3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by Larry Wall
7 * You may distribute under the terms of either the GNU General Public
8 * License or the Artistic License, as specified in the README file.
13 * 'I wonder what the Entish is for "yes" and "no",' he thought.
16 * [p.480 of _The Lord of the Rings_, III/iv: "Treebeard"]
22 * This file contains the code that creates, manipulates and destroys
23 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
24 * structure of an SV, so their creation and destruction is handled
25 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
26 * level functions (eg. substr, split, join) for each of the types are
36 # if __STDC_VERSION__ >= 199901L && !defined(VMS)
47 /* Missing proto on LynxOS */
48 char *gconvert(double, int, int, char *);
51 #ifdef PERL_UTF8_CACHE_ASSERT
52 /* if adding more checks watch out for the following tests:
53 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
54 * lib/utf8.t lib/Unicode/Collate/t/index.t
57 # define ASSERT_UTF8_CACHE(cache) \
58 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
59 assert((cache)[2] <= (cache)[3]); \
60 assert((cache)[3] <= (cache)[1]);} \
63 # define ASSERT_UTF8_CACHE(cache) NOOP
66 #ifdef PERL_OLD_COPY_ON_WRITE
67 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
68 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
69 /* This is a pessimistic view. Scalar must be purely a read-write PV to copy-
73 /* ============================================================================
75 =head1 Allocation and deallocation of SVs.
77 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
78 sv, av, hv...) contains type and reference count information, and for
79 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
80 contains fields specific to each type. Some types store all they need
81 in the head, so don't have a body.
83 In all but the most memory-paranoid configurations (ex: PURIFY), heads
84 and bodies are allocated out of arenas, which by default are
85 approximately 4K chunks of memory parcelled up into N heads or bodies.
86 Sv-bodies are allocated by their sv-type, guaranteeing size
87 consistency needed to allocate safely from arrays.
89 For SV-heads, the first slot in each arena is reserved, and holds a
90 link to the next arena, some flags, and a note of the number of slots.
91 Snaked through each arena chain is a linked list of free items; when
92 this becomes empty, an extra arena is allocated and divided up into N
93 items which are threaded into the free list.
95 SV-bodies are similar, but they use arena-sets by default, which
96 separate the link and info from the arena itself, and reclaim the 1st
97 slot in the arena. SV-bodies are further described later.
99 The following global variables are associated with arenas:
101 PL_sv_arenaroot pointer to list of SV arenas
102 PL_sv_root pointer to list of free SV structures
104 PL_body_arenas head of linked-list of body arenas
105 PL_body_roots[] array of pointers to list of free bodies of svtype
106 arrays are indexed by the svtype needed
108 A few special SV heads are not allocated from an arena, but are
109 instead directly created in the interpreter structure, eg PL_sv_undef.
110 The size of arenas can be changed from the default by setting
111 PERL_ARENA_SIZE appropriately at compile time.
113 The SV arena serves the secondary purpose of allowing still-live SVs
114 to be located and destroyed during final cleanup.
116 At the lowest level, the macros new_SV() and del_SV() grab and free
117 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
118 to return the SV to the free list with error checking.) new_SV() calls
119 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
120 SVs in the free list have their SvTYPE field set to all ones.
122 At the time of very final cleanup, sv_free_arenas() is called from
123 perl_destruct() to physically free all the arenas allocated since the
124 start of the interpreter.
126 The function visit() scans the SV arenas list, and calls a specified
127 function for each SV it finds which is still live - ie which has an SvTYPE
128 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
129 following functions (specified as [function that calls visit()] / [function
130 called by visit() for each SV]):
132 sv_report_used() / do_report_used()
133 dump all remaining SVs (debugging aid)
135 sv_clean_objs() / do_clean_objs(),do_clean_named_objs(),
136 do_clean_named_io_objs()
137 Attempt to free all objects pointed to by RVs,
138 and try to do the same for all objects indirectly
139 referenced by typeglobs too. Called once from
140 perl_destruct(), prior to calling sv_clean_all()
143 sv_clean_all() / do_clean_all()
144 SvREFCNT_dec(sv) each remaining SV, possibly
145 triggering an sv_free(). It also sets the
146 SVf_BREAK flag on the SV to indicate that the
147 refcnt has been artificially lowered, and thus
148 stopping sv_free() from giving spurious warnings
149 about SVs which unexpectedly have a refcnt
150 of zero. called repeatedly from perl_destruct()
151 until there are no SVs left.
153 =head2 Arena allocator API Summary
155 Private API to rest of sv.c
159 new_XPVNV(), del_XPVGV(),
164 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
168 * ========================================================================= */
171 * "A time to plant, and a time to uproot what was planted..."
175 # define MEM_LOG_NEW_SV(sv, file, line, func) \
176 Perl_mem_log_new_sv(sv, file, line, func)
177 # define MEM_LOG_DEL_SV(sv, file, line, func) \
178 Perl_mem_log_del_sv(sv, file, line, func)
180 # define MEM_LOG_NEW_SV(sv, file, line, func) NOOP
181 # define MEM_LOG_DEL_SV(sv, file, line, func) NOOP
184 #ifdef DEBUG_LEAKING_SCALARS
185 # define FREE_SV_DEBUG_FILE(sv) Safefree((sv)->sv_debug_file)
186 # define DEBUG_SV_SERIAL(sv) \
187 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) del_SV\n", \
188 PTR2UV(sv), (long)(sv)->sv_debug_serial))
190 # define FREE_SV_DEBUG_FILE(sv)
191 # define DEBUG_SV_SERIAL(sv) NOOP
195 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
196 # define SvARENA_CHAIN_SET(sv,val) (sv)->sv_u.svu_rv = MUTABLE_SV((val))
197 /* Whilst I'd love to do this, it seems that things like to check on
199 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
201 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
202 PoisonNew(&SvREFCNT(sv), 1, U32)
204 # define SvARENA_CHAIN(sv) SvANY(sv)
205 # define SvARENA_CHAIN_SET(sv,val) SvANY(sv) = (void *)(val)
206 # define POSION_SV_HEAD(sv)
209 /* Mark an SV head as unused, and add to free list.
211 * If SVf_BREAK is set, skip adding it to the free list, as this SV had
212 * its refcount artificially decremented during global destruction, so
213 * there may be dangling pointers to it. The last thing we want in that
214 * case is for it to be reused. */
216 #define plant_SV(p) \
218 const U32 old_flags = SvFLAGS(p); \
219 MEM_LOG_DEL_SV(p, __FILE__, __LINE__, FUNCTION__); \
220 DEBUG_SV_SERIAL(p); \
221 FREE_SV_DEBUG_FILE(p); \
223 SvFLAGS(p) = SVTYPEMASK; \
224 if (!(old_flags & SVf_BREAK)) { \
225 SvARENA_CHAIN_SET(p, PL_sv_root); \
231 #define uproot_SV(p) \
234 PL_sv_root = MUTABLE_SV(SvARENA_CHAIN(p)); \
239 /* make some more SVs by adding another arena */
246 char *chunk; /* must use New here to match call to */
247 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
248 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
253 /* new_SV(): return a new, empty SV head */
255 #ifdef DEBUG_LEAKING_SCALARS
256 /* provide a real function for a debugger to play with */
258 S_new_SV(pTHX_ const char *file, int line, const char *func)
265 sv = S_more_sv(aTHX);
269 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
270 sv->sv_debug_line = (U16) (PL_parser && PL_parser->copline != NOLINE
276 sv->sv_debug_inpad = 0;
277 sv->sv_debug_parent = NULL;
278 sv->sv_debug_file = PL_curcop ? savepv(CopFILE(PL_curcop)): NULL;
280 sv->sv_debug_serial = PL_sv_serial++;
282 MEM_LOG_NEW_SV(sv, file, line, func);
283 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) new_SV (from %s:%d [%s])\n",
284 PTR2UV(sv), (long)sv->sv_debug_serial, file, line, func));
288 # define new_SV(p) (p)=S_new_SV(aTHX_ __FILE__, __LINE__, FUNCTION__)
296 (p) = S_more_sv(aTHX); \
300 MEM_LOG_NEW_SV(p, __FILE__, __LINE__, FUNCTION__); \
305 /* del_SV(): return an empty SV head to the free list */
318 S_del_sv(pTHX_ SV *p)
322 PERL_ARGS_ASSERT_DEL_SV;
327 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
328 const SV * const sv = sva + 1;
329 const SV * const svend = &sva[SvREFCNT(sva)];
330 if (p >= sv && p < svend) {
336 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
337 "Attempt to free non-arena SV: 0x%"UVxf
338 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
345 #else /* ! DEBUGGING */
347 #define del_SV(p) plant_SV(p)
349 #endif /* DEBUGGING */
353 =head1 SV Manipulation Functions
355 =for apidoc sv_add_arena
357 Given a chunk of memory, link it to the head of the list of arenas,
358 and split it into a list of free SVs.
364 S_sv_add_arena(pTHX_ char *const ptr, const U32 size, const U32 flags)
367 SV *const sva = MUTABLE_SV(ptr);
371 PERL_ARGS_ASSERT_SV_ADD_ARENA;
373 /* The first SV in an arena isn't an SV. */
374 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
375 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
376 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
378 PL_sv_arenaroot = sva;
379 PL_sv_root = sva + 1;
381 svend = &sva[SvREFCNT(sva) - 1];
384 SvARENA_CHAIN_SET(sv, (sv + 1));
388 /* Must always set typemask because it's always checked in on cleanup
389 when the arenas are walked looking for objects. */
390 SvFLAGS(sv) = SVTYPEMASK;
393 SvARENA_CHAIN_SET(sv, 0);
397 SvFLAGS(sv) = SVTYPEMASK;
400 /* visit(): call the named function for each non-free SV in the arenas
401 * whose flags field matches the flags/mask args. */
404 S_visit(pTHX_ SVFUNC_t f, const U32 flags, const U32 mask)
410 PERL_ARGS_ASSERT_VISIT;
412 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
413 const SV * const svend = &sva[SvREFCNT(sva)];
415 for (sv = sva + 1; sv < svend; ++sv) {
416 if (SvTYPE(sv) != (svtype)SVTYPEMASK
417 && (sv->sv_flags & mask) == flags
430 /* called by sv_report_used() for each live SV */
433 do_report_used(pTHX_ SV *const sv)
435 if (SvTYPE(sv) != (svtype)SVTYPEMASK) {
436 PerlIO_printf(Perl_debug_log, "****\n");
443 =for apidoc sv_report_used
445 Dump the contents of all SVs not yet freed (debugging aid).
451 Perl_sv_report_used(pTHX)
454 visit(do_report_used, 0, 0);
460 /* called by sv_clean_objs() for each live SV */
463 do_clean_objs(pTHX_ SV *const ref)
468 SV * const target = SvRV(ref);
469 if (SvOBJECT(target)) {
470 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
471 if (SvWEAKREF(ref)) {
472 sv_del_backref(target, ref);
478 SvREFCNT_dec(target);
483 /* XXX Might want to check arrays, etc. */
487 /* clear any slots in a GV which hold objects - except IO;
488 * called by sv_clean_objs() for each live GV */
491 do_clean_named_objs(pTHX_ SV *const sv)
495 assert(SvTYPE(sv) == SVt_PVGV);
496 assert(isGV_with_GP(sv));
500 /* freeing GP entries may indirectly free the current GV;
501 * hold onto it while we mess with the GP slots */
504 if ( ((obj = GvSV(sv) )) && SvOBJECT(obj)) {
505 DEBUG_D((PerlIO_printf(Perl_debug_log,
506 "Cleaning named glob SV object:\n "), sv_dump(obj)));
510 if ( ((obj = MUTABLE_SV(GvAV(sv)) )) && SvOBJECT(obj)) {
511 DEBUG_D((PerlIO_printf(Perl_debug_log,
512 "Cleaning named glob AV object:\n "), sv_dump(obj)));
516 if ( ((obj = MUTABLE_SV(GvHV(sv)) )) && SvOBJECT(obj)) {
517 DEBUG_D((PerlIO_printf(Perl_debug_log,
518 "Cleaning named glob HV object:\n "), sv_dump(obj)));
522 if ( ((obj = MUTABLE_SV(GvCV(sv)) )) && SvOBJECT(obj)) {
523 DEBUG_D((PerlIO_printf(Perl_debug_log,
524 "Cleaning named glob CV object:\n "), sv_dump(obj)));
528 SvREFCNT_dec(sv); /* undo the inc above */
531 /* clear any IO slots in a GV which hold objects (except stderr, defout);
532 * called by sv_clean_objs() for each live GV */
535 do_clean_named_io_objs(pTHX_ SV *const sv)
539 assert(SvTYPE(sv) == SVt_PVGV);
540 assert(isGV_with_GP(sv));
541 if (!GvGP(sv) || sv == (SV*)PL_stderrgv || sv == (SV*)PL_defoutgv)
545 if ( ((obj = MUTABLE_SV(GvIO(sv)) )) && SvOBJECT(obj)) {
546 DEBUG_D((PerlIO_printf(Perl_debug_log,
547 "Cleaning named glob IO object:\n "), sv_dump(obj)));
551 SvREFCNT_dec(sv); /* undo the inc above */
554 /* Void wrapper to pass to visit() */
556 do_curse(pTHX_ SV * const sv) {
557 if ((PL_stderrgv && GvGP(PL_stderrgv) && (SV*)GvIO(PL_stderrgv) == sv)
558 || (PL_defoutgv && GvGP(PL_defoutgv) && (SV*)GvIO(PL_defoutgv) == sv))
564 =for apidoc sv_clean_objs
566 Attempt to destroy all objects not yet freed.
572 Perl_sv_clean_objs(pTHX)
576 PL_in_clean_objs = TRUE;
577 visit(do_clean_objs, SVf_ROK, SVf_ROK);
578 /* Some barnacles may yet remain, clinging to typeglobs.
579 * Run the non-IO destructors first: they may want to output
580 * error messages, close files etc */
581 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
582 visit(do_clean_named_io_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
583 /* And if there are some very tenacious barnacles clinging to arrays,
584 closures, or what have you.... */
585 visit(do_curse, SVs_OBJECT, SVs_OBJECT);
586 olddef = PL_defoutgv;
587 PL_defoutgv = NULL; /* disable skip of PL_defoutgv */
588 if (olddef && isGV_with_GP(olddef))
589 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olddef));
590 olderr = PL_stderrgv;
591 PL_stderrgv = NULL; /* disable skip of PL_stderrgv */
592 if (olderr && isGV_with_GP(olderr))
593 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olderr));
594 SvREFCNT_dec(olddef);
595 PL_in_clean_objs = FALSE;
598 /* called by sv_clean_all() for each live SV */
601 do_clean_all(pTHX_ SV *const sv)
604 if (sv == (const SV *) PL_fdpid || sv == (const SV *)PL_strtab) {
605 /* don't clean pid table and strtab */
608 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
609 SvFLAGS(sv) |= SVf_BREAK;
614 =for apidoc sv_clean_all
616 Decrement the refcnt of each remaining SV, possibly triggering a
617 cleanup. This function may have to be called multiple times to free
618 SVs which are in complex self-referential hierarchies.
624 Perl_sv_clean_all(pTHX)
628 PL_in_clean_all = TRUE;
629 cleaned = visit(do_clean_all, 0,0);
634 ARENASETS: a meta-arena implementation which separates arena-info
635 into struct arena_set, which contains an array of struct
636 arena_descs, each holding info for a single arena. By separating
637 the meta-info from the arena, we recover the 1st slot, formerly
638 borrowed for list management. The arena_set is about the size of an
639 arena, avoiding the needless malloc overhead of a naive linked-list.
