA_CHAIN_SET(sv,val) SvANY(sv) = (void *)(val)
218 # define POSION_SV_HEAD(sv)
221 /* Mark an SV head as unused, and add to free list.
223 * If SVf_BREAK is set, skip adding it to the free list, as this SV had
224 * its refcount artificially decremented during global destruction, so
225 * there may be dangling pointers to it. The last thing we want in that
226 * case is for it to be reused. */
228 #define plant_SV(p) \
230 const U32 old_flags = SvFLAGS(p); \
231 MEM_LOG_DEL_SV(p, __FILE__, __LINE__, FUNCTION__); \
232 DEBUG_SV_SERIAL(p); \
233 FREE_SV_DEBUG_FILE(p); \
235 SvFLAGS(p) = SVTYPEMASK; \
236 if (!(old_flags & SVf_BREAK)) { \
237 SvARENA_CHAIN_SET(p, PL_sv_root); \
243 #define uproot_SV(p) \
246 PL_sv_root = MUTABLE_SV(SvARENA_CHAIN(p)); \
251 /* make some more SVs by adding another arena */
260 sv_add_arena(PL_nice_chunk, PL_nice_chunk_size, 0);
261 PL_nice_chunk = NULL;
262 PL_nice_chunk_size = 0;
265 char *chunk; /* must use New here to match call to */
266 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
267 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
273 /* new_SV(): return a new, empty SV head */
275 #ifdef DEBUG_LEAKING_SCALARS
276 /* provide a real function for a debugger to play with */
278 S_new_SV(pTHX_ const char *file, int line, const char *func)
285 sv = S_more_sv(aTHX);
289 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
290 sv->sv_debug_line = (U16) (PL_parser && PL_parser->copline != NOLINE
296 sv->sv_debug_inpad = 0;
297 sv->sv_debug_cloned = 0;
298 sv->sv_debug_file = PL_curcop ? savepv(CopFILE(PL_curcop)): NULL;
300 sv->sv_debug_serial = PL_sv_serial++;
302 MEM_LOG_NEW_SV(sv, file, line, func);
303 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) new_SV (from %s:%d [%s])\n",
304 PTR2UV(sv), (long)sv->sv_debug_serial, file, line, func));
308 # define new_SV(p) (p)=S_new_SV(aTHX_ __FILE__, __LINE__, FUNCTION__)
316 (p) = S_more_sv(aTHX); \
320 MEM_LOG_NEW_SV(p, __FILE__, __LINE__, FUNCTION__); \
325 /* del_SV(): return an empty SV head to the free list */
338 S_del_sv(pTHX_ SV *p)
342 PERL_ARGS_ASSERT_DEL_SV;
347 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
348 const SV * const sv = sva + 1;
349 const SV * const svend = &sva[SvREFCNT(sva)];
350 if (p >= sv && p < svend) {
356 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
357 "Attempt to free non-arena SV: 0x%"UVxf
358 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
365 #else /* ! DEBUGGING */
367 #define del_SV(p) plant_SV(p)
369 #endif /* DEBUGGING */
373 =head1 SV Manipulation Functions
375 =for apidoc sv_add_arena
377 Given a chunk of memory, link it to the head of the list of arenas,
378 and split it into a list of free SVs.
384 S_sv_add_arena(pTHX_ char *const ptr, const U32 size, const U32 flags)
387 SV *const sva = MUTABLE_SV(ptr);
391 PERL_ARGS_ASSERT_SV_ADD_ARENA;
393 /* The first SV in an arena isn't an SV. */
394 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
395 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
396 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
398 PL_sv_arenaroot = sva;
399 PL_sv_root = sva + 1;
401 svend = &sva[SvREFCNT(sva) - 1];
404 SvARENA_CHAIN_SET(sv, (sv + 1));
408 /* Must always set typemask because it's always checked in on cleanup
409 when the arenas are walked looking for objects. */
410 SvFLAGS(sv) = SVTYPEMASK;
413 SvARENA_CHAIN_SET(sv, 0);
417 SvFLAGS(sv) = SVTYPEMASK;
420 /* visit(): call the named function for each non-free SV in the arenas
421 * whose flags field matches the flags/mask args. */
424 S_visit(pTHX_ SVFUNC_t f, const U32 flags, const U32 mask)
430 PERL_ARGS_ASSERT_VISIT;
432 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
433 register const SV * const svend = &sva[SvREFCNT(sva)];
435 for (sv = sva + 1; sv < svend; ++sv) {
436 if (SvTYPE(sv) != SVTYPEMASK
437 && (sv->sv_flags & mask) == flags
450 /* called by sv_report_used() for each live SV */
453 do_report_used(pTHX_ SV *const sv)
455 if (SvTYPE(sv) != SVTYPEMASK) {
456 PerlIO_printf(Perl_debug_log, "****\n");
463 =for apidoc sv_report_used
465 Dump the contents of all SVs not yet freed. (Debugging aid).
471 Perl_sv_report_used(pTHX)
474 visit(do_report_used, 0, 0);
480 /* called by sv_clean_objs() for each live SV */
483 do_clean_objs(pTHX_ SV *const ref)
488 SV * const target = SvRV(ref);
489 if (SvOBJECT(target)) {
490 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
491 if (SvWEAKREF(ref)) {
492 sv_del_backref(target, ref);
498 SvREFCNT_dec(target);
503 /* XXX Might want to check arrays, etc. */
506 /* called by sv_clean_objs() for each live SV */
508 #ifndef DISABLE_DESTRUCTOR_KLUDGE
510 do_clean_named_objs(pTHX_ SV *const sv)
513 assert(SvTYPE(sv) == SVt_PVGV);
514 assert(isGV_with_GP(sv));
517 #ifdef PERL_DONT_CREATE_GVSV
520 SvOBJECT(GvSV(sv))) ||
521 (GvAV(sv) && SvOBJECT(GvAV(sv))) ||
522 (GvHV(sv) && SvOBJECT(GvHV(sv))) ||
523 /* In certain rare cases GvIOp(sv) can be NULL, which would make SvOBJECT(GvIO(sv)) dereference NULL. */
524 (GvIO(sv) ? (SvFLAGS(GvIOp(sv)) & SVs_OBJECT) : 0) ||
525 (GvCV(sv) && SvOBJECT(GvCV(sv))) )
527 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning named glob object:\n "), sv_dump(sv)));
528 SvFLAGS(sv) |= SVf_BREAK;
536 =for apidoc sv_clean_objs
538 Attempt to destroy all objects not yet freed
544 Perl_sv_clean_objs(pTHX)
547 PL_in_clean_objs = TRUE;
548 visit(do_clean_objs, SVf_ROK, SVf_ROK);
549 #ifndef DISABLE_DESTRUCTOR_KLUDGE
550 /* some barnacles may yet remain, clinging to typeglobs */
551 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
553 PL_in_clean_objs = FALSE;
556 /* called by sv_clean_all() for each live SV */
559 do_clean_all(pTHX_ SV *const sv)
562 if (sv == (const SV *) PL_fdpid || sv == (const SV *)PL_strtab) {
563 /* don't clean pid table and strtab */
566 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
567 SvFLAGS(sv) |= SVf_BREAK;
572 =for apidoc sv_clean_all
574 Decrement the refcnt of each remaining SV, possibly triggering a
575 cleanup. This function may have to be called multiple times to free
576 SVs which are in complex self-referential hierarchies.
582 Perl_sv_clean_all(pTHX)
586 PL_in_clean_all = TRUE;
587 cleaned = visit(do_clean_all, 0,0);
588 PL_in_clean_all = FALSE;
593 ARENASETS: a meta-arena implementation which separates arena-info
594 into struct arena_set, which contains an array of struct
595 arena_descs, each holding info for a single arena. By separating
596 the meta-info from the arena, we recover the 1st slot, formerly
597 borrowed for list management. The arena_set is about the size of an
598 arena, avoiding the needless malloc overhead of a naive linked-list.
600 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
601 memory in the last arena-set (1/2 on average). In trade, we get
602 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
603 smaller types). The recovery of the wasted space allows use of
604 small arenas for large, rare body types, by changing array* fields
605 in body_details_by_type[] below.
608 char *arena; /* the raw storage, allocated aligned */
609 size_t size; /* its size ~4k typ */
610 svtype utype; /* bodytype stored in arena */
615 /* Get the maximum number of elements in set[] such that struct arena_set
616 will fit within PERL_ARENA_SIZE, which is probably just under 4K, and
617 therefore likely to be 1 aligned memory page. */
619 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
620 - 2 * sizeof(int)) / sizeof (struct arena_desc))
623 struct arena_set* next;
624 unsigned int set_size; /* ie ARENAS_PER_SET */
625 unsigned int curr; /* index of next available arena-desc */
626 struct arena_desc set[ARENAS_PER_SET];
630 =for apidoc sv_free_arenas
632 Deallocate the memory used by all arenas. Note that all the individual SV
633 heads and bodies within the arenas must already have been freed.
638 Perl_sv_free_arenas(pTHX)
645 /* Free arenas here, but be careful about fake ones. (We assume
646 contiguity of the fake ones with the corresponding real ones.) */
648 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
649 svanext = MUTABLE_SV(SvANY(sva));
650 while (svanext && SvFAKE(svanext))
651 svanext = MUTABLE_SV(SvANY(svanext));
658 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
661 struct arena_set *current = aroot;
664 assert(aroot->set[i].arena);
665 Safefree(aroot->set[i].arena);
673 i = PERL_ARENA_ROOTS_SIZE;
675 PL_body_roots[i] = 0;
677 Safefree(PL_nice_chunk);
678 PL_nice_chunk = NULL;
679 PL_nice_chunk_size = 0;
685 Here are mid-level routines that manage the allocation of bodies out
686 of the various arenas. There are 5 kinds of arenas:
688 1. SV-head arenas, which are discussed and handled above
689 2. regular body arenas
690 3. arenas for reduced-size bodies
692 5. pte arenas (thread related)
694 Arena types 2 & 3 are chained by body-type off an array of
695 arena-root pointers, which is indexed by svtype. Some of the
696 larger/less used body types are malloced singly, since a large
697 unused block of them is wasteful. Also, several svtypes dont have
698 bodies; the data fits into the sv-head itself. The arena-root
699 pointer thus has a few unused root-pointers (which may be hijacked
700 later for arena types 4,5)
702 3 differs from 2 as an optimization; some body types have several
703 unused fields in the front of the structure (which are kept in-place
704 for consistency). These bodies can be allocated in smaller chunks,
705 because the leading fields arent accessed. Pointers to such bodies
706 are decremented to point at the unused 'ghost' memory, knowing that
707 the pointers are used with offsets to the real memory.
709 HE, HEK arenas are managed separately, with separate code, but may
710 be merge-able later..
712 PTE arenas are not sv-bodies, but they share these mid-level
713 mechanics, so are considered here. The new mid-level mechanics rely
714 on the sv_type of the body being allocated, so we just reserve one
715 of the unused body-slots for PTEs, then use it in those (2) PTE
716 contexts below (line ~10k)
719 /* get_arena(size): this creates custom-sized arenas
720 TBD: export properly for hv.c: S_more_he().
723 Perl_get_arena(pTHX_ const size_t arena_size, const svtype bodytype)
726 struct arena_desc* adesc;
727 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
730 /* shouldnt need this
731 if (!arena_size) arena_size = PERL_ARENA_SIZE;
734 /* may need new arena-set to hold new arena */
735 if (!aroot || aroot->curr >= aroot->set_size) {
736 struct arena_set *newroot;
737 Newxz(newroot, 1, struct arena_set);
738 newroot->set_size = ARENAS_PER_SET;
739 newroot->next = aroot;
741 PL_body_arenas = (void *) newroot;
742 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
745 /* ok, now have arena-set with at least 1 empty/available arena-desc */
746 curr = aroot->curr++;
747 adesc = &(aroot->set[curr]);
748 assert(!adesc->arena);
750 Newx(adesc->arena, arena_size, char);
751 adesc->size = arena_size;
752 adesc->utype = bodytype;
753 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %"UVuf"\n",
754 curr, (void*)adesc->arena, (UV)arena_size));
760 /* return a thing to the free list */
762 #define del_body(thing, root) \
764 void ** const thing_copy = (void **)thing;\
765 *thing_copy = *root; \
766 *root = (void*)thing_copy; \
771 =head1 SV-Body Allocation
773 Allocation of SV-bodies is similar to SV-heads, differing as follows;
774 the allocation mechanism is used for many body types, so is somewhat
775 more complicated, it uses arena-sets, and has no need for still-live
778 At the outermost level, (new|del)_X*V macros return bodies of the
779 appropriate type. These macros call either (new|del)_body_type or
780 (new|del)_body_allocated macro pairs, depending on specifics of the
781 type. Most body types use the former pair, the latter pair is used to
782 allocate body types with "ghost fields".
784 "ghost fields" are fields that are unused in certain types, and
785 consequently don't need to actually exist. They are declared because
786 they're part of a "base type", which allows use of functions as
787 methods. The simplest examples are AVs and HVs, 2 aggregate types
788 which don't use the fields which support SCALAR semantics.
790 For these types, the arenas are carved up into appropriately sized
791 chunks, we thus avoid wasted memory for those unaccessed members.
792 When bodies are allocated, we adjust the pointer back in memory by the
793 size of the part not allocated, so it's as if we allocated the full
794 structure. (But things will all go boom if you write to the part that
795 is "not there", because you'll be overwriting the last members of the
796 preceding structure in memory.)
798 We calculate the correction using the STRUCT_OFFSET macro on the first
799 member present. If the allocated structure is smaller (no initial NV
800 actually allocated) then the net effect is to subtract the size of the NV
801 from the pointer, to return a new pointer as if an initial NV were actually
802 allocated. (We were using structures named *_allocated for this, but
803 this turned out to be a subtle bug, because a structure without an NV
804 could have a lower alignment constraint, but the compiler is allowed to
805 optimised accesses based on the alignment constraint of the actual pointer
806 to the full structure, for example, using a single 64 bit load instruction
807 because it "knows" that two adjacent 32 bit members will be 8-byte aligned.)
809 This is the same trick as was used for NV and IV bodies. Ironically it
810 doesn't need to be used for NV bodies any more, because NV is now at
811 the start of the structure. IV bodies don't need it either, because
812 they are no longer allocated.
814 In turn, the new_body_* allocators call S_new_body(), which invokes
815 new_body_inline macro, which takes a lock, and takes a body off the
816 linked list at PL_body_roots[sv_type], calling S_more_bodies() if
817 necessary to refresh an empty list. Then the lock is released, and
818 the body is returned.
820 S_more_bodies calls get_arena(), and carves it up into an array of N
821 bodies, which it strings into a linked list. It looks up arena-size
822 and body-size from the body_details table described below, thus
823 supporting the multiple body-types.
825 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
826 the (new|del)_X*V macros are mapped directly to malloc/free.
