3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 * 2000, 2001, 2002, 2003, 2004, 2005, 2006, by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
9 * "I wonder what the Entish is for 'yes' and 'no'," he thought.
12 * This file contains the code that creates, manipulates and destroys
13 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
14 * structure of an SV, so their creation and destruction is handled
15 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
16 * level functions (eg. substr, split, join) for each of the types are
28 /* Missing proto on LynxOS */
29 char *gconvert(double, int, int, char *);
32 #ifdef PERL_UTF8_CACHE_ASSERT
33 /* if adding more checks watch out for the following tests:
34 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
35 * lib/utf8.t lib/Unicode/Collate/t/index.t
38 # define ASSERT_UTF8_CACHE(cache) \
39 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
40 assert((cache)[2] <= (cache)[3]); \
41 assert((cache)[3] <= (cache)[1]);} \
44 # define ASSERT_UTF8_CACHE(cache) NOOP
47 #ifdef PERL_OLD_COPY_ON_WRITE
48 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
49 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
50 /* This is a pessimistic view. Scalar must be purely a read-write PV to copy-
54 /* ============================================================================
56 =head1 Allocation and deallocation of SVs.
58 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
59 sv, av, hv...) contains type and reference count information, and for
60 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
61 contains fields specific to each type. Some types store all they need
62 in the head, so don't have a body.
64 In all but the most memory-paranoid configuations (ex: PURIFY), heads
65 and bodies are allocated out of arenas, which by default are
66 approximately 4K chunks of memory parcelled up into N heads or bodies.
67 Sv-bodies are allocated by their sv-type, guaranteeing size
68 consistency needed to allocate safely from arrays.
70 For SV-heads, the first slot in each arena is reserved, and holds a
71 link to the next arena, some flags, and a note of the number of slots.
72 Snaked through each arena chain is a linked list of free items; when
73 this becomes empty, an extra arena is allocated and divided up into N
74 items which are threaded into the free list.
76 SV-bodies are similar, but they use arena-sets by default, which
77 separate the link and info from the arena itself, and reclaim the 1st
78 slot in the arena. SV-bodies are further described later.
80 The following global variables are associated with arenas:
82 PL_sv_arenaroot pointer to list of SV arenas
83 PL_sv_root pointer to list of free SV structures
85 PL_body_arenas head of linked-list of body arenas
86 PL_body_roots[] array of pointers to list of free bodies of svtype
87 arrays are indexed by the svtype needed
89 A few special SV heads are not allocated from an arena, but are
90 instead directly created in the interpreter structure, eg PL_sv_undef.
91 The size of arenas can be changed from the default by setting
92 PERL_ARENA_SIZE appropriately at compile time.
94 The SV arena serves the secondary purpose of allowing still-live SVs
95 to be located and destroyed during final cleanup.
97 At the lowest level, the macros new_SV() and del_SV() grab and free
98 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
99 to return the SV to the free list with error checking.) new_SV() calls
100 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
101 SVs in the free list have their SvTYPE field set to all ones.
103 At the time of very final cleanup, sv_free_arenas() is called from
104 perl_destruct() to physically free all the arenas allocated since the
105 start of the interpreter.
107 Manipulation of any of the PL_*root pointers is protected by enclosing
108 LOCK_SV_MUTEX; ... UNLOCK_SV_MUTEX calls which should Do the Right Thing
109 if threads are enabled.
111 The function visit() scans the SV arenas list, and calls a specified
112 function for each SV it finds which is still live - ie which has an SvTYPE
113 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
114 following functions (specified as [function that calls visit()] / [function
115 called by visit() for each SV]):
117 sv_report_used() / do_report_used()
118 dump all remaining SVs (debugging aid)
120 sv_clean_objs() / do_clean_objs(),do_clean_named_objs()
121 Attempt to free all objects pointed to by RVs,
122 and, unless DISABLE_DESTRUCTOR_KLUDGE is defined,
123 try to do the same for all objects indirectly
124 referenced by typeglobs too. Called once from
125 perl_destruct(), prior to calling sv_clean_all()
128 sv_clean_all() / do_clean_all()
129 SvREFCNT_dec(sv) each remaining SV, possibly
130 triggering an sv_free(). It also sets the
131 SVf_BREAK flag on the SV to indicate that the
132 refcnt has been artificially lowered, and thus
133 stopping sv_free() from giving spurious warnings
134 about SVs which unexpectedly have a refcnt
135 of zero. called repeatedly from perl_destruct()
136 until there are no SVs left.
138 =head2 Arena allocator API Summary
140 Private API to rest of sv.c
144 new_XIV(), del_XIV(),
145 new_XNV(), del_XNV(),
150 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
154 ============================================================================ */
157 * "A time to plant, and a time to uproot what was planted..."
161 * nice_chunk and nice_chunk size need to be set
162 * and queried under the protection of sv_mutex
165 Perl_offer_nice_chunk(pTHX_ void *chunk, U32 chunk_size)
171 new_chunk = (void *)(chunk);
172 new_chunk_size = (chunk_size);
173 if (new_chunk_size > PL_nice_chunk_size) {
174 Safefree(PL_nice_chunk);
175 PL_nice_chunk = (char *) new_chunk;
176 PL_nice_chunk_size = new_chunk_size;
183 #ifdef DEBUG_LEAKING_SCALARS
184 # define FREE_SV_DEBUG_FILE(sv) Safefree((sv)->sv_debug_file)
186 # define FREE_SV_DEBUG_FILE(sv)
190 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
191 /* Whilst I'd love to do this, it seems that things like to check on
193 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
195 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
196 PoisonNew(&SvREFCNT(sv), 1, U32)
198 # define SvARENA_CHAIN(sv) SvANY(sv)
199 # define POSION_SV_HEAD(sv)
202 #define plant_SV(p) \
204 FREE_SV_DEBUG_FILE(p); \
206 SvARENA_CHAIN(p) = (void *)PL_sv_root; \
207 SvFLAGS(p) = SVTYPEMASK; \
212 /* sv_mutex must be held while calling uproot_SV() */
213 #define uproot_SV(p) \
216 PL_sv_root = (SV*)SvARENA_CHAIN(p); \
221 /* make some more SVs by adding another arena */
223 /* sv_mutex must be held while calling more_sv() */
231 sv_add_arena(PL_nice_chunk, PL_nice_chunk_size, 0);
232 PL_nice_chunk = NULL;
233 PL_nice_chunk_size = 0;
236 char *chunk; /* must use New here to match call to */
237 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
238 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
244 /* new_SV(): return a new, empty SV head */
246 #ifdef DEBUG_LEAKING_SCALARS
247 /* provide a real function for a debugger to play with */
257 sv = S_more_sv(aTHX);
262 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
263 sv->sv_debug_line = (U16) ((PL_copline == NOLINE) ?
264 (PL_curcop ? CopLINE(PL_curcop) : 0) : PL_copline);
265 sv->sv_debug_inpad = 0;
266 sv->sv_debug_cloned = 0;
267 sv->sv_debug_file = PL_curcop ? savepv(CopFILE(PL_curcop)): NULL;
271 # define new_SV(p) (p)=S_new_SV(aTHX)
280 (p) = S_more_sv(aTHX); \
289 /* del_SV(): return an empty SV head to the free list */
304 S_del_sv(pTHX_ SV *p)
310 for (sva = PL_sv_arenaroot; sva; sva = (SV *) SvANY(sva)) {
311 const SV * const sv = sva + 1;
312 const SV * const svend = &sva[SvREFCNT(sva)];
313 if (p >= sv && p < svend) {
319 if (ckWARN_d(WARN_INTERNAL))
320 Perl_warner(aTHX_ packWARN(WARN_INTERNAL),
321 "Attempt to free non-arena SV: 0x%"UVxf
322 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
329 #else /* ! DEBUGGING */
331 #define del_SV(p) plant_SV(p)
333 #endif /* DEBUGGING */
337 =head1 SV Manipulation Functions
339 =for apidoc sv_add_arena
341 Given a chunk of memory, link it to the head of the list of arenas,
342 and split it into a list of free SVs.
348 Perl_sv_add_arena(pTHX_ char *ptr, U32 size, U32 flags)
351 SV* const sva = (SV*)ptr;
355 /* The first SV in an arena isn't an SV. */
356 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
357 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
358 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
360 PL_sv_arenaroot = sva;
361 PL_sv_root = sva + 1;
363 svend = &sva[SvREFCNT(sva) - 1];
366 SvARENA_CHAIN(sv) = (void *)(SV*)(sv + 1);
370 /* Must always set typemask because it's awlays checked in on cleanup
371 when the arenas are walked looking for objects. */
372 SvFLAGS(sv) = SVTYPEMASK;
375 SvARENA_CHAIN(sv) = 0;
379 SvFLAGS(sv) = SVTYPEMASK;
382 /* visit(): call the named function for each non-free SV in the arenas
383 * whose flags field matches the flags/mask args. */
386 S_visit(pTHX_ SVFUNC_t f, U32 flags, U32 mask)
392 for (sva = PL_sv_arenaroot; sva; sva = (SV*)SvANY(sva)) {
393 register const SV * const svend = &sva[SvREFCNT(sva)];
395 for (sv = sva + 1; sv < svend; ++sv) {
396 if (SvTYPE(sv) != SVTYPEMASK
397 && (sv->sv_flags & mask) == flags
410 /* called by sv_report_used() for each live SV */
413 do_report_used(pTHX_ SV *sv)
415 if (SvTYPE(sv) != SVTYPEMASK) {
416 PerlIO_printf(Perl_debug_log, "****\n");
423 =for apidoc sv_report_used
425 Dump the contents of all SVs not yet freed. (Debugging aid).
431 Perl_sv_report_used(pTHX)
434 visit(do_report_used, 0, 0);
440 /* called by sv_clean_objs() for each live SV */
443 do_clean_objs(pTHX_ SV *ref)
447 SV * const target = SvRV(ref);
448 if (SvOBJECT(target)) {
449 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
450 if (SvWEAKREF(ref)) {
451 sv_del_backref(target, ref);
457 SvREFCNT_dec(target);
462 /* XXX Might want to check arrays, etc. */
465 /* called by sv_clean_objs() for each live SV */
467 #ifndef DISABLE_DESTRUCTOR_KLUDGE
469 do_clean_named_objs(pTHX_ SV *sv)
472 if (SvTYPE(sv) == SVt_PVGV && isGV_with_GP(sv) && GvGP(sv)) {
474 #ifdef PERL_DONT_CREATE_GVSV
477 SvOBJECT(GvSV(sv))) ||
478 (GvAV(sv) && SvOBJECT(GvAV(sv))) ||
479 (GvHV(sv) && SvOBJECT(GvHV(sv))) ||
480 (GvIO(sv) && SvOBJECT(GvIO(sv))) ||
481 (GvCV(sv) && SvOBJECT(GvCV(sv))) )
483 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning named glob object:\n "), sv_dump(sv)));
484 SvFLAGS(sv) |= SVf_BREAK;
492 =for apidoc sv_clean_objs
494 Attempt to destroy all objects not yet freed
500 Perl_sv_clean_objs(pTHX)
503 PL_in_clean_objs = TRUE;
504 visit(do_clean_objs, SVf_ROK, SVf_ROK);
505 #ifndef DISABLE_DESTRUCTOR_KLUDGE
506 /* some barnacles may yet remain, clinging to typeglobs */
507 visit(do_clean_named_objs, SVt_PVGV, SVTYPEMASK);
509 PL_in_clean_objs = FALSE;
512 /* called by sv_clean_all() for each live SV */
515 do_clean_all(pTHX_ SV *sv)
518 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
519 SvFLAGS(sv) |= SVf_BREAK;
520 if (PL_comppad == (AV*)sv) {
528 =for apidoc sv_clean_all
530 Decrement the refcnt of each remaining SV, possibly triggering a
531 cleanup. This function may have to be called multiple times to free
532 SVs which are in complex self-referential hierarchies.
538 Perl_sv_clean_all(pTHX)
542 PL_in_clean_all = TRUE;
543 cleaned = visit(do_clean_all, 0,0);
544 PL_in_clean_all = FALSE;
549 ARENASETS: a meta-arena implementation which separates arena-info
550 into struct arena_set, which contains an array of struct
551 arena_descs, each holding info for a single arena. By separating
552 the meta-info from the arena, we recover the 1st slot, formerly
553 borrowed for list management. The arena_set is about the size of an
554 arena, avoiding the needless malloc overhead of a naive linked-list
556 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
557 memory in the last arena-set (1/2 on average). In trade, we get
558 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
559 smaller types). The recovery of the wasted space allows use of
560 small arenas for large, rare body types,
563 char *arena; /* the raw storage, allocated aligned */
564 size_t size; /* its size ~4k typ */
565 int unit_type; /* useful for arena audits */
566 /* info for sv-heads (eventually)
573 /* Get the maximum number of elements in set[] such that struct arena_set
574 will fit within PERL_ARENA_SIZE, which is probabably just under 4K, and
575 therefore likely to be 1 aligned memory page. */
577 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
578 - 2 * sizeof(int)) / sizeof (struct arena_desc))
581 struct arena_set* next;
582 int set_size; /* ie ARENAS_PER_SET */
583 int curr; /* index of next available arena-desc */
584 struct arena_desc set[ARENAS_PER_SET];
588 =for apidoc sv_free_arenas
590 Deallocate the memory used by all arenas. Note that all the individual SV
591 heads and bodies within the arenas must already have been freed.
596 Perl_sv_free_arenas(pTHX)
603 /* Free arenas here, but be careful about fake ones. (We assume
604 contiguity of the fake ones with the corresponding real ones.) */
606 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
607 svanext = (SV*) SvANY(sva);
608 while (svanext && SvFAKE(svanext))
609 svanext = (SV*) SvANY(svanext);
616 struct arena_set *next, *aroot = (struct arena_set*) PL_body_arenas;
618 for (; aroot; aroot = next) {
619 const int max = aroot->curr;
620 for (i=0; i<max; i++) {
621 assert(aroot->set[i].arena);
622 Safefree(aroot->set[i].arena);
630 for (i=0; i<PERL_ARENA_ROOTS_SIZE; i++)
631 PL_body_roots[i] = 0;
633 Safefree(PL_nice_chunk);
634 PL_nice_chunk = NULL;
635 PL_nice_chunk_size = 0;
641 Here are mid-level routines that manage the allocation of bodies out
642 of the various arenas. There are 5 kinds of arenas:
644 1. SV-head arenas, which are discussed and handled above
645 2. regular body arenas
646 3. arenas for reduced-size bodies
648 5. pte arenas (thread related)
650 Arena types 2 & 3 are chained by body-type off an array of
651 arena-root pointers, which is indexed by svtype. Some of the
652 larger/less used body types are malloced singly, since a large
653 unused block of them is wasteful. Also, several svtypes dont have
654 bodies; the data fits into the sv-head itself. The arena-root
655 pointer thus has a few unused root-pointers (which may be hijacked
656 later for arena types 4,5)
658 3 differs from 2 as an optimization; some body types have several
659 unused fields in the front of the structure (which are kept in-place
660 for consistency). These bodies can be allocated in smaller chunks,
661 because the leading fields arent accessed. Pointers to such bodies
662 are decremented to point at the unused 'ghost' memory, knowing that
663 the pointers are used with offsets to the real memory.
665 HE, HEK arenas are managed separately, with separate code, but may
666 be merge-able later..
