3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by Larry Wall
7 * You may distribute under the terms of either the GNU General Public
8 * License or the Artistic License, as specified in the README file.
13 * 'I wonder what the Entish is for "yes" and "no",' he thought.
16 * [p.480 of _The Lord of the Rings_, III/iv: "Treebeard"]
22 * This file contains the code that creates, manipulates and destroys
23 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
24 * structure of an SV, so their creation and destruction is handled
25 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
26 * level functions (eg. substr, split, join) for each of the types are
36 # if __STDC_VERSION__ >= 199901L && !defined(VMS)
47 /* Missing proto on LynxOS */
48 char *gconvert(double, int, int, char *);
51 #ifdef PERL_UTF8_CACHE_ASSERT
52 /* if adding more checks watch out for the following tests:
53 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
54 * lib/utf8.t lib/Unicode/Collate/t/index.t
57 # define ASSERT_UTF8_CACHE(cache) \
58 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
59 assert((cache)[2] <= (cache)[3]); \
60 assert((cache)[3] <= (cache)[1]);} \
63 # define ASSERT_UTF8_CACHE(cache) NOOP
66 #ifdef PERL_OLD_COPY_ON_WRITE
67 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
68 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
69 /* This is a pessimistic view. Scalar must be purely a read-write PV to copy-
73 /* ============================================================================
75 =head1 Allocation and deallocation of SVs.
77 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
78 sv, av, hv...) contains type and reference count information, and for
79 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
80 contains fields specific to each type. Some types store all they need
81 in the head, so don't have a body.
83 In all but the most memory-paranoid configurations (ex: PURIFY), heads
84 and bodies are allocated out of arenas, which by default are
85 approximately 4K chunks of memory parcelled up into N heads or bodies.
86 Sv-bodies are allocated by their sv-type, guaranteeing size
87 consistency needed to allocate safely from arrays.
89 For SV-heads, the first slot in each arena is reserved, and holds a
90 link to the next arena, some flags, and a note of the number of slots.
91 Snaked through each arena chain is a linked list of free items; when
92 this becomes empty, an extra arena is allocated and divided up into N
93 items which are threaded into the free list.
95 SV-bodies are similar, but they use arena-sets by default, which
96 separate the link and info from the arena itself, and reclaim the 1st
97 slot in the arena. SV-bodies are further described later.
99 The following global variables are associated with arenas:
101 PL_sv_arenaroot pointer to list of SV arenas
102 PL_sv_root pointer to list of free SV structures
104 PL_body_arenas head of linked-list of body arenas
105 PL_body_roots[] array of pointers to list of free bodies of svtype
106 arrays are indexed by the svtype needed
108 A few special SV heads are not allocated from an arena, but are
109 instead directly created in the interpreter structure, eg PL_sv_undef.
110 The size of arenas can be changed from the default by setting
111 PERL_ARENA_SIZE appropriately at compile time.
113 The SV arena serves the secondary purpose of allowing still-live SVs
114 to be located and destroyed during final cleanup.
116 At the lowest level, the macros new_SV() and del_SV() grab and free
117 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
118 to return the SV to the free list with error checking.) new_SV() calls
119 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
120 SVs in the free list have their SvTYPE field set to all ones.
122 At the time of very final cleanup, sv_free_arenas() is called from
123 perl_destruct() to physically free all the arenas allocated since the
124 start of the interpreter.
126 The function visit() scans the SV arenas list, and calls a specified
127 function for each SV it finds which is still live - ie which has an SvTYPE
128 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
129 following functions (specified as [function that calls visit()] / [function
130 called by visit() for each SV]):
132 sv_report_used() / do_report_used()
133 dump all remaining SVs (debugging aid)
135 sv_clean_objs() / do_clean_objs(),do_clean_named_objs(),
136 do_clean_named_io_objs()
137 Attempt to free all objects pointed to by RVs,
138 and try to do the same for all objects indirectly
139 referenced by typeglobs too. Called once from
140 perl_destruct(), prior to calling sv_clean_all()
143 sv_clean_all() / do_clean_all()
144 SvREFCNT_dec(sv) each remaining SV, possibly
145 triggering an sv_free(). It also sets the
146 SVf_BREAK flag on the SV to indicate that the
147 refcnt has been artificially lowered, and thus
148 stopping sv_free() from giving spurious warnings
149 about SVs which unexpectedly have a refcnt
150 of zero. called repeatedly from perl_destruct()
151 until there are no SVs left.
153 =head2 Arena allocator API Summary
155 Private API to rest of sv.c
159 new_XPVNV(), del_XPVGV(),
164 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
168 * ========================================================================= */
171 * "A time to plant, and a time to uproot what was planted..."
175 # define MEM_LOG_NEW_SV(sv, file, line, func) \
176 Perl_mem_log_new_sv(sv, file, line, func)
177 # define MEM_LOG_DEL_SV(sv, file, line, func) \
178 Perl_mem_log_del_sv(sv, file, line, func)
180 # define MEM_LOG_NEW_SV(sv, file, line, func) NOOP
181 # define MEM_LOG_DEL_SV(sv, file, line, func) NOOP
184 #ifdef DEBUG_LEAKING_SCALARS
185 # define FREE_SV_DEBUG_FILE(sv) Safefree((sv)->sv_debug_file)
186 # define DEBUG_SV_SERIAL(sv) \
187 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) del_SV\n", \
188 PTR2UV(sv), (long)(sv)->sv_debug_serial))
190 # define FREE_SV_DEBUG_FILE(sv)
191 # define DEBUG_SV_SERIAL(sv) NOOP
195 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
196 # define SvARENA_CHAIN_SET(sv,val) (sv)->sv_u.svu_rv = MUTABLE_SV((val))
197 /* Whilst I'd love to do this, it seems that things like to check on
199 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
201 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
202 PoisonNew(&SvREFCNT(sv), 1, U32)
204 # define SvARENA_CHAIN(sv) SvANY(sv)
205 # define SvARENA_CHAIN_SET(sv,val) SvANY(sv) = (void *)(val)
206 # define POSION_SV_HEAD(sv)
209 /* Mark an SV head as unused, and add to free list.
211 * If SVf_BREAK is set, skip adding it to the free list, as this SV had
212 * its refcount artificially decremented during global destruction, so
213 * there may be dangling pointers to it. The last thing we want in that
214 * case is for it to be reused. */
216 #define plant_SV(p) \
218 const U32 old_flags = SvFLAGS(p); \
219 MEM_LOG_DEL_SV(p, __FILE__, __LINE__, FUNCTION__); \
220 DEBUG_SV_SERIAL(p); \
221 FREE_SV_DEBUG_FILE(p); \
223 SvFLAGS(p) = SVTYPEMASK; \
224 if (!(old_flags & SVf_BREAK)) { \
225 SvARENA_CHAIN_SET(p, PL_sv_root); \
231 #define uproot_SV(p) \
234 PL_sv_root = MUTABLE_SV(SvARENA_CHAIN(p)); \
239 /* make some more SVs by adding another arena */
246 char *chunk; /* must use New here to match call to */
247 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
248 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
253 /* new_SV(): return a new, empty SV head */
255 #ifdef DEBUG_LEAKING_SCALARS
256 /* provide a real function for a debugger to play with */
258 S_new_SV(pTHX_ const char *file, int line, const char *func)
265 sv = S_more_sv(aTHX);
269 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
270 sv->sv_debug_line = (U16) (PL_parser && PL_parser->copline != NOLINE
276 sv->sv_debug_inpad = 0;
277 sv->sv_debug_parent = NULL;
278 sv->sv_debug_file = PL_curcop ? savepv(CopFILE(PL_curcop)): NULL;
280 sv->sv_debug_serial = PL_sv_serial++;
282 MEM_LOG_NEW_SV(sv, file, line, func);
283 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) new_SV (from %s:%d [%s])\n",
284 PTR2UV(sv), (long)sv->sv_debug_serial, file, line, func));
288 # define new_SV(p) (p)=S_new_SV(aTHX_ __FILE__, __LINE__, FUNCTION__)
296 (p) = S_more_sv(aTHX); \
300 MEM_LOG_NEW_SV(p, __FILE__, __LINE__, FUNCTION__); \
305 /* del_SV(): return an empty SV head to the free list */
318 S_del_sv(pTHX_ SV *p)
322 PERL_ARGS_ASSERT_DEL_SV;
327 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
328 const SV * const sv = sva + 1;
329 const SV * const svend = &sva[SvREFCNT(sva)];
330 if (p >= sv && p < svend) {
336 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
337 "Attempt to free non-arena SV: 0x%"UVxf
338 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
345 #else /* ! DEBUGGING */
347 #define del_SV(p) plant_SV(p)
349 #endif /* DEBUGGING */
353 =head1 SV Manipulation Functions
355 =for apidoc sv_add_arena
357 Given a chunk of memory, link it to the head of the list of arenas,
358 and split it into a list of free SVs.
364 S_sv_add_arena(pTHX_ char *const ptr, const U32 size, const U32 flags)
367 SV *const sva = MUTABLE_SV(ptr);
371 PERL_ARGS_ASSERT_SV_ADD_ARENA;
373 /* The first SV in an arena isn't an SV. */
374 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
375 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
376 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
378 PL_sv_arenaroot = sva;
379 PL_sv_root = sva + 1;
381 svend = &sva[SvREFCNT(sva) - 1];
384 SvARENA_CHAIN_SET(sv, (sv + 1));
388 /* Must always set typemask because it's always checked in on cleanup
389 when the arenas are walked looking for objects. */
390 SvFLAGS(sv) = SVTYPEMASK;
393 SvARENA_CHAIN_SET(sv, 0);
397 SvFLAGS(sv) = SVTYPEMASK;
400 /* visit(): call the named function for each non-free SV in the arenas
401 * whose flags field matches the flags/mask args. */
404 S_visit(pTHX_ SVFUNC_t f, const U32 flags, const U32 mask)
410 PERL_ARGS_ASSERT_VISIT;
412 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
413 register const SV * const svend = &sva[SvREFCNT(sva)];
415 for (sv = sva + 1; sv < svend; ++sv) {
416 if (SvTYPE(sv) != SVTYPEMASK
417 && (sv->sv_flags & mask) == flags
430 /* called by sv_report_used() for each live SV */
433 do_report_used(pTHX_ SV *const sv)
435 if (SvTYPE(sv) != SVTYPEMASK) {
436 PerlIO_printf(Perl_debug_log, "****\n");
443 =for apidoc sv_report_used
445 Dump the contents of all SVs not yet freed. (Debugging aid).
451 Perl_sv_report_used(pTHX)
454 visit(do_report_used, 0, 0);
460 /* called by sv_clean_objs() for each live SV */
463 do_clean_objs(pTHX_ SV *const ref)
468 SV * const target = SvRV(ref);
469 if (SvOBJECT(target)) {
470 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
471 if (SvWEAKREF(ref)) {
472 sv_del_backref(target, ref);
478 SvREFCNT_dec(target);
483 /* XXX Might want to check arrays, etc. */
487 /* clear any slots in a GV which hold objects - except IO;
488 * called by sv_clean_objs() for each live GV */
491 do_clean_named_objs(pTHX_ SV *const sv)
495 assert(SvTYPE(sv) == SVt_PVGV);
496 assert(isGV_with_GP(sv));
500 /* freeing GP entries may indirectly free the current GV;
501 * hold onto it while we mess with the GP slots */
504 if ( ((obj = GvSV(sv) )) && SvOBJECT(obj)) {
505 DEBUG_D((PerlIO_printf(Perl_debug_log,
506 "Cleaning named glob SV object:\n "), sv_dump(obj)));
510 if ( ((obj = MUTABLE_SV(GvAV(sv)) )) && SvOBJECT(obj)) {
511 DEBUG_D((PerlIO_printf(Perl_debug_log,
512 "Cleaning named glob AV object:\n "), sv_dump(obj)));
516 if ( ((obj = MUTABLE_SV(GvHV(sv)) )) && SvOBJECT(obj)) {
517 DEBUG_D((PerlIO_printf(Perl_debug_log,
518 "Cleaning named glob HV object:\n "), sv_dump(obj)));
522 if ( ((obj = MUTABLE_SV(GvCV(sv)) )) && SvOBJECT(obj)) {
523 DEBUG_D((PerlIO_printf(Perl_debug_log,
524 "Cleaning named glob CV object:\n "), sv_dump(obj)));
528 SvREFCNT_dec(sv); /* undo the inc above */
531 /* clear any IO slots in a GV which hold objects (except stderr, defout);
532 * called by sv_clean_objs() for each live GV */
535 do_clean_named_io_objs(pTHX_ SV *const sv)
539 assert(SvTYPE(sv) == SVt_PVGV);
540 assert(isGV_with_GP(sv));
541 if (!GvGP(sv) || sv == (SV*)PL_stderrgv || sv == (SV*)PL_defoutgv)
545 if ( ((obj = MUTABLE_SV(GvIO(sv)) )) && SvOBJECT(obj)) {
546 DEBUG_D((PerlIO_printf(Perl_debug_log,
547 "Cleaning named glob IO object:\n "), sv_dump(obj)));
551 SvREFCNT_dec(sv); /* undo the inc above */
554 /* Void wrapper to pass to visit() */
556 do_curse(pTHX_ SV * const sv) {
557 if ((PL_stderrgv && GvGP(PL_stderrgv) && (SV*)GvIO(PL_stderrgv) == sv)
558 || (PL_defoutgv && GvGP(PL_defoutgv) && (SV*)GvIO(PL_defoutgv) == sv))
564 =for apidoc sv_clean_objs
566 Attempt to destroy all objects not yet freed
572 Perl_sv_clean_objs(pTHX)
576 PL_in_clean_objs = TRUE;
577 visit(do_clean_objs, SVf_ROK, SVf_ROK);
578 /* Some barnacles may yet remain, clinging to typeglobs.
579 * Run the non-IO destructors first: they may want to output
580 * error messages, close files etc */
581 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
582 visit(do_clean_named_io_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
583 /* And if there are some very tenacious barnacles clinging to arrays,
584 closures, or what have you.... */
585 visit(do_curse, SVs_OBJECT, SVs_OBJECT);
586 olddef = PL_defoutgv;
587 PL_defoutgv = NULL; /* disable skip of PL_defoutgv */
588 if (olddef && isGV_with_GP(olddef))
589 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olddef));
590 olderr = PL_stderrgv;
591 PL_stderrgv = NULL; /* disable skip of PL_stderrgv */
592 if (olderr && isGV_with_GP(olderr))
593 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olderr));
594 SvREFCNT_dec(olddef);
595 PL_in_clean_objs = FALSE;
598 /* called by sv_clean_all() for each live SV */
601 do_clean_all(pTHX_ SV *const sv)
604 if (sv == (const SV *) PL_fdpid || sv == (const SV *)PL_strtab) {
605 /* don't clean pid table and strtab */
608 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
609 SvFLAGS(sv) |= SVf_BREAK;
614 =for apidoc sv_clean_all
616 Decrement the refcnt of each remaining SV, possibly triggering a
617 cleanup. This function may have to be called multiple times to free
618 SVs which are in complex self-referential hierarchies.
624 Perl_sv_clean_all(pTHX)
628 PL_in_clean_all = TRUE;
629 cleaned = visit(do_clean_all, 0,0);
634 ARENASETS: a meta-arena implementation which separates arena-info
635 into struct arena_set, which contains an array of struct
636 arena_descs, each holding info for a single arena. By separating
637 the meta-info from the arena, we recover the 1st slot, formerly
638 borrowed for list management. The arena_set is about the size of an
639 arena, avoiding the needless malloc overhead of a naive linked-list.