832 For each sv-type, struct body_details bodies_by_type[] carries
833 parameters which control these aspects of SV handling:
835 Arena_size determines whether arenas are used for this body type, and if
836 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
837 zero, forcing individual mallocs and frees.
839 Body_size determines how big a body is, and therefore how many fit into
840 each arena. Offset carries the body-pointer adjustment needed for
841 "ghost fields", and is used in *_allocated macros.
843 But its main purpose is to parameterize info needed in
844 Perl_sv_upgrade(). The info here dramatically simplifies the function
845 vs the implementation in 5.8.8, making it table-driven. All fields
846 are used for this, except for arena_size.
848 For the sv-types that have no bodies, arenas are not used, so those
849 PL_body_roots[sv_type] are unused, and can be overloaded. In
850 something of a special case, SVt_NULL is borrowed for HE arenas;
851 PL_body_roots[HE_SVSLOT=SVt_NULL] is filled by S_more_he, but the
852 bodies_by_type[SVt_NULL] slot is not used, as the table is not
855 PTEs also use arenas, but are never seen in Perl_sv_upgrade. Nonetheless,
856 they get their own slot in bodies_by_type[PTE_SVSLOT =SVt_IV], so they can
857 just use the same allocation semantics. At first, PTEs were also
858 overloaded to a non-body sv-type, but this yielded hard-to-find malloc
859 bugs, so was simplified by claiming a new slot. This choice has no
860 consequence at this time.
864 struct body_details {
865 U8 body_size; /* Size to allocate */
866 U8 copy; /* Size of structure to copy (may be shorter) */
868 unsigned int type : 4; /* We have space for a sanity check. */
869 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
870 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
871 unsigned int arena : 1; /* Allocated from an arena */
872 size_t arena_size; /* Size of arena to allocate */
880 /* With -DPURFIY we allocate everything directly, and don't use arenas.
881 This seems a rather elegant way to simplify some of the code below. */
882 #define HASARENA FALSE
884 #define HASARENA TRUE
886 #define NOARENA FALSE
888 /* Size the arenas to exactly fit a given number of bodies. A count
889 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
890 simplifying the default. If count > 0, the arena is sized to fit
891 only that many bodies, allowing arenas to be used for large, rare
892 bodies (XPVFM, XPVIO) without undue waste. The arena size is
893 limited by PERL_ARENA_SIZE, so we can safely oversize the
896 #define FIT_ARENA0(body_size) \
897 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
898 #define FIT_ARENAn(count,body_size) \
899 ( count * body_size <= PERL_ARENA_SIZE) \
900 ? count * body_size \
901 : FIT_ARENA0 (body_size)
902 #define FIT_ARENA(count,body_size) \
904 ? FIT_ARENAn (count, body_size) \
905 : FIT_ARENA0 (body_size)
907 /* Calculate the length to copy. Specifically work out the length less any
908 final padding the compiler needed to add. See the comment in sv_upgrade
909 for why copying the padding proved to be a bug. */
911 #define copy_length(type, last_member) \
912 STRUCT_OFFSET(type, last_member) \
913 + sizeof (((type*)SvANY((const SV *)0))->last_member)
915 static const struct body_details bodies_by_type[] = {
916 { sizeof(HE), 0, 0, SVt_NULL,
917 FALSE, NONV, NOARENA, FIT_ARENA(0, sizeof(HE)) },
919 /* The bind placeholder pretends to be an RV for now.
920 Also it's marked as "can't upgrade" to stop anyone using it before it's
922 { 0, 0, 0, SVt_BIND, TRUE, NONV, NOARENA, 0 },
924 /* IVs are in the head, so the allocation size is 0.
925 However, the slot is overloaded for PTEs. */
926 { sizeof(struct ptr_tbl_ent), /* This is used for PTEs. */
927 sizeof(IV), /* This is used to copy out the IV body. */
928 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
929 NOARENA /* IVS don't need an arena */,
930 /* But PTEs need to know the size of their arena */
931 FIT_ARENA(0, sizeof(struct ptr_tbl_ent))
934 /* 8 bytes on most ILP32 with IEEE doubles */
935 { sizeof(NV), sizeof(NV), 0, SVt_NV, FALSE, HADNV, HASARENA,
936 FIT_ARENA(0, sizeof(NV)) },
938 /* 8 bytes on most ILP32 with IEEE doubles */
939 { sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur),
940 copy_length(XPV, xpv_len) - STRUCT_OFFSET(XPV, xpv_cur),
941 + STRUCT_OFFSET(XPV, xpv_cur),
942 SVt_PV, FALSE, NONV, HASARENA,
943 FIT_ARENA(0, sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur)) },
946 { sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur),
947 copy_length(XPVIV, xiv_u) - STRUCT_OFFSET(XPV, xpv_cur),
948 + STRUCT_OFFSET(XPVIV, xpv_cur),
949 SVt_PVIV, FALSE, NONV, HASARENA,
950 FIT_ARENA(0, sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur)) },
953 { sizeof(XPVNV), copy_length(XPVNV, xiv_u), 0, SVt_PVNV, FALSE, HADNV,
954 HASARENA, FIT_ARENA(0, sizeof(XPVNV)) },
957 { sizeof(XPVMG), copy_length(XPVMG, xmg_stash), 0, SVt_PVMG, FALSE, HADNV,
958 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
961 { sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur),
962 sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur),
963 + STRUCT_OFFSET(regexp, xpv_cur),
964 SVt_REGEXP, FALSE, NONV, HASARENA,
965 FIT_ARENA(0, sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur))
969 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
970 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
973 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
974 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
976 { sizeof(XPVAV) - STRUCT_OFFSET(XPVAV, xav_fill),
977 copy_length(XPVAV, xmg_stash) - STRUCT_OFFSET(XPVAV, xav_fill),
978 + STRUCT_OFFSET(XPVAV, xav_fill),
979 SVt_PVAV, TRUE, NONV, HASARENA,
980 FIT_ARENA(0, sizeof(XPVAV) - STRUCT_OFFSET(XPVAV, xav_fill)) },
982 { sizeof(XPVHV) - STRUCT_OFFSET(XPVHV, xhv_fill),
983 copy_length(XPVHV, xmg_stash) - STRUCT_OFFSET(XPVHV, xhv_fill),
984 + STRUCT_OFFSET(XPVHV, xhv_fill),
985 SVt_PVHV, TRUE, NONV, HASARENA,
986 FIT_ARENA(0, sizeof(XPVHV) - STRUCT_OFFSET(XPVHV, xhv_fill)) },
989 { sizeof(XPVCV) - STRUCT_OFFSET(XPVCV, xpv_cur),
990 sizeof(XPVCV) - STRUCT_OFFSET(XPVCV, xpv_cur),
991 + STRUCT_OFFSET(XPVCV, xpv_cur),
992 SVt_PVCV, TRUE, NONV, HASARENA,
993 FIT_ARENA(0, sizeof(XPVCV) - STRUCT_OFFSET(XPVCV, xpv_cur)) },
995 { sizeof(XPVFM) - STRUCT_OFFSET(XPVFM, xpv_cur),
996 sizeof(XPVFM) - STRUCT_OFFSET(XPVFM, xpv_cur),
997 + STRUCT_OFFSET(XPVFM, xpv_cur),
998 SVt_PVFM, TRUE, NONV, NOARENA,
999 FIT_ARENA(20, sizeof(XPVFM) - STRUCT_OFFSET(XPVFM, xpv_cur)) },
1001 /* XPVIO is 84 bytes, fits 48x */
1002 { sizeof(XPVIO) - STRUCT_OFFSET(XPVIO, xpv_cur),
1003 sizeof(XPVIO) - STRUCT_OFFSET(XPVIO, xpv_cur),
1004 + STRUCT_OFFSET(XPVIO, xpv_cur),
1005 SVt_PVIO, TRUE, NONV, HASARENA,
1006 FIT_ARENA(24, sizeof(XPVIO) - STRUCT_OFFSET(XPVIO, xpv_cur)) },
1009 #define new_body_type(sv_type) \
1010 (void *)((char *)S_new_body(aTHX_ sv_type))
1012 #define del_body_type(p, sv_type) \
1013 del_body(p, &PL_body_roots[sv_type])
1016 #define new_body_allocated(sv_type) \
1017 (void *)((char *)S_new_body(aTHX_ sv_type) \
1018 - bodies_by_type[sv_type].offset)
1020 #define del_body_allocated(p, sv_type) \
1021 del_body(p + bodies_by_type[sv_type].offset, &PL_body_roots[sv_type])
1024 #define my_safemalloc(s) (void*)safemalloc(s)
1025 #define my_safecalloc(s) (void*)safecalloc(s, 1)
1026 #define my_safefree(p) safefree((char*)p)
1030 #define new_XNV() my_safemalloc(sizeof(XPVNV))
1031 #define del_XNV(p) my_safefree(p)
1033 #define new_XPVNV() my_safemalloc(sizeof(XPVNV))
1034 #define del_XPVNV(p) my_safefree(p)
1036 #define new_XPVAV() my_safemalloc(sizeof(XPVAV))
1037 #define del_XPVAV(p) my_safefree(p)
1039 #define new_XPVHV() my_safemalloc(sizeof(XPVHV))
1040 #define del_XPVHV(p) my_safefree(p)
1042 #define new_XPVMG() my_safemalloc(sizeof(XPVMG))
1043 #define del_XPVMG(p) my_safefree(p)
1045 #define new_XPVGV() my_safemalloc(sizeof(XPVGV))
1046 #define del_XPVGV(p) my_safefree(p)
1050 #define new_XNV() new_body_type(SVt_NV)
1051 #define del_XNV(p) del_body_type(p, SVt_NV)
1053 #define new_XPVNV() new_body_type(SVt_PVNV)
1054 #define del_XPVNV(p) del_body_type(p, SVt_PVNV)
1056 #define new_XPVAV() new_body_allocated(SVt_PVAV)
1057 #define del_XPVAV(p) del_body_allocated(p, SVt_PVAV)
1059 #define new_XPVHV() new_body_allocated(SVt_PVHV)
1060 #define del_XPVHV(p) del_body_allocated(p, SVt_PVHV)
1062 #define new_XPVMG() new_body_type(SVt_PVMG)
1063 #define del_XPVMG(p) del_body_type(p, SVt_PVMG)
1065 #define new_XPVGV() new_body_type(SVt_PVGV)
1066 #define del_XPVGV(p) del_body_type(p, SVt_PVGV)
1070 /* no arena for you! */
1072 #define new_NOARENA(details) \
1073 my_safemalloc((details)->body_size + (details)->offset)
1074 #define new_NOARENAZ(details) \
1075 my_safecalloc((details)->body_size + (details)->offset)
1078 S_more_bodies (pTHX_ const svtype sv_type)
1081 void ** const root = &PL_body_roots[sv_type];
1082 const struct body_details * const bdp = &bodies_by_type[sv_type];
1083 const size_t body_size = bdp->body_size;
1086 const size_t arena_size = Perl_malloc_good_size(bdp->arena_size);
1087 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1088 static bool done_sanity_check;
1090 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1091 * variables like done_sanity_check. */
1092 if (!done_sanity_check) {
1093 unsigned int i = SVt_LAST;
1095 done_sanity_check = TRUE;
1098 assert (bodies_by_type[i].type == i);
1102 assert(bdp->arena_size);
1104 start = (char*) Perl_get_arena(aTHX_ arena_size, sv_type);
1106 end = start + arena_size - 2 * body_size;
1108 /* computed count doesnt reflect the 1st slot reservation */
1109 #if defined(MYMALLOC) || defined(HAS_MALLOC_GOOD_SIZE)
1110 DEBUG_m(PerlIO_printf(Perl_debug_log,
1111 "arena %p end %p arena-size %d (from %d) type %d "
1113 (void*)start, (void*)end, (int)arena_size,
1114 (int)bdp->arena_size, sv_type, (int)body_size,
1115 (int)arena_size / (int)body_size));
1117 DEBUG_m(PerlIO_printf(Perl_debug_log,
1118 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1119 (void*)start, (void*)end,
1120 (int)bdp->arena_size, sv_type, (int)body_size,
1121 (int)bdp->arena_size / (int)body_size));
1123 *root = (void *)start;
1125 while (start <= end) {
1126 char * const next = start + body_size;
1127 *(void**) start = (void *)next;
1130 *(void **)start = 0;
1135 /* grab a new thing from the free list, allocating more if necessary.
1136 The inline version is used for speed in hot routines, and the
1137 function using it serves the rest (unless PURIFY).
1139 #define new_body_inline(xpv, sv_type) \
1141 void ** const r3wt = &PL_body_roots[sv_type]; \
1142 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1143 ? *((void **)(r3wt)) : more_bodies(sv_type)); \
1144 *(r3wt) = *(void**)(xpv); \
1150 S_new_body(pTHX_ const svtype sv_type)
1154 new_body_inline(xpv, sv_type);
1160 static const struct body_details fake_rv =
1161 { 0, 0, 0, SVt_IV, FALSE, NONV, NOARENA, 0 };
1164 =for apidoc sv_upgrade
1166 Upgrade an SV to a more complex form. Generally adds a new body type to the
1167 SV, then copies across as much information as possible from the old body.
1168 You generally want to use the C<SvUPGRADE> macro wrapper. See also C<svtype>.
1174 Perl_sv_upgrade(pTHX_ register SV *const sv, svtype new_type)
1179 const svtype old_type = SvTYPE(sv);
1180 const struct body_details *new_type_details;
1181 const struct body_details *old_type_details
1182 = bodies_by_type + old_type;
1183 SV *referant = NULL;
1185 PERL_ARGS_ASSERT_SV_UPGRADE;
1187 if (old_type == new_type)
1190 /* This clause was purposefully added ahead of the early return above to
1191 the shared string hackery for (sort {$a <=> $b} keys %hash), with the
1192 inference by Nick I-S that it would fix other troublesome cases. See
1193 changes 7162, 7163 (f130fd4589cf5fbb24149cd4db4137c8326f49c1 and parent)
1195 Given that shared hash key scalars are no longer PVIV, but PV, there is
1196 no longer need to unshare so as to free up the IVX slot for its proper
1197 purpose. So it's safe to move the early return earlier. */
1199 if (new_type != SVt_PV && SvIsCOW(sv)) {
1200 sv_force_normal_flags(sv, 0);
1203 old_body = SvANY(sv);
1205 /* Copying structures onto other structures that have been neatly zeroed
1206 has a subtle gotcha. Consider XPVMG
1208 +------+------+------+------+------+-------+-------+
1209 | NV | CUR | LEN | IV | MAGIC | STASH |
1210 +------+------+------+------+------+-------+-------+
1211 0 4 8 12 16 20 24 28
1213 where NVs are aligned to 8 bytes, so that sizeof that structure is
1214 actually 32 bytes long, with 4 bytes of padding at the end:
1216 +------+------+------+------+------+-------+-------+------+
1217 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1218 +------+------+------+------+------+-------+-------+------+
1219 0 4 8 12 16 20 24 28 32
1221 so what happens if you allocate memory for this structure:
1223 +------+------+------+------+------+-------+-------+------+------+...
