3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by Larry Wall
7 * You may distribute under the terms of either the GNU General Public
8 * License or the Artistic License, as specified in the README file.
13 * 'I wonder what the Entish is for "yes" and "no",' he thought.
16 * [p.480 of _The Lord of the Rings_, III/iv: "Treebeard"]
22 * This file contains the code that creates, manipulates and destroys
23 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
24 * structure of an SV, so their creation and destruction is handled
25 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
26 * level functions (eg. substr, split, join) for each of the types are
39 /* Missing proto on LynxOS */
40 char *gconvert(double, int, int, char *);
43 #ifdef PERL_NEW_COPY_ON_WRITE
44 # ifndef SV_COW_THRESHOLD
45 # define SV_COW_THRESHOLD 0 /* COW iff len > K */
47 # ifndef SV_COWBUF_THRESHOLD
48 # define SV_COWBUF_THRESHOLD 1250 /* COW iff len > K */
50 # ifndef SV_COW_MAX_WASTE_THRESHOLD
51 # define SV_COW_MAX_WASTE_THRESHOLD 80 /* COW iff (len - cur) < K */
53 # ifndef SV_COWBUF_WASTE_THRESHOLD
54 # define SV_COWBUF_WASTE_THRESHOLD 80 /* COW iff (len - cur) < K */
56 # ifndef SV_COW_MAX_WASTE_FACTOR_THRESHOLD
57 # define SV_COW_MAX_WASTE_FACTOR_THRESHOLD 2 /* COW iff len < (cur * K) */
59 # ifndef SV_COWBUF_WASTE_FACTOR_THRESHOLD
60 # define SV_COWBUF_WASTE_FACTOR_THRESHOLD 2 /* COW iff len < (cur * K) */
63 /* Work around compiler warnings about unsigned >= THRESHOLD when thres-
66 # define GE_COW_THRESHOLD(cur) ((cur) >= SV_COW_THRESHOLD)
68 # define GE_COW_THRESHOLD(cur) 1
70 #if SV_COWBUF_THRESHOLD
71 # define GE_COWBUF_THRESHOLD(cur) ((cur) >= SV_COWBUF_THRESHOLD)
73 # define GE_COWBUF_THRESHOLD(cur) 1
75 #if SV_COW_MAX_WASTE_THRESHOLD
76 # define GE_COW_MAX_WASTE_THRESHOLD(cur,len) (((len)-(cur)) < SV_COW_MAX_WASTE_THRESHOLD)
78 # define GE_COW_MAX_WASTE_THRESHOLD(cur,len) 1
80 #if SV_COWBUF_WASTE_THRESHOLD
81 # define GE_COWBUF_WASTE_THRESHOLD(cur,len) (((len)-(cur)) < SV_COWBUF_WASTE_THRESHOLD)
83 # define GE_COWBUF_WASTE_THRESHOLD(cur,len) 1
85 #if SV_COW_MAX_WASTE_FACTOR_THRESHOLD
86 # define GE_COW_MAX_WASTE_FACTOR_THRESHOLD(cur,len) ((len) < SV_COW_MAX_WASTE_FACTOR_THRESHOLD * (cur))
88 # define GE_COW_MAX_WASTE_FACTOR_THRESHOLD(cur,len) 1
90 #if SV_COWBUF_WASTE_FACTOR_THRESHOLD
91 # define GE_COWBUF_WASTE_FACTOR_THRESHOLD(cur,len) ((len) < SV_COWBUF_WASTE_FACTOR_THRESHOLD * (cur))
93 # define GE_COWBUF_WASTE_FACTOR_THRESHOLD(cur,len) 1
96 #define CHECK_COW_THRESHOLD(cur,len) (\
97 GE_COW_THRESHOLD((cur)) && \
98 GE_COW_MAX_WASTE_THRESHOLD((cur),(len)) && \
99 GE_COW_MAX_WASTE_FACTOR_THRESHOLD((cur),(len)) \
101 #define CHECK_COWBUF_THRESHOLD(cur,len) (\
102 GE_COWBUF_THRESHOLD((cur)) && \
103 GE_COWBUF_WASTE_THRESHOLD((cur),(len)) && \
104 GE_COWBUF_WASTE_FACTOR_THRESHOLD((cur),(len)) \
107 #ifdef PERL_UTF8_CACHE_ASSERT
108 /* if adding more checks watch out for the following tests:
109 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
110 * lib/utf8.t lib/Unicode/Collate/t/index.t
113 # define ASSERT_UTF8_CACHE(cache) \
114 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
115 assert((cache)[2] <= (cache)[3]); \
116 assert((cache)[3] <= (cache)[1]);} \
119 # define ASSERT_UTF8_CACHE(cache) NOOP
122 #ifdef PERL_OLD_COPY_ON_WRITE
123 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
124 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
127 /* ============================================================================
129 =head1 Allocation and deallocation of SVs.
130 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
131 sv, av, hv...) contains type and reference count information, and for
132 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
133 contains fields specific to each type. Some types store all they need
134 in the head, so don't have a body.
136 In all but the most memory-paranoid configurations (ex: PURIFY), heads
137 and bodies are allocated out of arenas, which by default are
138 approximately 4K chunks of memory parcelled up into N heads or bodies.
139 Sv-bodies are allocated by their sv-type, guaranteeing size
140 consistency needed to allocate safely from arrays.
142 For SV-heads, the first slot in each arena is reserved, and holds a
143 link to the next arena, some flags, and a note of the number of slots.
144 Snaked through each arena chain is a linked list of free items; when
145 this becomes empty, an extra arena is allocated and divided up into N
146 items which are threaded into the free list.
148 SV-bodies are similar, but they use arena-sets by default, which
149 separate the link and info from the arena itself, and reclaim the 1st
150 slot in the arena. SV-bodies are further described later.
152 The following global variables are associated with arenas:
154 PL_sv_arenaroot pointer to list of SV arenas
155 PL_sv_root pointer to list of free SV structures
157 PL_body_arenas head of linked-list of body arenas
158 PL_body_roots[] array of pointers to list of free bodies of svtype
159 arrays are indexed by the svtype needed
161 A few special SV heads are not allocated from an arena, but are
162 instead directly created in the interpreter structure, eg PL_sv_undef.
163 The size of arenas can be changed from the default by setting
164 PERL_ARENA_SIZE appropriately at compile time.
166 The SV arena serves the secondary purpose of allowing still-live SVs
167 to be located and destroyed during final cleanup.
169 At the lowest level, the macros new_SV() and del_SV() grab and free
170 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
171 to return the SV to the free list with error checking.) new_SV() calls
172 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
173 SVs in the free list have their SvTYPE field set to all ones.
175 At the time of very final cleanup, sv_free_arenas() is called from
176 perl_destruct() to physically free all the arenas allocated since the
177 start of the interpreter.
179 The function visit() scans the SV arenas list, and calls a specified
180 function for each SV it finds which is still live - ie which has an SvTYPE
181 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
182 following functions (specified as [function that calls visit()] / [function
183 called by visit() for each SV]):
185 sv_report_used() / do_report_used()
186 dump all remaining SVs (debugging aid)
188 sv_clean_objs() / do_clean_objs(),do_clean_named_objs(),
189 do_clean_named_io_objs(),do_curse()
190 Attempt to free all objects pointed to by RVs,
191 try to do the same for all objects indir-
192 ectly referenced by typeglobs too, and
193 then do a final sweep, cursing any
194 objects that remain. Called once from
195 perl_destruct(), prior to calling sv_clean_all()
198 sv_clean_all() / do_clean_all()
199 SvREFCNT_dec(sv) each remaining SV, possibly
200 triggering an sv_free(). It also sets the
201 SVf_BREAK flag on the SV to indicate that the
202 refcnt has been artificially lowered, and thus
203 stopping sv_free() from giving spurious warnings
204 about SVs which unexpectedly have a refcnt
205 of zero. called repeatedly from perl_destruct()
206 until there are no SVs left.
208 =head2 Arena allocator API Summary
210 Private API to rest of sv.c
214 new_XPVNV(), del_XPVGV(),
219 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
223 * ========================================================================= */
226 * "A time to plant, and a time to uproot what was planted..."
230 # define MEM_LOG_NEW_SV(sv, file, line, func) \
231 Perl_mem_log_new_sv(sv, file, line, func)
232 # define MEM_LOG_DEL_SV(sv, file, line, func) \
233 Perl_mem_log_del_sv(sv, file, line, func)
235 # define MEM_LOG_NEW_SV(sv, file, line, func) NOOP
236 # define MEM_LOG_DEL_SV(sv, file, line, func) NOOP
239 #ifdef DEBUG_LEAKING_SCALARS
240 # define FREE_SV_DEBUG_FILE(sv) STMT_START { \
241 if ((sv)->sv_debug_file) PerlMemShared_free((sv)->sv_debug_file); \
243 # define DEBUG_SV_SERIAL(sv) \
244 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) del_SV\n", \
245 PTR2UV(sv), (long)(sv)->sv_debug_serial))
247 # define FREE_SV_DEBUG_FILE(sv)
248 # define DEBUG_SV_SERIAL(sv) NOOP
252 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
253 # define SvARENA_CHAIN_SET(sv,val) (sv)->sv_u.svu_rv = MUTABLE_SV((val))
254 /* Whilst I'd love to do this, it seems that things like to check on
256 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
258 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
259 PoisonNew(&SvREFCNT(sv), 1, U32)
261 # define SvARENA_CHAIN(sv) SvANY(sv)
262 # define SvARENA_CHAIN_SET(sv,val) SvANY(sv) = (void *)(val)
263 # define POSION_SV_HEAD(sv)
266 /* Mark an SV head as unused, and add to free list.
268 * If SVf_BREAK is set, skip adding it to the free list, as this SV had
269 * its refcount artificially decremented during global destruction, so
270 * there may be dangling pointers to it. The last thing we want in that
271 * case is for it to be reused. */
273 #define plant_SV(p) \
275 const U32 old_flags = SvFLAGS(p); \
276 MEM_LOG_DEL_SV(p, __FILE__, __LINE__, FUNCTION__); \
277 DEBUG_SV_SERIAL(p); \
278 FREE_SV_DEBUG_FILE(p); \
280 SvFLAGS(p) = SVTYPEMASK; \
281 if (!(old_flags & SVf_BREAK)) { \
282 SvARENA_CHAIN_SET(p, PL_sv_root); \
288 #define uproot_SV(p) \
291 PL_sv_root = MUTABLE_SV(SvARENA_CHAIN(p)); \
296 /* make some more SVs by adding another arena */
302 char *chunk; /* must use New here to match call to */
303 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
304 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
309 /* new_SV(): return a new, empty SV head */
311 #ifdef DEBUG_LEAKING_SCALARS
312 /* provide a real function for a debugger to play with */
314 S_new_SV(pTHX_ const char *file, int line, const char *func)
321 sv = S_more_sv(aTHX);
325 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
326 sv->sv_debug_line = (U16) (PL_parser && PL_parser->copline != NOLINE
332 sv->sv_debug_inpad = 0;
333 sv->sv_debug_parent = NULL;
334 sv->sv_debug_file = PL_curcop ? savesharedpv(CopFILE(PL_curcop)): NULL;
336 sv->sv_debug_serial = PL_sv_serial++;
338 MEM_LOG_NEW_SV(sv, file, line, func);
339 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) new_SV (from %s:%d [%s])\n",
340 PTR2UV(sv), (long)sv->sv_debug_serial, file, line, func));
344 # define new_SV(p) (p)=S_new_SV(aTHX_ __FILE__, __LINE__, FUNCTION__)
352 (p) = S_more_sv(aTHX); \
356 MEM_LOG_NEW_SV(p, __FILE__, __LINE__, FUNCTION__); \
361 /* del_SV(): return an empty SV head to the free list */
374 S_del_sv(pTHX_ SV *p)
376 PERL_ARGS_ASSERT_DEL_SV;
381 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
382 const SV * const sv = sva + 1;
383 const SV * const svend = &sva[SvREFCNT(sva)];
384 if (p >= sv && p < svend) {
390 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
391 "Attempt to free non-arena SV: 0x%"UVxf
392 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
399 #else /* ! DEBUGGING */
401 #define del_SV(p) plant_SV(p)
403 #endif /* DEBUGGING */
407 =head1 SV Manipulation Functions
409 =for apidoc sv_add_arena
411 Given a chunk of memory, link it to the head of the list of arenas,
412 and split it into a list of free SVs.
418 S_sv_add_arena(pTHX_ char *const ptr, const U32 size, const U32 flags)
420 SV *const sva = MUTABLE_SV(ptr);
424 PERL_ARGS_ASSERT_SV_ADD_ARENA;
426 /* The first SV in an arena isn't an SV. */
427 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
428 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
429 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
431 PL_sv_arenaroot = sva;
432 PL_sv_root = sva + 1;
434 svend = &sva[SvREFCNT(sva) - 1];
437 SvARENA_CHAIN_SET(sv, (sv + 1));
441 /* Must always set typemask because it's always checked in on cleanup
442 when the arenas are walked looking for objects. */
443 SvFLAGS(sv) = SVTYPEMASK;
446 SvARENA_CHAIN_SET(sv, 0);
450 SvFLAGS(sv) = SVTYPEMASK;
453 /* visit(): call the named function for each non-free SV in the arenas
454 * whose flags field matches the flags/mask args. */
457 S_visit(pTHX_ SVFUNC_t f, const U32 flags, const U32 mask)
462 PERL_ARGS_ASSERT_VISIT;
464 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
465 const SV * const svend = &sva[SvREFCNT(sva)];
467 for (sv = sva + 1; sv < svend; ++sv) {
468 if (SvTYPE(sv) != (svtype)SVTYPEMASK
469 && (sv->sv_flags & mask) == flags
482 /* called by sv_report_used() for each live SV */
485 do_report_used(pTHX_ SV *const sv)
487 if (SvTYPE(sv) != (svtype)SVTYPEMASK) {
488 PerlIO_printf(Perl_debug_log, "****\n");
495 =for apidoc sv_report_used
497 Dump the contents of all SVs not yet freed (debugging aid).
503 Perl_sv_report_used(pTHX)
506 visit(do_report_used, 0, 0);
512 /* called by sv_clean_objs() for each live SV */
515 do_clean_objs(pTHX_ SV *const ref)
519 SV * const target = SvRV(ref);
520 if (SvOBJECT(target)) {
521 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
522 if (SvWEAKREF(ref)) {
523 sv_del_backref(target, ref);
529 SvREFCNT_dec_NN(target);
536 /* clear any slots in a GV which hold objects - except IO;
537 * called by sv_clean_objs() for each live GV */
540 do_clean_named_objs(pTHX_ SV *const sv)
543 assert(SvTYPE(sv) == SVt_PVGV);
544 assert(isGV_with_GP(sv));
548 /* freeing GP entries may indirectly free the current GV;
549 * hold onto it while we mess with the GP slots */
552 if ( ((obj = GvSV(sv) )) && SvOBJECT(obj)) {
553 DEBUG_D((PerlIO_printf(Perl_debug_log,
554 "Cleaning named glob SV object:\n "), sv_dump(obj)));
556 SvREFCNT_dec_NN(obj);
558 if ( ((obj = MUTABLE_SV(GvAV(sv)) )) && SvOBJECT(obj)) {
559 DEBUG_D((PerlIO_printf(Perl_debug_log,
560 "Cleaning named glob AV object:\n "), sv_dump(obj)));
562 SvREFCNT_dec_NN(obj);
564 if ( ((obj = MUTABLE_SV(GvHV(sv)) )) && SvOBJECT(obj)) {
565 DEBUG_D((PerlIO_printf(Perl_debug_log,
566 "Cleaning named glob HV object:\n "), sv_dump(obj)));
568 SvREFCNT_dec_NN(obj);
570 if ( ((obj = MUTABLE_SV(GvCV(sv)) )) && SvOBJECT(obj)) {
571 DEBUG_D((PerlIO_printf(Perl_debug_log,
572 "Cleaning named glob CV object:\n "), sv_dump(obj)));
574 SvREFCNT_dec_NN(obj);
576 SvREFCNT_dec_NN(sv); /* undo the inc above */
579 /* clear any IO slots in a GV which hold objects (except stderr, defout);
580 * called by sv_clean_objs() for each live GV */
583 do_clean_named_io_objs(pTHX_ SV *const sv)
586 assert(SvTYPE(sv) == SVt_PVGV);
587 assert(isGV_with_GP(sv));
588 if (!GvGP(sv) || sv == (SV*)PL_stderrgv || sv == (SV*)PL_defoutgv)
592 if ( ((obj = MUTABLE_SV(GvIO(sv)) )) && SvOBJECT(obj)) {
593 DEBUG_D((PerlIO_printf(Perl_debug_log,
594 "Cleaning named glob IO object:\n "), sv_dump(obj)));
596 SvREFCNT_dec_NN(obj);
598 SvREFCNT_dec_NN(sv); /* undo the inc above */
601 /* Void wrapper to pass to visit() */
603 do_curse(pTHX_ SV * const sv) {
604 if ((PL_stderrgv && GvGP(PL_stderrgv) && (SV*)GvIO(PL_stderrgv) == sv)
605 || (PL_defoutgv && GvGP(PL_defoutgv) && (SV*)GvIO(PL_defoutgv) == sv))
611 =for apidoc sv_clean_objs
613 Attempt to destroy all objects not yet freed.
619 Perl_sv_clean_objs(pTHX)
622 PL_in_clean_objs = TRUE;
623 visit(do_clean_objs, SVf_ROK, SVf_ROK);
624 /* Some barnacles may yet remain, clinging to typeglobs.
