3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by Larry Wall
7 * You may distribute under the terms of either the GNU General Public
8 * License or the Artistic License, as specified in the README file.
13 * 'I wonder what the Entish is for "yes" and "no",' he thought.
16 * [p.480 of _The Lord of the Rings_, III/iv: "Treebeard"]
22 * This file contains the code that creates, manipulates and destroys
23 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
24 * structure of an SV, so their creation and destruction is handled
25 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
26 * level functions (eg. substr, split, join) for each of the types are
39 /* Missing proto on LynxOS */
40 char *gconvert(double, int, int, char *);
44 # define SNPRINTF_G(nv, buffer, size, ndig) \
45 quadmath_snprintf(buffer, size, "%.*Qg", (int)ndig, (NV)(nv))
47 # define SNPRINTF_G(nv, buffer, size, ndig) \
48 PERL_UNUSED_RESULT(Gconvert((NV)(nv), (int)ndig, 0, buffer))
51 #ifndef SV_COW_THRESHOLD
52 # define SV_COW_THRESHOLD 0 /* COW iff len > K */
54 #ifndef SV_COWBUF_THRESHOLD
55 # define SV_COWBUF_THRESHOLD 1250 /* COW iff len > K */
57 #ifndef SV_COW_MAX_WASTE_THRESHOLD
58 # define SV_COW_MAX_WASTE_THRESHOLD 80 /* COW iff (len - cur) < K */
60 #ifndef SV_COWBUF_WASTE_THRESHOLD
61 # define SV_COWBUF_WASTE_THRESHOLD 80 /* COW iff (len - cur) < K */
63 #ifndef SV_COW_MAX_WASTE_FACTOR_THRESHOLD
64 # define SV_COW_MAX_WASTE_FACTOR_THRESHOLD 2 /* COW iff len < (cur * K) */
66 #ifndef SV_COWBUF_WASTE_FACTOR_THRESHOLD
67 # define SV_COWBUF_WASTE_FACTOR_THRESHOLD 2 /* COW iff len < (cur * K) */
69 /* Work around compiler warnings about unsigned >= THRESHOLD when thres-
72 # define GE_COW_THRESHOLD(cur) ((cur) >= SV_COW_THRESHOLD)
74 # define GE_COW_THRESHOLD(cur) 1
76 #if SV_COWBUF_THRESHOLD
77 # define GE_COWBUF_THRESHOLD(cur) ((cur) >= SV_COWBUF_THRESHOLD)
79 # define GE_COWBUF_THRESHOLD(cur) 1
81 #if SV_COW_MAX_WASTE_THRESHOLD
82 # define GE_COW_MAX_WASTE_THRESHOLD(cur,len) (((len)-(cur)) < SV_COW_MAX_WASTE_THRESHOLD)
84 # define GE_COW_MAX_WASTE_THRESHOLD(cur,len) 1
86 #if SV_COWBUF_WASTE_THRESHOLD
87 # define GE_COWBUF_WASTE_THRESHOLD(cur,len) (((len)-(cur)) < SV_COWBUF_WASTE_THRESHOLD)
89 # define GE_COWBUF_WASTE_THRESHOLD(cur,len) 1
91 #if SV_COW_MAX_WASTE_FACTOR_THRESHOLD
92 # define GE_COW_MAX_WASTE_FACTOR_THRESHOLD(cur,len) ((len) < SV_COW_MAX_WASTE_FACTOR_THRESHOLD * (cur))
94 # define GE_COW_MAX_WASTE_FACTOR_THRESHOLD(cur,len) 1
96 #if SV_COWBUF_WASTE_FACTOR_THRESHOLD
97 # define GE_COWBUF_WASTE_FACTOR_THRESHOLD(cur,len) ((len) < SV_COWBUF_WASTE_FACTOR_THRESHOLD * (cur))
99 # define GE_COWBUF_WASTE_FACTOR_THRESHOLD(cur,len) 1
102 #define CHECK_COW_THRESHOLD(cur,len) (\
103 GE_COW_THRESHOLD((cur)) && \
104 GE_COW_MAX_WASTE_THRESHOLD((cur),(len)) && \
105 GE_COW_MAX_WASTE_FACTOR_THRESHOLD((cur),(len)) \
107 #define CHECK_COWBUF_THRESHOLD(cur,len) (\
108 GE_COWBUF_THRESHOLD((cur)) && \
109 GE_COWBUF_WASTE_THRESHOLD((cur),(len)) && \
110 GE_COWBUF_WASTE_FACTOR_THRESHOLD((cur),(len)) \
113 #ifdef PERL_UTF8_CACHE_ASSERT
114 /* if adding more checks watch out for the following tests:
115 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
116 * lib/utf8.t lib/Unicode/Collate/t/index.t
119 # define ASSERT_UTF8_CACHE(cache) \
120 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
121 assert((cache)[2] <= (cache)[3]); \
122 assert((cache)[3] <= (cache)[1]);} \
125 # define ASSERT_UTF8_CACHE(cache) NOOP
128 static const char S_destroy[] = "DESTROY";
129 #define S_destroy_len (sizeof(S_destroy)-1)
131 /* ============================================================================
133 =head1 Allocation and deallocation of SVs.
134 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
135 sv, av, hv...) contains type and reference count information, and for
136 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
137 contains fields specific to each type. Some types store all they need
138 in the head, so don't have a body.
140 In all but the most memory-paranoid configurations (ex: PURIFY), heads
141 and bodies are allocated out of arenas, which by default are
142 approximately 4K chunks of memory parcelled up into N heads or bodies.
143 Sv-bodies are allocated by their sv-type, guaranteeing size
144 consistency needed to allocate safely from arrays.
146 For SV-heads, the first slot in each arena is reserved, and holds a
147 link to the next arena, some flags, and a note of the number of slots.
148 Snaked through each arena chain is a linked list of free items; when
149 this becomes empty, an extra arena is allocated and divided up into N
150 items which are threaded into the free list.
152 SV-bodies are similar, but they use arena-sets by default, which
153 separate the link and info from the arena itself, and reclaim the 1st
154 slot in the arena. SV-bodies are further described later.
156 The following global variables are associated with arenas:
158 PL_sv_arenaroot pointer to list of SV arenas
159 PL_sv_root pointer to list of free SV structures
161 PL_body_arenas head of linked-list of body arenas
162 PL_body_roots[] array of pointers to list of free bodies of svtype
163 arrays are indexed by the svtype needed
165 A few special SV heads are not allocated from an arena, but are
166 instead directly created in the interpreter structure, eg PL_sv_undef.
167 The size of arenas can be changed from the default by setting
168 PERL_ARENA_SIZE appropriately at compile time.
170 The SV arena serves the secondary purpose of allowing still-live SVs
171 to be located and destroyed during final cleanup.
173 At the lowest level, the macros new_SV() and del_SV() grab and free
174 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
175 to return the SV to the free list with error checking.) new_SV() calls
176 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
177 SVs in the free list have their SvTYPE field set to all ones.
179 At the time of very final cleanup, sv_free_arenas() is called from
180 perl_destruct() to physically free all the arenas allocated since the
181 start of the interpreter.
183 The function visit() scans the SV arenas list, and calls a specified
184 function for each SV it finds which is still live - ie which has an SvTYPE
185 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
186 following functions (specified as [function that calls visit()] / [function
187 called by visit() for each SV]):
189 sv_report_used() / do_report_used()
190 dump all remaining SVs (debugging aid)
192 sv_clean_objs() / do_clean_objs(),do_clean_named_objs(),
193 do_clean_named_io_objs(),do_curse()
194 Attempt to free all objects pointed to by RVs,
195 try to do the same for all objects indir-
196 ectly referenced by typeglobs too, and
197 then do a final sweep, cursing any
198 objects that remain. Called once from
199 perl_destruct(), prior to calling sv_clean_all()
202 sv_clean_all() / do_clean_all()
203 SvREFCNT_dec(sv) each remaining SV, possibly
204 triggering an sv_free(). It also sets the
205 SVf_BREAK flag on the SV to indicate that the
206 refcnt has been artificially lowered, and thus
207 stopping sv_free() from giving spurious warnings
208 about SVs which unexpectedly have a refcnt
209 of zero. called repeatedly from perl_destruct()
210 until there are no SVs left.
212 =head2 Arena allocator API Summary
214 Private API to rest of sv.c
218 new_XPVNV(), del_XPVGV(),
223 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
227 * ========================================================================= */
230 * "A time to plant, and a time to uproot what was planted..."
234 # define MEM_LOG_NEW_SV(sv, file, line, func) \
235 Perl_mem_log_new_sv(sv, file, line, func)
236 # define MEM_LOG_DEL_SV(sv, file, line, func) \
237 Perl_mem_log_del_sv(sv, file, line, func)
239 # define MEM_LOG_NEW_SV(sv, file, line, func) NOOP
240 # define MEM_LOG_DEL_SV(sv, file, line, func) NOOP
243 #ifdef DEBUG_LEAKING_SCALARS
244 # define FREE_SV_DEBUG_FILE(sv) STMT_START { \
245 if ((sv)->sv_debug_file) PerlMemShared_free((sv)->sv_debug_file); \
247 # define DEBUG_SV_SERIAL(sv) \
248 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%" UVxf ": (%05ld) del_SV\n", \
249 PTR2UV(sv), (long)(sv)->sv_debug_serial))
251 # define FREE_SV_DEBUG_FILE(sv)
252 # define DEBUG_SV_SERIAL(sv) NOOP
256 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
257 # define SvARENA_CHAIN_SET(sv,val) (sv)->sv_u.svu_rv = MUTABLE_SV((val))
258 /* Whilst I'd love to do this, it seems that things like to check on
260 # define POISON_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
262 # define POISON_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
263 PoisonNew(&SvREFCNT(sv), 1, U32)
265 # define SvARENA_CHAIN(sv) SvANY(sv)
266 # define SvARENA_CHAIN_SET(sv,val) SvANY(sv) = (void *)(val)
267 # define POISON_SV_HEAD(sv)
270 /* Mark an SV head as unused, and add to free list.
272 * If SVf_BREAK is set, skip adding it to the free list, as this SV had
273 * its refcount artificially decremented during global destruction, so
274 * there may be dangling pointers to it. The last thing we want in that
275 * case is for it to be reused. */
277 #define plant_SV(p) \
279 const U32 old_flags = SvFLAGS(p); \
280 MEM_LOG_DEL_SV(p, __FILE__, __LINE__, FUNCTION__); \
281 DEBUG_SV_SERIAL(p); \
282 FREE_SV_DEBUG_FILE(p); \
284 SvFLAGS(p) = SVTYPEMASK; \
285 if (!(old_flags & SVf_BREAK)) { \
286 SvARENA_CHAIN_SET(p, PL_sv_root); \
292 #define uproot_SV(p) \
295 PL_sv_root = MUTABLE_SV(SvARENA_CHAIN(p)); \
300 /* make some more SVs by adding another arena */
306 char *chunk; /* must use New here to match call to */
307 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
308 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
313 /* new_SV(): return a new, empty SV head */
315 #ifdef DEBUG_LEAKING_SCALARS
316 /* provide a real function for a debugger to play with */
318 S_new_SV(pTHX_ const char *file, int line, const char *func)
325 sv = S_more_sv(aTHX);
329 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
330 sv->sv_debug_line = (U16) (PL_parser && PL_parser->copline != NOLINE
336 sv->sv_debug_inpad = 0;
337 sv->sv_debug_parent = NULL;
338 sv->sv_debug_file = PL_curcop ? savesharedpv(CopFILE(PL_curcop)): NULL;
340 sv->sv_debug_serial = PL_sv_serial++;
342 MEM_LOG_NEW_SV(sv, file, line, func);
343 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%" UVxf ": (%05ld) new_SV (from %s:%d [%s])\n",
344 PTR2UV(sv), (long)sv->sv_debug_serial, file, line, func));
348 # define new_SV(p) (p)=S_new_SV(aTHX_ __FILE__, __LINE__, FUNCTION__)
356 (p) = S_more_sv(aTHX); \
360 MEM_LOG_NEW_SV(p, __FILE__, __LINE__, FUNCTION__); \
365 /* del_SV(): return an empty SV head to the free list */
378 S_del_sv(pTHX_ SV *p)
380 PERL_ARGS_ASSERT_DEL_SV;
385 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
386 const SV * const sv = sva + 1;
387 const SV * const svend = &sva[SvREFCNT(sva)];
388 if (p >= sv && p < svend) {
394 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
395 "Attempt to free non-arena SV: 0x%" UVxf
396 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
403 #else /* ! DEBUGGING */
405 #define del_SV(p) plant_SV(p)
407 #endif /* DEBUGGING */
411 =head1 SV Manipulation Functions
413 =for apidoc sv_add_arena
415 Given a chunk of memory, link it to the head of the list of arenas,
416 and split it into a list of free SVs.
422 S_sv_add_arena(pTHX_ char *const ptr, const U32 size, const U32 flags)
424 SV *const sva = MUTABLE_SV(ptr);
428 PERL_ARGS_ASSERT_SV_ADD_ARENA;
430 /* The first SV in an arena isn't an SV. */
431 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
432 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
433 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
435 PL_sv_arenaroot = sva;
436 PL_sv_root = sva + 1;
438 svend = &sva[SvREFCNT(sva) - 1];
441 SvARENA_CHAIN_SET(sv, (sv + 1));
445 /* Must always set typemask because it's always checked in on cleanup
446 when the arenas are walked looking for objects. */
447 SvFLAGS(sv) = SVTYPEMASK;
450 SvARENA_CHAIN_SET(sv, 0);
454 SvFLAGS(sv) = SVTYPEMASK;
457 /* visit(): call the named function for each non-free SV in the arenas
458 * whose flags field matches the flags/mask args. */
461 S_visit(pTHX_ SVFUNC_t f, const U32 flags, const U32 mask)
466 PERL_ARGS_ASSERT_VISIT;
468 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
469 const SV * const svend = &sva[SvREFCNT(sva)];
471 for (sv = sva + 1; sv < svend; ++sv) {
472 if (SvTYPE(sv) != (svtype)SVTYPEMASK
473 && (sv->sv_flags & mask) == flags
486 /* called by sv_report_used() for each live SV */
489 do_report_used(pTHX_ SV *const sv)
491 if (SvTYPE(sv) != (svtype)SVTYPEMASK) {
492 PerlIO_printf(Perl_debug_log, "****\n");
499 =for apidoc sv_report_used
501 Dump the contents of all SVs not yet freed (debugging aid).
507 Perl_sv_report_used(pTHX)
510 visit(do_report_used, 0, 0);
516 /* called by sv_clean_objs() for each live SV */
519 do_clean_objs(pTHX_ SV *const ref)
523 SV * const target = SvRV(ref);
524 if (SvOBJECT(target)) {
525 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
526 if (SvWEAKREF(ref)) {
527 sv_del_backref(target, ref);
533 SvREFCNT_dec_NN(target);
540 /* clear any slots in a GV which hold objects - except IO;
541 * called by sv_clean_objs() for each live GV */
544 do_clean_named_objs(pTHX_ SV *const sv)
547 assert(SvTYPE(sv) == SVt_PVGV);
548 assert(isGV_with_GP(sv));
552 /* freeing GP entries may indirectly free the current GV;
553 * hold onto it while we mess with the GP slots */
556 if ( ((obj = GvSV(sv) )) && SvOBJECT(obj)) {
557 DEBUG_D((PerlIO_printf(Perl_debug_log,
558 "Cleaning named glob SV object:\n "), sv_dump(obj)));
560 SvREFCNT_dec_NN(obj);
562 if ( ((obj = MUTABLE_SV(GvAV(sv)) )) && SvOBJECT(obj)) {
563 DEBUG_D((PerlIO_printf(Perl_debug_log,
564 "Cleaning named glob AV object:\n "), sv_dump(obj)));
566 SvREFCNT_dec_NN(obj);
568 if ( ((obj = MUTABLE_SV(GvHV(sv)) )) && SvOBJECT(obj)) {
569 DEBUG_D((PerlIO_printf(Perl_debug_log,
570 "Cleaning named glob HV object:\n "), sv_dump(obj)));
572 SvREFCNT_dec_NN(obj);
574 if ( ((obj = MUTABLE_SV(GvCV(sv)) )) && SvOBJECT(obj)) {
575 DEBUG_D((PerlIO_printf(Perl_debug_log,
576 "Cleaning named glob CV object:\n "), sv_dump(obj)));
578 SvREFCNT_dec_NN(obj);
580 SvREFCNT_dec_NN(sv); /* undo the inc above */
583 /* clear any IO slots in a GV which hold objects (except stderr, defout);
584 * called by sv_clean_objs() for each live GV */
587 do_clean_named_io_objs(pTHX_ SV *const sv)
590 assert(SvTYPE(sv) == SVt_PVGV);
591 assert(isGV_with_GP(sv));
592 if (!GvGP(sv) || sv == (SV*)PL_stderrgv || sv == (SV*)PL_defoutgv)
596 if ( ((obj = MUTABLE_SV(GvIO(sv)) )) && SvOBJECT(obj)) {
597 DEBUG_D((PerlIO_printf(Perl_debug_log,
598 "Cleaning named glob IO object:\n "), sv_dump(obj)));
600 SvREFCNT_dec_NN(obj);
602 SvREFCNT_dec_NN(sv); /* undo the inc above */
605 /* Void wrapper to pass to visit() */
607 do_curse(pTHX_ SV * const sv) {
608 if ((PL_stderrgv && GvGP(PL_stderrgv) && (SV*)GvIO(PL_stderrgv) == sv)
609 || (PL_defoutgv && GvGP(PL_defoutgv) && (SV*)GvIO(PL_defoutgv) == sv))
615 =for apidoc sv_clean_objs
617 Attempt to destroy all objects not yet freed.
623 Perl_sv_clean_objs(pTHX)
626 PL_in_clean_objs = TRUE;
627 visit(do_clean_objs, SVf_ROK, SVf_ROK);
628 /* Some barnacles may yet remain, clinging to typeglobs.