1224 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1225 +------+------+------+------+------+-------+-------+------+------+...
1226 0 4 8 12 16 20 24 28 32 36
1228 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1229 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1230 started out as zero once, but it's quite possible that it isn't. So now,
1231 rather than a nicely zeroed GP, you have it pointing somewhere random.
1234 (In fact, GP ends up pointing at a previous GP structure, because the
1235 principle cause of the padding in XPVMG getting garbage is a copy of
1236 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1237 this happens to be moot because XPVGV has been re-ordered, with GP
1238 no longer after STASH)
1240 So we are careful and work out the size of used parts of all the
1248 referant = SvRV(sv);
1249 old_type_details = &fake_rv;
1250 if (new_type == SVt_NV)
1251 new_type = SVt_PVNV;
1253 if (new_type < SVt_PVIV) {
1254 new_type = (new_type == SVt_NV)
1255 ? SVt_PVNV : SVt_PVIV;
1260 if (new_type < SVt_PVNV) {
1261 new_type = SVt_PVNV;
1265 assert(new_type > SVt_PV);
1266 assert(SVt_IV < SVt_PV);
1267 assert(SVt_NV < SVt_PV);
1274 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1275 there's no way that it can be safely upgraded, because perl.c
1276 expects to Safefree(SvANY(PL_mess_sv)) */
1277 assert(sv != PL_mess_sv);
1278 /* This flag bit is used to mean other things in other scalar types.
1279 Given that it only has meaning inside the pad, it shouldn't be set
1280 on anything that can get upgraded. */
1281 assert(!SvPAD_TYPED(sv));
1284 if (old_type_details->cant_upgrade)
1285 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1286 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1289 if (old_type > new_type)
1290 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1291 (int)old_type, (int)new_type);
1293 new_type_details = bodies_by_type + new_type;
1295 SvFLAGS(sv) &= ~SVTYPEMASK;
1296 SvFLAGS(sv) |= new_type;
1298 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1299 the return statements above will have triggered. */
1300 assert (new_type != SVt_NULL);
1303 assert(old_type == SVt_NULL);
1304 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1308 assert(old_type == SVt_NULL);
1309 SvANY(sv) = new_XNV();
1314 assert(new_type_details->body_size);
1317 assert(new_type_details->arena);
1318 assert(new_type_details->arena_size);
1319 /* This points to the start of the allocated area. */
1320 new_body_inline(new_body, new_type);
1321 Zero(new_body, new_type_details->body_size, char);
1322 new_body = ((char *)new_body) - new_type_details->offset;
1324 /* We always allocated the full length item with PURIFY. To do this
1325 we fake things so that arena is false for all 16 types.. */
1326 new_body = new_NOARENAZ(new_type_details);
1328 SvANY(sv) = new_body;
1329 if (new_type == SVt_PVAV) {
1333 if (old_type_details->body_size) {
1336 /* It will have been zeroed when the new body was allocated.
1337 Lets not write to it, in case it confuses a write-back
1343 #ifndef NODEFAULT_SHAREKEYS
1344 HvSHAREKEYS_on(sv); /* key-sharing on by default */
1346 HvMAX(sv) = 7; /* (start with 8 buckets) */
1347 if (old_type_details->body_size) {
1350 /* It will have been zeroed when the new body was allocated.
1351 Lets not write to it, in case it confuses a write-back
1356 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1357 The target created by newSVrv also is, and it can have magic.
1358 However, it never has SvPVX set.
1360 if (old_type == SVt_IV) {
1362 } else if (old_type >= SVt_PV) {
1363 assert(SvPVX_const(sv) == 0);
1366 if (old_type >= SVt_PVMG) {
1367 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1368 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1370 sv->sv_u.svu_array = NULL; /* or svu_hash */
1376 /* XXX Is this still needed? Was it ever needed? Surely as there is
1377 no route from NV to PVIV, NOK can never be true */
1378 assert(!SvNOKp(sv));
1390 assert(new_type_details->body_size);
1391 /* We always allocated the full length item with PURIFY. To do this
1392 we fake things so that arena is false for all 16 types.. */
1393 if(new_type_details->arena) {
1394 /* This points to the start of the allocated area. */
1395 new_body_inline(new_body, new_type);
1396 Zero(new_body, new_type_details->body_size, char);
1397 new_body = ((char *)new_body) - new_type_details->offset;
1399 new_body = new_NOARENAZ(new_type_details);
1401 SvANY(sv) = new_body;
1403 if (old_type_details->copy) {
1404 /* There is now the potential for an upgrade from something without
1405 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1406 int offset = old_type_details->offset;
1407 int length = old_type_details->copy;
1409 if (new_type_details->offset > old_type_details->offset) {
1410 const int difference
1411 = new_type_details->offset - old_type_details->offset;
1412 offset += difference;
1413 length -= difference;
1415 assert (length >= 0);
1417 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1421 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1422 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1423 * correct 0.0 for us. Otherwise, if the old body didn't have an
1424 * NV slot, but the new one does, then we need to initialise the
1425 * freshly created NV slot with whatever the correct bit pattern is
1427 if (old_type_details->zero_nv && !new_type_details->zero_nv
1428 && !isGV_with_GP(sv))
1432 if (new_type == SVt_PVIO) {
1433 IO * const io = MUTABLE_IO(sv);
1434 GV *iogv = gv_fetchpvs("IO::Handle::", GV_ADD, SVt_PVHV);
1437 /* Clear the stashcache because a new IO could overrule a package
1439 hv_clear(PL_stashcache);
1441 SvSTASH_set(io, MUTABLE_HV(SvREFCNT_inc(GvHV(iogv))));
1442 IoPAGE_LEN(sv) = 60;
1444 if (old_type < SVt_PV) {
1445 /* referant will be NULL unless the old type was SVt_IV emulating
1447 sv->sv_u.svu_rv = referant;
1451 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1452 (unsigned long)new_type);
1455 if (old_type > SVt_IV) { /* SVt_IVs are overloaded for PTEs */
1457 my_safefree(old_body);
1459 /* Note that there is an assumption that all bodies of types that
1460 can be upgraded came from arenas. Only the more complex non-
1461 upgradable types are allowed to be directly malloc()ed. */
1462 assert(old_type_details->arena);
1463 del_body((void*)((char*)old_body + old_type_details->offset),
1464 &PL_body_roots[old_type]);
1470 =for apidoc sv_backoff
1472 Remove any string offset. You should normally use the C<SvOOK_off> macro
1479 Perl_sv_backoff(pTHX_ register SV *const sv)
1482 const char * const s = SvPVX_const(sv);
1484 PERL_ARGS_ASSERT_SV_BACKOFF;
1485 PERL_UNUSED_CONTEXT;
1488 assert(SvTYPE(sv) != SVt_PVHV);
1489 assert(SvTYPE(sv) != SVt_PVAV);
1491 SvOOK_offset(sv, delta);
1493 SvLEN_set(sv, SvLEN(sv) + delta);
1494 SvPV_set(sv, SvPVX(sv) - delta);
1495 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1496 SvFLAGS(sv) &= ~SVf_OOK;
1503 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1504 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1505 Use the C<SvGROW> wrapper instead.
1511 Perl_sv_grow(pTHX_ register SV *const sv, register STRLEN newlen)
1515 PERL_ARGS_ASSERT_SV_GROW;
1517 if (PL_madskills && newlen >= 0x100000) {
1518 PerlIO_printf(Perl_debug_log,
1519 "Allocation too large: %"UVxf"\n", (UV)newlen);
1521 #ifdef HAS_64K_LIMIT
1522 if (newlen >= 0x10000) {
1523 PerlIO_printf(Perl_debug_log,
1524 "Allocation too large: %"UVxf"\n", (UV)newlen);
1527 #endif /* HAS_64K_LIMIT */
1530 if (SvTYPE(sv) < SVt_PV) {
1531 sv_upgrade(sv, SVt_PV);
1532 s = SvPVX_mutable(sv);
1534 else if (SvOOK(sv)) { /* pv is offset? */
1536 s = SvPVX_mutable(sv);
1537 if (newlen > SvLEN(sv))
1538 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1539 #ifdef HAS_64K_LIMIT
1540 if (newlen >= 0x10000)
1545 s = SvPVX_mutable(sv);
1547 if (newlen > SvLEN(sv)) { /* need more room? */
1548 #ifndef Perl_safesysmalloc_size
1549 newlen = PERL_STRLEN_ROUNDUP(newlen);
1551 if (SvLEN(sv) && s) {
1552 s = (char*)saferealloc(s, newlen);
1555 s = (char*)safemalloc(newlen);
1556 if (SvPVX_const(sv) && SvCUR(sv)) {
1557 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1561 #ifdef Perl_safesysmalloc_size
1562 /* Do this here, do it once, do it right, and then we will never get
1563 called back into sv_grow() unless there really is some growing
1565 SvLEN_set(sv, Perl_safesysmalloc_size(s));
1567 SvLEN_set(sv, newlen);
1574 =for apidoc sv_setiv
1576 Copies an integer into the given SV, upgrading first if necessary.
1577 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1583 Perl_sv_setiv(pTHX_ register SV *const sv, const IV i)
1587 PERL_ARGS_ASSERT_SV_SETIV;
1589 SV_CHECK_THINKFIRST_COW_DROP(sv);
1590 switch (SvTYPE(sv)) {
1593 sv_upgrade(sv, SVt_IV);
1596 sv_upgrade(sv, SVt_PVIV);
1600 if (!isGV_with_GP(sv))
1607 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1611 (void)SvIOK_only(sv); /* validate number */
1617 =for apidoc sv_setiv_mg
1619 Like C<sv_setiv>, but also handles 'set' magic.
1625 Perl_sv_setiv_mg(pTHX_ register SV *const sv, const IV i)
1627 PERL_ARGS_ASSERT_SV_SETIV_MG;
1634 =for apidoc sv_setuv
1636 Copies an unsigned integer into the given SV, upgrading first if necessary.
1637 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1643 Perl_sv_setuv(pTHX_ register SV *const sv, const UV u)
1645 PERL_ARGS_ASSERT_SV_SETUV;
1647 /* With these two if statements:
1648 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1651 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1653 If you wish to remove them, please benchmark to see what the effect is
1655 if (u <= (UV)IV_MAX) {
1656 sv_setiv(sv, (IV)u);
1665 =for apidoc sv_setuv_mg
1667 Like C<sv_setuv>, but also handles 'set' magic.
1673 Perl_sv_setuv_mg(pTHX_ register SV *const sv, const UV u)
1675 PERL_ARGS_ASSERT_SV_SETUV_MG;
1682 =for apidoc sv_setnv
1684 Copies a double into the given SV, upgrading first if necessary.
1685 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1691 Perl_sv_setnv(pTHX_ register SV *const sv, const NV num)
1695 PERL_ARGS_ASSERT_SV_SETNV;
1697 SV_CHECK_THINKFIRST_COW_DROP(sv);
1698 switch (SvTYPE(sv)) {
1701 sv_upgrade(sv, SVt_NV);
1705 sv_upgrade(sv, SVt_PVNV);
1709 if (!isGV_with_GP(sv))
1716 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1721 (void)SvNOK_only(sv); /* validate number */
1726 =for apidoc sv_setnv_mg
1728 Like C<sv_setnv>, but also handles 'set' magic.
1734 Perl_sv_setnv_mg(pTHX_ register SV *const sv, const NV num)
1736 PERL_ARGS_ASSERT_SV_SETNV_MG;
1742 /* Print an "isn't numeric" warning, using a cleaned-up,
1743 * printable version of the offending string
1747 S_not_a_number(pTHX_ SV *const sv)
1754 PERL_ARGS_ASSERT_NOT_A_NUMBER;
1757 dsv = newSVpvs_flags("", SVs_TEMP);
1758 pv = sv_uni_display(dsv, sv, 10, 0);
1761 const char * const limit = tmpbuf + sizeof(tmpbuf) - 8;
1762 /* each *s can expand to 4 chars + "...\0",
1763 i.e. need room for 8 chars */
1765 const char *s = SvPVX_const(sv);
1766 const char * const end = s + SvCUR(sv);
1767 for ( ; s < end && d < limit; s++ ) {
1769 if (ch & 128 && !isPRINT_LC(ch)) {
1778 else if (ch == '\r') {
1782 else if (ch == '\f') {
1786 else if (ch == '\\') {
1790 else if (ch == '\0') {
1794 else if (isPRINT_LC(ch))
1811 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1812 "Argument \"%s\" isn't numeric in %s", pv,
1815 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1816 "Argument \"%s\" isn't numeric", pv);
1820 =for apidoc looks_like_number
1822 Test if the content of an SV looks like a number (or is a number).
1823 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1824 non-numeric warning), even if your atof() doesn't grok them.
1830 Perl_looks_like_number(pTHX_ SV *const sv)
1832 register const char *sbegin;
1835 PERL_ARGS_ASSERT_LOOKS_LIKE_NUMBER;
1838 sbegin = SvPVX_const(sv);
1841 else if (SvPOKp(sv))
1842 sbegin = SvPV_const(sv, len);
1844 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1845 return grok_number(sbegin, len, NULL);
1849 S_glob_2number(pTHX_ GV * const gv)
1851 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1852 SV *const buffer = sv_newmortal();
1854 PERL_ARGS_ASSERT_GLOB_2NUMBER;
1856 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1859 gv_efullname3(buffer, gv, "*");
1860 SvFLAGS(gv) |= wasfake;
1862 /* We know that all GVs stringify to something that is not-a-number,
1863 so no need to test that. */
1864 if (ckWARN(WARN_NUMERIC))
1865 not_a_number(buffer);
1866 /* We just want something true to return, so that S_sv_2iuv_common
1867 can tail call us and return true. */
1871 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1872 until proven guilty, assume that things are not that bad... */
1877 As 64 bit platforms often have an NV that doesn't preserve all bits of
1878 an IV (an assumption perl has been based on to date) it becomes necessary
1879 to remove the assumption that the NV always carries enough precision to
1880 recreate the IV whenever needed, and that the NV is the canonical form.
1881 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1882 precision as a side effect of conversion (which would lead to insanity
1883 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1884 1) to distinguish between IV/UV/NV slots that have cached a valid
1885 conversion where precision was lost and IV/UV/NV slots that have a
1886 valid conversion which has lost no precision
1887 2) to ensure that if a numeric conversion to one form is requested that
1888 would lose precision, the precise conversion (or differently
1889 imprecise conversion) is also performed and cached, to prevent
1890 requests for different numeric formats on the same SV causing
1891 lossy conversion chains. (lossless conversion chains are perfectly
1896 SvIOKp is true if the IV slot contains a valid value
1897 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1898 SvNOKp is true if the NV slot contains a valid value
1899 SvNOK is true only if the NV value is accurate
1902 while converting from PV to NV, check to see if converting that NV to an
1903 IV(or UV) would lose accuracy over a direct conversion from PV to
1904 IV(or UV). If it would, cache both conversions, return NV, but mark
1905 SV as IOK NOKp (ie not NOK).
1907 While converting from PV to IV, check to see if converting that IV to an
1908 NV would lose accuracy over a direct conversion from PV to NV. If it
1909 would, cache both conversions, flag similarly.
