3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by Larry Wall
7 * You may distribute under the terms of either the GNU General Public
8 * License or the Artistic License, as specified in the README file.
13 * 'I wonder what the Entish is for "yes" and "no",' he thought.
16 * [p.480 of _The Lord of the Rings_, III/iv: "Treebeard"]
22 * This file contains the code that creates, manipulates and destroys
23 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
24 * structure of an SV, so their creation and destruction is handled
25 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
26 * level functions (eg. substr, split, join) for each of the types are
38 /* Missing proto on LynxOS */
39 char *gconvert(double, int, int, char *);
42 #ifdef PERL_UTF8_CACHE_ASSERT
43 /* if adding more checks watch out for the following tests:
44 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
45 * lib/utf8.t lib/Unicode/Collate/t/index.t
48 # define ASSERT_UTF8_CACHE(cache) \
49 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
50 assert((cache)[2] <= (cache)[3]); \
51 assert((cache)[3] <= (cache)[1]);} \
54 # define ASSERT_UTF8_CACHE(cache) NOOP
57 #ifdef PERL_OLD_COPY_ON_WRITE
58 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
59 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
60 /* This is a pessimistic view. Scalar must be purely a read-write PV to copy-
64 /* ============================================================================
66 =head1 Allocation and deallocation of SVs.
68 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
69 sv, av, hv...) contains type and reference count information, and for
70 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
71 contains fields specific to each type. Some types store all they need
72 in the head, so don't have a body.
74 In all but the most memory-paranoid configuations (ex: PURIFY), heads
75 and bodies are allocated out of arenas, which by default are
76 approximately 4K chunks of memory parcelled up into N heads or bodies.
77 Sv-bodies are allocated by their sv-type, guaranteeing size
78 consistency needed to allocate safely from arrays.
80 For SV-heads, the first slot in each arena is reserved, and holds a
81 link to the next arena, some flags, and a note of the number of slots.
82 Snaked through each arena chain is a linked list of free items; when
83 this becomes empty, an extra arena is allocated and divided up into N
84 items which are threaded into the free list.
86 SV-bodies are similar, but they use arena-sets by default, which
87 separate the link and info from the arena itself, and reclaim the 1st
88 slot in the arena. SV-bodies are further described later.
90 The following global variables are associated with arenas:
92 PL_sv_arenaroot pointer to list of SV arenas
93 PL_sv_root pointer to list of free SV structures
95 PL_body_arenas head of linked-list of body arenas
96 PL_body_roots[] array of pointers to list of free bodies of svtype
97 arrays are indexed by the svtype needed
99 A few special SV heads are not allocated from an arena, but are
100 instead directly created in the interpreter structure, eg PL_sv_undef.
101 The size of arenas can be changed from the default by setting
102 PERL_ARENA_SIZE appropriately at compile time.
104 The SV arena serves the secondary purpose of allowing still-live SVs
105 to be located and destroyed during final cleanup.
107 At the lowest level, the macros new_SV() and del_SV() grab and free
108 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
109 to return the SV to the free list with error checking.) new_SV() calls
110 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
111 SVs in the free list have their SvTYPE field set to all ones.
113 At the time of very final cleanup, sv_free_arenas() is called from
114 perl_destruct() to physically free all the arenas allocated since the
115 start of the interpreter.
117 The function visit() scans the SV arenas list, and calls a specified
118 function for each SV it finds which is still live - ie which has an SvTYPE
119 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
120 following functions (specified as [function that calls visit()] / [function
121 called by visit() for each SV]):
123 sv_report_used() / do_report_used()
124 dump all remaining SVs (debugging aid)
126 sv_clean_objs() / do_clean_objs(),do_clean_named_objs()
127 Attempt to free all objects pointed to by RVs,
128 and, unless DISABLE_DESTRUCTOR_KLUDGE is defined,
129 try to do the same for all objects indirectly
130 referenced by typeglobs too. Called once from
131 perl_destruct(), prior to calling sv_clean_all()
134 sv_clean_all() / do_clean_all()
135 SvREFCNT_dec(sv) each remaining SV, possibly
136 triggering an sv_free(). It also sets the
137 SVf_BREAK flag on the SV to indicate that the
138 refcnt has been artificially lowered, and thus
139 stopping sv_free() from giving spurious warnings
140 about SVs which unexpectedly have a refcnt
141 of zero. called repeatedly from perl_destruct()
142 until there are no SVs left.