625 * Run the non-IO destructors first: they may want to output
626 * error messages, close files etc */
627 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
628 visit(do_clean_named_io_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
629 /* And if there are some very tenacious barnacles clinging to arrays,
630 closures, or what have you.... */
631 visit(do_curse, SVs_OBJECT, SVs_OBJECT);
632 olddef = PL_defoutgv;
633 PL_defoutgv = NULL; /* disable skip of PL_defoutgv */
634 if (olddef && isGV_with_GP(olddef))
635 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olddef));
636 olderr = PL_stderrgv;
637 PL_stderrgv = NULL; /* disable skip of PL_stderrgv */
638 if (olderr && isGV_with_GP(olderr))
639 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olderr));
640 SvREFCNT_dec(olddef);
641 PL_in_clean_objs = FALSE;
644 /* called by sv_clean_all() for each live SV */
647 do_clean_all(pTHX_ SV *const sv)
649 if (sv == (const SV *) PL_fdpid || sv == (const SV *)PL_strtab) {
650 /* don't clean pid table and strtab */
653 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
654 SvFLAGS(sv) |= SVf_BREAK;
659 =for apidoc sv_clean_all
661 Decrement the refcnt of each remaining SV, possibly triggering a
662 cleanup. This function may have to be called multiple times to free
663 SVs which are in complex self-referential hierarchies.
669 Perl_sv_clean_all(pTHX)
672 PL_in_clean_all = TRUE;
673 cleaned = visit(do_clean_all, 0,0);
678 ARENASETS: a meta-arena implementation which separates arena-info
679 into struct arena_set, which contains an array of struct
680 arena_descs, each holding info for a single arena. By separating
681 the meta-info from the arena, we recover the 1st slot, formerly
682 borrowed for list management. The arena_set is about the size of an
683 arena, avoiding the needless malloc overhead of a naive linked-list.
685 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
686 memory in the last arena-set (1/2 on average). In trade, we get
687 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
688 smaller types). The recovery of the wasted space allows use of
689 small arenas for large, rare body types, by changing array* fields
690 in body_details_by_type[] below.
693 char *arena; /* the raw storage, allocated aligned */
694 size_t size; /* its size ~4k typ */
695 svtype utype; /* bodytype stored in arena */
700 /* Get the maximum number of elements in set[] such that struct arena_set
701 will fit within PERL_ARENA_SIZE, which is probably just under 4K, and
702 therefore likely to be 1 aligned memory page. */
704 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
705 - 2 * sizeof(int)) / sizeof (struct arena_desc))
708 struct arena_set* next;
709 unsigned int set_size; /* ie ARENAS_PER_SET */
710 unsigned int curr; /* index of next available arena-desc */
711 struct arena_desc set[ARENAS_PER_SET];
715 =for apidoc sv_free_arenas
717 Deallocate the memory used by all arenas. Note that all the individual SV
718 heads and bodies within the arenas must already have been freed.
724 Perl_sv_free_arenas(pTHX)
730 /* Free arenas here, but be careful about fake ones. (We assume
731 contiguity of the fake ones with the corresponding real ones.) */
733 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
734 svanext = MUTABLE_SV(SvANY(sva));
735 while (svanext && SvFAKE(svanext))
736 svanext = MUTABLE_SV(SvANY(svanext));
743 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
746 struct arena_set *current = aroot;
749 assert(aroot->set[i].arena);
750 Safefree(aroot->set[i].arena);
758 i = PERL_ARENA_ROOTS_SIZE;
760 PL_body_roots[i] = 0;
767 Here are mid-level routines that manage the allocation of bodies out
768 of the various arenas. There are 5 kinds of arenas:
770 1. SV-head arenas, which are discussed and handled above
771 2. regular body arenas
772 3. arenas for reduced-size bodies
775 Arena types 2 & 3 are chained by body-type off an array of
776 arena-root pointers, which is indexed by svtype. Some of the
777 larger/less used body types are malloced singly, since a large
778 unused block of them is wasteful. Also, several svtypes dont have
779 bodies; the data fits into the sv-head itself. The arena-root
780 pointer thus has a few unused root-pointers (which may be hijacked
781 later for arena types 4,5)
783 3 differs from 2 as an optimization; some body types have several
784 unused fields in the front of the structure (which are kept in-place
785 for consistency). These bodies can be allocated in smaller chunks,
786 because the leading fields arent accessed. Pointers to such bodies
787 are decremented to point at the unused 'ghost' memory, knowing that
788 the pointers are used with offsets to the real memory.
791 =head1 SV-Body Allocation
795 Allocation of SV-bodies is similar to SV-heads, differing as follows;
796 the allocation mechanism is used for many body types, so is somewhat
797 more complicated, it uses arena-sets, and has no need for still-live
800 At the outermost level, (new|del)_X*V macros return bodies of the
801 appropriate type. These macros call either (new|del)_body_type or
802 (new|del)_body_allocated macro pairs, depending on specifics of the
803 type. Most body types use the former pair, the latter pair is used to
804 allocate body types with "ghost fields".
806 "ghost fields" are fields that are unused in certain types, and
807 consequently don't need to actually exist. They are declared because
808 they're part of a "base type", which allows use of functions as
809 methods. The simplest examples are AVs and HVs, 2 aggregate types
810 which don't use the fields which support SCALAR semantics.
812 For these types, the arenas are carved up into appropriately sized
813 chunks, we thus avoid wasted memory for those unaccessed members.
814 When bodies are allocated, we adjust the pointer back in memory by the
815 size of the part not allocated, so it's as if we allocated the full
816 structure. (But things will all go boom if you write to the part that
817 is "not there", because you'll be overwriting the last members of the
818 preceding structure in memory.)
820 We calculate the correction using the STRUCT_OFFSET macro on the first
821 member present. If the allocated structure is smaller (no initial NV
822 actually allocated) then the net effect is to subtract the size of the NV
823 from the pointer, to return a new pointer as if an initial NV were actually
824 allocated. (We were using structures named *_allocated for this, but
825 this turned out to be a subtle bug, because a structure without an NV
826 could have a lower alignment constraint, but the compiler is allowed to
827 optimised accesses based on the alignment constraint of the actual pointer
828 to the full structure, for example, using a single 64 bit load instruction
829 because it "knows" that two adjacent 32 bit members will be 8-byte aligned.)
831 This is the same trick as was used for NV and IV bodies. Ironically it
832 doesn't need to be used for NV bodies any more, because NV is now at
833 the start of the structure. IV bodies don't need it either, because
834 they are no longer allocated.
836 In turn, the new_body_* allocators call S_new_body(), which invokes
837 new_body_inline macro, which takes a lock, and takes a body off the
838 linked list at PL_body_roots[sv_type], calling Perl_more_bodies() if
839 necessary to refresh an empty list. Then the lock is released, and
840 the body is returned.
842 Perl_more_bodies allocates a new arena, and carves it up into an array of N
843 bodies, which it strings into a linked list. It looks up arena-size
844 and body-size from the body_details table described below, thus
845 supporting the multiple body-types.
847 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
848 the (new|del)_X*V macros are mapped directly to malloc/free.
850 For each sv-type, struct body_details bodies_by_type[] carries
851 parameters which control these aspects of SV handling:
853 Arena_size determines whether arenas are used for this body type, and if
854 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
855 zero, forcing individual mallocs and frees.
857 Body_size determines how big a body is, and therefore how many fit into
858 each arena. Offset carries the body-pointer adjustment needed for
859 "ghost fields", and is used in *_allocated macros.
861 But its main purpose is to parameterize info needed in
862 Perl_sv_upgrade(). The info here dramatically simplifies the function
863 vs the implementation in 5.8.8, making it table-driven. All fields
864 are used for this, except for arena_size.
866 For the sv-types that have no bodies, arenas are not used, so those
867 PL_body_roots[sv_type] are unused, and can be overloaded. In
868 something of a special case, SVt_NULL is borrowed for HE arenas;
869 PL_body_roots[HE_SVSLOT=SVt_NULL] is filled by S_more_he, but the
870 bodies_by_type[SVt_NULL] slot is not used, as the table is not
875 struct body_details {
876 U8 body_size; /* Size to allocate */
877 U8 copy; /* Size of structure to copy (may be shorter) */
879 unsigned int type : 4; /* We have space for a sanity check. */
880 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
881 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
882 unsigned int arena : 1; /* Allocated from an arena */
883 size_t arena_size; /* Size of arena to allocate */
891 /* With -DPURFIY we allocate everything directly, and don't use arenas.
892 This seems a rather elegant way to simplify some of the code below. */
893 #define HASARENA FALSE
895 #define HASARENA TRUE
897 #define NOARENA FALSE
899 /* Size the arenas to exactly fit a given number of bodies. A count
900 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
901 simplifying the default. If count > 0, the arena is sized to fit
902 only that many bodies, allowing arenas to be used for large, rare
903 bodies (XPVFM, XPVIO) without undue waste. The arena size is
904 limited by PERL_ARENA_SIZE, so we can safely oversize the
907 #define FIT_ARENA0(body_size) \
908 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
909 #define FIT_ARENAn(count,body_size) \
910 ( count * body_size <= PERL_ARENA_SIZE) \
911 ? count * body_size \
912 : FIT_ARENA0 (body_size)
913 #define FIT_ARENA(count,body_size) \
915 ? FIT_ARENAn (count, body_size) \
916 : FIT_ARENA0 (body_size)
918 /* Calculate the length to copy. Specifically work out the length less any
919 final padding the compiler needed to add. See the comment in sv_upgrade
920 for why copying the padding proved to be a bug. */
922 #define copy_length(type, last_member) \
923 STRUCT_OFFSET(type, last_member) \
924 + sizeof (((type*)SvANY((const SV *)0))->last_member)
926 static const struct body_details bodies_by_type[] = {
927 /* HEs use this offset for their arena. */
928 { 0, 0, 0, SVt_NULL, FALSE, NONV, NOARENA, 0 },
930 /* IVs are in the head, so the allocation size is 0. */
932 sizeof(IV), /* This is used to copy out the IV body. */
933 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
934 NOARENA /* IVS don't need an arena */, 0
937 { sizeof(NV), sizeof(NV),
938 STRUCT_OFFSET(XPVNV, xnv_u),
939 SVt_NV, FALSE, HADNV, HASARENA, FIT_ARENA(0, sizeof(NV)) },
941 { sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur),
942 copy_length(XPV, xpv_len) - STRUCT_OFFSET(XPV, xpv_cur),
943 + STRUCT_OFFSET(XPV, xpv_cur),
944 SVt_PV, FALSE, NONV, HASARENA,
945 FIT_ARENA(0, sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur)) },
947 { sizeof(XINVLIST) - STRUCT_OFFSET(XPV, xpv_cur),
948 copy_length(XINVLIST, is_offset) - STRUCT_OFFSET(XPV, xpv_cur),
949 + STRUCT_OFFSET(XPV, xpv_cur),
950 SVt_INVLIST, TRUE, NONV, HASARENA,
951 FIT_ARENA(0, sizeof(XINVLIST) - STRUCT_OFFSET(XPV, xpv_cur)) },
953 { sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur),
954 copy_length(XPVIV, xiv_u) - STRUCT_OFFSET(XPV, xpv_cur),
955 + STRUCT_OFFSET(XPV, xpv_cur),
956 SVt_PVIV, FALSE, NONV, HASARENA,
957 FIT_ARENA(0, sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur)) },
959 { sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur),
960 copy_length(XPVNV, xnv_u) - STRUCT_OFFSET(XPV, xpv_cur),
961 + STRUCT_OFFSET(XPV, xpv_cur),
962 SVt_PVNV, FALSE, HADNV, HASARENA,
963 FIT_ARENA(0, sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur)) },
965 { sizeof(XPVMG), copy_length(XPVMG, xnv_u), 0, SVt_PVMG, FALSE, HADNV,
966 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
971 SVt_REGEXP, TRUE, NONV, HASARENA,
972 FIT_ARENA(0, sizeof(regexp))
975 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
976 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
978 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
979 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
982 copy_length(XPVAV, xav_alloc),
984 SVt_PVAV, TRUE, NONV, HASARENA,
985 FIT_ARENA(0, sizeof(XPVAV)) },
988 copy_length(XPVHV, xhv_max),
990 SVt_PVHV, TRUE, NONV, HASARENA,
991 FIT_ARENA(0, sizeof(XPVHV)) },
996 SVt_PVCV, TRUE, NONV, HASARENA,
997 FIT_ARENA(0, sizeof(XPVCV)) },
1002 SVt_PVFM, TRUE, NONV, NOARENA,
1003 FIT_ARENA(20, sizeof(XPVFM)) },
1008 SVt_PVIO, TRUE, NONV, HASARENA,
1009 FIT_ARENA(24, sizeof(XPVIO)) },
1012 #define new_body_allocated(sv_type) \
1013 (void *)((char *)S_new_body(aTHX_ sv_type) \
1014 - bodies_by_type[sv_type].offset)
1016 /* return a thing to the free list */
1018 #define del_body(thing, root) \
1020 void ** const thing_copy = (void **)thing; \
1021 *thing_copy = *root; \
1022 *root = (void*)thing_copy; \
1027 #define new_XNV() safemalloc(sizeof(XPVNV))
1028 #define new_XPVNV() safemalloc(sizeof(XPVNV))
1029 #define new_XPVMG() safemalloc(sizeof(XPVMG))
1031 #define del_XPVGV(p) safefree(p)
1035 #define new_XNV() new_body_allocated(SVt_NV)
1036 #define new_XPVNV() new_body_allocated(SVt_PVNV)
1037 #define new_XPVMG() new_body_allocated(SVt_PVMG)
1039 #define del_XPVGV(p) del_body(p + bodies_by_type[SVt_PVGV].offset, \
1040 &PL_body_roots[SVt_PVGV])
1044 /* no arena for you! */
1046 #define new_NOARENA(details) \
1047 safemalloc((details)->body_size + (details)->offset)
1048 #define new_NOARENAZ(details) \
1049 safecalloc((details)->body_size + (details)->offset, 1)
1052 Perl_more_bodies (pTHX_ const svtype sv_type, const size_t body_size,
1053 const size_t arena_size)
1055 void ** const root = &PL_body_roots[sv_type];
1056 struct arena_desc *adesc;
1057 struct arena_set *aroot = (struct arena_set *) PL_body_arenas;
1061 const size_t good_arena_size = Perl_malloc_good_size(arena_size);
1062 #if defined(DEBUGGING) && defined(PERL_GLOBAL_STRUCT)
1065 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1066 static bool done_sanity_check;
1068 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1069 * variables like done_sanity_check. */
1070 if (!done_sanity_check) {
1071 unsigned int i = SVt_LAST;
1073 done_sanity_check = TRUE;
1076 assert (bodies_by_type[i].type == i);
1082 /* may need new arena-set to hold new arena */
1083 if (!aroot || aroot->curr >= aroot->set_size) {
1084 struct arena_set *newroot;
1085 Newxz(newroot, 1, struct arena_set);
1086 newroot->set_size = ARENAS_PER_SET;
1087 newroot->next = aroot;
1089 PL_body_arenas = (void *) newroot;
1090 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
1093 /* ok, now have arena-set with at least 1 empty/available arena-desc */
1094 curr = aroot->curr++;
1095 adesc = &(aroot->set[curr]);
1096 assert(!adesc->arena);
1098 Newx(adesc->arena, good_arena_size, char);
1099 adesc->size = good_arena_size;
1100 adesc->utype = sv_type;
1101 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %"UVuf"\n",
1102 curr, (void*)adesc->arena, (UV)good_arena_size));
1104 start = (char *) adesc->arena;
1106 /* Get the address of the byte after the end of the last body we can fit.