1911 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1912 correctly because if IV & NV were set NV *always* overruled.
1913 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1914 changes - now IV and NV together means that the two are interchangeable:
1915 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1917 The benefit of this is that operations such as pp_add know that if
1918 SvIOK is true for both left and right operands, then integer addition
1919 can be used instead of floating point (for cases where the result won't
1920 overflow). Before, floating point was always used, which could lead to
1921 loss of precision compared with integer addition.
1923 * making IV and NV equal status should make maths accurate on 64 bit
1925 * may speed up maths somewhat if pp_add and friends start to use
1926 integers when possible instead of fp. (Hopefully the overhead in
1927 looking for SvIOK and checking for overflow will not outweigh the
1928 fp to integer speedup)
1929 * will slow down integer operations (callers of SvIV) on "inaccurate"
1930 values, as the change from SvIOK to SvIOKp will cause a call into
1931 sv_2iv each time rather than a macro access direct to the IV slot
1932 * should speed up number->string conversion on integers as IV is
1933 favoured when IV and NV are equally accurate
1935 ####################################################################
1936 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1937 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1938 On the other hand, SvUOK is true iff UV.
1939 ####################################################################
1941 Your mileage will vary depending your CPU's relative fp to integer
1945 #ifndef NV_PRESERVES_UV
1946 # define IS_NUMBER_UNDERFLOW_IV 1
1947 # define IS_NUMBER_UNDERFLOW_UV 2
1948 # define IS_NUMBER_IV_AND_UV 2
1949 # define IS_NUMBER_OVERFLOW_IV 4
1950 # define IS_NUMBER_OVERFLOW_UV 5
1952 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1954 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1956 S_sv_2iuv_non_preserve(pTHX_ register SV *const sv
1964 PERL_ARGS_ASSERT_SV_2IUV_NON_PRESERVE;
1966 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1967 if (SvNVX(sv) < (NV)IV_MIN) {
1968 (void)SvIOKp_on(sv);
1970 SvIV_set(sv, IV_MIN);
1971 return IS_NUMBER_UNDERFLOW_IV;
1973 if (SvNVX(sv) > (NV)UV_MAX) {
1974 (void)SvIOKp_on(sv);
1977 SvUV_set(sv, UV_MAX);
1978 return IS_NUMBER_OVERFLOW_UV;
1980 (void)SvIOKp_on(sv);
1982 /* Can't use strtol etc to convert this string. (See truth table in
1984 if (SvNVX(sv) <= (UV)IV_MAX) {
1985 SvIV_set(sv, I_V(SvNVX(sv)));
1986 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1987 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1989 /* Integer is imprecise. NOK, IOKp */
1991 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
1994 SvUV_set(sv, U_V(SvNVX(sv)));
1995 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
1996 if (SvUVX(sv) == UV_MAX) {
1997 /* As we know that NVs don't preserve UVs, UV_MAX cannot
1998 possibly be preserved by NV. Hence, it must be overflow.
2000 return IS_NUMBER_OVERFLOW_UV;
2002 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
2004 /* Integer is imprecise. NOK, IOKp */
2006 return IS_NUMBER_OVERFLOW_IV;
2008 #endif /* !NV_PRESERVES_UV*/
2011 S_sv_2iuv_common(pTHX_ SV *const sv)
2015 PERL_ARGS_ASSERT_SV_2IUV_COMMON;
2018 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
2019 * without also getting a cached IV/UV from it at the same time
2020 * (ie PV->NV conversion should detect loss of accuracy and cache
2021 * IV or UV at same time to avoid this. */
2022 /* IV-over-UV optimisation - choose to cache IV if possible */
2024 if (SvTYPE(sv) == SVt_NV)
2025 sv_upgrade(sv, SVt_PVNV);
2027 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
2028 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
2029 certainly cast into the IV range at IV_MAX, whereas the correct
2030 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
2032 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
2033 if (Perl_isnan(SvNVX(sv))) {
2039 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2040 SvIV_set(sv, I_V(SvNVX(sv)));
2041 if (SvNVX(sv) == (NV) SvIVX(sv)
2042 #ifndef NV_PRESERVES_UV
2043 && (((UV)1 << NV_PRESERVES_UV_BITS) >
2044 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
2045 /* Don't flag it as "accurately an integer" if the number
2046 came from a (by definition imprecise) NV operation, and
2047 we're outside the range of NV integer precision */
2051 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
2053 /* scalar has trailing garbage, eg "42a" */
2055 DEBUG_c(PerlIO_printf(Perl_debug_log,
2056 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
2062 /* IV not precise. No need to convert from PV, as NV
2063 conversion would already have cached IV if it detected
2064 that PV->IV would be better than PV->NV->IV
2065 flags already correct - don't set public IOK. */
2066 DEBUG_c(PerlIO_printf(Perl_debug_log,
2067 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
2072 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
2073 but the cast (NV)IV_MIN rounds to a the value less (more
2074 negative) than IV_MIN which happens to be equal to SvNVX ??
2075 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
2076 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
2077 (NV)UVX == NVX are both true, but the values differ. :-(
2078 Hopefully for 2s complement IV_MIN is something like
2079 0x8000000000000000 which will be exact. NWC */
2082 SvUV_set(sv, U_V(SvNVX(sv)));
2084 (SvNVX(sv) == (NV) SvUVX(sv))
2085 #ifndef NV_PRESERVES_UV
2086 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
2087 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
2088 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
2089 /* Don't flag it as "accurately an integer" if the number
2090 came from a (by definition imprecise) NV operation, and
2091 we're outside the range of NV integer precision */
2097 DEBUG_c(PerlIO_printf(Perl_debug_log,
2098 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
2104 else if (SvPOKp(sv) && SvLEN(sv)) {
2106 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2107 /* We want to avoid a possible problem when we cache an IV/ a UV which
2108 may be later translated to an NV, and the resulting NV is not
2109 the same as the direct translation of the initial string
2110 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
2111 be careful to ensure that the value with the .456 is around if the
2112 NV value is requested in the future).
2114 This means that if we cache such an IV/a UV, we need to cache the
2115 NV as well. Moreover, we trade speed for space, and do not
2116 cache the NV if we are sure it's not needed.
2119 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
2120 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2121 == IS_NUMBER_IN_UV) {
2122 /* It's definitely an integer, only upgrade to PVIV */
2123 if (SvTYPE(sv) < SVt_PVIV)
2124 sv_upgrade(sv, SVt_PVIV);
2126 } else if (SvTYPE(sv) < SVt_PVNV)
2127 sv_upgrade(sv, SVt_PVNV);
2129 /* If NVs preserve UVs then we only use the UV value if we know that
2130 we aren't going to call atof() below. If NVs don't preserve UVs
2131 then the value returned may have more precision than atof() will
2132 return, even though value isn't perfectly accurate. */
2133 if ((numtype & (IS_NUMBER_IN_UV
2134 #ifdef NV_PRESERVES_UV
2137 )) == IS_NUMBER_IN_UV) {
2138 /* This won't turn off the public IOK flag if it was set above */
2139 (void)SvIOKp_on(sv);
2141 if (!(numtype & IS_NUMBER_NEG)) {
2143 if (value <= (UV)IV_MAX) {
2144 SvIV_set(sv, (IV)value);
2146 /* it didn't overflow, and it was positive. */
2147 SvUV_set(sv, value);
2151 /* 2s complement assumption */
2152 if (value <= (UV)IV_MIN) {
2153 SvIV_set(sv, -(IV)value);
2155 /* Too negative for an IV. This is a double upgrade, but
2156 I'm assuming it will be rare. */
2157 if (SvTYPE(sv) < SVt_PVNV)
2158 sv_upgrade(sv, SVt_PVNV);
2162 SvNV_set(sv, -(NV)value);
2163 SvIV_set(sv, IV_MIN);
2167 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2168 will be in the previous block to set the IV slot, and the next
2169 block to set the NV slot. So no else here. */
2171 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2172 != IS_NUMBER_IN_UV) {
2173 /* It wasn't an (integer that doesn't overflow the UV). */
2174 SvNV_set(sv, Atof(SvPVX_const(sv)));
2176 if (! numtype && ckWARN(WARN_NUMERIC))
2179 #if defined(USE_LONG_DOUBLE)
2180 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2181 PTR2UV(sv), SvNVX(sv)));
2183 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2184 PTR2UV(sv), SvNVX(sv)));
2187 #ifdef NV_PRESERVES_UV
2188 (void)SvIOKp_on(sv);
2190 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2191 SvIV_set(sv, I_V(SvNVX(sv)));
2192 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2195 NOOP; /* Integer is imprecise. NOK, IOKp */
2197 /* UV will not work better than IV */
2199 if (SvNVX(sv) > (NV)UV_MAX) {
2201 /* Integer is inaccurate. NOK, IOKp, is UV */
2202 SvUV_set(sv, UV_MAX);
2204 SvUV_set(sv, U_V(SvNVX(sv)));
2205 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2206 NV preservse UV so can do correct comparison. */
2207 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2210 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2215 #else /* NV_PRESERVES_UV */
2216 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2217 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2218 /* The IV/UV slot will have been set from value returned by
2219 grok_number above. The NV slot has just been set using
2222 assert (SvIOKp(sv));
2224 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2225 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2226 /* Small enough to preserve all bits. */
2227 (void)SvIOKp_on(sv);
2229 SvIV_set(sv, I_V(SvNVX(sv)));
2230 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2232 /* Assumption: first non-preserved integer is < IV_MAX,
2233 this NV is in the preserved range, therefore: */
2234 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2236 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2240 0 0 already failed to read UV.
2241 0 1 already failed to read UV.
2242 1 0 you won't get here in this case. IV/UV
2243 slot set, public IOK, Atof() unneeded.
2244 1 1 already read UV.
2245 so there's no point in sv_2iuv_non_preserve() attempting
2246 to use atol, strtol, strtoul etc. */
2248 sv_2iuv_non_preserve (sv, numtype);
2250 sv_2iuv_non_preserve (sv);
2254 #endif /* NV_PRESERVES_UV */
2255 /* It might be more code efficient to go through the entire logic above
2256 and conditionally set with SvIOKp_on() rather than SvIOK(), but it
2257 gets complex and potentially buggy, so more programmer efficient
2258 to do it this way, by turning off the public flags: */
2260 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2264 if (isGV_with_GP(sv))
2265 return glob_2number(MUTABLE_GV(sv));
2267 if (!(SvFLAGS(sv) & SVs_PADTMP)) {
2268 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2271 if (SvTYPE(sv) < SVt_IV)
2272 /* Typically the caller expects that sv_any is not NULL now. */
2273 sv_upgrade(sv, SVt_IV);
2274 /* Return 0 from the caller. */
2281 =for apidoc sv_2iv_flags
2283 Return the integer value of an SV, doing any necessary string
2284 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2285 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2291 Perl_sv_2iv_flags(pTHX_ register SV *const sv, const I32 flags)
2296 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2297 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2298 cache IVs just in case. In practice it seems that they never
2299 actually anywhere accessible by user Perl code, let alone get used
2300 in anything other than a string context. */
2301 if (flags & SV_GMAGIC)
2306 return I_V(SvNVX(sv));
2308 if (SvPOKp(sv) && SvLEN(sv)) {
2311 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2313 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2314 == IS_NUMBER_IN_UV) {
2315 /* It's definitely an integer */
2316 if (numtype & IS_NUMBER_NEG) {
2317 if (value < (UV)IV_MIN)
2320 if (value < (UV)IV_MAX)
2325 if (ckWARN(WARN_NUMERIC))
2328 return I_V(Atof(SvPVX_const(sv)));
2333 assert(SvTYPE(sv) >= SVt_PVMG);
2334 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2335 } else if (SvTHINKFIRST(sv)) {
2339 SV * const tmpstr=AMG_CALLun(sv,numer);
2340 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2341 return SvIV(tmpstr);
2344 return PTR2IV(SvRV(sv));
2347 sv_force_normal_flags(sv, 0);
2349 if (SvREADONLY(sv) && !SvOK(sv)) {
2350 if (ckWARN(WARN_UNINITIALIZED))
2356 if (S_sv_2iuv_common(aTHX_ sv))
2359 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2360 PTR2UV(sv),SvIVX(sv)));
2361 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2365 =for apidoc sv_2uv_flags
2367 Return the unsigned integer value of an SV, doing any necessary string
2368 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2369 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2375 Perl_sv_2uv_flags(pTHX_ register SV *const sv, const I32 flags)
2380 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2381 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2382 cache IVs just in case. */
2383 if (flags & SV_GMAGIC)
2388 return U_V(SvNVX(sv));
2389 if (SvPOKp(sv) && SvLEN(sv)) {
2392 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2394 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2395 == IS_NUMBER_IN_UV) {
2396 /* It's definitely an integer */
2397 if (!(numtype & IS_NUMBER_NEG))
2401 if (ckWARN(WARN_NUMERIC))
2404 return U_V(Atof(SvPVX_const(sv)));
2409 assert(SvTYPE(sv) >= SVt_PVMG);
2410 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2411 } else if (SvTHINKFIRST(sv)) {
2415 SV *const tmpstr = AMG_CALLun(sv,numer);
2416 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2417 return SvUV(tmpstr);
2420 return PTR2UV(SvRV(sv));
2423 sv_force_normal_flags(sv, 0);
2425 if (SvREADONLY(sv) && !SvOK(sv)) {
2426 if (ckWARN(WARN_UNINITIALIZED))
2432 if (S_sv_2iuv_common(aTHX_ sv))
2436 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2437 PTR2UV(sv),SvUVX(sv)));
2438 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2444 Return the num value of an SV, doing any necessary string or integer
2445 conversion, magic etc. Normally used via the C<SvNV(sv)> and C<SvNVx(sv)>
2452 Perl_sv_2nv(pTHX_ register SV *const sv)
2457 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2458 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2459 cache IVs just in case. */
2463 if ((SvPOKp(sv) && SvLEN(sv)) && !SvIOKp(sv)) {
2464 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2465 !grok_number(SvPVX_const(sv), SvCUR(sv), NULL))
2467 return Atof(SvPVX_const(sv));
2471 return (NV)SvUVX(sv);
2473 return (NV)SvIVX(sv);
2478 assert(SvTYPE(sv) >= SVt_PVMG);
2479 /* This falls through to the report_uninit near the end of the
2481 } else if (SvTHINKFIRST(sv)) {
2485 SV *const tmpstr = AMG_CALLun(sv,numer);
2486 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2487 return SvNV(tmpstr);
2490 return PTR2NV(SvRV(sv));
2493 sv_force_normal_flags(sv, 0);
2495 if (SvREADONLY(sv) && !SvOK(sv)) {
2496 if (ckWARN(WARN_UNINITIALIZED))
2501 if (SvTYPE(sv) < SVt_NV) {
2502 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2503 sv_upgrade(sv, SVt_NV);
2504 #ifdef USE_LONG_DOUBLE
2506 STORE_NUMERIC_LOCAL_SET_STANDARD();
2507 PerlIO_printf(Perl_debug_log,
2508 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2509 PTR2UV(sv), SvNVX(sv));
2510 RESTORE_NUMERIC_LOCAL();
2514 STORE_NUMERIC_LOCAL_SET_STANDARD();
2515 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2516 PTR2UV(sv), SvNVX(sv));
2517 RESTORE_NUMERIC_LOCAL();
2521 else if (SvTYPE(sv) < SVt_PVNV)
2522 sv_upgrade(sv, SVt_PVNV);
2527 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2528 #ifdef NV_PRESERVES_UV
2534 /* Only set the public NV OK flag if this NV preserves the IV */
2535 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2537 SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2538 : (SvIVX(sv) == I_V(SvNVX(sv))))
2544 else if (SvPOKp(sv) && SvLEN(sv)) {
2546 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2547 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2549 #ifdef NV_PRESERVES_UV
2550 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2551 == IS_NUMBER_IN_UV) {
2552 /* It's definitely an integer */
2553 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2555 SvNV_set(sv, Atof(SvPVX_const(sv)));
2561 SvNV_set(sv, Atof(SvPVX_const(sv)));
2562 /* Only set the public NV OK flag if this NV preserves the value in
2563 the PV at least as well as an IV/UV would.