641 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
642 memory in the last arena-set (1/2 on average). In trade, we get
643 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
644 smaller types). The recovery of the wasted space allows use of
645 small arenas for large, rare body types, by changing array* fields
646 in body_details_by_type[] below.
649 char *arena; /* the raw storage, allocated aligned */
650 size_t size; /* its size ~4k typ */
651 svtype utype; /* bodytype stored in arena */
656 /* Get the maximum number of elements in set[] such that struct arena_set
657 will fit within PERL_ARENA_SIZE, which is probably just under 4K, and
658 therefore likely to be 1 aligned memory page. */
660 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
661 - 2 * sizeof(int)) / sizeof (struct arena_desc))
664 struct arena_set* next;
665 unsigned int set_size; /* ie ARENAS_PER_SET */
666 unsigned int curr; /* index of next available arena-desc */
667 struct arena_desc set[ARENAS_PER_SET];
671 =for apidoc sv_free_arenas
673 Deallocate the memory used by all arenas. Note that all the individual SV
674 heads and bodies within the arenas must already have been freed.
679 Perl_sv_free_arenas(pTHX)
686 /* Free arenas here, but be careful about fake ones. (We assume
687 contiguity of the fake ones with the corresponding real ones.) */
689 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
690 svanext = MUTABLE_SV(SvANY(sva));
691 while (svanext && SvFAKE(svanext))
692 svanext = MUTABLE_SV(SvANY(svanext));
699 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
702 struct arena_set *current = aroot;
705 assert(aroot->set[i].arena);
706 Safefree(aroot->set[i].arena);
714 i = PERL_ARENA_ROOTS_SIZE;
716 PL_body_roots[i] = 0;
723 Here are mid-level routines that manage the allocation of bodies out
724 of the various arenas. There are 5 kinds of arenas:
726 1. SV-head arenas, which are discussed and handled above
727 2. regular body arenas
728 3. arenas for reduced-size bodies
731 Arena types 2 & 3 are chained by body-type off an array of
732 arena-root pointers, which is indexed by svtype. Some of the
733 larger/less used body types are malloced singly, since a large
734 unused block of them is wasteful. Also, several svtypes dont have
735 bodies; the data fits into the sv-head itself. The arena-root
736 pointer thus has a few unused root-pointers (which may be hijacked
737 later for arena types 4,5)
739 3 differs from 2 as an optimization; some body types have several
740 unused fields in the front of the structure (which are kept in-place
741 for consistency). These bodies can be allocated in smaller chunks,
742 because the leading fields arent accessed. Pointers to such bodies
743 are decremented to point at the unused 'ghost' memory, knowing that
744 the pointers are used with offsets to the real memory.
747 =head1 SV-Body Allocation
749 Allocation of SV-bodies is similar to SV-heads, differing as follows;
750 the allocation mechanism is used for many body types, so is somewhat
751 more complicated, it uses arena-sets, and has no need for still-live
754 At the outermost level, (new|del)_X*V macros return bodies of the
755 appropriate type. These macros call either (new|del)_body_type or
756 (new|del)_body_allocated macro pairs, depending on specifics of the
757 type. Most body types use the former pair, the latter pair is used to
758 allocate body types with "ghost fields".
760 "ghost fields" are fields that are unused in certain types, and
761 consequently don't need to actually exist. They are declared because
762 they're part of a "base type", which allows use of functions as
763 methods. The simplest examples are AVs and HVs, 2 aggregate types
764 which don't use the fields which support SCALAR semantics.
766 For these types, the arenas are carved up into appropriately sized
767 chunks, we thus avoid wasted memory for those unaccessed members.
768 When bodies are allocated, we adjust the pointer back in memory by the
769 size of the part not allocated, so it's as if we allocated the full
770 structure. (But things will all go boom if you write to the part that
771 is "not there", because you'll be overwriting the last members of the
772 preceding structure in memory.)
774 We calculate the correction using the STRUCT_OFFSET macro on the first
775 member present. If the allocated structure is smaller (no initial NV
776 actually allocated) then the net effect is to subtract the size of the NV
777 from the pointer, to return a new pointer as if an initial NV were actually
778 allocated. (We were using structures named *_allocated for this, but
779 this turned out to be a subtle bug, because a structure without an NV
780 could have a lower alignment constraint, but the compiler is allowed to
781 optimised accesses based on the alignment constraint of the actual pointer
782 to the full structure, for example, using a single 64 bit load instruction
783 because it "knows" that two adjacent 32 bit members will be 8-byte aligned.)
785 This is the same trick as was used for NV and IV bodies. Ironically it
786 doesn't need to be used for NV bodies any more, because NV is now at
787 the start of the structure. IV bodies don't need it either, because
788 they are no longer allocated.
790 In turn, the new_body_* allocators call S_new_body(), which invokes
791 new_body_inline macro, which takes a lock, and takes a body off the
792 linked list at PL_body_roots[sv_type], calling Perl_more_bodies() if
793 necessary to refresh an empty list. Then the lock is released, and
794 the body is returned.
796 Perl_more_bodies allocates a new arena, and carves it up into an array of N
797 bodies, which it strings into a linked list. It looks up arena-size
798 and body-size from the body_details table described below, thus
799 supporting the multiple body-types.
801 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
802 the (new|del)_X*V macros are mapped directly to malloc/free.
804 For each sv-type, struct body_details bodies_by_type[] carries
805 parameters which control these aspects of SV handling:
807 Arena_size determines whether arenas are used for this body type, and if
808 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
809 zero, forcing individual mallocs and frees.
811 Body_size determines how big a body is, and therefore how many fit into
812 each arena. Offset carries the body-pointer adjustment needed for
813 "ghost fields", and is used in *_allocated macros.
815 But its main purpose is to parameterize info needed in
816 Perl_sv_upgrade(). The info here dramatically simplifies the function
817 vs the implementation in 5.8.8, making it table-driven. All fields
818 are used for this, except for arena_size.
820 For the sv-types that have no bodies, arenas are not used, so those
821 PL_body_roots[sv_type] are unused, and can be overloaded. In
822 something of a special case, SVt_NULL is borrowed for HE arenas;
823 PL_body_roots[HE_SVSLOT=SVt_NULL] is filled by S_more_he, but the
824 bodies_by_type[SVt_NULL] slot is not used, as the table is not
829 struct body_details {
830 U8 body_size; /* Size to allocate */
831 U8 copy; /* Size of structure to copy (may be shorter) */
833 unsigned int type : 4; /* We have space for a sanity check. */
834 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
835 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
836 unsigned int arena : 1; /* Allocated from an arena */
837 size_t arena_size; /* Size of arena to allocate */
845 /* With -DPURFIY we allocate everything directly, and don't use arenas.
846 This seems a rather elegant way to simplify some of the code below. */
847 #define HASARENA FALSE
849 #define HASARENA TRUE
851 #define NOARENA FALSE
853 /* Size the arenas to exactly fit a given number of bodies. A count
854 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
855 simplifying the default. If count > 0, the arena is sized to fit
856 only that many bodies, allowing arenas to be used for large, rare
857 bodies (XPVFM, XPVIO) without undue waste. The arena size is
858 limited by PERL_ARENA_SIZE, so we can safely oversize the
861 #define FIT_ARENA0(body_size) \
862 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
863 #define FIT_ARENAn(count,body_size) \
864 ( count * body_size <= PERL_ARENA_SIZE) \
865 ? count * body_size \
866 : FIT_ARENA0 (body_size)
867 #define FIT_ARENA(count,body_size) \
869 ? FIT_ARENAn (count, body_size) \
870 : FIT_ARENA0 (body_size)
872 /* Calculate the length to copy. Specifically work out the length less any
873 final padding the compiler needed to add. See the comment in sv_upgrade
874 for why copying the padding proved to be a bug. */
876 #define copy_length(type, last_member) \
877 STRUCT_OFFSET(type, last_member) \
878 + sizeof (((type*)SvANY((const SV *)0))->last_member)
880 static const struct body_details bodies_by_type[] = {
881 /* HEs use this offset for their arena. */
882 { 0, 0, 0, SVt_NULL, FALSE, NONV, NOARENA, 0 },
884 /* The bind placeholder pretends to be an RV for now.
885 Also it's marked as "can't upgrade" to stop anyone using it before it's
887 { 0, 0, 0, SVt_BIND, TRUE, NONV, NOARENA, 0 },
889 /* IVs are in the head, so the allocation size is 0. */
891 sizeof(IV), /* This is used to copy out the IV body. */
892 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
893 NOARENA /* IVS don't need an arena */, 0
896 /* 8 bytes on most ILP32 with IEEE doubles */
897 { sizeof(NV), sizeof(NV),
898 STRUCT_OFFSET(XPVNV, xnv_u),
899 SVt_NV, FALSE, HADNV, HASARENA, FIT_ARENA(0, sizeof(NV)) },
901 /* 8 bytes on most ILP32 with IEEE doubles */
902 { sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur),
903 copy_length(XPV, xpv_len) - STRUCT_OFFSET(XPV, xpv_cur),
904 + STRUCT_OFFSET(XPV, xpv_cur),
905 SVt_PV, FALSE, NONV, HASARENA,
906 FIT_ARENA(0, sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur)) },
909 { sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur),
910 copy_length(XPVIV, xiv_u) - STRUCT_OFFSET(XPV, xpv_cur),
911 + STRUCT_OFFSET(XPV, xpv_cur),
912 SVt_PVIV, FALSE, NONV, HASARENA,
913 FIT_ARENA(0, sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur)) },
916 { sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur),
917 copy_length(XPVNV, xnv_u) - STRUCT_OFFSET(XPV, xpv_cur),
918 + STRUCT_OFFSET(XPV, xpv_cur),
919 SVt_PVNV, FALSE, HADNV, HASARENA,
920 FIT_ARENA(0, sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur)) },
923 { sizeof(XPVMG), copy_length(XPVMG, xnv_u), 0, SVt_PVMG, FALSE, HADNV,
924 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
930 SVt_REGEXP, FALSE, NONV, HASARENA,
931 FIT_ARENA(0, sizeof(regexp))
935 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
936 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
939 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
940 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
943 copy_length(XPVAV, xav_alloc),
945 SVt_PVAV, TRUE, NONV, HASARENA,
946 FIT_ARENA(0, sizeof(XPVAV)) },
949 copy_length(XPVHV, xhv_max),
951 SVt_PVHV, TRUE, NONV, HASARENA,
952 FIT_ARENA(0, sizeof(XPVHV)) },
958 SVt_PVCV, TRUE, NONV, HASARENA,
959 FIT_ARENA(0, sizeof(XPVCV)) },
964 SVt_PVFM, TRUE, NONV, NOARENA,
965 FIT_ARENA(20, sizeof(XPVFM)) },
967 /* XPVIO is 84 bytes, fits 48x */
971 SVt_PVIO, TRUE, NONV, HASARENA,
972 FIT_ARENA(24, sizeof(XPVIO)) },
975 #define new_body_allocated(sv_type) \
976 (void *)((char *)S_new_body(aTHX_ sv_type) \
977 - bodies_by_type[sv_type].offset)
979 /* return a thing to the free list */
981 #define del_body(thing, root) \
983 void ** const thing_copy = (void **)thing; \
984 *thing_copy = *root; \
985 *root = (void*)thing_copy; \
990 #define new_XNV() safemalloc(sizeof(XPVNV))
991 #define new_XPVNV() safemalloc(sizeof(XPVNV))
992 #define new_XPVMG() safemalloc(sizeof(XPVMG))
994 #define del_XPVGV(p) safefree(p)
998 #define new_XNV() new_body_allocated(SVt_NV)
999 #define new_XPVNV() new_body_allocated(SVt_PVNV)
1000 #define new_XPVMG() new_body_allocated(SVt_PVMG)
1002 #define del_XPVGV(p) del_body(p + bodies_by_type[SVt_PVGV].offset, \
1003 &PL_body_roots[SVt_PVGV])
1007 /* no arena for you! */
1009 #define new_NOARENA(details) \
1010 safemalloc((details)->body_size + (details)->offset)
1011 #define new_NOARENAZ(details) \
1012 safecalloc((details)->body_size + (details)->offset, 1)
1015 Perl_more_bodies (pTHX_ const svtype sv_type, const size_t body_size,
1016 const size_t arena_size)
1019 void ** const root = &PL_body_roots[sv_type];
1020 struct arena_desc *adesc;
1021 struct arena_set *aroot = (struct arena_set *) PL_body_arenas;
1025 const size_t good_arena_size = Perl_malloc_good_size(arena_size);
1026 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1027 static bool done_sanity_check;
1029 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1030 * variables like done_sanity_check. */
1031 if (!done_sanity_check) {
1032 unsigned int i = SVt_LAST;
1034 done_sanity_check = TRUE;
1037 assert (bodies_by_type[i].type == i);
1043 /* may need new arena-set to hold new arena */
1044 if (!aroot || aroot->curr >= aroot->set_size) {
1045 struct arena_set *newroot;
1046 Newxz(newroot, 1, struct arena_set);
1047 newroot->set_size = ARENAS_PER_SET;
1048 newroot->next = aroot;
1050 PL_body_arenas = (void *) newroot;
1051 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
1054 /* ok, now have arena-set with at least 1 empty/available arena-desc */
1055 curr = aroot->curr++;
1056 adesc = &(aroot->set[curr]);
1057 assert(!adesc->arena);
1059 Newx(adesc->arena, good_arena_size, char);
1060 adesc->size = good_arena_size;
1061 adesc->utype = sv_type;
1062 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %"UVuf"\n",
1063 curr, (void*)adesc->arena, (UV)good_arena_size));
1065 start = (char *) adesc->arena;
1067 /* Get the address of the byte after the end of the last body we can fit.
1068 Remember, this is integer division: */
1069 end = start + good_arena_size / body_size * body_size;
1071 /* computed count doesn't reflect the 1st slot reservation */
1072 #if defined(MYMALLOC) || defined(HAS_MALLOC_GOOD_SIZE)
1073 DEBUG_m(PerlIO_printf(Perl_debug_log,
1074 "arena %p end %p arena-size %d (from %d) type %d "
1076 (void*)start, (void*)end, (int)good_arena_size,
1077 (int)arena_size, sv_type, (int)body_size,
1078 (int)good_arena_size / (int)body_size));
1080 DEBUG_m(PerlIO_printf(Perl_debug_log,
1081 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1082 (void*)start, (void*)end,
1083 (int)arena_size, sv_type, (int)body_size,
1084 (int)good_arena_size / (int)body_size));
1086 *root = (void *)start;
1089 /* Where the next body would start: */
1090 char * const next = start + body_size;
1093 /* This is the last body: */
1094 assert(next == end);
1096 *(void **)start = 0;
1100 *(void**) start = (void *)next;
1105 /* grab a new thing from the free list, allocating more if necessary.