1107 Remember, this is integer division: */
1108 end = start + good_arena_size / body_size * body_size;
1110 /* computed count doesn't reflect the 1st slot reservation */
1111 #if defined(MYMALLOC) || defined(HAS_MALLOC_GOOD_SIZE)
1112 DEBUG_m(PerlIO_printf(Perl_debug_log,
1113 "arena %p end %p arena-size %d (from %d) type %d "
1115 (void*)start, (void*)end, (int)good_arena_size,
1116 (int)arena_size, sv_type, (int)body_size,
1117 (int)good_arena_size / (int)body_size));
1119 DEBUG_m(PerlIO_printf(Perl_debug_log,
1120 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1121 (void*)start, (void*)end,
1122 (int)arena_size, sv_type, (int)body_size,
1123 (int)good_arena_size / (int)body_size));
1125 *root = (void *)start;
1128 /* Where the next body would start: */
1129 char * const next = start + body_size;
1132 /* This is the last body: */
1133 assert(next == end);
1135 *(void **)start = 0;
1139 *(void**) start = (void *)next;
1144 /* grab a new thing from the free list, allocating more if necessary.
1145 The inline version is used for speed in hot routines, and the
1146 function using it serves the rest (unless PURIFY).
1148 #define new_body_inline(xpv, sv_type) \
1150 void ** const r3wt = &PL_body_roots[sv_type]; \
1151 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1152 ? *((void **)(r3wt)) : Perl_more_bodies(aTHX_ sv_type, \
1153 bodies_by_type[sv_type].body_size,\
1154 bodies_by_type[sv_type].arena_size)); \
1155 *(r3wt) = *(void**)(xpv); \
1161 S_new_body(pTHX_ const svtype sv_type)
1164 new_body_inline(xpv, sv_type);
1170 static const struct body_details fake_rv =
1171 { 0, 0, 0, SVt_IV, FALSE, NONV, NOARENA, 0 };
1174 =for apidoc sv_upgrade
1176 Upgrade an SV to a more complex form. Generally adds a new body type to the
1177 SV, then copies across as much information as possible from the old body.
1178 It croaks if the SV is already in a more complex form than requested. You
1179 generally want to use the C<SvUPGRADE> macro wrapper, which checks the type
1180 before calling C<sv_upgrade>, and hence does not croak. See also
1187 Perl_sv_upgrade(pTHX_ SV *const sv, svtype new_type)
1191 const svtype old_type = SvTYPE(sv);
1192 const struct body_details *new_type_details;
1193 const struct body_details *old_type_details
1194 = bodies_by_type + old_type;
1195 SV *referant = NULL;
1197 PERL_ARGS_ASSERT_SV_UPGRADE;
1199 if (old_type == new_type)
1202 /* This clause was purposefully added ahead of the early return above to
1203 the shared string hackery for (sort {$a <=> $b} keys %hash), with the
1204 inference by Nick I-S that it would fix other troublesome cases. See
1205 changes 7162, 7163 (f130fd4589cf5fbb24149cd4db4137c8326f49c1 and parent)
1207 Given that shared hash key scalars are no longer PVIV, but PV, there is
1208 no longer need to unshare so as to free up the IVX slot for its proper
1209 purpose. So it's safe to move the early return earlier. */
1211 if (new_type > SVt_PVMG && SvIsCOW(sv)) {
1212 sv_force_normal_flags(sv, 0);
1215 old_body = SvANY(sv);
1217 /* Copying structures onto other structures that have been neatly zeroed
1218 has a subtle gotcha. Consider XPVMG
1220 +------+------+------+------+------+-------+-------+
1221 | NV | CUR | LEN | IV | MAGIC | STASH |
1222 +------+------+------+------+------+-------+-------+
1223 0 4 8 12 16 20 24 28
1225 where NVs are aligned to 8 bytes, so that sizeof that structure is
1226 actually 32 bytes long, with 4 bytes of padding at the end:
1228 +------+------+------+------+------+-------+-------+------+
1229 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1230 +------+------+------+------+------+-------+-------+------+
1231 0 4 8 12 16 20 24 28 32
1233 so what happens if you allocate memory for this structure:
1235 +------+------+------+------+------+-------+-------+------+------+...
1236 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1237 +------+------+------+------+------+-------+-------+------+------+...
1238 0 4 8 12 16 20 24 28 32 36
1240 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1241 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1242 started out as zero once, but it's quite possible that it isn't. So now,
1243 rather than a nicely zeroed GP, you have it pointing somewhere random.
1246 (In fact, GP ends up pointing at a previous GP structure, because the
1247 principle cause of the padding in XPVMG getting garbage is a copy of
1248 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1249 this happens to be moot because XPVGV has been re-ordered, with GP
1250 no longer after STASH)
1252 So we are careful and work out the size of used parts of all the
1260 referant = SvRV(sv);
1261 old_type_details = &fake_rv;
1262 if (new_type == SVt_NV)
1263 new_type = SVt_PVNV;
1265 if (new_type < SVt_PVIV) {
1266 new_type = (new_type == SVt_NV)
1267 ? SVt_PVNV : SVt_PVIV;
1272 if (new_type < SVt_PVNV) {
1273 new_type = SVt_PVNV;
1277 assert(new_type > SVt_PV);
1278 assert(SVt_IV < SVt_PV);
1279 assert(SVt_NV < SVt_PV);
1286 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1287 there's no way that it can be safely upgraded, because perl.c
1288 expects to Safefree(SvANY(PL_mess_sv)) */
1289 assert(sv != PL_mess_sv);
1290 /* This flag bit is used to mean other things in other scalar types.
1291 Given that it only has meaning inside the pad, it shouldn't be set
1292 on anything that can get upgraded. */
1293 assert(!SvPAD_TYPED(sv));
1296 if (UNLIKELY(old_type_details->cant_upgrade))
1297 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1298 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1301 if (UNLIKELY(old_type > new_type))
1302 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1303 (int)old_type, (int)new_type);
1305 new_type_details = bodies_by_type + new_type;
1307 SvFLAGS(sv) &= ~SVTYPEMASK;
1308 SvFLAGS(sv) |= new_type;
1310 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1311 the return statements above will have triggered. */
1312 assert (new_type != SVt_NULL);
1315 assert(old_type == SVt_NULL);
1316 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1320 assert(old_type == SVt_NULL);
1321 SvANY(sv) = new_XNV();
1326 assert(new_type_details->body_size);
1329 assert(new_type_details->arena);
1330 assert(new_type_details->arena_size);
1331 /* This points to the start of the allocated area. */
1332 new_body_inline(new_body, new_type);
1333 Zero(new_body, new_type_details->body_size, char);
1334 new_body = ((char *)new_body) - new_type_details->offset;
1336 /* We always allocated the full length item with PURIFY. To do this
1337 we fake things so that arena is false for all 16 types.. */
1338 new_body = new_NOARENAZ(new_type_details);
1340 SvANY(sv) = new_body;
1341 if (new_type == SVt_PVAV) {
1345 if (old_type_details->body_size) {
1348 /* It will have been zeroed when the new body was allocated.
1349 Lets not write to it, in case it confuses a write-back
1355 #ifndef NODEFAULT_SHAREKEYS
1356 HvSHAREKEYS_on(sv); /* key-sharing on by default */
1358 /* start with PERL_HASH_DEFAULT_HvMAX+1 buckets: */
1359 HvMAX(sv) = PERL_HASH_DEFAULT_HvMAX;
1362 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1363 The target created by newSVrv also is, and it can have magic.
1364 However, it never has SvPVX set.
1366 if (old_type == SVt_IV) {
1368 } else if (old_type >= SVt_PV) {
1369 assert(SvPVX_const(sv) == 0);
1372 if (old_type >= SVt_PVMG) {
1373 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1374 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1376 sv->sv_u.svu_array = NULL; /* or svu_hash */
1381 /* XXX Is this still needed? Was it ever needed? Surely as there is
1382 no route from NV to PVIV, NOK can never be true */
1383 assert(!SvNOKp(sv));
1396 assert(new_type_details->body_size);
1397 /* We always allocated the full length item with PURIFY. To do this
1398 we fake things so that arena is false for all 16 types.. */
1399 if(new_type_details->arena) {
1400 /* This points to the start of the allocated area. */
1401 new_body_inline(new_body, new_type);
1402 Zero(new_body, new_type_details->body_size, char);
1403 new_body = ((char *)new_body) - new_type_details->offset;
1405 new_body = new_NOARENAZ(new_type_details);
1407 SvANY(sv) = new_body;
1409 if (old_type_details->copy) {
1410 /* There is now the potential for an upgrade from something without
1411 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1412 int offset = old_type_details->offset;
1413 int length = old_type_details->copy;
1415 if (new_type_details->offset > old_type_details->offset) {
1416 const int difference
1417 = new_type_details->offset - old_type_details->offset;
1418 offset += difference;
1419 length -= difference;
1421 assert (length >= 0);
1423 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1427 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1428 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1429 * correct 0.0 for us. Otherwise, if the old body didn't have an
1430 * NV slot, but the new one does, then we need to initialise the
1431 * freshly created NV slot with whatever the correct bit pattern is
1433 if (old_type_details->zero_nv && !new_type_details->zero_nv
1434 && !isGV_with_GP(sv))
1438 if (UNLIKELY(new_type == SVt_PVIO)) {
1439 IO * const io = MUTABLE_IO(sv);
1440 GV *iogv = gv_fetchpvs("IO::File::", GV_ADD, SVt_PVHV);
1443 /* Clear the stashcache because a new IO could overrule a package
1445 DEBUG_o(Perl_deb(aTHX_ "sv_upgrade clearing PL_stashcache\n"));
1446 hv_clear(PL_stashcache);
1448 SvSTASH_set(io, MUTABLE_HV(SvREFCNT_inc(GvHV(iogv))));
1449 IoPAGE_LEN(sv) = 60;
1451 if (UNLIKELY(new_type == SVt_REGEXP))
1452 sv->sv_u.svu_rx = (regexp *)new_body;
1453 else if (old_type < SVt_PV) {
1454 /* referant will be NULL unless the old type was SVt_IV emulating
1456 sv->sv_u.svu_rv = referant;
1460 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1461 (unsigned long)new_type);
1464 if (old_type > SVt_IV) {
1468 /* Note that there is an assumption that all bodies of types that
1469 can be upgraded came from arenas. Only the more complex non-
1470 upgradable types are allowed to be directly malloc()ed. */
1471 assert(old_type_details->arena);
1472 del_body((void*)((char*)old_body + old_type_details->offset),
1473 &PL_body_roots[old_type]);
1479 =for apidoc sv_backoff
1481 Remove any string offset. You should normally use the C<SvOOK_off> macro
1488 Perl_sv_backoff(SV *const sv)
1491 const char * const s = SvPVX_const(sv);
1493 PERL_ARGS_ASSERT_SV_BACKOFF;
1496 assert(SvTYPE(sv) != SVt_PVHV);
1497 assert(SvTYPE(sv) != SVt_PVAV);
1499 SvOOK_offset(sv, delta);
1501 SvLEN_set(sv, SvLEN(sv) + delta);
1502 SvPV_set(sv, SvPVX(sv) - delta);
1503 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1504 SvFLAGS(sv) &= ~SVf_OOK;
1511 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1512 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1513 Use the C<SvGROW> wrapper instead.
1518 static void S_sv_uncow(pTHX_ SV * const sv, const U32 flags);
1521 Perl_sv_grow(pTHX_ SV *const sv, STRLEN newlen)
1525 PERL_ARGS_ASSERT_SV_GROW;
1529 if (SvTYPE(sv) < SVt_PV) {
1530 sv_upgrade(sv, SVt_PV);
1531 s = SvPVX_mutable(sv);
1533 else if (SvOOK(sv)) { /* pv is offset? */
1535 s = SvPVX_mutable(sv);
1536 if (newlen > SvLEN(sv))
1537 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1541 if (SvIsCOW(sv)) S_sv_uncow(aTHX_ sv, 0);
1542 s = SvPVX_mutable(sv);
1545 #ifdef PERL_NEW_COPY_ON_WRITE
1546 /* the new COW scheme uses SvPVX(sv)[SvLEN(sv)-1] (if spare)
1547 * to store the COW count. So in general, allocate one more byte than
1548 * asked for, to make it likely this byte is always spare: and thus
1549 * make more strings COW-able.
1550 * If the new size is a big power of two, don't bother: we assume the
1551 * caller wanted a nice 2^N sized block and will be annoyed at getting
1557 #if defined(PERL_USE_MALLOC_SIZE) && defined(Perl_safesysmalloc_size)
1558 #define PERL_UNWARANTED_CHUMMINESS_WITH_MALLOC
1561 if (newlen > SvLEN(sv)) { /* need more room? */
1562 STRLEN minlen = SvCUR(sv);
1563 minlen += (minlen >> PERL_STRLEN_EXPAND_SHIFT) + 10;
1564 if (newlen < minlen)
1566 #ifndef PERL_UNWARANTED_CHUMMINESS_WITH_MALLOC
1568 /* Don't round up on the first allocation, as odds are pretty good that
1569 * the initial request is accurate as to what is really needed */
1571 newlen = PERL_STRLEN_ROUNDUP(newlen);
1574 if (SvLEN(sv) && s) {
1575 s = (char*)saferealloc(s, newlen);
1578 s = (char*)safemalloc(newlen);
1579 if (SvPVX_const(sv) && SvCUR(sv)) {
1580 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1584 #ifdef PERL_UNWARANTED_CHUMMINESS_WITH_MALLOC
1585 /* Do this here, do it once, do it right, and then we will never get
1586 called back into sv_grow() unless there really is some growing
1588 SvLEN_set(sv, Perl_safesysmalloc_size(s));
1590 SvLEN_set(sv, newlen);
1597 =for apidoc sv_setiv
1599 Copies an integer into the given SV, upgrading first if necessary.
1600 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1606 Perl_sv_setiv(pTHX_ SV *const sv, const IV i)
1608 PERL_ARGS_ASSERT_SV_SETIV;
1610 SV_CHECK_THINKFIRST_COW_DROP(sv);
1611 switch (SvTYPE(sv)) {
1614 sv_upgrade(sv, SVt_IV);
1617 sv_upgrade(sv, SVt_PVIV);
1621 if (!isGV_with_GP(sv))
1628 /* diag_listed_as: Can't coerce %s to %s in %s */
1629 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1633 (void)SvIOK_only(sv); /* validate number */
1639 =for apidoc sv_setiv_mg
1641 Like C<sv_setiv>, but also handles 'set' magic.
1647 Perl_sv_setiv_mg(pTHX_ SV *const sv, const IV i)
1649 PERL_ARGS_ASSERT_SV_SETIV_MG;
1656 =for apidoc sv_setuv
1658 Copies an unsigned integer into the given SV, upgrading first if necessary.
1659 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1665 Perl_sv_setuv(pTHX_ SV *const sv, const UV u)
1667 PERL_ARGS_ASSERT_SV_SETUV;
1669 /* With the if statement to ensure that integers are stored as IVs whenever
1671 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1674 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1676 If you wish to remove the following if statement, so that this routine
1677 (and its callers) always return UVs, please benchmark to see what the
1678 effect is. Modern CPUs may be different. Or may not :-)
1680 if (u <= (UV)IV_MAX) {
1681 sv_setiv(sv, (IV)u);
1690 =for apidoc sv_setuv_mg
1692 Like C<sv_setuv>, but also handles 'set' magic.
1698 Perl_sv_setuv_mg(pTHX_ SV *const sv, const UV u)
1700 PERL_ARGS_ASSERT_SV_SETUV_MG;
1707 =for apidoc sv_setnv
1709 Copies a double into the given SV, upgrading first if necessary.
1710 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1716 Perl_sv_setnv(pTHX_ SV *const sv, const NV num)
1718 PERL_ARGS_ASSERT_SV_SETNV;
1720 SV_CHECK_THINKFIRST_COW_DROP(sv);
1721 switch (SvTYPE(sv)) {
1724 sv_upgrade(sv, SVt_NV);
1728 sv_upgrade(sv, SVt_PVNV);
1732 if (!isGV_with_GP(sv))
1739 /* diag_listed_as: Can't coerce %s to %s in %s */
1740 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1745 (void)SvNOK_only(sv); /* validate number */
1750 =for apidoc sv_setnv_mg
1752 Like C<sv_setnv>, but also handles 'set' magic.
1758 Perl_sv_setnv_mg(pTHX_ SV *const sv, const NV num)
1760 PERL_ARGS_ASSERT_SV_SETNV_MG;
1766 /* Return a cleaned-up, printable version of sv, for non-numeric, or
1767 * not incrementable warning display.