641 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
642 memory in the last arena-set (1/2 on average). In trade, we get
643 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
644 smaller types). The recovery of the wasted space allows use of
645 small arenas for large, rare body types, by changing array* fields
646 in body_details_by_type[] below.
649 char *arena; /* the raw storage, allocated aligned */
650 size_t size; /* its size ~4k typ */
651 svtype utype; /* bodytype stored in arena */
656 /* Get the maximum number of elements in set[] such that struct arena_set
657 will fit within PERL_ARENA_SIZE, which is probably just under 4K, and
658 therefore likely to be 1 aligned memory page. */
660 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
661 - 2 * sizeof(int)) / sizeof (struct arena_desc))
664 struct arena_set* next;
665 unsigned int set_size; /* ie ARENAS_PER_SET */
666 unsigned int curr; /* index of next available arena-desc */
667 struct arena_desc set[ARENAS_PER_SET];
671 =for apidoc sv_free_arenas
673 Deallocate the memory used by all arenas. Note that all the individual SV
674 heads and bodies within the arenas must already have been freed.
679 Perl_sv_free_arenas(pTHX)
686 /* Free arenas here, but be careful about fake ones. (We assume
687 contiguity of the fake ones with the corresponding real ones.) */
689 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
690 svanext = MUTABLE_SV(SvANY(sva));
691 while (svanext && SvFAKE(svanext))
692 svanext = MUTABLE_SV(SvANY(svanext));
699 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
702 struct arena_set *current = aroot;
705 assert(aroot->set[i].arena);
706 Safefree(aroot->set[i].arena);
714 i = PERL_ARENA_ROOTS_SIZE;
716 PL_body_roots[i] = 0;
723 Here are mid-level routines that manage the allocation of bodies out
724 of the various arenas. There are 5 kinds of arenas:
726 1. SV-head arenas, which are discussed and handled above
727 2. regular body arenas
728 3. arenas for reduced-size bodies
731 Arena types 2 & 3 are chained by body-type off an array of
732 arena-root pointers, which is indexed by svtype. Some of the
733 larger/less used body types are malloced singly, since a large
734 unused block of them is wasteful. Also, several svtypes dont have
735 bodies; the data fits into the sv-head itself. The arena-root
736 pointer thus has a few unused root-pointers (which may be hijacked
737 later for arena types 4,5)
739 3 differs from 2 as an optimization; some body types have several
740 unused fields in the front of the structure (which are kept in-place
741 for consistency). These bodies can be allocated in smaller chunks,
742 because the leading fields arent accessed. Pointers to such bodies
743 are decremented to point at the unused 'ghost' memory, knowing that
744 the pointers are used with offsets to the real memory.
747 =head1 SV-Body Allocation
749 Allocation of SV-bodies is similar to SV-heads, differing as follows;
750 the allocation mechanism is used for many body types, so is somewhat
751 more complicated, it uses arena-sets, and has no need for still-live
754 At the outermost level, (new|del)_X*V macros return bodies of the
755 appropriate type. These macros call either (new|del)_body_type or
756 (new|del)_body_allocated macro pairs, depending on specifics of the
757 type. Most body types use the former pair, the latter pair is used to
758 allocate body types with "ghost fields".
760 "ghost fields" are fields that are unused in certain types, and
761 consequently don't need to actually exist. They are declared because
762 they're part of a "base type", which allows use of functions as
763 methods. The simplest examples are AVs and HVs, 2 aggregate types
764 which don't use the fields which support SCALAR semantics.
766 For these types, the arenas are carved up into appropriately sized
767 chunks, we thus avoid wasted memory for those unaccessed members.
768 When bodies are allocated, we adjust the pointer back in memory by the
769 size of the part not allocated, so it's as if we allocated the full
770 structure. (But things will all go boom if you write to the part that
771 is "not there", because you'll be overwriting the last members of the
772 preceding structure in memory.)
774 We calculate the correction using the STRUCT_OFFSET macro on the first
775 member present. If the allocated structure is smaller (no initial NV
776 actually allocated) then the net effect is to subtract the size of the NV
777 from the pointer, to return a new pointer as if an initial NV were actually
778 allocated. (We were using structures named *_allocated for this, but
779 this turned out to be a subtle bug, because a structure without an NV
780 could have a lower alignment constraint, but the compiler is allowed to
781 optimised accesses based on the alignment constraint of the actual pointer
782 to the full structure, for example, using a single 64 bit load instruction
783 because it "knows" that two adjacent 32 bit members will be 8-byte aligned.)
785 This is the same trick as was used for NV and IV bodies. Ironically it
786 doesn't need to be used for NV bodies any more, because NV is now at
787 the start of the structure. IV bodies don't need it either, because
788 they are no longer allocated.
790 In turn, the new_body_* allocators call S_new_body(), which invokes
791 new_body_inline macro, which takes a lock, and takes a body off the
792 linked list at PL_body_roots[sv_type], calling Perl_more_bodies() if
793 necessary to refresh an empty list. Then the lock is released, and
794 the body is returned.
796 Perl_more_bodies allocates a new arena, and carves it up into an array of N
797 bodies, which it strings into a linked list. It looks up arena-size
798 and body-size from the body_details table described below, thus
799 supporting the multiple body-types.
801 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
802 the (new|del)_X*V macros are mapped directly to malloc/free.
804 For each sv-type, struct body_details bodies_by_type[] carries
805 parameters which control these aspects of SV handling:
807 Arena_size determines whether arenas are used for this body type, and if
808 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
809 zero, forcing individual mallocs and frees.
811 Body_size determines how big a body is, and therefore how many fit into
812 each arena. Offset carries the body-pointer adjustment needed for
813 "ghost fields", and is used in *_allocated macros.
815 But its main purpose is to parameterize info needed in
816 Perl_sv_upgrade(). The info here dramatically simplifies the function
817 vs the implementation in 5.8.8, making it table-driven. All fields
818 are used for this, except for arena_size.
820 For the sv-types that have no bodies, arenas are not used, so those
821 PL_body_roots[sv_type] are unused, and can be overloaded. In
822 something of a special case, SVt_NULL is borrowed for HE arenas;
823 PL_body_roots[HE_SVSLOT=SVt_NULL] is filled by S_more_he, but the
824 bodies_by_type[SVt_NULL] slot is not used, as the table is not
829 struct body_details {
830 U8 body_size; /* Size to allocate */
831 U8 copy; /* Size of structure to copy (may be shorter) */
833 unsigned int type : 4; /* We have space for a sanity check. */
834 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
835 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
836 unsigned int arena : 1; /* Allocated from an arena */
837 size_t arena_size; /* Size of arena to allocate */
845 /* With -DPURFIY we allocate everything directly, and don't use arenas.
846 This seems a rather elegant way to simplify some of the code below. */
847 #define HASARENA FALSE
849 #define HASARENA TRUE
851 #define NOARENA FALSE
853 /* Size the arenas to exactly fit a given number of bodies. A count
854 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
855 simplifying the default. If count > 0, the arena is sized to fit
856 only that many bodies, allowing arenas to be used for large, rare
857 bodies (XPVFM, XPVIO) without undue waste. The arena size is
858 limited by PERL_ARENA_SIZE, so we can safely oversize the
861 #define FIT_ARENA0(body_size) \
862 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
863 #define FIT_ARENAn(count,body_size) \
864 ( count * body_size <= PERL_ARENA_SIZE) \
865 ? count * body_size \
866 : FIT_ARENA0 (body_size)
867 #define FIT_ARENA(count,body_size) \
869 ? FIT_ARENAn (count, body_size) \
870 : FIT_ARENA0 (body_size)
872 /* Calculate the length to copy. Specifically work out the length less any
873 final padding the compiler needed to add. See the comment in sv_upgrade
874 for why copying the padding proved to be a bug. */
876 #define copy_length(type, last_member) \
877 STRUCT_OFFSET(type, last_member) \
878 + sizeof (((type*)SvANY((const SV *)0))->last_member)
880 static const struct body_details bodies_by_type[] = {
881 /* HEs use this offset for their arena. */
882 { 0, 0, 0, SVt_NULL, FALSE, NONV, NOARENA, 0 },
884 /* The bind placeholder pretends to be an RV for now.
885 Also it's marked as "can't upgrade" to stop anyone using it before it's
887 { 0, 0, 0, SVt_BIND, TRUE, NONV, NOARENA, 0 },
889 /* IVs are in the head, so the allocation size is 0. */
891 sizeof(IV), /* This is used to copy out the IV body. */
892 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
893 NOARENA /* IVS don't need an arena */, 0
896 { sizeof(NV), sizeof(NV),
897 STRUCT_OFFSET(XPVNV, xnv_u),
898 SVt_NV, FALSE, HADNV, HASARENA, FIT_ARENA(0, sizeof(NV)) },
900 { sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur),
901 copy_length(XPV, xpv_len) - STRUCT_OFFSET(XPV, xpv_cur),
902 + STRUCT_OFFSET(XPV, xpv_cur),
903 SVt_PV, FALSE, NONV, HASARENA,
904 FIT_ARENA(0, sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur)) },
906 { sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur),
907 copy_length(XPVIV, xiv_u) - STRUCT_OFFSET(XPV, xpv_cur),
908 + STRUCT_OFFSET(XPV, xpv_cur),
909 SVt_PVIV, FALSE, NONV, HASARENA,
910 FIT_ARENA(0, sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur)) },
912 { sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur),
913 copy_length(XPVNV, xnv_u) - STRUCT_OFFSET(XPV, xpv_cur),
914 + STRUCT_OFFSET(XPV, xpv_cur),
915 SVt_PVNV, FALSE, HADNV, HASARENA,
916 FIT_ARENA(0, sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur)) },
918 { sizeof(XPVMG), copy_length(XPVMG, xnv_u), 0, SVt_PVMG, FALSE, HADNV,
919 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
924 SVt_REGEXP, FALSE, NONV, HASARENA,
925 FIT_ARENA(0, sizeof(regexp))
928 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
929 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
931 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
932 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
935 copy_length(XPVAV, xav_alloc),
937 SVt_PVAV, TRUE, NONV, HASARENA,
938 FIT_ARENA(0, sizeof(XPVAV)) },
941 copy_length(XPVHV, xhv_max),
943 SVt_PVHV, TRUE, NONV, HASARENA,
944 FIT_ARENA(0, sizeof(XPVHV)) },
949 SVt_PVCV, TRUE, NONV, HASARENA,
950 FIT_ARENA(0, sizeof(XPVCV)) },
955 SVt_PVFM, TRUE, NONV, NOARENA,
956 FIT_ARENA(20, sizeof(XPVFM)) },
961 SVt_PVIO, TRUE, NONV, HASARENA,
962 FIT_ARENA(24, sizeof(XPVIO)) },
965 #define new_body_allocated(sv_type) \
966 (void *)((char *)S_new_body(aTHX_ sv_type) \
967 - bodies_by_type[sv_type].offset)
969 /* return a thing to the free list */
971 #define del_body(thing, root) \
973 void ** const thing_copy = (void **)thing; \
974 *thing_copy = *root; \
975 *root = (void*)thing_copy; \
980 #define new_XNV() safemalloc(sizeof(XPVNV))
981 #define new_XPVNV() safemalloc(sizeof(XPVNV))
982 #define new_XPVMG() safemalloc(sizeof(XPVMG))
984 #define del_XPVGV(p) safefree(p)
988 #define new_XNV() new_body_allocated(SVt_NV)
989 #define new_XPVNV() new_body_allocated(SVt_PVNV)
990 #define new_XPVMG() new_body_allocated(SVt_PVMG)
992 #define del_XPVGV(p) del_body(p + bodies_by_type[SVt_PVGV].offset, \
993 &PL_body_roots[SVt_PVGV])
997 /* no arena for you! */
999 #define new_NOARENA(details) \
1000 safemalloc((details)->body_size + (details)->offset)
1001 #define new_NOARENAZ(details) \
1002 safecalloc((details)->body_size + (details)->offset, 1)
1005 Perl_more_bodies (pTHX_ const svtype sv_type, const size_t body_size,
1006 const size_t arena_size)
1009 void ** const root = &PL_body_roots[sv_type];
1010 struct arena_desc *adesc;
1011 struct arena_set *aroot = (struct arena_set *) PL_body_arenas;
1015 const size_t good_arena_size = Perl_malloc_good_size(arena_size);
1016 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1017 static bool done_sanity_check;
1019 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1020 * variables like done_sanity_check. */
1021 if (!done_sanity_check) {
1022 unsigned int i = SVt_LAST;
1024 done_sanity_check = TRUE;
1027 assert (bodies_by_type[i].type == i);
1033 /* may need new arena-set to hold new arena */
1034 if (!aroot || aroot->curr >= aroot->set_size) {
1035 struct arena_set *newroot;
1036 Newxz(newroot, 1, struct arena_set);
1037 newroot->set_size = ARENAS_PER_SET;
1038 newroot->next = aroot;
1040 PL_body_arenas = (void *) newroot;
1041 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
1044 /* ok, now have arena-set with at least 1 empty/available arena-desc */
1045 curr = aroot->curr++;
1046 adesc = &(aroot->set[curr]);
1047 assert(!adesc->arena);
1049 Newx(adesc->arena, good_arena_size, char);
1050 adesc->size = good_arena_size;
1051 adesc->utype = sv_type;
1052 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %"UVuf"\n",
1053 curr, (void*)adesc->arena, (UV)good_arena_size));
1055 start = (char *) adesc->arena;
1057 /* Get the address of the byte after the end of the last body we can fit.
1058 Remember, this is integer division: */
1059 end = start + good_arena_size / body_size * body_size;
1061 /* computed count doesn't reflect the 1st slot reservation */
1062 #if defined(MYMALLOC) || defined(HAS_MALLOC_GOOD_SIZE)
1063 DEBUG_m(PerlIO_printf(Perl_debug_log,
1064 "arena %p end %p arena-size %d (from %d) type %d "
1066 (void*)start, (void*)end, (int)good_arena_size,
1067 (int)arena_size, sv_type, (int)body_size,
1068 (int)good_arena_size / (int)body_size));
1070 DEBUG_m(PerlIO_printf(Perl_debug_log,
1071 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1072 (void*)start, (void*)end,
1073 (int)arena_size, sv_type, (int)body_size,
1074 (int)good_arena_size / (int)body_size));
1076 *root = (void *)start;
1079 /* Where the next body would start: */
1080 char * const next = start + body_size;
1083 /* This is the last body: */
1084 assert(next == end);
1086 *(void **)start = 0;
1090 *(void**) start = (void *)next;
1095 /* grab a new thing from the free list, allocating more if necessary.
1096 The inline version is used for speed in hot routines, and the
1097 function using it serves the rest (unless PURIFY).