2564 Not sure how to do this 100% reliably. */
2565 /* if that shift count is out of range then Configure's test is
2566 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2568 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2569 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2570 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2571 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2572 /* Can't use strtol etc to convert this string, so don't try.
2573 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2576 /* value has been set. It may not be precise. */
2577 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2578 /* 2s complement assumption for (UV)IV_MIN */
2579 SvNOK_on(sv); /* Integer is too negative. */
2584 if (numtype & IS_NUMBER_NEG) {
2585 SvIV_set(sv, -(IV)value);
2586 } else if (value <= (UV)IV_MAX) {
2587 SvIV_set(sv, (IV)value);
2589 SvUV_set(sv, value);
2593 if (numtype & IS_NUMBER_NOT_INT) {
2594 /* I believe that even if the original PV had decimals,
2595 they are lost beyond the limit of the FP precision.
2596 However, neither is canonical, so both only get p
2597 flags. NWC, 2000/11/25 */
2598 /* Both already have p flags, so do nothing */
2600 const NV nv = SvNVX(sv);
2601 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2602 if (SvIVX(sv) == I_V(nv)) {
2605 /* It had no "." so it must be integer. */
2609 /* between IV_MAX and NV(UV_MAX).
2610 Could be slightly > UV_MAX */
2612 if (numtype & IS_NUMBER_NOT_INT) {
2613 /* UV and NV both imprecise. */
2615 const UV nv_as_uv = U_V(nv);
2617 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2626 /* It might be more code efficient to go through the entire logic above
2627 and conditionally set with SvNOKp_on() rather than SvNOK(), but it
2628 gets complex and potentially buggy, so more programmer efficient
2629 to do it this way, by turning off the public flags: */
2631 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2632 #endif /* NV_PRESERVES_UV */
2635 if (isGV_with_GP(sv)) {
2636 glob_2number(MUTABLE_GV(sv));
2640 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2642 assert (SvTYPE(sv) >= SVt_NV);
2643 /* Typically the caller expects that sv_any is not NULL now. */
2644 /* XXX Ilya implies that this is a bug in callers that assume this
2645 and ideally should be fixed. */
2648 #if defined(USE_LONG_DOUBLE)
2650 STORE_NUMERIC_LOCAL_SET_STANDARD();
2651 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2652 PTR2UV(sv), SvNVX(sv));
2653 RESTORE_NUMERIC_LOCAL();
2657 STORE_NUMERIC_LOCAL_SET_STANDARD();
2658 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2659 PTR2UV(sv), SvNVX(sv));
2660 RESTORE_NUMERIC_LOCAL();
2669 Return an SV with the numeric value of the source SV, doing any necessary
2670 reference or overload conversion. You must use the C<SvNUM(sv)> macro to
2671 access this function.
2677 Perl_sv_2num(pTHX_ register SV *const sv)
2679 PERL_ARGS_ASSERT_SV_2NUM;
2684 SV * const tmpsv = AMG_CALLun(sv,numer);
2685 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2686 return sv_2num(tmpsv);
2688 return sv_2mortal(newSVuv(PTR2UV(SvRV(sv))));
2691 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2692 * UV as a string towards the end of buf, and return pointers to start and
2695 * We assume that buf is at least TYPE_CHARS(UV) long.
2699 S_uiv_2buf(char *const buf, const IV iv, UV uv, const int is_uv, char **const peob)
2701 char *ptr = buf + TYPE_CHARS(UV);
2702 char * const ebuf = ptr;
2705 PERL_ARGS_ASSERT_UIV_2BUF;
2717 *--ptr = '0' + (char)(uv % 10);
2726 =for apidoc sv_2pv_flags
2728 Returns a pointer to the string value of an SV, and sets *lp to its length.
2729 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a string
2731 Normally invoked via the C<SvPV_flags> macro. C<sv_2pv()> and C<sv_2pv_nomg>
2732 usually end up here too.
2738 Perl_sv_2pv_flags(pTHX_ register SV *const sv, STRLEN *const lp, const I32 flags)
2748 if (SvGMAGICAL(sv)) {
2749 if (flags & SV_GMAGIC)
2754 if (flags & SV_MUTABLE_RETURN)
2755 return SvPVX_mutable(sv);
2756 if (flags & SV_CONST_RETURN)
2757 return (char *)SvPVX_const(sv);
2760 if (SvIOKp(sv) || SvNOKp(sv)) {
2761 char tbuf[64]; /* Must fit sprintf/Gconvert of longest IV/NV */
2766 ? my_snprintf(tbuf, sizeof(tbuf), "%"UVuf, (UV)SvUVX(sv))
2767 : my_snprintf(tbuf, sizeof(tbuf), "%"IVdf, (IV)SvIVX(sv));
2769 Gconvert(SvNVX(sv), NV_DIG, 0, tbuf);
2776 #ifdef FIXNEGATIVEZERO
2777 if (len == 2 && tbuf[0] == '-' && tbuf[1] == '0') {
2783 SvUPGRADE(sv, SVt_PV);
2786 s = SvGROW_mutable(sv, len + 1);
2789 return (char*)memcpy(s, tbuf, len + 1);
2795 assert(SvTYPE(sv) >= SVt_PVMG);
2796 /* This falls through to the report_uninit near the end of the
2798 } else if (SvTHINKFIRST(sv)) {
2802 SV *const tmpstr = AMG_CALLun(sv,string);
2803 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2805 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2809 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2810 if (flags & SV_CONST_RETURN) {
2811 pv = (char *) SvPVX_const(tmpstr);
2813 pv = (flags & SV_MUTABLE_RETURN)
2814 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2817 *lp = SvCUR(tmpstr);
2819 pv = sv_2pv_flags(tmpstr, lp, flags);
2832 SV *const referent = SvRV(sv);
2836 retval = buffer = savepvn("NULLREF", len);
2837 } else if (SvTYPE(referent) == SVt_REGEXP) {
2838 REGEXP * const re = (REGEXP *)MUTABLE_PTR(referent);
2843 /* If the regex is UTF-8 we want the containing scalar to
2844 have an UTF-8 flag too */
2850 if ((seen_evals = RX_SEEN_EVALS(re)))
2851 PL_reginterp_cnt += seen_evals;
2854 *lp = RX_WRAPLEN(re);
2856 return RX_WRAPPED(re);
2858 const char *const typestr = sv_reftype(referent, 0);
2859 const STRLEN typelen = strlen(typestr);
2860 UV addr = PTR2UV(referent);
2861 const char *stashname = NULL;
2862 STRLEN stashnamelen = 0; /* hush, gcc */
2863 const char *buffer_end;
2865 if (SvOBJECT(referent)) {
2866 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2869 stashname = HEK_KEY(name);
2870 stashnamelen = HEK_LEN(name);
2872 if (HEK_UTF8(name)) {
2878 stashname = "__ANON__";
2881 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2882 + 2 * sizeof(UV) + 2 /* )\0 */;
2884 len = typelen + 3 /* (0x */
2885 + 2 * sizeof(UV) + 2 /* )\0 */;
2888 Newx(buffer, len, char);
2889 buffer_end = retval = buffer + len;
2891 /* Working backwards */
2895 *--retval = PL_hexdigit[addr & 15];
2896 } while (addr >>= 4);
2902 memcpy(retval, typestr, typelen);
2906 retval -= stashnamelen;
2907 memcpy(retval, stashname, stashnamelen);
2909 /* retval may not neccesarily have reached the start of the
2911 assert (retval >= buffer);
2913 len = buffer_end - retval - 1; /* -1 for that \0 */
2921 if (SvREADONLY(sv) && !SvOK(sv)) {
2924 if (flags & SV_UNDEF_RETURNS_NULL)
2926 if (ckWARN(WARN_UNINITIALIZED))
2931 if (SvIOK(sv) || ((SvIOKp(sv) && !SvNOKp(sv)))) {
2932 /* I'm assuming that if both IV and NV are equally valid then
2933 converting the IV is going to be more efficient */
2934 const U32 isUIOK = SvIsUV(sv);
2935 char buf[TYPE_CHARS(UV)];
2939 if (SvTYPE(sv) < SVt_PVIV)
2940 sv_upgrade(sv, SVt_PVIV);
2941 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2943 /* inlined from sv_setpvn */
2944 s = SvGROW_mutable(sv, len + 1);
2945 Move(ptr, s, len, char);
2949 else if (SvNOKp(sv)) {
2951 if (SvTYPE(sv) < SVt_PVNV)
2952 sv_upgrade(sv, SVt_PVNV);
2953 /* The +20 is pure guesswork. Configure test needed. --jhi */
2954 s = SvGROW_mutable(sv, NV_DIG + 20);
2955 /* some Xenix systems wipe out errno here */
2957 if (SvNVX(sv) == 0.0)
2958 my_strlcpy(s, "0", SvLEN(sv));
2962 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2965 #ifdef FIXNEGATIVEZERO
2966 if (*s == '-' && s[1] == '0' && !s[2]) {
2978 if (isGV_with_GP(sv)) {
2979 GV *const gv = MUTABLE_GV(sv);
2980 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
2981 SV *const buffer = sv_newmortal();
2983 /* FAKE globs can get coerced, so need to turn this off temporarily
2986 gv_efullname3(buffer, gv, "*");
2987 SvFLAGS(gv) |= wasfake;
2989 assert(SvPOK(buffer));
2991 *lp = SvCUR(buffer);
2993 return SvPVX(buffer);
2998 if (flags & SV_UNDEF_RETURNS_NULL)
3000 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
3002 if (SvTYPE(sv) < SVt_PV)
3003 /* Typically the caller expects that sv_any is not NULL now. */
3004 sv_upgrade(sv, SVt_PV);
3008 const STRLEN len = s - SvPVX_const(sv);
3014 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
3015 PTR2UV(sv),SvPVX_const(sv)));
3016 if (flags & SV_CONST_RETURN)
3017 return (char *)SvPVX_const(sv);
3018 if (flags & SV_MUTABLE_RETURN)
3019 return SvPVX_mutable(sv);
3024 =for apidoc sv_copypv
3026 Copies a stringified representation of the source SV into the
3027 destination SV. Automatically performs any necessary mg_get and
3028 coercion of numeric values into strings. Guaranteed to preserve
3029 UTF8 flag even from overloaded objects. Similar in nature to
3030 sv_2pv[_flags] but operates directly on an SV instead of just the
3031 string. Mostly uses sv_2pv_flags to do its work, except when that
3032 would lose the UTF-8'ness of the PV.
3038 Perl_sv_copypv(pTHX_ SV *const dsv, register SV *const ssv)
3041 const char * const s = SvPV_const(ssv,len);
3043 PERL_ARGS_ASSERT_SV_COPYPV;
3045 sv_setpvn(dsv,s,len);
3053 =for apidoc sv_2pvbyte
3055 Return a pointer to the byte-encoded representation of the SV, and set *lp
3056 to its length. May cause the SV to be downgraded from UTF-8 as a
3059 Usually accessed via the C<SvPVbyte> macro.
3065 Perl_sv_2pvbyte(pTHX_ register SV *const sv, STRLEN *const lp)
3067 PERL_ARGS_ASSERT_SV_2PVBYTE;
3069 sv_utf8_downgrade(sv,0);
3070 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
3074 =for apidoc sv_2pvutf8
3076 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
3077 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
3079 Usually accessed via the C<SvPVutf8> macro.
3085 Perl_sv_2pvutf8(pTHX_ register SV *const sv, STRLEN *const lp)
3087 PERL_ARGS_ASSERT_SV_2PVUTF8;
3089 sv_utf8_upgrade(sv);
3090 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
3095 =for apidoc sv_2bool
3097 This function is only called on magical items, and is only used by
3098 sv_true() or its macro equivalent.
3104 Perl_sv_2bool(pTHX_ register SV *const sv)
3108 PERL_ARGS_ASSERT_SV_2BOOL;
3116 SV * const tmpsv = AMG_CALLun(sv,bool_);
3117 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
3118 return (bool)SvTRUE(tmpsv);
3120 return SvRV(sv) != 0;
3123 register XPV* const Xpvtmp = (XPV*)SvANY(sv);
3125 (*sv->sv_u.svu_pv > '0' ||
3126 Xpvtmp->xpv_cur > 1 ||
3127 (Xpvtmp->xpv_cur && *sv->sv_u.svu_pv != '0')))
3134 return SvIVX(sv) != 0;
3137 return SvNVX(sv) != 0.0;
3139 if (isGV_with_GP(sv))
3149 =for apidoc sv_utf8_upgrade
3151 Converts the PV of an SV to its UTF-8-encoded form.
3152 Forces the SV to string form if it is not already.
3153 Will C<mg_get> on C<sv> if appropriate.
3154 Always sets the SvUTF8 flag to avoid future validity checks even
3155 if the whole string is the same in UTF-8 as not.
3156 Returns the number of bytes in the converted string
3158 This is not as a general purpose byte encoding to Unicode interface:
3159 use the Encode extension for that.