629 * Run the non-IO destructors first: they may want to output
630 * error messages, close files etc */
631 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
632 visit(do_clean_named_io_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
633 /* And if there are some very tenacious barnacles clinging to arrays,
634 closures, or what have you.... */
635 visit(do_curse, SVs_OBJECT, SVs_OBJECT);
636 olddef = PL_defoutgv;
637 PL_defoutgv = NULL; /* disable skip of PL_defoutgv */
638 if (olddef && isGV_with_GP(olddef))
639 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olddef));
640 olderr = PL_stderrgv;
641 PL_stderrgv = NULL; /* disable skip of PL_stderrgv */
642 if (olderr && isGV_with_GP(olderr))
643 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olderr));
644 SvREFCNT_dec(olddef);
645 PL_in_clean_objs = FALSE;
648 /* called by sv_clean_all() for each live SV */
651 do_clean_all(pTHX_ SV *const sv)
653 if (sv == (const SV *) PL_fdpid || sv == (const SV *)PL_strtab) {
654 /* don't clean pid table and strtab */
657 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%" UVxf "\n", PTR2UV(sv)) ));
658 SvFLAGS(sv) |= SVf_BREAK;
663 =for apidoc sv_clean_all
665 Decrement the refcnt of each remaining SV, possibly triggering a
666 cleanup. This function may have to be called multiple times to free
667 SVs which are in complex self-referential hierarchies.
673 Perl_sv_clean_all(pTHX)
676 PL_in_clean_all = TRUE;
677 cleaned = visit(do_clean_all, 0,0);
682 ARENASETS: a meta-arena implementation which separates arena-info
683 into struct arena_set, which contains an array of struct
684 arena_descs, each holding info for a single arena. By separating
685 the meta-info from the arena, we recover the 1st slot, formerly
686 borrowed for list management. The arena_set is about the size of an
687 arena, avoiding the needless malloc overhead of a naive linked-list.
689 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
690 memory in the last arena-set (1/2 on average). In trade, we get
691 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
692 smaller types). The recovery of the wasted space allows use of
693 small arenas for large, rare body types, by changing array* fields
694 in body_details_by_type[] below.
697 char *arena; /* the raw storage, allocated aligned */
698 size_t size; /* its size ~4k typ */
699 svtype utype; /* bodytype stored in arena */
704 /* Get the maximum number of elements in set[] such that struct arena_set
705 will fit within PERL_ARENA_SIZE, which is probably just under 4K, and
706 therefore likely to be 1 aligned memory page. */
708 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
709 - 2 * sizeof(int)) / sizeof (struct arena_desc))
712 struct arena_set* next;
713 unsigned int set_size; /* ie ARENAS_PER_SET */
714 unsigned int curr; /* index of next available arena-desc */
715 struct arena_desc set[ARENAS_PER_SET];
719 =for apidoc sv_free_arenas
721 Deallocate the memory used by all arenas. Note that all the individual SV
722 heads and bodies within the arenas must already have been freed.
728 Perl_sv_free_arenas(pTHX)
734 /* Free arenas here, but be careful about fake ones. (We assume
735 contiguity of the fake ones with the corresponding real ones.) */
737 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
738 svanext = MUTABLE_SV(SvANY(sva));
739 while (svanext && SvFAKE(svanext))
740 svanext = MUTABLE_SV(SvANY(svanext));
747 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
750 struct arena_set *current = aroot;
753 assert(aroot->set[i].arena);
754 Safefree(aroot->set[i].arena);
762 i = PERL_ARENA_ROOTS_SIZE;
764 PL_body_roots[i] = 0;
771 Here are mid-level routines that manage the allocation of bodies out
772 of the various arenas. There are 5 kinds of arenas:
774 1. SV-head arenas, which are discussed and handled above
775 2. regular body arenas
776 3. arenas for reduced-size bodies
779 Arena types 2 & 3 are chained by body-type off an array of
780 arena-root pointers, which is indexed by svtype. Some of the
781 larger/less used body types are malloced singly, since a large
782 unused block of them is wasteful. Also, several svtypes dont have
783 bodies; the data fits into the sv-head itself. The arena-root
784 pointer thus has a few unused root-pointers (which may be hijacked
785 later for arena types 4,5)
787 3 differs from 2 as an optimization; some body types have several
788 unused fields in the front of the structure (which are kept in-place
789 for consistency). These bodies can be allocated in smaller chunks,
790 because the leading fields arent accessed. Pointers to such bodies
791 are decremented to point at the unused 'ghost' memory, knowing that
792 the pointers are used with offsets to the real memory.
796 Allocation of SV-bodies is similar to SV-heads, differing as follows;
797 the allocation mechanism is used for many body types, so is somewhat
798 more complicated, it uses arena-sets, and has no need for still-live
801 At the outermost level, (new|del)_X*V macros return bodies of the
802 appropriate type. These macros call either (new|del)_body_type or
803 (new|del)_body_allocated macro pairs, depending on specifics of the
804 type. Most body types use the former pair, the latter pair is used to
805 allocate body types with "ghost fields".
807 "ghost fields" are fields that are unused in certain types, and
808 consequently don't need to actually exist. They are declared because
809 they're part of a "base type", which allows use of functions as
810 methods. The simplest examples are AVs and HVs, 2 aggregate types
811 which don't use the fields which support SCALAR semantics.
813 For these types, the arenas are carved up into appropriately sized
814 chunks, we thus avoid wasted memory for those unaccessed members.
815 When bodies are allocated, we adjust the pointer back in memory by the
816 size of the part not allocated, so it's as if we allocated the full
817 structure. (But things will all go boom if you write to the part that
818 is "not there", because you'll be overwriting the last members of the
819 preceding structure in memory.)
821 We calculate the correction using the STRUCT_OFFSET macro on the first
822 member present. If the allocated structure is smaller (no initial NV
823 actually allocated) then the net effect is to subtract the size of the NV
824 from the pointer, to return a new pointer as if an initial NV were actually
825 allocated. (We were using structures named *_allocated for this, but
826 this turned out to be a subtle bug, because a structure without an NV
827 could have a lower alignment constraint, but the compiler is allowed to
828 optimised accesses based on the alignment constraint of the actual pointer
829 to the full structure, for example, using a single 64 bit load instruction
830 because it "knows" that two adjacent 32 bit members will be 8-byte aligned.)
832 This is the same trick as was used for NV and IV bodies. Ironically it
833 doesn't need to be used for NV bodies any more, because NV is now at
834 the start of the structure. IV bodies, and also in some builds NV bodies,
835 don't need it either, because they are no longer allocated.
837 In turn, the new_body_* allocators call S_new_body(), which invokes
838 new_body_inline macro, which takes a lock, and takes a body off the
839 linked list at PL_body_roots[sv_type], calling Perl_more_bodies() if
840 necessary to refresh an empty list. Then the lock is released, and
841 the body is returned.
843 Perl_more_bodies allocates a new arena, and carves it up into an array of N
844 bodies, which it strings into a linked list. It looks up arena-size
845 and body-size from the body_details table described below, thus
846 supporting the multiple body-types.
848 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
849 the (new|del)_X*V macros are mapped directly to malloc/free.
851 For each sv-type, struct body_details bodies_by_type[] carries
852 parameters which control these aspects of SV handling:
854 Arena_size determines whether arenas are used for this body type, and if
855 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
856 zero, forcing individual mallocs and frees.
858 Body_size determines how big a body is, and therefore how many fit into
859 each arena. Offset carries the body-pointer adjustment needed for
860 "ghost fields", and is used in *_allocated macros.
862 But its main purpose is to parameterize info needed in
863 Perl_sv_upgrade(). The info here dramatically simplifies the function
864 vs the implementation in 5.8.8, making it table-driven. All fields
865 are used for this, except for arena_size.
867 For the sv-types that have no bodies, arenas are not used, so those
868 PL_body_roots[sv_type] are unused, and can be overloaded. In
869 something of a special case, SVt_NULL is borrowed for HE arenas;
870 PL_body_roots[HE_SVSLOT=SVt_NULL] is filled by S_more_he, but the
871 bodies_by_type[SVt_NULL] slot is not used, as the table is not
876 struct body_details {
877 U8 body_size; /* Size to allocate */
878 U8 copy; /* Size of structure to copy (may be shorter) */
879 U8 offset; /* Size of unalloced ghost fields to first alloced field*/
880 PERL_BITFIELD8 type : 4; /* We have space for a sanity check. */
881 PERL_BITFIELD8 cant_upgrade : 1;/* Cannot upgrade this type */
882 PERL_BITFIELD8 zero_nv : 1; /* zero the NV when upgrading from this */
883 PERL_BITFIELD8 arena : 1; /* Allocated from an arena */
884 U32 arena_size; /* Size of arena to allocate */
892 /* With -DPURFIY we allocate everything directly, and don't use arenas.
893 This seems a rather elegant way to simplify some of the code below. */
894 #define HASARENA FALSE
896 #define HASARENA TRUE
898 #define NOARENA FALSE
900 /* Size the arenas to exactly fit a given number of bodies. A count
901 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
902 simplifying the default. If count > 0, the arena is sized to fit
903 only that many bodies, allowing arenas to be used for large, rare
904 bodies (XPVFM, XPVIO) without undue waste. The arena size is
905 limited by PERL_ARENA_SIZE, so we can safely oversize the
908 #define FIT_ARENA0(body_size) \
909 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
910 #define FIT_ARENAn(count,body_size) \
911 ( count * body_size <= PERL_ARENA_SIZE) \
912 ? count * body_size \
913 : FIT_ARENA0 (body_size)
914 #define FIT_ARENA(count,body_size) \
916 ? FIT_ARENAn (count, body_size) \
917 : FIT_ARENA0 (body_size))
919 /* Calculate the length to copy. Specifically work out the length less any
920 final padding the compiler needed to add. See the comment in sv_upgrade
921 for why copying the padding proved to be a bug. */
923 #define copy_length(type, last_member) \
924 STRUCT_OFFSET(type, last_member) \
925 + sizeof (((type*)SvANY((const SV *)0))->last_member)
927 static const struct body_details bodies_by_type[] = {
928 /* HEs use this offset for their arena. */
929 { 0, 0, 0, SVt_NULL, FALSE, NONV, NOARENA, 0 },
931 /* IVs are in the head, so the allocation size is 0. */
933 sizeof(IV), /* This is used to copy out the IV body. */
934 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
935 NOARENA /* IVS don't need an arena */, 0
940 STRUCT_OFFSET(XPVNV, xnv_u),
941 SVt_NV, FALSE, HADNV, NOARENA, 0 },
943 { sizeof(NV), sizeof(NV),
944 STRUCT_OFFSET(XPVNV, xnv_u),
945 SVt_NV, FALSE, HADNV, HASARENA, FIT_ARENA(0, sizeof(NV)) },
948 { sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur),
949 copy_length(XPV, xpv_len) - STRUCT_OFFSET(XPV, xpv_cur),
950 + STRUCT_OFFSET(XPV, xpv_cur),
951 SVt_PV, FALSE, NONV, HASARENA,
952 FIT_ARENA(0, sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur)) },
954 { sizeof(XINVLIST) - STRUCT_OFFSET(XPV, xpv_cur),
955 copy_length(XINVLIST, is_offset) - STRUCT_OFFSET(XPV, xpv_cur),
956 + STRUCT_OFFSET(XPV, xpv_cur),
957 SVt_INVLIST, TRUE, NONV, HASARENA,
958 FIT_ARENA(0, sizeof(XINVLIST) - STRUCT_OFFSET(XPV, xpv_cur)) },
960 { sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur),
961 copy_length(XPVIV, xiv_u) - STRUCT_OFFSET(XPV, xpv_cur),
962 + STRUCT_OFFSET(XPV, xpv_cur),
963 SVt_PVIV, FALSE, NONV, HASARENA,
964 FIT_ARENA(0, sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur)) },
966 { sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur),
967 copy_length(XPVNV, xnv_u) - STRUCT_OFFSET(XPV, xpv_cur),
968 + STRUCT_OFFSET(XPV, xpv_cur),
969 SVt_PVNV, FALSE, HADNV, HASARENA,
970 FIT_ARENA(0, sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur)) },
972 { sizeof(XPVMG), copy_length(XPVMG, xnv_u), 0, SVt_PVMG, FALSE, HADNV,
973 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
978 SVt_REGEXP, TRUE, NONV, HASARENA,
979 FIT_ARENA(0, sizeof(regexp))
982 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
983 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
985 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
986 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
989 copy_length(XPVAV, xav_alloc),
991 SVt_PVAV, TRUE, NONV, HASARENA,
992 FIT_ARENA(0, sizeof(XPVAV)) },
995 copy_length(XPVHV, xhv_max),
997 SVt_PVHV, TRUE, NONV, HASARENA,
998 FIT_ARENA(0, sizeof(XPVHV)) },
1003 SVt_PVCV, TRUE, NONV, HASARENA,
1004 FIT_ARENA(0, sizeof(XPVCV)) },
1009 SVt_PVFM, TRUE, NONV, NOARENA,
1010 FIT_ARENA(20, sizeof(XPVFM)) },
1015 SVt_PVIO, TRUE, NONV, HASARENA,
1016 FIT_ARENA(24, sizeof(XPVIO)) },
1019 #define new_body_allocated(sv_type) \
1020 (void *)((char *)S_new_body(aTHX_ sv_type) \
1021 - bodies_by_type[sv_type].offset)
1023 /* return a thing to the free list */
1025 #define del_body(thing, root) \
1027 void ** const thing_copy = (void **)thing; \
1028 *thing_copy = *root; \
1029 *root = (void*)thing_copy; \
1033 #if !(NVSIZE <= IVSIZE)
1034 # define new_XNV() safemalloc(sizeof(XPVNV))
1036 #define new_XPVNV() safemalloc(sizeof(XPVNV))
1037 #define new_XPVMG() safemalloc(sizeof(XPVMG))
1039 #define del_XPVGV(p) safefree(p)
1043 #if !(NVSIZE <= IVSIZE)
1044 # define new_XNV() new_body_allocated(SVt_NV)
1046 #define new_XPVNV() new_body_allocated(SVt_PVNV)
1047 #define new_XPVMG() new_body_allocated(SVt_PVMG)
1049 #define del_XPVGV(p) del_body(p + bodies_by_type[SVt_PVGV].offset, \
1050 &PL_body_roots[SVt_PVGV])
1054 /* no arena for you! */
1056 #define new_NOARENA(details) \
1057 safemalloc((details)->body_size + (details)->offset)
1058 #define new_NOARENAZ(details) \
1059 safecalloc((details)->body_size + (details)->offset, 1)
1062 Perl_more_bodies (pTHX_ const svtype sv_type, const size_t body_size,
1063 const size_t arena_size)
1065 void ** const root = &PL_body_roots[sv_type];
1066 struct arena_desc *adesc;
1067 struct arena_set *aroot = (struct arena_set *) PL_body_arenas;
1071 const size_t good_arena_size = Perl_malloc_good_size(arena_size);
1072 #if defined(DEBUGGING) && defined(PERL_GLOBAL_STRUCT)
1075 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1076 static bool done_sanity_check;
1078 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1079 * variables like done_sanity_check. */
1080 if (!done_sanity_check) {
1081 unsigned int i = SVt_LAST;
1083 done_sanity_check = TRUE;
1086 assert (bodies_by_type[i].type == i);
1092 /* may need new arena-set to hold new arena */
1093 if (!aroot || aroot->curr >= aroot->set_size) {
1094 struct arena_set *newroot;
1095 Newxz(newroot, 1, struct arena_set);
1096 newroot->set_size = ARENAS_PER_SET;
1097 newroot->next = aroot;
1099 PL_body_arenas = (void *) newroot;
1100 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
1103 /* ok, now have arena-set with at least 1 empty/available arena-desc */
1104 curr = aroot->curr++;
1105 adesc = &(aroot->set[curr]);
1106 assert(!adesc->arena);
1108 Newx(adesc->arena, good_arena_size, char);
1109 adesc->size = good_arena_size;
1110 adesc->utype = sv_type;
1111 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %" UVuf "\n",
1112 curr, (void*)adesc->arena, (UV)good_arena_size));
1114 start = (char *) adesc->arena;
1116 /* Get the address of the byte after the end of the last body we can fit.