1099 #define new_body_inline(xpv, sv_type) \
1101 void ** const r3wt = &PL_body_roots[sv_type]; \
1102 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1103 ? *((void **)(r3wt)) : Perl_more_bodies(aTHX_ sv_type, \
1104 bodies_by_type[sv_type].body_size,\
1105 bodies_by_type[sv_type].arena_size)); \
1106 *(r3wt) = *(void**)(xpv); \
1112 S_new_body(pTHX_ const svtype sv_type)
1116 new_body_inline(xpv, sv_type);
1122 static const struct body_details fake_rv =
1123 { 0, 0, 0, SVt_IV, FALSE, NONV, NOARENA, 0 };
1126 =for apidoc sv_upgrade
1128 Upgrade an SV to a more complex form. Generally adds a new body type to the
1129 SV, then copies across as much information as possible from the old body.
1130 It croaks if the SV is already in a more complex form than requested. You
1131 generally want to use the C<SvUPGRADE> macro wrapper, which checks the type
1132 before calling C<sv_upgrade>, and hence does not croak. See also
1139 Perl_sv_upgrade(pTHX_ register SV *const sv, svtype new_type)
1144 const svtype old_type = SvTYPE(sv);
1145 const struct body_details *new_type_details;
1146 const struct body_details *old_type_details
1147 = bodies_by_type + old_type;
1148 SV *referant = NULL;
1150 PERL_ARGS_ASSERT_SV_UPGRADE;
1152 if (old_type == new_type)
1155 /* This clause was purposefully added ahead of the early return above to
1156 the shared string hackery for (sort {$a <=> $b} keys %hash), with the
1157 inference by Nick I-S that it would fix other troublesome cases. See
1158 changes 7162, 7163 (f130fd4589cf5fbb24149cd4db4137c8326f49c1 and parent)
1160 Given that shared hash key scalars are no longer PVIV, but PV, there is
1161 no longer need to unshare so as to free up the IVX slot for its proper
1162 purpose. So it's safe to move the early return earlier. */
1164 if (new_type > SVt_PVMG && SvIsCOW(sv)) {
1165 sv_force_normal_flags(sv, 0);
1168 old_body = SvANY(sv);
1170 /* Copying structures onto other structures that have been neatly zeroed
1171 has a subtle gotcha. Consider XPVMG
1173 +------+------+------+------+------+-------+-------+
1174 | NV | CUR | LEN | IV | MAGIC | STASH |
1175 +------+------+------+------+------+-------+-------+
1176 0 4 8 12 16 20 24 28
1178 where NVs are aligned to 8 bytes, so that sizeof that structure is
1179 actually 32 bytes long, with 4 bytes of padding at the end:
1181 +------+------+------+------+------+-------+-------+------+
1182 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1183 +------+------+------+------+------+-------+-------+------+
1184 0 4 8 12 16 20 24 28 32
1186 so what happens if you allocate memory for this structure:
1188 +------+------+------+------+------+-------+-------+------+------+...
1189 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1190 +------+------+------+------+------+-------+-------+------+------+...
1191 0 4 8 12 16 20 24 28 32 36
1193 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1194 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1195 started out as zero once, but it's quite possible that it isn't. So now,
1196 rather than a nicely zeroed GP, you have it pointing somewhere random.
1199 (In fact, GP ends up pointing at a previous GP structure, because the
1200 principle cause of the padding in XPVMG getting garbage is a copy of
1201 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1202 this happens to be moot because XPVGV has been re-ordered, with GP
1203 no longer after STASH)
1205 So we are careful and work out the size of used parts of all the
1213 referant = SvRV(sv);
1214 old_type_details = &fake_rv;
1215 if (new_type == SVt_NV)
1216 new_type = SVt_PVNV;
1218 if (new_type < SVt_PVIV) {
1219 new_type = (new_type == SVt_NV)
1220 ? SVt_PVNV : SVt_PVIV;
1225 if (new_type < SVt_PVNV) {
1226 new_type = SVt_PVNV;
1230 assert(new_type > SVt_PV);
1231 assert(SVt_IV < SVt_PV);
1232 assert(SVt_NV < SVt_PV);
1239 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1240 there's no way that it can be safely upgraded, because perl.c
1241 expects to Safefree(SvANY(PL_mess_sv)) */
1242 assert(sv != PL_mess_sv);
1243 /* This flag bit is used to mean other things in other scalar types.
1244 Given that it only has meaning inside the pad, it shouldn't be set
1245 on anything that can get upgraded. */
1246 assert(!SvPAD_TYPED(sv));
1249 if (old_type_details->cant_upgrade)
1250 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1251 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1254 if (old_type > new_type)
1255 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1256 (int)old_type, (int)new_type);
1258 new_type_details = bodies_by_type + new_type;
1260 SvFLAGS(sv) &= ~SVTYPEMASK;
1261 SvFLAGS(sv) |= new_type;
1263 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1264 the return statements above will have triggered. */
1265 assert (new_type != SVt_NULL);
1268 assert(old_type == SVt_NULL);
1269 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1273 assert(old_type == SVt_NULL);
1274 SvANY(sv) = new_XNV();
1279 assert(new_type_details->body_size);
1282 assert(new_type_details->arena);
1283 assert(new_type_details->arena_size);
1284 /* This points to the start of the allocated area. */
1285 new_body_inline(new_body, new_type);
1286 Zero(new_body, new_type_details->body_size, char);
1287 new_body = ((char *)new_body) - new_type_details->offset;
1289 /* We always allocated the full length item with PURIFY. To do this
1290 we fake things so that arena is false for all 16 types.. */
1291 new_body = new_NOARENAZ(new_type_details);
1293 SvANY(sv) = new_body;
1294 if (new_type == SVt_PVAV) {
1298 if (old_type_details->body_size) {
1301 /* It will have been zeroed when the new body was allocated.
1302 Lets not write to it, in case it confuses a write-back
1308 #ifndef NODEFAULT_SHAREKEYS
1309 HvSHAREKEYS_on(sv); /* key-sharing on by default */
1311 HvMAX(sv) = 7; /* (start with 8 buckets) */
1314 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1315 The target created by newSVrv also is, and it can have magic.
1316 However, it never has SvPVX set.
1318 if (old_type == SVt_IV) {
1320 } else if (old_type >= SVt_PV) {
1321 assert(SvPVX_const(sv) == 0);
1324 if (old_type >= SVt_PVMG) {
1325 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1326 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1328 sv->sv_u.svu_array = NULL; /* or svu_hash */
1333 /* XXX Is this still needed? Was it ever needed? Surely as there is
1334 no route from NV to PVIV, NOK can never be true */
1335 assert(!SvNOKp(sv));
1347 assert(new_type_details->body_size);
1348 /* We always allocated the full length item with PURIFY. To do this
1349 we fake things so that arena is false for all 16 types.. */
1350 if(new_type_details->arena) {
1351 /* This points to the start of the allocated area. */
1352 new_body_inline(new_body, new_type);
1353 Zero(new_body, new_type_details->body_size, char);
1354 new_body = ((char *)new_body) - new_type_details->offset;
1356 new_body = new_NOARENAZ(new_type_details);
1358 SvANY(sv) = new_body;
1360 if (old_type_details->copy) {
1361 /* There is now the potential for an upgrade from something without
1362 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1363 int offset = old_type_details->offset;
1364 int length = old_type_details->copy;
1366 if (new_type_details->offset > old_type_details->offset) {
1367 const int difference
1368 = new_type_details->offset - old_type_details->offset;
1369 offset += difference;
1370 length -= difference;
1372 assert (length >= 0);
1374 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1378 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1379 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1380 * correct 0.0 for us. Otherwise, if the old body didn't have an
1381 * NV slot, but the new one does, then we need to initialise the
1382 * freshly created NV slot with whatever the correct bit pattern is
1384 if (old_type_details->zero_nv && !new_type_details->zero_nv
1385 && !isGV_with_GP(sv))
1389 if (new_type == SVt_PVIO) {
1390 IO * const io = MUTABLE_IO(sv);
1391 GV *iogv = gv_fetchpvs("IO::File::", GV_ADD, SVt_PVHV);
1394 /* Clear the stashcache because a new IO could overrule a package
1396 DEBUG_o(Perl_deb(aTHX_ "sv_upgrade clearing PL_stashcache\n"));
1397 hv_clear(PL_stashcache);
1399 SvSTASH_set(io, MUTABLE_HV(SvREFCNT_inc(GvHV(iogv))));
1400 IoPAGE_LEN(sv) = 60;
1402 if (old_type < SVt_PV) {
1403 /* referant will be NULL unless the old type was SVt_IV emulating
1405 sv->sv_u.svu_rv = referant;
1409 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1410 (unsigned long)new_type);
1413 if (old_type > SVt_IV) {
1417 /* Note that there is an assumption that all bodies of types that
1418 can be upgraded came from arenas. Only the more complex non-
1419 upgradable types are allowed to be directly malloc()ed. */
1420 assert(old_type_details->arena);
1421 del_body((void*)((char*)old_body + old_type_details->offset),
1422 &PL_body_roots[old_type]);
1428 =for apidoc sv_backoff
1430 Remove any string offset. You should normally use the C<SvOOK_off> macro
1437 Perl_sv_backoff(pTHX_ register SV *const sv)
1440 const char * const s = SvPVX_const(sv);
1442 PERL_ARGS_ASSERT_SV_BACKOFF;
1443 PERL_UNUSED_CONTEXT;
1446 assert(SvTYPE(sv) != SVt_PVHV);
1447 assert(SvTYPE(sv) != SVt_PVAV);
1449 SvOOK_offset(sv, delta);
1451 SvLEN_set(sv, SvLEN(sv) + delta);
1452 SvPV_set(sv, SvPVX(sv) - delta);
1453 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1454 SvFLAGS(sv) &= ~SVf_OOK;
1461 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1462 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1463 Use the C<SvGROW> wrapper instead.
1469 Perl_sv_grow(pTHX_ register SV *const sv, register STRLEN newlen)
1473 PERL_ARGS_ASSERT_SV_GROW;
1475 if (PL_madskills && newlen >= 0x100000) {
1476 PerlIO_printf(Perl_debug_log,
1477 "Allocation too large: %"UVxf"\n", (UV)newlen);
1479 #ifdef HAS_64K_LIMIT
1480 if (newlen >= 0x10000) {
1481 PerlIO_printf(Perl_debug_log,
1482 "Allocation too large: %"UVxf"\n", (UV)newlen);
1485 #endif /* HAS_64K_LIMIT */
1488 if (SvTYPE(sv) < SVt_PV) {
1489 sv_upgrade(sv, SVt_PV);
1490 s = SvPVX_mutable(sv);
1492 else if (SvOOK(sv)) { /* pv is offset? */
1494 s = SvPVX_mutable(sv);
1495 if (newlen > SvLEN(sv))
1496 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1497 #ifdef HAS_64K_LIMIT
1498 if (newlen >= 0x10000)
1503 s = SvPVX_mutable(sv);
1505 if (newlen > SvLEN(sv)) { /* need more room? */
1506 STRLEN minlen = SvCUR(sv);
1507 minlen += (minlen >> PERL_STRLEN_EXPAND_SHIFT) + 10;
1508 if (newlen < minlen)
1510 #ifndef Perl_safesysmalloc_size
1511 newlen = PERL_STRLEN_ROUNDUP(newlen);
1513 if (SvLEN(sv) && s) {
1514 s = (char*)saferealloc(s, newlen);
1517 s = (char*)safemalloc(newlen);
1518 if (SvPVX_const(sv) && SvCUR(sv)) {
1519 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1523 #ifdef Perl_safesysmalloc_size
1524 /* Do this here, do it once, do it right, and then we will never get
1525 called back into sv_grow() unless there really is some growing
1527 SvLEN_set(sv, Perl_safesysmalloc_size(s));
1529 SvLEN_set(sv, newlen);
1536 =for apidoc sv_setiv
1538 Copies an integer into the given SV, upgrading first if necessary.
1539 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1545 Perl_sv_setiv(pTHX_ register SV *const sv, const IV i)
1549 PERL_ARGS_ASSERT_SV_SETIV;
1551 SV_CHECK_THINKFIRST_COW_DROP(sv);
1552 switch (SvTYPE(sv)) {
1555 sv_upgrade(sv, SVt_IV);
1558 sv_upgrade(sv, SVt_PVIV);
1562 if (!isGV_with_GP(sv))
1569 /* diag_listed_as: Can't coerce %s to %s in %s */
1570 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1574 (void)SvIOK_only(sv); /* validate number */
1580 =for apidoc sv_setiv_mg
1582 Like C<sv_setiv>, but also handles 'set' magic.
1588 Perl_sv_setiv_mg(pTHX_ register SV *const sv, const IV i)
1590 PERL_ARGS_ASSERT_SV_SETIV_MG;
1597 =for apidoc sv_setuv
1599 Copies an unsigned integer into the given SV, upgrading first if necessary.
1600 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1606 Perl_sv_setuv(pTHX_ register SV *const sv, const UV u)
1608 PERL_ARGS_ASSERT_SV_SETUV;
1610 /* With the if statement to ensure that integers are stored as IVs whenever
1612 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1615 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1617 If you wish to remove the following if statement, so that this routine
1618 (and its callers) always return UVs, please benchmark to see what the
1619 effect is. Modern CPUs may be different. Or may not :-)
1621 if (u <= (UV)IV_MAX) {
1622 sv_setiv(sv, (IV)u);
1631 =for apidoc sv_setuv_mg
1633 Like C<sv_setuv>, but also handles 'set' magic.
1639 Perl_sv_setuv_mg(pTHX_ register SV *const sv, const UV u)
1641 PERL_ARGS_ASSERT_SV_SETUV_MG;
1648 =for apidoc sv_setnv
1650 Copies a double into the given SV, upgrading first if necessary.
1651 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1657 Perl_sv_setnv(pTHX_ register SV *const sv, const NV num)
1661 PERL_ARGS_ASSERT_SV_SETNV;
1663 SV_CHECK_THINKFIRST_COW_DROP(sv);
1664 switch (SvTYPE(sv)) {
1667 sv_upgrade(sv, SVt_NV);
1671 sv_upgrade(sv, SVt_PVNV);
1675 if (!isGV_with_GP(sv))
1682 /* diag_listed_as: Can't coerce %s to %s in %s */
1683 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1688 (void)SvNOK_only(sv); /* validate number */
1693 =for apidoc sv_setnv_mg
1695 Like C<sv_setnv>, but also handles 'set' magic.
1701 Perl_sv_setnv_mg(pTHX_ register SV *const sv, const NV num)
1703 PERL_ARGS_ASSERT_SV_SETNV_MG;
1709 /* Print an "isn't numeric" warning, using a cleaned-up,
1710 * printable version of the offending string
1714 S_not_a_number(pTHX_ SV *const sv)
1721 PERL_ARGS_ASSERT_NOT_A_NUMBER;
1724 dsv = newSVpvs_flags("", SVs_TEMP);
1725 pv = sv_uni_display(dsv, sv, 10, UNI_DISPLAY_ISPRINT);
1728 const char * const limit = tmpbuf + sizeof(tmpbuf) - 8;
1729 /* each *s can expand to 4 chars + "...\0",
1730 i.e. need room for 8 chars */
1732 const char *s = SvPVX_const(sv);
1733 const char * const end = s + SvCUR(sv);
1734 for ( ; s < end && d < limit; s++ ) {
1736 if (ch & 128 && !isPRINT_LC(ch)) {
1745 else if (ch == '\r') {
1749 else if (ch == '\f') {
1753 else if (ch == '\\') {
1757 else if (ch == '\0') {
1761 else if (isPRINT_LC(ch))
1778 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1779 /* diag_listed_as: Argument "%s" isn't numeric%s */
1780 "Argument \"%s\" isn't numeric in %s", pv,
1783 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1784 /* diag_listed_as: Argument "%s" isn't numeric%s */
1785 "Argument \"%s\" isn't numeric", pv);
1789 =for apidoc looks_like_number
1791 Test if the content of an SV looks like a number (or is a number).
1792 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1793 non-numeric warning), even if your atof() doesn't grok them. Get-magic is
1800 Perl_looks_like_number(pTHX_ SV *const sv)
1805 PERL_ARGS_ASSERT_LOOKS_LIKE_NUMBER;
1807 if (SvPOK(sv) || SvPOKp(sv)) {
1808 sbegin = SvPV_nomg_const(sv, len);
1811 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1812 return grok_number(sbegin, len, NULL);
1816 S_glob_2number(pTHX_ GV * const gv)
1818 PERL_ARGS_ASSERT_GLOB_2NUMBER;
1820 /* We know that all GVs stringify to something that is not-a-number,
1821 so no need to test that. */
1822 if (ckWARN(WARN_NUMERIC))
1824 SV *const buffer = sv_newmortal();
1825 gv_efullname3(buffer, gv, "*");
1826 not_a_number(buffer);
1828 /* We just want something true to return, so that S_sv_2iuv_common
1829 can tail call us and return true. */
1833 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1834 until proven guilty, assume that things are not that bad... */
1839 As 64 bit platforms often have an NV that doesn't preserve all bits of
1840 an IV (an assumption perl has been based on to date) it becomes necessary
1841 to remove the assumption that the NV always carries enough precision to
1842 recreate the IV whenever needed, and that the NV is the canonical form.