3161 =for apidoc sv_utf8_upgrade_nomg
3163 Like sv_utf8_upgrade, but doesn't do magic on C<sv>
3165 =for apidoc sv_utf8_upgrade_flags
3167 Converts the PV of an SV to its UTF-8-encoded form.
3168 Forces the SV to string form if it is not already.
3169 Always sets the SvUTF8 flag to avoid future validity checks even
3170 if all the bytes are invariant in UTF-8. If C<flags> has C<SV_GMAGIC> bit set,
3171 will C<mg_get> on C<sv> if appropriate, else not.
3172 Returns the number of bytes in the converted string
3173 C<sv_utf8_upgrade> and
3174 C<sv_utf8_upgrade_nomg> are implemented in terms of this function.
3176 This is not as a general purpose byte encoding to Unicode interface:
3177 use the Encode extension for that.
3181 The grow version is currently not externally documented. It adds a parameter,
3182 extra, which is the number of unused bytes the string of 'sv' is guaranteed to
3183 have free after it upon return. This allows the caller to reserve extra space
3184 that it intends to fill, to avoid extra grows.
3186 Also externally undocumented for the moment is the flag SV_FORCE_UTF8_UPGRADE,
3187 which can be used to tell this function to not first check to see if there are
3188 any characters that are different in UTF-8 (variant characters) which would
3189 force it to allocate a new string to sv, but to assume there are. Typically
3190 this flag is used by a routine that has already parsed the string to find that
3191 there are such characters, and passes this information on so that the work
3192 doesn't have to be repeated.
3194 (One might think that the calling routine could pass in the position of the
3195 first such variant, so it wouldn't have to be found again. But that is not the
3196 case, because typically when the caller is likely to use this flag, it won't be
3197 calling this routine unless it finds something that won't fit into a byte.
3198 Otherwise it tries to not upgrade and just use bytes. But some things that
3199 do fit into a byte are variants in utf8, and the caller may not have been
3200 keeping track of these.)
3202 If the routine itself changes the string, it adds a trailing NUL. Such a NUL
3203 isn't guaranteed due to having other routines do the work in some input cases,
3204 or if the input is already flagged as being in utf8.
3206 The speed of this could perhaps be improved for many cases if someone wanted to
3207 write a fast function that counts the number of variant characters in a string,
3208 especially if it could return the position of the first one.
3213 Perl_sv_utf8_upgrade_flags_grow(pTHX_ register SV *const sv, const I32 flags, STRLEN extra)
3217 PERL_ARGS_ASSERT_SV_UTF8_UPGRADE_FLAGS_GROW;
3219 if (sv == &PL_sv_undef)
3223 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
3224 (void) sv_2pv_flags(sv,&len, flags);
3226 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3230 (void) SvPV_force(sv,len);
3235 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3240 sv_force_normal_flags(sv, 0);
3243 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING)) {
3244 sv_recode_to_utf8(sv, PL_encoding);
3245 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3249 if (SvCUR(sv) == 0) {
3250 if (extra) SvGROW(sv, extra);
3251 } else { /* Assume Latin-1/EBCDIC */
3252 /* This function could be much more efficient if we
3253 * had a FLAG in SVs to signal if there are any variant
3254 * chars in the PV. Given that there isn't such a flag
3255 * make the loop as fast as possible (although there are certainly ways
3256 * to speed this up, eg. through vectorization) */
3257 U8 * s = (U8 *) SvPVX_const(sv);
3258 U8 * e = (U8 *) SvEND(sv);
3260 STRLEN two_byte_count = 0;
3262 if (flags & SV_FORCE_UTF8_UPGRADE) goto must_be_utf8;
3264 /* See if really will need to convert to utf8. We mustn't rely on our
3265 * incoming SV being well formed and having a trailing '\0', as certain
3266 * code in pp_formline can send us partially built SVs. */
3270 if (NATIVE_IS_INVARIANT(ch)) continue;
3272 t--; /* t already incremented; re-point to first variant */
3277 /* utf8 conversion not needed because all are invariants. Mark as
3278 * UTF-8 even if no variant - saves scanning loop */
3284 /* Here, the string should be converted to utf8, either because of an
3285 * input flag (two_byte_count = 0), or because a character that
3286 * requires 2 bytes was found (two_byte_count = 1). t points either to
3287 * the beginning of the string (if we didn't examine anything), or to
3288 * the first variant. In either case, everything from s to t - 1 will
3289 * occupy only 1 byte each on output.
3291 * There are two main ways to convert. One is to create a new string
3292 * and go through the input starting from the beginning, appending each
3293 * converted value onto the new string as we go along. It's probably
3294 * best to allocate enough space in the string for the worst possible
3295 * case rather than possibly running out of space and having to
3296 * reallocate and then copy what we've done so far. Since everything
3297 * from s to t - 1 is invariant, the destination can be initialized
3298 * with these using a fast memory copy
3300 * The other way is to figure out exactly how big the string should be
3301 * by parsing the entire input. Then you don't have to make it big
3302 * enough to handle the worst possible case, and more importantly, if
3303 * the string you already have is large enough, you don't have to
3304 * allocate a new string, you can copy the last character in the input
3305 * string to the final position(s) that will be occupied by the
3306 * converted string and go backwards, stopping at t, since everything
3307 * before that is invariant.
3309 * There are advantages and disadvantages to each method.
3311 * In the first method, we can allocate a new string, do the memory
3312 * copy from the s to t - 1, and then proceed through the rest of the
3313 * string byte-by-byte.
3315 * In the second method, we proceed through the rest of the input
3316 * string just calculating how big the converted string will be. Then
3317 * there are two cases:
3318 * 1) if the string has enough extra space to handle the converted
3319 * value. We go backwards through the string, converting until we
3320 * get to the position we are at now, and then stop. If this
3321 * position is far enough along in the string, this method is
3322 * faster than the other method. If the memory copy were the same
3323 * speed as the byte-by-byte loop, that position would be about
3324 * half-way, as at the half-way mark, parsing to the end and back
3325 * is one complete string's parse, the same amount as starting
3326 * over and going all the way through. Actually, it would be
3327 * somewhat less than half-way, as it's faster to just count bytes
3328 * than to also copy, and we don't have the overhead of allocating
3329 * a new string, changing the scalar to use it, and freeing the
3330 * existing one. But if the memory copy is fast, the break-even
3331 * point is somewhere after half way. The counting loop could be
3332 * sped up by vectorization, etc, to move the break-even point
3333 * further towards the beginning.
3334 * 2) if the string doesn't have enough space to handle the converted
3335 * value. A new string will have to be allocated, and one might
3336 * as well, given that, start from the beginning doing the first
3337 * method. We've spent extra time parsing the string and in
3338 * exchange all we've gotten is that we know precisely how big to
3339 * make the new one. Perl is more optimized for time than space,
3340 * so this case is a loser.
3341 * So what I've decided to do is not use the 2nd method unless it is
3342 * guaranteed that a new string won't have to be allocated, assuming
3343 * the worst case. I also decided not to put any more conditions on it
3344 * than this, for now. It seems likely that, since the worst case is
3345 * twice as big as the unknown portion of the string (plus 1), we won't
3346 * be guaranteed enough space, causing us to go to the first method,
3347 * unless the string is short, or the first variant character is near
3348 * the end of it. In either of these cases, it seems best to use the
3349 * 2nd method. The only circumstance I can think of where this would
3350 * be really slower is if the string had once had much more data in it
3351 * than it does now, but there is still a substantial amount in it */
3354 STRLEN invariant_head = t - s;
3355 STRLEN size = invariant_head + (e - t) * 2 + 1 + extra;
3356 if (SvLEN(sv) < size) {
3358 /* Here, have decided to allocate a new string */
3363 Newx(dst, size, U8);
3365 /* If no known invariants at the beginning of the input string,
3366 * set so starts from there. Otherwise, can use memory copy to
3367 * get up to where we are now, and then start from here */
3369 if (invariant_head <= 0) {
3372 Copy(s, dst, invariant_head, char);
3373 d = dst + invariant_head;
3377 const UV uv = NATIVE8_TO_UNI(*t++);
3378 if (UNI_IS_INVARIANT(uv))
3379 *d++ = (U8)UNI_TO_NATIVE(uv);
3381 *d++ = (U8)UTF8_EIGHT_BIT_HI(uv);
3382 *d++ = (U8)UTF8_EIGHT_BIT_LO(uv);
3386 SvPV_free(sv); /* No longer using pre-existing string */
3387 SvPV_set(sv, (char*)dst);
3388 SvCUR_set(sv, d - dst);
3389 SvLEN_set(sv, size);
3392 /* Here, have decided to get the exact size of the string.
3393 * Currently this happens only when we know that there is
3394 * guaranteed enough space to fit the converted string, so
3395 * don't have to worry about growing. If two_byte_count is 0,
3396 * then t points to the first byte of the string which hasn't
3397 * been examined yet. Otherwise two_byte_count is 1, and t
3398 * points to the first byte in the string that will expand to
3399 * two. Depending on this, start examining at t or 1 after t.
3402 U8 *d = t + two_byte_count;
3405 /* Count up the remaining bytes that expand to two */
3408 const U8 chr = *d++;
3409 if (! NATIVE_IS_INVARIANT(chr)) two_byte_count++;
3412 /* The string will expand by just the number of bytes that
3413 * occupy two positions. But we are one afterwards because of
3414 * the increment just above. This is the place to put the
3415 * trailing NUL, and to set the length before we decrement */
3417 d += two_byte_count;
3418 SvCUR_set(sv, d - s);
3422 /* Having decremented d, it points to the position to put the
3423 * very last byte of the expanded string. Go backwards through
3424 * the string, copying and expanding as we go, stopping when we
3425 * get to the part that is invariant the rest of the way down */
3429 const U8 ch = NATIVE8_TO_UNI(*e--);
3430 if (UNI_IS_INVARIANT(ch)) {
3431 *d-- = UNI_TO_NATIVE(ch);
3433 *d-- = (U8)UTF8_EIGHT_BIT_LO(ch);
3434 *d-- = (U8)UTF8_EIGHT_BIT_HI(ch);
3441 /* Mark as UTF-8 even if no variant - saves scanning loop */
3447 =for apidoc sv_utf8_downgrade
3449 Attempts to convert the PV of an SV from characters to bytes.
3450 If the PV contains a character that cannot fit
3451 in a byte, this conversion will fail;
3452 in this case, either returns false or, if C<fail_ok> is not
3455 This is not as a general purpose Unicode to byte encoding interface:
3456 use the Encode extension for that.
3462 Perl_sv_utf8_downgrade(pTHX_ register SV *const sv, const bool fail_ok)
3466 PERL_ARGS_ASSERT_SV_UTF8_DOWNGRADE;
3468 if (SvPOKp(sv) && SvUTF8(sv)) {
3474 sv_force_normal_flags(sv, 0);
3476 s = (U8 *) SvPV(sv, len);
3477 if (!utf8_to_bytes(s, &len)) {
3482 Perl_croak(aTHX_ "Wide character in %s",
3485 Perl_croak(aTHX_ "Wide character");
3496 =for apidoc sv_utf8_encode
3498 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3499 flag off so that it looks like octets again.
3505 Perl_sv_utf8_encode(pTHX_ register SV *const sv)
3507 PERL_ARGS_ASSERT_SV_UTF8_ENCODE;
3510 sv_force_normal_flags(sv, 0);
3512 if (SvREADONLY(sv)) {
3513 Perl_croak(aTHX_ "%s", PL_no_modify);
3515 (void) sv_utf8_upgrade(sv);
3520 =for apidoc sv_utf8_decode
3522 If the PV of the SV is an octet sequence in UTF-8
3523 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3524 so that it looks like a character. If the PV contains only single-byte
3525 characters, the C<SvUTF8> flag stays being off.
3526 Scans PV for validity and returns false if the PV is invalid UTF-8.
3532 Perl_sv_utf8_decode(pTHX_ register SV *const sv)
3534 PERL_ARGS_ASSERT_SV_UTF8_DECODE;
3540 /* The octets may have got themselves encoded - get them back as
3543 if (!sv_utf8_downgrade(sv, TRUE))
3546 /* it is actually just a matter of turning the utf8 flag on, but
3547 * we want to make sure everything inside is valid utf8 first.
3549 c = (const U8 *) SvPVX_const(sv);
3550 if (!is_utf8_string(c, SvCUR(sv)+1))
3552 e = (const U8 *) SvEND(sv);
3555 if (!UTF8_IS_INVARIANT(ch)) {
3565 =for apidoc sv_setsv
3567 Copies the contents of the source SV C<ssv> into the destination SV
3568 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3569 function if the source SV needs to be reused. Does not handle 'set' magic.
3570 Loosely speaking, it performs a copy-by-value, obliterating any previous
3571 content of the destination.
3573 You probably want to use one of the assortment of wrappers, such as
3574 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3575 C<SvSetMagicSV_nosteal>.
3577 =for apidoc sv_setsv_flags
3579 Copies the contents of the source SV C<ssv> into the destination SV
3580 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3581 function if the source SV needs to be reused. Does not handle 'set' magic.
3582 Loosely speaking, it performs a copy-by-value, obliterating any previous
3583 content of the destination.
3584 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3585 C<ssv> if appropriate, else not. If the C<flags> parameter has the
3586 C<NOSTEAL> bit set then the buffers of temps will not be stolen. <sv_setsv>
3587 and C<sv_setsv_nomg> are implemented in terms of this function.
3589 You probably want to use one of the assortment of wrappers, such as
3590 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3591 C<SvSetMagicSV_nosteal>.
3593 This is the primary function for copying scalars, and most other
3594 copy-ish functions and macros use this underneath.