1117 Remember, this is integer division: */
1118 end = start + good_arena_size / body_size * body_size;
1120 /* computed count doesn't reflect the 1st slot reservation */
1121 #if defined(MYMALLOC) || defined(HAS_MALLOC_GOOD_SIZE)
1122 DEBUG_m(PerlIO_printf(Perl_debug_log,
1123 "arena %p end %p arena-size %d (from %d) type %d "
1125 (void*)start, (void*)end, (int)good_arena_size,
1126 (int)arena_size, sv_type, (int)body_size,
1127 (int)good_arena_size / (int)body_size));
1129 DEBUG_m(PerlIO_printf(Perl_debug_log,
1130 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1131 (void*)start, (void*)end,
1132 (int)arena_size, sv_type, (int)body_size,
1133 (int)good_arena_size / (int)body_size));
1135 *root = (void *)start;
1138 /* Where the next body would start: */
1139 char * const next = start + body_size;
1142 /* This is the last body: */
1143 assert(next == end);
1145 *(void **)start = 0;
1149 *(void**) start = (void *)next;
1154 /* grab a new thing from the free list, allocating more if necessary.
1155 The inline version is used for speed in hot routines, and the
1156 function using it serves the rest (unless PURIFY).
1158 #define new_body_inline(xpv, sv_type) \
1160 void ** const r3wt = &PL_body_roots[sv_type]; \
1161 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1162 ? *((void **)(r3wt)) : Perl_more_bodies(aTHX_ sv_type, \
1163 bodies_by_type[sv_type].body_size,\
1164 bodies_by_type[sv_type].arena_size)); \
1165 *(r3wt) = *(void**)(xpv); \
1171 S_new_body(pTHX_ const svtype sv_type)
1174 new_body_inline(xpv, sv_type);
1180 static const struct body_details fake_rv =
1181 { 0, 0, 0, SVt_IV, FALSE, NONV, NOARENA, 0 };
1184 =for apidoc sv_upgrade
1186 Upgrade an SV to a more complex form. Generally adds a new body type to the
1187 SV, then copies across as much information as possible from the old body.
1188 It croaks if the SV is already in a more complex form than requested. You
1189 generally want to use the C<SvUPGRADE> macro wrapper, which checks the type
1190 before calling C<sv_upgrade>, and hence does not croak. See also
1197 Perl_sv_upgrade(pTHX_ SV *const sv, svtype new_type)
1201 const svtype old_type = SvTYPE(sv);
1202 const struct body_details *new_type_details;
1203 const struct body_details *old_type_details
1204 = bodies_by_type + old_type;
1205 SV *referent = NULL;
1207 PERL_ARGS_ASSERT_SV_UPGRADE;
1209 if (old_type == new_type)
1212 /* This clause was purposefully added ahead of the early return above to
1213 the shared string hackery for (sort {$a <=> $b} keys %hash), with the
1214 inference by Nick I-S that it would fix other troublesome cases. See
1215 changes 7162, 7163 (f130fd4589cf5fbb24149cd4db4137c8326f49c1 and parent)
1217 Given that shared hash key scalars are no longer PVIV, but PV, there is
1218 no longer need to unshare so as to free up the IVX slot for its proper
1219 purpose. So it's safe to move the early return earlier. */
1221 if (new_type > SVt_PVMG && SvIsCOW(sv)) {
1222 sv_force_normal_flags(sv, 0);
1225 old_body = SvANY(sv);
1227 /* Copying structures onto other structures that have been neatly zeroed
1228 has a subtle gotcha. Consider XPVMG
1230 +------+------+------+------+------+-------+-------+
1231 | NV | CUR | LEN | IV | MAGIC | STASH |
1232 +------+------+------+------+------+-------+-------+
1233 0 4 8 12 16 20 24 28
1235 where NVs are aligned to 8 bytes, so that sizeof that structure is
1236 actually 32 bytes long, with 4 bytes of padding at the end:
1238 +------+------+------+------+------+-------+-------+------+
1239 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1240 +------+------+------+------+------+-------+-------+------+
1241 0 4 8 12 16 20 24 28 32
1243 so what happens if you allocate memory for this structure:
1245 +------+------+------+------+------+-------+-------+------+------+...
1246 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1247 +------+------+------+------+------+-------+-------+------+------+...
1248 0 4 8 12 16 20 24 28 32 36
1250 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1251 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1252 started out as zero once, but it's quite possible that it isn't. So now,
1253 rather than a nicely zeroed GP, you have it pointing somewhere random.
1256 (In fact, GP ends up pointing at a previous GP structure, because the
1257 principle cause of the padding in XPVMG getting garbage is a copy of
1258 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1259 this happens to be moot because XPVGV has been re-ordered, with GP
1260 no longer after STASH)
1262 So we are careful and work out the size of used parts of all the
1270 referent = SvRV(sv);
1271 old_type_details = &fake_rv;
1272 if (new_type == SVt_NV)
1273 new_type = SVt_PVNV;
1275 if (new_type < SVt_PVIV) {
1276 new_type = (new_type == SVt_NV)
1277 ? SVt_PVNV : SVt_PVIV;
1282 if (new_type < SVt_PVNV) {
1283 new_type = SVt_PVNV;
1287 assert(new_type > SVt_PV);
1288 STATIC_ASSERT_STMT(SVt_IV < SVt_PV);
1289 STATIC_ASSERT_STMT(SVt_NV < SVt_PV);
1296 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1297 there's no way that it can be safely upgraded, because perl.c
1298 expects to Safefree(SvANY(PL_mess_sv)) */
1299 assert(sv != PL_mess_sv);
1302 if (UNLIKELY(old_type_details->cant_upgrade))
1303 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1304 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1307 if (UNLIKELY(old_type > new_type))
1308 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1309 (int)old_type, (int)new_type);
1311 new_type_details = bodies_by_type + new_type;
1313 SvFLAGS(sv) &= ~SVTYPEMASK;
1314 SvFLAGS(sv) |= new_type;
1316 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1317 the return statements above will have triggered. */
1318 assert (new_type != SVt_NULL);
1321 assert(old_type == SVt_NULL);
1322 SET_SVANY_FOR_BODYLESS_IV(sv);
1326 assert(old_type == SVt_NULL);
1327 #if NVSIZE <= IVSIZE
1328 SET_SVANY_FOR_BODYLESS_NV(sv);
1330 SvANY(sv) = new_XNV();
1336 assert(new_type_details->body_size);
1339 assert(new_type_details->arena);
1340 assert(new_type_details->arena_size);
1341 /* This points to the start of the allocated area. */
1342 new_body_inline(new_body, new_type);
1343 Zero(new_body, new_type_details->body_size, char);
1344 new_body = ((char *)new_body) - new_type_details->offset;
1346 /* We always allocated the full length item with PURIFY. To do this
1347 we fake things so that arena is false for all 16 types.. */
1348 new_body = new_NOARENAZ(new_type_details);
1350 SvANY(sv) = new_body;
1351 if (new_type == SVt_PVAV) {
1355 if (old_type_details->body_size) {
1358 /* It will have been zeroed when the new body was allocated.
1359 Lets not write to it, in case it confuses a write-back
1365 #ifndef NODEFAULT_SHAREKEYS
1366 HvSHAREKEYS_on(sv); /* key-sharing on by default */
1368 /* start with PERL_HASH_DEFAULT_HvMAX+1 buckets: */
1369 HvMAX(sv) = PERL_HASH_DEFAULT_HvMAX;
1372 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1373 The target created by newSVrv also is, and it can have magic.
1374 However, it never has SvPVX set.
1376 if (old_type == SVt_IV) {
1378 } else if (old_type >= SVt_PV) {
1379 assert(SvPVX_const(sv) == 0);
1382 if (old_type >= SVt_PVMG) {
1383 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1384 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1386 sv->sv_u.svu_array = NULL; /* or svu_hash */
1391 /* XXX Is this still needed? Was it ever needed? Surely as there is
1392 no route from NV to PVIV, NOK can never be true */
1393 assert(!SvNOKp(sv));
1407 assert(new_type_details->body_size);
1408 /* We always allocated the full length item with PURIFY. To do this
1409 we fake things so that arena is false for all 16 types.. */
1410 if(new_type_details->arena) {
1411 /* This points to the start of the allocated area. */
1412 new_body_inline(new_body, new_type);
1413 Zero(new_body, new_type_details->body_size, char);
1414 new_body = ((char *)new_body) - new_type_details->offset;
1416 new_body = new_NOARENAZ(new_type_details);
1418 SvANY(sv) = new_body;
1420 if (old_type_details->copy) {
1421 /* There is now the potential for an upgrade from something without
1422 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1423 int offset = old_type_details->offset;
1424 int length = old_type_details->copy;
1426 if (new_type_details->offset > old_type_details->offset) {
1427 const int difference
1428 = new_type_details->offset - old_type_details->offset;
1429 offset += difference;
1430 length -= difference;
1432 assert (length >= 0);
1434 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1438 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1439 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1440 * correct 0.0 for us. Otherwise, if the old body didn't have an
1441 * NV slot, but the new one does, then we need to initialise the
1442 * freshly created NV slot with whatever the correct bit pattern is
1444 if (old_type_details->zero_nv && !new_type_details->zero_nv
1445 && !isGV_with_GP(sv))
1449 if (UNLIKELY(new_type == SVt_PVIO)) {
1450 IO * const io = MUTABLE_IO(sv);
1451 GV *iogv = gv_fetchpvs("IO::File::", GV_ADD, SVt_PVHV);
1454 /* Clear the stashcache because a new IO could overrule a package
1456 DEBUG_o(Perl_deb(aTHX_ "sv_upgrade clearing PL_stashcache\n"));
1457 hv_clear(PL_stashcache);
1459 SvSTASH_set(io, MUTABLE_HV(SvREFCNT_inc(GvHV(iogv))));
1460 IoPAGE_LEN(sv) = 60;
1462 if (old_type < SVt_PV) {
1463 /* referent will be NULL unless the old type was SVt_IV emulating
1465 sv->sv_u.svu_rv = referent;
1469 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1470 (unsigned long)new_type);
1473 /* if this is zero, this is a body-less SVt_NULL, SVt_IV/SVt_RV,
1474 and sometimes SVt_NV */
1475 if (old_type_details->body_size) {
1479 /* Note that there is an assumption that all bodies of types that
1480 can be upgraded came from arenas. Only the more complex non-
1481 upgradable types are allowed to be directly malloc()ed. */
1482 assert(old_type_details->arena);
1483 del_body((void*)((char*)old_body + old_type_details->offset),
1484 &PL_body_roots[old_type]);
1490 =for apidoc sv_backoff
1492 Remove any string offset. You should normally use the C<SvOOK_off> macro
1498 /* prior to 5.000 stable, this function returned the new OOK-less SvFLAGS
1499 prior to 5.23.4 this function always returned 0
1503 Perl_sv_backoff(SV *const sv)
1506 const char * const s = SvPVX_const(sv);
1508 PERL_ARGS_ASSERT_SV_BACKOFF;
1511 assert(SvTYPE(sv) != SVt_PVHV);
1512 assert(SvTYPE(sv) != SVt_PVAV);
1514 SvOOK_offset(sv, delta);
1516 SvLEN_set(sv, SvLEN(sv) + delta);
1517 SvPV_set(sv, SvPVX(sv) - delta);
1518 SvFLAGS(sv) &= ~SVf_OOK;
1519 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1524 /* forward declaration */
1525 static void S_sv_uncow(pTHX_ SV * const sv, const U32 flags);
1531 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1532 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1533 Use the C<SvGROW> wrapper instead.
1540 Perl_sv_grow(pTHX_ SV *const sv, STRLEN newlen)
1544 PERL_ARGS_ASSERT_SV_GROW;
1548 if (SvTYPE(sv) < SVt_PV) {
1549 sv_upgrade(sv, SVt_PV);
1550 s = SvPVX_mutable(sv);
1552 else if (SvOOK(sv)) { /* pv is offset? */
1554 s = SvPVX_mutable(sv);
1555 if (newlen > SvLEN(sv))
1556 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1560 if (SvIsCOW(sv)) S_sv_uncow(aTHX_ sv, 0);
1561 s = SvPVX_mutable(sv);
1564 #ifdef PERL_COPY_ON_WRITE
1565 /* the new COW scheme uses SvPVX(sv)[SvLEN(sv)-1] (if spare)
1566 * to store the COW count. So in general, allocate one more byte than
1567 * asked for, to make it likely this byte is always spare: and thus
1568 * make more strings COW-able.
1570 * Only increment if the allocation isn't MEM_SIZE_MAX,
1571 * otherwise it will wrap to 0.
1573 if ( newlen != MEM_SIZE_MAX )
1577 #if defined(PERL_USE_MALLOC_SIZE) && defined(Perl_safesysmalloc_size)
1578 #define PERL_UNWARANTED_CHUMMINESS_WITH_MALLOC
1581 if (newlen > SvLEN(sv)) { /* need more room? */
1582 STRLEN minlen = SvCUR(sv);
1583 minlen += (minlen >> PERL_STRLEN_EXPAND_SHIFT) + 10;
1584 if (newlen < minlen)
1586 #ifndef PERL_UNWARANTED_CHUMMINESS_WITH_MALLOC
1588 /* Don't round up on the first allocation, as odds are pretty good that
1589 * the initial request is accurate as to what is really needed */
1591 STRLEN rounded = PERL_STRLEN_ROUNDUP(newlen);
1592 if (rounded > newlen)
1596 if (SvLEN(sv) && s) {
1597 s = (char*)saferealloc(s, newlen);
1600 s = (char*)safemalloc(newlen);
1601 if (SvPVX_const(sv) && SvCUR(sv)) {
1602 Move(SvPVX_const(sv), s, SvCUR(sv), char);
1606 #ifdef PERL_UNWARANTED_CHUMMINESS_WITH_MALLOC
1607 /* Do this here, do it once, do it right, and then we will never get
1608 called back into sv_grow() unless there really is some growing
1610 SvLEN_set(sv, Perl_safesysmalloc_size(s));
1612 SvLEN_set(sv, newlen);
1619 =for apidoc sv_setiv
1621 Copies an integer into the given SV, upgrading first if necessary.
1622 Does not handle 'set' magic. See also C<L</sv_setiv_mg>>.
1628 Perl_sv_setiv(pTHX_ SV *const sv, const IV i)
1630 PERL_ARGS_ASSERT_SV_SETIV;
1632 SV_CHECK_THINKFIRST_COW_DROP(sv);
1633 switch (SvTYPE(sv)) {
1636 sv_upgrade(sv, SVt_IV);
1639 sv_upgrade(sv, SVt_PVIV);
1643 if (!isGV_with_GP(sv))
1651 /* diag_listed_as: Can't coerce %s to %s in %s */
1652 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1654 NOT_REACHED; /* NOTREACHED */
1658 (void)SvIOK_only(sv); /* validate number */
1664 =for apidoc sv_setiv_mg
1666 Like C<sv_setiv>, but also handles 'set' magic.
1672 Perl_sv_setiv_mg(pTHX_ SV *const sv, const IV i)
1674 PERL_ARGS_ASSERT_SV_SETIV_MG;
1681 =for apidoc sv_setuv
1683 Copies an unsigned integer into the given SV, upgrading first if necessary.
1684 Does not handle 'set' magic. See also C<L</sv_setuv_mg>>.
1690 Perl_sv_setuv(pTHX_ SV *const sv, const UV u)
1692 PERL_ARGS_ASSERT_SV_SETUV;
1694 /* With the if statement to ensure that integers are stored as IVs whenever
1696 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1699 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1701 If you wish to remove the following if statement, so that this routine
1702 (and its callers) always return UVs, please benchmark to see what the
1703 effect is. Modern CPUs may be different. Or may not :-)
1705 if (u <= (UV)IV_MAX) {
1706 sv_setiv(sv, (IV)u);
1715 =for apidoc sv_setuv_mg
1717 Like C<sv_setuv>, but also handles 'set' magic.
1723 Perl_sv_setuv_mg(pTHX_ SV *const sv, const UV u)
1725 PERL_ARGS_ASSERT_SV_SETUV_MG;
1732 =for apidoc sv_setnv
1734 Copies a double into the given SV, upgrading first if necessary.
1735 Does not handle 'set' magic. See also C<L</sv_setnv_mg>>.
1741 Perl_sv_setnv(pTHX_ SV *const sv, const NV num)
1743 PERL_ARGS_ASSERT_SV_SETNV;
1745 SV_CHECK_THINKFIRST_COW_DROP(sv);
1746 switch (SvTYPE(sv)) {
1749 sv_upgrade(sv, SVt_NV);
1753 sv_upgrade(sv, SVt_PVNV);
1757 if (!isGV_with_GP(sv))
1765 /* diag_listed_as: Can't coerce %s to %s in %s */
1766 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1768 NOT_REACHED; /* NOTREACHED */
1773 (void)SvNOK_only(sv); /* validate number */
1778 =for apidoc sv_setnv_mg
1780 Like C<sv_setnv>, but also handles 'set' magic.
1786 Perl_sv_setnv_mg(pTHX_ SV *const sv, const NV num)
1788 PERL_ARGS_ASSERT_SV_SETNV_MG;
1794 /* Return a cleaned-up, printable version of sv, for non-numeric, or
1795 * not incrementable warning display.