1843 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1844 precision as a side effect of conversion (which would lead to insanity
1845 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1846 1) to distinguish between IV/UV/NV slots that have cached a valid
1847 conversion where precision was lost and IV/UV/NV slots that have a
1848 valid conversion which has lost no precision
1849 2) to ensure that if a numeric conversion to one form is requested that
1850 would lose precision, the precise conversion (or differently
1851 imprecise conversion) is also performed and cached, to prevent
1852 requests for different numeric formats on the same SV causing
1853 lossy conversion chains. (lossless conversion chains are perfectly
1858 SvIOKp is true if the IV slot contains a valid value
1859 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1860 SvNOKp is true if the NV slot contains a valid value
1861 SvNOK is true only if the NV value is accurate
1864 while converting from PV to NV, check to see if converting that NV to an
1865 IV(or UV) would lose accuracy over a direct conversion from PV to
1866 IV(or UV). If it would, cache both conversions, return NV, but mark
1867 SV as IOK NOKp (ie not NOK).
1869 While converting from PV to IV, check to see if converting that IV to an
1870 NV would lose accuracy over a direct conversion from PV to NV. If it
1871 would, cache both conversions, flag similarly.
1873 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1874 correctly because if IV & NV were set NV *always* overruled.
1875 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1876 changes - now IV and NV together means that the two are interchangeable:
1877 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1879 The benefit of this is that operations such as pp_add know that if
1880 SvIOK is true for both left and right operands, then integer addition
1881 can be used instead of floating point (for cases where the result won't
1882 overflow). Before, floating point was always used, which could lead to
1883 loss of precision compared with integer addition.
1885 * making IV and NV equal status should make maths accurate on 64 bit
1887 * may speed up maths somewhat if pp_add and friends start to use
1888 integers when possible instead of fp. (Hopefully the overhead in
1889 looking for SvIOK and checking for overflow will not outweigh the
1890 fp to integer speedup)
1891 * will slow down integer operations (callers of SvIV) on "inaccurate"
1892 values, as the change from SvIOK to SvIOKp will cause a call into
1893 sv_2iv each time rather than a macro access direct to the IV slot
1894 * should speed up number->string conversion on integers as IV is
1895 favoured when IV and NV are equally accurate
1897 ####################################################################
1898 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1899 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1900 On the other hand, SvUOK is true iff UV.
1901 ####################################################################
1903 Your mileage will vary depending your CPU's relative fp to integer
1907 #ifndef NV_PRESERVES_UV
1908 # define IS_NUMBER_UNDERFLOW_IV 1
1909 # define IS_NUMBER_UNDERFLOW_UV 2
1910 # define IS_NUMBER_IV_AND_UV 2
1911 # define IS_NUMBER_OVERFLOW_IV 4
1912 # define IS_NUMBER_OVERFLOW_UV 5
1914 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1916 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1918 S_sv_2iuv_non_preserve(pTHX_ register SV *const sv
1926 PERL_ARGS_ASSERT_SV_2IUV_NON_PRESERVE;
1928 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1929 if (SvNVX(sv) < (NV)IV_MIN) {
1930 (void)SvIOKp_on(sv);
1932 SvIV_set(sv, IV_MIN);
1933 return IS_NUMBER_UNDERFLOW_IV;
1935 if (SvNVX(sv) > (NV)UV_MAX) {
1936 (void)SvIOKp_on(sv);
1939 SvUV_set(sv, UV_MAX);
1940 return IS_NUMBER_OVERFLOW_UV;
1942 (void)SvIOKp_on(sv);
1944 /* Can't use strtol etc to convert this string. (See truth table in
1946 if (SvNVX(sv) <= (UV)IV_MAX) {
1947 SvIV_set(sv, I_V(SvNVX(sv)));
1948 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1949 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1951 /* Integer is imprecise. NOK, IOKp */
1953 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
1956 SvUV_set(sv, U_V(SvNVX(sv)));
1957 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
1958 if (SvUVX(sv) == UV_MAX) {
1959 /* As we know that NVs don't preserve UVs, UV_MAX cannot
1960 possibly be preserved by NV. Hence, it must be overflow.
1962 return IS_NUMBER_OVERFLOW_UV;
1964 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
1966 /* Integer is imprecise. NOK, IOKp */
1968 return IS_NUMBER_OVERFLOW_IV;
1970 #endif /* !NV_PRESERVES_UV*/
1973 S_sv_2iuv_common(pTHX_ SV *const sv)
1977 PERL_ARGS_ASSERT_SV_2IUV_COMMON;
1980 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
1981 * without also getting a cached IV/UV from it at the same time
1982 * (ie PV->NV conversion should detect loss of accuracy and cache
1983 * IV or UV at same time to avoid this. */
1984 /* IV-over-UV optimisation - choose to cache IV if possible */
1986 if (SvTYPE(sv) == SVt_NV)
1987 sv_upgrade(sv, SVt_PVNV);
1989 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
1990 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
1991 certainly cast into the IV range at IV_MAX, whereas the correct
1992 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
1994 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
1995 if (Perl_isnan(SvNVX(sv))) {
2001 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2002 SvIV_set(sv, I_V(SvNVX(sv)));
2003 if (SvNVX(sv) == (NV) SvIVX(sv)
2004 #ifndef NV_PRESERVES_UV
2005 && (((UV)1 << NV_PRESERVES_UV_BITS) >
2006 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
2007 /* Don't flag it as "accurately an integer" if the number
2008 came from a (by definition imprecise) NV operation, and
2009 we're outside the range of NV integer precision */
2013 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
2015 /* scalar has trailing garbage, eg "42a" */
2017 DEBUG_c(PerlIO_printf(Perl_debug_log,
2018 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
2024 /* IV not precise. No need to convert from PV, as NV
2025 conversion would already have cached IV if it detected
2026 that PV->IV would be better than PV->NV->IV
2027 flags already correct - don't set public IOK. */
2028 DEBUG_c(PerlIO_printf(Perl_debug_log,
2029 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
2034 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
2035 but the cast (NV)IV_MIN rounds to a the value less (more
2036 negative) than IV_MIN which happens to be equal to SvNVX ??
2037 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
2038 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
2039 (NV)UVX == NVX are both true, but the values differ. :-(
2040 Hopefully for 2s complement IV_MIN is something like
2041 0x8000000000000000 which will be exact. NWC */
2044 SvUV_set(sv, U_V(SvNVX(sv)));
2046 (SvNVX(sv) == (NV) SvUVX(sv))
2047 #ifndef NV_PRESERVES_UV
2048 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
2049 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
2050 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
2051 /* Don't flag it as "accurately an integer" if the number
2052 came from a (by definition imprecise) NV operation, and
2053 we're outside the range of NV integer precision */
2059 DEBUG_c(PerlIO_printf(Perl_debug_log,
2060 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
2066 else if (SvPOKp(sv)) {
2068 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2069 /* We want to avoid a possible problem when we cache an IV/ a UV which
2070 may be later translated to an NV, and the resulting NV is not
2071 the same as the direct translation of the initial string
2072 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
2073 be careful to ensure that the value with the .456 is around if the
2074 NV value is requested in the future).
2076 This means that if we cache such an IV/a UV, we need to cache the
2077 NV as well. Moreover, we trade speed for space, and do not
2078 cache the NV if we are sure it's not needed.
2081 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
2082 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2083 == IS_NUMBER_IN_UV) {
2084 /* It's definitely an integer, only upgrade to PVIV */
2085 if (SvTYPE(sv) < SVt_PVIV)
2086 sv_upgrade(sv, SVt_PVIV);
2088 } else if (SvTYPE(sv) < SVt_PVNV)
2089 sv_upgrade(sv, SVt_PVNV);
2091 /* If NVs preserve UVs then we only use the UV value if we know that
2092 we aren't going to call atof() below. If NVs don't preserve UVs
2093 then the value returned may have more precision than atof() will
2094 return, even though value isn't perfectly accurate. */
2095 if ((numtype & (IS_NUMBER_IN_UV
2096 #ifdef NV_PRESERVES_UV
2099 )) == IS_NUMBER_IN_UV) {
2100 /* This won't turn off the public IOK flag if it was set above */
2101 (void)SvIOKp_on(sv);
2103 if (!(numtype & IS_NUMBER_NEG)) {
2105 if (value <= (UV)IV_MAX) {
2106 SvIV_set(sv, (IV)value);
2108 /* it didn't overflow, and it was positive. */
2109 SvUV_set(sv, value);
2113 /* 2s complement assumption */
2114 if (value <= (UV)IV_MIN) {
2115 SvIV_set(sv, -(IV)value);
2117 /* Too negative for an IV. This is a double upgrade, but
2118 I'm assuming it will be rare. */
2119 if (SvTYPE(sv) < SVt_PVNV)
2120 sv_upgrade(sv, SVt_PVNV);
2124 SvNV_set(sv, -(NV)value);
2125 SvIV_set(sv, IV_MIN);
2129 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2130 will be in the previous block to set the IV slot, and the next
2131 block to set the NV slot. So no else here. */
2133 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2134 != IS_NUMBER_IN_UV) {
2135 /* It wasn't an (integer that doesn't overflow the UV). */
2136 SvNV_set(sv, Atof(SvPVX_const(sv)));
2138 if (! numtype && ckWARN(WARN_NUMERIC))
2141 #if defined(USE_LONG_DOUBLE)
2142 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2143 PTR2UV(sv), SvNVX(sv)));
2145 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2146 PTR2UV(sv), SvNVX(sv)));
2149 #ifdef NV_PRESERVES_UV
2150 (void)SvIOKp_on(sv);
2152 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2153 SvIV_set(sv, I_V(SvNVX(sv)));
2154 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2157 NOOP; /* Integer is imprecise. NOK, IOKp */
2159 /* UV will not work better than IV */
2161 if (SvNVX(sv) > (NV)UV_MAX) {
2163 /* Integer is inaccurate. NOK, IOKp, is UV */
2164 SvUV_set(sv, UV_MAX);
2166 SvUV_set(sv, U_V(SvNVX(sv)));
2167 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2168 NV preservse UV so can do correct comparison. */
2169 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2172 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2177 #else /* NV_PRESERVES_UV */
2178 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2179 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2180 /* The IV/UV slot will have been set from value returned by
2181 grok_number above. The NV slot has just been set using
2184 assert (SvIOKp(sv));
2186 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2187 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2188 /* Small enough to preserve all bits. */
2189 (void)SvIOKp_on(sv);
2191 SvIV_set(sv, I_V(SvNVX(sv)));
2192 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2194 /* Assumption: first non-preserved integer is < IV_MAX,
2195 this NV is in the preserved range, therefore: */
2196 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2198 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2202 0 0 already failed to read UV.
2203 0 1 already failed to read UV.
2204 1 0 you won't get here in this case. IV/UV
2205 slot set, public IOK, Atof() unneeded.
2206 1 1 already read UV.
2207 so there's no point in sv_2iuv_non_preserve() attempting
2208 to use atol, strtol, strtoul etc. */
2210 sv_2iuv_non_preserve (sv, numtype);
2212 sv_2iuv_non_preserve (sv);
2216 #endif /* NV_PRESERVES_UV */
2217 /* It might be more code efficient to go through the entire logic above
2218 and conditionally set with SvIOKp_on() rather than SvIOK(), but it
2219 gets complex and potentially buggy, so more programmer efficient
2220 to do it this way, by turning off the public flags: */
2222 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2226 if (isGV_with_GP(sv))
2227 return glob_2number(MUTABLE_GV(sv));
2229 if (!SvPADTMP(sv)) {
2230 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2233 if (SvTYPE(sv) < SVt_IV)
2234 /* Typically the caller expects that sv_any is not NULL now. */
2235 sv_upgrade(sv, SVt_IV);
2236 /* Return 0 from the caller. */
2243 =for apidoc sv_2iv_flags
2245 Return the integer value of an SV, doing any necessary string
2246 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2247 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2253 Perl_sv_2iv_flags(pTHX_ register SV *const sv, const I32 flags)
2260 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2266 if (flags & SV_SKIP_OVERLOAD)
2268 tmpstr = AMG_CALLunary(sv, numer_amg);
2269 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2270 return SvIV(tmpstr);
2273 return PTR2IV(SvRV(sv));
2276 if (SvVALID(sv) || SvTYPE(sv) == SVt_REGEXP) {
2277 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2278 the same flag bit as SVf_IVisUV, so must not let them cache IVs.
2279 In practice they are extremely unlikely to actually get anywhere
2280 accessible by user Perl code - the only way that I'm aware of is when
2281 a constant subroutine which is used as the second argument to index.
2283 Regexps have no SvIVX and SvNVX fields.
2288 return I_V(SvNVX(sv));
2292 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2294 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2295 == IS_NUMBER_IN_UV) {
2296 /* It's definitely an integer */
2297 if (numtype & IS_NUMBER_NEG) {
2298 if (value < (UV)IV_MIN)
2301 if (value < (UV)IV_MAX)
2306 if (ckWARN(WARN_NUMERIC))
2309 return I_V(Atof(SvPVX_const(sv)));
2311 if (ckWARN(WARN_UNINITIALIZED))
2316 if (SvTHINKFIRST(sv)) {
2317 #ifdef PERL_OLD_COPY_ON_WRITE
2319 sv_force_normal_flags(sv, 0);
2322 if (SvREADONLY(sv) && !SvOK(sv)) {
2323 if (ckWARN(WARN_UNINITIALIZED))
2330 if (S_sv_2iuv_common(aTHX_ sv))
2334 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2335 PTR2UV(sv),SvIVX(sv)));
2336 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2340 =for apidoc sv_2uv_flags
2342 Return the unsigned integer value of an SV, doing any necessary string
2343 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2344 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2350 Perl_sv_2uv_flags(pTHX_ register SV *const sv, const I32 flags)
2357 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2363 if (flags & SV_SKIP_OVERLOAD)
2365 tmpstr = AMG_CALLunary(sv, numer_amg);
2366 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2367 return SvUV(tmpstr);
2370 return PTR2UV(SvRV(sv));
2373 if (SvVALID(sv) || SvTYPE(sv) == SVt_REGEXP) {
2374 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2375 the same flag bit as SVf_IVisUV, so must not let them cache IVs.