668 PTE arenas are not sv-bodies, but they share these mid-level
669 mechanics, so are considered here. The new mid-level mechanics rely
670 on the sv_type of the body being allocated, so we just reserve one
671 of the unused body-slots for PTEs, then use it in those (2) PTE
672 contexts below (line ~10k)
675 /* get_arena(size): this creates custom-sized arenas
676 TBD: export properly for hv.c: S_more_he().
679 Perl_get_arena(pTHX_ int arena_size)
682 struct arena_desc* adesc;
683 struct arena_set *newroot, **aroot = (struct arena_set**) &PL_body_arenas;
686 /* shouldnt need this
687 if (!arena_size) arena_size = PERL_ARENA_SIZE;
690 /* may need new arena-set to hold new arena */
691 if (!*aroot || (*aroot)->curr >= (*aroot)->set_size) {
692 Newxz(newroot, 1, struct arena_set);
693 newroot->set_size = ARENAS_PER_SET;
694 newroot->next = *aroot;
696 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)*aroot));
699 /* ok, now have arena-set with at least 1 empty/available arena-desc */
700 curr = (*aroot)->curr++;
701 adesc = &((*aroot)->set[curr]);
702 assert(!adesc->arena);
704 Newxz(adesc->arena, arena_size, char);
705 adesc->size = arena_size;
706 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %d\n",
707 curr, adesc->arena, arena_size));
713 /* return a thing to the free list */
715 #define del_body(thing, root) \
717 void ** const thing_copy = (void **)thing;\
719 *thing_copy = *root; \
720 *root = (void*)thing_copy; \
726 =head1 SV-Body Allocation
728 Allocation of SV-bodies is similar to SV-heads, differing as follows;
729 the allocation mechanism is used for many body types, so is somewhat
730 more complicated, it uses arena-sets, and has no need for still-live
733 At the outermost level, (new|del)_X*V macros return bodies of the
734 appropriate type. These macros call either (new|del)_body_type or
735 (new|del)_body_allocated macro pairs, depending on specifics of the
736 type. Most body types use the former pair, the latter pair is used to
737 allocate body types with "ghost fields".
739 "ghost fields" are fields that are unused in certain types, and
740 consequently dont need to actually exist. They are declared because
741 they're part of a "base type", which allows use of functions as
742 methods. The simplest examples are AVs and HVs, 2 aggregate types
743 which don't use the fields which support SCALAR semantics.
745 For these types, the arenas are carved up into *_allocated size
746 chunks, we thus avoid wasted memory for those unaccessed members.
747 When bodies are allocated, we adjust the pointer back in memory by the
748 size of the bit not allocated, so it's as if we allocated the full
749 structure. (But things will all go boom if you write to the part that
750 is "not there", because you'll be overwriting the last members of the
751 preceding structure in memory.)
753 We calculate the correction using the STRUCT_OFFSET macro. For
754 example, if xpv_allocated is the same structure as XPV then the two
755 OFFSETs sum to zero, and the pointer is unchanged. If the allocated
756 structure is smaller (no initial NV actually allocated) then the net
757 effect is to subtract the size of the NV from the pointer, to return a
758 new pointer as if an initial NV were actually allocated.
760 This is the same trick as was used for NV and IV bodies. Ironically it
761 doesn't need to be used for NV bodies any more, because NV is now at
762 the start of the structure. IV bodies don't need it either, because
763 they are no longer allocated.
765 In turn, the new_body_* allocators call S_new_body(), which invokes
766 new_body_inline macro, which takes a lock, and takes a body off the
767 linked list at PL_body_roots[sv_type], calling S_more_bodies() if
768 necessary to refresh an empty list. Then the lock is released, and
769 the body is returned.
771 S_more_bodies calls get_arena(), and carves it up into an array of N
772 bodies, which it strings into a linked list. It looks up arena-size
773 and body-size from the body_details table described below, thus
774 supporting the multiple body-types.
776 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
777 the (new|del)_X*V macros are mapped directly to malloc/free.
783 For each sv-type, struct body_details bodies_by_type[] carries
784 parameters which control these aspects of SV handling:
786 Arena_size determines whether arenas are used for this body type, and if
787 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
788 zero, forcing individual mallocs and frees.
790 Body_size determines how big a body is, and therefore how many fit into
791 each arena. Offset carries the body-pointer adjustment needed for
792 *_allocated body types, and is used in *_allocated macros.
794 But its main purpose is to parameterize info needed in
795 Perl_sv_upgrade(). The info here dramatically simplifies the function
796 vs the implementation in 5.8.7, making it table-driven. All fields
797 are used for this, except for arena_size.
799 For the sv-types that have no bodies, arenas are not used, so those
800 PL_body_roots[sv_type] are unused, and can be overloaded. In
801 something of a special case, SVt_NULL is borrowed for HE arenas;
802 PL_body_roots[SVt_NULL] is filled by S_more_he, but the
803 bodies_by_type[SVt_NULL] slot is not used, as the table is not
806 PTEs also use arenas, but are never seen in Perl_sv_upgrade.
807 Nonetheless, they get their own slot in bodies_by_type[SVt_NULL], so
808 they can just use the same allocation semantics. At first, PTEs were
809 also overloaded to a non-body sv-type, but this yielded hard-to-find
810 malloc bugs, so was simplified by claiming a new slot. This choice
811 has no consequence at this time.
815 struct body_details {
816 U8 body_size; /* Size to allocate */
817 U8 copy; /* Size of structure to copy (may be shorter) */
819 unsigned int type : 4; /* We have space for a sanity check. */
820 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
821 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
822 unsigned int arena : 1; /* Allocated from an arena */
823 size_t arena_size; /* Size of arena to allocate */
831 /* With -DPURFIY we allocate everything directly, and don't use arenas.
832 This seems a rather elegant way to simplify some of the code below. */
833 #define HASARENA FALSE
835 #define HASARENA TRUE
837 #define NOARENA FALSE
839 /* Size the arenas to exactly fit a given number of bodies. A count
840 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
841 simplifying the default. If count > 0, the arena is sized to fit
842 only that many bodies, allowing arenas to be used for large, rare
843 bodies (XPVFM, XPVIO) without undue waste. The arena size is
844 limited by PERL_ARENA_SIZE, so we can safely oversize the
847 #define FIT_ARENA0(body_size) \
848 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
849 #define FIT_ARENAn(count,body_size) \
850 ( count * body_size <= PERL_ARENA_SIZE) \
851 ? count * body_size \
852 : FIT_ARENA0 (body_size)
853 #define FIT_ARENA(count,body_size) \
855 ? FIT_ARENAn (count, body_size) \
856 : FIT_ARENA0 (body_size)
858 /* A macro to work out the offset needed to subtract from a pointer to (say)
865 to make its members accessible via a pointer to (say)
875 #define relative_STRUCT_OFFSET(longer, shorter, member) \
876 (STRUCT_OFFSET(shorter, member) - STRUCT_OFFSET(longer, member))
878 /* Calculate the length to copy. Specifically work out the length less any
879 final padding the compiler needed to add. See the comment in sv_upgrade
880 for why copying the padding proved to be a bug. */
882 #define copy_length(type, last_member) \
883 STRUCT_OFFSET(type, last_member) \
884 + sizeof (((type*)SvANY((SV*)0))->last_member)
886 static const struct body_details bodies_by_type[] = {
887 { sizeof(HE), 0, 0, SVt_NULL,
888 FALSE, NONV, NOARENA, FIT_ARENA(0, sizeof(HE)) },
890 /* IVs are in the head, so the allocation size is 0.
891 However, the slot is overloaded for PTEs. */
892 { sizeof(struct ptr_tbl_ent), /* This is used for PTEs. */
893 sizeof(IV), /* This is used to copy out the IV body. */
894 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
895 NOARENA /* IVS don't need an arena */,
896 /* But PTEs need to know the size of their arena */
897 FIT_ARENA(0, sizeof(struct ptr_tbl_ent))
900 /* 8 bytes on most ILP32 with IEEE doubles */
901 { sizeof(NV), sizeof(NV), 0, SVt_NV, FALSE, HADNV, HASARENA,
902 FIT_ARENA(0, sizeof(NV)) },
904 /* RVs are in the head now. */
905 { 0, 0, 0, SVt_RV, FALSE, NONV, NOARENA, 0 },
907 /* The bind placeholder pretends to be an RV for now. */
908 { 0, 0, 0, SVt_BIND, FALSE, NONV, NOARENA, 0 },
910 /* 8 bytes on most ILP32 with IEEE doubles */
911 { sizeof(xpv_allocated),
912 copy_length(XPV, xpv_len)
913 - relative_STRUCT_OFFSET(xpv_allocated, XPV, xpv_cur),
914 + relative_STRUCT_OFFSET(xpv_allocated, XPV, xpv_cur),
915 SVt_PV, FALSE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpv_allocated)) },
918 { sizeof(xpviv_allocated),
919 copy_length(XPVIV, xiv_u)
920 - relative_STRUCT_OFFSET(xpviv_allocated, XPVIV, xpv_cur),
921 + relative_STRUCT_OFFSET(xpviv_allocated, XPVIV, xpv_cur),
922 SVt_PVIV, FALSE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpviv_allocated)) },
925 { sizeof(XPVNV), copy_length(XPVNV, xiv_u), 0, SVt_PVNV, FALSE, HADNV,
926 HASARENA, FIT_ARENA(0, sizeof(XPVNV)) },
929 { sizeof(XPVMG), copy_length(XPVMG, xmg_stash), 0, SVt_PVMG, FALSE, HADNV,
930 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
933 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
934 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
937 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
938 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
940 { sizeof(xpvav_allocated),
941 copy_length(XPVAV, xmg_stash)
942 - relative_STRUCT_OFFSET(xpvav_allocated, XPVAV, xav_fill),
943 + relative_STRUCT_OFFSET(xpvav_allocated, XPVAV, xav_fill),
944 SVt_PVAV, TRUE, HADNV, HASARENA, FIT_ARENA(0, sizeof(xpvav_allocated)) },
946 { sizeof(xpvhv_allocated),
947 copy_length(XPVHV, xmg_stash)
948 - relative_STRUCT_OFFSET(xpvhv_allocated, XPVHV, xhv_fill),
949 + relative_STRUCT_OFFSET(xpvhv_allocated, XPVHV, xhv_fill),
950 SVt_PVHV, TRUE, HADNV, HASARENA, FIT_ARENA(0, sizeof(xpvhv_allocated)) },
953 { sizeof(xpvcv_allocated), sizeof(xpvcv_allocated),
954 + relative_STRUCT_OFFSET(xpvcv_allocated, XPVCV, xpv_cur),
955 SVt_PVCV, TRUE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpvcv_allocated)) },
957 { sizeof(xpvfm_allocated), sizeof(xpvfm_allocated),
958 + relative_STRUCT_OFFSET(xpvfm_allocated, XPVFM, xpv_cur),
959 SVt_PVFM, TRUE, NONV, NOARENA, FIT_ARENA(20, sizeof(xpvfm_allocated)) },
961 /* XPVIO is 84 bytes, fits 48x */
962 { sizeof(XPVIO), sizeof(XPVIO), 0, SVt_PVIO, TRUE, HADNV,
963 HASARENA, FIT_ARENA(24, sizeof(XPVIO)) },
966 #define new_body_type(sv_type) \
967 (void *)((char *)S_new_body(aTHX_ sv_type))
969 #define del_body_type(p, sv_type) \
970 del_body(p, &PL_body_roots[sv_type])
973 #define new_body_allocated(sv_type) \
974 (void *)((char *)S_new_body(aTHX_ sv_type) \
975 - bodies_by_type[sv_type].offset)
977 #define del_body_allocated(p, sv_type) \
978 del_body(p + bodies_by_type[sv_type].offset, &PL_body_roots[sv_type])
981 #define my_safemalloc(s) (void*)safemalloc(s)
982 #define my_safecalloc(s) (void*)safecalloc(s, 1)
983 #define my_safefree(p) safefree((char*)p)
987 #define new_XNV() my_safemalloc(sizeof(XPVNV))
988 #define del_XNV(p) my_safefree(p)
990 #define new_XPVNV() my_safemalloc(sizeof(XPVNV))
991 #define del_XPVNV(p) my_safefree(p)
993 #define new_XPVAV() my_safemalloc(sizeof(XPVAV))
994 #define del_XPVAV(p) my_safefree(p)
996 #define new_XPVHV() my_safemalloc(sizeof(XPVHV))
997 #define del_XPVHV(p) my_safefree(p)
999 #define new_XPVMG() my_safemalloc(sizeof(XPVMG))
1000 #define del_XPVMG(p) my_safefree(p)
1002 #define new_XPVGV() my_safemalloc(sizeof(XPVGV))
1003 #define del_XPVGV(p) my_safefree(p)
1007 #define new_XNV() new_body_type(SVt_NV)
1008 #define del_XNV(p) del_body_type(p, SVt_NV)
1010 #define new_XPVNV() new_body_type(SVt_PVNV)
1011 #define del_XPVNV(p) del_body_type(p, SVt_PVNV)
1013 #define new_XPVAV() new_body_allocated(SVt_PVAV)
1014 #define del_XPVAV(p) del_body_allocated(p, SVt_PVAV)
1016 #define new_XPVHV() new_body_allocated(SVt_PVHV)
1017 #define del_XPVHV(p) del_body_allocated(p, SVt_PVHV)
1019 #define new_XPVMG() new_body_type(SVt_PVMG)
1020 #define del_XPVMG(p) del_body_type(p, SVt_PVMG)
1022 #define new_XPVGV() new_body_type(SVt_PVGV)
1023 #define del_XPVGV(p) del_body_type(p, SVt_PVGV)
1027 /* no arena for you! */
1029 #define new_NOARENA(details) \
1030 my_safemalloc((details)->body_size + (details)->offset)
1031 #define new_NOARENAZ(details) \
1032 my_safecalloc((details)->body_size + (details)->offset)
1034 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1035 static bool done_sanity_check;
1039 S_more_bodies (pTHX_ svtype sv_type)
1042 void ** const root = &PL_body_roots[sv_type];
1043 const struct body_details * const bdp = &bodies_by_type[sv_type];
1044 const size_t body_size = bdp->body_size;
1048 assert(bdp->arena_size);
1050 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1051 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1052 * variables like done_sanity_check. */
1053 if (!done_sanity_check) {
1054 unsigned int i = SVt_LAST;
1056 done_sanity_check = TRUE;
1059 assert (bodies_by_type[i].type == i);
1063 start = (char*) Perl_get_arena(aTHX_ bdp->arena_size);
1065 end = start + bdp->arena_size - body_size;
1067 /* computed count doesnt reflect the 1st slot reservation */
1068 DEBUG_m(PerlIO_printf(Perl_debug_log,
1069 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1071 (int)bdp->arena_size, sv_type, (int)body_size,
1072 (int)bdp->arena_size / (int)body_size));
1074 *root = (void *)start;
1076 while (start < end) {
1077 char * const next = start + body_size;
1078 *(void**) start = (void *)next;
1081 *(void **)start = 0;
1086 /* grab a new thing from the free list, allocating more if necessary.
1087 The inline version is used for speed in hot routines, and the
1088 function using it serves the rest (unless PURIFY).