1796 * Originally part of S_not_a_number().
1797 * The return value may be != tmpbuf.
1801 S_sv_display(pTHX_ SV *const sv, char *tmpbuf, STRLEN tmpbuf_size) {
1804 PERL_ARGS_ASSERT_SV_DISPLAY;
1807 SV *dsv = newSVpvs_flags("", SVs_TEMP);
1808 pv = sv_uni_display(dsv, sv, 32, UNI_DISPLAY_ISPRINT);
1811 const char * const limit = tmpbuf + tmpbuf_size - 8;
1812 /* each *s can expand to 4 chars + "...\0",
1813 i.e. need room for 8 chars */
1815 const char *s = SvPVX_const(sv);
1816 const char * const end = s + SvCUR(sv);
1817 for ( ; s < end && d < limit; s++ ) {
1819 if (! isASCII(ch) && !isPRINT_LC(ch)) {
1823 /* Map to ASCII "equivalent" of Latin1 */
1824 ch = LATIN1_TO_NATIVE(NATIVE_TO_LATIN1(ch) & 127);
1830 else if (ch == '\r') {
1834 else if (ch == '\f') {
1838 else if (ch == '\\') {
1842 else if (ch == '\0') {
1846 else if (isPRINT_LC(ch))
1865 /* Print an "isn't numeric" warning, using a cleaned-up,
1866 * printable version of the offending string
1870 S_not_a_number(pTHX_ SV *const sv)
1875 PERL_ARGS_ASSERT_NOT_A_NUMBER;
1877 pv = sv_display(sv, tmpbuf, sizeof(tmpbuf));
1880 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1881 /* diag_listed_as: Argument "%s" isn't numeric%s */
1882 "Argument \"%s\" isn't numeric in %s", pv,
1885 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1886 /* diag_listed_as: Argument "%s" isn't numeric%s */
1887 "Argument \"%s\" isn't numeric", pv);
1891 S_not_incrementable(pTHX_ SV *const sv) {
1895 PERL_ARGS_ASSERT_NOT_INCREMENTABLE;
1897 pv = sv_display(sv, tmpbuf, sizeof(tmpbuf));
1899 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1900 "Argument \"%s\" treated as 0 in increment (++)", pv);
1904 =for apidoc looks_like_number
1906 Test if the content of an SV looks like a number (or is a number).
1907 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1908 non-numeric warning), even if your C<atof()> doesn't grok them. Get-magic is
1915 Perl_looks_like_number(pTHX_ SV *const sv)
1921 PERL_ARGS_ASSERT_LOOKS_LIKE_NUMBER;
1923 if (SvPOK(sv) || SvPOKp(sv)) {
1924 sbegin = SvPV_nomg_const(sv, len);
1927 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1928 numtype = grok_number(sbegin, len, NULL);
1929 return ((numtype & IS_NUMBER_TRAILING)) ? 0 : numtype;
1933 S_glob_2number(pTHX_ GV * const gv)
1935 PERL_ARGS_ASSERT_GLOB_2NUMBER;
1937 /* We know that all GVs stringify to something that is not-a-number,
1938 so no need to test that. */
1939 if (ckWARN(WARN_NUMERIC))
1941 SV *const buffer = sv_newmortal();
1942 gv_efullname3(buffer, gv, "*");
1943 not_a_number(buffer);
1945 /* We just want something true to return, so that S_sv_2iuv_common
1946 can tail call us and return true. */
1950 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1951 until proven guilty, assume that things are not that bad... */
1956 As 64 bit platforms often have an NV that doesn't preserve all bits of
1957 an IV (an assumption perl has been based on to date) it becomes necessary
1958 to remove the assumption that the NV always carries enough precision to
1959 recreate the IV whenever needed, and that the NV is the canonical form.
1960 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1961 precision as a side effect of conversion (which would lead to insanity
1962 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1963 1) to distinguish between IV/UV/NV slots that have a valid conversion cached
1964 where precision was lost, and IV/UV/NV slots that have a valid conversion
1965 which has lost no precision
1966 2) to ensure that if a numeric conversion to one form is requested that
1967 would lose precision, the precise conversion (or differently
1968 imprecise conversion) is also performed and cached, to prevent
1969 requests for different numeric formats on the same SV causing
1970 lossy conversion chains. (lossless conversion chains are perfectly
1975 SvIOKp is true if the IV slot contains a valid value
1976 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1977 SvNOKp is true if the NV slot contains a valid value
1978 SvNOK is true only if the NV value is accurate
1981 while converting from PV to NV, check to see if converting that NV to an
1982 IV(or UV) would lose accuracy over a direct conversion from PV to
1983 IV(or UV). If it would, cache both conversions, return NV, but mark
1984 SV as IOK NOKp (ie not NOK).
1986 While converting from PV to IV, check to see if converting that IV to an
1987 NV would lose accuracy over a direct conversion from PV to NV. If it
1988 would, cache both conversions, flag similarly.
1990 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1991 correctly because if IV & NV were set NV *always* overruled.
1992 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1993 changes - now IV and NV together means that the two are interchangeable:
1994 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1996 The benefit of this is that operations such as pp_add know that if
1997 SvIOK is true for both left and right operands, then integer addition
1998 can be used instead of floating point (for cases where the result won't
1999 overflow). Before, floating point was always used, which could lead to
2000 loss of precision compared with integer addition.
2002 * making IV and NV equal status should make maths accurate on 64 bit
2004 * may speed up maths somewhat if pp_add and friends start to use
2005 integers when possible instead of fp. (Hopefully the overhead in
2006 looking for SvIOK and checking for overflow will not outweigh the
2007 fp to integer speedup)
2008 * will slow down integer operations (callers of SvIV) on "inaccurate"
2009 values, as the change from SvIOK to SvIOKp will cause a call into
2010 sv_2iv each time rather than a macro access direct to the IV slot
2011 * should speed up number->string conversion on integers as IV is
2012 favoured when IV and NV are equally accurate
2014 ####################################################################
2015 You had better be using SvIOK_notUV if you want an IV for arithmetic:
2016 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
2017 On the other hand, SvUOK is true iff UV.
2018 ####################################################################
2020 Your mileage will vary depending your CPU's relative fp to integer
2024 #ifndef NV_PRESERVES_UV
2025 # define IS_NUMBER_UNDERFLOW_IV 1
2026 # define IS_NUMBER_UNDERFLOW_UV 2
2027 # define IS_NUMBER_IV_AND_UV 2
2028 # define IS_NUMBER_OVERFLOW_IV 4
2029 # define IS_NUMBER_OVERFLOW_UV 5
2031 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
2033 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
2035 S_sv_2iuv_non_preserve(pTHX_ SV *const sv
2041 PERL_ARGS_ASSERT_SV_2IUV_NON_PRESERVE;
2042 PERL_UNUSED_CONTEXT;
2044 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%" UVxf " NV=%" NVgf " inttype=%" UVXf "\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
2045 if (SvNVX(sv) < (NV)IV_MIN) {
2046 (void)SvIOKp_on(sv);
2048 SvIV_set(sv, IV_MIN);
2049 return IS_NUMBER_UNDERFLOW_IV;
2051 if (SvNVX(sv) > (NV)UV_MAX) {
2052 (void)SvIOKp_on(sv);
2055 SvUV_set(sv, UV_MAX);
2056 return IS_NUMBER_OVERFLOW_UV;
2058 (void)SvIOKp_on(sv);
2060 /* Can't use strtol etc to convert this string. (See truth table in
2062 if (SvNVX(sv) <= (UV)IV_MAX) {
2063 SvIV_set(sv, I_V(SvNVX(sv)));
2064 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2065 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
2067 /* Integer is imprecise. NOK, IOKp */
2069 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
2072 SvUV_set(sv, U_V(SvNVX(sv)));
2073 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2074 if (SvUVX(sv) == UV_MAX) {
2075 /* As we know that NVs don't preserve UVs, UV_MAX cannot
2076 possibly be preserved by NV. Hence, it must be overflow.
2078 return IS_NUMBER_OVERFLOW_UV;
2080 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
2082 /* Integer is imprecise. NOK, IOKp */
2084 return IS_NUMBER_OVERFLOW_IV;
2086 #endif /* !NV_PRESERVES_UV*/
2088 /* If numtype is infnan, set the NV of the sv accordingly.
2089 * If numtype is anything else, try setting the NV using Atof(PV). */
2091 # pragma warning(push)
2092 # pragma warning(disable:4756;disable:4056)
2095 S_sv_setnv(pTHX_ SV* sv, int numtype)
2097 bool pok = cBOOL(SvPOK(sv));
2100 if ((numtype & IS_NUMBER_INFINITY)) {
2101 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -NV_INF : NV_INF);
2106 if ((numtype & IS_NUMBER_NAN)) {
2107 SvNV_set(sv, NV_NAN);
2112 SvNV_set(sv, Atof(SvPVX_const(sv)));
2113 /* Purposefully no true nok here, since we don't want to blow
2114 * away the possible IOK/UV of an existing sv. */
2117 SvNOK_only(sv); /* No IV or UV please, this is pure infnan. */
2119 SvPOK_on(sv); /* PV is okay, though. */
2123 # pragma warning(pop)
2127 S_sv_2iuv_common(pTHX_ SV *const sv)
2129 PERL_ARGS_ASSERT_SV_2IUV_COMMON;
2132 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
2133 * without also getting a cached IV/UV from it at the same time
2134 * (ie PV->NV conversion should detect loss of accuracy and cache
2135 * IV or UV at same time to avoid this. */
2136 /* IV-over-UV optimisation - choose to cache IV if possible */
2138 if (SvTYPE(sv) == SVt_NV)
2139 sv_upgrade(sv, SVt_PVNV);
2141 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
2142 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
2143 certainly cast into the IV range at IV_MAX, whereas the correct
2144 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
2146 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
2147 if (Perl_isnan(SvNVX(sv))) {
2153 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2154 SvIV_set(sv, I_V(SvNVX(sv)));
2155 if (SvNVX(sv) == (NV) SvIVX(sv)
2156 #ifndef NV_PRESERVES_UV
2157 && SvIVX(sv) != IV_MIN /* avoid negating IV_MIN below */
2158 && (((UV)1 << NV_PRESERVES_UV_BITS) >
2159 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
2160 /* Don't flag it as "accurately an integer" if the number
2161 came from a (by definition imprecise) NV operation, and
2162 we're outside the range of NV integer precision */
2166 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
2168 /* scalar has trailing garbage, eg "42a" */
2170 DEBUG_c(PerlIO_printf(Perl_debug_log,
2171 "0x%" UVxf " iv(%" NVgf " => %" IVdf ") (precise)\n",
2177 /* IV not precise. No need to convert from PV, as NV
2178 conversion would already have cached IV if it detected
2179 that PV->IV would be better than PV->NV->IV
2180 flags already correct - don't set public IOK. */
2181 DEBUG_c(PerlIO_printf(Perl_debug_log,
2182 "0x%" UVxf " iv(%" NVgf " => %" IVdf ") (imprecise)\n",
2187 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
2188 but the cast (NV)IV_MIN rounds to a the value less (more
2189 negative) than IV_MIN which happens to be equal to SvNVX ??
2190 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
2191 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
2192 (NV)UVX == NVX are both true, but the values differ. :-(
2193 Hopefully for 2s complement IV_MIN is something like
2194 0x8000000000000000 which will be exact. NWC */
2197 SvUV_set(sv, U_V(SvNVX(sv)));
2199 (SvNVX(sv) == (NV) SvUVX(sv))
2200 #ifndef NV_PRESERVES_UV
2201 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
2202 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
2203 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
2204 /* Don't flag it as "accurately an integer" if the number
2205 came from a (by definition imprecise) NV operation, and
2206 we're outside the range of NV integer precision */
2212 DEBUG_c(PerlIO_printf(Perl_debug_log,
2213 "0x%" UVxf " 2iv(%" UVuf " => %" IVdf ") (as unsigned)\n",
2219 else if (SvPOKp(sv)) {
2222 const char *s = SvPVX_const(sv);
2223 const STRLEN cur = SvCUR(sv);
2225 /* short-cut for a single digit string like "1" */
2230 if (SvTYPE(sv) < SVt_PVIV)
2231 sv_upgrade(sv, SVt_PVIV);
2233 SvIV_set(sv, (IV)(c - '0'));
2238 numtype = grok_number(s, cur, &value);
2239 /* We want to avoid a possible problem when we cache an IV/ a UV which
2240 may be later translated to an NV, and the resulting NV is not
2241 the same as the direct translation of the initial string
2242 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
2243 be careful to ensure that the value with the .456 is around if the
2244 NV value is requested in the future).
2246 This means that if we cache such an IV/a UV, we need to cache the
2247 NV as well. Moreover, we trade speed for space, and do not
2248 cache the NV if we are sure it's not needed.