2376 Regexps have no SvIVX and SvNVX fields. */
2380 return U_V(SvNVX(sv));
2384 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2386 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2387 == IS_NUMBER_IN_UV) {
2388 /* It's definitely an integer */
2389 if (!(numtype & IS_NUMBER_NEG))
2393 if (ckWARN(WARN_NUMERIC))
2396 return U_V(Atof(SvPVX_const(sv)));
2398 if (ckWARN(WARN_UNINITIALIZED))
2403 if (SvTHINKFIRST(sv)) {
2404 #ifdef PERL_OLD_COPY_ON_WRITE
2406 sv_force_normal_flags(sv, 0);
2409 if (SvREADONLY(sv) && !SvOK(sv)) {
2410 if (ckWARN(WARN_UNINITIALIZED))
2417 if (S_sv_2iuv_common(aTHX_ sv))
2421 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2422 PTR2UV(sv),SvUVX(sv)));
2423 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2427 =for apidoc sv_2nv_flags
2429 Return the num value of an SV, doing any necessary string or integer
2430 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2431 Normally used via the C<SvNV(sv)> and C<SvNVx(sv)> macros.
2437 Perl_sv_2nv_flags(pTHX_ register SV *const sv, const I32 flags)
2442 if (SvGMAGICAL(sv) || SvVALID(sv) || SvTYPE(sv) == SVt_REGEXP) {
2443 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2444 the same flag bit as SVf_IVisUV, so must not let them cache NVs.
2445 Regexps have no SvIVX and SvNVX fields. */
2446 if (flags & SV_GMAGIC)
2450 if (SvPOKp(sv) && !SvIOKp(sv)) {
2451 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2452 !grok_number(SvPVX_const(sv), SvCUR(sv), NULL))
2454 return Atof(SvPVX_const(sv));
2458 return (NV)SvUVX(sv);
2460 return (NV)SvIVX(sv);
2465 assert(SvTYPE(sv) >= SVt_PVMG);
2466 /* This falls through to the report_uninit near the end of the
2468 } else if (SvTHINKFIRST(sv)) {
2473 if (flags & SV_SKIP_OVERLOAD)
2475 tmpstr = AMG_CALLunary(sv, numer_amg);
2476 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2477 return SvNV(tmpstr);
2480 return PTR2NV(SvRV(sv));
2482 #ifdef PERL_OLD_COPY_ON_WRITE
2484 sv_force_normal_flags(sv, 0);
2487 if (SvREADONLY(sv) && !SvOK(sv)) {
2488 if (ckWARN(WARN_UNINITIALIZED))
2493 if (SvTYPE(sv) < SVt_NV) {
2494 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2495 sv_upgrade(sv, SVt_NV);
2496 #ifdef USE_LONG_DOUBLE
2498 STORE_NUMERIC_LOCAL_SET_STANDARD();
2499 PerlIO_printf(Perl_debug_log,
2500 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2501 PTR2UV(sv), SvNVX(sv));
2502 RESTORE_NUMERIC_LOCAL();
2506 STORE_NUMERIC_LOCAL_SET_STANDARD();
2507 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2508 PTR2UV(sv), SvNVX(sv));
2509 RESTORE_NUMERIC_LOCAL();
2513 else if (SvTYPE(sv) < SVt_PVNV)
2514 sv_upgrade(sv, SVt_PVNV);
2519 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2520 #ifdef NV_PRESERVES_UV
2526 /* Only set the public NV OK flag if this NV preserves the IV */
2527 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2529 SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2530 : (SvIVX(sv) == I_V(SvNVX(sv))))
2536 else if (SvPOKp(sv)) {
2538 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2539 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2541 #ifdef NV_PRESERVES_UV
2542 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2543 == IS_NUMBER_IN_UV) {
2544 /* It's definitely an integer */
2545 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2547 SvNV_set(sv, Atof(SvPVX_const(sv)));
2553 SvNV_set(sv, Atof(SvPVX_const(sv)));
2554 /* Only set the public NV OK flag if this NV preserves the value in
2555 the PV at least as well as an IV/UV would.
2556 Not sure how to do this 100% reliably. */
2557 /* if that shift count is out of range then Configure's test is
2558 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2560 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2561 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2562 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2563 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2564 /* Can't use strtol etc to convert this string, so don't try.
2565 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2568 /* value has been set. It may not be precise. */
2569 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2570 /* 2s complement assumption for (UV)IV_MIN */
2571 SvNOK_on(sv); /* Integer is too negative. */
2576 if (numtype & IS_NUMBER_NEG) {
2577 SvIV_set(sv, -(IV)value);
2578 } else if (value <= (UV)IV_MAX) {
2579 SvIV_set(sv, (IV)value);
2581 SvUV_set(sv, value);
2585 if (numtype & IS_NUMBER_NOT_INT) {
2586 /* I believe that even if the original PV had decimals,
2587 they are lost beyond the limit of the FP precision.
2588 However, neither is canonical, so both only get p
2589 flags. NWC, 2000/11/25 */
2590 /* Both already have p flags, so do nothing */
2592 const NV nv = SvNVX(sv);
2593 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2594 if (SvIVX(sv) == I_V(nv)) {
2597 /* It had no "." so it must be integer. */
2601 /* between IV_MAX and NV(UV_MAX).
2602 Could be slightly > UV_MAX */
2604 if (numtype & IS_NUMBER_NOT_INT) {
2605 /* UV and NV both imprecise. */
2607 const UV nv_as_uv = U_V(nv);
2609 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2618 /* It might be more code efficient to go through the entire logic above
2619 and conditionally set with SvNOKp_on() rather than SvNOK(), but it
2620 gets complex and potentially buggy, so more programmer efficient
2621 to do it this way, by turning off the public flags: */
2623 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2624 #endif /* NV_PRESERVES_UV */
2627 if (isGV_with_GP(sv)) {
2628 glob_2number(MUTABLE_GV(sv));
2632 if (!PL_localizing && !SvPADTMP(sv) && ckWARN(WARN_UNINITIALIZED))
2634 assert (SvTYPE(sv) >= SVt_NV);
2635 /* Typically the caller expects that sv_any is not NULL now. */
2636 /* XXX Ilya implies that this is a bug in callers that assume this
2637 and ideally should be fixed. */
2640 #if defined(USE_LONG_DOUBLE)
2642 STORE_NUMERIC_LOCAL_SET_STANDARD();
2643 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2644 PTR2UV(sv), SvNVX(sv));
2645 RESTORE_NUMERIC_LOCAL();
2649 STORE_NUMERIC_LOCAL_SET_STANDARD();
2650 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2651 PTR2UV(sv), SvNVX(sv));
2652 RESTORE_NUMERIC_LOCAL();
2661 Return an SV with the numeric value of the source SV, doing any necessary
2662 reference or overload conversion. You must use the C<SvNUM(sv)> macro to
2663 access this function.
2669 Perl_sv_2num(pTHX_ register SV *const sv)
2671 PERL_ARGS_ASSERT_SV_2NUM;
2676 SV * const tmpsv = AMG_CALLunary(sv, numer_amg);
2677 TAINT_IF(tmpsv && SvTAINTED(tmpsv));
2678 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2679 return sv_2num(tmpsv);
2681 return sv_2mortal(newSVuv(PTR2UV(SvRV(sv))));
2684 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2685 * UV as a string towards the end of buf, and return pointers to start and
2688 * We assume that buf is at least TYPE_CHARS(UV) long.
2692 S_uiv_2buf(char *const buf, const IV iv, UV uv, const int is_uv, char **const peob)
2694 char *ptr = buf + TYPE_CHARS(UV);
2695 char * const ebuf = ptr;
2698 PERL_ARGS_ASSERT_UIV_2BUF;
2710 *--ptr = '0' + (char)(uv % 10);
2719 =for apidoc sv_2pv_flags
2721 Returns a pointer to the string value of an SV, and sets *lp to its length.
2722 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a
2723 string if necessary. Normally invoked via the C<SvPV_flags> macro.
2724 C<sv_2pv()> and C<sv_2pv_nomg> usually end up here too.
2730 Perl_sv_2pv_flags(pTHX_ register SV *const sv, STRLEN *const lp, const I32 flags)
2740 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2745 if (flags & SV_SKIP_OVERLOAD)
2747 tmpstr = AMG_CALLunary(sv, string_amg);
2748 TAINT_IF(tmpstr && SvTAINTED(tmpstr));
2749 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2751 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2755 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2756 if (flags & SV_CONST_RETURN) {
2757 pv = (char *) SvPVX_const(tmpstr);
2759 pv = (flags & SV_MUTABLE_RETURN)
2760 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2763 *lp = SvCUR(tmpstr);
2765 pv = sv_2pv_flags(tmpstr, lp, flags);
2778 SV *const referent = SvRV(sv);
2782 retval = buffer = savepvn("NULLREF", len);
2783 } else if (SvTYPE(referent) == SVt_REGEXP &&
2784 (!(PL_curcop->cop_hints & HINT_NO_AMAGIC) ||
2785 amagic_is_enabled(string_amg))) {
2786 REGEXP * const re = (REGEXP *)MUTABLE_PTR(referent);
2790 /* If the regex is UTF-8 we want the containing scalar to
2791 have an UTF-8 flag too */
2798 *lp = RX_WRAPLEN(re);
2800 return RX_WRAPPED(re);
2802 const char *const typestr = sv_reftype(referent, 0);
2803 const STRLEN typelen = strlen(typestr);
2804 UV addr = PTR2UV(referent);
2805 const char *stashname = NULL;
2806 STRLEN stashnamelen = 0; /* hush, gcc */
2807 const char *buffer_end;
2809 if (SvOBJECT(referent)) {
2810 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2813 stashname = HEK_KEY(name);
2814 stashnamelen = HEK_LEN(name);
2816 if (HEK_UTF8(name)) {
2822 stashname = "__ANON__";
2825 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2826 + 2 * sizeof(UV) + 2 /* )\0 */;
2828 len = typelen + 3 /* (0x */
2829 + 2 * sizeof(UV) + 2 /* )\0 */;
2832 Newx(buffer, len, char);
2833 buffer_end = retval = buffer + len;
2835 /* Working backwards */
2839 *--retval = PL_hexdigit[addr & 15];
2840 } while (addr >>= 4);
2846 memcpy(retval, typestr, typelen);
2850 retval -= stashnamelen;
2851 memcpy(retval, stashname, stashnamelen);
2853 /* retval may not necessarily have reached the start of the
2855 assert (retval >= buffer);
2857 len = buffer_end - retval - 1; /* -1 for that \0 */
2869 if (flags & SV_MUTABLE_RETURN)
2870 return SvPVX_mutable(sv);
2871 if (flags & SV_CONST_RETURN)
2872 return (char *)SvPVX_const(sv);
2877 /* I'm assuming that if both IV and NV are equally valid then
2878 converting the IV is going to be more efficient */
2879 const U32 isUIOK = SvIsUV(sv);
2880 char buf[TYPE_CHARS(UV)];
2884 if (SvTYPE(sv) < SVt_PVIV)
2885 sv_upgrade(sv, SVt_PVIV);
2886 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2888 /* inlined from sv_setpvn */
2889 s = SvGROW_mutable(sv, len + 1);
2890 Move(ptr, s, len, char);
2894 else if (SvNOK(sv)) {
2895 if (SvTYPE(sv) < SVt_PVNV)
2896 sv_upgrade(sv, SVt_PVNV);
2897 if (SvNVX(sv) == 0.0) {
2898 s = SvGROW_mutable(sv, 2);
2903 /* The +20 is pure guesswork. Configure test needed. --jhi */
2904 s = SvGROW_mutable(sv, NV_DIG + 20);
2905 /* some Xenix systems wipe out errno here */
2906 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2915 else if (isGV_with_GP(sv)) {
2916 GV *const gv = MUTABLE_GV(sv);
2917 SV *const buffer = sv_newmortal();
2919 gv_efullname3(buffer, gv, "*");
2921 assert(SvPOK(buffer));
2925 *lp = SvCUR(buffer);
2926 return SvPVX(buffer);
2931 if (flags & SV_UNDEF_RETURNS_NULL)
2933 if (!PL_localizing && !SvPADTMP(sv) && ckWARN(WARN_UNINITIALIZED))
2935 /* Typically the caller expects that sv_any is not NULL now. */
2936 if (!SvREADONLY(sv) && SvTYPE(sv) < SVt_PV)
2937 sv_upgrade(sv, SVt_PV);
2942 const STRLEN len = s - SvPVX_const(sv);
2948 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
2949 PTR2UV(sv),SvPVX_const(sv)));
2950 if (flags & SV_CONST_RETURN)
2951 return (char *)SvPVX_const(sv);
2952 if (flags & SV_MUTABLE_RETURN)
2953 return SvPVX_mutable(sv);
2958 =for apidoc sv_copypv
2960 Copies a stringified representation of the source SV into the
2961 destination SV. Automatically performs any necessary mg_get and
2962 coercion of numeric values into strings. Guaranteed to preserve
2963 UTF8 flag even from overloaded objects. Similar in nature to
2964 sv_2pv[_flags] but operates directly on an SV instead of just the
2965 string. Mostly uses sv_2pv_flags to do its work, except when that
2966 would lose the UTF-8'ness of the PV.
2968 =for apidoc sv_copypv_nomg
2970 Like sv_copypv, but doesn't invoke get magic first.
2972 =for apidoc sv_copypv_flags
2974 Implementation of sv_copypv and sv_copypv_nomg. Calls get magic iff flags
2981 Perl_sv_copypv(pTHX_ SV *const dsv, register SV *const ssv)
2983 PERL_ARGS_ASSERT_SV_COPYPV;
2985 sv_copypv_flags(dsv, ssv, 0);
2989 Perl_sv_copypv_flags(pTHX_ SV *const dsv, register SV *const ssv, const I32 flags)
2994 PERL_ARGS_ASSERT_SV_COPYPV_FLAGS;
2996 if ((flags & SV_GMAGIC) && SvGMAGICAL(ssv))
2998 s = SvPV_nomg_const(ssv,len);
2999 sv_setpvn(dsv,s,len);
3007 =for apidoc sv_2pvbyte
3009 Return a pointer to the byte-encoded representation of the SV, and set *lp
3010 to its length. May cause the SV to be downgraded from UTF-8 as a
3013 Usually accessed via the C<SvPVbyte> macro.
3019 Perl_sv_2pvbyte(pTHX_ register SV *sv, STRLEN *const lp)
3021 PERL_ARGS_ASSERT_SV_2PVBYTE;
3023 if (((SvREADONLY(sv) || SvFAKE(sv)) && !SvIsCOW(sv))
3024 || isGV_with_GP(sv) || SvROK(sv)) {
3025 SV *sv2 = sv_newmortal();
3029 else SvGETMAGIC(sv);
3030 sv_utf8_downgrade(sv,0);
3031 return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv);
3035 =for apidoc sv_2pvutf8
3037 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
3038 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
3040 Usually accessed via the C<SvPVutf8> macro.
3046 Perl_sv_2pvutf8(pTHX_ register SV *sv, STRLEN *const lp)
3048 PERL_ARGS_ASSERT_SV_2PVUTF8;
3050 if (((SvREADONLY(sv) || SvFAKE(sv)) && !SvIsCOW(sv))
3051 || isGV_with_GP(sv) || SvROK(sv))
3052 sv = sv_mortalcopy(sv);
3055 sv_utf8_upgrade_nomg(sv);
3056 return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv);
3061 =for apidoc sv_2bool
3063 This macro is only used by sv_true() or its macro equivalent, and only if
3064 the latter's argument is neither SvPOK, SvIOK nor SvNOK.
3065 It calls sv_2bool_flags with the SV_GMAGIC flag.
3067 =for apidoc sv_2bool_flags
3069 This function is only used by sv_true() and friends, and only if
3070 the latter's argument is neither SvPOK, SvIOK nor SvNOK. If the flags
3071 contain SV_GMAGIC, then it does an mg_get() first.