1106 The inline version is used for speed in hot routines, and the
1107 function using it serves the rest (unless PURIFY).
1109 #define new_body_inline(xpv, sv_type) \
1111 void ** const r3wt = &PL_body_roots[sv_type]; \
1112 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1113 ? *((void **)(r3wt)) : Perl_more_bodies(aTHX_ sv_type, \
1114 bodies_by_type[sv_type].body_size,\
1115 bodies_by_type[sv_type].arena_size)); \
1116 *(r3wt) = *(void**)(xpv); \
1122 S_new_body(pTHX_ const svtype sv_type)
1126 new_body_inline(xpv, sv_type);
1132 static const struct body_details fake_rv =
1133 { 0, 0, 0, SVt_IV, FALSE, NONV, NOARENA, 0 };
1136 =for apidoc sv_upgrade
1138 Upgrade an SV to a more complex form. Generally adds a new body type to the
1139 SV, then copies across as much information as possible from the old body.
1140 You generally want to use the C<SvUPGRADE> macro wrapper. See also C<svtype>.
1146 Perl_sv_upgrade(pTHX_ register SV *const sv, svtype new_type)
1151 const svtype old_type = SvTYPE(sv);
1152 const struct body_details *new_type_details;
1153 const struct body_details *old_type_details
1154 = bodies_by_type + old_type;
1155 SV *referant = NULL;
1157 PERL_ARGS_ASSERT_SV_UPGRADE;
1159 if (old_type == new_type)
1162 /* This clause was purposefully added ahead of the early return above to
1163 the shared string hackery for (sort {$a <=> $b} keys %hash), with the
1164 inference by Nick I-S that it would fix other troublesome cases. See
1165 changes 7162, 7163 (f130fd4589cf5fbb24149cd4db4137c8326f49c1 and parent)
1167 Given that shared hash key scalars are no longer PVIV, but PV, there is
1168 no longer need to unshare so as to free up the IVX slot for its proper
1169 purpose. So it's safe to move the early return earlier. */
1171 if (new_type != SVt_PV && SvIsCOW(sv)) {
1172 sv_force_normal_flags(sv, 0);
1175 old_body = SvANY(sv);
1177 /* Copying structures onto other structures that have been neatly zeroed
1178 has a subtle gotcha. Consider XPVMG
1180 +------+------+------+------+------+-------+-------+
1181 | NV | CUR | LEN | IV | MAGIC | STASH |
1182 +------+------+------+------+------+-------+-------+
1183 0 4 8 12 16 20 24 28
1185 where NVs are aligned to 8 bytes, so that sizeof that structure is
1186 actually 32 bytes long, with 4 bytes of padding at the end:
1188 +------+------+------+------+------+-------+-------+------+
1189 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1190 +------+------+------+------+------+-------+-------+------+
1191 0 4 8 12 16 20 24 28 32
1193 so what happens if you allocate memory for this structure:
1195 +------+------+------+------+------+-------+-------+------+------+...
1196 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1197 +------+------+------+------+------+-------+-------+------+------+...
1198 0 4 8 12 16 20 24 28 32 36
1200 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1201 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1202 started out as zero once, but it's quite possible that it isn't. So now,
1203 rather than a nicely zeroed GP, you have it pointing somewhere random.
1206 (In fact, GP ends up pointing at a previous GP structure, because the
1207 principle cause of the padding in XPVMG getting garbage is a copy of
1208 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1209 this happens to be moot because XPVGV has been re-ordered, with GP
1210 no longer after STASH)
1212 So we are careful and work out the size of used parts of all the
1220 referant = SvRV(sv);
1221 old_type_details = &fake_rv;
1222 if (new_type == SVt_NV)
1223 new_type = SVt_PVNV;
1225 if (new_type < SVt_PVIV) {
1226 new_type = (new_type == SVt_NV)
1227 ? SVt_PVNV : SVt_PVIV;
1232 if (new_type < SVt_PVNV) {
1233 new_type = SVt_PVNV;
1237 assert(new_type > SVt_PV);
1238 assert(SVt_IV < SVt_PV);
1239 assert(SVt_NV < SVt_PV);
1246 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1247 there's no way that it can be safely upgraded, because perl.c
1248 expects to Safefree(SvANY(PL_mess_sv)) */
1249 assert(sv != PL_mess_sv);
1250 /* This flag bit is used to mean other things in other scalar types.
1251 Given that it only has meaning inside the pad, it shouldn't be set
1252 on anything that can get upgraded. */
1253 assert(!SvPAD_TYPED(sv));
1256 if (old_type_details->cant_upgrade)
1257 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1258 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1261 if (old_type > new_type)
1262 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1263 (int)old_type, (int)new_type);
1265 new_type_details = bodies_by_type + new_type;
1267 SvFLAGS(sv) &= ~SVTYPEMASK;
1268 SvFLAGS(sv) |= new_type;
1270 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1271 the return statements above will have triggered. */
1272 assert (new_type != SVt_NULL);
1275 assert(old_type == SVt_NULL);
1276 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1280 assert(old_type == SVt_NULL);
1281 SvANY(sv) = new_XNV();
1286 assert(new_type_details->body_size);
1289 assert(new_type_details->arena);
1290 assert(new_type_details->arena_size);
1291 /* This points to the start of the allocated area. */
1292 new_body_inline(new_body, new_type);
1293 Zero(new_body, new_type_details->body_size, char);
1294 new_body = ((char *)new_body) - new_type_details->offset;
1296 /* We always allocated the full length item with PURIFY. To do this
1297 we fake things so that arena is false for all 16 types.. */
1298 new_body = new_NOARENAZ(new_type_details);
1300 SvANY(sv) = new_body;
1301 if (new_type == SVt_PVAV) {
1305 if (old_type_details->body_size) {
1308 /* It will have been zeroed when the new body was allocated.
1309 Lets not write to it, in case it confuses a write-back
1315 #ifndef NODEFAULT_SHAREKEYS
1316 HvSHAREKEYS_on(sv); /* key-sharing on by default */
1318 HvMAX(sv) = 7; /* (start with 8 buckets) */
1321 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1322 The target created by newSVrv also is, and it can have magic.
1323 However, it never has SvPVX set.
1325 if (old_type == SVt_IV) {
1327 } else if (old_type >= SVt_PV) {
1328 assert(SvPVX_const(sv) == 0);
1331 if (old_type >= SVt_PVMG) {
1332 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1333 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1335 sv->sv_u.svu_array = NULL; /* or svu_hash */
1341 /* This ensures that SvTHINKFIRST(sv) is true, and hence that
1342 sv_force_normal_flags(sv) is called. */
1345 /* XXX Is this still needed? Was it ever needed? Surely as there is
1346 no route from NV to PVIV, NOK can never be true */
1347 assert(!SvNOKp(sv));
1358 assert(new_type_details->body_size);
1359 /* We always allocated the full length item with PURIFY. To do this
1360 we fake things so that arena is false for all 16 types.. */
1361 if(new_type_details->arena) {
1362 /* This points to the start of the allocated area. */
1363 new_body_inline(new_body, new_type);
1364 Zero(new_body, new_type_details->body_size, char);
1365 new_body = ((char *)new_body) - new_type_details->offset;
1367 new_body = new_NOARENAZ(new_type_details);
1369 SvANY(sv) = new_body;
1371 if (old_type_details->copy) {
1372 /* There is now the potential for an upgrade from something without
1373 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1374 int offset = old_type_details->offset;
1375 int length = old_type_details->copy;
1377 if (new_type_details->offset > old_type_details->offset) {
1378 const int difference
1379 = new_type_details->offset - old_type_details->offset;
1380 offset += difference;
1381 length -= difference;
1383 assert (length >= 0);
1385 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1389 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1390 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1391 * correct 0.0 for us. Otherwise, if the old body didn't have an
1392 * NV slot, but the new one does, then we need to initialise the
1393 * freshly created NV slot with whatever the correct bit pattern is
1395 if (old_type_details->zero_nv && !new_type_details->zero_nv
1396 && !isGV_with_GP(sv))
1400 if (new_type == SVt_PVIO) {
1401 IO * const io = MUTABLE_IO(sv);
1402 GV *iogv = gv_fetchpvs("IO::File::", GV_ADD, SVt_PVHV);
1405 /* Clear the stashcache because a new IO could overrule a package
1407 hv_clear(PL_stashcache);
1409 SvSTASH_set(io, MUTABLE_HV(SvREFCNT_inc(GvHV(iogv))));
1410 IoPAGE_LEN(sv) = 60;
1412 if (old_type < SVt_PV) {
1413 /* referant will be NULL unless the old type was SVt_IV emulating
1415 sv->sv_u.svu_rv = referant;
1419 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1420 (unsigned long)new_type);
1423 if (old_type > SVt_IV) {
1427 /* Note that there is an assumption that all bodies of types that
1428 can be upgraded came from arenas. Only the more complex non-
1429 upgradable types are allowed to be directly malloc()ed. */
1430 assert(old_type_details->arena);
1431 del_body((void*)((char*)old_body + old_type_details->offset),
1432 &PL_body_roots[old_type]);
1438 =for apidoc sv_backoff
1440 Remove any string offset. You should normally use the C<SvOOK_off> macro
1447 Perl_sv_backoff(pTHX_ register SV *const sv)
1450 const char * const s = SvPVX_const(sv);
1452 PERL_ARGS_ASSERT_SV_BACKOFF;
1453 PERL_UNUSED_CONTEXT;
1456 assert(SvTYPE(sv) != SVt_PVHV);
1457 assert(SvTYPE(sv) != SVt_PVAV);
1459 SvOOK_offset(sv, delta);
1461 SvLEN_set(sv, SvLEN(sv) + delta);
1462 SvPV_set(sv, SvPVX(sv) - delta);
1463 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1464 SvFLAGS(sv) &= ~SVf_OOK;
1471 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1472 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1473 Use the C<SvGROW> wrapper instead.
1479 Perl_sv_grow(pTHX_ register SV *const sv, register STRLEN newlen)
1483 PERL_ARGS_ASSERT_SV_GROW;
1485 if (PL_madskills && newlen >= 0x100000) {
1486 PerlIO_printf(Perl_debug_log,
1487 "Allocation too large: %"UVxf"\n", (UV)newlen);
1489 #ifdef HAS_64K_LIMIT
1490 if (newlen >= 0x10000) {
1491 PerlIO_printf(Perl_debug_log,
1492 "Allocation too large: %"UVxf"\n", (UV)newlen);
1495 #endif /* HAS_64K_LIMIT */
1498 if (SvTYPE(sv) < SVt_PV) {
1499 sv_upgrade(sv, SVt_PV);
1500 s = SvPVX_mutable(sv);
1502 else if (SvOOK(sv)) { /* pv is offset? */
1504 s = SvPVX_mutable(sv);
1505 if (newlen > SvLEN(sv))
1506 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1507 #ifdef HAS_64K_LIMIT
1508 if (newlen >= 0x10000)
1513 s = SvPVX_mutable(sv);
1515 if (newlen > SvLEN(sv)) { /* need more room? */
1516 STRLEN minlen = SvCUR(sv);
1517 minlen += (minlen >> PERL_STRLEN_EXPAND_SHIFT) + 10;
1518 if (newlen < minlen)
1520 #ifndef Perl_safesysmalloc_size
1521 newlen = PERL_STRLEN_ROUNDUP(newlen);
1523 if (SvLEN(sv) && s) {
1524 s = (char*)saferealloc(s, newlen);
1527 s = (char*)safemalloc(newlen);
1528 if (SvPVX_const(sv) && SvCUR(sv)) {
1529 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1533 #ifdef Perl_safesysmalloc_size
1534 /* Do this here, do it once, do it right, and then we will never get
1535 called back into sv_grow() unless there really is some growing
1537 SvLEN_set(sv, Perl_safesysmalloc_size(s));
1539 SvLEN_set(sv, newlen);
1546 =for apidoc sv_setiv
1548 Copies an integer into the given SV, upgrading first if necessary.
1549 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1555 Perl_sv_setiv(pTHX_ register SV *const sv, const IV i)
1559 PERL_ARGS_ASSERT_SV_SETIV;
1561 SV_CHECK_THINKFIRST_COW_DROP(sv);
1562 switch (SvTYPE(sv)) {
1565 sv_upgrade(sv, SVt_IV);
1568 sv_upgrade(sv, SVt_PVIV);
1572 if (!isGV_with_GP(sv))
1579 /* diag_listed_as: Can't coerce %s to %s in %s */
1580 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1584 (void)SvIOK_only(sv); /* validate number */
1590 =for apidoc sv_setiv_mg
1592 Like C<sv_setiv>, but also handles 'set' magic.
1598 Perl_sv_setiv_mg(pTHX_ register SV *const sv, const IV i)
1600 PERL_ARGS_ASSERT_SV_SETIV_MG;
1607 =for apidoc sv_setuv
1609 Copies an unsigned integer into the given SV, upgrading first if necessary.
1610 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1616 Perl_sv_setuv(pTHX_ register SV *const sv, const UV u)
1618 PERL_ARGS_ASSERT_SV_SETUV;
1620 /* With these two if statements:
1621 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1624 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1626 If you wish to remove them, please benchmark to see what the effect is
1628 if (u <= (UV)IV_MAX) {
1629 sv_setiv(sv, (IV)u);
1638 =for apidoc sv_setuv_mg
1640 Like C<sv_setuv>, but also handles 'set' magic.
1646 Perl_sv_setuv_mg(pTHX_ register SV *const sv, const UV u)
1648 PERL_ARGS_ASSERT_SV_SETUV_MG;
1655 =for apidoc sv_setnv
1657 Copies a double into the given SV, upgrading first if necessary.
1658 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1664 Perl_sv_setnv(pTHX_ register SV *const sv, const NV num)
1668 PERL_ARGS_ASSERT_SV_SETNV;
1670 SV_CHECK_THINKFIRST_COW_DROP(sv);
1671 switch (SvTYPE(sv)) {
1674 sv_upgrade(sv, SVt_NV);
1678 sv_upgrade(sv, SVt_PVNV);
1682 if (!isGV_with_GP(sv))
1689 /* diag_listed_as: Can't coerce %s to %s in %s */
1690 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1695 (void)SvNOK_only(sv); /* validate number */
1700 =for apidoc sv_setnv_mg
1702 Like C<sv_setnv>, but also handles 'set' magic.
1708 Perl_sv_setnv_mg(pTHX_ register SV *const sv, const NV num)
1710 PERL_ARGS_ASSERT_SV_SETNV_MG;
1716 /* Print an "isn't numeric" warning, using a cleaned-up,
1717 * printable version of the offending string
1721 S_not_a_number(pTHX_ SV *const sv)
1728 PERL_ARGS_ASSERT_NOT_A_NUMBER;
1731 dsv = newSVpvs_flags("", SVs_TEMP);
1732 pv = sv_uni_display(dsv, sv, 10, 0);
1735 const char * const limit = tmpbuf + sizeof(tmpbuf) - 8;
1736 /* each *s can expand to 4 chars + "...\0",
1737 i.e. need room for 8 chars */
1739 const char *s = SvPVX_const(sv);
1740 const char * const end = s + SvCUR(sv);
1741 for ( ; s < end && d < limit; s++ ) {
1743 if (ch & 128 && !isPRINT_LC(ch)) {
1752 else if (ch == '\r') {
1756 else if (ch == '\f') {
1760 else if (ch == '\\') {
1764 else if (ch == '\0') {
1768 else if (isPRINT_LC(ch))
1785 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1786 "Argument \"%s\" isn't numeric in %s", pv,
1789 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1790 "Argument \"%s\" isn't numeric", pv);
1794 =for apidoc looks_like_number
1796 Test if the content of an SV looks like a number (or is a number).
1797 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1798 non-numeric warning), even if your atof() doesn't grok them.