2251 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
2252 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2253 == IS_NUMBER_IN_UV) {
2254 /* It's definitely an integer, only upgrade to PVIV */
2255 if (SvTYPE(sv) < SVt_PVIV)
2256 sv_upgrade(sv, SVt_PVIV);
2258 } else if (SvTYPE(sv) < SVt_PVNV)
2259 sv_upgrade(sv, SVt_PVNV);
2261 if ((numtype & (IS_NUMBER_INFINITY | IS_NUMBER_NAN))) {
2262 if (ckWARN(WARN_NUMERIC) && ((numtype & IS_NUMBER_TRAILING)))
2264 S_sv_setnv(aTHX_ sv, numtype);
2268 /* If NVs preserve UVs then we only use the UV value if we know that
2269 we aren't going to call atof() below. If NVs don't preserve UVs
2270 then the value returned may have more precision than atof() will
2271 return, even though value isn't perfectly accurate. */
2272 if ((numtype & (IS_NUMBER_IN_UV
2273 #ifdef NV_PRESERVES_UV
2276 )) == IS_NUMBER_IN_UV) {
2277 /* This won't turn off the public IOK flag if it was set above */
2278 (void)SvIOKp_on(sv);
2280 if (!(numtype & IS_NUMBER_NEG)) {
2282 if (value <= (UV)IV_MAX) {
2283 SvIV_set(sv, (IV)value);
2285 /* it didn't overflow, and it was positive. */
2286 SvUV_set(sv, value);
2290 /* 2s complement assumption */
2291 if (value <= (UV)IV_MIN) {
2292 SvIV_set(sv, value == (UV)IV_MIN
2293 ? IV_MIN : -(IV)value);
2295 /* Too negative for an IV. This is a double upgrade, but
2296 I'm assuming it will be rare. */
2297 if (SvTYPE(sv) < SVt_PVNV)
2298 sv_upgrade(sv, SVt_PVNV);
2302 SvNV_set(sv, -(NV)value);
2303 SvIV_set(sv, IV_MIN);
2307 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2308 will be in the previous block to set the IV slot, and the next
2309 block to set the NV slot. So no else here. */
2311 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2312 != IS_NUMBER_IN_UV) {
2313 /* It wasn't an (integer that doesn't overflow the UV). */
2314 S_sv_setnv(aTHX_ sv, numtype);
2316 if (! numtype && ckWARN(WARN_NUMERIC))
2319 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%" UVxf " 2iv(%" NVgf ")\n",
2320 PTR2UV(sv), SvNVX(sv)));
2322 #ifdef NV_PRESERVES_UV
2323 (void)SvIOKp_on(sv);
2325 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
2326 if (Perl_isnan(SvNVX(sv))) {
2332 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2333 SvIV_set(sv, I_V(SvNVX(sv)));
2334 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2337 NOOP; /* Integer is imprecise. NOK, IOKp */
2339 /* UV will not work better than IV */
2341 if (SvNVX(sv) > (NV)UV_MAX) {
2343 /* Integer is inaccurate. NOK, IOKp, is UV */
2344 SvUV_set(sv, UV_MAX);
2346 SvUV_set(sv, U_V(SvNVX(sv)));
2347 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2348 NV preservse UV so can do correct comparison. */
2349 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2352 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2357 #else /* NV_PRESERVES_UV */
2358 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2359 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2360 /* The IV/UV slot will have been set from value returned by
2361 grok_number above. The NV slot has just been set using
2364 assert (SvIOKp(sv));
2366 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2367 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2368 /* Small enough to preserve all bits. */
2369 (void)SvIOKp_on(sv);
2371 SvIV_set(sv, I_V(SvNVX(sv)));
2372 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2374 /* Assumption: first non-preserved integer is < IV_MAX,
2375 this NV is in the preserved range, therefore: */
2376 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2378 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%" NVgf " U_V is 0x%" UVxf ", IV_MAX is 0x%" UVxf "\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2382 0 0 already failed to read UV.
2383 0 1 already failed to read UV.
2384 1 0 you won't get here in this case. IV/UV
2385 slot set, public IOK, Atof() unneeded.
2386 1 1 already read UV.
2387 so there's no point in sv_2iuv_non_preserve() attempting
2388 to use atol, strtol, strtoul etc. */
2390 sv_2iuv_non_preserve (sv, numtype);
2392 sv_2iuv_non_preserve (sv);
2396 #endif /* NV_PRESERVES_UV */
2397 /* It might be more code efficient to go through the entire logic above
2398 and conditionally set with SvIOKp_on() rather than SvIOK(), but it
2399 gets complex and potentially buggy, so more programmer efficient
2400 to do it this way, by turning off the public flags: */
2402 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2406 if (isGV_with_GP(sv))
2407 return glob_2number(MUTABLE_GV(sv));
2409 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2411 if (SvTYPE(sv) < SVt_IV)
2412 /* Typically the caller expects that sv_any is not NULL now. */
2413 sv_upgrade(sv, SVt_IV);
2414 /* Return 0 from the caller. */
2421 =for apidoc sv_2iv_flags
2423 Return the integer value of an SV, doing any necessary string
2424 conversion. If C<flags> has the C<SV_GMAGIC> bit set, does an C<mg_get()> first.
2425 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2431 Perl_sv_2iv_flags(pTHX_ SV *const sv, const I32 flags)
2433 PERL_ARGS_ASSERT_SV_2IV_FLAGS;
2435 assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV
2436 && SvTYPE(sv) != SVt_PVFM);
2438 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2444 if (flags & SV_SKIP_OVERLOAD)
2446 tmpstr = AMG_CALLunary(sv, numer_amg);
2447 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2448 return SvIV(tmpstr);
2451 return PTR2IV(SvRV(sv));
2454 if (SvVALID(sv) || isREGEXP(sv)) {
2455 /* FBMs use the space for SvIVX and SvNVX for other purposes, so
2456 must not let them cache IVs.
2457 In practice they are extremely unlikely to actually get anywhere
2458 accessible by user Perl code - the only way that I'm aware of is when
2459 a constant subroutine which is used as the second argument to index.
2461 Regexps have no SvIVX and SvNVX fields.
2466 const char * const ptr =
2467 isREGEXP(sv) ? RX_WRAPPED((REGEXP*)sv) : SvPVX_const(sv);
2469 = grok_number(ptr, SvCUR(sv), &value);
2471 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2472 == IS_NUMBER_IN_UV) {
2473 /* It's definitely an integer */
2474 if (numtype & IS_NUMBER_NEG) {
2475 if (value < (UV)IV_MIN)
2478 if (value < (UV)IV_MAX)
2483 /* Quite wrong but no good choices. */
2484 if ((numtype & IS_NUMBER_INFINITY)) {
2485 return (numtype & IS_NUMBER_NEG) ? IV_MIN : IV_MAX;
2486 } else if ((numtype & IS_NUMBER_NAN)) {
2487 return 0; /* So wrong. */
2491 if (ckWARN(WARN_NUMERIC))
2494 return I_V(Atof(ptr));
2498 if (SvTHINKFIRST(sv)) {
2499 if (SvREADONLY(sv) && !SvOK(sv)) {
2500 if (ckWARN(WARN_UNINITIALIZED))
2507 if (S_sv_2iuv_common(aTHX_ sv))
2511 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%" UVxf " 2iv(%" IVdf ")\n",
2512 PTR2UV(sv),SvIVX(sv)));
2513 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2517 =for apidoc sv_2uv_flags
2519 Return the unsigned integer value of an SV, doing any necessary string
2520 conversion. If C<flags> has the C<SV_GMAGIC> bit set, does an C<mg_get()> first.
2521 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2527 Perl_sv_2uv_flags(pTHX_ SV *const sv, const I32 flags)
2529 PERL_ARGS_ASSERT_SV_2UV_FLAGS;
2531 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2537 if (flags & SV_SKIP_OVERLOAD)
2539 tmpstr = AMG_CALLunary(sv, numer_amg);
2540 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2541 return SvUV(tmpstr);
2544 return PTR2UV(SvRV(sv));
2547 if (SvVALID(sv) || isREGEXP(sv)) {
2548 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2549 the same flag bit as SVf_IVisUV, so must not let them cache IVs.
2550 Regexps have no SvIVX and SvNVX fields. */
2554 const char * const ptr =
2555 isREGEXP(sv) ? RX_WRAPPED((REGEXP*)sv) : SvPVX_const(sv);
2557 = grok_number(ptr, SvCUR(sv), &value);
2559 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2560 == IS_NUMBER_IN_UV) {
2561 /* It's definitely an integer */
2562 if (!(numtype & IS_NUMBER_NEG))
2566 /* Quite wrong but no good choices. */
2567 if ((numtype & IS_NUMBER_INFINITY)) {
2568 return UV_MAX; /* So wrong. */
2569 } else if ((numtype & IS_NUMBER_NAN)) {
2570 return 0; /* So wrong. */
2574 if (ckWARN(WARN_NUMERIC))
2577 return U_V(Atof(ptr));
2581 if (SvTHINKFIRST(sv)) {
2582 if (SvREADONLY(sv) && !SvOK(sv)) {
2583 if (ckWARN(WARN_UNINITIALIZED))
2590 if (S_sv_2iuv_common(aTHX_ sv))
2594 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%" UVxf " 2uv(%" UVuf ")\n",
2595 PTR2UV(sv),SvUVX(sv)));
2596 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2600 =for apidoc sv_2nv_flags
2602 Return the num value of an SV, doing any necessary string or integer
2603 conversion. If C<flags> has the C<SV_GMAGIC> bit set, does an C<mg_get()> first.
2604 Normally used via the C<SvNV(sv)> and C<SvNVx(sv)> macros.
2610 Perl_sv_2nv_flags(pTHX_ SV *const sv, const I32 flags)
2612 PERL_ARGS_ASSERT_SV_2NV_FLAGS;
2614 assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV
2615 && SvTYPE(sv) != SVt_PVFM);
2616 if (SvGMAGICAL(sv) || SvVALID(sv) || isREGEXP(sv)) {
2617 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2618 the same flag bit as SVf_IVisUV, so must not let them cache NVs.
2619 Regexps have no SvIVX and SvNVX fields. */
2621 if (flags & SV_GMAGIC)
2625 if (SvPOKp(sv) && !SvIOKp(sv)) {
2626 ptr = SvPVX_const(sv);
2627 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2628 !grok_number(ptr, SvCUR(sv), NULL))
2634 return (NV)SvUVX(sv);
2636 return (NV)SvIVX(sv);
2641 assert(SvTYPE(sv) >= SVt_PVMG);
2642 /* This falls through to the report_uninit near the end of the
2644 } else if (SvTHINKFIRST(sv)) {
2649 if (flags & SV_SKIP_OVERLOAD)
2651 tmpstr = AMG_CALLunary(sv, numer_amg);
2652 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2653 return SvNV(tmpstr);
2656 return PTR2NV(SvRV(sv));
2658 if (SvREADONLY(sv) && !SvOK(sv)) {
2659 if (ckWARN(WARN_UNINITIALIZED))
2664 if (SvTYPE(sv) < SVt_NV) {
2665 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2666 sv_upgrade(sv, SVt_NV);
2667 CLANG_DIAG_IGNORE_STMT(-Wthread-safety);
2669 DECLARATION_FOR_LC_NUMERIC_MANIPULATION;
2670 STORE_LC_NUMERIC_SET_STANDARD();
2671 PerlIO_printf(Perl_debug_log,
2672 "0x%" UVxf " num(%" NVgf ")\n",
2673 PTR2UV(sv), SvNVX(sv));
2674 RESTORE_LC_NUMERIC();
2676 CLANG_DIAG_RESTORE_STMT;
2679 else if (SvTYPE(sv) < SVt_PVNV)
2680 sv_upgrade(sv, SVt_PVNV);
2685 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2686 #ifdef NV_PRESERVES_UV
2692 /* Only set the public NV OK flag if this NV preserves the IV */
2693 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2695 SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2696 : (SvIVX(sv) == I_V(SvNVX(sv))))
2702 else if (SvPOKp(sv)) {
2704 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2705 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2707 #ifdef NV_PRESERVES_UV
2708 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2709 == IS_NUMBER_IN_UV) {
2710 /* It's definitely an integer */
2711 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2713 S_sv_setnv(aTHX_ sv, numtype);
2720 SvNV_set(sv, Atof(SvPVX_const(sv)));
2721 /* Only set the public NV OK flag if this NV preserves the value in
2722 the PV at least as well as an IV/UV would.
2723 Not sure how to do this 100% reliably. */
2724 /* if that shift count is out of range then Configure's test is
2725 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2727 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2728 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2729 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2730 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2731 /* Can't use strtol etc to convert this string, so don't try.
2732 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2735 /* value has been set. It may not be precise. */
2736 if ((numtype & IS_NUMBER_NEG) && (value >= (UV)IV_MIN)) {
2737 /* 2s complement assumption for (UV)IV_MIN */
2738 SvNOK_on(sv); /* Integer is too negative. */
2743 if (numtype & IS_NUMBER_NEG) {
2744 /* -IV_MIN is undefined, but we should never reach
2745 * this point with both IS_NUMBER_NEG and value ==
2747 assert(value != (UV)IV_MIN);
2748 SvIV_set(sv, -(IV)value);
2749 } else if (value <= (UV)IV_MAX) {
2750 SvIV_set(sv, (IV)value);
2752 SvUV_set(sv, value);
2756 if (numtype & IS_NUMBER_NOT_INT) {
2757 /* I believe that even if the original PV had decimals,
2758 they are lost beyond the limit of the FP precision.
2759 However, neither is canonical, so both only get p
2760 flags. NWC, 2000/11/25 */
2761 /* Both already have p flags, so do nothing */
2763 const NV nv = SvNVX(sv);
2764 /* XXX should this spot have NAN_COMPARE_BROKEN, too? */
2765 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2766 if (SvIVX(sv) == I_V(nv)) {
2769 /* It had no "." so it must be integer. */
2773 /* between IV_MAX and NV(UV_MAX).
2774 Could be slightly > UV_MAX */
2776 if (numtype & IS_NUMBER_NOT_INT) {
2777 /* UV and NV both imprecise. */
2779 const UV nv_as_uv = U_V(nv);
2781 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2790 /* It might be more code efficient to go through the entire logic above
2791 and conditionally set with SvNOKp_on() rather than SvNOK(), but it
2792 gets complex and potentially buggy, so more programmer efficient
2793 to do it this way, by turning off the public flags: */
2795 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2796 #endif /* NV_PRESERVES_UV */
2799 if (isGV_with_GP(sv)) {
2800 glob_2number(MUTABLE_GV(sv));
2804 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2806 assert (SvTYPE(sv) >= SVt_NV);
2807 /* Typically the caller expects that sv_any is not NULL now. */
2808 /* XXX Ilya implies that this is a bug in callers that assume this
2809 and ideally should be fixed. */
2812 CLANG_DIAG_IGNORE_STMT(-Wthread-safety);
2814 DECLARATION_FOR_LC_NUMERIC_MANIPULATION;
2815 STORE_LC_NUMERIC_SET_STANDARD();
2816 PerlIO_printf(Perl_debug_log, "0x%" UVxf " 2nv(%" NVgf ")\n",
2817 PTR2UV(sv), SvNVX(sv));
2818 RESTORE_LC_NUMERIC();
2820 CLANG_DIAG_RESTORE_STMT;
2827 Return an SV with the numeric value of the source SV, doing any necessary
2828 reference or overload conversion. The caller is expected to have handled
2835 Perl_sv_2num(pTHX_ SV *const sv)
2837 PERL_ARGS_ASSERT_SV_2NUM;
2842 SV * const tmpsv = AMG_CALLunary(sv, numer_amg);
2843 TAINT_IF(tmpsv && SvTAINTED(tmpsv));
2844 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2845 return sv_2num(tmpsv);
2847 return sv_2mortal(newSVuv(PTR2UV(SvRV(sv))));
2850 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2851 * UV as a string towards the end of buf, and return pointers to start and
2854 * We assume that buf is at least TYPE_CHARS(UV) long.
2858 S_uiv_2buf(char *const buf, const IV iv, UV uv, const int is_uv, char **const peob)
2860 char *ptr = buf + TYPE_CHARS(UV);
2861 char * const ebuf = ptr;
2864 PERL_ARGS_ASSERT_UIV_2BUF;
2872 uv = (iv == IV_MIN) ? (UV)iv : (UV)(-iv);
2876 *--ptr = '0' + (char)(uv % 10);
2884 /* Helper for sv_2pv_flags and sv_vcatpvfn_flags. If the NV is an
2885 * infinity or a not-a-number, writes the appropriate strings to the
2886 * buffer, including a zero byte. On success returns the written length,
2887 * excluding the zero byte, on failure (not an infinity, not a nan)
2888 * returns zero, assert-fails on maxlen being too short.
2890 * XXX for "Inf", "-Inf", and "NaN", we could have three read-only
2891 * shared string constants we point to, instead of generating a new
2892 * string for each instance. */
2894 S_infnan_2pv(NV nv, char* buffer, size_t maxlen, char plus) {
2896 assert(maxlen >= 4);
2897 if (Perl_isinf(nv)) {
2899 if (maxlen < 5) /* "-Inf\0" */
2909 else if (Perl_isnan(nv)) {
2913 /* XXX optionally output the payload mantissa bits as
2914 * "(unsigned)" (to match the nan("...") C99 function,
2915 * or maybe as "(0xhhh...)" would make more sense...
2916 * provide a format string so that the user can decide?
2917 * NOTE: would affect the maxlen and assert() logic.*/
2922 assert((s == buffer + 3) || (s == buffer + 4));
2928 =for apidoc sv_2pv_flags
2930 Returns a pointer to the string value of an SV, and sets C<*lp> to its length.
2931 If flags has the C<SV_GMAGIC> bit set, does an C<mg_get()> first. Coerces C<sv> to a
2932 string if necessary. Normally invoked via the C<SvPV_flags> macro.