1768 * Originally part of S_not_a_number().
1769 * The return value may be != tmpbuf.
1773 S_sv_display(pTHX_ SV *const sv, char *tmpbuf, STRLEN tmpbuf_size) {
1776 PERL_ARGS_ASSERT_SV_DISPLAY;
1779 SV *dsv = newSVpvs_flags("", SVs_TEMP);
1780 pv = sv_uni_display(dsv, sv, 10, UNI_DISPLAY_ISPRINT);
1783 const char * const limit = tmpbuf + tmpbuf_size - 8;
1784 /* each *s can expand to 4 chars + "...\0",
1785 i.e. need room for 8 chars */
1787 const char *s = SvPVX_const(sv);
1788 const char * const end = s + SvCUR(sv);
1789 for ( ; s < end && d < limit; s++ ) {
1791 if (! isASCII(ch) && !isPRINT_LC(ch)) {
1795 /* Map to ASCII "equivalent" of Latin1 */
1796 ch = LATIN1_TO_NATIVE(NATIVE_TO_LATIN1(ch) & 127);
1802 else if (ch == '\r') {
1806 else if (ch == '\f') {
1810 else if (ch == '\\') {
1814 else if (ch == '\0') {
1818 else if (isPRINT_LC(ch))
1837 /* Print an "isn't numeric" warning, using a cleaned-up,
1838 * printable version of the offending string
1842 S_not_a_number(pTHX_ SV *const sv)
1847 PERL_ARGS_ASSERT_NOT_A_NUMBER;
1849 pv = sv_display(sv, tmpbuf, sizeof(tmpbuf));
1852 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1853 /* diag_listed_as: Argument "%s" isn't numeric%s */
1854 "Argument \"%s\" isn't numeric in %s", pv,
1857 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1858 /* diag_listed_as: Argument "%s" isn't numeric%s */
1859 "Argument \"%s\" isn't numeric", pv);
1863 S_not_incrementable(pTHX_ SV *const sv) {
1867 PERL_ARGS_ASSERT_NOT_INCREMENTABLE;
1869 pv = sv_display(sv, tmpbuf, sizeof(tmpbuf));
1871 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1872 "Argument \"%s\" treated as 0 in increment (++)", pv);
1876 =for apidoc looks_like_number
1878 Test if the content of an SV looks like a number (or is a number).
1879 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1880 non-numeric warning), even if your atof() doesn't grok them. Get-magic is
1887 Perl_looks_like_number(pTHX_ SV *const sv)
1892 PERL_ARGS_ASSERT_LOOKS_LIKE_NUMBER;
1894 if (SvPOK(sv) || SvPOKp(sv)) {
1895 sbegin = SvPV_nomg_const(sv, len);
1898 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1899 return grok_number(sbegin, len, NULL);
1903 S_glob_2number(pTHX_ GV * const gv)
1905 PERL_ARGS_ASSERT_GLOB_2NUMBER;
1907 /* We know that all GVs stringify to something that is not-a-number,
1908 so no need to test that. */
1909 if (ckWARN(WARN_NUMERIC))
1911 SV *const buffer = sv_newmortal();
1912 gv_efullname3(buffer, gv, "*");
1913 not_a_number(buffer);
1915 /* We just want something true to return, so that S_sv_2iuv_common
1916 can tail call us and return true. */
1920 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1921 until proven guilty, assume that things are not that bad... */
1926 As 64 bit platforms often have an NV that doesn't preserve all bits of
1927 an IV (an assumption perl has been based on to date) it becomes necessary
1928 to remove the assumption that the NV always carries enough precision to
1929 recreate the IV whenever needed, and that the NV is the canonical form.
1930 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1931 precision as a side effect of conversion (which would lead to insanity
1932 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1933 1) to distinguish between IV/UV/NV slots that have a valid conversion cached
1934 where precision was lost, and IV/UV/NV slots that have a valid conversion
1935 which has lost no precision
1936 2) to ensure that if a numeric conversion to one form is requested that
1937 would lose precision, the precise conversion (or differently
1938 imprecise conversion) is also performed and cached, to prevent
1939 requests for different numeric formats on the same SV causing
1940 lossy conversion chains. (lossless conversion chains are perfectly
1945 SvIOKp is true if the IV slot contains a valid value
1946 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1947 SvNOKp is true if the NV slot contains a valid value
1948 SvNOK is true only if the NV value is accurate
1951 while converting from PV to NV, check to see if converting that NV to an
1952 IV(or UV) would lose accuracy over a direct conversion from PV to
1953 IV(or UV). If it would, cache both conversions, return NV, but mark
1954 SV as IOK NOKp (ie not NOK).
1956 While converting from PV to IV, check to see if converting that IV to an
1957 NV would lose accuracy over a direct conversion from PV to NV. If it
1958 would, cache both conversions, flag similarly.
1960 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1961 correctly because if IV & NV were set NV *always* overruled.
1962 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1963 changes - now IV and NV together means that the two are interchangeable:
1964 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1966 The benefit of this is that operations such as pp_add know that if
1967 SvIOK is true for both left and right operands, then integer addition
1968 can be used instead of floating point (for cases where the result won't
1969 overflow). Before, floating point was always used, which could lead to
1970 loss of precision compared with integer addition.
1972 * making IV and NV equal status should make maths accurate on 64 bit
1974 * may speed up maths somewhat if pp_add and friends start to use
1975 integers when possible instead of fp. (Hopefully the overhead in
1976 looking for SvIOK and checking for overflow will not outweigh the
1977 fp to integer speedup)
1978 * will slow down integer operations (callers of SvIV) on "inaccurate"
1979 values, as the change from SvIOK to SvIOKp will cause a call into
1980 sv_2iv each time rather than a macro access direct to the IV slot
1981 * should speed up number->string conversion on integers as IV is
1982 favoured when IV and NV are equally accurate
1984 ####################################################################
1985 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1986 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1987 On the other hand, SvUOK is true iff UV.
1988 ####################################################################
1990 Your mileage will vary depending your CPU's relative fp to integer
1994 #ifndef NV_PRESERVES_UV
1995 # define IS_NUMBER_UNDERFLOW_IV 1
1996 # define IS_NUMBER_UNDERFLOW_UV 2
1997 # define IS_NUMBER_IV_AND_UV 2
1998 # define IS_NUMBER_OVERFLOW_IV 4
1999 # define IS_NUMBER_OVERFLOW_UV 5
2001 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
2003 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
2005 S_sv_2iuv_non_preserve(pTHX_ SV *const sv
2011 PERL_ARGS_ASSERT_SV_2IUV_NON_PRESERVE;
2012 PERL_UNUSED_CONTEXT;
2014 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
2015 if (SvNVX(sv) < (NV)IV_MIN) {
2016 (void)SvIOKp_on(sv);
2018 SvIV_set(sv, IV_MIN);
2019 return IS_NUMBER_UNDERFLOW_IV;
2021 if (SvNVX(sv) > (NV)UV_MAX) {
2022 (void)SvIOKp_on(sv);
2025 SvUV_set(sv, UV_MAX);
2026 return IS_NUMBER_OVERFLOW_UV;
2028 (void)SvIOKp_on(sv);
2030 /* Can't use strtol etc to convert this string. (See truth table in
2032 if (SvNVX(sv) <= (UV)IV_MAX) {
2033 SvIV_set(sv, I_V(SvNVX(sv)));
2034 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2035 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
2037 /* Integer is imprecise. NOK, IOKp */
2039 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
2042 SvUV_set(sv, U_V(SvNVX(sv)));
2043 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2044 if (SvUVX(sv) == UV_MAX) {
2045 /* As we know that NVs don't preserve UVs, UV_MAX cannot
2046 possibly be preserved by NV. Hence, it must be overflow.
2048 return IS_NUMBER_OVERFLOW_UV;
2050 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
2052 /* Integer is imprecise. NOK, IOKp */
2054 return IS_NUMBER_OVERFLOW_IV;
2056 #endif /* !NV_PRESERVES_UV*/
2059 S_sv_2iuv_common(pTHX_ SV *const sv)
2061 PERL_ARGS_ASSERT_SV_2IUV_COMMON;
2064 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
2065 * without also getting a cached IV/UV from it at the same time
2066 * (ie PV->NV conversion should detect loss of accuracy and cache
2067 * IV or UV at same time to avoid this. */
2068 /* IV-over-UV optimisation - choose to cache IV if possible */
2070 if (SvTYPE(sv) == SVt_NV)
2071 sv_upgrade(sv, SVt_PVNV);
2073 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
2074 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
2075 certainly cast into the IV range at IV_MAX, whereas the correct
2076 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
2078 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
2079 if (Perl_isnan(SvNVX(sv))) {
2085 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2086 SvIV_set(sv, I_V(SvNVX(sv)));
2087 if (SvNVX(sv) == (NV) SvIVX(sv)
2088 #ifndef NV_PRESERVES_UV
2089 && (((UV)1 << NV_PRESERVES_UV_BITS) >
2090 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
2091 /* Don't flag it as "accurately an integer" if the number
2092 came from a (by definition imprecise) NV operation, and
2093 we're outside the range of NV integer precision */
2097 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
2099 /* scalar has trailing garbage, eg "42a" */
2101 DEBUG_c(PerlIO_printf(Perl_debug_log,
2102 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
2108 /* IV not precise. No need to convert from PV, as NV
2109 conversion would already have cached IV if it detected
2110 that PV->IV would be better than PV->NV->IV
2111 flags already correct - don't set public IOK. */
2112 DEBUG_c(PerlIO_printf(Perl_debug_log,
2113 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
2118 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
2119 but the cast (NV)IV_MIN rounds to a the value less (more
2120 negative) than IV_MIN which happens to be equal to SvNVX ??
2121 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
2122 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
2123 (NV)UVX == NVX are both true, but the values differ. :-(
2124 Hopefully for 2s complement IV_MIN is something like
2125 0x8000000000000000 which will be exact. NWC */
2128 SvUV_set(sv, U_V(SvNVX(sv)));
2130 (SvNVX(sv) == (NV) SvUVX(sv))
2131 #ifndef NV_PRESERVES_UV
2132 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
2133 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
2134 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
2135 /* Don't flag it as "accurately an integer" if the number
2136 came from a (by definition imprecise) NV operation, and
2137 we're outside the range of NV integer precision */
2143 DEBUG_c(PerlIO_printf(Perl_debug_log,
2144 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
2150 else if (SvPOKp(sv)) {
2152 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2153 /* We want to avoid a possible problem when we cache an IV/ a UV which
2154 may be later translated to an NV, and the resulting NV is not
2155 the same as the direct translation of the initial string
2156 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
2157 be careful to ensure that the value with the .456 is around if the
2158 NV value is requested in the future).
2160 This means that if we cache such an IV/a UV, we need to cache the
2161 NV as well. Moreover, we trade speed for space, and do not
2162 cache the NV if we are sure it's not needed.
2165 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
2166 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2167 == IS_NUMBER_IN_UV) {
2168 /* It's definitely an integer, only upgrade to PVIV */
2169 if (SvTYPE(sv) < SVt_PVIV)
2170 sv_upgrade(sv, SVt_PVIV);
2172 } else if (SvTYPE(sv) < SVt_PVNV)
2173 sv_upgrade(sv, SVt_PVNV);
2175 /* If NVs preserve UVs then we only use the UV value if we know that
2176 we aren't going to call atof() below. If NVs don't preserve UVs
2177 then the value returned may have more precision than atof() will
2178 return, even though value isn't perfectly accurate. */
2179 if ((numtype & (IS_NUMBER_IN_UV
2180 #ifdef NV_PRESERVES_UV
2183 )) == IS_NUMBER_IN_UV) {
2184 /* This won't turn off the public IOK flag if it was set above */
2185 (void)SvIOKp_on(sv);
2187 if (!(numtype & IS_NUMBER_NEG)) {
2189 if (value <= (UV)IV_MAX) {
2190 SvIV_set(sv, (IV)value);
2192 /* it didn't overflow, and it was positive. */
2193 SvUV_set(sv, value);
2197 /* 2s complement assumption */
2198 if (value <= (UV)IV_MIN) {
2199 SvIV_set(sv, -(IV)value);
2201 /* Too negative for an IV. This is a double upgrade, but
2202 I'm assuming it will be rare. */
2203 if (SvTYPE(sv) < SVt_PVNV)
2204 sv_upgrade(sv, SVt_PVNV);
2208 SvNV_set(sv, -(NV)value);
2209 SvIV_set(sv, IV_MIN);
2213 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2214 will be in the previous block to set the IV slot, and the next
2215 block to set the NV slot. So no else here. */
2217 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2218 != IS_NUMBER_IN_UV) {
2219 /* It wasn't an (integer that doesn't overflow the UV). */
2220 SvNV_set(sv, Atof(SvPVX_const(sv)));
2222 if (! numtype && ckWARN(WARN_NUMERIC))
2225 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" NVgf ")\n",
2226 PTR2UV(sv), SvNVX(sv)));
2228 #ifdef NV_PRESERVES_UV
2229 (void)SvIOKp_on(sv);
2231 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
2232 if (Perl_isnan(SvNVX(sv))) {
2238 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2239 SvIV_set(sv, I_V(SvNVX(sv)));
2240 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2243 NOOP; /* Integer is imprecise. NOK, IOKp */
2245 /* UV will not work better than IV */
2247 if (SvNVX(sv) > (NV)UV_MAX) {
2249 /* Integer is inaccurate. NOK, IOKp, is UV */
2250 SvUV_set(sv, UV_MAX);
2252 SvUV_set(sv, U_V(SvNVX(sv)));
2253 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2254 NV preservse UV so can do correct comparison. */
2255 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2258 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2263 #else /* NV_PRESERVES_UV */
2264 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2265 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2266 /* The IV/UV slot will have been set from value returned by
2267 grok_number above. The NV slot has just been set using
2270 assert (SvIOKp(sv));
2272 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2273 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2274 /* Small enough to preserve all bits. */
2275 (void)SvIOKp_on(sv);
2277 SvIV_set(sv, I_V(SvNVX(sv)));
2278 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2280 /* Assumption: first non-preserved integer is < IV_MAX,
2281 this NV is in the preserved range, therefore: */
2282 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2284 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2288 0 0 already failed to read UV.
2289 0 1 already failed to read UV.
2290 1 0 you won't get here in this case. IV/UV
2291 slot set, public IOK, Atof() unneeded.
2292 1 1 already read UV.