1804 Perl_looks_like_number(pTHX_ SV *const sv)
1806 register const char *sbegin;
1809 PERL_ARGS_ASSERT_LOOKS_LIKE_NUMBER;
1812 sbegin = SvPVX_const(sv);
1815 else if (SvPOKp(sv))
1816 sbegin = SvPV_const(sv, len);
1818 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1819 return grok_number(sbegin, len, NULL);
1823 S_glob_2number(pTHX_ GV * const gv)
1825 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1826 SV *const buffer = sv_newmortal();
1828 PERL_ARGS_ASSERT_GLOB_2NUMBER;
1830 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1833 gv_efullname3(buffer, gv, "*");
1834 SvFLAGS(gv) |= wasfake;
1836 /* We know that all GVs stringify to something that is not-a-number,
1837 so no need to test that. */
1838 if (ckWARN(WARN_NUMERIC))
1839 not_a_number(buffer);
1840 /* We just want something true to return, so that S_sv_2iuv_common
1841 can tail call us and return true. */
1845 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1846 until proven guilty, assume that things are not that bad... */
1851 As 64 bit platforms often have an NV that doesn't preserve all bits of
1852 an IV (an assumption perl has been based on to date) it becomes necessary
1853 to remove the assumption that the NV always carries enough precision to
1854 recreate the IV whenever needed, and that the NV is the canonical form.
1855 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1856 precision as a side effect of conversion (which would lead to insanity
1857 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1858 1) to distinguish between IV/UV/NV slots that have cached a valid
1859 conversion where precision was lost and IV/UV/NV slots that have a
1860 valid conversion which has lost no precision
1861 2) to ensure that if a numeric conversion to one form is requested that
1862 would lose precision, the precise conversion (or differently
1863 imprecise conversion) is also performed and cached, to prevent
1864 requests for different numeric formats on the same SV causing
1865 lossy conversion chains. (lossless conversion chains are perfectly
1870 SvIOKp is true if the IV slot contains a valid value
1871 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1872 SvNOKp is true if the NV slot contains a valid value
1873 SvNOK is true only if the NV value is accurate
1876 while converting from PV to NV, check to see if converting that NV to an
1877 IV(or UV) would lose accuracy over a direct conversion from PV to
1878 IV(or UV). If it would, cache both conversions, return NV, but mark
1879 SV as IOK NOKp (ie not NOK).
1881 While converting from PV to IV, check to see if converting that IV to an
1882 NV would lose accuracy over a direct conversion from PV to NV. If it
1883 would, cache both conversions, flag similarly.
1885 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1886 correctly because if IV & NV were set NV *always* overruled.
1887 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1888 changes - now IV and NV together means that the two are interchangeable:
1889 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1891 The benefit of this is that operations such as pp_add know that if
1892 SvIOK is true for both left and right operands, then integer addition
1893 can be used instead of floating point (for cases where the result won't
1894 overflow). Before, floating point was always used, which could lead to
1895 loss of precision compared with integer addition.
1897 * making IV and NV equal status should make maths accurate on 64 bit
1899 * may speed up maths somewhat if pp_add and friends start to use
1900 integers when possible instead of fp. (Hopefully the overhead in
1901 looking for SvIOK and checking for overflow will not outweigh the
1902 fp to integer speedup)
1903 * will slow down integer operations (callers of SvIV) on "inaccurate"
1904 values, as the change from SvIOK to SvIOKp will cause a call into
1905 sv_2iv each time rather than a macro access direct to the IV slot
1906 * should speed up number->string conversion on integers as IV is
1907 favoured when IV and NV are equally accurate
1909 ####################################################################
1910 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1911 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1912 On the other hand, SvUOK is true iff UV.
1913 ####################################################################
1915 Your mileage will vary depending your CPU's relative fp to integer
1919 #ifndef NV_PRESERVES_UV
1920 # define IS_NUMBER_UNDERFLOW_IV 1
1921 # define IS_NUMBER_UNDERFLOW_UV 2
1922 # define IS_NUMBER_IV_AND_UV 2
1923 # define IS_NUMBER_OVERFLOW_IV 4
1924 # define IS_NUMBER_OVERFLOW_UV 5
1926 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1928 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1930 S_sv_2iuv_non_preserve(pTHX_ register SV *const sv
1938 PERL_ARGS_ASSERT_SV_2IUV_NON_PRESERVE;
1940 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1941 if (SvNVX(sv) < (NV)IV_MIN) {
1942 (void)SvIOKp_on(sv);
1944 SvIV_set(sv, IV_MIN);
1945 return IS_NUMBER_UNDERFLOW_IV;
1947 if (SvNVX(sv) > (NV)UV_MAX) {
1948 (void)SvIOKp_on(sv);
1951 SvUV_set(sv, UV_MAX);
1952 return IS_NUMBER_OVERFLOW_UV;
1954 (void)SvIOKp_on(sv);
1956 /* Can't use strtol etc to convert this string. (See truth table in
1958 if (SvNVX(sv) <= (UV)IV_MAX) {
1959 SvIV_set(sv, I_V(SvNVX(sv)));
1960 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1961 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1963 /* Integer is imprecise. NOK, IOKp */
1965 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
1968 SvUV_set(sv, U_V(SvNVX(sv)));
1969 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
1970 if (SvUVX(sv) == UV_MAX) {
1971 /* As we know that NVs don't preserve UVs, UV_MAX cannot
1972 possibly be preserved by NV. Hence, it must be overflow.
1974 return IS_NUMBER_OVERFLOW_UV;
1976 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
1978 /* Integer is imprecise. NOK, IOKp */
1980 return IS_NUMBER_OVERFLOW_IV;
1982 #endif /* !NV_PRESERVES_UV*/
1985 S_sv_2iuv_common(pTHX_ SV *const sv)
1989 PERL_ARGS_ASSERT_SV_2IUV_COMMON;
1992 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
1993 * without also getting a cached IV/UV from it at the same time
1994 * (ie PV->NV conversion should detect loss of accuracy and cache
1995 * IV or UV at same time to avoid this. */
1996 /* IV-over-UV optimisation - choose to cache IV if possible */
1998 if (SvTYPE(sv) == SVt_NV)
1999 sv_upgrade(sv, SVt_PVNV);
2001 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
2002 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
2003 certainly cast into the IV range at IV_MAX, whereas the correct
2004 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
2006 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
2007 if (Perl_isnan(SvNVX(sv))) {
2013 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2014 SvIV_set(sv, I_V(SvNVX(sv)));
2015 if (SvNVX(sv) == (NV) SvIVX(sv)
2016 #ifndef NV_PRESERVES_UV
2017 && (((UV)1 << NV_PRESERVES_UV_BITS) >
2018 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
2019 /* Don't flag it as "accurately an integer" if the number
2020 came from a (by definition imprecise) NV operation, and
2021 we're outside the range of NV integer precision */
2025 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
2027 /* scalar has trailing garbage, eg "42a" */
2029 DEBUG_c(PerlIO_printf(Perl_debug_log,
2030 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
2036 /* IV not precise. No need to convert from PV, as NV
2037 conversion would already have cached IV if it detected
2038 that PV->IV would be better than PV->NV->IV
2039 flags already correct - don't set public IOK. */
2040 DEBUG_c(PerlIO_printf(Perl_debug_log,
2041 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
2046 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
2047 but the cast (NV)IV_MIN rounds to a the value less (more
2048 negative) than IV_MIN which happens to be equal to SvNVX ??
2049 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
2050 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
2051 (NV)UVX == NVX are both true, but the values differ. :-(
2052 Hopefully for 2s complement IV_MIN is something like
2053 0x8000000000000000 which will be exact. NWC */
2056 SvUV_set(sv, U_V(SvNVX(sv)));
2058 (SvNVX(sv) == (NV) SvUVX(sv))
2059 #ifndef NV_PRESERVES_UV
2060 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
2061 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
2062 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
2063 /* Don't flag it as "accurately an integer" if the number
2064 came from a (by definition imprecise) NV operation, and
2065 we're outside the range of NV integer precision */
2071 DEBUG_c(PerlIO_printf(Perl_debug_log,
2072 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
2078 else if (SvPOKp(sv) && SvLEN(sv)) {
2080 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2081 /* We want to avoid a possible problem when we cache an IV/ a UV which
2082 may be later translated to an NV, and the resulting NV is not
2083 the same as the direct translation of the initial string
2084 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
2085 be careful to ensure that the value with the .456 is around if the
2086 NV value is requested in the future).
2088 This means that if we cache such an IV/a UV, we need to cache the
2089 NV as well. Moreover, we trade speed for space, and do not
2090 cache the NV if we are sure it's not needed.
2093 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
2094 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2095 == IS_NUMBER_IN_UV) {
2096 /* It's definitely an integer, only upgrade to PVIV */
2097 if (SvTYPE(sv) < SVt_PVIV)
2098 sv_upgrade(sv, SVt_PVIV);
2100 } else if (SvTYPE(sv) < SVt_PVNV)
2101 sv_upgrade(sv, SVt_PVNV);
2103 /* If NVs preserve UVs then we only use the UV value if we know that
2104 we aren't going to call atof() below. If NVs don't preserve UVs
2105 then the value returned may have more precision than atof() will
2106 return, even though value isn't perfectly accurate. */
2107 if ((numtype & (IS_NUMBER_IN_UV
2108 #ifdef NV_PRESERVES_UV
2111 )) == IS_NUMBER_IN_UV) {
2112 /* This won't turn off the public IOK flag if it was set above */
2113 (void)SvIOKp_on(sv);
2115 if (!(numtype & IS_NUMBER_NEG)) {
2117 if (value <= (UV)IV_MAX) {
2118 SvIV_set(sv, (IV)value);
2120 /* it didn't overflow, and it was positive. */
2121 SvUV_set(sv, value);
2125 /* 2s complement assumption */
2126 if (value <= (UV)IV_MIN) {
2127 SvIV_set(sv, -(IV)value);
2129 /* Too negative for an IV. This is a double upgrade, but
2130 I'm assuming it will be rare. */
2131 if (SvTYPE(sv) < SVt_PVNV)
2132 sv_upgrade(sv, SVt_PVNV);
2136 SvNV_set(sv, -(NV)value);
2137 SvIV_set(sv, IV_MIN);
2141 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2142 will be in the previous block to set the IV slot, and the next
2143 block to set the NV slot. So no else here. */
2145 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2146 != IS_NUMBER_IN_UV) {
2147 /* It wasn't an (integer that doesn't overflow the UV). */
2148 SvNV_set(sv, Atof(SvPVX_const(sv)));
2150 if (! numtype && ckWARN(WARN_NUMERIC))
2153 #if defined(USE_LONG_DOUBLE)
2154 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2155 PTR2UV(sv), SvNVX(sv)));
2157 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2158 PTR2UV(sv), SvNVX(sv)));
2161 #ifdef NV_PRESERVES_UV
2162 (void)SvIOKp_on(sv);
2164 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2165 SvIV_set(sv, I_V(SvNVX(sv)));
2166 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2169 NOOP; /* Integer is imprecise. NOK, IOKp */
2171 /* UV will not work better than IV */
2173 if (SvNVX(sv) > (NV)UV_MAX) {
2175 /* Integer is inaccurate. NOK, IOKp, is UV */
2176 SvUV_set(sv, UV_MAX);
2178 SvUV_set(sv, U_V(SvNVX(sv)));
2179 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2180 NV preservse UV so can do correct comparison. */
2181 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2184 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2189 #else /* NV_PRESERVES_UV */
2190 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2191 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2192 /* The IV/UV slot will have been set from value returned by
2193 grok_number above. The NV slot has just been set using
2196 assert (SvIOKp(sv));
2198 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2199 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2200 /* Small enough to preserve all bits. */
2201 (void)SvIOKp_on(sv);
2203 SvIV_set(sv, I_V(SvNVX(sv)));
2204 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2206 /* Assumption: first non-preserved integer is < IV_MAX,
2207 this NV is in the preserved range, therefore: */
2208 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2210 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2214 0 0 already failed to read UV.
2215 0 1 already failed to read UV.
2216 1 0 you won't get here in this case. IV/UV
2217 slot set, public IOK, Atof() unneeded.
2218 1 1 already read UV.
2219 so there's no point in sv_2iuv_non_preserve() attempting
2220 to use atol, strtol, strtoul etc. */
2222 sv_2iuv_non_preserve (sv, numtype);
2224 sv_2iuv_non_preserve (sv);
2228 #endif /* NV_PRESERVES_UV */
2229 /* It might be more code efficient to go through the entire logic above
2230 and conditionally set with SvIOKp_on() rather than SvIOK(), but it
2231 gets complex and potentially buggy, so more programmer efficient
2232 to do it this way, by turning off the public flags: */
2234 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2238 if (isGV_with_GP(sv))
2239 return glob_2number(MUTABLE_GV(sv));
2241 if (!(SvFLAGS(sv) & SVs_PADTMP)) {
2242 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2245 if (SvTYPE(sv) < SVt_IV)
2246 /* Typically the caller expects that sv_any is not NULL now. */
2247 sv_upgrade(sv, SVt_IV);
2248 /* Return 0 from the caller. */
2255 =for apidoc sv_2iv_flags
2257 Return the integer value of an SV, doing any necessary string
2258 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2259 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2265 Perl_sv_2iv_flags(pTHX_ register SV *const sv, const I32 flags)
2270 if (SvGMAGICAL(sv) || SvVALID(sv)) {
2271 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2272 the same flag bit as SVf_IVisUV, so must not let them cache IVs.
2273 In practice they are extremely unlikely to actually get anywhere
2274 accessible by user Perl code - the only way that I'm aware of is when
2275 a constant subroutine which is used as the second argument to index.