3078 Perl_sv_2bool_flags(pTHX_ register SV *const sv, const I32 flags)
3082 PERL_ARGS_ASSERT_SV_2BOOL_FLAGS;
3084 if(flags & SV_GMAGIC) SvGETMAGIC(sv);
3090 SV * const tmpsv = AMG_CALLunary(sv, bool__amg);
3091 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
3092 return cBOOL(SvTRUE(tmpsv));
3094 return SvRV(sv) != 0;
3096 return SvTRUE_common(sv, isGV_with_GP(sv) ? 1 : 0);
3100 =for apidoc sv_utf8_upgrade
3102 Converts the PV of an SV to its UTF-8-encoded form.
3103 Forces the SV to string form if it is not already.
3104 Will C<mg_get> on C<sv> if appropriate.
3105 Always sets the SvUTF8 flag to avoid future validity checks even
3106 if the whole string is the same in UTF-8 as not.
3107 Returns the number of bytes in the converted string
3109 This is not a general purpose byte encoding to Unicode interface:
3110 use the Encode extension for that.
3112 =for apidoc sv_utf8_upgrade_nomg
3114 Like sv_utf8_upgrade, but doesn't do magic on C<sv>.
3116 =for apidoc sv_utf8_upgrade_flags
3118 Converts the PV of an SV to its UTF-8-encoded form.
3119 Forces the SV to string form if it is not already.
3120 Always sets the SvUTF8 flag to avoid future validity checks even
3121 if all the bytes are invariant in UTF-8.
3122 If C<flags> has C<SV_GMAGIC> bit set,
3123 will C<mg_get> on C<sv> if appropriate, else not.
3124 Returns the number of bytes in the converted string
3125 C<sv_utf8_upgrade> and
3126 C<sv_utf8_upgrade_nomg> are implemented in terms of this function.
3128 This is not a general purpose byte encoding to Unicode interface:
3129 use the Encode extension for that.
3133 The grow version is currently not externally documented. It adds a parameter,
3134 extra, which is the number of unused bytes the string of 'sv' is guaranteed to
3135 have free after it upon return. This allows the caller to reserve extra space
3136 that it intends to fill, to avoid extra grows.
3138 Also externally undocumented for the moment is the flag SV_FORCE_UTF8_UPGRADE,
3139 which can be used to tell this function to not first check to see if there are
3140 any characters that are different in UTF-8 (variant characters) which would
3141 force it to allocate a new string to sv, but to assume there are. Typically
3142 this flag is used by a routine that has already parsed the string to find that
3143 there are such characters, and passes this information on so that the work
3144 doesn't have to be repeated.
3146 (One might think that the calling routine could pass in the position of the
3147 first such variant, so it wouldn't have to be found again. But that is not the
3148 case, because typically when the caller is likely to use this flag, it won't be
3149 calling this routine unless it finds something that won't fit into a byte.
3150 Otherwise it tries to not upgrade and just use bytes. But some things that
3151 do fit into a byte are variants in utf8, and the caller may not have been
3152 keeping track of these.)
3154 If the routine itself changes the string, it adds a trailing NUL. Such a NUL
3155 isn't guaranteed due to having other routines do the work in some input cases,
3156 or if the input is already flagged as being in utf8.
3158 The speed of this could perhaps be improved for many cases if someone wanted to
3159 write a fast function that counts the number of variant characters in a string,
3160 especially if it could return the position of the first one.
3165 Perl_sv_utf8_upgrade_flags_grow(pTHX_ register SV *const sv, const I32 flags, STRLEN extra)
3169 PERL_ARGS_ASSERT_SV_UTF8_UPGRADE_FLAGS_GROW;
3171 if (sv == &PL_sv_undef)
3173 if (!SvPOK_nog(sv)) {
3175 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
3176 (void) sv_2pv_flags(sv,&len, flags);
3178 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3182 (void) SvPV_force_flags(sv,len,flags & SV_GMAGIC);
3187 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3192 sv_force_normal_flags(sv, 0);
3195 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING)) {
3196 sv_recode_to_utf8(sv, PL_encoding);
3197 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3201 if (SvCUR(sv) == 0) {
3202 if (extra) SvGROW(sv, extra);
3203 } else { /* Assume Latin-1/EBCDIC */
3204 /* This function could be much more efficient if we
3205 * had a FLAG in SVs to signal if there are any variant
3206 * chars in the PV. Given that there isn't such a flag
3207 * make the loop as fast as possible (although there are certainly ways
3208 * to speed this up, eg. through vectorization) */
3209 U8 * s = (U8 *) SvPVX_const(sv);
3210 U8 * e = (U8 *) SvEND(sv);
3212 STRLEN two_byte_count = 0;
3214 if (flags & SV_FORCE_UTF8_UPGRADE) goto must_be_utf8;
3216 /* See if really will need to convert to utf8. We mustn't rely on our
3217 * incoming SV being well formed and having a trailing '\0', as certain
3218 * code in pp_formline can send us partially built SVs. */
3222 if (NATIVE_IS_INVARIANT(ch)) continue;
3224 t--; /* t already incremented; re-point to first variant */
3229 /* utf8 conversion not needed because all are invariants. Mark as
3230 * UTF-8 even if no variant - saves scanning loop */
3232 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3237 /* Here, the string should be converted to utf8, either because of an
3238 * input flag (two_byte_count = 0), or because a character that
3239 * requires 2 bytes was found (two_byte_count = 1). t points either to
3240 * the beginning of the string (if we didn't examine anything), or to
3241 * the first variant. In either case, everything from s to t - 1 will
3242 * occupy only 1 byte each on output.
3244 * There are two main ways to convert. One is to create a new string
3245 * and go through the input starting from the beginning, appending each
3246 * converted value onto the new string as we go along. It's probably
3247 * best to allocate enough space in the string for the worst possible
3248 * case rather than possibly running out of space and having to
3249 * reallocate and then copy what we've done so far. Since everything
3250 * from s to t - 1 is invariant, the destination can be initialized
3251 * with these using a fast memory copy
3253 * The other way is to figure out exactly how big the string should be
3254 * by parsing the entire input. Then you don't have to make it big
3255 * enough to handle the worst possible case, and more importantly, if
3256 * the string you already have is large enough, you don't have to
3257 * allocate a new string, you can copy the last character in the input
3258 * string to the final position(s) that will be occupied by the
3259 * converted string and go backwards, stopping at t, since everything
3260 * before that is invariant.
3262 * There are advantages and disadvantages to each method.
3264 * In the first method, we can allocate a new string, do the memory
3265 * copy from the s to t - 1, and then proceed through the rest of the
3266 * string byte-by-byte.
3268 * In the second method, we proceed through the rest of the input
3269 * string just calculating how big the converted string will be. Then
3270 * there are two cases:
3271 * 1) if the string has enough extra space to handle the converted
3272 * value. We go backwards through the string, converting until we
3273 * get to the position we are at now, and then stop. If this
3274 * position is far enough along in the string, this method is
3275 * faster than the other method. If the memory copy were the same
3276 * speed as the byte-by-byte loop, that position would be about
3277 * half-way, as at the half-way mark, parsing to the end and back
3278 * is one complete string's parse, the same amount as starting
3279 * over and going all the way through. Actually, it would be
3280 * somewhat less than half-way, as it's faster to just count bytes
3281 * than to also copy, and we don't have the overhead of allocating
3282 * a new string, changing the scalar to use it, and freeing the
3283 * existing one. But if the memory copy is fast, the break-even
3284 * point is somewhere after half way. The counting loop could be
3285 * sped up by vectorization, etc, to move the break-even point
3286 * further towards the beginning.
3287 * 2) if the string doesn't have enough space to handle the converted
3288 * value. A new string will have to be allocated, and one might
3289 * as well, given that, start from the beginning doing the first
3290 * method. We've spent extra time parsing the string and in
3291 * exchange all we've gotten is that we know precisely how big to
3292 * make the new one. Perl is more optimized for time than space,
3293 * so this case is a loser.
3294 * So what I've decided to do is not use the 2nd method unless it is
3295 * guaranteed that a new string won't have to be allocated, assuming
3296 * the worst case. I also decided not to put any more conditions on it
3297 * than this, for now. It seems likely that, since the worst case is
3298 * twice as big as the unknown portion of the string (plus 1), we won't
3299 * be guaranteed enough space, causing us to go to the first method,
3300 * unless the string is short, or the first variant character is near
3301 * the end of it. In either of these cases, it seems best to use the
3302 * 2nd method. The only circumstance I can think of where this would
3303 * be really slower is if the string had once had much more data in it
3304 * than it does now, but there is still a substantial amount in it */
3307 STRLEN invariant_head = t - s;
3308 STRLEN size = invariant_head + (e - t) * 2 + 1 + extra;
3309 if (SvLEN(sv) < size) {
3311 /* Here, have decided to allocate a new string */
3316 Newx(dst, size, U8);
3318 /* If no known invariants at the beginning of the input string,
3319 * set so starts from there. Otherwise, can use memory copy to
3320 * get up to where we are now, and then start from here */
3322 if (invariant_head <= 0) {
3325 Copy(s, dst, invariant_head, char);
3326 d = dst + invariant_head;
3330 const UV uv = NATIVE8_TO_UNI(*t++);
3331 if (UNI_IS_INVARIANT(uv))
3332 *d++ = (U8)UNI_TO_NATIVE(uv);
3334 *d++ = (U8)UTF8_EIGHT_BIT_HI(uv);
3335 *d++ = (U8)UTF8_EIGHT_BIT_LO(uv);
3339 SvPV_free(sv); /* No longer using pre-existing string */
3340 SvPV_set(sv, (char*)dst);
3341 SvCUR_set(sv, d - dst);
3342 SvLEN_set(sv, size);
3345 /* Here, have decided to get the exact size of the string.
3346 * Currently this happens only when we know that there is
3347 * guaranteed enough space to fit the converted string, so
3348 * don't have to worry about growing. If two_byte_count is 0,
3349 * then t points to the first byte of the string which hasn't
3350 * been examined yet. Otherwise two_byte_count is 1, and t
3351 * points to the first byte in the string that will expand to
3352 * two. Depending on this, start examining at t or 1 after t.
3355 U8 *d = t + two_byte_count;
3358 /* Count up the remaining bytes that expand to two */
3361 const U8 chr = *d++;
3362 if (! NATIVE_IS_INVARIANT(chr)) two_byte_count++;
3365 /* The string will expand by just the number of bytes that
3366 * occupy two positions. But we are one afterwards because of
3367 * the increment just above. This is the place to put the
3368 * trailing NUL, and to set the length before we decrement */
3370 d += two_byte_count;
3371 SvCUR_set(sv, d - s);
3375 /* Having decremented d, it points to the position to put the
3376 * very last byte of the expanded string. Go backwards through
3377 * the string, copying and expanding as we go, stopping when we
3378 * get to the part that is invariant the rest of the way down */
3382 const U8 ch = NATIVE8_TO_UNI(*e--);
3383 if (UNI_IS_INVARIANT(ch)) {
3384 *d-- = UNI_TO_NATIVE(ch);
3386 *d-- = (U8)UTF8_EIGHT_BIT_LO(ch);
3387 *d-- = (U8)UTF8_EIGHT_BIT_HI(ch);
3392 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3393 /* Update pos. We do it at the end rather than during
3394 * the upgrade, to avoid slowing down the common case
3395 * (upgrade without pos) */
3396 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3398 I32 pos = mg->mg_len;
3399 if (pos > 0 && (U32)pos > invariant_head) {
3400 U8 *d = (U8*) SvPVX(sv) + invariant_head;
3401 STRLEN n = (U32)pos - invariant_head;
3403 if (UTF8_IS_START(*d))
3408 mg->mg_len = d - (U8*)SvPVX(sv);
3411 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3412 magic_setutf8(sv,mg); /* clear UTF8 cache */
3417 /* Mark as UTF-8 even if no variant - saves scanning loop */
3423 =for apidoc sv_utf8_downgrade
3425 Attempts to convert the PV of an SV from characters to bytes.
3426 If the PV contains a character that cannot fit
3427 in a byte, this conversion will fail;
3428 in this case, either returns false or, if C<fail_ok> is not
3431 This is not a general purpose Unicode to byte encoding interface:
3432 use the Encode extension for that.
3438 Perl_sv_utf8_downgrade(pTHX_ register SV *const sv, const bool fail_ok)
3442 PERL_ARGS_ASSERT_SV_UTF8_DOWNGRADE;
3444 if (SvPOKp(sv) && SvUTF8(sv)) {
3448 int mg_flags = SV_GMAGIC;
3451 sv_force_normal_flags(sv, 0);
3453 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3455 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3457 I32 pos = mg->mg_len;
3459 sv_pos_b2u(sv, &pos);
3460 mg_flags = 0; /* sv_pos_b2u does get magic */
3464 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3465 magic_setutf8(sv,mg); /* clear UTF8 cache */
3468 s = (U8 *) SvPV_flags(sv, len, mg_flags);
3470 if (!utf8_to_bytes(s, &len)) {
3475 Perl_croak(aTHX_ "Wide character in %s",
3478 Perl_croak(aTHX_ "Wide character");
3489 =for apidoc sv_utf8_encode
3491 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3492 flag off so that it looks like octets again.
3498 Perl_sv_utf8_encode(pTHX_ register SV *const sv)
3500 PERL_ARGS_ASSERT_SV_UTF8_ENCODE;
3502 if (SvREADONLY(sv)) {
3503 sv_force_normal_flags(sv, 0);
3505 (void) sv_utf8_upgrade(sv);
3510 =for apidoc sv_utf8_decode
3512 If the PV of the SV is an octet sequence in UTF-8
3513 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3514 so that it looks like a character. If the PV contains only single-byte
3515 characters, the C<SvUTF8> flag stays off.
3516 Scans PV for validity and returns false if the PV is invalid UTF-8.
3522 Perl_sv_utf8_decode(pTHX_ register SV *const sv)
3524 PERL_ARGS_ASSERT_SV_UTF8_DECODE;
3527 const U8 *start, *c;
3530 /* The octets may have got themselves encoded - get them back as
3533 if (!sv_utf8_downgrade(sv, TRUE))
3536 /* it is actually just a matter of turning the utf8 flag on, but
3537 * we want to make sure everything inside is valid utf8 first.
3539 c = start = (const U8 *) SvPVX_const(sv);
3540 if (!is_utf8_string(c, SvCUR(sv)))
3542 e = (const U8 *) SvEND(sv);
3545 if (!UTF8_IS_INVARIANT(ch)) {
3550 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3551 /* adjust pos to the start of a UTF8 char sequence */
3552 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3554 I32 pos = mg->mg_len;
3556 for (c = start + pos; c > start; c--) {
3557 if (UTF8_IS_START(*c))
3560 mg->mg_len = c - start;
3563 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3564 magic_setutf8(sv,mg); /* clear UTF8 cache */
3571 =for apidoc sv_setsv
3573 Copies the contents of the source SV C<ssv> into the destination SV
3574 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3575 function if the source SV needs to be reused. Does not handle 'set' magic.
3576 Loosely speaking, it performs a copy-by-value, obliterating any previous
3577 content of the destination.
3579 You probably want to use one of the assortment of wrappers, such as
3580 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3581 C<SvSetMagicSV_nosteal>.
3583 =for apidoc sv_setsv_flags
3585 Copies the contents of the source SV C<ssv> into the destination SV
3586 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3587 function if the source SV needs to be reused. Does not handle 'set' magic.
3588 Loosely speaking, it performs a copy-by-value, obliterating any previous
3589 content of the destination.