2293 so there's no point in sv_2iuv_non_preserve() attempting
2294 to use atol, strtol, strtoul etc. */
2296 sv_2iuv_non_preserve (sv, numtype);
2298 sv_2iuv_non_preserve (sv);
2302 #endif /* NV_PRESERVES_UV */
2303 /* It might be more code efficient to go through the entire logic above
2304 and conditionally set with SvIOKp_on() rather than SvIOK(), but it
2305 gets complex and potentially buggy, so more programmer efficient
2306 to do it this way, by turning off the public flags: */
2308 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2312 if (isGV_with_GP(sv))
2313 return glob_2number(MUTABLE_GV(sv));
2315 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2317 if (SvTYPE(sv) < SVt_IV)
2318 /* Typically the caller expects that sv_any is not NULL now. */
2319 sv_upgrade(sv, SVt_IV);
2320 /* Return 0 from the caller. */
2327 =for apidoc sv_2iv_flags
2329 Return the integer value of an SV, doing any necessary string
2330 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2331 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2337 Perl_sv_2iv_flags(pTHX_ SV *const sv, const I32 flags)
2339 PERL_ARGS_ASSERT_SV_2IV_FLAGS;
2341 assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV
2342 && SvTYPE(sv) != SVt_PVFM);
2344 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2350 if (flags & SV_SKIP_OVERLOAD)
2352 tmpstr = AMG_CALLunary(sv, numer_amg);
2353 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2354 return SvIV(tmpstr);
2357 return PTR2IV(SvRV(sv));
2360 if (SvVALID(sv) || isREGEXP(sv)) {
2361 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2362 the same flag bit as SVf_IVisUV, so must not let them cache IVs.
2363 In practice they are extremely unlikely to actually get anywhere
2364 accessible by user Perl code - the only way that I'm aware of is when
2365 a constant subroutine which is used as the second argument to index.
2367 Regexps have no SvIVX and SvNVX fields.
2369 assert(isREGEXP(sv) || SvPOKp(sv));
2372 const char * const ptr =
2373 isREGEXP(sv) ? RX_WRAPPED((REGEXP*)sv) : SvPVX_const(sv);
2375 = grok_number(ptr, SvCUR(sv), &value);
2377 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2378 == IS_NUMBER_IN_UV) {
2379 /* It's definitely an integer */
2380 if (numtype & IS_NUMBER_NEG) {
2381 if (value < (UV)IV_MIN)
2384 if (value < (UV)IV_MAX)
2389 /* Quite wrong but no good choices. */
2390 if ((numtype & IS_NUMBER_INFINITY)) {
2391 return (numtype & IS_NUMBER_NEG) ? IV_MIN : IV_MAX;
2392 } else if ((numtype & IS_NUMBER_NAN)) {
2393 return 0; /* So wrong. */
2397 if (ckWARN(WARN_NUMERIC))
2400 return I_V(Atof(ptr));
2404 if (SvTHINKFIRST(sv)) {
2405 #ifdef PERL_OLD_COPY_ON_WRITE
2407 sv_force_normal_flags(sv, 0);
2410 if (SvREADONLY(sv) && !SvOK(sv)) {
2411 if (ckWARN(WARN_UNINITIALIZED))
2418 if (S_sv_2iuv_common(aTHX_ sv))
2422 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2423 PTR2UV(sv),SvIVX(sv)));
2424 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2428 =for apidoc sv_2uv_flags
2430 Return the unsigned integer value of an SV, doing any necessary string
2431 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2432 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2438 Perl_sv_2uv_flags(pTHX_ SV *const sv, const I32 flags)
2440 PERL_ARGS_ASSERT_SV_2UV_FLAGS;
2442 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2448 if (flags & SV_SKIP_OVERLOAD)
2450 tmpstr = AMG_CALLunary(sv, numer_amg);
2451 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2452 return SvUV(tmpstr);
2455 return PTR2UV(SvRV(sv));
2458 if (SvVALID(sv) || isREGEXP(sv)) {
2459 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2460 the same flag bit as SVf_IVisUV, so must not let them cache IVs.
2461 Regexps have no SvIVX and SvNVX fields. */
2462 assert(isREGEXP(sv) || SvPOKp(sv));
2465 const char * const ptr =
2466 isREGEXP(sv) ? RX_WRAPPED((REGEXP*)sv) : SvPVX_const(sv);
2468 = grok_number(ptr, SvCUR(sv), &value);
2470 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2471 == IS_NUMBER_IN_UV) {
2472 /* It's definitely an integer */
2473 if (!(numtype & IS_NUMBER_NEG))
2477 /* Quite wrong but no good choices. */
2478 if ((numtype & IS_NUMBER_INFINITY)) {
2479 return UV_MAX; /* So wrong. */
2480 } else if ((numtype & IS_NUMBER_NAN)) {
2481 return 0; /* So wrong. */
2485 if (ckWARN(WARN_NUMERIC))
2488 return U_V(Atof(ptr));
2492 if (SvTHINKFIRST(sv)) {
2493 #ifdef PERL_OLD_COPY_ON_WRITE
2495 sv_force_normal_flags(sv, 0);
2498 if (SvREADONLY(sv) && !SvOK(sv)) {
2499 if (ckWARN(WARN_UNINITIALIZED))
2506 if (S_sv_2iuv_common(aTHX_ sv))
2510 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2511 PTR2UV(sv),SvUVX(sv)));
2512 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2516 =for apidoc sv_2nv_flags
2518 Return the num value of an SV, doing any necessary string or integer
2519 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2520 Normally used via the C<SvNV(sv)> and C<SvNVx(sv)> macros.
2526 Perl_sv_2nv_flags(pTHX_ SV *const sv, const I32 flags)
2528 PERL_ARGS_ASSERT_SV_2NV_FLAGS;
2530 assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV
2531 && SvTYPE(sv) != SVt_PVFM);
2532 if (SvGMAGICAL(sv) || SvVALID(sv) || isREGEXP(sv)) {
2533 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2534 the same flag bit as SVf_IVisUV, so must not let them cache NVs.
2535 Regexps have no SvIVX and SvNVX fields. */
2537 if (flags & SV_GMAGIC)
2541 if (SvPOKp(sv) && !SvIOKp(sv)) {
2542 ptr = SvPVX_const(sv);
2544 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2545 !grok_number(ptr, SvCUR(sv), NULL))
2551 return (NV)SvUVX(sv);
2553 return (NV)SvIVX(sv);
2559 ptr = RX_WRAPPED((REGEXP *)sv);
2562 assert(SvTYPE(sv) >= SVt_PVMG);
2563 /* This falls through to the report_uninit near the end of the
2565 } else if (SvTHINKFIRST(sv)) {
2570 if (flags & SV_SKIP_OVERLOAD)
2572 tmpstr = AMG_CALLunary(sv, numer_amg);
2573 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2574 return SvNV(tmpstr);
2577 return PTR2NV(SvRV(sv));
2579 #ifdef PERL_OLD_COPY_ON_WRITE
2581 sv_force_normal_flags(sv, 0);
2584 if (SvREADONLY(sv) && !SvOK(sv)) {
2585 if (ckWARN(WARN_UNINITIALIZED))
2590 if (SvTYPE(sv) < SVt_NV) {
2591 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2592 sv_upgrade(sv, SVt_NV);
2594 STORE_NUMERIC_LOCAL_SET_STANDARD();
2595 PerlIO_printf(Perl_debug_log,
2596 "0x%"UVxf" num(%" NVgf ")\n",
2597 PTR2UV(sv), SvNVX(sv));
2598 RESTORE_NUMERIC_LOCAL();
2601 else if (SvTYPE(sv) < SVt_PVNV)
2602 sv_upgrade(sv, SVt_PVNV);
2607 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2608 #ifdef NV_PRESERVES_UV
2614 /* Only set the public NV OK flag if this NV preserves the IV */
2615 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2617 SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2618 : (SvIVX(sv) == I_V(SvNVX(sv))))
2624 else if (SvPOKp(sv)) {
2626 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2627 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2629 #ifdef NV_PRESERVES_UV
2630 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2631 == IS_NUMBER_IN_UV) {
2632 /* It's definitely an integer */
2633 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2635 if ((numtype & IS_NUMBER_INFINITY)) {
2636 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -NV_INF : NV_INF);
2637 } else if ((numtype & IS_NUMBER_NAN)) {
2638 SvNV_set(sv, NV_NAN);
2640 SvNV_set(sv, Atof(SvPVX_const(sv)));
2647 SvNV_set(sv, Atof(SvPVX_const(sv)));
2648 /* Only set the public NV OK flag if this NV preserves the value in
2649 the PV at least as well as an IV/UV would.
2650 Not sure how to do this 100% reliably. */
2651 /* if that shift count is out of range then Configure's test is
2652 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2654 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2655 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2656 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2657 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2658 /* Can't use strtol etc to convert this string, so don't try.
2659 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2662 /* value has been set. It may not be precise. */
2663 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2664 /* 2s complement assumption for (UV)IV_MIN */
2665 SvNOK_on(sv); /* Integer is too negative. */
2670 if (numtype & IS_NUMBER_NEG) {
2671 SvIV_set(sv, -(IV)value);
2672 } else if (value <= (UV)IV_MAX) {
2673 SvIV_set(sv, (IV)value);
2675 SvUV_set(sv, value);
2679 if (numtype & IS_NUMBER_NOT_INT) {
2680 /* I believe that even if the original PV had decimals,
2681 they are lost beyond the limit of the FP precision.
2682 However, neither is canonical, so both only get p
2683 flags. NWC, 2000/11/25 */
2684 /* Both already have p flags, so do nothing */
2686 const NV nv = SvNVX(sv);
2687 /* XXX should this spot have NAN_COMPARE_BROKEN, too? */
2688 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2689 if (SvIVX(sv) == I_V(nv)) {
2692 /* It had no "." so it must be integer. */
2696 /* between IV_MAX and NV(UV_MAX).
2697 Could be slightly > UV_MAX */
2699 if (numtype & IS_NUMBER_NOT_INT) {
2700 /* UV and NV both imprecise. */
2702 const UV nv_as_uv = U_V(nv);
2704 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2713 /* It might be more code efficient to go through the entire logic above
2714 and conditionally set with SvNOKp_on() rather than SvNOK(), but it
2715 gets complex and potentially buggy, so more programmer efficient
2716 to do it this way, by turning off the public flags: */
2718 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2719 #endif /* NV_PRESERVES_UV */
2722 if (isGV_with_GP(sv)) {
2723 glob_2number(MUTABLE_GV(sv));
2727 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2729 assert (SvTYPE(sv) >= SVt_NV);
2730 /* Typically the caller expects that sv_any is not NULL now. */
2731 /* XXX Ilya implies that this is a bug in callers that assume this
2732 and ideally should be fixed. */
2736 STORE_NUMERIC_LOCAL_SET_STANDARD();
2737 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" NVgf ")\n",
2738 PTR2UV(sv), SvNVX(sv));
2739 RESTORE_NUMERIC_LOCAL();
2747 Return an SV with the numeric value of the source SV, doing any necessary
2748 reference or overload conversion. You must use the C<SvNUM(sv)> macro to
2749 access this function.
2755 Perl_sv_2num(pTHX_ SV *const sv)
2757 PERL_ARGS_ASSERT_SV_2NUM;
2762 SV * const tmpsv = AMG_CALLunary(sv, numer_amg);
2763 TAINT_IF(tmpsv && SvTAINTED(tmpsv));
2764 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2765 return sv_2num(tmpsv);
2767 return sv_2mortal(newSVuv(PTR2UV(SvRV(sv))));
2770 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2771 * UV as a string towards the end of buf, and return pointers to start and
2774 * We assume that buf is at least TYPE_CHARS(UV) long.
2778 S_uiv_2buf(char *const buf, const IV iv, UV uv, const int is_uv, char **const peob)
2780 char *ptr = buf + TYPE_CHARS(UV);
2781 char * const ebuf = ptr;
2784 PERL_ARGS_ASSERT_UIV_2BUF;
2796 *--ptr = '0' + (char)(uv % 10);
2804 /* Helper for sv_2pv_flags and sv_vcatpvfn_flags. If the NV is an
2805 * infinity or a not-a-number, writes the appropriate strings to the
2806 * buffer, including a zero byte. On success returns the written length,
2807 * excluding the zero byte, on failure (not an infinity, not a nan, or the
2808 * maxlen too small) returns zero. */
2810 S_infnan_2pv(NV nv, char* buffer, size_t maxlen) {
2811 /* XXX this should be an assert */
2812 if (maxlen < 4) /* "Inf\0", "NaN\0" */
2816 /* isnan must be first due to NAN_COMPARE_BROKEN builds, since NAN might
2817 use the broken for NAN >/< ops in the inf check, and then the inf
2818 check returns true for NAN on NAN_COMPARE_BROKEN compilers */
2819 if (Perl_isnan(nv)) {
2823 /* XXX optionally output the payload mantissa bits as
2824 * "(unsigned)" (to match the nan("...") C99 function,
2825 * or maybe as "(0xhhh...)" would make more sense...
2826 * provide a format string so that the user can decide?
2827 * NOTE: would affect the maxlen and assert() logic.*/
2829 else if (Perl_isinf(nv)) {
2831 if (maxlen < 5) /* "-Inf\0" */
2842 assert((s == buffer + 3) || (s == buffer + 4));
2844 return s - buffer - 1; /* -1: excluding the zero byte */
2849 =for apidoc sv_2pv_flags
2851 Returns a pointer to the string value of an SV, and sets *lp to its length.
2852 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a
2853 string if necessary. Normally invoked via the C<SvPV_flags> macro.