3600 S_glob_assign_glob(pTHX_ SV *const dstr, SV *const sstr, const int dtype)
3602 I32 mro_changes = 0; /* 1 = method, 2 = isa */
3604 PERL_ARGS_ASSERT_GLOB_ASSIGN_GLOB;
3606 if (dtype != SVt_PVGV) {
3607 const char * const name = GvNAME(sstr);
3608 const STRLEN len = GvNAMELEN(sstr);
3610 if (dtype >= SVt_PV) {
3616 SvUPGRADE(dstr, SVt_PVGV);
3617 (void)SvOK_off(dstr);
3618 /* FIXME - why are we doing this, then turning it off and on again
3620 isGV_with_GP_on(dstr);
3622 GvSTASH(dstr) = GvSTASH(sstr);
3624 Perl_sv_add_backref(aTHX_ MUTABLE_SV(GvSTASH(dstr)), dstr);
3625 gv_name_set(MUTABLE_GV(dstr), name, len, GV_ADD);
3626 SvFAKE_on(dstr); /* can coerce to non-glob */
3629 if(GvGP(MUTABLE_GV(sstr))) {
3630 /* If source has method cache entry, clear it */
3632 SvREFCNT_dec(GvCV(sstr));
3636 /* If source has a real method, then a method is
3638 else if(GvCV((const GV *)sstr)) {
3643 /* If dest already had a real method, that's a change as well */
3644 if(!mro_changes && GvGP(MUTABLE_GV(dstr)) && GvCVu((const GV *)dstr)) {
3648 if(strEQ(GvNAME((const GV *)dstr),"ISA"))
3651 gp_free(MUTABLE_GV(dstr));
3652 isGV_with_GP_off(dstr);
3653 (void)SvOK_off(dstr);
3654 isGV_with_GP_on(dstr);
3655 GvINTRO_off(dstr); /* one-shot flag */
3656 GvGP(dstr) = gp_ref(GvGP(sstr));
3657 if (SvTAINTED(sstr))
3659 if (GvIMPORTED(dstr) != GVf_IMPORTED
3660 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3662 GvIMPORTED_on(dstr);
3665 if(mro_changes == 2) mro_isa_changed_in(GvSTASH(dstr));
3666 else if(mro_changes) mro_method_changed_in(GvSTASH(dstr));
3671 S_glob_assign_ref(pTHX_ SV *const dstr, SV *const sstr)
3673 SV * const sref = SvREFCNT_inc(SvRV(sstr));
3675 const int intro = GvINTRO(dstr);
3678 const U32 stype = SvTYPE(sref);
3679 bool mro_changes = FALSE;
3681 PERL_ARGS_ASSERT_GLOB_ASSIGN_REF;
3684 GvINTRO_off(dstr); /* one-shot flag */
3685 GvLINE(dstr) = CopLINE(PL_curcop);
3686 GvEGV(dstr) = MUTABLE_GV(dstr);
3691 location = (SV **) &GvCV(dstr);
3692 import_flag = GVf_IMPORTED_CV;
3695 location = (SV **) &GvHV(dstr);
3696 import_flag = GVf_IMPORTED_HV;
3699 location = (SV **) &GvAV(dstr);
3700 if (strEQ(GvNAME((GV*)dstr), "ISA"))
3702 import_flag = GVf_IMPORTED_AV;
3705 location = (SV **) &GvIOp(dstr);
3708 location = (SV **) &GvFORM(dstr);
3711 location = &GvSV(dstr);
3712 import_flag = GVf_IMPORTED_SV;
3715 if (stype == SVt_PVCV) {
3716 /*if (GvCVGEN(dstr) && (GvCV(dstr) != (const CV *)sref || GvCVGEN(dstr))) {*/
3717 if (GvCVGEN(dstr)) {
3718 SvREFCNT_dec(GvCV(dstr));
3720 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3723 SAVEGENERICSV(*location);
3727 if (stype == SVt_PVCV && (*location != sref || GvCVGEN(dstr))) {
3728 CV* const cv = MUTABLE_CV(*location);
3730 if (!GvCVGEN((const GV *)dstr) &&
3731 (CvROOT(cv) || CvXSUB(cv)))
3733 /* Redefining a sub - warning is mandatory if
3734 it was a const and its value changed. */
3735 if (CvCONST(cv) && CvCONST((const CV *)sref)
3737 == cv_const_sv((const CV *)sref)) {
3739 /* They are 2 constant subroutines generated from
3740 the same constant. This probably means that
3741 they are really the "same" proxy subroutine
3742 instantiated in 2 places. Most likely this is
3743 when a constant is exported twice. Don't warn.
3746 else if (ckWARN(WARN_REDEFINE)
3748 && (!CvCONST((const CV *)sref)
3749 || sv_cmp(cv_const_sv(cv),
3750 cv_const_sv((const CV *)
3752 Perl_warner(aTHX_ packWARN(WARN_REDEFINE),
3755 ? "Constant subroutine %s::%s redefined"
3756 : "Subroutine %s::%s redefined"),
3757 HvNAME_get(GvSTASH((const GV *)dstr)),
3758 GvENAME(MUTABLE_GV(dstr)));
3762 cv_ckproto_len(cv, (const GV *)dstr,
3763 SvPOK(sref) ? SvPVX_const(sref) : NULL,
3764 SvPOK(sref) ? SvCUR(sref) : 0);
3766 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3767 GvASSUMECV_on(dstr);
3768 if(GvSTASH(dstr)) mro_method_changed_in(GvSTASH(dstr)); /* sub foo { 1 } sub bar { 2 } *bar = \&foo */
3771 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3772 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3773 GvFLAGS(dstr) |= import_flag;
3778 if (SvTAINTED(sstr))
3780 if (mro_changes) mro_isa_changed_in(GvSTASH(dstr));
3785 Perl_sv_setsv_flags(pTHX_ SV *dstr, register SV* sstr, const I32 flags)
3788 register U32 sflags;
3790 register svtype stype;
3792 PERL_ARGS_ASSERT_SV_SETSV_FLAGS;
3797 if (SvIS_FREED(dstr)) {
3798 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
3799 " to a freed scalar %p", SVfARG(sstr), (void *)dstr);
3801 SV_CHECK_THINKFIRST_COW_DROP(dstr);
3803 sstr = &PL_sv_undef;
3804 if (SvIS_FREED(sstr)) {
3805 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
3806 (void*)sstr, (void*)dstr);
3808 stype = SvTYPE(sstr);
3809 dtype = SvTYPE(dstr);
3811 (void)SvAMAGIC_off(dstr);
3814 /* need to nuke the magic */
3818 /* There's a lot of redundancy below but we're going for speed here */
3823 if (dtype != SVt_PVGV) {
3824 (void)SvOK_off(dstr);
3832 sv_upgrade(dstr, SVt_IV);
3836 sv_upgrade(dstr, SVt_PVIV);
3839 goto end_of_first_switch;
3841 (void)SvIOK_only(dstr);
3842 SvIV_set(dstr, SvIVX(sstr));
3845 /* SvTAINTED can only be true if the SV has taint magic, which in
3846 turn means that the SV type is PVMG (or greater). This is the
3847 case statement for SVt_IV, so this cannot be true (whatever gcov
3849 assert(!SvTAINTED(sstr));
3854 if (dtype < SVt_PV && dtype != SVt_IV)
3855 sv_upgrade(dstr, SVt_IV);
3863 sv_upgrade(dstr, SVt_NV);
3867 sv_upgrade(dstr, SVt_PVNV);
3870 goto end_of_first_switch;
3872 SvNV_set(dstr, SvNVX(sstr));
3873 (void)SvNOK_only(dstr);
3874 /* SvTAINTED can only be true if the SV has taint magic, which in
3875 turn means that the SV type is PVMG (or greater). This is the
3876 case statement for SVt_NV, so this cannot be true (whatever gcov
3878 assert(!SvTAINTED(sstr));
3884 #ifdef PERL_OLD_COPY_ON_WRITE
3885 if ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS) {
3886 if (dtype < SVt_PVIV)
3887 sv_upgrade(dstr, SVt_PVIV);
3894 sv_upgrade(dstr, SVt_PV);
3897 if (dtype < SVt_PVIV)
3898 sv_upgrade(dstr, SVt_PVIV);
3901 if (dtype < SVt_PVNV)
3902 sv_upgrade(dstr, SVt_PVNV);
3906 const char * const type = sv_reftype(sstr,0);
3908 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_NAME(PL_op));
3910 Perl_croak(aTHX_ "Bizarre copy of %s", type);
3915 if (dtype < SVt_REGEXP)
3916 sv_upgrade(dstr, SVt_REGEXP);
3919 /* case SVt_BIND: */
3922 if (isGV_with_GP(sstr) && dtype <= SVt_PVGV) {
3923 glob_assign_glob(dstr, sstr, dtype);
3926 /* SvVALID means that this PVGV is playing at being an FBM. */
3930 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
3932 if (SvTYPE(sstr) != stype) {
3933 stype = SvTYPE(sstr);
3934 if (isGV_with_GP(sstr) && stype == SVt_PVGV && dtype <= SVt_PVGV) {
3935 glob_assign_glob(dstr, sstr, dtype);
3940 if (stype == SVt_PVLV)
3941 SvUPGRADE(dstr, SVt_PVNV);
3943 SvUPGRADE(dstr, (svtype)stype);
3945 end_of_first_switch:
3947 /* dstr may have been upgraded. */
3948 dtype = SvTYPE(dstr);
3949 sflags = SvFLAGS(sstr);
3951 if (dtype == SVt_PVCV || dtype == SVt_PVFM) {
3952 /* Assigning to a subroutine sets the prototype. */
3955 const char *const ptr = SvPV_const(sstr, len);
3957 SvGROW(dstr, len + 1);
3958 Copy(ptr, SvPVX(dstr), len + 1, char);
3959 SvCUR_set(dstr, len);
3961 SvFLAGS(dstr) |= sflags & SVf_UTF8;
3965 } else if (dtype == SVt_PVAV || dtype == SVt_PVHV) {
3966 const char * const type = sv_reftype(dstr,0);
3968 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_NAME(PL_op));
3970 Perl_croak(aTHX_ "Cannot copy to %s", type);
3971 } else if (sflags & SVf_ROK) {
3972 if (isGV_with_GP(dstr) && dtype == SVt_PVGV
3973 && SvTYPE(SvRV(sstr)) == SVt_PVGV && isGV_with_GP(SvRV(sstr))) {
3976 if (GvIMPORTED(dstr) != GVf_IMPORTED
3977 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3979 GvIMPORTED_on(dstr);
3984 glob_assign_glob(dstr, sstr, dtype);
3988 if (dtype >= SVt_PV) {
3989 if (dtype == SVt_PVGV && isGV_with_GP(dstr)) {
3990 glob_assign_ref(dstr, sstr);
3993 if (SvPVX_const(dstr)) {
3999 (void)SvOK_off(dstr);
4000 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
4001 SvFLAGS(dstr) |= sflags & SVf_ROK;
4002 assert(!(sflags & SVp_NOK));
4003 assert(!(sflags & SVp_IOK));
4004 assert(!(sflags & SVf_NOK));
4005 assert(!(sflags & SVf_IOK));
4007 else if (dtype == SVt_PVGV && isGV_with_GP(dstr)) {
4008 if (!(sflags & SVf_OK)) {
4009 Perl_ck_warner(aTHX_ packWARN(WARN_MISC),
4010 "Undefined value assigned to typeglob");
4013 GV *gv = gv_fetchsv(sstr, GV_ADD, SVt_PVGV);
4014 if (dstr != (const SV *)gv) {
4016 gp_free(MUTABLE_GV(dstr));
4017 GvGP(dstr) = gp_ref(GvGP(gv));
4021 else if (dtype == SVt_REGEXP && stype == SVt_REGEXP) {
4022 reg_temp_copy((REGEXP*)dstr, (REGEXP*)sstr);
4024 else if (sflags & SVp_POK) {
4028 * Check to see if we can just swipe the string. If so, it's a
4029 * possible small lose on short strings, but a big win on long ones.
4030 * It might even be a win on short strings if SvPVX_const(dstr)
4031 * has to be allocated and SvPVX_const(sstr) has to be freed.
4032 * Likewise if we can set up COW rather than doing an actual copy, we
4033 * drop to the else clause, as the swipe code and the COW setup code
4034 * have much in common.
4037 /* Whichever path we take through the next code, we want this true,
4038 and doing it now facilitates the COW check. */
4039 (void)SvPOK_only(dstr);
4042 /* If we're already COW then this clause is not true, and if COW
4043 is allowed then we drop down to the else and make dest COW
4044 with us. If caller hasn't said that we're allowed to COW
4045 shared hash keys then we don't do the COW setup, even if the
4046 source scalar is a shared hash key scalar. */
4047 (((flags & SV_COW_SHARED_HASH_KEYS)
4048 ? (sflags & (SVf_FAKE|SVf_READONLY)) != (SVf_FAKE|SVf_READONLY)
4049 : 1 /* If making a COW copy is forbidden then the behaviour we
4050 desire is as if the source SV isn't actually already
4051 COW, even if it is. So we act as if the source flags
4052 are not COW, rather than actually testing them. */
4054 #ifndef PERL_OLD_COPY_ON_WRITE
4055 /* The change that added SV_COW_SHARED_HASH_KEYS makes the logic
4056 when PERL_OLD_COPY_ON_WRITE is defined a little wrong.
4057 Conceptually PERL_OLD_COPY_ON_WRITE being defined should
4058 override SV_COW_SHARED_HASH_KEYS, because it means "always COW"
4059 but in turn, it's somewhat dead code, never expected to go
4060 live, but more kept as a placeholder on how to do it better
4061 in a newer implementation. */
4062 /* If we are COW and dstr is a suitable target then we drop down
4063 into the else and make dest a COW of us. */
4064 || (SvFLAGS(dstr) & CAN_COW_MASK) != CAN_COW_FLAGS
4069 (sflags & SVs_TEMP) && /* slated for free anyway? */
4070 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
4071 (!(flags & SV_NOSTEAL)) &&
4072 /* and we're allowed to steal temps */
4073 SvREFCNT(sstr) == 1 && /* and no other references to it? */
4074 SvLEN(sstr) && /* and really is a string */
4075 /* and won't be needed again, potentially */
4076 !(PL_op && PL_op->op_type == OP_AASSIGN))
4077 #ifdef PERL_OLD_COPY_ON_WRITE
4078 && ((flags & SV_COW_SHARED_HASH_KEYS)
4079 ? (!((sflags & CAN_COW_MASK) == CAN_COW_FLAGS
4080 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
4081 && SvTYPE(sstr) >= SVt_PVIV && SvTYPE(sstr) != SVt_PVFM))
4085 /* Failed the swipe test, and it's not a shared hash key either.
4086 Have to copy the string. */
4087 STRLEN len = SvCUR(sstr);
4088 SvGROW(dstr, len + 1); /* inlined from sv_setpvn */
4089 Move(SvPVX_const(sstr),SvPVX(dstr),len,char);
4090 SvCUR_set(dstr, len);
4091 *SvEND(dstr) = '\0';
4093 /* If PERL_OLD_COPY_ON_WRITE is not defined, then isSwipe will always
4095 /* Either it's a shared hash key, or it's suitable for
4096 copy-on-write or we can swipe the string. */
4098 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
4102 #ifdef PERL_OLD_COPY_ON_WRITE
4104 if ((sflags & (SVf_FAKE | SVf_READONLY))
4105 != (SVf_FAKE | SVf_READONLY)) {
4106 SvREADONLY_on(sstr);
4108 /* Make the source SV into a loop of 1.