2277 if (flags & SV_GMAGIC)
2282 return I_V(SvNVX(sv));
2284 if (SvPOKp(sv) && SvLEN(sv)) {
2287 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2289 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2290 == IS_NUMBER_IN_UV) {
2291 /* It's definitely an integer */
2292 if (numtype & IS_NUMBER_NEG) {
2293 if (value < (UV)IV_MIN)
2296 if (value < (UV)IV_MAX)
2301 if (ckWARN(WARN_NUMERIC))
2304 return I_V(Atof(SvPVX_const(sv)));
2309 assert(SvTYPE(sv) >= SVt_PVMG);
2310 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2311 } else if (SvTHINKFIRST(sv)) {
2316 if (flags & SV_SKIP_OVERLOAD)
2318 tmpstr = AMG_CALLunary(sv, numer_amg);
2319 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2320 return SvIV(tmpstr);
2323 return PTR2IV(SvRV(sv));
2326 sv_force_normal_flags(sv, 0);
2328 if (SvREADONLY(sv) && !SvOK(sv)) {
2329 if (ckWARN(WARN_UNINITIALIZED))
2335 if (S_sv_2iuv_common(aTHX_ sv))
2338 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2339 PTR2UV(sv),SvIVX(sv)));
2340 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2344 =for apidoc sv_2uv_flags
2346 Return the unsigned integer value of an SV, doing any necessary string
2347 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2348 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2354 Perl_sv_2uv_flags(pTHX_ register SV *const sv, const I32 flags)
2359 if (SvGMAGICAL(sv) || SvVALID(sv)) {
2360 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2361 the same flag bit as SVf_IVisUV, so must not let them cache IVs. */
2362 if (flags & SV_GMAGIC)
2367 return U_V(SvNVX(sv));
2368 if (SvPOKp(sv) && SvLEN(sv)) {
2371 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2373 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2374 == IS_NUMBER_IN_UV) {
2375 /* It's definitely an integer */
2376 if (!(numtype & IS_NUMBER_NEG))
2380 if (ckWARN(WARN_NUMERIC))
2383 return U_V(Atof(SvPVX_const(sv)));
2388 assert(SvTYPE(sv) >= SVt_PVMG);
2389 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2390 } else if (SvTHINKFIRST(sv)) {
2395 if (flags & SV_SKIP_OVERLOAD)
2397 tmpstr = AMG_CALLunary(sv, numer_amg);
2398 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2399 return SvUV(tmpstr);
2402 return PTR2UV(SvRV(sv));
2405 sv_force_normal_flags(sv, 0);
2407 if (SvREADONLY(sv) && !SvOK(sv)) {
2408 if (ckWARN(WARN_UNINITIALIZED))
2414 if (S_sv_2iuv_common(aTHX_ sv))
2418 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2419 PTR2UV(sv),SvUVX(sv)));
2420 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2424 =for apidoc sv_2nv_flags
2426 Return the num value of an SV, doing any necessary string or integer
2427 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2428 Normally used via the C<SvNV(sv)> and C<SvNVx(sv)> macros.
2434 Perl_sv_2nv_flags(pTHX_ register SV *const sv, const I32 flags)
2439 if (SvGMAGICAL(sv) || SvVALID(sv)) {
2440 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2441 the same flag bit as SVf_IVisUV, so must not let them cache NVs. */
2442 if (flags & SV_GMAGIC)
2446 if ((SvPOKp(sv) && SvLEN(sv)) && !SvIOKp(sv)) {
2447 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2448 !grok_number(SvPVX_const(sv), SvCUR(sv), NULL))
2450 return Atof(SvPVX_const(sv));
2454 return (NV)SvUVX(sv);
2456 return (NV)SvIVX(sv);
2461 assert(SvTYPE(sv) >= SVt_PVMG);
2462 /* This falls through to the report_uninit near the end of the
2464 } else if (SvTHINKFIRST(sv)) {
2469 if (flags & SV_SKIP_OVERLOAD)
2471 tmpstr = AMG_CALLunary(sv, numer_amg);
2472 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2473 return SvNV(tmpstr);
2476 return PTR2NV(SvRV(sv));
2479 sv_force_normal_flags(sv, 0);
2481 if (SvREADONLY(sv) && !SvOK(sv)) {
2482 if (ckWARN(WARN_UNINITIALIZED))
2487 if (SvTYPE(sv) < SVt_NV) {
2488 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2489 sv_upgrade(sv, SVt_NV);
2490 #ifdef USE_LONG_DOUBLE
2492 STORE_NUMERIC_LOCAL_SET_STANDARD();
2493 PerlIO_printf(Perl_debug_log,
2494 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2495 PTR2UV(sv), SvNVX(sv));
2496 RESTORE_NUMERIC_LOCAL();
2500 STORE_NUMERIC_LOCAL_SET_STANDARD();
2501 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2502 PTR2UV(sv), SvNVX(sv));
2503 RESTORE_NUMERIC_LOCAL();
2507 else if (SvTYPE(sv) < SVt_PVNV)
2508 sv_upgrade(sv, SVt_PVNV);
2513 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2514 #ifdef NV_PRESERVES_UV
2520 /* Only set the public NV OK flag if this NV preserves the IV */
2521 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2523 SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2524 : (SvIVX(sv) == I_V(SvNVX(sv))))
2530 else if (SvPOKp(sv) && SvLEN(sv)) {
2532 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2533 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2535 #ifdef NV_PRESERVES_UV
2536 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2537 == IS_NUMBER_IN_UV) {
2538 /* It's definitely an integer */
2539 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2541 SvNV_set(sv, Atof(SvPVX_const(sv)));
2547 SvNV_set(sv, Atof(SvPVX_const(sv)));
2548 /* Only set the public NV OK flag if this NV preserves the value in
2549 the PV at least as well as an IV/UV would.
2550 Not sure how to do this 100% reliably. */
2551 /* if that shift count is out of range then Configure's test is
2552 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2554 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2555 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2556 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2557 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2558 /* Can't use strtol etc to convert this string, so don't try.
2559 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2562 /* value has been set. It may not be precise. */
2563 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2564 /* 2s complement assumption for (UV)IV_MIN */
2565 SvNOK_on(sv); /* Integer is too negative. */
2570 if (numtype & IS_NUMBER_NEG) {
2571 SvIV_set(sv, -(IV)value);
2572 } else if (value <= (UV)IV_MAX) {
2573 SvIV_set(sv, (IV)value);
2575 SvUV_set(sv, value);
2579 if (numtype & IS_NUMBER_NOT_INT) {
2580 /* I believe that even if the original PV had decimals,
2581 they are lost beyond the limit of the FP precision.
2582 However, neither is canonical, so both only get p
2583 flags. NWC, 2000/11/25 */
2584 /* Both already have p flags, so do nothing */
2586 const NV nv = SvNVX(sv);
2587 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2588 if (SvIVX(sv) == I_V(nv)) {
2591 /* It had no "." so it must be integer. */
2595 /* between IV_MAX and NV(UV_MAX).
2596 Could be slightly > UV_MAX */
2598 if (numtype & IS_NUMBER_NOT_INT) {
2599 /* UV and NV both imprecise. */
2601 const UV nv_as_uv = U_V(nv);
2603 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2612 /* It might be more code efficient to go through the entire logic above
2613 and conditionally set with SvNOKp_on() rather than SvNOK(), but it
2614 gets complex and potentially buggy, so more programmer efficient
2615 to do it this way, by turning off the public flags: */
2617 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2618 #endif /* NV_PRESERVES_UV */
2621 if (isGV_with_GP(sv)) {
2622 glob_2number(MUTABLE_GV(sv));
2626 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2628 assert (SvTYPE(sv) >= SVt_NV);
2629 /* Typically the caller expects that sv_any is not NULL now. */
2630 /* XXX Ilya implies that this is a bug in callers that assume this
2631 and ideally should be fixed. */
2634 #if defined(USE_LONG_DOUBLE)
2636 STORE_NUMERIC_LOCAL_SET_STANDARD();
2637 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2638 PTR2UV(sv), SvNVX(sv));
2639 RESTORE_NUMERIC_LOCAL();
2643 STORE_NUMERIC_LOCAL_SET_STANDARD();
2644 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2645 PTR2UV(sv), SvNVX(sv));
2646 RESTORE_NUMERIC_LOCAL();
2655 Return an SV with the numeric value of the source SV, doing any necessary
2656 reference or overload conversion. You must use the C<SvNUM(sv)> macro to
2657 access this function.
2663 Perl_sv_2num(pTHX_ register SV *const sv)
2665 PERL_ARGS_ASSERT_SV_2NUM;
2670 SV * const tmpsv = AMG_CALLunary(sv, numer_amg);
2671 TAINT_IF(tmpsv && SvTAINTED(tmpsv));
2672 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2673 return sv_2num(tmpsv);
2675 return sv_2mortal(newSVuv(PTR2UV(SvRV(sv))));
2678 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2679 * UV as a string towards the end of buf, and return pointers to start and
2682 * We assume that buf is at least TYPE_CHARS(UV) long.
2686 S_uiv_2buf(char *const buf, const IV iv, UV uv, const int is_uv, char **const peob)
2688 char *ptr = buf + TYPE_CHARS(UV);
2689 char * const ebuf = ptr;
2692 PERL_ARGS_ASSERT_UIV_2BUF;
2704 *--ptr = '0' + (char)(uv % 10);
2713 =for apidoc sv_2pv_flags
2715 Returns a pointer to the string value of an SV, and sets *lp to its length.
2716 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a string
2718 Normally invoked via the C<SvPV_flags> macro. C<sv_2pv()> and C<sv_2pv_nomg>
2719 usually end up here too.
2725 Perl_sv_2pv_flags(pTHX_ register SV *const sv, STRLEN *const lp, const I32 flags)
2735 if (SvGMAGICAL(sv)) {
2736 if (flags & SV_GMAGIC)
2741 if (flags & SV_MUTABLE_RETURN)
2742 return SvPVX_mutable(sv);
2743 if (flags & SV_CONST_RETURN)
2744 return (char *)SvPVX_const(sv);
2747 if (SvIOKp(sv) || SvNOKp(sv)) {
2748 char tbuf[64]; /* Must fit sprintf/Gconvert of longest IV/NV */
2753 ? my_snprintf(tbuf, sizeof(tbuf), "%"UVuf, (UV)SvUVX(sv))
2754 : my_snprintf(tbuf, sizeof(tbuf), "%"IVdf, (IV)SvIVX(sv));
2755 } else if(SvNVX(sv) == 0.0) {
2760 Gconvert(SvNVX(sv), NV_DIG, 0, tbuf);
2767 SvUPGRADE(sv, SVt_PV);
2770 s = SvGROW_mutable(sv, len + 1);
2773 return (char*)memcpy(s, tbuf, len + 1);
2779 assert(SvTYPE(sv) >= SVt_PVMG);
2780 /* This falls through to the report_uninit near the end of the
2782 } else if (SvTHINKFIRST(sv)) {
2787 if (flags & SV_SKIP_OVERLOAD)
2789 tmpstr = AMG_CALLunary(sv, string_amg);
2790 TAINT_IF(tmpstr && SvTAINTED(tmpstr));
2791 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2793 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2797 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2798 if (flags & SV_CONST_RETURN) {
2799 pv = (char *) SvPVX_const(tmpstr);
2801 pv = (flags & SV_MUTABLE_RETURN)
2802 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2805 *lp = SvCUR(tmpstr);
2807 pv = sv_2pv_flags(tmpstr, lp, flags);
2820 SV *const referent = SvRV(sv);
2824 retval = buffer = savepvn("NULLREF", len);
2825 } else if (SvTYPE(referent) == SVt_REGEXP) {
2826 REGEXP * const re = (REGEXP *)MUTABLE_PTR(referent);
2831 /* If the regex is UTF-8 we want the containing scalar to
2832 have an UTF-8 flag too */
2838 if ((seen_evals = RX_SEEN_EVALS(re)))
2839 PL_reginterp_cnt += seen_evals;
2842 *lp = RX_WRAPLEN(re);
2844 return RX_WRAPPED(re);
2846 const char *const typestr = sv_reftype(referent, 0);
2847 const STRLEN typelen = strlen(typestr);
2848 UV addr = PTR2UV(referent);
2849 const char *stashname = NULL;
2850 STRLEN stashnamelen = 0; /* hush, gcc */
2851 const char *buffer_end;
2853 if (SvOBJECT(referent)) {
2854 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2857 stashname = HEK_KEY(name);
2858 stashnamelen = HEK_LEN(name);
2860 if (HEK_UTF8(name)) {
2866 stashname = "__ANON__";
2869 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2870 + 2 * sizeof(UV) + 2 /* )\0 */;
2872 len = typelen + 3 /* (0x */
2873 + 2 * sizeof(UV) + 2 /* )\0 */;
2876 Newx(buffer, len, char);
2877 buffer_end = retval = buffer + len;
2879 /* Working backwards */
2883 *--retval = PL_hexdigit[addr & 15];
2884 } while (addr >>= 4);
2890 memcpy(retval, typestr, typelen);
2894 retval -= stashnamelen;
2895 memcpy(retval, stashname, stashnamelen);
2897 /* retval may not necessarily have reached the start of the
2899 assert (retval >= buffer);
2901 len = buffer_end - retval - 1; /* -1 for that \0 */
2909 if (SvREADONLY(sv) && !SvOK(sv)) {
2912 if (flags & SV_UNDEF_RETURNS_NULL)
2914 if (ckWARN(WARN_UNINITIALIZED))
2919 if (SvIOK(sv) || ((SvIOKp(sv) && !SvNOKp(sv)))) {
2920 /* I'm assuming that if both IV and NV are equally valid then
2921 converting the IV is going to be more efficient */
2922 const U32 isUIOK = SvIsUV(sv);
2923 char buf[TYPE_CHARS(UV)];
2927 if (SvTYPE(sv) < SVt_PVIV)
2928 sv_upgrade(sv, SVt_PVIV);
2929 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2931 /* inlined from sv_setpvn */
2932 s = SvGROW_mutable(sv, len + 1);
2933 Move(ptr, s, len, char);
2937 else if (SvNOKp(sv)) {
2938 if (SvTYPE(sv) < SVt_PVNV)
2939 sv_upgrade(sv, SVt_PVNV);
2940 if (SvNVX(sv) == 0.0) {
2941 s = SvGROW_mutable(sv, 2);
2946 /* The +20 is pure guesswork. Configure test needed. --jhi */
2947 s = SvGROW_mutable(sv, NV_DIG + 20);
2948 /* some Xenix systems wipe out errno here */
2949 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2959 if (isGV_with_GP(sv)) {
2960 GV *const gv = MUTABLE_GV(sv);
2961 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
2962 SV *const buffer = sv_newmortal();
2964 /* FAKE globs can get coerced, so need to turn this off temporarily
2967 gv_efullname3(buffer, gv, "*");
2968 SvFLAGS(gv) |= wasfake;
2970 if (SvPOK(buffer)) {
2972 *lp = SvCUR(buffer);
2974 return SvPVX(buffer);
2985 if (flags & SV_UNDEF_RETURNS_NULL)
2987 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2989 if (SvTYPE(sv) < SVt_PV)
2990 /* Typically the caller expects that sv_any is not NULL now. */
2991 sv_upgrade(sv, SVt_PV);
2995 const STRLEN len = s - SvPVX_const(sv);
3001 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
3002 PTR2UV(sv),SvPVX_const(sv)));
3003 if (flags & SV_CONST_RETURN)
3004 return (char *)SvPVX_const(sv);
3005 if (flags & SV_MUTABLE_RETURN)
3006 return SvPVX_mutable(sv);
3011 =for apidoc sv_copypv
3013 Copies a stringified representation of the source SV into the
3014 destination SV. Automatically performs any necessary mg_get and
3015 coercion of numeric values into strings. Guaranteed to preserve
3016 UTF8 flag even from overloaded objects. Similar in nature to
3017 sv_2pv[_flags] but operates directly on an SV instead of just the
3018 string. Mostly uses sv_2pv_flags to do its work, except when that
3019 would lose the UTF-8'ness of the PV.