2854 C<sv_2pv()> and C<sv_2pv_nomg> usually end up here too.
2860 Perl_sv_2pv_flags(pTHX_ SV *const sv, STRLEN *const lp, const I32 flags)
2864 PERL_ARGS_ASSERT_SV_2PV_FLAGS;
2866 assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV
2867 && SvTYPE(sv) != SVt_PVFM);
2868 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2873 if (flags & SV_SKIP_OVERLOAD)
2875 tmpstr = AMG_CALLunary(sv, string_amg);
2876 TAINT_IF(tmpstr && SvTAINTED(tmpstr));
2877 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2879 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2883 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2884 if (flags & SV_CONST_RETURN) {
2885 pv = (char *) SvPVX_const(tmpstr);
2887 pv = (flags & SV_MUTABLE_RETURN)
2888 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2891 *lp = SvCUR(tmpstr);
2893 pv = sv_2pv_flags(tmpstr, lp, flags);
2906 SV *const referent = SvRV(sv);
2910 retval = buffer = savepvn("NULLREF", len);
2911 } else if (SvTYPE(referent) == SVt_REGEXP &&
2912 (!(PL_curcop->cop_hints & HINT_NO_AMAGIC) ||
2913 amagic_is_enabled(string_amg))) {
2914 REGEXP * const re = (REGEXP *)MUTABLE_PTR(referent);
2918 /* If the regex is UTF-8 we want the containing scalar to
2919 have an UTF-8 flag too */
2926 *lp = RX_WRAPLEN(re);
2928 return RX_WRAPPED(re);
2930 const char *const typestr = sv_reftype(referent, 0);
2931 const STRLEN typelen = strlen(typestr);
2932 UV addr = PTR2UV(referent);
2933 const char *stashname = NULL;
2934 STRLEN stashnamelen = 0; /* hush, gcc */
2935 const char *buffer_end;
2937 if (SvOBJECT(referent)) {
2938 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2941 stashname = HEK_KEY(name);
2942 stashnamelen = HEK_LEN(name);
2944 if (HEK_UTF8(name)) {
2950 stashname = "__ANON__";
2953 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2954 + 2 * sizeof(UV) + 2 /* )\0 */;
2956 len = typelen + 3 /* (0x */
2957 + 2 * sizeof(UV) + 2 /* )\0 */;
2960 Newx(buffer, len, char);
2961 buffer_end = retval = buffer + len;
2963 /* Working backwards */
2967 *--retval = PL_hexdigit[addr & 15];
2968 } while (addr >>= 4);
2974 memcpy(retval, typestr, typelen);
2978 retval -= stashnamelen;
2979 memcpy(retval, stashname, stashnamelen);
2981 /* retval may not necessarily have reached the start of the
2983 assert (retval >= buffer);
2985 len = buffer_end - retval - 1; /* -1 for that \0 */
2997 if (flags & SV_MUTABLE_RETURN)
2998 return SvPVX_mutable(sv);
2999 if (flags & SV_CONST_RETURN)
3000 return (char *)SvPVX_const(sv);
3005 /* I'm assuming that if both IV and NV are equally valid then
3006 converting the IV is going to be more efficient */
3007 const U32 isUIOK = SvIsUV(sv);
3008 char buf[TYPE_CHARS(UV)];
3012 if (SvTYPE(sv) < SVt_PVIV)
3013 sv_upgrade(sv, SVt_PVIV);
3014 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
3016 /* inlined from sv_setpvn */
3017 s = SvGROW_mutable(sv, len + 1);
3018 Move(ptr, s, len, char);
3023 else if (SvNOK(sv)) {
3024 if (SvTYPE(sv) < SVt_PVNV)
3025 sv_upgrade(sv, SVt_PVNV);
3026 if (SvNVX(sv) == 0.0
3027 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
3028 && !Perl_isnan(SvNVX(sv))
3031 s = SvGROW_mutable(sv, 2);
3035 /* The +20 is pure guesswork. Configure test needed. --jhi */
3036 STRLEN size = NV_DIG + 20;
3038 s = SvGROW_mutable(sv, size);
3040 len = S_infnan_2pv(SvNVX(sv), s, size);
3045 /* some Xenix systems wipe out errno here */
3047 #ifndef USE_LOCALE_NUMERIC
3048 PERL_UNUSED_RESULT(Gconvert(SvNVX(sv), NV_DIG, 0, s));
3052 DECLARE_STORE_LC_NUMERIC_SET_TO_NEEDED();
3053 PERL_UNUSED_RESULT(Gconvert(SvNVX(sv), NV_DIG, 0, s));
3055 /* If the radix character is UTF-8, and actually is in the
3056 * output, turn on the UTF-8 flag for the scalar */
3057 if (PL_numeric_local
3058 && PL_numeric_radix_sv && SvUTF8(PL_numeric_radix_sv)
3059 && instr(s, SvPVX_const(PL_numeric_radix_sv)))
3063 RESTORE_LC_NUMERIC();
3066 /* We don't call SvPOK_on(), because it may come to
3067 * pass that the locale changes so that the
3068 * stringification we just did is no longer correct. We
3069 * will have to re-stringify every time it is needed */
3076 else if (isGV_with_GP(sv)) {
3077 GV *const gv = MUTABLE_GV(sv);
3078 SV *const buffer = sv_newmortal();
3080 gv_efullname3(buffer, gv, "*");
3082 assert(SvPOK(buffer));
3086 *lp = SvCUR(buffer);
3087 return SvPVX(buffer);
3089 else if (isREGEXP(sv)) {
3090 if (lp) *lp = RX_WRAPLEN((REGEXP *)sv);
3091 return RX_WRAPPED((REGEXP *)sv);
3096 if (flags & SV_UNDEF_RETURNS_NULL)
3098 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
3100 /* Typically the caller expects that sv_any is not NULL now. */
3101 if (!SvREADONLY(sv) && SvTYPE(sv) < SVt_PV)
3102 sv_upgrade(sv, SVt_PV);
3107 const STRLEN len = s - SvPVX_const(sv);
3112 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
3113 PTR2UV(sv),SvPVX_const(sv)));
3114 if (flags & SV_CONST_RETURN)
3115 return (char *)SvPVX_const(sv);
3116 if (flags & SV_MUTABLE_RETURN)
3117 return SvPVX_mutable(sv);
3122 =for apidoc sv_copypv
3124 Copies a stringified representation of the source SV into the
3125 destination SV. Automatically performs any necessary mg_get and
3126 coercion of numeric values into strings. Guaranteed to preserve
3127 UTF8 flag even from overloaded objects. Similar in nature to
3128 sv_2pv[_flags] but operates directly on an SV instead of just the
3129 string. Mostly uses sv_2pv_flags to do its work, except when that
3130 would lose the UTF-8'ness of the PV.
3132 =for apidoc sv_copypv_nomg
3134 Like sv_copypv, but doesn't invoke get magic first.
3136 =for apidoc sv_copypv_flags
3138 Implementation of sv_copypv and sv_copypv_nomg. Calls get magic iff flags
3145 Perl_sv_copypv(pTHX_ SV *const dsv, SV *const ssv)
3147 PERL_ARGS_ASSERT_SV_COPYPV;
3149 sv_copypv_flags(dsv, ssv, 0);
3153 Perl_sv_copypv_flags(pTHX_ SV *const dsv, SV *const ssv, const I32 flags)
3158 PERL_ARGS_ASSERT_SV_COPYPV_FLAGS;
3160 s = SvPV_flags_const(ssv,len,flags & SV_GMAGIC);
3161 sv_setpvn(dsv,s,len);
3169 =for apidoc sv_2pvbyte
3171 Return a pointer to the byte-encoded representation of the SV, and set *lp
3172 to its length. May cause the SV to be downgraded from UTF-8 as a
3175 Usually accessed via the C<SvPVbyte> macro.
3181 Perl_sv_2pvbyte(pTHX_ SV *sv, STRLEN *const lp)
3183 PERL_ARGS_ASSERT_SV_2PVBYTE;
3186 if (((SvREADONLY(sv) || SvFAKE(sv)) && !SvIsCOW(sv))
3187 || isGV_with_GP(sv) || SvROK(sv)) {
3188 SV *sv2 = sv_newmortal();
3189 sv_copypv_nomg(sv2,sv);
3192 sv_utf8_downgrade(sv,0);
3193 return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv);
3197 =for apidoc sv_2pvutf8
3199 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
3200 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
3202 Usually accessed via the C<SvPVutf8> macro.
3208 Perl_sv_2pvutf8(pTHX_ SV *sv, STRLEN *const lp)
3210 PERL_ARGS_ASSERT_SV_2PVUTF8;
3212 if (((SvREADONLY(sv) || SvFAKE(sv)) && !SvIsCOW(sv))
3213 || isGV_with_GP(sv) || SvROK(sv))
3214 sv = sv_mortalcopy(sv);
3217 sv_utf8_upgrade_nomg(sv);
3218 return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv);
3223 =for apidoc sv_2bool
3225 This macro is only used by sv_true() or its macro equivalent, and only if
3226 the latter's argument is neither SvPOK, SvIOK nor SvNOK.
3227 It calls sv_2bool_flags with the SV_GMAGIC flag.
3229 =for apidoc sv_2bool_flags
3231 This function is only used by sv_true() and friends, and only if
3232 the latter's argument is neither SvPOK, SvIOK nor SvNOK. If the flags
3233 contain SV_GMAGIC, then it does an mg_get() first.
3240 Perl_sv_2bool_flags(pTHX_ SV *sv, I32 flags)
3242 PERL_ARGS_ASSERT_SV_2BOOL_FLAGS;
3245 if(flags & SV_GMAGIC) SvGETMAGIC(sv);
3251 SV * const tmpsv = AMG_CALLunary(sv, bool__amg);
3252 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv)))) {
3255 if(SvGMAGICAL(sv)) {
3257 goto restart; /* call sv_2bool */
3259 /* expanded SvTRUE_common(sv, (flags = 0, goto restart)) */
3260 else if(!SvOK(sv)) {
3263 else if(SvPOK(sv)) {
3264 svb = SvPVXtrue(sv);
3266 else if((SvFLAGS(sv) & (SVf_IOK|SVf_NOK))) {
3267 svb = (SvIOK(sv) && SvIVX(sv) != 0)
3268 || (SvNOK(sv) && SvNVX(sv) != 0.0);
3272 goto restart; /* call sv_2bool_nomg */
3277 return SvRV(sv) != 0;
3281 RX_WRAPLEN(sv) > 1 || (RX_WRAPLEN(sv) && *RX_WRAPPED(sv) != '0');
3282 return SvTRUE_common(sv, isGV_with_GP(sv) ? 1 : 0);
3286 =for apidoc sv_utf8_upgrade
3288 Converts the PV of an SV to its UTF-8-encoded form.
3289 Forces the SV to string form if it is not already.
3290 Will C<mg_get> on C<sv> if appropriate.
3291 Always sets the SvUTF8 flag to avoid future validity checks even
3292 if the whole string is the same in UTF-8 as not.
3293 Returns the number of bytes in the converted string
3295 This is not a general purpose byte encoding to Unicode interface:
3296 use the Encode extension for that.
3298 =for apidoc sv_utf8_upgrade_nomg
3300 Like sv_utf8_upgrade, but doesn't do magic on C<sv>.
3302 =for apidoc sv_utf8_upgrade_flags
3304 Converts the PV of an SV to its UTF-8-encoded form.
3305 Forces the SV to string form if it is not already.
3306 Always sets the SvUTF8 flag to avoid future validity checks even
3307 if all the bytes are invariant in UTF-8.
3308 If C<flags> has C<SV_GMAGIC> bit set,
3309 will C<mg_get> on C<sv> if appropriate, else not.
3311 If C<flags> has SV_FORCE_UTF8_UPGRADE set, this function assumes that the PV
3312 will expand when converted to UTF-8, and skips the extra work of checking for
3313 that. Typically this flag is used by a routine that has already parsed the
3314 string and found such characters, and passes this information on so that the
3315 work doesn't have to be repeated.
3317 Returns the number of bytes in the converted string.
3319 This is not a general purpose byte encoding to Unicode interface:
3320 use the Encode extension for that.
3322 =for apidoc sv_utf8_upgrade_flags_grow
3324 Like sv_utf8_upgrade_flags, but has an additional parameter C<extra>, which is
3325 the number of unused bytes the string of 'sv' is guaranteed to have free after
3326 it upon return. This allows the caller to reserve extra space that it intends
3327 to fill, to avoid extra grows.
3329 C<sv_utf8_upgrade>, C<sv_utf8_upgrade_nomg>, and C<sv_utf8_upgrade_flags>
3330 are implemented in terms of this function.
3332 Returns the number of bytes in the converted string (not including the spares).
3336 (One might think that the calling routine could pass in the position of the
3337 first variant character when it has set SV_FORCE_UTF8_UPGRADE, so it wouldn't
3338 have to be found again. But that is not the case, because typically when the
3339 caller is likely to use this flag, it won't be calling this routine unless it
3340 finds something that won't fit into a byte. Otherwise it tries to not upgrade
3341 and just use bytes. But some things that do fit into a byte are variants in
3342 utf8, and the caller may not have been keeping track of these.)
3344 If the routine itself changes the string, it adds a trailing C<NUL>. Such a
3345 C<NUL> isn't guaranteed due to having other routines do the work in some input
3346 cases, or if the input is already flagged as being in utf8.
3348 The speed of this could perhaps be improved for many cases if someone wanted to
3349 write a fast function that counts the number of variant characters in a string,
3350 especially if it could return the position of the first one.
3355 Perl_sv_utf8_upgrade_flags_grow(pTHX_ SV *const sv, const I32 flags, STRLEN extra)
3357 PERL_ARGS_ASSERT_SV_UTF8_UPGRADE_FLAGS_GROW;
3359 if (sv == &PL_sv_undef)
3361 if (!SvPOK_nog(sv)) {
3363 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
3364 (void) sv_2pv_flags(sv,&len, flags);
3366 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3370 (void) SvPV_force_flags(sv,len,flags & SV_GMAGIC);
3375 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3380 S_sv_uncow(aTHX_ sv, 0);
3383 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING)) {
3384 sv_recode_to_utf8(sv, PL_encoding);
3385 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3389 if (SvCUR(sv) == 0) {
3390 if (extra) SvGROW(sv, extra);
3391 } else { /* Assume Latin-1/EBCDIC */
3392 /* This function could be much more efficient if we
3393 * had a FLAG in SVs to signal if there are any variant
3394 * chars in the PV. Given that there isn't such a flag
3395 * make the loop as fast as possible (although there are certainly ways
3396 * to speed this up, eg. through vectorization) */
3397 U8 * s = (U8 *) SvPVX_const(sv);
3398 U8 * e = (U8 *) SvEND(sv);
3400 STRLEN two_byte_count = 0;
3402 if (flags & SV_FORCE_UTF8_UPGRADE) goto must_be_utf8;
3404 /* See if really will need to convert to utf8. We mustn't rely on our
3405 * incoming SV being well formed and having a trailing '\0', as certain
3406 * code in pp_formline can send us partially built SVs. */
3410 if (NATIVE_BYTE_IS_INVARIANT(ch)) continue;
3412 t--; /* t already incremented; re-point to first variant */
3417 /* utf8 conversion not needed because all are invariants. Mark as
3418 * UTF-8 even if no variant - saves scanning loop */
3420 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3425 /* Here, the string should be converted to utf8, either because of an
3426 * input flag (two_byte_count = 0), or because a character that
3427 * requires 2 bytes was found (two_byte_count = 1). t points either to
3428 * the beginning of the string (if we didn't examine anything), or to
3429 * the first variant. In either case, everything from s to t - 1 will
3430 * occupy only 1 byte each on output.
3432 * There are two main ways to convert. One is to create a new string
3433 * and go through the input starting from the beginning, appending each
3434 * converted value onto the new string as we go along. It's probably
3435 * best to allocate enough space in the string for the worst possible
3436 * case rather than possibly running out of space and having to
3437 * reallocate and then copy what we've done so far. Since everything
3438 * from s to t - 1 is invariant, the destination can be initialized
3439 * with these using a fast memory copy
3441 * The other way is to figure out exactly how big the string should be
3442 * by parsing the entire input. Then you don't have to make it big
3443 * enough to handle the worst possible case, and more importantly, if
3444 * the string you already have is large enough, you don't have to
3445 * allocate a new string, you can copy the last character in the input
3446 * string to the final position(s) that will be occupied by the
3447 * converted string and go backwards, stopping at t, since everything
3448 * before that is invariant.
3450 * There are advantages and disadvantages to each method.
3452 * In the first method, we can allocate a new string, do the memory
3453 * copy from the s to t - 1, and then proceed through the rest of the
3454 * string byte-by-byte.
3456 * In the second method, we proceed through the rest of the input
3457 * string just calculating how big the converted string will be. Then
3458 * there are two cases:
3459 * 1) if the string has enough extra space to handle the converted
3460 * value. We go backwards through the string, converting until we
3461 * get to the position we are at now, and then stop. If this
3462 * position is far enough along in the string, this method is
3463 * faster than the other method. If the memory copy were the same
3464 * speed as the byte-by-byte loop, that position would be about
3465 * half-way, as at the half-way mark, parsing to the end and back
3466 * is one complete string's parse, the same amount as starting
3467 * over and going all the way through. Actually, it would be
3468 * somewhat less than half-way, as it's faster to just count bytes
3469 * than to also copy, and we don't have the overhead of allocating
3470 * a new string, changing the scalar to use it, and freeing the
3471 * existing one. But if the memory copy is fast, the break-even
3472 * point is somewhere after half way. The counting loop could be
3473 * sped up by vectorization, etc, to move the break-even point
3474 * further towards the beginning.
3475 * 2) if the string doesn't have enough space to handle the converted
3476 * value. A new string will have to be allocated, and one might
3477 * as well, given that, start from the beginning doing the first
3478 * method. We've spent extra time parsing the string and in
3479 * exchange all we've gotten is that we know precisely how big to
3480 * make the new one. Perl is more optimized for time than space,
3481 * so this case is a loser.