2933 C<sv_2pv()> and C<sv_2pv_nomg> usually end up here too.
2939 Perl_sv_2pv_flags(pTHX_ SV *const sv, STRLEN *const lp, const I32 flags)
2943 PERL_ARGS_ASSERT_SV_2PV_FLAGS;
2945 assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV
2946 && SvTYPE(sv) != SVt_PVFM);
2947 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2952 if (flags & SV_SKIP_OVERLOAD)
2954 tmpstr = AMG_CALLunary(sv, string_amg);
2955 TAINT_IF(tmpstr && SvTAINTED(tmpstr));
2956 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2958 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2962 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2963 if (flags & SV_CONST_RETURN) {
2964 pv = (char *) SvPVX_const(tmpstr);
2966 pv = (flags & SV_MUTABLE_RETURN)
2967 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2970 *lp = SvCUR(tmpstr);
2972 pv = sv_2pv_flags(tmpstr, lp, flags);
2985 SV *const referent = SvRV(sv);
2989 retval = buffer = savepvn("NULLREF", len);
2990 } else if (SvTYPE(referent) == SVt_REGEXP &&
2991 (!(PL_curcop->cop_hints & HINT_NO_AMAGIC) ||
2992 amagic_is_enabled(string_amg))) {
2993 REGEXP * const re = (REGEXP *)MUTABLE_PTR(referent);
2997 /* If the regex is UTF-8 we want the containing scalar to
2998 have an UTF-8 flag too */
3005 *lp = RX_WRAPLEN(re);
3007 return RX_WRAPPED(re);
3009 const char *const typestr = sv_reftype(referent, 0);
3010 const STRLEN typelen = strlen(typestr);
3011 UV addr = PTR2UV(referent);
3012 const char *stashname = NULL;
3013 STRLEN stashnamelen = 0; /* hush, gcc */
3014 const char *buffer_end;
3016 if (SvOBJECT(referent)) {
3017 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
3020 stashname = HEK_KEY(name);
3021 stashnamelen = HEK_LEN(name);
3023 if (HEK_UTF8(name)) {
3029 stashname = "__ANON__";
3032 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
3033 + 2 * sizeof(UV) + 2 /* )\0 */;
3035 len = typelen + 3 /* (0x */
3036 + 2 * sizeof(UV) + 2 /* )\0 */;
3039 Newx(buffer, len, char);
3040 buffer_end = retval = buffer + len;
3042 /* Working backwards */
3046 *--retval = PL_hexdigit[addr & 15];
3047 } while (addr >>= 4);
3053 memcpy(retval, typestr, typelen);
3057 retval -= stashnamelen;
3058 memcpy(retval, stashname, stashnamelen);
3060 /* retval may not necessarily have reached the start of the
3062 assert (retval >= buffer);
3064 len = buffer_end - retval - 1; /* -1 for that \0 */
3076 if (flags & SV_MUTABLE_RETURN)
3077 return SvPVX_mutable(sv);
3078 if (flags & SV_CONST_RETURN)
3079 return (char *)SvPVX_const(sv);
3084 /* I'm assuming that if both IV and NV are equally valid then
3085 converting the IV is going to be more efficient */
3086 const U32 isUIOK = SvIsUV(sv);
3087 char buf[TYPE_CHARS(UV)];
3091 if (SvTYPE(sv) < SVt_PVIV)
3092 sv_upgrade(sv, SVt_PVIV);
3093 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
3095 /* inlined from sv_setpvn */
3096 s = SvGROW_mutable(sv, len + 1);
3097 Move(ptr, s, len, char);
3102 else if (SvNOK(sv)) {
3103 if (SvTYPE(sv) < SVt_PVNV)
3104 sv_upgrade(sv, SVt_PVNV);
3105 if (SvNVX(sv) == 0.0
3106 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
3107 && !Perl_isnan(SvNVX(sv))
3110 s = SvGROW_mutable(sv, 2);
3115 STRLEN size = 5; /* "-Inf\0" */
3117 s = SvGROW_mutable(sv, size);
3118 len = S_infnan_2pv(SvNVX(sv), s, size, 0);
3124 /* some Xenix systems wipe out errno here */
3133 5 + /* exponent digits */
3137 s = SvGROW_mutable(sv, size);
3138 #ifndef USE_LOCALE_NUMERIC
3139 SNPRINTF_G(SvNVX(sv), s, SvLEN(sv), NV_DIG);
3145 DECLARATION_FOR_LC_NUMERIC_MANIPULATION;
3146 STORE_LC_NUMERIC_SET_TO_NEEDED();
3148 local_radix = _NOT_IN_NUMERIC_STANDARD;
3149 if (local_radix && SvCUR(PL_numeric_radix_sv) > 1) {
3150 size += SvCUR(PL_numeric_radix_sv) - 1;
3151 s = SvGROW_mutable(sv, size);
3154 SNPRINTF_G(SvNVX(sv), s, SvLEN(sv), NV_DIG);
3156 /* If the radix character is UTF-8, and actually is in the
3157 * output, turn on the UTF-8 flag for the scalar */
3159 && SvUTF8(PL_numeric_radix_sv)
3160 && instr(s, SvPVX_const(PL_numeric_radix_sv)))
3165 RESTORE_LC_NUMERIC();
3168 /* We don't call SvPOK_on(), because it may come to
3169 * pass that the locale changes so that the
3170 * stringification we just did is no longer correct. We
3171 * will have to re-stringify every time it is needed */
3178 else if (isGV_with_GP(sv)) {
3179 GV *const gv = MUTABLE_GV(sv);
3180 SV *const buffer = sv_newmortal();
3182 gv_efullname3(buffer, gv, "*");
3184 assert(SvPOK(buffer));
3190 *lp = SvCUR(buffer);
3191 return SvPVX(buffer);
3196 if (flags & SV_UNDEF_RETURNS_NULL)
3198 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
3200 /* Typically the caller expects that sv_any is not NULL now. */
3201 if (!SvREADONLY(sv) && SvTYPE(sv) < SVt_PV)
3202 sv_upgrade(sv, SVt_PV);
3207 const STRLEN len = s - SvPVX_const(sv);
3212 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%" UVxf " 2pv(%s)\n",
3213 PTR2UV(sv),SvPVX_const(sv)));
3214 if (flags & SV_CONST_RETURN)
3215 return (char *)SvPVX_const(sv);
3216 if (flags & SV_MUTABLE_RETURN)
3217 return SvPVX_mutable(sv);
3222 =for apidoc sv_copypv
3224 Copies a stringified representation of the source SV into the
3225 destination SV. Automatically performs any necessary C<mg_get> and
3226 coercion of numeric values into strings. Guaranteed to preserve
3227 C<UTF8> flag even from overloaded objects. Similar in nature to
3228 C<sv_2pv[_flags]> but operates directly on an SV instead of just the
3229 string. Mostly uses C<sv_2pv_flags> to do its work, except when that
3230 would lose the UTF-8'ness of the PV.
3232 =for apidoc sv_copypv_nomg
3234 Like C<sv_copypv>, but doesn't invoke get magic first.
3236 =for apidoc sv_copypv_flags
3238 Implementation of C<sv_copypv> and C<sv_copypv_nomg>. Calls get magic iff flags
3239 has the C<SV_GMAGIC> bit set.
3245 Perl_sv_copypv_flags(pTHX_ SV *const dsv, SV *const ssv, const I32 flags)
3250 PERL_ARGS_ASSERT_SV_COPYPV_FLAGS;
3252 s = SvPV_flags_const(ssv,len,(flags & SV_GMAGIC));
3253 sv_setpvn(dsv,s,len);
3261 =for apidoc sv_2pvbyte
3263 Return a pointer to the byte-encoded representation of the SV, and set C<*lp>
3264 to its length. May cause the SV to be downgraded from UTF-8 as a
3267 Usually accessed via the C<SvPVbyte> macro.
3273 Perl_sv_2pvbyte(pTHX_ SV *sv, STRLEN *const lp)
3275 PERL_ARGS_ASSERT_SV_2PVBYTE;
3278 if (((SvREADONLY(sv) || SvFAKE(sv)) && !SvIsCOW(sv))
3279 || isGV_with_GP(sv) || SvROK(sv)) {
3280 SV *sv2 = sv_newmortal();
3281 sv_copypv_nomg(sv2,sv);
3284 sv_utf8_downgrade(sv,0);
3285 return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv);
3289 =for apidoc sv_2pvutf8
3291 Return a pointer to the UTF-8-encoded representation of the SV, and set C<*lp>
3292 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
3294 Usually accessed via the C<SvPVutf8> macro.
3300 Perl_sv_2pvutf8(pTHX_ SV *sv, STRLEN *const lp)
3302 PERL_ARGS_ASSERT_SV_2PVUTF8;
3304 if (((SvREADONLY(sv) || SvFAKE(sv)) && !SvIsCOW(sv))
3305 || isGV_with_GP(sv) || SvROK(sv))
3306 sv = sv_mortalcopy(sv);
3309 sv_utf8_upgrade_nomg(sv);
3310 return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv);
3315 =for apidoc sv_2bool
3317 This macro is only used by C<sv_true()> or its macro equivalent, and only if
3318 the latter's argument is neither C<SvPOK>, C<SvIOK> nor C<SvNOK>.
3319 It calls C<sv_2bool_flags> with the C<SV_GMAGIC> flag.
3321 =for apidoc sv_2bool_flags
3323 This function is only used by C<sv_true()> and friends, and only if
3324 the latter's argument is neither C<SvPOK>, C<SvIOK> nor C<SvNOK>. If the flags
3325 contain C<SV_GMAGIC>, then it does an C<mg_get()> first.
3332 Perl_sv_2bool_flags(pTHX_ SV *sv, I32 flags)
3334 PERL_ARGS_ASSERT_SV_2BOOL_FLAGS;
3337 if(flags & SV_GMAGIC) SvGETMAGIC(sv);
3343 SV * const tmpsv = AMG_CALLunary(sv, bool__amg);
3344 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv)))) {
3347 if(SvGMAGICAL(sv)) {
3349 goto restart; /* call sv_2bool */
3351 /* expanded SvTRUE_common(sv, (flags = 0, goto restart)) */
3352 else if(!SvOK(sv)) {
3355 else if(SvPOK(sv)) {
3356 svb = SvPVXtrue(sv);
3358 else if((SvFLAGS(sv) & (SVf_IOK|SVf_NOK))) {
3359 svb = (SvIOK(sv) && SvIVX(sv) != 0)
3360 || (SvNOK(sv) && SvNVX(sv) != 0.0);
3364 goto restart; /* call sv_2bool_nomg */
3374 RX_WRAPLEN(sv) > 1 || (RX_WRAPLEN(sv) && *RX_WRAPPED(sv) != '0');
3376 if (SvNOK(sv) && !SvPOK(sv))
3377 return SvNVX(sv) != 0.0;
3379 return SvTRUE_common(sv, isGV_with_GP(sv) ? 1 : 0);
3383 =for apidoc sv_utf8_upgrade
3385 Converts the PV of an SV to its UTF-8-encoded form.
3386 Forces the SV to string form if it is not already.
3387 Will C<mg_get> on C<sv> if appropriate.
3388 Always sets the C<SvUTF8> flag to avoid future validity checks even
3389 if the whole string is the same in UTF-8 as not.
3390 Returns the number of bytes in the converted string
3392 This is not a general purpose byte encoding to Unicode interface:
3393 use the Encode extension for that.
3395 =for apidoc sv_utf8_upgrade_nomg
3397 Like C<sv_utf8_upgrade>, but doesn't do magic on C<sv>.
3399 =for apidoc sv_utf8_upgrade_flags
3401 Converts the PV of an SV to its UTF-8-encoded form.
3402 Forces the SV to string form if it is not already.
3403 Always sets the SvUTF8 flag to avoid future validity checks even
3404 if all the bytes are invariant in UTF-8.
3405 If C<flags> has C<SV_GMAGIC> bit set,
3406 will C<mg_get> on C<sv> if appropriate, else not.
3408 The C<SV_FORCE_UTF8_UPGRADE> flag is now ignored.
3410 Returns the number of bytes in the converted string.
3412 This is not a general purpose byte encoding to Unicode interface:
3413 use the Encode extension for that.
3415 =for apidoc sv_utf8_upgrade_flags_grow
3417 Like C<sv_utf8_upgrade_flags>, but has an additional parameter C<extra>, which is
3418 the number of unused bytes the string of C<sv> is guaranteed to have free after
3419 it upon return. This allows the caller to reserve extra space that it intends
3420 to fill, to avoid extra grows.
3422 C<sv_utf8_upgrade>, C<sv_utf8_upgrade_nomg>, and C<sv_utf8_upgrade_flags>
3423 are implemented in terms of this function.
3425 Returns the number of bytes in the converted string (not including the spares).
3429 If the routine itself changes the string, it adds a trailing C<NUL>. Such a
3430 C<NUL> isn't guaranteed due to having other routines do the work in some input
3431 cases, or if the input is already flagged as being in utf8.
3436 Perl_sv_utf8_upgrade_flags_grow(pTHX_ SV *const sv, const I32 flags, STRLEN extra)
3438 PERL_ARGS_ASSERT_SV_UTF8_UPGRADE_FLAGS_GROW;
3440 if (sv == &PL_sv_undef)
3442 if (!SvPOK_nog(sv)) {
3444 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
3445 (void) sv_2pv_flags(sv,&len, flags);
3447 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3451 (void) SvPV_force_flags(sv,len,flags & SV_GMAGIC);
3455 /* SVt_REGEXP's shouldn't be upgraded to UTF8 - they're already
3456 * compiled and individual nodes will remain non-utf8 even if the
3457 * stringified version of the pattern gets upgraded. Whether the
3458 * PVX of a REGEXP should be grown or we should just croak, I don't
3460 if (SvUTF8(sv) || isREGEXP(sv)) {
3461 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3466 S_sv_uncow(aTHX_ sv, 0);
3469 if (SvCUR(sv) == 0) {
3470 if (extra) SvGROW(sv, extra);
3471 } else { /* Assume Latin-1/EBCDIC */
3472 /* This function could be much more efficient if we
3473 * had a FLAG in SVs to signal if there are any variant
3474 * chars in the PV. Given that there isn't such a flag
3475 * make the loop as fast as possible. */
3476 U8 * s = (U8 *) SvPVX_const(sv);
3479 if (is_utf8_invariant_string_loc(s, SvCUR(sv), (const U8 **) &t)) {
3481 /* utf8 conversion not needed because all are invariants. Mark
3482 * as UTF-8 even if no variant - saves scanning loop */
3484 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3488 /* Here, there is at least one variant (t points to the first one), so
3489 * the string should be converted to utf8. Everything from 's' to
3490 * 't - 1' will occupy only 1 byte each on output.
3492 * Note that the incoming SV may not have a trailing '\0', as certain
3493 * code in pp_formline can send us partially built SVs.
3495 * There are two main ways to convert. One is to create a new string
3496 * and go through the input starting from the beginning, appending each
3497 * converted value onto the new string as we go along. Going this
3498 * route, it's probably best to initially allocate enough space in the
3499 * string rather than possibly running out of space and having to
3500 * reallocate and then copy what we've done so far. Since everything
3501 * from 's' to 't - 1' is invariant, the destination can be initialized
3502 * with these using a fast memory copy. To be sure to allocate enough
3503 * space, one could use the worst case scenario, where every remaining
3504 * byte expands to two under UTF-8, or one could parse it and count
3505 * exactly how many do expand.
3507 * The other way is to unconditionally parse the remainder of the
3508 * string to figure out exactly how big the expanded string will be,
3509 * growing if needed. Then start at the end of the string and place
3510 * the character there at the end of the unfilled space in the expanded
3511 * one, working backwards until reaching 't'.