3025 Perl_sv_copypv(pTHX_ SV *const dsv, register SV *const ssv)
3028 const char * const s = SvPV_const(ssv,len);
3030 PERL_ARGS_ASSERT_SV_COPYPV;
3032 sv_setpvn(dsv,s,len);
3040 =for apidoc sv_2pvbyte
3042 Return a pointer to the byte-encoded representation of the SV, and set *lp
3043 to its length. May cause the SV to be downgraded from UTF-8 as a
3046 Usually accessed via the C<SvPVbyte> macro.
3052 Perl_sv_2pvbyte(pTHX_ register SV *const sv, STRLEN *const lp)
3054 PERL_ARGS_ASSERT_SV_2PVBYTE;
3057 sv_utf8_downgrade(sv,0);
3058 return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv);
3062 =for apidoc sv_2pvutf8
3064 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
3065 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
3067 Usually accessed via the C<SvPVutf8> macro.
3073 Perl_sv_2pvutf8(pTHX_ register SV *const sv, STRLEN *const lp)
3075 PERL_ARGS_ASSERT_SV_2PVUTF8;
3077 sv_utf8_upgrade(sv);
3078 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
3083 =for apidoc sv_2bool
3085 This macro is only used by sv_true() or its macro equivalent, and only if
3086 the latter's argument is neither SvPOK, SvIOK nor SvNOK.
3087 It calls sv_2bool_flags with the SV_GMAGIC flag.
3089 =for apidoc sv_2bool_flags
3091 This function is only used by sv_true() and friends, and only if
3092 the latter's argument is neither SvPOK, SvIOK nor SvNOK. If the flags
3093 contain SV_GMAGIC, then it does an mg_get() first.
3100 Perl_sv_2bool_flags(pTHX_ register SV *const sv, const I32 flags)
3104 PERL_ARGS_ASSERT_SV_2BOOL_FLAGS;
3106 if(flags & SV_GMAGIC) SvGETMAGIC(sv);
3112 SV * const tmpsv = AMG_CALLunary(sv, bool__amg);
3113 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
3114 return cBOOL(SvTRUE(tmpsv));
3116 return SvRV(sv) != 0;
3119 register XPV* const Xpvtmp = (XPV*)SvANY(sv);
3121 (*sv->sv_u.svu_pv > '0' ||
3122 Xpvtmp->xpv_cur > 1 ||
3123 (Xpvtmp->xpv_cur && *sv->sv_u.svu_pv != '0')))
3130 return SvIVX(sv) != 0;
3133 return SvNVX(sv) != 0.0;
3135 if (isGV_with_GP(sv))
3145 =for apidoc sv_utf8_upgrade
3147 Converts the PV of an SV to its UTF-8-encoded form.
3148 Forces the SV to string form if it is not already.
3149 Will C<mg_get> on C<sv> if appropriate.
3150 Always sets the SvUTF8 flag to avoid future validity checks even
3151 if the whole string is the same in UTF-8 as not.
3152 Returns the number of bytes in the converted string
3154 This is not as a general purpose byte encoding to Unicode interface:
3155 use the Encode extension for that.
3157 =for apidoc sv_utf8_upgrade_nomg
3159 Like sv_utf8_upgrade, but doesn't do magic on C<sv>
3161 =for apidoc sv_utf8_upgrade_flags
3163 Converts the PV of an SV to its UTF-8-encoded form.
3164 Forces the SV to string form if it is not already.
3165 Always sets the SvUTF8 flag to avoid future validity checks even
3166 if all the bytes are invariant in UTF-8. If C<flags> has C<SV_GMAGIC> bit set,
3167 will C<mg_get> on C<sv> if appropriate, else not.
3168 Returns the number of bytes in the converted string
3169 C<sv_utf8_upgrade> and
3170 C<sv_utf8_upgrade_nomg> are implemented in terms of this function.
3172 This is not as a general purpose byte encoding to Unicode interface:
3173 use the Encode extension for that.
3177 The grow version is currently not externally documented. It adds a parameter,
3178 extra, which is the number of unused bytes the string of 'sv' is guaranteed to
3179 have free after it upon return. This allows the caller to reserve extra space
3180 that it intends to fill, to avoid extra grows.
3182 Also externally undocumented for the moment is the flag SV_FORCE_UTF8_UPGRADE,
3183 which can be used to tell this function to not first check to see if there are
3184 any characters that are different in UTF-8 (variant characters) which would
3185 force it to allocate a new string to sv, but to assume there are. Typically
3186 this flag is used by a routine that has already parsed the string to find that
3187 there are such characters, and passes this information on so that the work
3188 doesn't have to be repeated.
3190 (One might think that the calling routine could pass in the position of the
3191 first such variant, so it wouldn't have to be found again. But that is not the
3192 case, because typically when the caller is likely to use this flag, it won't be
3193 calling this routine unless it finds something that won't fit into a byte.
3194 Otherwise it tries to not upgrade and just use bytes. But some things that
3195 do fit into a byte are variants in utf8, and the caller may not have been
3196 keeping track of these.)
3198 If the routine itself changes the string, it adds a trailing NUL. Such a NUL
3199 isn't guaranteed due to having other routines do the work in some input cases,
3200 or if the input is already flagged as being in utf8.
3202 The speed of this could perhaps be improved for many cases if someone wanted to
3203 write a fast function that counts the number of variant characters in a string,
3204 especially if it could return the position of the first one.
3209 Perl_sv_utf8_upgrade_flags_grow(pTHX_ register SV *const sv, const I32 flags, STRLEN extra)
3213 PERL_ARGS_ASSERT_SV_UTF8_UPGRADE_FLAGS_GROW;
3215 if (sv == &PL_sv_undef)
3219 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
3220 (void) sv_2pv_flags(sv,&len, flags);
3222 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3226 (void) SvPV_force_flags(sv,len,flags & SV_GMAGIC);
3231 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3236 sv_force_normal_flags(sv, 0);
3239 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING)) {
3240 sv_recode_to_utf8(sv, PL_encoding);
3241 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3245 if (SvCUR(sv) == 0) {
3246 if (extra) SvGROW(sv, extra);
3247 } else { /* Assume Latin-1/EBCDIC */
3248 /* This function could be much more efficient if we
3249 * had a FLAG in SVs to signal if there are any variant
3250 * chars in the PV. Given that there isn't such a flag
3251 * make the loop as fast as possible (although there are certainly ways
3252 * to speed this up, eg. through vectorization) */
3253 U8 * s = (U8 *) SvPVX_const(sv);
3254 U8 * e = (U8 *) SvEND(sv);
3256 STRLEN two_byte_count = 0;
3258 if (flags & SV_FORCE_UTF8_UPGRADE) goto must_be_utf8;
3260 /* See if really will need to convert to utf8. We mustn't rely on our
3261 * incoming SV being well formed and having a trailing '\0', as certain
3262 * code in pp_formline can send us partially built SVs. */
3266 if (NATIVE_IS_INVARIANT(ch)) continue;
3268 t--; /* t already incremented; re-point to first variant */
3273 /* utf8 conversion not needed because all are invariants. Mark as
3274 * UTF-8 even if no variant - saves scanning loop */
3280 /* Here, the string should be converted to utf8, either because of an
3281 * input flag (two_byte_count = 0), or because a character that
3282 * requires 2 bytes was found (two_byte_count = 1). t points either to
3283 * the beginning of the string (if we didn't examine anything), or to
3284 * the first variant. In either case, everything from s to t - 1 will
3285 * occupy only 1 byte each on output.
3287 * There are two main ways to convert. One is to create a new string
3288 * and go through the input starting from the beginning, appending each
3289 * converted value onto the new string as we go along. It's probably
3290 * best to allocate enough space in the string for the worst possible
3291 * case rather than possibly running out of space and having to
3292 * reallocate and then copy what we've done so far. Since everything
3293 * from s to t - 1 is invariant, the destination can be initialized
3294 * with these using a fast memory copy
3296 * The other way is to figure out exactly how big the string should be
3297 * by parsing the entire input. Then you don't have to make it big
3298 * enough to handle the worst possible case, and more importantly, if
3299 * the string you already have is large enough, you don't have to
3300 * allocate a new string, you can copy the last character in the input
3301 * string to the final position(s) that will be occupied by the
3302 * converted string and go backwards, stopping at t, since everything
3303 * before that is invariant.
3305 * There are advantages and disadvantages to each method.
3307 * In the first method, we can allocate a new string, do the memory
3308 * copy from the s to t - 1, and then proceed through the rest of the
3309 * string byte-by-byte.
3311 * In the second method, we proceed through the rest of the input
3312 * string just calculating how big the converted string will be. Then
3313 * there are two cases:
3314 * 1) if the string has enough extra space to handle the converted
3315 * value. We go backwards through the string, converting until we
3316 * get to the position we are at now, and then stop. If this
3317 * position is far enough along in the string, this method is
3318 * faster than the other method. If the memory copy were the same
3319 * speed as the byte-by-byte loop, that position would be about
3320 * half-way, as at the half-way mark, parsing to the end and back
3321 * is one complete string's parse, the same amount as starting
3322 * over and going all the way through. Actually, it would be
3323 * somewhat less than half-way, as it's faster to just count bytes
3324 * than to also copy, and we don't have the overhead of allocating
3325 * a new string, changing the scalar to use it, and freeing the
3326 * existing one. But if the memory copy is fast, the break-even
3327 * point is somewhere after half way. The counting loop could be
3328 * sped up by vectorization, etc, to move the break-even point
3329 * further towards the beginning.
3330 * 2) if the string doesn't have enough space to handle the converted
3331 * value. A new string will have to be allocated, and one might
3332 * as well, given that, start from the beginning doing the first
3333 * method. We've spent extra time parsing the string and in
3334 * exchange all we've gotten is that we know precisely how big to
3335 * make the new one. Perl is more optimized for time than space,
3336 * so this case is a loser.
3337 * So what I've decided to do is not use the 2nd method unless it is
3338 * guaranteed that a new string won't have to be allocated, assuming
3339 * the worst case. I also decided not to put any more conditions on it
3340 * than this, for now. It seems likely that, since the worst case is
3341 * twice as big as the unknown portion of the string (plus 1), we won't
3342 * be guaranteed enough space, causing us to go to the first method,
3343 * unless the string is short, or the first variant character is near
3344 * the end of it. In either of these cases, it seems best to use the
3345 * 2nd method. The only circumstance I can think of where this would
3346 * be really slower is if the string had once had much more data in it
3347 * than it does now, but there is still a substantial amount in it */
3350 STRLEN invariant_head = t - s;
3351 STRLEN size = invariant_head + (e - t) * 2 + 1 + extra;
3352 if (SvLEN(sv) < size) {
3354 /* Here, have decided to allocate a new string */
3359 Newx(dst, size, U8);
3361 /* If no known invariants at the beginning of the input string,
3362 * set so starts from there. Otherwise, can use memory copy to
3363 * get up to where we are now, and then start from here */
3365 if (invariant_head <= 0) {
3368 Copy(s, dst, invariant_head, char);
3369 d = dst + invariant_head;
3373 const UV uv = NATIVE8_TO_UNI(*t++);
3374 if (UNI_IS_INVARIANT(uv))
3375 *d++ = (U8)UNI_TO_NATIVE(uv);
3377 *d++ = (U8)UTF8_EIGHT_BIT_HI(uv);
3378 *d++ = (U8)UTF8_EIGHT_BIT_LO(uv);
3382 SvPV_free(sv); /* No longer using pre-existing string */
3383 SvPV_set(sv, (char*)dst);
3384 SvCUR_set(sv, d - dst);
3385 SvLEN_set(sv, size);
3388 /* Here, have decided to get the exact size of the string.
3389 * Currently this happens only when we know that there is
3390 * guaranteed enough space to fit the converted string, so
3391 * don't have to worry about growing. If two_byte_count is 0,
3392 * then t points to the first byte of the string which hasn't
3393 * been examined yet. Otherwise two_byte_count is 1, and t
3394 * points to the first byte in the string that will expand to
3395 * two. Depending on this, start examining at t or 1 after t.
3398 U8 *d = t + two_byte_count;
3401 /* Count up the remaining bytes that expand to two */
3404 const U8 chr = *d++;
3405 if (! NATIVE_IS_INVARIANT(chr)) two_byte_count++;
3408 /* The string will expand by just the number of bytes that
3409 * occupy two positions. But we are one afterwards because of
3410 * the increment just above. This is the place to put the
3411 * trailing NUL, and to set the length before we decrement */
3413 d += two_byte_count;
3414 SvCUR_set(sv, d - s);
3418 /* Having decremented d, it points to the position to put the
3419 * very last byte of the expanded string. Go backwards through
3420 * the string, copying and expanding as we go, stopping when we
3421 * get to the part that is invariant the rest of the way down */
3425 const U8 ch = NATIVE8_TO_UNI(*e--);
3426 if (UNI_IS_INVARIANT(ch)) {
3427 *d-- = UNI_TO_NATIVE(ch);
3429 *d-- = (U8)UTF8_EIGHT_BIT_LO(ch);
3430 *d-- = (U8)UTF8_EIGHT_BIT_HI(ch);
3435 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3436 /* Update pos. We do it at the end rather than during
3437 * the upgrade, to avoid slowing down the common case
3438 * (upgrade without pos) */
3439 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3441 I32 pos = mg->mg_len;
3442 if (pos > 0 && (U32)pos > invariant_head) {
3443 U8 *d = (U8*) SvPVX(sv) + invariant_head;
3444 STRLEN n = (U32)pos - invariant_head;
3446 if (UTF8_IS_START(*d))
3451 mg->mg_len = d - (U8*)SvPVX(sv);
3454 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3455 magic_setutf8(sv,mg); /* clear UTF8 cache */
3460 /* Mark as UTF-8 even if no variant - saves scanning loop */
3466 =for apidoc sv_utf8_downgrade
3468 Attempts to convert the PV of an SV from characters to bytes.
3469 If the PV contains a character that cannot fit
3470 in a byte, this conversion will fail;
3471 in this case, either returns false or, if C<fail_ok> is not
3474 This is not as a general purpose Unicode to byte encoding interface:
3475 use the Encode extension for that.
3481 Perl_sv_utf8_downgrade(pTHX_ register SV *const sv, const bool fail_ok)
3485 PERL_ARGS_ASSERT_SV_UTF8_DOWNGRADE;
3487 if (SvPOKp(sv) && SvUTF8(sv)) {
3491 int mg_flags = SV_GMAGIC;
3494 sv_force_normal_flags(sv, 0);
3496 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3498 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3500 I32 pos = mg->mg_len;
3502 sv_pos_b2u(sv, &pos);
3503 mg_flags = 0; /* sv_pos_b2u does get magic */
3507 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3508 magic_setutf8(sv,mg); /* clear UTF8 cache */
3511 s = (U8 *) SvPV_flags(sv, len, mg_flags);
3513 if (!utf8_to_bytes(s, &len)) {
3518 Perl_croak(aTHX_ "Wide character in %s",
3521 Perl_croak(aTHX_ "Wide character");
3532 =for apidoc sv_utf8_encode
3534 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3535 flag off so that it looks like octets again.
3541 Perl_sv_utf8_encode(pTHX_ register SV *const sv)
3543 PERL_ARGS_ASSERT_SV_UTF8_ENCODE;
3546 sv_force_normal_flags(sv, 0);
3548 if (SvREADONLY(sv)) {
3549 Perl_croak_no_modify(aTHX);
3551 (void) sv_utf8_upgrade(sv);
3556 =for apidoc sv_utf8_decode
3558 If the PV of the SV is an octet sequence in UTF-8
3559 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3560 so that it looks like a character. If the PV contains only single-byte
3561 characters, the C<SvUTF8> flag stays off.