1090 #define new_body_inline(xpv, sv_type) \
1092 void ** const r3wt = &PL_body_roots[sv_type]; \
1094 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1095 ? *((void **)(r3wt)) : more_bodies(sv_type)); \
1096 *(r3wt) = *(void**)(xpv); \
1103 S_new_body(pTHX_ svtype sv_type)
1107 new_body_inline(xpv, sv_type);
1114 =for apidoc sv_upgrade
1116 Upgrade an SV to a more complex form. Generally adds a new body type to the
1117 SV, then copies across as much information as possible from the old body.
1118 You generally want to use the C<SvUPGRADE> macro wrapper. See also C<svtype>.
1124 Perl_sv_upgrade(pTHX_ register SV *sv, svtype new_type)
1129 const svtype old_type = SvTYPE(sv);
1130 const struct body_details *new_type_details;
1131 const struct body_details *const old_type_details
1132 = bodies_by_type + old_type;
1134 if (new_type != SVt_PV && SvIsCOW(sv)) {
1135 sv_force_normal_flags(sv, 0);
1138 if (old_type == new_type)
1141 if (old_type > new_type)
1142 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1143 (int)old_type, (int)new_type);
1146 old_body = SvANY(sv);
1148 /* Copying structures onto other structures that have been neatly zeroed
1149 has a subtle gotcha. Consider XPVMG
1151 +------+------+------+------+------+-------+-------+
1152 | NV | CUR | LEN | IV | MAGIC | STASH |
1153 +------+------+------+------+------+-------+-------+
1154 0 4 8 12 16 20 24 28
1156 where NVs are aligned to 8 bytes, so that sizeof that structure is
1157 actually 32 bytes long, with 4 bytes of padding at the end:
1159 +------+------+------+------+------+-------+-------+------+
1160 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1161 +------+------+------+------+------+-------+-------+------+
1162 0 4 8 12 16 20 24 28 32
1164 so what happens if you allocate memory for this structure:
1166 +------+------+------+------+------+-------+-------+------+------+...
1167 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1168 +------+------+------+------+------+-------+-------+------+------+...
1169 0 4 8 12 16 20 24 28 32 36
1171 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1172 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1173 started out as zero once, but it's quite possible that it isn't. So now,
1174 rather than a nicely zeroed GP, you have it pointing somewhere random.
1177 (In fact, GP ends up pointing at a previous GP structure, because the
1178 principle cause of the padding in XPVMG getting garbage is a copy of
1179 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob)
1181 So we are careful and work out the size of used parts of all the
1188 if (new_type < SVt_PVIV) {
1189 new_type = (new_type == SVt_NV)
1190 ? SVt_PVNV : SVt_PVIV;
1194 if (new_type < SVt_PVNV) {
1195 new_type = SVt_PVNV;
1201 assert(new_type > SVt_PV);
1202 assert(SVt_IV < SVt_PV);
1203 assert(SVt_NV < SVt_PV);
1210 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1211 there's no way that it can be safely upgraded, because perl.c
1212 expects to Safefree(SvANY(PL_mess_sv)) */
1213 assert(sv != PL_mess_sv);
1214 /* This flag bit is used to mean other things in other scalar types.
1215 Given that it only has meaning inside the pad, it shouldn't be set
1216 on anything that can get upgraded. */
1217 assert(!SvPAD_TYPED(sv));
1220 if (old_type_details->cant_upgrade)
1221 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1222 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1224 new_type_details = bodies_by_type + new_type;
1226 SvFLAGS(sv) &= ~SVTYPEMASK;
1227 SvFLAGS(sv) |= new_type;
1229 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1230 the return statements above will have triggered. */
1231 assert (new_type != SVt_NULL);
1234 assert(old_type == SVt_NULL);
1235 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1239 assert(old_type == SVt_NULL);
1240 SvANY(sv) = new_XNV();
1244 assert(old_type == SVt_NULL);
1245 SvANY(sv) = &sv->sv_u.svu_rv;
1250 assert(new_type_details->body_size);
1253 assert(new_type_details->arena);
1254 assert(new_type_details->arena_size);
1255 /* This points to the start of the allocated area. */
1256 new_body_inline(new_body, new_type);
1257 Zero(new_body, new_type_details->body_size, char);
1258 new_body = ((char *)new_body) - new_type_details->offset;
1260 /* We always allocated the full length item with PURIFY. To do this
1261 we fake things so that arena is false for all 16 types.. */
1262 new_body = new_NOARENAZ(new_type_details);
1264 SvANY(sv) = new_body;
1265 if (new_type == SVt_PVAV) {
1271 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1272 The target created by newSVrv also is, and it can have magic.
1273 However, it never has SvPVX set.
1275 if (old_type >= SVt_RV) {
1276 assert(SvPVX_const(sv) == 0);
1279 if (old_type >= SVt_PVMG) {
1280 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1281 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1283 sv->sv_u.svu_array = NULL; /* or svu_hash */
1289 /* XXX Is this still needed? Was it ever needed? Surely as there is
1290 no route from NV to PVIV, NOK can never be true */
1291 assert(!SvNOKp(sv));
1302 assert(new_type_details->body_size);
1303 /* We always allocated the full length item with PURIFY. To do this
1304 we fake things so that arena is false for all 16 types.. */
1305 if(new_type_details->arena) {
1306 /* This points to the start of the allocated area. */
1307 new_body_inline(new_body, new_type);
1308 Zero(new_body, new_type_details->body_size, char);
1309 new_body = ((char *)new_body) - new_type_details->offset;
1311 new_body = new_NOARENAZ(new_type_details);
1313 SvANY(sv) = new_body;
1315 if (old_type_details->copy) {
1316 /* There is now the potential for an upgrade from something without
1317 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1318 int offset = old_type_details->offset;
1319 int length = old_type_details->copy;
1321 if (new_type_details->offset > old_type_details->offset) {
1322 const int difference
1323 = new_type_details->offset - old_type_details->offset;
1324 offset += difference;
1325 length -= difference;
1327 assert (length >= 0);
1329 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1333 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1334 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1335 * correct 0.0 for us. Otherwise, if the old body didn't have an
1336 * NV slot, but the new one does, then we need to initialise the
1337 * freshly created NV slot with whatever the correct bit pattern is
1339 if (old_type_details->zero_nv && !new_type_details->zero_nv)
1343 if (new_type == SVt_PVIO)
1344 IoPAGE_LEN(sv) = 60;
1345 if (old_type < SVt_RV)
1349 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1350 (unsigned long)new_type);
1353 if (old_type_details->arena) {
1354 /* If there was an old body, then we need to free it.
1355 Note that there is an assumption that all bodies of types that
1356 can be upgraded came from arenas. Only the more complex non-
1357 upgradable types are allowed to be directly malloc()ed. */
1359 my_safefree(old_body);
1361 del_body((void*)((char*)old_body + old_type_details->offset),
1362 &PL_body_roots[old_type]);
1368 =for apidoc sv_backoff
1370 Remove any string offset. You should normally use the C<SvOOK_off> macro
1377 Perl_sv_backoff(pTHX_ register SV *sv)
1379 PERL_UNUSED_CONTEXT;
1381 assert(SvTYPE(sv) != SVt_PVHV);
1382 assert(SvTYPE(sv) != SVt_PVAV);
1384 const char * const s = SvPVX_const(sv);
1385 SvLEN_set(sv, SvLEN(sv) + SvIVX(sv));
1386 SvPV_set(sv, SvPVX(sv) - SvIVX(sv));
1388 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1390 SvFLAGS(sv) &= ~SVf_OOK;
1397 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1398 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1399 Use the C<SvGROW> wrapper instead.
1405 Perl_sv_grow(pTHX_ register SV *sv, register STRLEN newlen)
1409 if (PL_madskills && newlen >= 0x100000) {
1410 PerlIO_printf(Perl_debug_log,
1411 "Allocation too large: %"UVxf"\n", (UV)newlen);
1413 #ifdef HAS_64K_LIMIT
1414 if (newlen >= 0x10000) {
1415 PerlIO_printf(Perl_debug_log,
1416 "Allocation too large: %"UVxf"\n", (UV)newlen);
1419 #endif /* HAS_64K_LIMIT */
1422 if (SvTYPE(sv) < SVt_PV) {
1423 sv_upgrade(sv, SVt_PV);
1424 s = SvPVX_mutable(sv);
1426 else if (SvOOK(sv)) { /* pv is offset? */
1428 s = SvPVX_mutable(sv);
1429 if (newlen > SvLEN(sv))
1430 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1431 #ifdef HAS_64K_LIMIT
1432 if (newlen >= 0x10000)
1437 s = SvPVX_mutable(sv);
1439 if (newlen > SvLEN(sv)) { /* need more room? */
1440 newlen = PERL_STRLEN_ROUNDUP(newlen);
1441 if (SvLEN(sv) && s) {
1443 const STRLEN l = malloced_size((void*)SvPVX_const(sv));
1449 s = (char*)saferealloc(s, newlen);
1452 s = (char*)safemalloc(newlen);
1453 if (SvPVX_const(sv) && SvCUR(sv)) {
1454 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1458 SvLEN_set(sv, newlen);
1464 =for apidoc sv_setiv
1466 Copies an integer into the given SV, upgrading first if necessary.
1467 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1473 Perl_sv_setiv(pTHX_ register SV *sv, IV i)
1476 SV_CHECK_THINKFIRST_COW_DROP(sv);
1477 switch (SvTYPE(sv)) {
1479 sv_upgrade(sv, SVt_IV);
1482 sv_upgrade(sv, SVt_PVNV);
1486 sv_upgrade(sv, SVt_PVIV);
1495 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1499 (void)SvIOK_only(sv); /* validate number */
1505 =for apidoc sv_setiv_mg
1507 Like C<sv_setiv>, but also handles 'set' magic.
1513 Perl_sv_setiv_mg(pTHX_ register SV *sv, IV i)
1520 =for apidoc sv_setuv
1522 Copies an unsigned integer into the given SV, upgrading first if necessary.
1523 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1529 Perl_sv_setuv(pTHX_ register SV *sv, UV u)
1531 /* With these two if statements:
1532 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1535 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1537 If you wish to remove them, please benchmark to see what the effect is
1539 if (u <= (UV)IV_MAX) {
1540 sv_setiv(sv, (IV)u);
1549 =for apidoc sv_setuv_mg
1551 Like C<sv_setuv>, but also handles 'set' magic.
1557 Perl_sv_setuv_mg(pTHX_ register SV *sv, UV u)
1564 =for apidoc sv_setnv
1566 Copies a double into the given SV, upgrading first if necessary.
1567 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1573 Perl_sv_setnv(pTHX_ register SV *sv, NV num)
1576 SV_CHECK_THINKFIRST_COW_DROP(sv);
1577 switch (SvTYPE(sv)) {
1580 sv_upgrade(sv, SVt_NV);
1585 sv_upgrade(sv, SVt_PVNV);
1594 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1599 (void)SvNOK_only(sv); /* validate number */
1604 =for apidoc sv_setnv_mg
1606 Like C<sv_setnv>, but also handles 'set' magic.
1612 Perl_sv_setnv_mg(pTHX_ register SV *sv, NV num)
1618 /* Print an "isn't numeric" warning, using a cleaned-up,
1619 * printable version of the offending string
1623 S_not_a_number(pTHX_ SV *sv)
1631 dsv = sv_2mortal(newSVpvs(""));
1632 pv = sv_uni_display(dsv, sv, 10, 0);
1635 const char * const limit = tmpbuf + sizeof(tmpbuf) - 8;
1636 /* each *s can expand to 4 chars + "...\0",
1637 i.e. need room for 8 chars */
1639 const char *s = SvPVX_const(sv);
1640 const char * const end = s + SvCUR(sv);
1641 for ( ; s < end && d < limit; s++ ) {
1643 if (ch & 128 && !isPRINT_LC(ch)) {
1652 else if (ch == '\r') {
1656 else if (ch == '\f') {
1660 else if (ch == '\\') {
1664 else if (ch == '\0') {
1668 else if (isPRINT_LC(ch))
1685 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1686 "Argument \"%s\" isn't numeric in %s", pv,
1689 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1690 "Argument \"%s\" isn't numeric", pv);
1694 =for apidoc looks_like_number
1696 Test if the content of an SV looks like a number (or is a number).
1697 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1698 non-numeric warning), even if your atof() doesn't grok them.
1704 Perl_looks_like_number(pTHX_ SV *sv)
1706 register const char *sbegin;
1710 sbegin = SvPVX_const(sv);
1713 else if (SvPOKp(sv))
1714 sbegin = SvPV_const(sv, len);
1716 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1717 return grok_number(sbegin, len, NULL);
1721 S_glob_2number(pTHX_ GV * const gv)
1723 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1724 SV *const buffer = sv_newmortal();
1726 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1729 gv_efullname3(buffer, gv, "*");
1730 SvFLAGS(gv) |= wasfake;
1732 /* We know that all GVs stringify to something that is not-a-number,
1733 so no need to test that. */
1734 if (ckWARN(WARN_NUMERIC))
1735 not_a_number(buffer);
1736 /* We just want something true to return, so that S_sv_2iuv_common
1737 can tail call us and return true. */
1742 S_glob_2pv(pTHX_ GV * const gv, STRLEN * const len)
1744 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1745 SV *const buffer = sv_newmortal();
1747 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1750 gv_efullname3(buffer, gv, "*");
1751 SvFLAGS(gv) |= wasfake;
1753 assert(SvPOK(buffer));
1755 *len = SvCUR(buffer);
1757 return SvPVX(buffer);
1760 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1761 until proven guilty, assume that things are not that bad... */
1766 As 64 bit platforms often have an NV that doesn't preserve all bits of
1767 an IV (an assumption perl has been based on to date) it becomes necessary
1768 to remove the assumption that the NV always carries enough precision to
1769 recreate the IV whenever needed, and that the NV is the canonical form.
1770 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1771 precision as a side effect of conversion (which would lead to insanity
1772 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1773 1) to distinguish between IV/UV/NV slots that have cached a valid
1774 conversion where precision was lost and IV/UV/NV slots that have a
1775 valid conversion which has lost no precision
1776 2) to ensure that if a numeric conversion to one form is requested that
1777 would lose precision, the precise conversion (or differently
1778 imprecise conversion) is also performed and cached, to prevent
1779 requests for different numeric formats on the same SV causing
1780 lossy conversion chains. (lossless conversion chains are perfectly
1785 SvIOKp is true if the IV slot contains a valid value
1786 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1787 SvNOKp is true if the NV slot contains a valid value
1788 SvNOK is true only if the NV value is accurate
1791 while converting from PV to NV, check to see if converting that NV to an
1792 IV(or UV) would lose accuracy over a direct conversion from PV to
1793 IV(or UV). If it would, cache both conversions, return NV, but mark
1794 SV as IOK NOKp (ie not NOK).
1796 While converting from PV to IV, check to see if converting that IV to an
1797 NV would lose accuracy over a direct conversion from PV to NV. If it
1798 would, cache both conversions, flag similarly.
1800 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1801 correctly because if IV & NV were set NV *always* overruled.
1802 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1803 changes - now IV and NV together means that the two are interchangeable:
1804 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1806 The benefit of this is that operations such as pp_add know that if
1807 SvIOK is true for both left and right operands, then integer addition
1808 can be used instead of floating point (for cases where the result won't
1809 overflow). Before, floating point was always used, which could lead to
1810 loss of precision compared with integer addition.
1812 * making IV and NV equal status should make maths accurate on 64 bit
1814 * may speed up maths somewhat if pp_add and friends start to use
1815 integers when possible instead of fp. (Hopefully the overhead in
1816 looking for SvIOK and checking for overflow will not outweigh the
1817 fp to integer speedup)
1818 * will slow down integer operations (callers of SvIV) on "inaccurate"
1819 values, as the change from SvIOK to SvIOKp will cause a call into
1820 sv_2iv each time rather than a macro access direct to the IV slot
1821 * should speed up number->string conversion on integers as IV is
1822 favoured when IV and NV are equally accurate
1824 ####################################################################
1825 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1826 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1827 On the other hand, SvUOK is true iff UV.