3513 * The problem with assuming the worst case scenario is that for very
3514 * long strings, we could allocate much more memory than actually
3515 * needed, which can create performance problems. If we have to parse
3516 * anyway, the second method is the winner as it may avoid an extra
3517 * copy. The code used to use the first method under some
3518 * circumstances, but now that there is faster variant counting on
3519 * ASCII platforms, the second method is used exclusively, eliminating
3520 * some code that no longer has to be maintained. */
3523 /* Count the total number of variants there are. We can start
3524 * just beyond the first one, which is known to be at 't' */
3525 const Size_t invariant_length = t - s;
3526 U8 * e = (U8 *) SvEND(sv);
3528 /* The length of the left overs, plus 1. */
3529 const Size_t remaining_length_p1 = e - t;
3531 /* We expand by 1 for the variant at 't' and one for each remaining
3532 * variant (we start looking at 't+1') */
3533 Size_t expansion = 1 + variant_under_utf8_count(t + 1, e);
3535 /* +1 = trailing NUL */
3536 Size_t need = SvCUR(sv) + expansion + extra + 1;
3539 /* Grow if needed */
3540 if (SvLEN(sv) < need) {
3541 t = invariant_length + (U8*) SvGROW(sv, need);
3542 e = t + remaining_length_p1;
3544 SvCUR_set(sv, invariant_length + remaining_length_p1 + expansion);
3546 /* Set the NUL at the end */
3547 d = (U8 *) SvEND(sv);
3550 /* Having decremented d, it points to the position to put the
3551 * very last byte of the expanded string. Go backwards through
3552 * the string, copying and expanding as we go, stopping when we
3553 * get to the part that is invariant the rest of the way down */
3557 if (NATIVE_BYTE_IS_INVARIANT(*e)) {
3560 *d-- = UTF8_EIGHT_BIT_LO(*e);
3561 *d-- = UTF8_EIGHT_BIT_HI(*e);
3566 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3567 /* Update pos. We do it at the end rather than during
3568 * the upgrade, to avoid slowing down the common case
3569 * (upgrade without pos).
3570 * pos can be stored as either bytes or characters. Since
3571 * this was previously a byte string we can just turn off
3572 * the bytes flag. */
3573 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3575 mg->mg_flags &= ~MGf_BYTES;
3577 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3578 magic_setutf8(sv,mg); /* clear UTF8 cache */
3588 =for apidoc sv_utf8_downgrade
3590 Attempts to convert the PV of an SV from characters to bytes.
3591 If the PV contains a character that cannot fit
3592 in a byte, this conversion will fail;
3593 in this case, either returns false or, if C<fail_ok> is not
3596 This is not a general purpose Unicode to byte encoding interface:
3597 use the C<Encode> extension for that.
3603 Perl_sv_utf8_downgrade(pTHX_ SV *const sv, const bool fail_ok)
3605 PERL_ARGS_ASSERT_SV_UTF8_DOWNGRADE;
3607 if (SvPOKp(sv) && SvUTF8(sv)) {
3611 int mg_flags = SV_GMAGIC;
3614 S_sv_uncow(aTHX_ sv, 0);
3616 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3618 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3619 if (mg && mg->mg_len > 0 && mg->mg_flags & MGf_BYTES) {
3620 mg->mg_len = sv_pos_b2u_flags(sv, mg->mg_len,
3621 SV_GMAGIC|SV_CONST_RETURN);
3622 mg_flags = 0; /* sv_pos_b2u does get magic */
3624 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3625 magic_setutf8(sv,mg); /* clear UTF8 cache */
3628 s = (U8 *) SvPV_flags(sv, len, mg_flags);
3630 if (!utf8_to_bytes(s, &len)) {
3635 Perl_croak(aTHX_ "Wide character in %s",
3638 Perl_croak(aTHX_ "Wide character");
3649 =for apidoc sv_utf8_encode
3651 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3652 flag off so that it looks like octets again.
3658 Perl_sv_utf8_encode(pTHX_ SV *const sv)
3660 PERL_ARGS_ASSERT_SV_UTF8_ENCODE;
3662 if (SvREADONLY(sv)) {
3663 sv_force_normal_flags(sv, 0);
3665 (void) sv_utf8_upgrade(sv);
3670 =for apidoc sv_utf8_decode
3672 If the PV of the SV is an octet sequence in Perl's extended UTF-8
3673 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3674 so that it looks like a character. If the PV contains only single-byte
3675 characters, the C<SvUTF8> flag stays off.
3676 Scans PV for validity and returns FALSE if the PV is invalid UTF-8.
3682 Perl_sv_utf8_decode(pTHX_ SV *const sv)
3684 PERL_ARGS_ASSERT_SV_UTF8_DECODE;
3687 const U8 *start, *c, *first_variant;
3689 /* The octets may have got themselves encoded - get them back as
3692 if (!sv_utf8_downgrade(sv, TRUE))
3695 /* it is actually just a matter of turning the utf8 flag on, but
3696 * we want to make sure everything inside is valid utf8 first.
3698 c = start = (const U8 *) SvPVX_const(sv);
3699 if (! is_utf8_invariant_string_loc(c, SvCUR(sv), &first_variant)) {
3700 if (!is_utf8_string(first_variant, SvCUR(sv) - (first_variant -c)))
3704 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3705 /* XXX Is this dead code? XS_utf8_decode calls SvSETMAGIC
3706 after this, clearing pos. Does anything on CPAN
3708 /* adjust pos to the start of a UTF8 char sequence */
3709 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3711 I32 pos = mg->mg_len;
3713 for (c = start + pos; c > start; c--) {
3714 if (UTF8_IS_START(*c))
3717 mg->mg_len = c - start;
3720 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3721 magic_setutf8(sv,mg); /* clear UTF8 cache */
3728 =for apidoc sv_setsv
3730 Copies the contents of the source SV C<ssv> into the destination SV
3731 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3732 function if the source SV needs to be reused. Does not handle 'set' magic on
3733 destination SV. Calls 'get' magic on source SV. Loosely speaking, it
3734 performs a copy-by-value, obliterating any previous content of the
3737 You probably want to use one of the assortment of wrappers, such as
3738 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3739 C<SvSetMagicSV_nosteal>.
3741 =for apidoc sv_setsv_flags
3743 Copies the contents of the source SV C<ssv> into the destination SV
3744 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3745 function if the source SV needs to be reused. Does not handle 'set' magic.
3746 Loosely speaking, it performs a copy-by-value, obliterating any previous
3747 content of the destination.
3748 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3749 C<ssv> if appropriate, else not. If the C<flags>
3750 parameter has the C<SV_NOSTEAL> bit set then the
3751 buffers of temps will not be stolen. C<sv_setsv>
3752 and C<sv_setsv_nomg> are implemented in terms of this function.
3754 You probably want to use one of the assortment of wrappers, such as
3755 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3756 C<SvSetMagicSV_nosteal>.
3758 This is the primary function for copying scalars, and most other
3759 copy-ish functions and macros use this underneath.
3765 S_glob_assign_glob(pTHX_ SV *const dstr, SV *const sstr, const int dtype)
3767 I32 mro_changes = 0; /* 1 = method, 2 = isa, 3 = recursive isa */
3768 HV *old_stash = NULL;
3770 PERL_ARGS_ASSERT_GLOB_ASSIGN_GLOB;
3772 if (dtype != SVt_PVGV && !isGV_with_GP(dstr)) {
3773 const char * const name = GvNAME(sstr);
3774 const STRLEN len = GvNAMELEN(sstr);
3776 if (dtype >= SVt_PV) {
3782 SvUPGRADE(dstr, SVt_PVGV);
3783 (void)SvOK_off(dstr);
3784 isGV_with_GP_on(dstr);
3786 GvSTASH(dstr) = GvSTASH(sstr);
3788 Perl_sv_add_backref(aTHX_ MUTABLE_SV(GvSTASH(dstr)), dstr);
3789 gv_name_set(MUTABLE_GV(dstr), name, len,
3790 GV_ADD | (GvNAMEUTF8(sstr) ? SVf_UTF8 : 0 ));
3791 SvFAKE_on(dstr); /* can coerce to non-glob */
3794 if(GvGP(MUTABLE_GV(sstr))) {
3795 /* If source has method cache entry, clear it */
3797 SvREFCNT_dec(GvCV(sstr));
3798 GvCV_set(sstr, NULL);
3801 /* If source has a real method, then a method is
3804 GvCV((const GV *)sstr) && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3810 /* If dest already had a real method, that's a change as well */
3812 !mro_changes && GvGP(MUTABLE_GV(dstr)) && GvCVu((const GV *)dstr)
3813 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3818 /* We don't need to check the name of the destination if it was not a
3819 glob to begin with. */
3820 if(dtype == SVt_PVGV) {
3821 const char * const name = GvNAME((const GV *)dstr);
3822 const STRLEN len = GvNAMELEN(dstr);
3823 if(memEQs(name, len, "ISA")
3824 /* The stash may have been detached from the symbol table, so
3826 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3830 if ((len > 1 && name[len-2] == ':' && name[len-1] == ':')
3831 || (len == 1 && name[0] == ':')) {
3834 /* Set aside the old stash, so we can reset isa caches on
3836 if((old_stash = GvHV(dstr)))
3837 /* Make sure we do not lose it early. */
3838 SvREFCNT_inc_simple_void_NN(
3839 sv_2mortal((SV *)old_stash)
3844 SvREFCNT_inc_simple_void_NN(sv_2mortal(dstr));
3847 /* freeing dstr's GP might free sstr (e.g. *x = $x),
3848 * so temporarily protect it */
3850 SAVEFREESV(SvREFCNT_inc_simple_NN(sstr));
3851 gp_free(MUTABLE_GV(dstr));
3852 GvINTRO_off(dstr); /* one-shot flag */
3853 GvGP_set(dstr, gp_ref(GvGP(sstr)));
3856 if (SvTAINTED(sstr))
3858 if (GvIMPORTED(dstr) != GVf_IMPORTED
3859 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3861 GvIMPORTED_on(dstr);
3864 if(mro_changes == 2) {
3865 if (GvAV((const GV *)sstr)) {
3867 SV * const sref = (SV *)GvAV((const GV *)dstr);
3868 if (SvSMAGICAL(sref) && (mg = mg_find(sref, PERL_MAGIC_isa))) {
3869 if (SvTYPE(mg->mg_obj) != SVt_PVAV) {
3870 AV * const ary = newAV();
3871 av_push(ary, mg->mg_obj); /* takes the refcount */
3872 mg->mg_obj = (SV *)ary;
3874 av_push((AV *)mg->mg_obj, SvREFCNT_inc_simple_NN(dstr));
3876 else sv_magic(sref, dstr, PERL_MAGIC_isa, NULL, 0);
3878 mro_isa_changed_in(GvSTASH(dstr));
3880 else if(mro_changes == 3) {
3881 HV * const stash = GvHV(dstr);
3882 if(old_stash ? (HV *)HvENAME_get(old_stash) : stash)
3888 else if(mro_changes) mro_method_changed_in(GvSTASH(dstr));
3889 if (GvIO(dstr) && dtype == SVt_PVGV) {
3890 DEBUG_o(Perl_deb(aTHX_
3891 "glob_assign_glob clearing PL_stashcache\n"));
3892 /* It's a cache. It will rebuild itself quite happily.
3893 It's a lot of effort to work out exactly which key (or keys)
3894 might be invalidated by the creation of the this file handle.
3896 hv_clear(PL_stashcache);
3902 Perl_gv_setref(pTHX_ SV *const dstr, SV *const sstr)
3904 SV * const sref = SvRV(sstr);
3906 const int intro = GvINTRO(dstr);
3909 const U32 stype = SvTYPE(sref);
3911 PERL_ARGS_ASSERT_GV_SETREF;
3914 GvINTRO_off(dstr); /* one-shot flag */
3915 GvLINE(dstr) = CopLINE(PL_curcop);
3916 GvEGV(dstr) = MUTABLE_GV(dstr);
3921 location = (SV **) &(GvGP(dstr)->gp_cv); /* XXX bypassing GvCV_set */
3922 import_flag = GVf_IMPORTED_CV;
3925 location = (SV **) &GvHV(dstr);
3926 import_flag = GVf_IMPORTED_HV;
3929 location = (SV **) &GvAV(dstr);
3930 import_flag = GVf_IMPORTED_AV;
3933 location = (SV **) &GvIOp(dstr);
3936 location = (SV **) &GvFORM(dstr);
3939 location = &GvSV(dstr);
3940 import_flag = GVf_IMPORTED_SV;
3943 if (stype == SVt_PVCV) {
3944 /*if (GvCVGEN(dstr) && (GvCV(dstr) != (const CV *)sref || GvCVGEN(dstr))) {*/
3945 if (GvCVGEN(dstr)) {
3946 SvREFCNT_dec(GvCV(dstr));
3947 GvCV_set(dstr, NULL);
3948 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3951 /* SAVEt_GVSLOT takes more room on the savestack and has more
3952 overhead in leave_scope than SAVEt_GENERIC_SV. But for CVs
3953 leave_scope needs access to the GV so it can reset method
3954 caches. We must use SAVEt_GVSLOT whenever the type is
3955 SVt_PVCV, even if the stash is anonymous, as the stash may
3956 gain a name somehow before leave_scope. */
3957 if (stype == SVt_PVCV) {
3958 /* There is no save_pushptrptrptr. Creating it for this
3959 one call site would be overkill. So inline the ss add
3963 SS_ADD_PTR(location);
3964 SS_ADD_PTR(SvREFCNT_inc(*location));
3965 SS_ADD_UV(SAVEt_GVSLOT);
3968 else SAVEGENERICSV(*location);
3971 if (stype == SVt_PVCV && (*location != sref || GvCVGEN(dstr))) {
3972 CV* const cv = MUTABLE_CV(*location);
3974 if (!GvCVGEN((const GV *)dstr) &&
3975 (CvROOT(cv) || CvXSUB(cv)) &&
3976 /* redundant check that avoids creating the extra SV
3977 most of the time: */
3978 (CvCONST(cv) || ckWARN(WARN_REDEFINE)))
3980 SV * const new_const_sv =
3981 CvCONST((const CV *)sref)
3982 ? cv_const_sv((const CV *)sref)
3984 HV * const stash = GvSTASH((const GV *)dstr);
3985 report_redefined_cv(
3988 ? Perl_newSVpvf(aTHX_
3989 "%" HEKf "::%" HEKf,
3990 HEKfARG(HvNAME_HEK(stash)),
3991 HEKfARG(GvENAME_HEK(MUTABLE_GV(dstr))))
3992 : Perl_newSVpvf(aTHX_
3994 HEKfARG(GvENAME_HEK(MUTABLE_GV(dstr))))
3997 CvCONST((const CV *)sref) ? &new_const_sv : NULL
4001 cv_ckproto_len_flags(cv, (const GV *)dstr,
4002 SvPOK(sref) ? CvPROTO(sref) : NULL,
4003 SvPOK(sref) ? CvPROTOLEN(sref) : 0,
4004 SvPOK(sref) ? SvUTF8(sref) : 0);
4006 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
4007 GvASSUMECV_on(dstr);
4008 if(GvSTASH(dstr)) { /* sub foo { 1 } sub bar { 2 } *bar = \&foo */
4009 if (intro && GvREFCNT(dstr) > 1) {
4010 /* temporary remove extra savestack's ref */
4012 gv_method_changed(dstr);
4015 else gv_method_changed(dstr);
4018 *location = SvREFCNT_inc_simple_NN(sref);
4019 if (import_flag && !(GvFLAGS(dstr) & import_flag)
4020 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
4021 GvFLAGS(dstr) |= import_flag;
4024 if (stype == SVt_PVHV) {
4025 const char * const name = GvNAME((GV*)dstr);
4026 const STRLEN len = GvNAMELEN(dstr);
4029 (len > 1 && name[len-2] == ':' && name[len-1] == ':')
4030 || (len == 1 && name[0] == ':')
4032 && (!dref || HvENAME_get(dref))
4035 (HV *)sref, (HV *)dref,
4041 stype == SVt_PVAV && sref != dref
4042 && memEQs(GvNAME((GV*)dstr), GvNAMELEN((GV*)dstr), "ISA")
4043 /* The stash may have been detached from the symbol table, so
4044 check its name before doing anything. */
4045 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
4048 MAGIC * const omg = dref && SvSMAGICAL(dref)
4049 ? mg_find(dref, PERL_MAGIC_isa)
4051 if (SvSMAGICAL(sref) && (mg = mg_find(sref, PERL_MAGIC_isa))) {
4052 if (SvTYPE(mg->mg_obj) != SVt_PVAV) {
4053 AV * const ary = newAV();
4054 av_push(ary, mg->mg_obj); /* takes the refcount */
4055 mg->mg_obj = (SV *)ary;
4058 if (SvTYPE(omg->mg_obj) == SVt_PVAV) {
4059 SV **svp = AvARRAY((AV *)omg->mg_obj);
4060 I32 items = AvFILLp((AV *)omg->mg_obj) + 1;
4064 SvREFCNT_inc_simple_NN(*svp++)
4070 SvREFCNT_inc_simple_NN(omg->mg_obj)
4074 av_push((AV *)mg->mg_obj,SvREFCNT_inc_simple_NN(dstr));
4080 sref, omg ? omg->mg_obj : dstr, PERL_MAGIC_isa, NULL, 0
4082 for (i = 0; i <= AvFILL(sref); ++i) {
4083 SV **elem = av_fetch ((AV*)sref, i, 0);
4086 *elem, sref, PERL_MAGIC_isaelem, NULL, i
4090 mg = mg_find(sref, PERL_MAGIC_isa);
4092 /* Since the *ISA assignment could have affected more than
4093 one stash, don't call mro_isa_changed_in directly, but let
4094 magic_clearisa do it for us, as it already has the logic for
4095 dealing with globs vs arrays of globs. */
4097 Perl_magic_clearisa(aTHX_ NULL, mg);
4099 else if (stype == SVt_PVIO) {
4100 DEBUG_o(Perl_deb(aTHX_ "gv_setref clearing PL_stashcache\n"));
4101 /* It's a cache. It will rebuild itself quite happily.