3562 Scans PV for validity and returns false if the PV is invalid UTF-8.
3568 Perl_sv_utf8_decode(pTHX_ register SV *const sv)
3570 PERL_ARGS_ASSERT_SV_UTF8_DECODE;
3573 const U8 *start, *c;
3576 /* The octets may have got themselves encoded - get them back as
3579 if (!sv_utf8_downgrade(sv, TRUE))
3582 /* it is actually just a matter of turning the utf8 flag on, but
3583 * we want to make sure everything inside is valid utf8 first.
3585 c = start = (const U8 *) SvPVX_const(sv);
3586 if (!is_utf8_string(c, SvCUR(sv)+1))
3588 e = (const U8 *) SvEND(sv);
3591 if (!UTF8_IS_INVARIANT(ch)) {
3596 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3597 /* adjust pos to the start of a UTF8 char sequence */
3598 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3600 I32 pos = mg->mg_len;
3602 for (c = start + pos; c > start; c--) {
3603 if (UTF8_IS_START(*c))
3606 mg->mg_len = c - start;
3609 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3610 magic_setutf8(sv,mg); /* clear UTF8 cache */
3617 =for apidoc sv_setsv
3619 Copies the contents of the source SV C<ssv> into the destination SV
3620 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3621 function if the source SV needs to be reused. Does not handle 'set' magic.
3622 Loosely speaking, it performs a copy-by-value, obliterating any previous
3623 content of the destination.
3625 You probably want to use one of the assortment of wrappers, such as
3626 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3627 C<SvSetMagicSV_nosteal>.
3629 =for apidoc sv_setsv_flags
3631 Copies the contents of the source SV C<ssv> into the destination SV
3632 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3633 function if the source SV needs to be reused. Does not handle 'set' magic.
3634 Loosely speaking, it performs a copy-by-value, obliterating any previous
3635 content of the destination.
3636 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3637 C<ssv> if appropriate, else not. If the C<flags> parameter has the
3638 C<NOSTEAL> bit set then the buffers of temps will not be stolen. <sv_setsv>
3639 and C<sv_setsv_nomg> are implemented in terms of this function.
3641 You probably want to use one of the assortment of wrappers, such as
3642 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3643 C<SvSetMagicSV_nosteal>.
3645 This is the primary function for copying scalars, and most other
3646 copy-ish functions and macros use this underneath.
3652 S_glob_assign_glob(pTHX_ SV *const dstr, SV *const sstr, const int dtype)
3654 I32 mro_changes = 0; /* 1 = method, 2 = isa, 3 = recursive isa */
3655 HV *old_stash = NULL;
3657 PERL_ARGS_ASSERT_GLOB_ASSIGN_GLOB;
3659 if (dtype != SVt_PVGV && !isGV_with_GP(dstr)) {
3660 const char * const name = GvNAME(sstr);
3661 const STRLEN len = GvNAMELEN(sstr);
3663 if (dtype >= SVt_PV) {
3669 SvUPGRADE(dstr, SVt_PVGV);
3670 (void)SvOK_off(dstr);
3671 /* FIXME - why are we doing this, then turning it off and on again
3673 isGV_with_GP_on(dstr);
3675 GvSTASH(dstr) = GvSTASH(sstr);
3677 Perl_sv_add_backref(aTHX_ MUTABLE_SV(GvSTASH(dstr)), dstr);
3678 gv_name_set(MUTABLE_GV(dstr), name, len, GV_ADD);
3679 SvFAKE_on(dstr); /* can coerce to non-glob */
3682 if(GvGP(MUTABLE_GV(sstr))) {
3683 /* If source has method cache entry, clear it */
3685 SvREFCNT_dec(GvCV(sstr));
3686 GvCV_set(sstr, NULL);
3689 /* If source has a real method, then a method is
3692 GvCV((const GV *)sstr) && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3698 /* If dest already had a real method, that's a change as well */
3700 !mro_changes && GvGP(MUTABLE_GV(dstr)) && GvCVu((const GV *)dstr)
3701 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3706 /* We don’t need to check the name of the destination if it was not a
3707 glob to begin with. */
3708 if(dtype == SVt_PVGV) {
3709 const char * const name = GvNAME((const GV *)dstr);
3712 /* The stash may have been detached from the symbol table, so
3714 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3715 && GvAV((const GV *)sstr)
3719 const STRLEN len = GvNAMELEN(dstr);
3720 if ((len > 1 && name[len-2] == ':' && name[len-1] == ':')
3721 || (len == 1 && name[0] == ':')) {
3724 /* Set aside the old stash, so we can reset isa caches on
3726 if((old_stash = GvHV(dstr)))
3727 /* Make sure we do not lose it early. */
3728 SvREFCNT_inc_simple_void_NN(
3729 sv_2mortal((SV *)old_stash)
3735 gp_free(MUTABLE_GV(dstr));
3736 isGV_with_GP_off(dstr);
3737 (void)SvOK_off(dstr);
3738 isGV_with_GP_on(dstr);
3739 GvINTRO_off(dstr); /* one-shot flag */
3740 GvGP_set(dstr, gp_ref(GvGP(sstr)));
3741 if (SvTAINTED(sstr))
3743 if (GvIMPORTED(dstr) != GVf_IMPORTED
3744 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3746 GvIMPORTED_on(dstr);
3749 if(mro_changes == 2) {
3751 SV * const sref = (SV *)GvAV((const GV *)dstr);
3752 if (SvSMAGICAL(sref) && (mg = mg_find(sref, PERL_MAGIC_isa))) {
3753 if (SvTYPE(mg->mg_obj) != SVt_PVAV) {
3754 AV * const ary = newAV();
3755 av_push(ary, mg->mg_obj); /* takes the refcount */
3756 mg->mg_obj = (SV *)ary;
3758 av_push((AV *)mg->mg_obj, SvREFCNT_inc_simple_NN(dstr));
3760 else sv_magic(sref, dstr, PERL_MAGIC_isa, NULL, 0);
3761 mro_isa_changed_in(GvSTASH(dstr));
3763 else if(mro_changes == 3) {
3764 HV * const stash = GvHV(dstr);
3765 if(old_stash ? (HV *)HvENAME_get(old_stash) : stash)
3771 else if(mro_changes) mro_method_changed_in(GvSTASH(dstr));
3776 S_glob_assign_ref(pTHX_ SV *const dstr, SV *const sstr)
3778 SV * const sref = SvREFCNT_inc(SvRV(sstr));
3780 const int intro = GvINTRO(dstr);
3783 const U32 stype = SvTYPE(sref);
3785 PERL_ARGS_ASSERT_GLOB_ASSIGN_REF;
3788 GvINTRO_off(dstr); /* one-shot flag */
3789 GvLINE(dstr) = CopLINE(PL_curcop);
3790 GvEGV(dstr) = MUTABLE_GV(dstr);
3795 location = (SV **) &(GvGP(dstr)->gp_cv); /* XXX bypassing GvCV_set */
3796 import_flag = GVf_IMPORTED_CV;
3799 location = (SV **) &GvHV(dstr);
3800 import_flag = GVf_IMPORTED_HV;
3803 location = (SV **) &GvAV(dstr);
3804 import_flag = GVf_IMPORTED_AV;
3807 location = (SV **) &GvIOp(dstr);
3810 location = (SV **) &GvFORM(dstr);
3813 location = &GvSV(dstr);
3814 import_flag = GVf_IMPORTED_SV;
3817 if (stype == SVt_PVCV) {
3818 /*if (GvCVGEN(dstr) && (GvCV(dstr) != (const CV *)sref || GvCVGEN(dstr))) {*/
3819 if (GvCVGEN(dstr)) {
3820 SvREFCNT_dec(GvCV(dstr));
3821 GvCV_set(dstr, NULL);
3822 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3825 SAVEGENERICSV(*location);
3829 if (stype == SVt_PVCV && (*location != sref || GvCVGEN(dstr))) {
3830 CV* const cv = MUTABLE_CV(*location);
3832 if (!GvCVGEN((const GV *)dstr) &&
3833 (CvROOT(cv) || CvXSUB(cv)))
3835 /* Redefining a sub - warning is mandatory if
3836 it was a const and its value changed. */
3837 if (CvCONST(cv) && CvCONST((const CV *)sref)
3839 == cv_const_sv((const CV *)sref)) {
3841 /* They are 2 constant subroutines generated from
3842 the same constant. This probably means that
3843 they are really the "same" proxy subroutine
3844 instantiated in 2 places. Most likely this is
3845 when a constant is exported twice. Don't warn.
3848 else if (ckWARN(WARN_REDEFINE)
3850 && (!CvCONST((const CV *)sref)
3851 || sv_cmp(cv_const_sv(cv),
3852 cv_const_sv((const CV *)
3854 Perl_warner(aTHX_ packWARN(WARN_REDEFINE),
3857 ? "Constant subroutine %s::%s redefined"
3858 : "Subroutine %s::%s redefined"),
3859 HvNAME_get(GvSTASH((const GV *)dstr)),
3860 GvENAME(MUTABLE_GV(dstr)));
3864 cv_ckproto_len(cv, (const GV *)dstr,
3865 SvPOK(sref) ? SvPVX_const(sref) : NULL,
3866 SvPOK(sref) ? SvCUR(sref) : 0);
3868 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3869 GvASSUMECV_on(dstr);
3870 if(GvSTASH(dstr)) mro_method_changed_in(GvSTASH(dstr)); /* sub foo { 1 } sub bar { 2 } *bar = \&foo */
3873 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3874 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3875 GvFLAGS(dstr) |= import_flag;
3877 if (stype == SVt_PVHV) {
3878 const char * const name = GvNAME((GV*)dstr);
3879 const STRLEN len = GvNAMELEN(dstr);
3882 (len > 1 && name[len-2] == ':' && name[len-1] == ':')
3883 || (len == 1 && name[0] == ':')
3885 && (!dref || HvENAME_get(dref))
3888 (HV *)sref, (HV *)dref,
3894 stype == SVt_PVAV && sref != dref
3895 && strEQ(GvNAME((GV*)dstr), "ISA")
3896 /* The stash may have been detached from the symbol table, so
3897 check its name before doing anything. */
3898 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3901 MAGIC * const omg = dref && SvSMAGICAL(dref)
3902 ? mg_find(dref, PERL_MAGIC_isa)
3904 if (SvSMAGICAL(sref) && (mg = mg_find(sref, PERL_MAGIC_isa))) {
3905 if (SvTYPE(mg->mg_obj) != SVt_PVAV) {
3906 AV * const ary = newAV();
3907 av_push(ary, mg->mg_obj); /* takes the refcount */
3908 mg->mg_obj = (SV *)ary;
3911 if (SvTYPE(omg->mg_obj) == SVt_PVAV) {
3912 SV **svp = AvARRAY((AV *)omg->mg_obj);
3913 I32 items = AvFILLp((AV *)omg->mg_obj) + 1;
3917 SvREFCNT_inc_simple_NN(*svp++)
3923 SvREFCNT_inc_simple_NN(omg->mg_obj)
3927 av_push((AV *)mg->mg_obj,SvREFCNT_inc_simple_NN(dstr));
3932 sref, omg ? omg->mg_obj : dstr, PERL_MAGIC_isa, NULL, 0
3934 mg = mg_find(sref, PERL_MAGIC_isa);
3936 /* Since the *ISA assignment could have affected more than
3937 one stash, don’t call mro_isa_changed_in directly, but let
3938 magic_clearisa do it for us, as it already has the logic for
3939 dealing with globs vs arrays of globs. */
3941 Perl_magic_clearisa(aTHX_ NULL, mg);
3946 if (SvTAINTED(sstr))
3952 Perl_sv_setsv_flags(pTHX_ SV *dstr, register SV* sstr, const I32 flags)
3955 register U32 sflags;
3957 register svtype stype;
3959 PERL_ARGS_ASSERT_SV_SETSV_FLAGS;
3964 if (SvIS_FREED(dstr)) {
3965 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
3966 " to a freed scalar %p", SVfARG(sstr), (void *)dstr);
3968 SV_CHECK_THINKFIRST_COW_DROP(dstr);
3970 sstr = &PL_sv_undef;
3971 if (SvIS_FREED(sstr)) {
3972 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
3973 (void*)sstr, (void*)dstr);
3975 stype = SvTYPE(sstr);
3976 dtype = SvTYPE(dstr);
3978 (void)SvAMAGIC_off(dstr);
3981 /* need to nuke the magic */
3985 /* There's a lot of redundancy below but we're going for speed here */
3990 if (dtype != SVt_PVGV && dtype != SVt_PVLV) {
3991 (void)SvOK_off(dstr);
3999 sv_upgrade(dstr, SVt_IV);
4003 sv_upgrade(dstr, SVt_PVIV);
4007 goto end_of_first_switch;
4009 (void)SvIOK_only(dstr);
4010 SvIV_set(dstr, SvIVX(sstr));
4013 /* SvTAINTED can only be true if the SV has taint magic, which in
4014 turn means that the SV type is PVMG (or greater). This is the
4015 case statement for SVt_IV, so this cannot be true (whatever gcov
4017 assert(!SvTAINTED(sstr));
4022 if (dtype < SVt_PV && dtype != SVt_IV)
4023 sv_upgrade(dstr, SVt_IV);
4031 sv_upgrade(dstr, SVt_NV);
4035 sv_upgrade(dstr, SVt_PVNV);
4039 goto end_of_first_switch;
4041 SvNV_set(dstr, SvNVX(sstr));
4042 (void)SvNOK_only(dstr);
4043 /* SvTAINTED can only be true if the SV has taint magic, which in
4044 turn means that the SV type is PVMG (or greater). This is the
4045 case statement for SVt_NV, so this cannot be true (whatever gcov
4047 assert(!SvTAINTED(sstr));
4053 #ifdef PERL_OLD_COPY_ON_WRITE
4054 if ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS) {
4055 if (dtype < SVt_PVIV)
4056 sv_upgrade(dstr, SVt_PVIV);
4063 sv_upgrade(dstr, SVt_PV);
4066 if (dtype < SVt_PVIV)
4067 sv_upgrade(dstr, SVt_PVIV);
4070 if (dtype < SVt_PVNV)
4071 sv_upgrade(dstr, SVt_PVNV);
4075 const char * const type = sv_reftype(sstr,0);
4077 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_DESC(PL_op));
4079 Perl_croak(aTHX_ "Bizarre copy of %s", type);
4084 if (dtype < SVt_REGEXP)
4085 sv_upgrade(dstr, SVt_REGEXP);
4088 /* case SVt_BIND: */
4092 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
4094 if (SvTYPE(sstr) != stype)
4095 stype = SvTYPE(sstr);
4097 if (isGV_with_GP(sstr) && dtype <= SVt_PVLV) {
4098 glob_assign_glob(dstr, sstr, dtype);
4101 if (stype == SVt_PVLV)
4102 SvUPGRADE(dstr, SVt_PVNV);
4104 SvUPGRADE(dstr, (svtype)stype);
4106 end_of_first_switch:
4108 /* dstr may have been upgraded. */
4109 dtype = SvTYPE(dstr);
4110 sflags = SvFLAGS(sstr);
4112 if (dtype == SVt_PVCV || dtype == SVt_PVFM) {
4113 /* Assigning to a subroutine sets the prototype. */
4116 const char *const ptr = SvPV_const(sstr, len);
4118 SvGROW(dstr, len + 1);
4119 Copy(ptr, SvPVX(dstr), len + 1, char);
4120 SvCUR_set(dstr, len);
4122 SvFLAGS(dstr) |= sflags & SVf_UTF8;
4126 } else if (dtype == SVt_PVAV || dtype == SVt_PVHV) {
4127 const char * const type = sv_reftype(dstr,0);
4129 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_DESC(PL_op));
4131 Perl_croak(aTHX_ "Cannot copy to %s", type);
4132 } else if (sflags & SVf_ROK) {
4133 if (isGV_with_GP(dstr)
4134 && SvTYPE(SvRV(sstr)) == SVt_PVGV && isGV_with_GP(SvRV(sstr))) {
4137 if (GvIMPORTED(dstr) != GVf_IMPORTED
4138 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
4140 GvIMPORTED_on(dstr);
4145 glob_assign_glob(dstr, sstr, dtype);
4149 if (dtype >= SVt_PV) {
4150 if (isGV_with_GP(dstr)) {
4151 glob_assign_ref(dstr, sstr);
4154 if (SvPVX_const(dstr)) {
4160 (void)SvOK_off(dstr);
4161 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
4162 SvFLAGS(dstr) |= sflags & SVf_ROK;
4163 assert(!(sflags & SVp_NOK));
4164 assert(!(sflags & SVp_IOK));
4165 assert(!(sflags & SVf_NOK));
4166 assert(!(sflags & SVf_IOK));
4168 else if (isGV_with_GP(dstr)) {
4169 if (!(sflags & SVf_OK)) {
4170 Perl_ck_warner(aTHX_ packWARN(WARN_MISC),
4171 "Undefined value assigned to typeglob");
4174 GV *gv = gv_fetchsv(sstr, GV_ADD, SVt_PVGV);
4175 if (dstr != (const SV *)gv) {
4176 const char * const name = GvNAME((const GV *)dstr);
4177 const STRLEN len = GvNAMELEN(dstr);
4178 HV *old_stash = NULL;
4179 bool reset_isa = FALSE;
4180 if ((len > 1 && name[len-2] == ':' && name[len-1] == ':')
4181 || (len == 1 && name[0] == ':')) {
4182 /* Set aside the old stash, so we can reset isa caches
4183 on its subclasses. */
4184 if((old_stash = GvHV(dstr))) {
4185 /* Make sure we do not lose it early. */
4186 SvREFCNT_inc_simple_void_NN(
4187 sv_2mortal((SV *)old_stash)
4194 gp_free(MUTABLE_GV(dstr));
4195 GvGP_set(dstr, gp_ref(GvGP(gv)));
4198 HV * const stash = GvHV(dstr);
4200 old_stash ? (HV *)HvENAME_get(old_stash) : stash
4210 else if (dtype == SVt_REGEXP && stype == SVt_REGEXP) {
4211 reg_temp_copy((REGEXP*)dstr, (REGEXP*)sstr);
4213 else if (sflags & SVp_POK) {
4217 * Check to see if we can just swipe the string. If so, it's a
4218 * possible small lose on short strings, but a big win on long ones.