1828 ####################################################################
1830 Your mileage will vary depending your CPU's relative fp to integer
1834 #ifndef NV_PRESERVES_UV
1835 # define IS_NUMBER_UNDERFLOW_IV 1
1836 # define IS_NUMBER_UNDERFLOW_UV 2
1837 # define IS_NUMBER_IV_AND_UV 2
1838 # define IS_NUMBER_OVERFLOW_IV 4
1839 # define IS_NUMBER_OVERFLOW_UV 5
1841 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1843 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1845 S_sv_2iuv_non_preserve(pTHX_ register SV *sv, I32 numtype)
1848 PERL_UNUSED_ARG(numtype); /* Used only under DEBUGGING? */
1849 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1850 if (SvNVX(sv) < (NV)IV_MIN) {
1851 (void)SvIOKp_on(sv);
1853 SvIV_set(sv, IV_MIN);
1854 return IS_NUMBER_UNDERFLOW_IV;
1856 if (SvNVX(sv) > (NV)UV_MAX) {
1857 (void)SvIOKp_on(sv);
1860 SvUV_set(sv, UV_MAX);
1861 return IS_NUMBER_OVERFLOW_UV;
1863 (void)SvIOKp_on(sv);
1865 /* Can't use strtol etc to convert this string. (See truth table in
1867 if (SvNVX(sv) <= (UV)IV_MAX) {
1868 SvIV_set(sv, I_V(SvNVX(sv)));
1869 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1870 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1872 /* Integer is imprecise. NOK, IOKp */
1874 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
1877 SvUV_set(sv, U_V(SvNVX(sv)));
1878 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
1879 if (SvUVX(sv) == UV_MAX) {
1880 /* As we know that NVs don't preserve UVs, UV_MAX cannot
1881 possibly be preserved by NV. Hence, it must be overflow.
1883 return IS_NUMBER_OVERFLOW_UV;
1885 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
1887 /* Integer is imprecise. NOK, IOKp */
1889 return IS_NUMBER_OVERFLOW_IV;
1891 #endif /* !NV_PRESERVES_UV*/
1894 S_sv_2iuv_common(pTHX_ SV *sv) {
1897 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
1898 * without also getting a cached IV/UV from it at the same time
1899 * (ie PV->NV conversion should detect loss of accuracy and cache
1900 * IV or UV at same time to avoid this. */
1901 /* IV-over-UV optimisation - choose to cache IV if possible */
1903 if (SvTYPE(sv) == SVt_NV)
1904 sv_upgrade(sv, SVt_PVNV);
1906 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
1907 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
1908 certainly cast into the IV range at IV_MAX, whereas the correct
1909 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
1911 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
1912 if (Perl_isnan(SvNVX(sv))) {
1918 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
1919 SvIV_set(sv, I_V(SvNVX(sv)));
1920 if (SvNVX(sv) == (NV) SvIVX(sv)
1921 #ifndef NV_PRESERVES_UV
1922 && (((UV)1 << NV_PRESERVES_UV_BITS) >
1923 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
1924 /* Don't flag it as "accurately an integer" if the number
1925 came from a (by definition imprecise) NV operation, and
1926 we're outside the range of NV integer precision */
1929 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
1930 DEBUG_c(PerlIO_printf(Perl_debug_log,
1931 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
1937 /* IV not precise. No need to convert from PV, as NV
1938 conversion would already have cached IV if it detected
1939 that PV->IV would be better than PV->NV->IV
1940 flags already correct - don't set public IOK. */
1941 DEBUG_c(PerlIO_printf(Perl_debug_log,
1942 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
1947 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
1948 but the cast (NV)IV_MIN rounds to a the value less (more
1949 negative) than IV_MIN which happens to be equal to SvNVX ??
1950 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
1951 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
1952 (NV)UVX == NVX are both true, but the values differ. :-(
1953 Hopefully for 2s complement IV_MIN is something like
1954 0x8000000000000000 which will be exact. NWC */
1957 SvUV_set(sv, U_V(SvNVX(sv)));
1959 (SvNVX(sv) == (NV) SvUVX(sv))
1960 #ifndef NV_PRESERVES_UV
1961 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
1962 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
1963 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
1964 /* Don't flag it as "accurately an integer" if the number
1965 came from a (by definition imprecise) NV operation, and
1966 we're outside the range of NV integer precision */
1971 DEBUG_c(PerlIO_printf(Perl_debug_log,
1972 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
1978 else if (SvPOKp(sv) && SvLEN(sv)) {
1980 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
1981 /* We want to avoid a possible problem when we cache an IV/ a UV which
1982 may be later translated to an NV, and the resulting NV is not
1983 the same as the direct translation of the initial string
1984 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
1985 be careful to ensure that the value with the .456 is around if the
1986 NV value is requested in the future).
1988 This means that if we cache such an IV/a UV, we need to cache the
1989 NV as well. Moreover, we trade speed for space, and do not
1990 cache the NV if we are sure it's not needed.
1993 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
1994 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
1995 == IS_NUMBER_IN_UV) {
1996 /* It's definitely an integer, only upgrade to PVIV */
1997 if (SvTYPE(sv) < SVt_PVIV)
1998 sv_upgrade(sv, SVt_PVIV);
2000 } else if (SvTYPE(sv) < SVt_PVNV)
2001 sv_upgrade(sv, SVt_PVNV);
2003 /* If NVs preserve UVs then we only use the UV value if we know that
2004 we aren't going to call atof() below. If NVs don't preserve UVs
2005 then the value returned may have more precision than atof() will
2006 return, even though value isn't perfectly accurate. */
2007 if ((numtype & (IS_NUMBER_IN_UV
2008 #ifdef NV_PRESERVES_UV
2011 )) == IS_NUMBER_IN_UV) {
2012 /* This won't turn off the public IOK flag if it was set above */
2013 (void)SvIOKp_on(sv);
2015 if (!(numtype & IS_NUMBER_NEG)) {
2017 if (value <= (UV)IV_MAX) {
2018 SvIV_set(sv, (IV)value);
2020 /* it didn't overflow, and it was positive. */
2021 SvUV_set(sv, value);
2025 /* 2s complement assumption */
2026 if (value <= (UV)IV_MIN) {
2027 SvIV_set(sv, -(IV)value);
2029 /* Too negative for an IV. This is a double upgrade, but
2030 I'm assuming it will be rare. */
2031 if (SvTYPE(sv) < SVt_PVNV)
2032 sv_upgrade(sv, SVt_PVNV);
2036 SvNV_set(sv, -(NV)value);
2037 SvIV_set(sv, IV_MIN);
2041 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2042 will be in the previous block to set the IV slot, and the next
2043 block to set the NV slot. So no else here. */
2045 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2046 != IS_NUMBER_IN_UV) {
2047 /* It wasn't an (integer that doesn't overflow the UV). */
2048 SvNV_set(sv, Atof(SvPVX_const(sv)));
2050 if (! numtype && ckWARN(WARN_NUMERIC))
2053 #if defined(USE_LONG_DOUBLE)
2054 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2055 PTR2UV(sv), SvNVX(sv)));
2057 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2058 PTR2UV(sv), SvNVX(sv)));
2061 #ifdef NV_PRESERVES_UV
2062 (void)SvIOKp_on(sv);
2064 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2065 SvIV_set(sv, I_V(SvNVX(sv)));
2066 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2069 NOOP; /* Integer is imprecise. NOK, IOKp */
2071 /* UV will not work better than IV */
2073 if (SvNVX(sv) > (NV)UV_MAX) {
2075 /* Integer is inaccurate. NOK, IOKp, is UV */
2076 SvUV_set(sv, UV_MAX);
2078 SvUV_set(sv, U_V(SvNVX(sv)));
2079 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2080 NV preservse UV so can do correct comparison. */
2081 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2084 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2089 #else /* NV_PRESERVES_UV */
2090 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2091 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2092 /* The IV/UV slot will have been set from value returned by
2093 grok_number above. The NV slot has just been set using
2096 assert (SvIOKp(sv));
2098 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2099 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2100 /* Small enough to preserve all bits. */
2101 (void)SvIOKp_on(sv);
2103 SvIV_set(sv, I_V(SvNVX(sv)));
2104 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2106 /* Assumption: first non-preserved integer is < IV_MAX,
2107 this NV is in the preserved range, therefore: */
2108 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2110 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2114 0 0 already failed to read UV.
2115 0 1 already failed to read UV.
2116 1 0 you won't get here in this case. IV/UV
2117 slot set, public IOK, Atof() unneeded.
2118 1 1 already read UV.
2119 so there's no point in sv_2iuv_non_preserve() attempting
2120 to use atol, strtol, strtoul etc. */
2121 sv_2iuv_non_preserve (sv, numtype);
2124 #endif /* NV_PRESERVES_UV */
2128 if (isGV_with_GP(sv))
2129 return glob_2number((GV *)sv);
2131 if (!(SvFLAGS(sv) & SVs_PADTMP)) {
2132 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2135 if (SvTYPE(sv) < SVt_IV)
2136 /* Typically the caller expects that sv_any is not NULL now. */
2137 sv_upgrade(sv, SVt_IV);
2138 /* Return 0 from the caller. */
2145 =for apidoc sv_2iv_flags
2147 Return the integer value of an SV, doing any necessary string
2148 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2149 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2155 Perl_sv_2iv_flags(pTHX_ register SV *sv, I32 flags)
2160 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2161 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2162 cache IVs just in case. In practice it seems that they never
2163 actually anywhere accessible by user Perl code, let alone get used
2164 in anything other than a string context. */
2165 if (flags & SV_GMAGIC)
2170 return I_V(SvNVX(sv));
2172 if (SvPOKp(sv) && SvLEN(sv)) {
2175 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2177 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2178 == IS_NUMBER_IN_UV) {
2179 /* It's definitely an integer */
2180 if (numtype & IS_NUMBER_NEG) {
2181 if (value < (UV)IV_MIN)
2184 if (value < (UV)IV_MAX)
2189 if (ckWARN(WARN_NUMERIC))
2192 return I_V(Atof(SvPVX_const(sv)));
2197 assert(SvTYPE(sv) >= SVt_PVMG);
2198 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2199 } else if (SvTHINKFIRST(sv)) {
2203 SV * const tmpstr=AMG_CALLun(sv,numer);
2204 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2205 return SvIV(tmpstr);
2208 return PTR2IV(SvRV(sv));
2211 sv_force_normal_flags(sv, 0);
2213 if (SvREADONLY(sv) && !SvOK(sv)) {
2214 if (ckWARN(WARN_UNINITIALIZED))
2220 if (S_sv_2iuv_common(aTHX_ sv))
2223 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2224 PTR2UV(sv),SvIVX(sv)));
2225 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2229 =for apidoc sv_2uv_flags
2231 Return the unsigned integer value of an SV, doing any necessary string
2232 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2233 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2239 Perl_sv_2uv_flags(pTHX_ register SV *sv, I32 flags)
2244 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2245 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2246 cache IVs just in case. */
2247 if (flags & SV_GMAGIC)
2252 return U_V(SvNVX(sv));
2253 if (SvPOKp(sv) && SvLEN(sv)) {
2256 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2258 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2259 == IS_NUMBER_IN_UV) {
2260 /* It's definitely an integer */
2261 if (!(numtype & IS_NUMBER_NEG))
2265 if (ckWARN(WARN_NUMERIC))
2268 return U_V(Atof(SvPVX_const(sv)));
2273 assert(SvTYPE(sv) >= SVt_PVMG);
2274 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2275 } else if (SvTHINKFIRST(sv)) {
2279 SV *const tmpstr = AMG_CALLun(sv,numer);
2280 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2281 return SvUV(tmpstr);
2284 return PTR2UV(SvRV(sv));
2287 sv_force_normal_flags(sv, 0);
2289 if (SvREADONLY(sv) && !SvOK(sv)) {
2290 if (ckWARN(WARN_UNINITIALIZED))
2296 if (S_sv_2iuv_common(aTHX_ sv))
2300 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2301 PTR2UV(sv),SvUVX(sv)));
2302 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2308 Return the num value of an SV, doing any necessary string or integer
2309 conversion, magic etc. Normally used via the C<SvNV(sv)> and C<SvNVx(sv)>
2316 Perl_sv_2nv(pTHX_ register SV *sv)
2321 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2322 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2323 cache IVs just in case. */
2327 if ((SvPOKp(sv) && SvLEN(sv)) && !SvIOKp(sv)) {
2328 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2329 !grok_number(SvPVX_const(sv), SvCUR(sv), NULL))
2331 return Atof(SvPVX_const(sv));
2335 return (NV)SvUVX(sv);
2337 return (NV)SvIVX(sv);
2342 assert(SvTYPE(sv) >= SVt_PVMG);
2343 /* This falls through to the report_uninit near the end of the
2345 } else if (SvTHINKFIRST(sv)) {
2349 SV *const tmpstr = AMG_CALLun(sv,numer);
2350 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2351 return SvNV(tmpstr);
2354 return PTR2NV(SvRV(sv));
2357 sv_force_normal_flags(sv, 0);
2359 if (SvREADONLY(sv) && !SvOK(sv)) {
2360 if (ckWARN(WARN_UNINITIALIZED))
2365 if (SvTYPE(sv) < SVt_NV) {
2366 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2367 sv_upgrade(sv, SVt_NV);
2368 #ifdef USE_LONG_DOUBLE
2370 STORE_NUMERIC_LOCAL_SET_STANDARD();
2371 PerlIO_printf(Perl_debug_log,
2372 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2373 PTR2UV(sv), SvNVX(sv));
2374 RESTORE_NUMERIC_LOCAL();
2378 STORE_NUMERIC_LOCAL_SET_STANDARD();
2379 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2380 PTR2UV(sv), SvNVX(sv));
2381 RESTORE_NUMERIC_LOCAL();
2385 else if (SvTYPE(sv) < SVt_PVNV)
2386 sv_upgrade(sv, SVt_PVNV);
2391 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2392 #ifdef NV_PRESERVES_UV
2395 /* Only set the public NV OK flag if this NV preserves the IV */
2396 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2397 if (SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2398 : (SvIVX(sv) == I_V(SvNVX(sv))))
2404 else if (SvPOKp(sv) && SvLEN(sv)) {
2406 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2407 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2409 #ifdef NV_PRESERVES_UV
2410 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2411 == IS_NUMBER_IN_UV) {
2412 /* It's definitely an integer */
2413 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2415 SvNV_set(sv, Atof(SvPVX_const(sv)));
2418 SvNV_set(sv, Atof(SvPVX_const(sv)));
2419 /* Only set the public NV OK flag if this NV preserves the value in
2420 the PV at least as well as an IV/UV would.
2421 Not sure how to do this 100% reliably. */
2422 /* if that shift count is out of range then Configure's test is
2423 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2425 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2426 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2427 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2428 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2429 /* Can't use strtol etc to convert this string, so don't try.
2430 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2433 /* value has been set. It may not be precise. */
2434 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2435 /* 2s complement assumption for (UV)IV_MIN */
2436 SvNOK_on(sv); /* Integer is too negative. */
2441 if (numtype & IS_NUMBER_NEG) {
2442 SvIV_set(sv, -(IV)value);
2443 } else if (value <= (UV)IV_MAX) {
2444 SvIV_set(sv, (IV)value);
2446 SvUV_set(sv, value);
2450 if (numtype & IS_NUMBER_NOT_INT) {
2451 /* I believe that even if the original PV had decimals,
2452 they are lost beyond the limit of the FP precision.