4109 (about to become 2) */
4110 SV_COW_NEXT_SV_SET(sstr, sstr);
4114 /* Initial code is common. */
4115 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
4120 /* making another shared SV. */
4121 STRLEN cur = SvCUR(sstr);
4122 STRLEN len = SvLEN(sstr);
4123 #ifdef PERL_OLD_COPY_ON_WRITE
4125 assert (SvTYPE(dstr) >= SVt_PVIV);
4126 /* SvIsCOW_normal */
4127 /* splice us in between source and next-after-source. */
4128 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4129 SV_COW_NEXT_SV_SET(sstr, dstr);
4130 SvPV_set(dstr, SvPVX_mutable(sstr));
4134 /* SvIsCOW_shared_hash */
4135 DEBUG_C(PerlIO_printf(Perl_debug_log,
4136 "Copy on write: Sharing hash\n"));
4138 assert (SvTYPE(dstr) >= SVt_PV);
4140 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
4142 SvLEN_set(dstr, len);
4143 SvCUR_set(dstr, cur);
4144 SvREADONLY_on(dstr);
4148 { /* Passes the swipe test. */
4149 SvPV_set(dstr, SvPVX_mutable(sstr));
4150 SvLEN_set(dstr, SvLEN(sstr));
4151 SvCUR_set(dstr, SvCUR(sstr));
4154 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
4155 SvPV_set(sstr, NULL);
4161 if (sflags & SVp_NOK) {
4162 SvNV_set(dstr, SvNVX(sstr));
4164 if (sflags & SVp_IOK) {
4165 SvIV_set(dstr, SvIVX(sstr));
4166 /* Must do this otherwise some other overloaded use of 0x80000000
4167 gets confused. I guess SVpbm_VALID */
4168 if (sflags & SVf_IVisUV)
4171 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8);
4173 const MAGIC * const smg = SvVSTRING_mg(sstr);
4175 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
4176 smg->mg_ptr, smg->mg_len);
4177 SvRMAGICAL_on(dstr);
4181 else if (sflags & (SVp_IOK|SVp_NOK)) {
4182 (void)SvOK_off(dstr);
4183 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK);
4184 if (sflags & SVp_IOK) {
4185 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
4186 SvIV_set(dstr, SvIVX(sstr));
4188 if (sflags & SVp_NOK) {
4189 SvNV_set(dstr, SvNVX(sstr));
4193 if (isGV_with_GP(sstr)) {
4194 /* This stringification rule for globs is spread in 3 places.
4195 This feels bad. FIXME. */
4196 const U32 wasfake = sflags & SVf_FAKE;
4198 /* FAKE globs can get coerced, so need to turn this off
4199 temporarily if it is on. */
4201 gv_efullname3(dstr, MUTABLE_GV(sstr), "*");
4202 SvFLAGS(sstr) |= wasfake;
4205 (void)SvOK_off(dstr);
4207 if (SvTAINTED(sstr))
4212 =for apidoc sv_setsv_mg
4214 Like C<sv_setsv>, but also handles 'set' magic.
4220 Perl_sv_setsv_mg(pTHX_ SV *const dstr, register SV *const sstr)
4222 PERL_ARGS_ASSERT_SV_SETSV_MG;
4224 sv_setsv(dstr,sstr);
4228 #ifdef PERL_OLD_COPY_ON_WRITE
4230 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
4232 STRLEN cur = SvCUR(sstr);
4233 STRLEN len = SvLEN(sstr);
4234 register char *new_pv;
4236 PERL_ARGS_ASSERT_SV_SETSV_COW;
4239 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
4240 (void*)sstr, (void*)dstr);
4247 if (SvTHINKFIRST(dstr))
4248 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
4249 else if (SvPVX_const(dstr))
4250 Safefree(SvPVX_const(dstr));
4254 SvUPGRADE(dstr, SVt_PVIV);
4256 assert (SvPOK(sstr));
4257 assert (SvPOKp(sstr));
4258 assert (!SvIOK(sstr));
4259 assert (!SvIOKp(sstr));
4260 assert (!SvNOK(sstr));
4261 assert (!SvNOKp(sstr));
4263 if (SvIsCOW(sstr)) {
4265 if (SvLEN(sstr) == 0) {
4266 /* source is a COW shared hash key. */
4267 DEBUG_C(PerlIO_printf(Perl_debug_log,
4268 "Fast copy on write: Sharing hash\n"));
4269 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
4272 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4274 assert ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS);
4275 SvUPGRADE(sstr, SVt_PVIV);
4276 SvREADONLY_on(sstr);
4278 DEBUG_C(PerlIO_printf(Perl_debug_log,
4279 "Fast copy on write: Converting sstr to COW\n"));
4280 SV_COW_NEXT_SV_SET(dstr, sstr);
4282 SV_COW_NEXT_SV_SET(sstr, dstr);
4283 new_pv = SvPVX_mutable(sstr);
4286 SvPV_set(dstr, new_pv);
4287 SvFLAGS(dstr) = (SVt_PVIV|SVf_POK|SVp_POK|SVf_FAKE|SVf_READONLY);
4290 SvLEN_set(dstr, len);
4291 SvCUR_set(dstr, cur);
4300 =for apidoc sv_setpvn
4302 Copies a string into an SV. The C<len> parameter indicates the number of
4303 bytes to be copied. If the C<ptr> argument is NULL the SV will become
4304 undefined. Does not handle 'set' magic. See C<sv_setpvn_mg>.
4310 Perl_sv_setpvn(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4313 register char *dptr;
4315 PERL_ARGS_ASSERT_SV_SETPVN;
4317 SV_CHECK_THINKFIRST_COW_DROP(sv);
4323 /* len is STRLEN which is unsigned, need to copy to signed */
4326 Perl_croak(aTHX_ "panic: sv_setpvn called with negative strlen");
4328 SvUPGRADE(sv, SVt_PV);
4330 dptr = SvGROW(sv, len + 1);
4331 Move(ptr,dptr,len,char);
4334 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4339 =for apidoc sv_setpvn_mg
4341 Like C<sv_setpvn>, but also handles 'set' magic.
4347 Perl_sv_setpvn_mg(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4349 PERL_ARGS_ASSERT_SV_SETPVN_MG;
4351 sv_setpvn(sv,ptr,len);
4356 =for apidoc sv_setpv
4358 Copies a string into an SV. The string must be null-terminated. Does not
4359 handle 'set' magic. See C<sv_setpv_mg>.
4365 Perl_sv_setpv(pTHX_ register SV *const sv, register const char *const ptr)
4368 register STRLEN len;
4370 PERL_ARGS_ASSERT_SV_SETPV;
4372 SV_CHECK_THINKFIRST_COW_DROP(sv);
4378 SvUPGRADE(sv, SVt_PV);
4380 SvGROW(sv, len + 1);
4381 Move(ptr,SvPVX(sv),len+1,char);
4383 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4388 =for apidoc sv_setpv_mg
4390 Like C<sv_setpv>, but also handles 'set' magic.
4396 Perl_sv_setpv_mg(pTHX_ register SV *const sv, register const char *const ptr)
4398 PERL_ARGS_ASSERT_SV_SETPV_MG;
4405 =for apidoc sv_usepvn_flags
4407 Tells an SV to use C<ptr> to find its string value. Normally the
4408 string is stored inside the SV but sv_usepvn allows the SV to use an
4409 outside string. The C<ptr> should point to memory that was allocated
4410 by C<malloc>. The string length, C<len>, must be supplied. By default
4411 this function will realloc (i.e. move) the memory pointed to by C<ptr>,
4412 so that pointer should not be freed or used by the programmer after
4413 giving it to sv_usepvn, and neither should any pointers from "behind"
4414 that pointer (e.g. ptr + 1) be used.
4416 If C<flags> & SV_SMAGIC is true, will call SvSETMAGIC. If C<flags> &
4417 SV_HAS_TRAILING_NUL is true, then C<ptr[len]> must be NUL, and the realloc
4418 will be skipped. (i.e. the buffer is actually at least 1 byte longer than
4419 C<len>, and already meets the requirements for storing in C<SvPVX>)
4425 Perl_sv_usepvn_flags(pTHX_ SV *const sv, char *ptr, const STRLEN len, const U32 flags)
4430 PERL_ARGS_ASSERT_SV_USEPVN_FLAGS;
4432 SV_CHECK_THINKFIRST_COW_DROP(sv);
4433 SvUPGRADE(sv, SVt_PV);
4436 if (flags & SV_SMAGIC)
4440 if (SvPVX_const(sv))
4444 if (flags & SV_HAS_TRAILING_NUL)
4445 assert(ptr[len] == '\0');
4448 allocate = (flags & SV_HAS_TRAILING_NUL)
4450 #ifdef Perl_safesysmalloc_size
4453 PERL_STRLEN_ROUNDUP(len + 1);
4455 if (flags & SV_HAS_TRAILING_NUL) {
4456 /* It's long enough - do nothing.
4457 Specfically Perl_newCONSTSUB is relying on this. */
4460 /* Force a move to shake out bugs in callers. */
4461 char *new_ptr = (char*)safemalloc(allocate);
4462 Copy(ptr, new_ptr, len, char);
4463 PoisonFree(ptr,len,char);
4467 ptr = (char*) saferealloc (ptr, allocate);
4470 #ifdef Perl_safesysmalloc_size
4471 SvLEN_set(sv, Perl_safesysmalloc_size(ptr));
4473 SvLEN_set(sv, allocate);
4477 if (!(flags & SV_HAS_TRAILING_NUL)) {
4480 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4482 if (flags & SV_SMAGIC)
4486 #ifdef PERL_OLD_COPY_ON_WRITE
4487 /* Need to do this *after* making the SV normal, as we need the buffer
4488 pointer to remain valid until after we've copied it. If we let go too early,
4489 another thread could invalidate it by unsharing last of the same hash key
4490 (which it can do by means other than releasing copy-on-write Svs)
4491 or by changing the other copy-on-write SVs in the loop. */
4493 S_sv_release_COW(pTHX_ register SV *sv, const char *pvx, SV *after)
4495 PERL_ARGS_ASSERT_SV_RELEASE_COW;
4497 { /* this SV was SvIsCOW_normal(sv) */
4498 /* we need to find the SV pointing to us. */
4499 SV *current = SV_COW_NEXT_SV(after);
4501 if (current == sv) {
4502 /* The SV we point to points back to us (there were only two of us
4504 Hence other SV is no longer copy on write either. */
4506 SvREADONLY_off(after);
4508 /* We need to follow the pointers around the loop. */
4510 while ((next = SV_COW_NEXT_SV(current)) != sv) {
4513 /* don't loop forever if the structure is bust, and we have
4514 a pointer into a closed loop. */
4515 assert (current != after);
4516 assert (SvPVX_const(current) == pvx);
4518 /* Make the SV before us point to the SV after us. */
4519 SV_COW_NEXT_SV_SET(current, after);
4525 =for apidoc sv_force_normal_flags
4527 Undo various types of fakery on an SV: if the PV is a shared string, make
4528 a private copy; if we're a ref, stop refing; if we're a glob, downgrade to
4529 an xpvmg; if we're a copy-on-write scalar, this is the on-write time when
4530 we do the copy, and is also used locally. If C<SV_COW_DROP_PV> is set
4531 then a copy-on-write scalar drops its PV buffer (if any) and becomes
4532 SvPOK_off rather than making a copy. (Used where this scalar is about to be
4533 set to some other value.) In addition, the C<flags> parameter gets passed to
4534 C<sv_unref_flags()> when unrefing. C<sv_force_normal> calls this function
4535 with flags set to 0.
4541 Perl_sv_force_normal_flags(pTHX_ register SV *const sv, const U32 flags)
4545 PERL_ARGS_ASSERT_SV_FORCE_NORMAL_FLAGS;
4547 #ifdef PERL_OLD_COPY_ON_WRITE
4548 if (SvREADONLY(sv)) {
4550 const char * const pvx = SvPVX_const(sv);
4551 const STRLEN len = SvLEN(sv);
4552 const STRLEN cur = SvCUR(sv);
4553 /* next COW sv in the loop. If len is 0 then this is a shared-hash
4554 key scalar, so we mustn't attempt to call SV_COW_NEXT_SV(), as
4555 we'll fail an assertion. */
4556 SV * const next = len ? SV_COW_NEXT_SV(sv) : 0;
4559 PerlIO_printf(Perl_debug_log,
4560 "Copy on write: Force normal %ld\n",
4566 /* This SV doesn't own the buffer, so need to Newx() a new one: */
4569 if (flags & SV_COW_DROP_PV) {
4570 /* OK, so we don't need to copy our buffer. */
4573 SvGROW(sv, cur + 1);
4574 Move(pvx,SvPVX(sv),cur,char);
4579 sv_release_COW(sv, pvx, next);
4581 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4587 else if (IN_PERL_RUNTIME)
4588 Perl_croak(aTHX_ "%s", PL_no_modify);
4591 if (SvREADONLY(sv)) {
4593 const char * const pvx = SvPVX_const(sv);
4594 const STRLEN len = SvCUR(sv);
4599 SvGROW(sv, len + 1);
4600 Move(pvx,SvPVX(sv),len,char);
4602 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4604 else if (IN_PERL_RUNTIME)
4605 Perl_croak(aTHX_ "%s", PL_no_modify);
4609 sv_unref_flags(sv, flags);
4610 else if (SvFAKE(sv) && SvTYPE(sv) == SVt_PVGV)
4617 Efficient removal of characters from the beginning of the string buffer.
4618 SvPOK(sv) must be true and the C<ptr> must be a pointer to somewhere inside
4619 the string buffer. The C<ptr> becomes the first character of the adjusted
4620 string. Uses the "OOK hack".
4621 Beware: after this function returns, C<ptr> and SvPVX_const(sv) may no longer
4622 refer to the same chunk of data.
4628 Perl_sv_chop(pTHX_ register SV *const sv, register const char *const ptr)
4634 const U8 *real_start;
4638 PERL_ARGS_ASSERT_SV_CHOP;
4640 if (!ptr || !SvPOKp(sv))
4642 delta = ptr - SvPVX_const(sv);
4644 /* Nothing to do. */
4647 /* SvPVX(sv) may move in SV_CHECK_THINKFIRST(sv), but after this line,
4648 nothing uses the value of ptr any more. */
4649 max_delta = SvLEN(sv) ? SvLEN(sv) : SvCUR(sv);
4650 if (ptr <= SvPVX_const(sv))
4651 Perl_croak(aTHX_ "panic: sv_chop ptr=%p, start=%p, end=%p",
4652 ptr, SvPVX_const(sv), SvPVX_const(sv) + max_delta);
4653 SV_CHECK_THINKFIRST(sv);
4654 if (delta > max_delta)
4655 Perl_croak(aTHX_ "panic: sv_chop ptr=%p (was %p), start=%p, end=%p",
4656 SvPVX_const(sv) + delta, ptr, SvPVX_const(sv),
4657 SvPVX_const(sv) + max_delta);
4660 if (!SvLEN(sv)) { /* make copy of shared string */
4661 const char *pvx = SvPVX_const(sv);
4662 const STRLEN len = SvCUR(sv);
4663 SvGROW(sv, len + 1);
4664 Move(pvx,SvPVX(sv),len,char);
4667 SvFLAGS(sv) |= SVf_OOK;
4670 SvOOK_offset(sv, old_delta);
4672 SvLEN_set(sv, SvLEN(sv) - delta);
4673 SvCUR_set(sv, SvCUR(sv) - delta);
4674 SvPV_set(sv, SvPVX(sv) + delta);
4676 p = (U8 *)SvPVX_const(sv);
4681 real_start = p - delta;
4685 if (delta < 0x100) {