3590 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3591 C<ssv> if appropriate, else not. If the C<flags>
3592 parameter has the C<NOSTEAL> bit set then the
3593 buffers of temps will not be stolen. <sv_setsv>
3594 and C<sv_setsv_nomg> are implemented in terms of this function.
3596 You probably want to use one of the assortment of wrappers, such as
3597 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3598 C<SvSetMagicSV_nosteal>.
3600 This is the primary function for copying scalars, and most other
3601 copy-ish functions and macros use this underneath.
3607 S_glob_assign_glob(pTHX_ SV *const dstr, SV *const sstr, const int dtype)
3609 I32 mro_changes = 0; /* 1 = method, 2 = isa, 3 = recursive isa */
3610 HV *old_stash = NULL;
3612 PERL_ARGS_ASSERT_GLOB_ASSIGN_GLOB;
3614 if (dtype != SVt_PVGV && !isGV_with_GP(dstr)) {
3615 const char * const name = GvNAME(sstr);
3616 const STRLEN len = GvNAMELEN(sstr);
3618 if (dtype >= SVt_PV) {
3624 SvUPGRADE(dstr, SVt_PVGV);
3625 (void)SvOK_off(dstr);
3626 /* We have to turn this on here, even though we turn it off
3627 below, as GvSTASH will fail an assertion otherwise. */
3628 isGV_with_GP_on(dstr);
3630 GvSTASH(dstr) = GvSTASH(sstr);
3632 Perl_sv_add_backref(aTHX_ MUTABLE_SV(GvSTASH(dstr)), dstr);
3633 gv_name_set(MUTABLE_GV(dstr), name, len,
3634 GV_ADD | (GvNAMEUTF8(sstr) ? SVf_UTF8 : 0 ));
3635 SvFAKE_on(dstr); /* can coerce to non-glob */
3638 if(GvGP(MUTABLE_GV(sstr))) {
3639 /* If source has method cache entry, clear it */
3641 SvREFCNT_dec(GvCV(sstr));
3642 GvCV_set(sstr, NULL);
3645 /* If source has a real method, then a method is
3648 GvCV((const GV *)sstr) && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3654 /* If dest already had a real method, that's a change as well */
3656 !mro_changes && GvGP(MUTABLE_GV(dstr)) && GvCVu((const GV *)dstr)
3657 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3662 /* We don't need to check the name of the destination if it was not a
3663 glob to begin with. */
3664 if(dtype == SVt_PVGV) {
3665 const char * const name = GvNAME((const GV *)dstr);
3668 /* The stash may have been detached from the symbol table, so
3670 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3674 const STRLEN len = GvNAMELEN(dstr);
3675 if ((len > 1 && name[len-2] == ':' && name[len-1] == ':')
3676 || (len == 1 && name[0] == ':')) {
3679 /* Set aside the old stash, so we can reset isa caches on
3681 if((old_stash = GvHV(dstr)))
3682 /* Make sure we do not lose it early. */
3683 SvREFCNT_inc_simple_void_NN(
3684 sv_2mortal((SV *)old_stash)
3690 gp_free(MUTABLE_GV(dstr));
3691 isGV_with_GP_off(dstr); /* SvOK_off does not like globs. */
3692 (void)SvOK_off(dstr);
3693 isGV_with_GP_on(dstr);
3694 GvINTRO_off(dstr); /* one-shot flag */
3695 GvGP_set(dstr, gp_ref(GvGP(sstr)));
3696 if (SvTAINTED(sstr))
3698 if (GvIMPORTED(dstr) != GVf_IMPORTED
3699 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3701 GvIMPORTED_on(dstr);
3704 if(mro_changes == 2) {
3705 if (GvAV((const GV *)sstr)) {
3707 SV * const sref = (SV *)GvAV((const GV *)dstr);
3708 if (SvSMAGICAL(sref) && (mg = mg_find(sref, PERL_MAGIC_isa))) {
3709 if (SvTYPE(mg->mg_obj) != SVt_PVAV) {
3710 AV * const ary = newAV();
3711 av_push(ary, mg->mg_obj); /* takes the refcount */
3712 mg->mg_obj = (SV *)ary;
3714 av_push((AV *)mg->mg_obj, SvREFCNT_inc_simple_NN(dstr));
3716 else sv_magic(sref, dstr, PERL_MAGIC_isa, NULL, 0);
3718 mro_isa_changed_in(GvSTASH(dstr));
3720 else if(mro_changes == 3) {
3721 HV * const stash = GvHV(dstr);
3722 if(old_stash ? (HV *)HvENAME_get(old_stash) : stash)
3728 else if(mro_changes) mro_method_changed_in(GvSTASH(dstr));
3733 S_glob_assign_ref(pTHX_ SV *const dstr, SV *const sstr)
3735 SV * const sref = SvREFCNT_inc(SvRV(sstr));
3737 const int intro = GvINTRO(dstr);
3740 const U32 stype = SvTYPE(sref);
3742 PERL_ARGS_ASSERT_GLOB_ASSIGN_REF;
3745 GvINTRO_off(dstr); /* one-shot flag */
3746 GvLINE(dstr) = CopLINE(PL_curcop);
3747 GvEGV(dstr) = MUTABLE_GV(dstr);
3752 location = (SV **) &(GvGP(dstr)->gp_cv); /* XXX bypassing GvCV_set */
3753 import_flag = GVf_IMPORTED_CV;
3756 location = (SV **) &GvHV(dstr);
3757 import_flag = GVf_IMPORTED_HV;
3760 location = (SV **) &GvAV(dstr);
3761 import_flag = GVf_IMPORTED_AV;
3764 location = (SV **) &GvIOp(dstr);
3767 location = (SV **) &GvFORM(dstr);
3770 location = &GvSV(dstr);
3771 import_flag = GVf_IMPORTED_SV;
3774 if (stype == SVt_PVCV) {
3775 /*if (GvCVGEN(dstr) && (GvCV(dstr) != (const CV *)sref || GvCVGEN(dstr))) {*/
3776 if (GvCVGEN(dstr)) {
3777 SvREFCNT_dec(GvCV(dstr));
3778 GvCV_set(dstr, NULL);
3779 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3782 SAVEGENERICSV(*location);
3786 if (stype == SVt_PVCV && (*location != sref || GvCVGEN(dstr))) {
3787 CV* const cv = MUTABLE_CV(*location);
3789 if (!GvCVGEN((const GV *)dstr) &&
3790 (CvROOT(cv) || CvXSUB(cv)) &&
3791 /* redundant check that avoids creating the extra SV
3792 most of the time: */
3793 (CvCONST(cv) || ckWARN(WARN_REDEFINE)))
3795 SV * const new_const_sv =
3796 CvCONST((const CV *)sref)
3797 ? cv_const_sv((const CV *)sref)
3799 report_redefined_cv(
3800 sv_2mortal(Perl_newSVpvf(aTHX_
3803 HvNAME_HEK(GvSTASH((const GV *)dstr))
3805 HEKfARG(GvENAME_HEK(MUTABLE_GV(dstr)))
3808 CvCONST((const CV *)sref) ? &new_const_sv : NULL
3812 cv_ckproto_len_flags(cv, (const GV *)dstr,
3813 SvPOK(sref) ? CvPROTO(sref) : NULL,
3814 SvPOK(sref) ? CvPROTOLEN(sref) : 0,
3815 SvPOK(sref) ? SvUTF8(sref) : 0);
3817 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3818 GvASSUMECV_on(dstr);
3819 if(GvSTASH(dstr)) mro_method_changed_in(GvSTASH(dstr)); /* sub foo { 1 } sub bar { 2 } *bar = \&foo */
3822 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3823 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3824 GvFLAGS(dstr) |= import_flag;
3826 if (stype == SVt_PVHV) {
3827 const char * const name = GvNAME((GV*)dstr);
3828 const STRLEN len = GvNAMELEN(dstr);
3831 (len > 1 && name[len-2] == ':' && name[len-1] == ':')
3832 || (len == 1 && name[0] == ':')
3834 && (!dref || HvENAME_get(dref))
3837 (HV *)sref, (HV *)dref,
3843 stype == SVt_PVAV && sref != dref
3844 && strEQ(GvNAME((GV*)dstr), "ISA")
3845 /* The stash may have been detached from the symbol table, so
3846 check its name before doing anything. */
3847 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3850 MAGIC * const omg = dref && SvSMAGICAL(dref)
3851 ? mg_find(dref, PERL_MAGIC_isa)
3853 if (SvSMAGICAL(sref) && (mg = mg_find(sref, PERL_MAGIC_isa))) {
3854 if (SvTYPE(mg->mg_obj) != SVt_PVAV) {
3855 AV * const ary = newAV();
3856 av_push(ary, mg->mg_obj); /* takes the refcount */
3857 mg->mg_obj = (SV *)ary;
3860 if (SvTYPE(omg->mg_obj) == SVt_PVAV) {
3861 SV **svp = AvARRAY((AV *)omg->mg_obj);
3862 I32 items = AvFILLp((AV *)omg->mg_obj) + 1;
3866 SvREFCNT_inc_simple_NN(*svp++)
3872 SvREFCNT_inc_simple_NN(omg->mg_obj)
3876 av_push((AV *)mg->mg_obj,SvREFCNT_inc_simple_NN(dstr));
3881 sref, omg ? omg->mg_obj : dstr, PERL_MAGIC_isa, NULL, 0
3883 mg = mg_find(sref, PERL_MAGIC_isa);
3885 /* Since the *ISA assignment could have affected more than
3886 one stash, don't call mro_isa_changed_in directly, but let
3887 magic_clearisa do it for us, as it already has the logic for
3888 dealing with globs vs arrays of globs. */
3890 Perl_magic_clearisa(aTHX_ NULL, mg);
3892 else if (stype == SVt_PVIO) {
3893 DEBUG_o(Perl_deb(aTHX_ "glob_assign_ref clearing PL_stashcache\n"));
3894 /* It's a cache. It will rebuild itself quite happily.
3895 It's a lot of effort to work out exactly which key (or keys)
3896 might be invalidated by the creation of the this file handle.
3898 hv_clear(PL_stashcache);
3903 if (SvTAINTED(sstr))
3909 Perl_sv_setsv_flags(pTHX_ SV *dstr, register SV* sstr, const I32 flags)
3916 PERL_ARGS_ASSERT_SV_SETSV_FLAGS;
3921 if (SvIS_FREED(dstr)) {
3922 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
3923 " to a freed scalar %p", SVfARG(sstr), (void *)dstr);
3925 SV_CHECK_THINKFIRST_COW_DROP(dstr);
3927 sstr = &PL_sv_undef;
3928 if (SvIS_FREED(sstr)) {
3929 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
3930 (void*)sstr, (void*)dstr);
3932 stype = SvTYPE(sstr);
3933 dtype = SvTYPE(dstr);
3935 /* There's a lot of redundancy below but we're going for speed here */
3940 if (dtype != SVt_PVGV && dtype != SVt_PVLV) {
3941 (void)SvOK_off(dstr);
3949 sv_upgrade(dstr, SVt_IV);
3953 sv_upgrade(dstr, SVt_PVIV);
3957 goto end_of_first_switch;
3959 (void)SvIOK_only(dstr);
3960 SvIV_set(dstr, SvIVX(sstr));
3963 /* SvTAINTED can only be true if the SV has taint magic, which in
3964 turn means that the SV type is PVMG (or greater). This is the
3965 case statement for SVt_IV, so this cannot be true (whatever gcov
3967 assert(!SvTAINTED(sstr));
3972 if (dtype < SVt_PV && dtype != SVt_IV)
3973 sv_upgrade(dstr, SVt_IV);
3981 sv_upgrade(dstr, SVt_NV);
3985 sv_upgrade(dstr, SVt_PVNV);
3989 goto end_of_first_switch;
3991 SvNV_set(dstr, SvNVX(sstr));
3992 (void)SvNOK_only(dstr);
3993 /* SvTAINTED can only be true if the SV has taint magic, which in
3994 turn means that the SV type is PVMG (or greater). This is the
3995 case statement for SVt_NV, so this cannot be true (whatever gcov
3997 assert(!SvTAINTED(sstr));
4004 sv_upgrade(dstr, SVt_PV);
4007 if (dtype < SVt_PVIV)
4008 sv_upgrade(dstr, SVt_PVIV);
4011 if (dtype < SVt_PVNV)
4012 sv_upgrade(dstr, SVt_PVNV);
4016 const char * const type = sv_reftype(sstr,0);
4018 /* diag_listed_as: Bizarre copy of %s */
4019 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_DESC(PL_op));
4021 Perl_croak(aTHX_ "Bizarre copy of %s", type);
4026 if (dtype < SVt_REGEXP)
4027 sv_upgrade(dstr, SVt_REGEXP);
4030 /* case SVt_BIND: */
4034 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
4036 if (SvTYPE(sstr) != stype)
4037 stype = SvTYPE(sstr);
4039 if (isGV_with_GP(sstr) && dtype <= SVt_PVLV) {
4040 glob_assign_glob(dstr, sstr, dtype);
4043 if (stype == SVt_PVLV)
4044 SvUPGRADE(dstr, SVt_PVNV);
4046 SvUPGRADE(dstr, (svtype)stype);
4048 end_of_first_switch:
4050 /* dstr may have been upgraded. */
4051 dtype = SvTYPE(dstr);
4052 sflags = SvFLAGS(sstr);
4054 if (dtype == SVt_PVCV) {
4055 /* Assigning to a subroutine sets the prototype. */
4058 const char *const ptr = SvPV_const(sstr, len);
4060 SvGROW(dstr, len + 1);
4061 Copy(ptr, SvPVX(dstr), len + 1, char);
4062 SvCUR_set(dstr, len);
4064 SvFLAGS(dstr) |= sflags & SVf_UTF8;
4065 CvAUTOLOAD_off(dstr);
4070 else if (dtype == SVt_PVAV || dtype == SVt_PVHV || dtype == SVt_PVFM) {
4071 const char * const type = sv_reftype(dstr,0);
4073 /* diag_listed_as: Cannot copy to %s */
4074 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_DESC(PL_op));
4076 Perl_croak(aTHX_ "Cannot copy to %s", type);
4077 } else if (sflags & SVf_ROK) {
4078 if (isGV_with_GP(dstr)
4079 && SvTYPE(SvRV(sstr)) == SVt_PVGV && isGV_with_GP(SvRV(sstr))) {
4082 if (GvIMPORTED(dstr) != GVf_IMPORTED
4083 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
4085 GvIMPORTED_on(dstr);
4090 glob_assign_glob(dstr, sstr, dtype);
4094 if (dtype >= SVt_PV) {
4095 if (isGV_with_GP(dstr)) {
4096 glob_assign_ref(dstr, sstr);
4099 if (SvPVX_const(dstr)) {
4105 (void)SvOK_off(dstr);
4106 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
4107 SvFLAGS(dstr) |= sflags & SVf_ROK;
4108 assert(!(sflags & SVp_NOK));
4109 assert(!(sflags & SVp_IOK));
4110 assert(!(sflags & SVf_NOK));
4111 assert(!(sflags & SVf_IOK));
4113 else if (isGV_with_GP(dstr)) {
4114 if (!(sflags & SVf_OK)) {
4115 Perl_ck_warner(aTHX_ packWARN(WARN_MISC),
4116 "Undefined value assigned to typeglob");
4119 GV *gv = gv_fetchsv_nomg(sstr, GV_ADD, SVt_PVGV);
4120 if (dstr != (const SV *)gv) {
4121 const char * const name = GvNAME((const GV *)dstr);
4122 const STRLEN len = GvNAMELEN(dstr);
4123 HV *old_stash = NULL;
4124 bool reset_isa = FALSE;
4125 if ((len > 1 && name[len-2] == ':' && name[len-1] == ':')
4126 || (len == 1 && name[0] == ':')) {
4127 /* Set aside the old stash, so we can reset isa caches
4128 on its subclasses. */
4129 if((old_stash = GvHV(dstr))) {
4130 /* Make sure we do not lose it early. */
4131 SvREFCNT_inc_simple_void_NN(
4132 sv_2mortal((SV *)old_stash)
4139 gp_free(MUTABLE_GV(dstr));
4140 GvGP_set(dstr, gp_ref(GvGP(gv)));
4143 HV * const stash = GvHV(dstr);
4145 old_stash ? (HV *)HvENAME_get(old_stash) : stash
4155 else if (dtype == SVt_REGEXP && stype == SVt_REGEXP) {
4156 reg_temp_copy((REGEXP*)dstr, (REGEXP*)sstr);
4158 else if (sflags & SVp_POK) {
4162 * Check to see if we can just swipe the string. If so, it's a
4163 * possible small lose on short strings, but a big win on long ones.