2453 However, neither is canonical, so both only get p
2454 flags. NWC, 2000/11/25 */
2455 /* Both already have p flags, so do nothing */
2457 const NV nv = SvNVX(sv);
2458 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2459 if (SvIVX(sv) == I_V(nv)) {
2462 /* It had no "." so it must be integer. */
2466 /* between IV_MAX and NV(UV_MAX).
2467 Could be slightly > UV_MAX */
2469 if (numtype & IS_NUMBER_NOT_INT) {
2470 /* UV and NV both imprecise. */
2472 const UV nv_as_uv = U_V(nv);
2474 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2483 #endif /* NV_PRESERVES_UV */
2486 if (isGV_with_GP(sv)) {
2487 glob_2number((GV *)sv);
2491 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2493 assert (SvTYPE(sv) >= SVt_NV);
2494 /* Typically the caller expects that sv_any is not NULL now. */
2495 /* XXX Ilya implies that this is a bug in callers that assume this
2496 and ideally should be fixed. */
2499 #if defined(USE_LONG_DOUBLE)
2501 STORE_NUMERIC_LOCAL_SET_STANDARD();
2502 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2503 PTR2UV(sv), SvNVX(sv));
2504 RESTORE_NUMERIC_LOCAL();
2508 STORE_NUMERIC_LOCAL_SET_STANDARD();
2509 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2510 PTR2UV(sv), SvNVX(sv));
2511 RESTORE_NUMERIC_LOCAL();
2517 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2518 * UV as a string towards the end of buf, and return pointers to start and
2521 * We assume that buf is at least TYPE_CHARS(UV) long.
2525 S_uiv_2buf(char *buf, IV iv, UV uv, int is_uv, char **peob)
2527 char *ptr = buf + TYPE_CHARS(UV);
2528 char * const ebuf = ptr;
2541 *--ptr = '0' + (char)(uv % 10);
2550 =for apidoc sv_2pv_flags
2552 Returns a pointer to the string value of an SV, and sets *lp to its length.
2553 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a string
2555 Normally invoked via the C<SvPV_flags> macro. C<sv_2pv()> and C<sv_2pv_nomg>
2556 usually end up here too.
2562 Perl_sv_2pv_flags(pTHX_ register SV *sv, STRLEN *lp, I32 flags)
2572 if (SvGMAGICAL(sv)) {
2573 if (flags & SV_GMAGIC)
2578 if (flags & SV_MUTABLE_RETURN)
2579 return SvPVX_mutable(sv);
2580 if (flags & SV_CONST_RETURN)
2581 return (char *)SvPVX_const(sv);
2584 if (SvIOKp(sv) || SvNOKp(sv)) {
2585 char tbuf[64]; /* Must fit sprintf/Gconvert of longest IV/NV */
2590 ? my_snprintf(tbuf, sizeof(tbuf), "%"UVuf, (UV)SvUVX(sv))
2591 : my_snprintf(tbuf, sizeof(tbuf), "%"IVdf, (IV)SvIVX(sv));
2593 Gconvert(SvNVX(sv), NV_DIG, 0, tbuf);
2600 #ifdef FIXNEGATIVEZERO
2601 if (len == 2 && tbuf[0] == '-' && tbuf[1] == '0') {
2607 SvUPGRADE(sv, SVt_PV);
2610 s = SvGROW_mutable(sv, len + 1);
2613 return (char*)memcpy(s, tbuf, len + 1);
2619 assert(SvTYPE(sv) >= SVt_PVMG);
2620 /* This falls through to the report_uninit near the end of the
2622 } else if (SvTHINKFIRST(sv)) {
2626 SV *const tmpstr = AMG_CALLun(sv,string);
2627 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2629 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2633 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2634 if (flags & SV_CONST_RETURN) {
2635 pv = (char *) SvPVX_const(tmpstr);
2637 pv = (flags & SV_MUTABLE_RETURN)
2638 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2641 *lp = SvCUR(tmpstr);
2643 pv = sv_2pv_flags(tmpstr, lp, flags);
2657 const SV *const referent = (SV*)SvRV(sv);
2661 retval = buffer = savepvn("NULLREF", len);
2662 } else if (SvTYPE(referent) == SVt_PVMG
2663 && ((SvFLAGS(referent) &
2664 (SVs_OBJECT|SVf_OK|SVs_GMG|SVs_SMG|SVs_RMG))
2665 == (SVs_OBJECT|SVs_SMG))
2666 && (mg = mg_find(referent, PERL_MAGIC_qr)))
2671 (str) = CALLREG_AS_STR(mg,lp,&flags,&haseval);
2676 PL_reginterp_cnt += haseval;
2679 const char *const typestr = sv_reftype(referent, 0);
2680 const STRLEN typelen = strlen(typestr);
2681 UV addr = PTR2UV(referent);
2682 const char *stashname = NULL;
2683 STRLEN stashnamelen = 0; /* hush, gcc */
2684 const char *buffer_end;
2686 if (SvOBJECT(referent)) {
2687 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2690 stashname = HEK_KEY(name);
2691 stashnamelen = HEK_LEN(name);
2693 if (HEK_UTF8(name)) {
2699 stashname = "__ANON__";
2702 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2703 + 2 * sizeof(UV) + 2 /* )\0 */;
2705 len = typelen + 3 /* (0x */
2706 + 2 * sizeof(UV) + 2 /* )\0 */;
2709 Newx(buffer, len, char);
2710 buffer_end = retval = buffer + len;
2712 /* Working backwards */
2716 *--retval = PL_hexdigit[addr & 15];
2717 } while (addr >>= 4);
2723 memcpy(retval, typestr, typelen);
2727 retval -= stashnamelen;
2728 memcpy(retval, stashname, stashnamelen);
2730 /* retval may not neccesarily have reached the start of the
2732 assert (retval >= buffer);
2734 len = buffer_end - retval - 1; /* -1 for that \0 */
2742 if (SvREADONLY(sv) && !SvOK(sv)) {
2743 if (ckWARN(WARN_UNINITIALIZED))
2750 if (SvIOK(sv) || ((SvIOKp(sv) && !SvNOKp(sv)))) {
2751 /* I'm assuming that if both IV and NV are equally valid then
2752 converting the IV is going to be more efficient */
2753 const U32 isUIOK = SvIsUV(sv);
2754 char buf[TYPE_CHARS(UV)];
2757 if (SvTYPE(sv) < SVt_PVIV)
2758 sv_upgrade(sv, SVt_PVIV);
2759 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2760 /* inlined from sv_setpvn */
2761 SvGROW_mutable(sv, (STRLEN)(ebuf - ptr + 1));
2762 Move(ptr,SvPVX_mutable(sv),ebuf - ptr,char);
2763 SvCUR_set(sv, ebuf - ptr);
2767 else if (SvNOKp(sv)) {
2768 const int olderrno = errno;
2769 if (SvTYPE(sv) < SVt_PVNV)
2770 sv_upgrade(sv, SVt_PVNV);
2771 /* The +20 is pure guesswork. Configure test needed. --jhi */
2772 s = SvGROW_mutable(sv, NV_DIG + 20);
2773 /* some Xenix systems wipe out errno here */
2775 if (SvNVX(sv) == 0.0)
2776 my_strlcpy(s, "0", SvLEN(sv));
2780 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2783 #ifdef FIXNEGATIVEZERO
2784 if (*s == '-' && s[1] == '0' && !s[2])
2785 my_strlcpy(s, "0", SvLEN(s));
2794 if (isGV_with_GP(sv))
2795 return glob_2pv((GV *)sv, lp);
2797 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2801 if (SvTYPE(sv) < SVt_PV)
2802 /* Typically the caller expects that sv_any is not NULL now. */
2803 sv_upgrade(sv, SVt_PV);
2807 const STRLEN len = s - SvPVX_const(sv);
2813 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
2814 PTR2UV(sv),SvPVX_const(sv)));
2815 if (flags & SV_CONST_RETURN)
2816 return (char *)SvPVX_const(sv);
2817 if (flags & SV_MUTABLE_RETURN)
2818 return SvPVX_mutable(sv);
2823 =for apidoc sv_copypv
2825 Copies a stringified representation of the source SV into the
2826 destination SV. Automatically performs any necessary mg_get and
2827 coercion of numeric values into strings. Guaranteed to preserve
2828 UTF-8 flag even from overloaded objects. Similar in nature to
2829 sv_2pv[_flags] but operates directly on an SV instead of just the
2830 string. Mostly uses sv_2pv_flags to do its work, except when that
2831 would lose the UTF-8'ness of the PV.
2837 Perl_sv_copypv(pTHX_ SV *dsv, register SV *ssv)
2840 const char * const s = SvPV_const(ssv,len);
2841 sv_setpvn(dsv,s,len);
2849 =for apidoc sv_2pvbyte
2851 Return a pointer to the byte-encoded representation of the SV, and set *lp
2852 to its length. May cause the SV to be downgraded from UTF-8 as a
2855 Usually accessed via the C<SvPVbyte> macro.
2861 Perl_sv_2pvbyte(pTHX_ register SV *sv, STRLEN *lp)
2863 sv_utf8_downgrade(sv,0);
2864 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
2868 =for apidoc sv_2pvutf8
2870 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
2871 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
2873 Usually accessed via the C<SvPVutf8> macro.
2879 Perl_sv_2pvutf8(pTHX_ register SV *sv, STRLEN *lp)
2881 sv_utf8_upgrade(sv);
2882 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
2887 =for apidoc sv_2bool
2889 This function is only called on magical items, and is only used by
2890 sv_true() or its macro equivalent.
2896 Perl_sv_2bool(pTHX_ register SV *sv)
2905 SV * const tmpsv = AMG_CALLun(sv,bool_);
2906 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2907 return (bool)SvTRUE(tmpsv);
2909 return SvRV(sv) != 0;
2912 register XPV* const Xpvtmp = (XPV*)SvANY(sv);
2914 (*sv->sv_u.svu_pv > '0' ||
2915 Xpvtmp->xpv_cur > 1 ||
2916 (Xpvtmp->xpv_cur && *sv->sv_u.svu_pv != '0')))
2923 return SvIVX(sv) != 0;
2926 return SvNVX(sv) != 0.0;
2928 if (isGV_with_GP(sv))
2938 =for apidoc sv_utf8_upgrade
2940 Converts the PV of an SV to its UTF-8-encoded form.
2941 Forces the SV to string form if it is not already.
2942 Always sets the SvUTF8 flag to avoid future validity checks even
2943 if all the bytes have hibit clear.
2945 This is not as a general purpose byte encoding to Unicode interface:
2946 use the Encode extension for that.
2948 =for apidoc sv_utf8_upgrade_flags
2950 Converts the PV of an SV to its UTF-8-encoded form.
2951 Forces the SV to string form if it is not already.
2952 Always sets the SvUTF8 flag to avoid future validity checks even
2953 if all the bytes have hibit clear. If C<flags> has C<SV_GMAGIC> bit set,
2954 will C<mg_get> on C<sv> if appropriate, else not. C<sv_utf8_upgrade> and
2955 C<sv_utf8_upgrade_nomg> are implemented in terms of this function.
2957 This is not as a general purpose byte encoding to Unicode interface:
2958 use the Encode extension for that.
2964 Perl_sv_utf8_upgrade_flags(pTHX_ register SV *sv, I32 flags)
2967 if (sv == &PL_sv_undef)
2971 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
2972 (void) sv_2pv_flags(sv,&len, flags);
2976 (void) SvPV_force(sv,len);
2985 sv_force_normal_flags(sv, 0);
2988 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING))
2989 sv_recode_to_utf8(sv, PL_encoding);
2990 else { /* Assume Latin-1/EBCDIC */
2991 /* This function could be much more efficient if we
2992 * had a FLAG in SVs to signal if there are any hibit
2993 * chars in the PV. Given that there isn't such a flag
2994 * make the loop as fast as possible. */
2995 const U8 * const s = (U8 *) SvPVX_const(sv);
2996 const U8 * const e = (U8 *) SvEND(sv);
3001 /* Check for hi bit */
3002 if (!NATIVE_IS_INVARIANT(ch)) {
3003 STRLEN len = SvCUR(sv) + 1; /* Plus the \0 */
3004 U8 * const recoded = bytes_to_utf8((U8*)s, &len);
3006 SvPV_free(sv); /* No longer using what was there before. */
3007 SvPV_set(sv, (char*)recoded);
3008 SvCUR_set(sv, len - 1);
3009 SvLEN_set(sv, len); /* No longer know the real size. */
3013 /* Mark as UTF-8 even if no hibit - saves scanning loop */
3020 =for apidoc sv_utf8_downgrade
3022 Attempts to convert the PV of an SV from characters to bytes.
3023 If the PV contains a character beyond byte, this conversion will fail;
3024 in this case, either returns false or, if C<fail_ok> is not
3027 This is not as a general purpose Unicode to byte encoding interface:
3028 use the Encode extension for that.
3034 Perl_sv_utf8_downgrade(pTHX_ register SV* sv, bool fail_ok)
3037 if (SvPOKp(sv) && SvUTF8(sv)) {
3043 sv_force_normal_flags(sv, 0);
3045 s = (U8 *) SvPV(sv, len);
3046 if (!utf8_to_bytes(s, &len)) {
3051 Perl_croak(aTHX_ "Wide character in %s",
3054 Perl_croak(aTHX_ "Wide character");
3065 =for apidoc sv_utf8_encode
3067 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3068 flag off so that it looks like octets again.
3074 Perl_sv_utf8_encode(pTHX_ register SV *sv)
3077 sv_force_normal_flags(sv, 0);
3079 if (SvREADONLY(sv)) {
3080 Perl_croak(aTHX_ PL_no_modify);
3082 (void) sv_utf8_upgrade(sv);
3087 =for apidoc sv_utf8_decode
3089 If the PV of the SV is an octet sequence in UTF-8
3090 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3091 so that it looks like a character. If the PV contains only single-byte
3092 characters, the C<SvUTF8> flag stays being off.
3093 Scans PV for validity and returns false if the PV is invalid UTF-8.
3099 Perl_sv_utf8_decode(pTHX_ register SV *sv)
3105 /* The octets may have got themselves encoded - get them back as
3108 if (!sv_utf8_downgrade(sv, TRUE))
3111 /* it is actually just a matter of turning the utf8 flag on, but
3112 * we want to make sure everything inside is valid utf8 first.
3114 c = (const U8 *) SvPVX_const(sv);
3115 if (!is_utf8_string(c, SvCUR(sv)+1))
3117 e = (const U8 *) SvEND(sv);
3120 if (!UTF8_IS_INVARIANT(ch)) {
3130 =for apidoc sv_setsv
3132 Copies the contents of the source SV C<ssv> into the destination SV
3133 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3134 function if the source SV needs to be reused. Does not handle 'set' magic.
3135 Loosely speaking, it performs a copy-by-value, obliterating any previous
3136 content of the destination.
3138 You probably want to use one of the assortment of wrappers, such as
3139 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3140 C<SvSetMagicSV_nosteal>.
3142 =for apidoc sv_setsv_flags
3144 Copies the contents of the source SV C<ssv> into the destination SV
3145 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3146 function if the source SV needs to be reused. Does not handle 'set' magic.
3147 Loosely speaking, it performs a copy-by-value, obliterating any previous
3148 content of the destination.