4102 It's a lot of effort to work out exactly which key (or keys)
4103 might be invalidated by the creation of the this file handle.
4105 hv_clear(PL_stashcache);
4109 if (!intro) SvREFCNT_dec(dref);
4110 if (SvTAINTED(sstr))
4118 #ifdef PERL_DEBUG_READONLY_COW
4119 # include <sys/mman.h>
4121 # ifndef PERL_MEMORY_DEBUG_HEADER_SIZE
4122 # define PERL_MEMORY_DEBUG_HEADER_SIZE 0
4126 Perl_sv_buf_to_ro(pTHX_ SV *sv)
4128 struct perl_memory_debug_header * const header =
4129 (struct perl_memory_debug_header *)(SvPVX(sv)-PERL_MEMORY_DEBUG_HEADER_SIZE);
4130 const MEM_SIZE len = header->size;
4131 PERL_ARGS_ASSERT_SV_BUF_TO_RO;
4132 # ifdef PERL_TRACK_MEMPOOL
4133 if (!header->readonly) header->readonly = 1;
4135 if (mprotect(header, len, PROT_READ))
4136 Perl_warn(aTHX_ "mprotect RW for COW string %p %lu failed with %d",
4137 header, len, errno);
4141 S_sv_buf_to_rw(pTHX_ SV *sv)
4143 struct perl_memory_debug_header * const header =
4144 (struct perl_memory_debug_header *)(SvPVX(sv)-PERL_MEMORY_DEBUG_HEADER_SIZE);
4145 const MEM_SIZE len = header->size;
4146 PERL_ARGS_ASSERT_SV_BUF_TO_RW;
4147 if (mprotect(header, len, PROT_READ|PROT_WRITE))
4148 Perl_warn(aTHX_ "mprotect for COW string %p %lu failed with %d",
4149 header, len, errno);
4150 # ifdef PERL_TRACK_MEMPOOL
4151 header->readonly = 0;
4156 # define sv_buf_to_ro(sv) NOOP
4157 # define sv_buf_to_rw(sv) NOOP
4161 Perl_sv_setsv_flags(pTHX_ SV *dstr, SV* sstr, const I32 flags)
4166 unsigned int both_type;
4168 PERL_ARGS_ASSERT_SV_SETSV_FLAGS;
4170 if (UNLIKELY( sstr == dstr ))
4173 if (UNLIKELY( !sstr ))
4174 sstr = &PL_sv_undef;
4176 stype = SvTYPE(sstr);
4177 dtype = SvTYPE(dstr);
4178 both_type = (stype | dtype);
4180 /* with these values, we can check that both SVs are NULL/IV (and not
4181 * freed) just by testing the or'ed types */
4182 STATIC_ASSERT_STMT(SVt_NULL == 0);
4183 STATIC_ASSERT_STMT(SVt_IV == 1);
4184 if (both_type <= 1) {
4185 /* both src and dst are UNDEF/IV/RV, so we can do a lot of
4191 /* minimal subset of SV_CHECK_THINKFIRST_COW_DROP(dstr) */
4192 if (SvREADONLY(dstr))
4193 Perl_croak_no_modify();
4195 if (SvWEAKREF(dstr))
4196 sv_unref_flags(dstr, 0);
4198 old_rv = SvRV(dstr);
4201 assert(!SvGMAGICAL(sstr));
4202 assert(!SvGMAGICAL(dstr));
4204 sflags = SvFLAGS(sstr);
4205 if (sflags & (SVf_IOK|SVf_ROK)) {
4206 SET_SVANY_FOR_BODYLESS_IV(dstr);
4207 new_dflags = SVt_IV;
4209 if (sflags & SVf_ROK) {
4210 dstr->sv_u.svu_rv = SvREFCNT_inc(SvRV(sstr));
4211 new_dflags |= SVf_ROK;
4214 /* both src and dst are <= SVt_IV, so sv_any points to the
4215 * head; so access the head directly
4217 assert( &(sstr->sv_u.svu_iv)
4218 == &(((XPVIV*) SvANY(sstr))->xiv_iv));
4219 assert( &(dstr->sv_u.svu_iv)
4220 == &(((XPVIV*) SvANY(dstr))->xiv_iv));
4221 dstr->sv_u.svu_iv = sstr->sv_u.svu_iv;
4222 new_dflags |= (SVf_IOK|SVp_IOK|(sflags & SVf_IVisUV));
4226 new_dflags = dtype; /* turn off everything except the type */
4228 SvFLAGS(dstr) = new_dflags;
4229 SvREFCNT_dec(old_rv);
4234 if (UNLIKELY(both_type == SVTYPEMASK)) {
4235 if (SvIS_FREED(dstr)) {
4236 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
4237 " to a freed scalar %p", SVfARG(sstr), (void *)dstr);
4239 if (SvIS_FREED(sstr)) {
4240 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
4241 (void*)sstr, (void*)dstr);
4247 SV_CHECK_THINKFIRST_COW_DROP(dstr);
4248 dtype = SvTYPE(dstr); /* THINKFIRST may have changed type */
4250 /* There's a lot of redundancy below but we're going for speed here */
4255 if (LIKELY( dtype != SVt_PVGV && dtype != SVt_PVLV )) {
4256 (void)SvOK_off(dstr);
4264 /* For performance, we inline promoting to type SVt_IV. */
4265 /* We're starting from SVt_NULL, so provided that define is
4266 * actual 0, we don't have to unset any SV type flags
4267 * to promote to SVt_IV. */
4268 STATIC_ASSERT_STMT(SVt_NULL == 0);
4269 SET_SVANY_FOR_BODYLESS_IV(dstr);
4270 SvFLAGS(dstr) |= SVt_IV;
4274 sv_upgrade(dstr, SVt_PVIV);
4278 goto end_of_first_switch;
4280 (void)SvIOK_only(dstr);
4281 SvIV_set(dstr, SvIVX(sstr));
4284 /* SvTAINTED can only be true if the SV has taint magic, which in
4285 turn means that the SV type is PVMG (or greater). This is the
4286 case statement for SVt_IV, so this cannot be true (whatever gcov
4288 assert(!SvTAINTED(sstr));
4293 if (dtype < SVt_PV && dtype != SVt_IV)
4294 sv_upgrade(dstr, SVt_IV);
4298 if (LIKELY( SvNOK(sstr) )) {
4302 sv_upgrade(dstr, SVt_NV);
4306 sv_upgrade(dstr, SVt_PVNV);
4310 goto end_of_first_switch;
4312 SvNV_set(dstr, SvNVX(sstr));
4313 (void)SvNOK_only(dstr);
4314 /* SvTAINTED can only be true if the SV has taint magic, which in
4315 turn means that the SV type is PVMG (or greater). This is the
4316 case statement for SVt_NV, so this cannot be true (whatever gcov
4318 assert(!SvTAINTED(sstr));
4325 sv_upgrade(dstr, SVt_PV);
4328 if (dtype < SVt_PVIV)
4329 sv_upgrade(dstr, SVt_PVIV);
4332 if (dtype < SVt_PVNV)
4333 sv_upgrade(dstr, SVt_PVNV);
4337 invlist_clone(sstr, dstr);
4341 const char * const type = sv_reftype(sstr,0);
4343 /* diag_listed_as: Bizarre copy of %s */
4344 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_DESC(PL_op));
4346 Perl_croak(aTHX_ "Bizarre copy of %s", type);
4348 NOT_REACHED; /* NOTREACHED */
4352 if (dtype < SVt_REGEXP)
4353 sv_upgrade(dstr, SVt_REGEXP);
4359 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
4361 if (SvTYPE(sstr) != stype)
4362 stype = SvTYPE(sstr);
4364 if (isGV_with_GP(sstr) && dtype <= SVt_PVLV) {
4365 glob_assign_glob(dstr, sstr, dtype);
4368 if (stype == SVt_PVLV)
4370 if (isREGEXP(sstr)) goto upgregexp;
4371 SvUPGRADE(dstr, SVt_PVNV);
4374 SvUPGRADE(dstr, (svtype)stype);
4376 end_of_first_switch:
4378 /* dstr may have been upgraded. */
4379 dtype = SvTYPE(dstr);
4380 sflags = SvFLAGS(sstr);
4382 if (UNLIKELY( dtype == SVt_PVCV )) {
4383 /* Assigning to a subroutine sets the prototype. */
4386 const char *const ptr = SvPV_const(sstr, len);
4388 SvGROW(dstr, len + 1);
4389 Copy(ptr, SvPVX(dstr), len + 1, char);
4390 SvCUR_set(dstr, len);
4392 SvFLAGS(dstr) |= sflags & SVf_UTF8;
4393 CvAUTOLOAD_off(dstr);
4398 else if (UNLIKELY(dtype == SVt_PVAV || dtype == SVt_PVHV
4399 || dtype == SVt_PVFM))
4401 const char * const type = sv_reftype(dstr,0);
4403 /* diag_listed_as: Cannot copy to %s */
4404 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_DESC(PL_op));
4406 Perl_croak(aTHX_ "Cannot copy to %s", type);
4407 } else if (sflags & SVf_ROK) {
4408 if (isGV_with_GP(dstr)
4409 && SvTYPE(SvRV(sstr)) == SVt_PVGV && isGV_with_GP(SvRV(sstr))) {
4412 if (GvIMPORTED(dstr) != GVf_IMPORTED
4413 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
4415 GvIMPORTED_on(dstr);
4420 glob_assign_glob(dstr, sstr, dtype);
4424 if (dtype >= SVt_PV) {
4425 if (isGV_with_GP(dstr)) {
4426 gv_setref(dstr, sstr);
4429 if (SvPVX_const(dstr)) {
4435 (void)SvOK_off(dstr);
4436 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
4437 SvFLAGS(dstr) |= sflags & SVf_ROK;
4438 assert(!(sflags & SVp_NOK));
4439 assert(!(sflags & SVp_IOK));
4440 assert(!(sflags & SVf_NOK));
4441 assert(!(sflags & SVf_IOK));
4443 else if (isGV_with_GP(dstr)) {
4444 if (!(sflags & SVf_OK)) {
4445 Perl_ck_warner(aTHX_ packWARN(WARN_MISC),
4446 "Undefined value assigned to typeglob");
4449 GV *gv = gv_fetchsv_nomg(sstr, GV_ADD, SVt_PVGV);
4450 if (dstr != (const SV *)gv) {
4451 const char * const name = GvNAME((const GV *)dstr);
4452 const STRLEN len = GvNAMELEN(dstr);
4453 HV *old_stash = NULL;
4454 bool reset_isa = FALSE;
4455 if ((len > 1 && name[len-2] == ':' && name[len-1] == ':')
4456 || (len == 1 && name[0] == ':')) {
4457 /* Set aside the old stash, so we can reset isa caches
4458 on its subclasses. */
4459 if((old_stash = GvHV(dstr))) {
4460 /* Make sure we do not lose it early. */
4461 SvREFCNT_inc_simple_void_NN(
4462 sv_2mortal((SV *)old_stash)
4469 SvREFCNT_inc_simple_void_NN(sv_2mortal(dstr));
4470 gp_free(MUTABLE_GV(dstr));
4472 GvGP_set(dstr, gp_ref(GvGP(gv)));
4475 HV * const stash = GvHV(dstr);
4477 old_stash ? (HV *)HvENAME_get(old_stash) : stash
4487 else if ((dtype == SVt_REGEXP || dtype == SVt_PVLV)
4488 && (stype == SVt_REGEXP || isREGEXP(sstr))) {
4489 reg_temp_copy((REGEXP*)dstr, (REGEXP*)sstr);
4491 else if (sflags & SVp_POK) {
4492 const STRLEN cur = SvCUR(sstr);
4493 const STRLEN len = SvLEN(sstr);
4496 * We have three basic ways to copy the string:
4502 * Which we choose is based on various factors. The following
4503 * things are listed in order of speed, fastest to slowest:
4505 * - Copying a short string
4506 * - Copy-on-write bookkeeping
4508 * - Copying a long string
4510 * We swipe the string (steal the string buffer) if the SV on the
4511 * rhs is about to be freed anyway (TEMP and refcnt==1). This is a
4512 * big win on long strings. It should be a win on short strings if
4513 * SvPVX_const(dstr) has to be allocated. If not, it should not
4514 * slow things down, as SvPVX_const(sstr) would have been freed
4517 * We also steal the buffer from a PADTMP (operator target) if it
4518 * is ‘long enough’. For short strings, a swipe does not help
4519 * here, as it causes more malloc calls the next time the target
4520 * is used. Benchmarks show that even if SvPVX_const(dstr) has to
4521 * be allocated it is still not worth swiping PADTMPs for short
4522 * strings, as the savings here are small.
4524 * If swiping is not an option, then we see whether it is
4525 * worth using copy-on-write. If the lhs already has a buf-
4526 * fer big enough and the string is short, we skip it and fall back
4527 * to method 3, since memcpy is faster for short strings than the
4528 * later bookkeeping overhead that copy-on-write entails.
4530 * If the rhs is not a copy-on-write string yet, then we also
4531 * consider whether the buffer is too large relative to the string
4532 * it holds. Some operations such as readline allocate a large
4533 * buffer in the expectation of reusing it. But turning such into
4534 * a COW buffer is counter-productive because it increases memory
4535 * usage by making readline allocate a new large buffer the sec-
4536 * ond time round. So, if the buffer is too large, again, we use
4539 * Finally, if there is no buffer on the left, or the buffer is too
4540 * small, then we use copy-on-write and make both SVs share the
4545 /* Whichever path we take through the next code, we want this true,
4546 and doing it now facilitates the COW check. */
4547 (void)SvPOK_only(dstr);
4551 /* slated for free anyway (and not COW)? */
4552 (sflags & (SVs_TEMP|SVf_IsCOW)) == SVs_TEMP
4553 /* or a swipable TARG */
4555 (SVs_PADTMP|SVf_READONLY|SVf_PROTECT|SVf_IsCOW))
4557 /* whose buffer is worth stealing */
4558 && CHECK_COWBUF_THRESHOLD(cur,len)
4561 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
4562 (!(flags & SV_NOSTEAL)) &&
4563 /* and we're allowed to steal temps */
4564 SvREFCNT(sstr) == 1 && /* and no other references to it? */
4565 len) /* and really is a string */
4566 { /* Passes the swipe test. */
4567 if (SvPVX_const(dstr)) /* we know that dtype >= SVt_PV */
4569 SvPV_set(dstr, SvPVX_mutable(sstr));
4570 SvLEN_set(dstr, SvLEN(sstr));
4571 SvCUR_set(dstr, SvCUR(sstr));
4574 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
4575 SvPV_set(sstr, NULL);
4580 else if (flags & SV_COW_SHARED_HASH_KEYS
4582 #ifdef PERL_COPY_ON_WRITE
4585 ( (CHECK_COWBUF_THRESHOLD(cur,len) || SvLEN(dstr) < cur+1)
4586 /* If this is a regular (non-hek) COW, only so
4587 many COW "copies" are possible. */
4588 && CowREFCNT(sstr) != SV_COW_REFCNT_MAX ))
4589 : ( (sflags & CAN_COW_MASK) == CAN_COW_FLAGS
4590 && !(SvFLAGS(dstr) & SVf_BREAK)
4591 && CHECK_COW_THRESHOLD(cur,len) && cur+1 < len
4592 && (CHECK_COWBUF_THRESHOLD(cur,len) || SvLEN(dstr) < cur+1)
4596 && !(SvFLAGS(dstr) & SVf_BREAK)
4599 /* Either it's a shared hash key, or it's suitable for
4603 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
4609 if (!(sflags & SVf_IsCOW)) {
4611 CowREFCNT(sstr) = 0;
4614 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
4620 if (sflags & SVf_IsCOW) {