4219 * It might even be a win on short strings if SvPVX_const(dstr)
4220 * has to be allocated and SvPVX_const(sstr) has to be freed.
4221 * Likewise if we can set up COW rather than doing an actual copy, we
4222 * drop to the else clause, as the swipe code and the COW setup code
4223 * have much in common.
4226 /* Whichever path we take through the next code, we want this true,
4227 and doing it now facilitates the COW check. */
4228 (void)SvPOK_only(dstr);
4231 /* If we're already COW then this clause is not true, and if COW
4232 is allowed then we drop down to the else and make dest COW
4233 with us. If caller hasn't said that we're allowed to COW
4234 shared hash keys then we don't do the COW setup, even if the
4235 source scalar is a shared hash key scalar. */
4236 (((flags & SV_COW_SHARED_HASH_KEYS)
4237 ? (sflags & (SVf_FAKE|SVf_READONLY)) != (SVf_FAKE|SVf_READONLY)
4238 : 1 /* If making a COW copy is forbidden then the behaviour we
4239 desire is as if the source SV isn't actually already
4240 COW, even if it is. So we act as if the source flags
4241 are not COW, rather than actually testing them. */
4243 #ifndef PERL_OLD_COPY_ON_WRITE
4244 /* The change that added SV_COW_SHARED_HASH_KEYS makes the logic
4245 when PERL_OLD_COPY_ON_WRITE is defined a little wrong.
4246 Conceptually PERL_OLD_COPY_ON_WRITE being defined should
4247 override SV_COW_SHARED_HASH_KEYS, because it means "always COW"
4248 but in turn, it's somewhat dead code, never expected to go
4249 live, but more kept as a placeholder on how to do it better
4250 in a newer implementation. */
4251 /* If we are COW and dstr is a suitable target then we drop down
4252 into the else and make dest a COW of us. */
4253 || (SvFLAGS(dstr) & CAN_COW_MASK) != CAN_COW_FLAGS
4258 (sflags & SVs_TEMP) && /* slated for free anyway? */
4259 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
4260 (!(flags & SV_NOSTEAL)) &&
4261 /* and we're allowed to steal temps */
4262 SvREFCNT(sstr) == 1 && /* and no other references to it? */
4263 SvLEN(sstr)) /* and really is a string */
4264 #ifdef PERL_OLD_COPY_ON_WRITE
4265 && ((flags & SV_COW_SHARED_HASH_KEYS)
4266 ? (!((sflags & CAN_COW_MASK) == CAN_COW_FLAGS
4267 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
4268 && SvTYPE(sstr) >= SVt_PVIV && SvTYPE(sstr) != SVt_PVFM))
4272 /* Failed the swipe test, and it's not a shared hash key either.
4273 Have to copy the string. */
4274 STRLEN len = SvCUR(sstr);
4275 SvGROW(dstr, len + 1); /* inlined from sv_setpvn */
4276 Move(SvPVX_const(sstr),SvPVX(dstr),len,char);
4277 SvCUR_set(dstr, len);
4278 *SvEND(dstr) = '\0';
4280 /* If PERL_OLD_COPY_ON_WRITE is not defined, then isSwipe will always
4282 /* Either it's a shared hash key, or it's suitable for
4283 copy-on-write or we can swipe the string. */
4285 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
4289 #ifdef PERL_OLD_COPY_ON_WRITE
4291 if ((sflags & (SVf_FAKE | SVf_READONLY))
4292 != (SVf_FAKE | SVf_READONLY)) {
4293 SvREADONLY_on(sstr);
4295 /* Make the source SV into a loop of 1.
4296 (about to become 2) */
4297 SV_COW_NEXT_SV_SET(sstr, sstr);
4301 /* Initial code is common. */
4302 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
4307 /* making another shared SV. */
4308 STRLEN cur = SvCUR(sstr);
4309 STRLEN len = SvLEN(sstr);
4310 #ifdef PERL_OLD_COPY_ON_WRITE
4312 assert (SvTYPE(dstr) >= SVt_PVIV);
4313 /* SvIsCOW_normal */
4314 /* splice us in between source and next-after-source. */
4315 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4316 SV_COW_NEXT_SV_SET(sstr, dstr);
4317 SvPV_set(dstr, SvPVX_mutable(sstr));
4321 /* SvIsCOW_shared_hash */
4322 DEBUG_C(PerlIO_printf(Perl_debug_log,
4323 "Copy on write: Sharing hash\n"));
4325 assert (SvTYPE(dstr) >= SVt_PV);
4327 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
4329 SvLEN_set(dstr, len);
4330 SvCUR_set(dstr, cur);
4331 SvREADONLY_on(dstr);
4335 { /* Passes the swipe test. */
4336 SvPV_set(dstr, SvPVX_mutable(sstr));
4337 SvLEN_set(dstr, SvLEN(sstr));
4338 SvCUR_set(dstr, SvCUR(sstr));
4341 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
4342 SvPV_set(sstr, NULL);
4348 if (sflags & SVp_NOK) {
4349 SvNV_set(dstr, SvNVX(sstr));
4351 if (sflags & SVp_IOK) {
4352 SvIV_set(dstr, SvIVX(sstr));
4353 /* Must do this otherwise some other overloaded use of 0x80000000
4354 gets confused. I guess SVpbm_VALID */
4355 if (sflags & SVf_IVisUV)
4358 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8);
4360 const MAGIC * const smg = SvVSTRING_mg(sstr);
4362 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
4363 smg->mg_ptr, smg->mg_len);
4364 SvRMAGICAL_on(dstr);
4368 else if (sflags & (SVp_IOK|SVp_NOK)) {
4369 (void)SvOK_off(dstr);
4370 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK);
4371 if (sflags & SVp_IOK) {
4372 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
4373 SvIV_set(dstr, SvIVX(sstr));
4375 if (sflags & SVp_NOK) {
4376 SvNV_set(dstr, SvNVX(sstr));
4380 if (isGV_with_GP(sstr)) {
4381 /* This stringification rule for globs is spread in 3 places.
4382 This feels bad. FIXME. */
4383 const U32 wasfake = sflags & SVf_FAKE;
4385 /* FAKE globs can get coerced, so need to turn this off
4386 temporarily if it is on. */
4388 gv_efullname3(dstr, MUTABLE_GV(sstr), "*");
4389 SvFLAGS(sstr) |= wasfake;
4392 (void)SvOK_off(dstr);
4394 if (SvTAINTED(sstr))
4399 =for apidoc sv_setsv_mg
4401 Like C<sv_setsv>, but also handles 'set' magic.
4407 Perl_sv_setsv_mg(pTHX_ SV *const dstr, register SV *const sstr)
4409 PERL_ARGS_ASSERT_SV_SETSV_MG;
4411 sv_setsv(dstr,sstr);
4415 #ifdef PERL_OLD_COPY_ON_WRITE
4417 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
4419 STRLEN cur = SvCUR(sstr);
4420 STRLEN len = SvLEN(sstr);
4421 register char *new_pv;
4423 PERL_ARGS_ASSERT_SV_SETSV_COW;
4426 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
4427 (void*)sstr, (void*)dstr);
4434 if (SvTHINKFIRST(dstr))
4435 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
4436 else if (SvPVX_const(dstr))
4437 Safefree(SvPVX_const(dstr));
4441 SvUPGRADE(dstr, SVt_PVIV);
4443 assert (SvPOK(sstr));
4444 assert (SvPOKp(sstr));
4445 assert (!SvIOK(sstr));
4446 assert (!SvIOKp(sstr));
4447 assert (!SvNOK(sstr));
4448 assert (!SvNOKp(sstr));
4450 if (SvIsCOW(sstr)) {
4452 if (SvLEN(sstr) == 0) {
4453 /* source is a COW shared hash key. */
4454 DEBUG_C(PerlIO_printf(Perl_debug_log,
4455 "Fast copy on write: Sharing hash\n"));
4456 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
4459 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4461 assert ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS);
4462 SvUPGRADE(sstr, SVt_PVIV);
4463 SvREADONLY_on(sstr);
4465 DEBUG_C(PerlIO_printf(Perl_debug_log,
4466 "Fast copy on write: Converting sstr to COW\n"));
4467 SV_COW_NEXT_SV_SET(dstr, sstr);
4469 SV_COW_NEXT_SV_SET(sstr, dstr);
4470 new_pv = SvPVX_mutable(sstr);
4473 SvPV_set(dstr, new_pv);
4474 SvFLAGS(dstr) = (SVt_PVIV|SVf_POK|SVp_POK|SVf_FAKE|SVf_READONLY);
4477 SvLEN_set(dstr, len);
4478 SvCUR_set(dstr, cur);
4487 =for apidoc sv_setpvn
4489 Copies a string into an SV. The C<len> parameter indicates the number of
4490 bytes to be copied. If the C<ptr> argument is NULL the SV will become
4491 undefined. Does not handle 'set' magic. See C<sv_setpvn_mg>.
4497 Perl_sv_setpvn(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4500 register char *dptr;
4502 PERL_ARGS_ASSERT_SV_SETPVN;
4504 SV_CHECK_THINKFIRST_COW_DROP(sv);
4510 /* len is STRLEN which is unsigned, need to copy to signed */
4513 Perl_croak(aTHX_ "panic: sv_setpvn called with negative strlen");
4515 SvUPGRADE(sv, SVt_PV);
4517 dptr = SvGROW(sv, len + 1);
4518 Move(ptr,dptr,len,char);
4521 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4526 =for apidoc sv_setpvn_mg
4528 Like C<sv_setpvn>, but also handles 'set' magic.
4534 Perl_sv_setpvn_mg(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4536 PERL_ARGS_ASSERT_SV_SETPVN_MG;
4538 sv_setpvn(sv,ptr,len);
4543 =for apidoc sv_setpv
4545 Copies a string into an SV. The string must be null-terminated. Does not
4546 handle 'set' magic. See C<sv_setpv_mg>.
4552 Perl_sv_setpv(pTHX_ register SV *const sv, register const char *const ptr)
4555 register STRLEN len;
4557 PERL_ARGS_ASSERT_SV_SETPV;
4559 SV_CHECK_THINKFIRST_COW_DROP(sv);
4565 SvUPGRADE(sv, SVt_PV);
4567 SvGROW(sv, len + 1);
4568 Move(ptr,SvPVX(sv),len+1,char);
4570 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4575 =for apidoc sv_setpv_mg
4577 Like C<sv_setpv>, but also handles 'set' magic.
4583 Perl_sv_setpv_mg(pTHX_ register SV *const sv, register const char *const ptr)
4585 PERL_ARGS_ASSERT_SV_SETPV_MG;
4592 =for apidoc sv_usepvn_flags
4594 Tells an SV to use C<ptr> to find its string value. Normally the
4595 string is stored inside the SV but sv_usepvn allows the SV to use an
4596 outside string. The C<ptr> should point to memory that was allocated
4597 by C<malloc>. The string length, C<len>, must be supplied. By default
4598 this function will realloc (i.e. move) the memory pointed to by C<ptr>,
4599 so that pointer should not be freed or used by the programmer after
4600 giving it to sv_usepvn, and neither should any pointers from "behind"
4601 that pointer (e.g. ptr + 1) be used.
4603 If C<flags> & SV_SMAGIC is true, will call SvSETMAGIC. If C<flags> &
4604 SV_HAS_TRAILING_NUL is true, then C<ptr[len]> must be NUL, and the realloc
4605 will be skipped. (i.e. the buffer is actually at least 1 byte longer than
4606 C<len>, and already meets the requirements for storing in C<SvPVX>)
4612 Perl_sv_usepvn_flags(pTHX_ SV *const sv, char *ptr, const STRLEN len, const U32 flags)
4617 PERL_ARGS_ASSERT_SV_USEPVN_FLAGS;
4619 SV_CHECK_THINKFIRST_COW_DROP(sv);
4620 SvUPGRADE(sv, SVt_PV);