3149 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3150 C<ssv> if appropriate, else not. If the C<flags> parameter has the
3151 C<NOSTEAL> bit set then the buffers of temps will not be stolen. <sv_setsv>
3152 and C<sv_setsv_nomg> are implemented in terms of this function.
3154 You probably want to use one of the assortment of wrappers, such as
3155 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3156 C<SvSetMagicSV_nosteal>.
3158 This is the primary function for copying scalars, and most other
3159 copy-ish functions and macros use this underneath.
3165 S_glob_assign_glob(pTHX_ SV *dstr, SV *sstr, const int dtype)
3167 if (dtype != SVt_PVGV) {
3168 const char * const name = GvNAME(sstr);
3169 const STRLEN len = GvNAMELEN(sstr);
3170 /* don't upgrade SVt_PVLV: it can hold a glob */
3171 if (dtype != SVt_PVLV) {
3172 if (dtype >= SVt_PV) {
3178 sv_upgrade(dstr, SVt_PVGV);
3179 (void)SvOK_off(dstr);
3180 /* FIXME - why are we doing this, then turning it off and on again
3182 isGV_with_GP_on(dstr);
3184 GvSTASH(dstr) = GvSTASH(sstr);
3186 Perl_sv_add_backref(aTHX_ (SV*)GvSTASH(dstr), dstr);
3187 gv_name_set((GV *)dstr, name, len, GV_ADD);
3188 SvFAKE_on(dstr); /* can coerce to non-glob */
3191 #ifdef GV_UNIQUE_CHECK
3192 if (GvUNIQUE((GV*)dstr)) {
3193 Perl_croak(aTHX_ PL_no_modify);
3198 isGV_with_GP_off(dstr);
3199 (void)SvOK_off(dstr);
3200 isGV_with_GP_on(dstr);
3201 GvINTRO_off(dstr); /* one-shot flag */
3202 GvGP(dstr) = gp_ref(GvGP(sstr));
3203 if (SvTAINTED(sstr))
3205 if (GvIMPORTED(dstr) != GVf_IMPORTED
3206 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3208 GvIMPORTED_on(dstr);
3215 S_glob_assign_ref(pTHX_ SV *dstr, SV *sstr) {
3216 SV * const sref = SvREFCNT_inc(SvRV(sstr));
3218 const int intro = GvINTRO(dstr);
3221 const U32 stype = SvTYPE(sref);
3224 #ifdef GV_UNIQUE_CHECK
3225 if (GvUNIQUE((GV*)dstr)) {
3226 Perl_croak(aTHX_ PL_no_modify);
3231 GvINTRO_off(dstr); /* one-shot flag */
3232 GvLINE(dstr) = CopLINE(PL_curcop);
3233 GvEGV(dstr) = (GV*)dstr;
3238 location = (SV **) &GvCV(dstr);
3239 import_flag = GVf_IMPORTED_CV;
3242 location = (SV **) &GvHV(dstr);
3243 import_flag = GVf_IMPORTED_HV;
3246 location = (SV **) &GvAV(dstr);
3247 import_flag = GVf_IMPORTED_AV;
3250 location = (SV **) &GvIOp(dstr);
3253 location = (SV **) &GvFORM(dstr);
3255 location = &GvSV(dstr);
3256 import_flag = GVf_IMPORTED_SV;
3259 if (stype == SVt_PVCV) {
3260 if (GvCVGEN(dstr) && GvCV(dstr) != (CV*)sref) {
3261 SvREFCNT_dec(GvCV(dstr));
3263 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3264 PL_sub_generation++;
3267 SAVEGENERICSV(*location);
3271 if (stype == SVt_PVCV && *location != sref) {
3272 CV* const cv = (CV*)*location;
3274 if (!GvCVGEN((GV*)dstr) &&
3275 (CvROOT(cv) || CvXSUB(cv)))
3277 /* Redefining a sub - warning is mandatory if
3278 it was a const and its value changed. */
3279 if (CvCONST(cv) && CvCONST((CV*)sref)
3280 && cv_const_sv(cv) == cv_const_sv((CV*)sref)) {
3282 /* They are 2 constant subroutines generated from
3283 the same constant. This probably means that
3284 they are really the "same" proxy subroutine
3285 instantiated in 2 places. Most likely this is
3286 when a constant is exported twice. Don't warn.
3289 else if (ckWARN(WARN_REDEFINE)
3291 && (!CvCONST((CV*)sref)
3292 || sv_cmp(cv_const_sv(cv),
3293 cv_const_sv((CV*)sref))))) {
3294 Perl_warner(aTHX_ packWARN(WARN_REDEFINE),
3297 ? "Constant subroutine %s::%s redefined"
3298 : "Subroutine %s::%s redefined"),
3299 HvNAME_get(GvSTASH((GV*)dstr)),
3300 GvENAME((GV*)dstr));
3304 cv_ckproto_len(cv, (GV*)dstr,
3305 SvPOK(sref) ? SvPVX_const(sref) : NULL,
3306 SvPOK(sref) ? SvCUR(sref) : 0);
3308 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3309 GvASSUMECV_on(dstr);
3310 PL_sub_generation++;
3313 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3314 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3315 GvFLAGS(dstr) |= import_flag;
3320 if (SvTAINTED(sstr))
3326 Perl_sv_setsv_flags(pTHX_ SV *dstr, register SV *sstr, I32 flags)
3329 register U32 sflags;
3331 register svtype stype;
3336 if (SvIS_FREED(dstr)) {
3337 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
3338 " to a freed scalar %p", sstr, dstr);
3340 SV_CHECK_THINKFIRST_COW_DROP(dstr);
3342 sstr = &PL_sv_undef;
3343 if (SvIS_FREED(sstr)) {
3344 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p", sstr,
3347 stype = SvTYPE(sstr);
3348 dtype = SvTYPE(dstr);
3353 /* need to nuke the magic */
3355 SvRMAGICAL_off(dstr);
3358 /* There's a lot of redundancy below but we're going for speed here */
3363 if (dtype != SVt_PVGV) {
3364 (void)SvOK_off(dstr);
3372 sv_upgrade(dstr, SVt_IV);
3377 sv_upgrade(dstr, SVt_PVIV);
3380 goto end_of_first_switch;
3382 (void)SvIOK_only(dstr);
3383 SvIV_set(dstr, SvIVX(sstr));
3386 /* SvTAINTED can only be true if the SV has taint magic, which in
3387 turn means that the SV type is PVMG (or greater). This is the
3388 case statement for SVt_IV, so this cannot be true (whatever gcov
3390 assert(!SvTAINTED(sstr));
3400 sv_upgrade(dstr, SVt_NV);
3405 sv_upgrade(dstr, SVt_PVNV);
3408 goto end_of_first_switch;
3410 SvNV_set(dstr, SvNVX(sstr));
3411 (void)SvNOK_only(dstr);
3412 /* SvTAINTED can only be true if the SV has taint magic, which in
3413 turn means that the SV type is PVMG (or greater). This is the
3414 case statement for SVt_NV, so this cannot be true (whatever gcov
3416 assert(!SvTAINTED(sstr));
3423 sv_upgrade(dstr, SVt_RV);
3426 #ifdef PERL_OLD_COPY_ON_WRITE
3427 if ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS) {
3428 if (dtype < SVt_PVIV)
3429 sv_upgrade(dstr, SVt_PVIV);
3436 sv_upgrade(dstr, SVt_PV);
3439 if (dtype < SVt_PVIV)
3440 sv_upgrade(dstr, SVt_PVIV);
3443 if (dtype < SVt_PVNV)
3444 sv_upgrade(dstr, SVt_PVNV);
3448 const char * const type = sv_reftype(sstr,0);
3450 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_NAME(PL_op));
3452 Perl_croak(aTHX_ "Bizarre copy of %s", type);
3456 /* case SVt_BIND: */
3458 if (isGV_with_GP(sstr) && dtype <= SVt_PVGV) {
3459 glob_assign_glob(dstr, sstr, dtype);
3462 /* SvVALID means that this PVGV is playing at being an FBM. */
3467 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
3469 if (SvTYPE(sstr) != stype) {
3470 stype = SvTYPE(sstr);
3471 if (isGV_with_GP(sstr) && stype == SVt_PVGV && dtype <= SVt_PVGV) {
3472 glob_assign_glob(dstr, sstr, dtype);
3477 if (stype == SVt_PVLV)
3478 SvUPGRADE(dstr, SVt_PVNV);
3480 SvUPGRADE(dstr, (svtype)stype);
3482 end_of_first_switch:
3484 /* dstr may have been upgraded. */
3485 dtype = SvTYPE(dstr);
3486 sflags = SvFLAGS(sstr);
3488 if (dtype == SVt_PVCV) {
3489 /* Assigning to a subroutine sets the prototype. */
3492 const char *const ptr = SvPV_const(sstr, len);
3494 SvGROW(dstr, len + 1);
3495 Copy(ptr, SvPVX(dstr), len + 1, char);
3496 SvCUR_set(dstr, len);
3501 } else if (sflags & SVf_ROK) {
3502 if (isGV_with_GP(dstr) && dtype == SVt_PVGV
3503 && SvTYPE(SvRV(sstr)) == SVt_PVGV) {
3506 if (GvIMPORTED(dstr) != GVf_IMPORTED
3507 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3509 GvIMPORTED_on(dstr);
3514 glob_assign_glob(dstr, sstr, dtype);
3518 if (dtype >= SVt_PV) {
3519 if (dtype == SVt_PVGV) {
3520 glob_assign_ref(dstr, sstr);
3523 if (SvPVX_const(dstr)) {
3529 (void)SvOK_off(dstr);
3530 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
3531 SvFLAGS(dstr) |= sflags & SVf_ROK;
3532 assert(!(sflags & SVp_NOK));
3533 assert(!(sflags & SVp_IOK));
3534 assert(!(sflags & SVf_NOK));
3535 assert(!(sflags & SVf_IOK));
3537 else if (dtype == SVt_PVGV && isGV_with_GP(dstr)) {
3538 if (!(sflags & SVf_OK)) {
3539 if (ckWARN(WARN_MISC))
3540 Perl_warner(aTHX_ packWARN(WARN_MISC),
3541 "Undefined value assigned to typeglob");
3544 GV *gv = gv_fetchsv(sstr, GV_ADD, SVt_PVGV);
3545 if (dstr != (SV*)gv) {
3548 GvGP(dstr) = gp_ref(GvGP(gv));
3552 else if (sflags & SVp_POK) {
3556 * Check to see if we can just swipe the string. If so, it's a
3557 * possible small lose on short strings, but a big win on long ones.
3558 * It might even be a win on short strings if SvPVX_const(dstr)
3559 * has to be allocated and SvPVX_const(sstr) has to be freed.
3560 * Likewise if we can set up COW rather than doing an actual copy, we
3561 * drop to the else clause, as the swipe code and the COW setup code
3562 * have much in common.
3565 /* Whichever path we take through the next code, we want this true,
3566 and doing it now facilitates the COW check. */
3567 (void)SvPOK_only(dstr);
3570 /* If we're already COW then this clause is not true, and if COW
3571 is allowed then we drop down to the else and make dest COW
3572 with us. If caller hasn't said that we're allowed to COW
3573 shared hash keys then we don't do the COW setup, even if the
3574 source scalar is a shared hash key scalar. */
3575 (((flags & SV_COW_SHARED_HASH_KEYS)
3576 ? (sflags & (SVf_FAKE|SVf_READONLY)) != (SVf_FAKE|SVf_READONLY)
3577 : 1 /* If making a COW copy is forbidden then the behaviour we
3578 desire is as if the source SV isn't actually already
3579 COW, even if it is. So we act as if the source flags
3580 are not COW, rather than actually testing them. */
3582 #ifndef PERL_OLD_COPY_ON_WRITE
3583 /* The change that added SV_COW_SHARED_HASH_KEYS makes the logic
3584 when PERL_OLD_COPY_ON_WRITE is defined a little wrong.
3585 Conceptually PERL_OLD_COPY_ON_WRITE being defined should
3586 override SV_COW_SHARED_HASH_KEYS, because it means "always COW"
3587 but in turn, it's somewhat dead code, never expected to go
3588 live, but more kept as a placeholder on how to do it better
3589 in a newer implementation. */
3590 /* If we are COW and dstr is a suitable target then we drop down
3591 into the else and make dest a COW of us. */
3592 || (SvFLAGS(dstr) & CAN_COW_MASK) != CAN_COW_FLAGS
3597 (sflags & SVs_TEMP) && /* slated for free anyway? */
3598 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
3599 (!(flags & SV_NOSTEAL)) &&
3600 /* and we're allowed to steal temps */
3601 SvREFCNT(sstr) == 1 && /* and no other references to it? */
3602 SvLEN(sstr) && /* and really is a string */
3603 /* and won't be needed again, potentially */
3604 !(PL_op && PL_op->op_type == OP_AASSIGN))
3605 #ifdef PERL_OLD_COPY_ON_WRITE
3606 && !((sflags & CAN_COW_MASK) == CAN_COW_FLAGS
3607 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
3608 && SvTYPE(sstr) >= SVt_PVIV)
3611 /* Failed the swipe test, and it's not a shared hash key either.
3612 Have to copy the string. */
3613 STRLEN len = SvCUR(sstr);
3614 SvGROW(dstr, len + 1); /* inlined from sv_setpvn */
3615 Move(SvPVX_const(sstr),SvPVX(dstr),len,char);
3616 SvCUR_set(dstr, len);
3617 *SvEND(dstr) = '\0';
3619 /* If PERL_OLD_COPY_ON_WRITE is not defined, then isSwipe will always
3621 /* Either it's a shared hash key, or it's suitable for
3622 copy-on-write or we can swipe the string. */
3624 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
3628 #ifdef PERL_OLD_COPY_ON_WRITE
3630 /* I believe I should acquire a global SV mutex if
3631 it's a COW sv (not a shared hash key) to stop
3632 it going un copy-on-write.
3633 If the source SV has gone un copy on write between up there
3634 and down here, then (assert() that) it is of the correct
3635 form to make it copy on write again */
3636 if ((sflags & (SVf_FAKE | SVf_READONLY))
3637 != (SVf_FAKE | SVf_READONLY)) {
3638 SvREADONLY_on(sstr);
3640 /* Make the source SV into a loop of 1.