3482 * So what I've decided to do is not use the 2nd method unless it is
3483 * guaranteed that a new string won't have to be allocated, assuming
3484 * the worst case. I also decided not to put any more conditions on it
3485 * than this, for now. It seems likely that, since the worst case is
3486 * twice as big as the unknown portion of the string (plus 1), we won't
3487 * be guaranteed enough space, causing us to go to the first method,
3488 * unless the string is short, or the first variant character is near
3489 * the end of it. In either of these cases, it seems best to use the
3490 * 2nd method. The only circumstance I can think of where this would
3491 * be really slower is if the string had once had much more data in it
3492 * than it does now, but there is still a substantial amount in it */
3495 STRLEN invariant_head = t - s;
3496 STRLEN size = invariant_head + (e - t) * 2 + 1 + extra;
3497 if (SvLEN(sv) < size) {
3499 /* Here, have decided to allocate a new string */
3504 Newx(dst, size, U8);
3506 /* If no known invariants at the beginning of the input string,
3507 * set so starts from there. Otherwise, can use memory copy to
3508 * get up to where we are now, and then start from here */
3510 if (invariant_head == 0) {
3513 Copy(s, dst, invariant_head, char);
3514 d = dst + invariant_head;
3518 append_utf8_from_native_byte(*t, &d);
3522 SvPV_free(sv); /* No longer using pre-existing string */
3523 SvPV_set(sv, (char*)dst);
3524 SvCUR_set(sv, d - dst);
3525 SvLEN_set(sv, size);
3528 /* Here, have decided to get the exact size of the string.
3529 * Currently this happens only when we know that there is
3530 * guaranteed enough space to fit the converted string, so
3531 * don't have to worry about growing. If two_byte_count is 0,
3532 * then t points to the first byte of the string which hasn't
3533 * been examined yet. Otherwise two_byte_count is 1, and t
3534 * points to the first byte in the string that will expand to
3535 * two. Depending on this, start examining at t or 1 after t.
3538 U8 *d = t + two_byte_count;
3541 /* Count up the remaining bytes that expand to two */
3544 const U8 chr = *d++;
3545 if (! NATIVE_BYTE_IS_INVARIANT(chr)) two_byte_count++;
3548 /* The string will expand by just the number of bytes that
3549 * occupy two positions. But we are one afterwards because of
3550 * the increment just above. This is the place to put the
3551 * trailing NUL, and to set the length before we decrement */
3553 d += two_byte_count;
3554 SvCUR_set(sv, d - s);
3558 /* Having decremented d, it points to the position to put the
3559 * very last byte of the expanded string. Go backwards through
3560 * the string, copying and expanding as we go, stopping when we
3561 * get to the part that is invariant the rest of the way down */
3565 if (NATIVE_BYTE_IS_INVARIANT(*e)) {
3568 *d-- = UTF8_EIGHT_BIT_LO(*e);
3569 *d-- = UTF8_EIGHT_BIT_HI(*e);
3575 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3576 /* Update pos. We do it at the end rather than during
3577 * the upgrade, to avoid slowing down the common case
3578 * (upgrade without pos).
3579 * pos can be stored as either bytes or characters. Since
3580 * this was previously a byte string we can just turn off
3581 * the bytes flag. */
3582 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3584 mg->mg_flags &= ~MGf_BYTES;
3586 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3587 magic_setutf8(sv,mg); /* clear UTF8 cache */
3592 /* Mark as UTF-8 even if no variant - saves scanning loop */
3598 =for apidoc sv_utf8_downgrade
3600 Attempts to convert the PV of an SV from characters to bytes.
3601 If the PV contains a character that cannot fit
3602 in a byte, this conversion will fail;
3603 in this case, either returns false or, if C<fail_ok> is not
3606 This is not a general purpose Unicode to byte encoding interface:
3607 use the Encode extension for that.
3613 Perl_sv_utf8_downgrade(pTHX_ SV *const sv, const bool fail_ok)
3615 PERL_ARGS_ASSERT_SV_UTF8_DOWNGRADE;
3617 if (SvPOKp(sv) && SvUTF8(sv)) {
3621 int mg_flags = SV_GMAGIC;
3624 S_sv_uncow(aTHX_ sv, 0);
3626 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3628 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3629 if (mg && mg->mg_len > 0 && mg->mg_flags & MGf_BYTES) {
3630 mg->mg_len = sv_pos_b2u_flags(sv, mg->mg_len,
3631 SV_GMAGIC|SV_CONST_RETURN);
3632 mg_flags = 0; /* sv_pos_b2u does get magic */
3634 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3635 magic_setutf8(sv,mg); /* clear UTF8 cache */
3638 s = (U8 *) SvPV_flags(sv, len, mg_flags);
3640 if (!utf8_to_bytes(s, &len)) {
3645 Perl_croak(aTHX_ "Wide character in %s",
3648 Perl_croak(aTHX_ "Wide character");
3659 =for apidoc sv_utf8_encode
3661 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3662 flag off so that it looks like octets again.
3668 Perl_sv_utf8_encode(pTHX_ SV *const sv)
3670 PERL_ARGS_ASSERT_SV_UTF8_ENCODE;
3672 if (SvREADONLY(sv)) {
3673 sv_force_normal_flags(sv, 0);
3675 (void) sv_utf8_upgrade(sv);
3680 =for apidoc sv_utf8_decode
3682 If the PV of the SV is an octet sequence in UTF-8
3683 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3684 so that it looks like a character. If the PV contains only single-byte
3685 characters, the C<SvUTF8> flag stays off.
3686 Scans PV for validity and returns false if the PV is invalid UTF-8.
3692 Perl_sv_utf8_decode(pTHX_ SV *const sv)
3694 PERL_ARGS_ASSERT_SV_UTF8_DECODE;
3697 const U8 *start, *c;
3700 /* The octets may have got themselves encoded - get them back as
3703 if (!sv_utf8_downgrade(sv, TRUE))
3706 /* it is actually just a matter of turning the utf8 flag on, but
3707 * we want to make sure everything inside is valid utf8 first.
3709 c = start = (const U8 *) SvPVX_const(sv);
3710 if (!is_utf8_string(c, SvCUR(sv)))
3712 e = (const U8 *) SvEND(sv);
3715 if (!UTF8_IS_INVARIANT(ch)) {
3720 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3721 /* XXX Is this dead code? XS_utf8_decode calls SvSETMAGIC
3722 after this, clearing pos. Does anything on CPAN
3724 /* adjust pos to the start of a UTF8 char sequence */
3725 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3727 I32 pos = mg->mg_len;
3729 for (c = start + pos; c > start; c--) {
3730 if (UTF8_IS_START(*c))
3733 mg->mg_len = c - start;
3736 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3737 magic_setutf8(sv,mg); /* clear UTF8 cache */
3744 =for apidoc sv_setsv
3746 Copies the contents of the source SV C<ssv> into the destination SV
3747 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3748 function if the source SV needs to be reused. Does not handle 'set' magic on
3749 destination SV. Calls 'get' magic on source SV. Loosely speaking, it
3750 performs a copy-by-value, obliterating any previous content of the
3753 You probably want to use one of the assortment of wrappers, such as
3754 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3755 C<SvSetMagicSV_nosteal>.
3757 =for apidoc sv_setsv_flags
3759 Copies the contents of the source SV C<ssv> into the destination SV
3760 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3761 function if the source SV needs to be reused. Does not handle 'set' magic.
3762 Loosely speaking, it performs a copy-by-value, obliterating any previous
3763 content of the destination.
3764 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3765 C<ssv> if appropriate, else not. If the C<flags>
3766 parameter has the C<SV_NOSTEAL> bit set then the
3767 buffers of temps will not be stolen. <sv_setsv>
3768 and C<sv_setsv_nomg> are implemented in terms of this function.
3770 You probably want to use one of the assortment of wrappers, such as
3771 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3772 C<SvSetMagicSV_nosteal>.
3774 This is the primary function for copying scalars, and most other
3775 copy-ish functions and macros use this underneath.
3781 S_glob_assign_glob(pTHX_ SV *const dstr, SV *const sstr, const int dtype)
3783 I32 mro_changes = 0; /* 1 = method, 2 = isa, 3 = recursive isa */
3784 HV *old_stash = NULL;
3786 PERL_ARGS_ASSERT_GLOB_ASSIGN_GLOB;
3788 if (dtype != SVt_PVGV && !isGV_with_GP(dstr)) {
3789 const char * const name = GvNAME(sstr);
3790 const STRLEN len = GvNAMELEN(sstr);
3792 if (dtype >= SVt_PV) {
3798 SvUPGRADE(dstr, SVt_PVGV);
3799 (void)SvOK_off(dstr);
3800 isGV_with_GP_on(dstr);
3802 GvSTASH(dstr) = GvSTASH(sstr);
3804 Perl_sv_add_backref(aTHX_ MUTABLE_SV(GvSTASH(dstr)), dstr);
3805 gv_name_set(MUTABLE_GV(dstr), name, len,
3806 GV_ADD | (GvNAMEUTF8(sstr) ? SVf_UTF8 : 0 ));
3807 SvFAKE_on(dstr); /* can coerce to non-glob */
3810 if(GvGP(MUTABLE_GV(sstr))) {
3811 /* If source has method cache entry, clear it */
3813 SvREFCNT_dec(GvCV(sstr));
3814 GvCV_set(sstr, NULL);
3817 /* If source has a real method, then a method is
3820 GvCV((const GV *)sstr) && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3826 /* If dest already had a real method, that's a change as well */
3828 !mro_changes && GvGP(MUTABLE_GV(dstr)) && GvCVu((const GV *)dstr)
3829 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3834 /* We don't need to check the name of the destination if it was not a
3835 glob to begin with. */
3836 if(dtype == SVt_PVGV) {
3837 const char * const name = GvNAME((const GV *)dstr);
3840 /* The stash may have been detached from the symbol table, so
3842 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3846 const STRLEN len = GvNAMELEN(dstr);
3847 if ((len > 1 && name[len-2] == ':' && name[len-1] == ':')
3848 || (len == 1 && name[0] == ':')) {
3851 /* Set aside the old stash, so we can reset isa caches on
3853 if((old_stash = GvHV(dstr)))
3854 /* Make sure we do not lose it early. */
3855 SvREFCNT_inc_simple_void_NN(
3856 sv_2mortal((SV *)old_stash)
3861 SvREFCNT_inc_simple_void_NN(sv_2mortal(dstr));
3864 gp_free(MUTABLE_GV(dstr));
3865 GvINTRO_off(dstr); /* one-shot flag */
3866 GvGP_set(dstr, gp_ref(GvGP(sstr)));
3867 if (SvTAINTED(sstr))
3869 if (GvIMPORTED(dstr) != GVf_IMPORTED
3870 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3872 GvIMPORTED_on(dstr);
3875 if(mro_changes == 2) {
3876 if (GvAV((const GV *)sstr)) {
3878 SV * const sref = (SV *)GvAV((const GV *)dstr);
3879 if (SvSMAGICAL(sref) && (mg = mg_find(sref, PERL_MAGIC_isa))) {
3880 if (SvTYPE(mg->mg_obj) != SVt_PVAV) {
3881 AV * const ary = newAV();
3882 av_push(ary, mg->mg_obj); /* takes the refcount */
3883 mg->mg_obj = (SV *)ary;
3885 av_push((AV *)mg->mg_obj, SvREFCNT_inc_simple_NN(dstr));
3887 else sv_magic(sref, dstr, PERL_MAGIC_isa, NULL, 0);
3889 mro_isa_changed_in(GvSTASH(dstr));
3891 else if(mro_changes == 3) {
3892 HV * const stash = GvHV(dstr);
3893 if(old_stash ? (HV *)HvENAME_get(old_stash) : stash)
3899 else if(mro_changes) mro_method_changed_in(GvSTASH(dstr));
3900 if (GvIO(dstr) && dtype == SVt_PVGV) {
3901 DEBUG_o(Perl_deb(aTHX_
3902 "glob_assign_glob clearing PL_stashcache\n"));
3903 /* It's a cache. It will rebuild itself quite happily.
3904 It's a lot of effort to work out exactly which key (or keys)
3905 might be invalidated by the creation of the this file handle.
3907 hv_clear(PL_stashcache);
3913 S_glob_assign_ref(pTHX_ SV *const dstr, SV *const sstr)
3915 SV * const sref = SvRV(sstr);
3917 const int intro = GvINTRO(dstr);
3920 const U32 stype = SvTYPE(sref);
3922 PERL_ARGS_ASSERT_GLOB_ASSIGN_REF;
3925 GvINTRO_off(dstr); /* one-shot flag */
3926 GvLINE(dstr) = CopLINE(PL_curcop);
3927 GvEGV(dstr) = MUTABLE_GV(dstr);
3932 location = (SV **) &(GvGP(dstr)->gp_cv); /* XXX bypassing GvCV_set */
3933 import_flag = GVf_IMPORTED_CV;
3936 location = (SV **) &GvHV(dstr);
3937 import_flag = GVf_IMPORTED_HV;
3940 location = (SV **) &GvAV(dstr);
3941 import_flag = GVf_IMPORTED_AV;
3944 location = (SV **) &GvIOp(dstr);
3947 location = (SV **) &GvFORM(dstr);
3950 location = &GvSV(dstr);
3951 import_flag = GVf_IMPORTED_SV;
3954 if (stype == SVt_PVCV) {
3955 /*if (GvCVGEN(dstr) && (GvCV(dstr) != (const CV *)sref || GvCVGEN(dstr))) {*/
3956 if (GvCVGEN(dstr)) {
3957 SvREFCNT_dec(GvCV(dstr));
3958 GvCV_set(dstr, NULL);
3959 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3962 /* SAVEt_GVSLOT takes more room on the savestack and has more
3963 overhead in leave_scope than SAVEt_GENERIC_SV. But for CVs
3964 leave_scope needs access to the GV so it can reset method
3965 caches. We must use SAVEt_GVSLOT whenever the type is
3966 SVt_PVCV, even if the stash is anonymous, as the stash may
3967 gain a name somehow before leave_scope. */
3968 if (stype == SVt_PVCV) {
3969 /* There is no save_pushptrptrptr. Creating it for this
3970 one call site would be overkill. So inline the ss add
3974 SS_ADD_PTR(location);
3975 SS_ADD_PTR(SvREFCNT_inc(*location));
3976 SS_ADD_UV(SAVEt_GVSLOT);
3979 else SAVEGENERICSV(*location);
3982 if (stype == SVt_PVCV && (*location != sref || GvCVGEN(dstr))) {
3983 CV* const cv = MUTABLE_CV(*location);
3985 if (!GvCVGEN((const GV *)dstr) &&
3986 (CvROOT(cv) || CvXSUB(cv)) &&
3987 /* redundant check that avoids creating the extra SV
3988 most of the time: */
3989 (CvCONST(cv) || ckWARN(WARN_REDEFINE)))
3991 SV * const new_const_sv =
3992 CvCONST((const CV *)sref)
3993 ? cv_const_sv((const CV *)sref)
3995 report_redefined_cv(
3996 sv_2mortal(Perl_newSVpvf(aTHX_
3999 HvNAME_HEK(GvSTASH((const GV *)dstr))
4001 HEKfARG(GvENAME_HEK(MUTABLE_GV(dstr)))
4004 CvCONST((const CV *)sref) ? &new_const_sv : NULL
4008 cv_ckproto_len_flags(cv, (const GV *)dstr,
4009 SvPOK(sref) ? CvPROTO(sref) : NULL,
4010 SvPOK(sref) ? CvPROTOLEN(sref) : 0,
4011 SvPOK(sref) ? SvUTF8(sref) : 0);
4013 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
4014 GvASSUMECV_on(dstr);
4015 if(GvSTASH(dstr)) { /* sub foo { 1 } sub bar { 2 } *bar = \&foo */
4016 if (intro && GvREFCNT(dstr) > 1) {
4017 /* temporary remove extra savestack's ref */
4019 gv_method_changed(dstr);
4022 else gv_method_changed(dstr);
4025 *location = SvREFCNT_inc_simple_NN(sref);
4026 if (import_flag && !(GvFLAGS(dstr) & import_flag)
4027 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
4028 GvFLAGS(dstr) |= import_flag;
4030 if (import_flag == GVf_IMPORTED_SV) {
4033 SS_ADD_PTR(gp_ref(GvGP(dstr)));
4034 SS_ADD_UV(SAVEt_GP_ALIASED_SV
4035 | cBOOL(GvALIASED_SV(dstr)) << 8);
4038 /* Turn off the flag if sref is not referenced elsewhere,
4039 even by weak refs. (SvRMAGICAL is a pessimistic check for
4041 if (SvREFCNT(sref) <= 2 && !SvRMAGICAL(sref))
4042 GvALIASED_SV_off(dstr);
4044 GvALIASED_SV_on(dstr);
4046 if (stype == SVt_PVHV) {
4047 const char * const name = GvNAME((GV*)dstr);
4048 const STRLEN len = GvNAMELEN(dstr);
4051 (len > 1 && name[len-2] == ':' && name[len-1] == ':')
4052 || (len == 1 && name[0] == ':')
4054 && (!dref || HvENAME_get(dref))
4057 (HV *)sref, (HV *)dref,
4063 stype == SVt_PVAV && sref != dref
4064 && strEQ(GvNAME((GV*)dstr), "ISA")
4065 /* The stash may have been detached from the symbol table, so
4066 check its name before doing anything. */
4067 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
4070 MAGIC * const omg = dref && SvSMAGICAL(dref)
4071 ? mg_find(dref, PERL_MAGIC_isa)
4073 if (SvSMAGICAL(sref) && (mg = mg_find(sref, PERL_MAGIC_isa))) {
4074 if (SvTYPE(mg->mg_obj) != SVt_PVAV) {
4075 AV * const ary = newAV();
4076 av_push(ary, mg->mg_obj); /* takes the refcount */
4077 mg->mg_obj = (SV *)ary;
4080 if (SvTYPE(omg->mg_obj) == SVt_PVAV) {
4081 SV **svp = AvARRAY((AV *)omg->mg_obj);
4082 I32 items = AvFILLp((AV *)omg->mg_obj) + 1;
4086 SvREFCNT_inc_simple_NN(*svp++)
4092 SvREFCNT_inc_simple_NN(omg->mg_obj)
4096 av_push((AV *)mg->mg_obj,SvREFCNT_inc_simple_NN(dstr));
4101 sref, omg ? omg->mg_obj : dstr, PERL_MAGIC_isa, NULL, 0
4103 mg = mg_find(sref, PERL_MAGIC_isa);
4105 /* Since the *ISA assignment could have affected more than
4106 one stash, don't call mro_isa_changed_in directly, but let
4107 magic_clearisa do it for us, as it already has the logic for
4108 dealing with globs vs arrays of globs. */
4110 Perl_magic_clearisa(aTHX_ NULL, mg);
4112 else if (stype == SVt_PVIO) {
4113 DEBUG_o(Perl_deb(aTHX_ "glob_assign_ref clearing PL_stashcache\n"));
4114 /* It's a cache. It will rebuild itself quite happily.