4164 * It might even be a win on short strings if SvPVX_const(dstr)
4165 * has to be allocated and SvPVX_const(sstr) has to be freed.
4166 * Likewise if we can set up COW rather than doing an actual copy, we
4167 * drop to the else clause, as the swipe code and the COW setup code
4168 * have much in common.
4171 /* Whichever path we take through the next code, we want this true,
4172 and doing it now facilitates the COW check. */
4173 (void)SvPOK_only(dstr);
4176 /* If we're already COW then this clause is not true, and if COW
4177 is allowed then we drop down to the else and make dest COW
4178 with us. If caller hasn't said that we're allowed to COW
4179 shared hash keys then we don't do the COW setup, even if the
4180 source scalar is a shared hash key scalar. */
4181 (((flags & SV_COW_SHARED_HASH_KEYS)
4182 ? (sflags & (SVf_FAKE|SVf_READONLY)) != (SVf_FAKE|SVf_READONLY)
4183 : 1 /* If making a COW copy is forbidden then the behaviour we
4184 desire is as if the source SV isn't actually already
4185 COW, even if it is. So we act as if the source flags
4186 are not COW, rather than actually testing them. */
4188 #ifndef PERL_OLD_COPY_ON_WRITE
4189 /* The change that added SV_COW_SHARED_HASH_KEYS makes the logic
4190 when PERL_OLD_COPY_ON_WRITE is defined a little wrong.
4191 Conceptually PERL_OLD_COPY_ON_WRITE being defined should
4192 override SV_COW_SHARED_HASH_KEYS, because it means "always COW"
4193 but in turn, it's somewhat dead code, never expected to go
4194 live, but more kept as a placeholder on how to do it better
4195 in a newer implementation. */
4196 /* If we are COW and dstr is a suitable target then we drop down
4197 into the else and make dest a COW of us. */
4198 || (SvFLAGS(dstr) & SVf_BREAK)
4203 (sflags & SVs_TEMP) && /* slated for free anyway? */
4204 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
4205 (!(flags & SV_NOSTEAL)) &&
4206 /* and we're allowed to steal temps */
4207 SvREFCNT(sstr) == 1 && /* and no other references to it? */
4208 SvLEN(sstr)) /* and really is a string */
4209 #ifdef PERL_OLD_COPY_ON_WRITE
4210 && ((flags & SV_COW_SHARED_HASH_KEYS)
4211 ? (!((sflags & CAN_COW_MASK) == CAN_COW_FLAGS
4212 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
4213 && SvTYPE(sstr) >= SVt_PVIV))
4217 /* Failed the swipe test, and it's not a shared hash key either.
4218 Have to copy the string. */
4219 STRLEN len = SvCUR(sstr);
4220 SvGROW(dstr, len + 1); /* inlined from sv_setpvn */
4221 Move(SvPVX_const(sstr),SvPVX(dstr),len,char);
4222 SvCUR_set(dstr, len);
4223 *SvEND(dstr) = '\0';
4225 /* If PERL_OLD_COPY_ON_WRITE is not defined, then isSwipe will always
4227 /* Either it's a shared hash key, or it's suitable for
4228 copy-on-write or we can swipe the string. */
4230 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
4234 #ifdef PERL_OLD_COPY_ON_WRITE
4236 if ((sflags & (SVf_FAKE | SVf_READONLY))
4237 != (SVf_FAKE | SVf_READONLY)) {
4238 SvREADONLY_on(sstr);
4240 /* Make the source SV into a loop of 1.
4241 (about to become 2) */
4242 SV_COW_NEXT_SV_SET(sstr, sstr);
4246 /* Initial code is common. */
4247 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
4252 /* making another shared SV. */
4253 STRLEN cur = SvCUR(sstr);
4254 STRLEN len = SvLEN(sstr);
4255 #ifdef PERL_OLD_COPY_ON_WRITE
4257 assert (SvTYPE(dstr) >= SVt_PVIV);
4258 /* SvIsCOW_normal */
4259 /* splice us in between source and next-after-source. */
4260 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4261 SV_COW_NEXT_SV_SET(sstr, dstr);
4262 SvPV_set(dstr, SvPVX_mutable(sstr));
4266 /* SvIsCOW_shared_hash */
4267 DEBUG_C(PerlIO_printf(Perl_debug_log,
4268 "Copy on write: Sharing hash\n"));
4270 assert (SvTYPE(dstr) >= SVt_PV);
4272 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
4274 SvLEN_set(dstr, len);
4275 SvCUR_set(dstr, cur);
4276 SvREADONLY_on(dstr);
4280 { /* Passes the swipe test. */
4281 SvPV_set(dstr, SvPVX_mutable(sstr));
4282 SvLEN_set(dstr, SvLEN(sstr));
4283 SvCUR_set(dstr, SvCUR(sstr));
4286 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
4287 SvPV_set(sstr, NULL);
4293 if (sflags & SVp_NOK) {
4294 SvNV_set(dstr, SvNVX(sstr));
4296 if (sflags & SVp_IOK) {
4297 SvIV_set(dstr, SvIVX(sstr));
4298 /* Must do this otherwise some other overloaded use of 0x80000000
4299 gets confused. I guess SVpbm_VALID */
4300 if (sflags & SVf_IVisUV)
4303 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8);
4305 const MAGIC * const smg = SvVSTRING_mg(sstr);
4307 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
4308 smg->mg_ptr, smg->mg_len);
4309 SvRMAGICAL_on(dstr);
4313 else if (sflags & (SVp_IOK|SVp_NOK)) {
4314 (void)SvOK_off(dstr);
4315 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK);
4316 if (sflags & SVp_IOK) {
4317 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
4318 SvIV_set(dstr, SvIVX(sstr));
4320 if (sflags & SVp_NOK) {
4321 SvNV_set(dstr, SvNVX(sstr));
4325 if (isGV_with_GP(sstr)) {
4326 gv_efullname3(dstr, MUTABLE_GV(sstr), "*");
4329 (void)SvOK_off(dstr);
4331 if (SvTAINTED(sstr))
4336 =for apidoc sv_setsv_mg
4338 Like C<sv_setsv>, but also handles 'set' magic.
4344 Perl_sv_setsv_mg(pTHX_ SV *const dstr, register SV *const sstr)
4346 PERL_ARGS_ASSERT_SV_SETSV_MG;
4348 sv_setsv(dstr,sstr);
4352 #ifdef PERL_OLD_COPY_ON_WRITE
4354 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
4356 STRLEN cur = SvCUR(sstr);
4357 STRLEN len = SvLEN(sstr);
4360 PERL_ARGS_ASSERT_SV_SETSV_COW;
4363 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
4364 (void*)sstr, (void*)dstr);
4371 if (SvTHINKFIRST(dstr))
4372 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
4373 else if (SvPVX_const(dstr))
4374 Safefree(SvPVX_mutable(dstr));
4378 SvUPGRADE(dstr, SVt_PVIV);
4380 assert (SvPOK(sstr));
4381 assert (SvPOKp(sstr));
4382 assert (!SvIOK(sstr));
4383 assert (!SvIOKp(sstr));
4384 assert (!SvNOK(sstr));
4385 assert (!SvNOKp(sstr));
4387 if (SvIsCOW(sstr)) {
4389 if (SvLEN(sstr) == 0) {
4390 /* source is a COW shared hash key. */
4391 DEBUG_C(PerlIO_printf(Perl_debug_log,
4392 "Fast copy on write: Sharing hash\n"));
4393 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
4396 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4398 assert ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS);
4399 SvUPGRADE(sstr, SVt_PVIV);
4400 SvREADONLY_on(sstr);
4402 DEBUG_C(PerlIO_printf(Perl_debug_log,
4403 "Fast copy on write: Converting sstr to COW\n"));
4404 SV_COW_NEXT_SV_SET(dstr, sstr);
4406 SV_COW_NEXT_SV_SET(sstr, dstr);
4407 new_pv = SvPVX_mutable(sstr);
4410 SvPV_set(dstr, new_pv);
4411 SvFLAGS(dstr) = (SVt_PVIV|SVf_POK|SVp_POK|SVf_FAKE|SVf_READONLY);
4414 SvLEN_set(dstr, len);
4415 SvCUR_set(dstr, cur);
4424 =for apidoc sv_setpvn
4426 Copies a string into an SV. The C<len> parameter indicates the number of
4427 bytes to be copied. If the C<ptr> argument is NULL the SV will become
4428 undefined. Does not handle 'set' magic. See C<sv_setpvn_mg>.
4434 Perl_sv_setpvn(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4439 PERL_ARGS_ASSERT_SV_SETPVN;
4441 SV_CHECK_THINKFIRST_COW_DROP(sv);
4447 /* len is STRLEN which is unsigned, need to copy to signed */
4450 Perl_croak(aTHX_ "panic: sv_setpvn called with negative strlen %"
4453 SvUPGRADE(sv, SVt_PV);
4455 dptr = SvGROW(sv, len + 1);
4456 Move(ptr,dptr,len,char);
4459 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4461 if (SvTYPE(sv) == SVt_PVCV) CvAUTOLOAD_off(sv);
4465 =for apidoc sv_setpvn_mg
4467 Like C<sv_setpvn>, but also handles 'set' magic.
4473 Perl_sv_setpvn_mg(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4475 PERL_ARGS_ASSERT_SV_SETPVN_MG;
4477 sv_setpvn(sv,ptr,len);
4482 =for apidoc sv_setpv
4484 Copies a string into an SV. The string must be null-terminated. Does not
4485 handle 'set' magic. See C<sv_setpv_mg>.
4491 Perl_sv_setpv(pTHX_ register SV *const sv, register const char *const ptr)
4496 PERL_ARGS_ASSERT_SV_SETPV;
4498 SV_CHECK_THINKFIRST_COW_DROP(sv);
4504 SvUPGRADE(sv, SVt_PV);
4506 SvGROW(sv, len + 1);
4507 Move(ptr,SvPVX(sv),len+1,char);
4509 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4511 if (SvTYPE(sv) == SVt_PVCV) CvAUTOLOAD_off(sv);
4515 =for apidoc sv_setpv_mg
4517 Like C<sv_setpv>, but also handles 'set' magic.
4523 Perl_sv_setpv_mg(pTHX_ register SV *const sv, register const char *const ptr)
4525 PERL_ARGS_ASSERT_SV_SETPV_MG;
4532 Perl_sv_sethek(pTHX_ register SV *const sv, const HEK *const hek)
4536 PERL_ARGS_ASSERT_SV_SETHEK;
4542 if (HEK_LEN(hek) == HEf_SVKEY) {
4543 sv_setsv(sv, *(SV**)HEK_KEY(hek));
4546 const int flags = HEK_FLAGS(hek);
4547 if (flags & HVhek_WASUTF8) {
4548 STRLEN utf8_len = HEK_LEN(hek);
4549 char *as_utf8 = (char *)bytes_to_utf8((U8*)HEK_KEY(hek), &utf8_len);
4550 sv_usepvn_flags(sv, as_utf8, utf8_len, SV_HAS_TRAILING_NUL);
4553 } else if (flags & (HVhek_REHASH|HVhek_UNSHARED)) {
4554 sv_setpvn(sv, HEK_KEY(hek), HEK_LEN(hek));
4557 else SvUTF8_off(sv);
4561 SV_CHECK_THINKFIRST_COW_DROP(sv);
4562 SvUPGRADE(sv, SVt_PV);
4563 Safefree(SvPVX(sv));
4564 SvPV_set(sv,(char *)HEK_KEY(share_hek_hek(hek)));
4565 SvCUR_set(sv, HEK_LEN(hek));
4572 else SvUTF8_off(sv);
4580 =for apidoc sv_usepvn_flags
4582 Tells an SV to use C<ptr> to find its string value. Normally the
4583 string is stored inside the SV but sv_usepvn allows the SV to use an
4584 outside string. The C<ptr> should point to memory that was allocated
4585 by C<malloc>. It must be the start of a mallocked block
4586 of memory, and not a pointer to the middle of it. The
4587 string length, C<len>, must be supplied. By default
4588 this function will realloc (i.e. move) the memory pointed to by C<ptr>,
4589 so that pointer should not be freed or used by the programmer after
4590 giving it to sv_usepvn, and neither should any pointers from "behind"
4591 that pointer (e.g. ptr + 1) be used.
4593 If C<flags> & SV_SMAGIC is true, will call SvSETMAGIC. If C<flags> &
4594 SV_HAS_TRAILING_NUL is true, then C<ptr[len]> must be NUL, and the realloc
4595 will be skipped (i.e. the buffer is actually at least 1 byte longer than
4596 C<len>, and already meets the requirements for storing in C<SvPVX>).
4602 Perl_sv_usepvn_flags(pTHX_ SV *const sv, char *ptr, const STRLEN len, const U32 flags)
4607 PERL_ARGS_ASSERT_SV_USEPVN_FLAGS;
4609 SV_CHECK_THINKFIRST_COW_DROP(sv);
4610 SvUPGRADE(sv, SVt_PV);
4613 if (flags & SV_SMAGIC)
4617 if (SvPVX_const(sv))
4621 if (flags & SV_HAS_TRAILING_NUL)
4622 assert(ptr[len] == '\0');
4625 allocate = (flags & SV_HAS_TRAILING_NUL)
4627 #ifdef Perl_safesysmalloc_size
4630 PERL_STRLEN_ROUNDUP(len + 1);
4632 if (flags & SV_HAS_TRAILING_NUL) {
4633 /* It's long enough - do nothing.
4634 Specifically Perl_newCONSTSUB is relying on this. */
4637 /* Force a move to shake out bugs in callers. */
4638 char *new_ptr = (char*)safemalloc(allocate);
4639 Copy(ptr, new_ptr, len, char);
4640 PoisonFree(ptr,len,char);
4644 ptr = (char*) saferealloc (ptr, allocate);
4647 #ifdef Perl_safesysmalloc_size
4648 SvLEN_set(sv, Perl_safesysmalloc_size(ptr));
4650 SvLEN_set(sv, allocate);
4654 if (!(flags & SV_HAS_TRAILING_NUL)) {
4657 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4659 if (flags & SV_SMAGIC)
4663 #ifdef PERL_OLD_COPY_ON_WRITE
4664 /* Need to do this *after* making the SV normal, as we need the buffer
4665 pointer to remain valid until after we've copied it. If we let go too early,
4666 another thread could invalidate it by unsharing last of the same hash key
4667 (which it can do by means other than releasing copy-on-write Svs)
4668 or by changing the other copy-on-write SVs in the loop. */