3641 (about to become 2) */
3642 SV_COW_NEXT_SV_SET(sstr, sstr);
3646 /* Initial code is common. */
3647 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
3652 /* making another shared SV. */
3653 STRLEN cur = SvCUR(sstr);
3654 STRLEN len = SvLEN(sstr);
3655 #ifdef PERL_OLD_COPY_ON_WRITE
3657 assert (SvTYPE(dstr) >= SVt_PVIV);
3658 /* SvIsCOW_normal */
3659 /* splice us in between source and next-after-source. */
3660 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
3661 SV_COW_NEXT_SV_SET(sstr, dstr);
3662 SvPV_set(dstr, SvPVX_mutable(sstr));
3666 /* SvIsCOW_shared_hash */
3667 DEBUG_C(PerlIO_printf(Perl_debug_log,
3668 "Copy on write: Sharing hash\n"));
3670 assert (SvTYPE(dstr) >= SVt_PV);
3672 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
3674 SvLEN_set(dstr, len);
3675 SvCUR_set(dstr, cur);
3676 SvREADONLY_on(dstr);
3678 /* Relesase a global SV mutex. */
3681 { /* Passes the swipe test. */
3682 SvPV_set(dstr, SvPVX_mutable(sstr));
3683 SvLEN_set(dstr, SvLEN(sstr));
3684 SvCUR_set(dstr, SvCUR(sstr));
3687 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
3688 SvPV_set(sstr, NULL);
3694 if (sflags & SVp_NOK) {
3695 SvNV_set(dstr, SvNVX(sstr));
3697 if (sflags & SVp_IOK) {
3698 SvRELEASE_IVX(dstr);
3699 SvIV_set(dstr, SvIVX(sstr));
3700 /* Must do this otherwise some other overloaded use of 0x80000000
3701 gets confused. I guess SVpbm_VALID */
3702 if (sflags & SVf_IVisUV)
3705 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8);
3707 const MAGIC * const smg = SvVSTRING_mg(sstr);
3709 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
3710 smg->mg_ptr, smg->mg_len);
3711 SvRMAGICAL_on(dstr);
3715 else if (sflags & (SVp_IOK|SVp_NOK)) {
3716 (void)SvOK_off(dstr);
3717 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK);
3718 if (sflags & SVp_IOK) {
3719 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
3720 SvIV_set(dstr, SvIVX(sstr));
3722 if (sflags & SVp_NOK) {
3723 SvNV_set(dstr, SvNVX(sstr));
3727 if (isGV_with_GP(sstr)) {
3728 /* This stringification rule for globs is spread in 3 places.
3729 This feels bad. FIXME. */
3730 const U32 wasfake = sflags & SVf_FAKE;
3732 /* FAKE globs can get coerced, so need to turn this off
3733 temporarily if it is on. */
3735 gv_efullname3(dstr, (GV *)sstr, "*");
3736 SvFLAGS(sstr) |= wasfake;
3739 (void)SvOK_off(dstr);
3741 if (SvTAINTED(sstr))
3746 =for apidoc sv_setsv_mg
3748 Like C<sv_setsv>, but also handles 'set' magic.
3754 Perl_sv_setsv_mg(pTHX_ SV *dstr, register SV *sstr)
3756 sv_setsv(dstr,sstr);
3760 #ifdef PERL_OLD_COPY_ON_WRITE
3762 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
3764 STRLEN cur = SvCUR(sstr);
3765 STRLEN len = SvLEN(sstr);
3766 register char *new_pv;
3769 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
3777 if (SvTHINKFIRST(dstr))
3778 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
3779 else if (SvPVX_const(dstr))
3780 Safefree(SvPVX_const(dstr));
3784 SvUPGRADE(dstr, SVt_PVIV);
3786 assert (SvPOK(sstr));
3787 assert (SvPOKp(sstr));
3788 assert (!SvIOK(sstr));
3789 assert (!SvIOKp(sstr));
3790 assert (!SvNOK(sstr));
3791 assert (!SvNOKp(sstr));
3793 if (SvIsCOW(sstr)) {
3795 if (SvLEN(sstr) == 0) {
3796 /* source is a COW shared hash key. */
3797 DEBUG_C(PerlIO_printf(Perl_debug_log,
3798 "Fast copy on write: Sharing hash\n"));
3799 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
3802 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
3804 assert ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS);
3805 SvUPGRADE(sstr, SVt_PVIV);
3806 SvREADONLY_on(sstr);
3808 DEBUG_C(PerlIO_printf(Perl_debug_log,
3809 "Fast copy on write: Converting sstr to COW\n"));
3810 SV_COW_NEXT_SV_SET(dstr, sstr);
3812 SV_COW_NEXT_SV_SET(sstr, dstr);
3813 new_pv = SvPVX_mutable(sstr);
3816 SvPV_set(dstr, new_pv);
3817 SvFLAGS(dstr) = (SVt_PVIV|SVf_POK|SVp_POK|SVf_FAKE|SVf_READONLY);
3820 SvLEN_set(dstr, len);
3821 SvCUR_set(dstr, cur);
3830 =for apidoc sv_setpvn
3832 Copies a string into an SV. The C<len> parameter indicates the number of
3833 bytes to be copied. If the C<ptr> argument is NULL the SV will become
3834 undefined. Does not handle 'set' magic. See C<sv_setpvn_mg>.
3840 Perl_sv_setpvn(pTHX_ register SV *sv, register const char *ptr, register STRLEN len)
3843 register char *dptr;
3845 SV_CHECK_THINKFIRST_COW_DROP(sv);
3851 /* len is STRLEN which is unsigned, need to copy to signed */
3854 Perl_croak(aTHX_ "panic: sv_setpvn called with negative strlen");
3856 SvUPGRADE(sv, SVt_PV);
3858 dptr = SvGROW(sv, len + 1);
3859 Move(ptr,dptr,len,char);
3862 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3867 =for apidoc sv_setpvn_mg
3869 Like C<sv_setpvn>, but also handles 'set' magic.
3875 Perl_sv_setpvn_mg(pTHX_ register SV *sv, register const char *ptr, register STRLEN len)
3877 sv_setpvn(sv,ptr,len);
3882 =for apidoc sv_setpv
3884 Copies a string into an SV. The string must be null-terminated. Does not
3885 handle 'set' magic. See C<sv_setpv_mg>.
3891 Perl_sv_setpv(pTHX_ register SV *sv, register const char *ptr)
3894 register STRLEN len;
3896 SV_CHECK_THINKFIRST_COW_DROP(sv);
3902 SvUPGRADE(sv, SVt_PV);
3904 SvGROW(sv, len + 1);
3905 Move(ptr,SvPVX(sv),len+1,char);
3907 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3912 =for apidoc sv_setpv_mg
3914 Like C<sv_setpv>, but also handles 'set' magic.
3920 Perl_sv_setpv_mg(pTHX_ register SV *sv, register const char *ptr)
3927 =for apidoc sv_usepvn_flags
3929 Tells an SV to use C<ptr> to find its string value. Normally the
3930 string is stored inside the SV but sv_usepvn allows the SV to use an
3931 outside string. The C<ptr> should point to memory that was allocated
3932 by C<malloc>. The string length, C<len>, must be supplied. By default
3933 this function will realloc (i.e. move) the memory pointed to by C<ptr>,
3934 so that pointer should not be freed or used by the programmer after
3935 giving it to sv_usepvn, and neither should any pointers from "behind"
3936 that pointer (e.g. ptr + 1) be used.
3938 If C<flags> & SV_SMAGIC is true, will call SvSETMAGIC. If C<flags> &
3939 SV_HAS_TRAILING_NUL is true, then C<ptr[len]> must be NUL, and the realloc
3940 will be skipped. (i.e. the buffer is actually at least 1 byte longer than
3941 C<len>, and already meets the requirements for storing in C<SvPVX>)
3947 Perl_sv_usepvn_flags(pTHX_ SV *sv, char *ptr, STRLEN len, U32 flags)
3951 SV_CHECK_THINKFIRST_COW_DROP(sv);
3952 SvUPGRADE(sv, SVt_PV);
3955 if (flags & SV_SMAGIC)
3959 if (SvPVX_const(sv))
3963 if (flags & SV_HAS_TRAILING_NUL)
3964 assert(ptr[len] == '\0');
3967 allocate = (flags & SV_HAS_TRAILING_NUL)
3968 ? len + 1: PERL_STRLEN_ROUNDUP(len + 1);
3969 if (flags & SV_HAS_TRAILING_NUL) {
3970 /* It's long enough - do nothing.
3971 Specfically Perl_newCONSTSUB is relying on this. */
3974 /* Force a move to shake out bugs in callers. */
3975 char *new_ptr = (char*)safemalloc(allocate);
3976 Copy(ptr, new_ptr, len, char);
3977 PoisonFree(ptr,len,char);
3981 ptr = (char*) saferealloc (ptr, allocate);
3986 SvLEN_set(sv, allocate);
3987 if (!(flags & SV_HAS_TRAILING_NUL)) {
3990 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3992 if (flags & SV_SMAGIC)
3996 #ifdef PERL_OLD_COPY_ON_WRITE
3997 /* Need to do this *after* making the SV normal, as we need the buffer
3998 pointer to remain valid until after we've copied it. If we let go too early,
3999 another thread could invalidate it by unsharing last of the same hash key
4000 (which it can do by means other than releasing copy-on-write Svs)
4001 or by changing the other copy-on-write SVs in the loop. */
4003 S_sv_release_COW(pTHX_ register SV *sv, const char *pvx, STRLEN len, SV *after)
4005 if (len) { /* this SV was SvIsCOW_normal(sv) */
4006 /* we need to find the SV pointing to us. */
4007 SV *current = SV_COW_NEXT_SV(after);
4009 if (current == sv) {
4010 /* The SV we point to points back to us (there were only two of us
4012 Hence other SV is no longer copy on write either. */
4014 SvREADONLY_off(after);
4016 /* We need to follow the pointers around the loop. */
4018 while ((next = SV_COW_NEXT_SV(current)) != sv) {
4021 /* don't loop forever if the structure is bust, and we have
4022 a pointer into a closed loop. */
4023 assert (current != after);
4024 assert (SvPVX_const(current) == pvx);
4026 /* Make the SV before us point to the SV after us. */
4027 SV_COW_NEXT_SV_SET(current, after);
4030 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4035 Perl_sv_release_IVX(pTHX_ register SV *sv)
4038 sv_force_normal_flags(sv, 0);
4044 =for apidoc sv_force_normal_flags
4046 Undo various types of fakery on an SV: if the PV is a shared string, make
4047 a private copy; if we're a ref, stop refing; if we're a glob, downgrade to
4048 an xpvmg; if we're a copy-on-write scalar, this is the on-write time when
4049 we do the copy, and is also used locally. If C<SV_COW_DROP_PV> is set
4050 then a copy-on-write scalar drops its PV buffer (if any) and becomes
4051 SvPOK_off rather than making a copy. (Used where this scalar is about to be
4052 set to some other value.) In addition, the C<flags> parameter gets passed to
4053 C<sv_unref_flags()> when unrefing. C<sv_force_normal> calls this function
4054 with flags set to 0.
4060 Perl_sv_force_normal_flags(pTHX_ register SV *sv, U32 flags)
4063 #ifdef PERL_OLD_COPY_ON_WRITE
4064 if (SvREADONLY(sv)) {
4065 /* At this point I believe I should acquire a global SV mutex. */
4067 const char * const pvx = SvPVX_const(sv);
4068 const STRLEN len = SvLEN(sv);
4069 const STRLEN cur = SvCUR(sv);
4070 SV * const next = SV_COW_NEXT_SV(sv); /* next COW sv in the loop. */
4072 PerlIO_printf(Perl_debug_log,
4073 "Copy on write: Force normal %ld\n",
4079 /* This SV doesn't own the buffer, so need to Newx() a new one: */
4082 if (flags & SV_COW_DROP_PV) {
4083 /* OK, so we don't need to copy our buffer. */
4086 SvGROW(sv, cur + 1);
4087 Move(pvx,SvPVX(sv),cur,char);
4091 sv_release_COW(sv, pvx, len, next);
4096 else if (IN_PERL_RUNTIME)
4097 Perl_croak(aTHX_ PL_no_modify);
4098 /* At this point I believe that I can drop the global SV mutex. */
4101 if (SvREADONLY(sv)) {
4103 const char * const pvx = SvPVX_const(sv);
4104 const STRLEN len = SvCUR(sv);
4109 SvGROW(sv, len + 1);
4110 Move(pvx,SvPVX(sv),len,char);
4112 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4114 else if (IN_PERL_RUNTIME)
4115 Perl_croak(aTHX_ PL_no_modify);
4119 sv_unref_flags(sv, flags);
4120 else if (SvFAKE(sv) && SvTYPE(sv) == SVt_PVGV)
4127 Efficient removal of characters from the beginning of the string buffer.
4128 SvPOK(sv) must be true and the C<ptr> must be a pointer to somewhere inside
4129 the string buffer. The C<ptr> becomes the first character of the adjusted
4130 string. Uses the "OOK hack".
4131 Beware: after this function returns, C<ptr> and SvPVX_const(sv) may no longer
4132 refer to the same chunk of data.
4138 Perl_sv_chop(pTHX_ register SV *sv, register const char *ptr)
4140 register STRLEN delta;
4141 if (!ptr || !SvPOKp(sv))
4143 delta = ptr - SvPVX_const(sv);
4144 SV_CHECK_THINKFIRST(sv);
4145 if (SvTYPE(sv) < SVt_PVIV)
4146 sv_upgrade(sv,SVt_PVIV);
4149 if (!SvLEN(sv)) { /* make copy of shared string */
4150 const char *pvx = SvPVX_const(sv);
4151 const STRLEN len = SvCUR(sv);
4152 SvGROW(sv, len + 1);
4153 Move(pvx,SvPVX(sv),len,char);
4157 /* Same SvOOK_on but SvOOK_on does a SvIOK_off
4158 and we do that anyway inside the SvNIOK_off
4160 SvFLAGS(sv) |= SVf_OOK;
4163 SvLEN_set(sv, SvLEN(sv) - delta);
4164 SvCUR_set(sv, SvCUR(sv) - delta);
4165 SvPV_set(sv, SvPVX(sv) + delta);
4166 SvIV_set(sv, SvIVX(sv) + delta);
4170 =for apidoc sv_catpvn
4172 Concatenates the string onto the end of the string which is in the SV. The
4173 C<len> indicates number of bytes to copy. If the SV has the UTF-8
4174 status set, then the bytes appended should be valid UTF-8.
4175 Handles 'get' magic, but not 'set' magic. See C<sv_catpvn_mg>.
4177 =for apidoc sv_catpvn_flags
4179 Concatenates the string onto the end of the string which is in the SV. The
4180 C<len> indicates number of bytes to copy. If the SV has the UTF-8
4181 status set, then the bytes appended should be valid UTF-8.
4182 If C<flags> has C<SV_GMAGIC> bit set, will C<mg_get> on C<dsv> if
4183 appropriate, else not. C<sv_catpvn> and C<sv_catpvn_nomg> are implemented
4184 in terms of this function.
4190 Perl_sv_catpvn_flags(pTHX_ register SV *dsv, register const char *sstr, register STRLEN slen, I32 flags)
4194 const char * const dstr = SvPV_force_flags(dsv, dlen, flags);
4196 SvGROW(dsv, dlen + slen + 1);
4198 sstr = SvPVX_const(dsv);
4199 Move(sstr, SvPVX(dsv) + dlen, slen, char);
4200 SvCUR_set(dsv, SvCUR(dsv) + slen);
4202 (void)SvPOK_only_UTF8(dsv); /* validate pointer */
4204 if (flags & SV_SMAGIC)
4209 =for apidoc sv_catsv
4211 Concatenates the string from SV C<ssv> onto the end of the string in
4212 SV C<dsv>. Modifies C<dsv> but not C<ssv>. Handles 'get' magic, but
4213 not 'set' magic. See C<sv_catsv_mg>.
4215 =for apidoc sv_catsv_flags
4217 Concatenates the string from SV C<ssv> onto the end of the string in
4218 SV C<dsv>. Modifies C<dsv> but not C<ssv>. If C<flags> has C<SV_GMAGIC>
4219 bit set, will C<mg_get> on the SVs if appropriate, else not. C<sv_catsv>
4220 and C<sv_catsv_nomg> are implemented in terms of this function.
4225 Perl_sv_catsv_flags(pTHX_ SV *dsv, register SV *ssv, I32 flags)
4230 const char *spv = SvPV_const(ssv, slen);
4232 /* sutf8 and dutf8 were type bool, but under USE_ITHREADS,
4233 gcc version 2.95.2 20000220 (Debian GNU/Linux) for
4234 Linux xxx 2.2.17 on sparc64 with gcc -O2, we erroneously
4235 get dutf8 = 0x20000000, (i.e. SVf_UTF8) even though
4236 dsv->sv_flags doesn't have that bit set.