4115 It's a lot of effort to work out exactly which key (or keys)
4116 might be invalidated by the creation of the this file handle.
4118 hv_clear(PL_stashcache);
4122 if (!intro) SvREFCNT_dec(dref);
4123 if (SvTAINTED(sstr))
4131 #ifdef PERL_DEBUG_READONLY_COW
4132 # include <sys/mman.h>
4134 # ifndef PERL_MEMORY_DEBUG_HEADER_SIZE
4135 # define PERL_MEMORY_DEBUG_HEADER_SIZE 0
4139 Perl_sv_buf_to_ro(pTHX_ SV *sv)
4141 struct perl_memory_debug_header * const header =
4142 (struct perl_memory_debug_header *)(SvPVX(sv)-PERL_MEMORY_DEBUG_HEADER_SIZE);
4143 const MEM_SIZE len = header->size;
4144 PERL_ARGS_ASSERT_SV_BUF_TO_RO;
4145 # ifdef PERL_TRACK_MEMPOOL
4146 if (!header->readonly) header->readonly = 1;
4148 if (mprotect(header, len, PROT_READ))
4149 Perl_warn(aTHX_ "mprotect RW for COW string %p %lu failed with %d",
4150 header, len, errno);
4154 S_sv_buf_to_rw(pTHX_ SV *sv)
4156 struct perl_memory_debug_header * const header =
4157 (struct perl_memory_debug_header *)(SvPVX(sv)-PERL_MEMORY_DEBUG_HEADER_SIZE);
4158 const MEM_SIZE len = header->size;
4159 PERL_ARGS_ASSERT_SV_BUF_TO_RW;
4160 if (mprotect(header, len, PROT_READ|PROT_WRITE))
4161 Perl_warn(aTHX_ "mprotect for COW string %p %lu failed with %d",
4162 header, len, errno);
4163 # ifdef PERL_TRACK_MEMPOOL
4164 header->readonly = 0;
4169 # define sv_buf_to_ro(sv) NOOP
4170 # define sv_buf_to_rw(sv) NOOP
4174 Perl_sv_setsv_flags(pTHX_ SV *dstr, SV* sstr, const I32 flags)
4180 PERL_ARGS_ASSERT_SV_SETSV_FLAGS;
4185 if (SvIS_FREED(dstr)) {
4186 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
4187 " to a freed scalar %p", SVfARG(sstr), (void *)dstr);
4189 SV_CHECK_THINKFIRST_COW_DROP(dstr);
4191 sstr = &PL_sv_undef;
4192 if (SvIS_FREED(sstr)) {
4193 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
4194 (void*)sstr, (void*)dstr);
4196 stype = SvTYPE(sstr);
4197 dtype = SvTYPE(dstr);
4199 /* There's a lot of redundancy below but we're going for speed here */
4204 if (dtype != SVt_PVGV && dtype != SVt_PVLV) {
4205 (void)SvOK_off(dstr);
4213 sv_upgrade(dstr, SVt_IV);
4217 sv_upgrade(dstr, SVt_PVIV);
4221 goto end_of_first_switch;
4223 (void)SvIOK_only(dstr);
4224 SvIV_set(dstr, SvIVX(sstr));
4227 /* SvTAINTED can only be true if the SV has taint magic, which in
4228 turn means that the SV type is PVMG (or greater). This is the
4229 case statement for SVt_IV, so this cannot be true (whatever gcov
4231 assert(!SvTAINTED(sstr));
4236 if (dtype < SVt_PV && dtype != SVt_IV)
4237 sv_upgrade(dstr, SVt_IV);
4245 sv_upgrade(dstr, SVt_NV);
4249 sv_upgrade(dstr, SVt_PVNV);
4253 goto end_of_first_switch;
4255 SvNV_set(dstr, SvNVX(sstr));
4256 (void)SvNOK_only(dstr);
4257 /* SvTAINTED can only be true if the SV has taint magic, which in
4258 turn means that the SV type is PVMG (or greater). This is the
4259 case statement for SVt_NV, so this cannot be true (whatever gcov
4261 assert(!SvTAINTED(sstr));
4268 sv_upgrade(dstr, SVt_PV);
4271 if (dtype < SVt_PVIV)
4272 sv_upgrade(dstr, SVt_PVIV);
4275 if (dtype < SVt_PVNV)
4276 sv_upgrade(dstr, SVt_PVNV);
4280 const char * const type = sv_reftype(sstr,0);
4282 /* diag_listed_as: Bizarre copy of %s */
4283 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_DESC(PL_op));
4285 Perl_croak(aTHX_ "Bizarre copy of %s", type);
4287 NOT_REACHED; /* NOTREACHED */
4291 if (dtype < SVt_REGEXP)
4293 if (dtype >= SVt_PV) {
4299 sv_upgrade(dstr, SVt_REGEXP);
4307 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
4309 if (SvTYPE(sstr) != stype)
4310 stype = SvTYPE(sstr);
4312 if (isGV_with_GP(sstr) && dtype <= SVt_PVLV) {
4313 glob_assign_glob(dstr, sstr, dtype);
4316 if (stype == SVt_PVLV)
4318 if (isREGEXP(sstr)) goto upgregexp;
4319 SvUPGRADE(dstr, SVt_PVNV);
4322 SvUPGRADE(dstr, (svtype)stype);
4324 end_of_first_switch:
4326 /* dstr may have been upgraded. */
4327 dtype = SvTYPE(dstr);
4328 sflags = SvFLAGS(sstr);
4330 if (dtype == SVt_PVCV) {
4331 /* Assigning to a subroutine sets the prototype. */
4334 const char *const ptr = SvPV_const(sstr, len);
4336 SvGROW(dstr, len + 1);
4337 Copy(ptr, SvPVX(dstr), len + 1, char);
4338 SvCUR_set(dstr, len);
4340 SvFLAGS(dstr) |= sflags & SVf_UTF8;
4341 CvAUTOLOAD_off(dstr);
4346 else if (dtype == SVt_PVAV || dtype == SVt_PVHV || dtype == SVt_PVFM) {
4347 const char * const type = sv_reftype(dstr,0);
4349 /* diag_listed_as: Cannot copy to %s */
4350 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_DESC(PL_op));
4352 Perl_croak(aTHX_ "Cannot copy to %s", type);
4353 } else if (sflags & SVf_ROK) {
4354 if (isGV_with_GP(dstr)
4355 && SvTYPE(SvRV(sstr)) == SVt_PVGV && isGV_with_GP(SvRV(sstr))) {
4358 if (GvIMPORTED(dstr) != GVf_IMPORTED
4359 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
4361 GvIMPORTED_on(dstr);
4366 glob_assign_glob(dstr, sstr, dtype);
4370 if (dtype >= SVt_PV) {
4371 if (isGV_with_GP(dstr)) {
4372 glob_assign_ref(dstr, sstr);
4375 if (SvPVX_const(dstr)) {
4381 (void)SvOK_off(dstr);
4382 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
4383 SvFLAGS(dstr) |= sflags & SVf_ROK;
4384 assert(!(sflags & SVp_NOK));
4385 assert(!(sflags & SVp_IOK));
4386 assert(!(sflags & SVf_NOK));
4387 assert(!(sflags & SVf_IOK));
4389 else if (isGV_with_GP(dstr)) {
4390 if (!(sflags & SVf_OK)) {
4391 Perl_ck_warner(aTHX_ packWARN(WARN_MISC),
4392 "Undefined value assigned to typeglob");
4395 GV *gv = gv_fetchsv_nomg(sstr, GV_ADD, SVt_PVGV);
4396 if (dstr != (const SV *)gv) {
4397 const char * const name = GvNAME((const GV *)dstr);
4398 const STRLEN len = GvNAMELEN(dstr);
4399 HV *old_stash = NULL;
4400 bool reset_isa = FALSE;
4401 if ((len > 1 && name[len-2] == ':' && name[len-1] == ':')
4402 || (len == 1 && name[0] == ':')) {
4403 /* Set aside the old stash, so we can reset isa caches
4404 on its subclasses. */
4405 if((old_stash = GvHV(dstr))) {
4406 /* Make sure we do not lose it early. */
4407 SvREFCNT_inc_simple_void_NN(
4408 sv_2mortal((SV *)old_stash)
4415 SvREFCNT_inc_simple_void_NN(sv_2mortal(dstr));
4416 gp_free(MUTABLE_GV(dstr));
4418 GvGP_set(dstr, gp_ref(GvGP(gv)));
4421 HV * const stash = GvHV(dstr);
4423 old_stash ? (HV *)HvENAME_get(old_stash) : stash
4433 else if ((dtype == SVt_REGEXP || dtype == SVt_PVLV)
4434 && (stype == SVt_REGEXP || isREGEXP(sstr))) {
4435 reg_temp_copy((REGEXP*)dstr, (REGEXP*)sstr);
4437 else if (sflags & SVp_POK) {
4438 const STRLEN cur = SvCUR(sstr);
4439 const STRLEN len = SvLEN(sstr);
4442 * We have three basic ways to copy the string:
4448 * Which we choose is based on various factors. The following
4449 * things are listed in order of speed, fastest to slowest:
4451 * - Copying a short string
4452 * - Copy-on-write bookkeeping
4454 * - Copying a long string
4456 * We swipe the string (steal the string buffer) if the SV on the
4457 * rhs is about to be freed anyway (TEMP and refcnt==1). This is a
4458 * big win on long strings. It should be a win on short strings if
4459 * SvPVX_const(dstr) has to be allocated. If not, it should not
4460 * slow things down, as SvPVX_const(sstr) would have been freed
4463 * We also steal the buffer from a PADTMP (operator target) if it
4464 * is ‘long enough’. For short strings, a swipe does not help
4465 * here, as it causes more malloc calls the next time the target
4466 * is used. Benchmarks show that even if SvPVX_const(dstr) has to
4467 * be allocated it is still not worth swiping PADTMPs for short
4468 * strings, as the savings here are small.
4470 * If the rhs is already flagged as a copy-on-write string and COW
4471 * is possible here, we use copy-on-write and make both SVs share
4472 * the string buffer.
4474 * If the rhs is not flagged as copy-on-write, then we see whether
4475 * it is worth upgrading it to such. If the lhs already has a buf-
4476 * fer big enough and the string is short, we skip it and fall back
4477 * to method 3, since memcpy is faster for short strings than the
4478 * later bookkeeping overhead that copy-on-write entails.
4480 * If there is no buffer on the left, or the buffer is too small,
4481 * then we use copy-on-write.
4484 /* Whichever path we take through the next code, we want this true,
4485 and doing it now facilitates the COW check. */
4486 (void)SvPOK_only(dstr);
4490 /* slated for free anyway (and not COW)? */
4491 (sflags & (SVs_TEMP|SVf_IsCOW)) == SVs_TEMP
4492 /* or a swipable TARG */
4493 || ((sflags & (SVs_PADTMP|SVf_READONLY|SVf_IsCOW))
4495 /* whose buffer is worth stealing */
4496 && CHECK_COWBUF_THRESHOLD(cur,len)
4499 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
4500 (!(flags & SV_NOSTEAL)) &&
4501 /* and we're allowed to steal temps */
4502 SvREFCNT(sstr) == 1 && /* and no other references to it? */
4503 len) /* and really is a string */
4504 { /* Passes the swipe test. */
4505 if (SvPVX_const(dstr)) /* we know that dtype >= SVt_PV */
4507 SvPV_set(dstr, SvPVX_mutable(sstr));
4508 SvLEN_set(dstr, SvLEN(sstr));
4509 SvCUR_set(dstr, SvCUR(sstr));
4512 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
4513 SvPV_set(sstr, NULL);
4518 else if (flags & SV_COW_SHARED_HASH_KEYS
4520 #ifdef PERL_OLD_COPY_ON_WRITE
4521 ( sflags & SVf_IsCOW
4522 || ( (sflags & CAN_COW_MASK) == CAN_COW_FLAGS
4523 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
4524 && SvTYPE(sstr) >= SVt_PVIV && len
4527 #elif defined(PERL_NEW_COPY_ON_WRITE)
4530 ( (CHECK_COWBUF_THRESHOLD(cur,len) || SvLEN(dstr) < cur+1)
4531 /* If this is a regular (non-hek) COW, only so
4532 many COW "copies" are possible. */
4533 && CowREFCNT(sstr) != SV_COW_REFCNT_MAX ))
4534 : ( (sflags & CAN_COW_MASK) == CAN_COW_FLAGS
4535 && !(SvFLAGS(dstr) & SVf_BREAK)
4536 && CHECK_COW_THRESHOLD(cur,len) && cur+1 < len
4537 && (CHECK_COWBUF_THRESHOLD(cur,len) || SvLEN(dstr) < cur+1)
4541 && !(SvFLAGS(dstr) & SVf_BREAK)
4544 /* Either it's a shared hash key, or it's suitable for
4547 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
4552 if (!(sflags & SVf_IsCOW)) {
4554 # ifdef PERL_OLD_COPY_ON_WRITE
4555 /* Make the source SV into a loop of 1.
4556 (about to become 2) */
4557 SV_COW_NEXT_SV_SET(sstr, sstr);
4559 CowREFCNT(sstr) = 0;
4563 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
4569 # ifdef PERL_OLD_COPY_ON_WRITE
4570 assert (SvTYPE(dstr) >= SVt_PVIV);
4571 /* SvIsCOW_normal */
4572 /* splice us in between source and next-after-source. */
4573 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4574 SV_COW_NEXT_SV_SET(sstr, dstr);
4576 if (sflags & SVf_IsCOW) {
4581 SvPV_set(dstr, SvPVX_mutable(sstr));
4586 /* SvIsCOW_shared_hash */
4587 DEBUG_C(PerlIO_printf(Perl_debug_log,
4588 "Copy on write: Sharing hash\n"));
4590 assert (SvTYPE(dstr) >= SVt_PV);
4592 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));