4237 Andy Dougherty 12 Oct 2001
4239 const I32 sutf8 = DO_UTF8(ssv);
4242 if (SvGMAGICAL(dsv) && (flags & SV_GMAGIC))
4244 dutf8 = DO_UTF8(dsv);
4246 if (dutf8 != sutf8) {
4248 /* Not modifying source SV, so taking a temporary copy. */
4249 SV* const csv = sv_2mortal(newSVpvn(spv, slen));
4251 sv_utf8_upgrade(csv);
4252 spv = SvPV_const(csv, slen);
4255 sv_utf8_upgrade_nomg(dsv);
4257 sv_catpvn_nomg(dsv, spv, slen);
4260 if (flags & SV_SMAGIC)
4265 =for apidoc sv_catpv
4267 Concatenates the string onto the end of the string which is in the SV.
4268 If the SV has the UTF-8 status set, then the bytes appended should be
4269 valid UTF-8. Handles 'get' magic, but not 'set' magic. See C<sv_catpv_mg>.
4274 Perl_sv_catpv(pTHX_ register SV *sv, register const char *ptr)
4277 register STRLEN len;
4283 junk = SvPV_force(sv, tlen);
4285 SvGROW(sv, tlen + len + 1);
4287 ptr = SvPVX_const(sv);
4288 Move(ptr,SvPVX(sv)+tlen,len+1,char);
4289 SvCUR_set(sv, SvCUR(sv) + len);
4290 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4295 =for apidoc sv_catpv_mg
4297 Like C<sv_catpv>, but also handles 'set' magic.
4303 Perl_sv_catpv_mg(pTHX_ register SV *sv, register const char *ptr)
4312 Creates a new SV. A non-zero C<len> parameter indicates the number of
4313 bytes of preallocated string space the SV should have. An extra byte for a
4314 trailing NUL is also reserved. (SvPOK is not set for the SV even if string
4315 space is allocated.) The reference count for the new SV is set to 1.
4317 In 5.9.3, newSV() replaces the older NEWSV() API, and drops the first
4318 parameter, I<x>, a debug aid which allowed callers to identify themselves.
4319 This aid has been superseded by a new build option, PERL_MEM_LOG (see
4320 L<perlhack/PERL_MEM_LOG>). The older API is still there for use in XS
4321 modules supporting older perls.
4327 Perl_newSV(pTHX_ STRLEN len)
4334 sv_upgrade(sv, SVt_PV);
4335 SvGROW(sv, len + 1);
4340 =for apidoc sv_magicext
4342 Adds magic to an SV, upgrading it if necessary. Applies the
4343 supplied vtable and returns a pointer to the magic added.
4345 Note that C<sv_magicext> will allow things that C<sv_magic> will not.
4346 In particular, you can add magic to SvREADONLY SVs, and add more than
4347 one instance of the same 'how'.
4349 If C<namlen> is greater than zero then a C<savepvn> I<copy> of C<name> is
4350 stored, if C<namlen> is zero then C<name> is stored as-is and - as another
4351 special case - if C<(name && namlen == HEf_SVKEY)> then C<name> is assumed
4352 to contain an C<SV*> and is stored as-is with its REFCNT incremented.
4354 (This is now used as a subroutine by C<sv_magic>.)
4359 Perl_sv_magicext(pTHX_ SV* sv, SV* obj, int how, MGVTBL *vtable,
4360 const char* name, I32 namlen)
4365 if (SvTYPE(sv) < SVt_PVMG) {
4366 SvUPGRADE(sv, SVt_PVMG);
4368 Newxz(mg, 1, MAGIC);
4369 mg->mg_moremagic = SvMAGIC(sv);
4370 SvMAGIC_set(sv, mg);
4372 /* Sometimes a magic contains a reference loop, where the sv and
4373 object refer to each other. To prevent a reference loop that
4374 would prevent such objects being freed, we look for such loops
4375 and if we find one we avoid incrementing the object refcount.
4377 Note we cannot do this to avoid self-tie loops as intervening RV must
4378 have its REFCNT incremented to keep it in existence.
4381 if (!obj || obj == sv ||
4382 how == PERL_MAGIC_arylen ||
4383 how == PERL_MAGIC_qr ||
4384 how == PERL_MAGIC_symtab ||
4385 (SvTYPE(obj) == SVt_PVGV &&
4386 (GvSV(obj) == sv || GvHV(obj) == (HV*)sv || GvAV(obj) == (AV*)sv ||
4387 GvCV(obj) == (CV*)sv || GvIOp(obj) == (IO*)sv ||
4388 GvFORM(obj) == (CV*)sv)))
4393 mg->mg_obj = SvREFCNT_inc_simple(obj);
4394 mg->mg_flags |= MGf_REFCOUNTED;
4397 /* Normal self-ties simply pass a null object, and instead of
4398 using mg_obj directly, use the SvTIED_obj macro to produce a
4399 new RV as needed. For glob "self-ties", we are tieing the PVIO
4400 with an RV obj pointing to the glob containing the PVIO. In
4401 this case, to avoid a reference loop, we need to weaken the
4405 if (how == PERL_MAGIC_tiedscalar && SvTYPE(sv) == SVt_PVIO &&
4406 obj && SvROK(obj) && GvIO(SvRV(obj)) == (IO*)sv)
4412 mg->mg_len = namlen;
4415 mg->mg_ptr = savepvn(name, namlen);
4416 else if (namlen == HEf_SVKEY)
4417 mg->mg_ptr = (char*)SvREFCNT_inc_simple_NN((SV*)name);
4419 mg->mg_ptr = (char *) name;
4421 mg->mg_virtual = vtable;
4425 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK|SVf_POK);
4430 =for apidoc sv_magic
4432 Adds magic to an SV. First upgrades C<sv> to type C<SVt_PVMG> if necessary,
4433 then adds a new magic item of type C<how> to the head of the magic list.
4435 See C<sv_magicext> (which C<sv_magic> now calls) for a description of the
4436 handling of the C<name> and C<namlen> arguments.
4438 You need to use C<sv_magicext> to add magic to SvREADONLY SVs and also
4439 to add more than one instance of the same 'how'.
4445 Perl_sv_magic(pTHX_ register SV *sv, SV *obj, int how, const char *name, I32 namlen)
4451 #ifdef PERL_OLD_COPY_ON_WRITE
4453 sv_force_normal_flags(sv, 0);
4455 if (SvREADONLY(sv)) {
4457 /* its okay to attach magic to shared strings; the subsequent
4458 * upgrade to PVMG will unshare the string */
4459 !(SvFAKE(sv) && SvTYPE(sv) < SVt_PVMG)
4462 && how != PERL_MAGIC_regex_global
4463 && how != PERL_MAGIC_bm
4464 && how != PERL_MAGIC_fm
4465 && how != PERL_MAGIC_sv
4466 && how != PERL_MAGIC_backref
4469 Perl_croak(aTHX_ PL_no_modify);
4472 if (SvMAGICAL(sv) || (how == PERL_MAGIC_taint && SvTYPE(sv) >= SVt_PVMG)) {
4473 if (SvMAGIC(sv) && (mg = mg_find(sv, how))) {
4474 /* sv_magic() refuses to add a magic of the same 'how' as an
4477 if (how == PERL_MAGIC_taint) {
4479 /* Any scalar which already had taint magic on which someone
4480 (erroneously?) did SvIOK_on() or similar will now be
4481 incorrectly sporting public "OK" flags. */
4482 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK|SVf_POK);
4490 vtable = &PL_vtbl_sv;
4492 case PERL_MAGIC_overload:
4493 vtable = &PL_vtbl_amagic;
4495 case PERL_MAGIC_overload_elem:
4496 vtable = &PL_vtbl_amagicelem;
4498 case PERL_MAGIC_overload_table:
4499 vtable = &PL_vtbl_ovrld;
4502 vtable = &PL_vtbl_bm;
4504 case PERL_MAGIC_regdata:
4505 vtable = &PL_vtbl_regdata;
4507 case PERL_MAGIC_regdata_names:
4508 vtable = &PL_vtbl_regdata_names;
4510 case PERL_MAGIC_regdatum:
4511 vtable = &PL_vtbl_regdatum;
4513 case PERL_MAGIC_env:
4514 vtable = &PL_vtbl_env;
4517 vtable = &PL_vtbl_fm;
4519 case PERL_MAGIC_envelem:
4520 vtable = &PL_vtbl_envelem;
4522 case PERL_MAGIC_regex_global:
4523 vtable = &PL_vtbl_mglob;
4525 case PERL_MAGIC_isa:
4526 vtable = &PL_vtbl_isa;
4528 case PERL_MAGIC_isaelem:
4529 vtable = &PL_vtbl_isaelem;
4531 case PERL_MAGIC_nkeys:
4532 vtable = &PL_vtbl_nkeys;
4534 case PERL_MAGIC_dbfile:
4537 case PERL_MAGIC_dbline:
4538 vtable = &PL_vtbl_dbline;
4540 #ifdef USE_LOCALE_COLLATE
4541 case PERL_MAGIC_collxfrm:
4542 vtable = &PL_vtbl_collxfrm;
4544 #endif /* USE_LOCALE_COLLATE */
4545 case PERL_MAGIC_tied:
4546 vtable = &PL_vtbl_pack;
4548 case PERL_MAGIC_tiedelem:
4549 case PERL_MAGIC_tiedscalar:
4550 vtable = &PL_vtbl_packelem;
4553 vtable = &PL_vtbl_regexp;
4555 case PERL_MAGIC_hints:
4556 /* As this vtable is all NULL, we can reuse it. */
4557 case PERL_MAGIC_sig:
4558 vtable = &PL_vtbl_sig;
4560 case PERL_MAGIC_sigelem:
4561 vtable = &PL_vtbl_sigelem;
4563 case PERL_MAGIC_taint:
4564 vtable = &PL_vtbl_taint;
4566 case PERL_MAGIC_uvar:
4567 vtable = &PL_vtbl_uvar;
4569 case PERL_MAGIC_vec:
4570 vtable = &PL_vtbl_vec;
4572 case PERL_MAGIC_arylen_p:
4573 case PERL_MAGIC_rhash:
4574 case PERL_MAGIC_symtab:
4575 case PERL_MAGIC_vstring:
4578 case PERL_MAGIC_utf8:
4579 vtable = &PL_vtbl_utf8;
4581 case PERL_MAGIC_substr:
4582 vtable = &PL_vtbl_substr;
4584 case PERL_MAGIC_defelem:
4585 vtable = &PL_vtbl_defelem;
4587 case PERL_MAGIC_arylen:
4588 vtable = &PL_vtbl_arylen;
4590 case PERL_MAGIC_pos:
4591 vtable = &PL_vtbl_pos;
4593 case PERL_MAGIC_backref:
4594 vtable = &PL_vtbl_backref;
4596 case PERL_MAGIC_hintselem:
4597 vtable = &PL_vtbl_hintselem;
4599 case PERL_MAGIC_ext:
4600 /* Reserved for use by extensions not perl internals. */
4601 /* Useful for attaching extension internal data to perl vars. */
4602 /* Note that multiple extensions may clash if magical scalars */
4603 /* etc holding private data from one are passed to another. */
4607 Perl_croak(aTHX_ "Don't know how to handle magic of type \\%o", how);
4610 /* Rest of work is done else where */
4611 mg = sv_magicext(sv,obj,how,vtable,name,namlen);
4614 case PERL_MAGIC_taint:
4617 case PERL_MAGIC_ext:
4618 case PERL_MAGIC_dbfile:
4625 =for apidoc sv_unmagic
4627 Removes all magic of type C<type> from an SV.
4633 Perl_sv_unmagic(pTHX_ SV *sv, int type)
4637 if (SvTYPE(sv) < SVt_PVMG || !SvMAGIC(sv))
4639 mgp = &(((XPVMG*) SvANY(sv))->xmg_u.xmg_magic);
4640 for (mg = *mgp; mg; mg = *mgp) {
4641 if (mg->mg_type == type) {
4642 const MGVTBL* const vtbl = mg->mg_virtual;
4643 *mgp = mg->mg_moremagic;
4644 if (vtbl && vtbl->svt_free)
4645 CALL_FPTR(vtbl->svt_free)(aTHX_ sv, mg);
4646 if (mg->mg_ptr && mg->mg_type != PERL_MAGIC_regex_global) {
4648 Safefree(mg->mg_ptr);
4649 else if (mg->mg_len == HEf_SVKEY)
4650 SvREFCNT_dec((SV*)mg->mg_ptr);
4651 else if (mg->mg_type == PERL_MAGIC_utf8)
4652 Safefree(mg->mg_ptr);
4654 if (mg->mg_flags & MGf_REFCOUNTED)
4655 SvREFCNT_dec(mg->mg_obj);
4659 mgp = &mg->mg_moremagic;
4663 SvFLAGS(sv) |= (SvFLAGS(sv) & (SVp_IOK|SVp_NOK|SVp_POK)) >> PRIVSHIFT;
4664 SvMAGIC_set(sv, NULL);
4671 =for apidoc sv_rvweaken
4673 Weaken a reference: set the C<SvWEAKREF> flag on this RV; give the
4674 referred-to SV C<PERL_MAGIC_backref> magic if it hasn't already; and
4675 push a back-reference to this RV onto the array of backreferences
4676 associated with that magic. If the RV is magical, set magic will be
4677 called after the RV is cleared.
4683 Perl_sv_rvweaken(pTHX_ SV *sv)
4686 if (!SvOK(sv)) /* let undefs pass */
4689 Perl_croak(aTHX_ "Can't weaken a nonreference");
4690 else if (SvWEAKREF(sv)) {
4691 if (ckWARN(WARN_MISC))
4692 Perl_warner(aTHX_ packWARN(WARN_MISC), "Reference is already weak");
4696 Perl_sv_add_backref(aTHX_ tsv, sv);
4702 /* Give tsv backref magic if it hasn't already got it, then push a
4703 * back-reference to sv onto the array associated with the backref magic.
4707 Perl_sv_add_backref(pTHX_ SV *tsv, SV *sv)
4712 if (SvTYPE(tsv) == SVt_PVHV) {
4713 AV **const avp = Perl_hv_backreferences_p(aTHX_ (HV*)tsv);
4717 /* There is no AV in the offical place - try a fixup. */
4718 MAGIC *const mg = mg_find(tsv, PERL_MAGIC_backref);
4721 /* Aha. They've got it stowed in magic. Bring it back. */
4722 av = (AV*)mg->mg_obj;
4723 /* Stop mg_free decreasing the refernce count. */
4725 /* Stop mg_free even calling the destructor, given that
4726 there's no AV to free up. */
4728 sv_unmagic(tsv, PERL_MAGIC_backref);
4732 SvREFCNT_inc_simple_void(av);
4737 const MAGIC *const mg
4738 = SvMAGICAL(tsv) ? mg_find(tsv, PERL_MAGIC_backref) : NULL;
4740 av = (AV*)mg->mg_obj;
4744 sv_magic(tsv, (SV*)av, PERL_MAGIC_backref, NULL, 0);
4745 /* av now has a refcnt of 2, which avoids it getting freed
4746 * before us during global cleanup. The extra ref is removed
4747 * by magic_killbackrefs() when tsv is being freed */
4750 if (AvFILLp(av) >= AvMAX(av)) {