144 =head2 Arena allocator API Summary
146 Private API to rest of sv.c
150 new_XIV(), del_XIV(),
151 new_XNV(), del_XNV(),
156 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
160 * ========================================================================= */
163 * "A time to plant, and a time to uproot what was planted..."
167 Perl_offer_nice_chunk(pTHX_ void *const chunk, const U32 chunk_size)
173 PERL_ARGS_ASSERT_OFFER_NICE_CHUNK;
175 new_chunk = (void *)(chunk);
176 new_chunk_size = (chunk_size);
177 if (new_chunk_size > PL_nice_chunk_size) {
178 Safefree(PL_nice_chunk);
179 PL_nice_chunk = (char *) new_chunk;
180 PL_nice_chunk_size = new_chunk_size;
187 # define MEM_LOG_NEW_SV(sv, file, line, func) \
188 Perl_mem_log_new_sv(sv, file, line, func)
189 # define MEM_LOG_DEL_SV(sv, file, line, func) \
190 Perl_mem_log_del_sv(sv, file, line, func)
192 # define MEM_LOG_NEW_SV(sv, file, line, func) NOOP
193 # define MEM_LOG_DEL_SV(sv, file, line, func) NOOP
196 #ifdef DEBUG_LEAKING_SCALARS
197 # define FREE_SV_DEBUG_FILE(sv) Safefree((sv)->sv_debug_file)
198 # define DEBUG_SV_SERIAL(sv) \
199 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) del_SV\n", \
200 PTR2UV(sv), (long)(sv)->sv_debug_serial))
202 # define FREE_SV_DEBUG_FILE(sv)
203 # define DEBUG_SV_SERIAL(sv) NOOP
207 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
208 # define SvARENA_CHAIN_SET(sv,val) (sv)->sv_u.svu_rv = MUTABLE_SV((val))
209 /* Whilst I'd love to do this, it seems that things like to check on
211 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
213 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
214 PoisonNew(&SvREFCNT(sv), 1, U32)
216 # define SvARENA_CHAIN(sv) SvANY(sv)
217 # define SvARENA_CHAIN_SET(sv,val) SvANY(sv) = (void *)(val)
218 # define POSION_SV_HEAD(sv)
221 /* Mark an SV head as unused, and add to free list.
223 * If SVf_BREAK is set, skip adding it to the free list, as this SV had
224 * its refcount artificially decremented during global destruction, so
225 * there may be dangling pointers to it. The last thing we want in that
226 * case is for it to be reused. */
228 #define plant_SV(p) \
230 const U32 old_flags = SvFLAGS(p); \
231 MEM_LOG_DEL_SV(p, __FILE__, __LINE__, FUNCTION__); \
232 DEBUG_SV_SERIAL(p); \
233 FREE_SV_DEBUG_FILE(p); \
235 SvFLAGS(p) = SVTYPEMASK; \
236 if (!(old_flags & SVf_BREAK)) { \
237 SvARENA_CHAIN_SET(p, PL_sv_root); \
243 #define uproot_SV(p) \
246 PL_sv_root = MUTABLE_SV(SvARENA_CHAIN(p)); \
251 /* make some more SVs by adding another arena */
260 sv_add_arena(PL_nice_chunk, PL_nice_chunk_size, 0);
261 PL_nice_chunk = NULL;
262 PL_nice_chunk_size = 0;
265 char *chunk; /* must use New here to match call to */
266 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
267 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
273 /* new_SV(): return a new, empty SV head */
275 #ifdef DEBUG_LEAKING_SCALARS
276 /* provide a real function for a debugger to play with */
278 S_new_SV(pTHX_ const char *file, int line, const char *func)
285 sv = S_more_sv(aTHX);
289 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
290 sv->sv_debug_line = (U16) (PL_parser && PL_parser->copline != NOLINE
296 sv->sv_debug_inpad = 0;
297 sv->sv_debug_cloned = 0;
298 sv->sv_debug_file = PL_curcop ? savepv(CopFILE(PL_curcop)): NULL;
300 sv->sv_debug_serial = PL_sv_serial++;
302 MEM_LOG_NEW_SV(sv, file, line, func);
303 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) new_SV (from %s:%d [%s])\n",
304 PTR2UV(sv), (long)sv->sv_debug_serial, file, line, func));
308 # define new_SV(p) (p)=S_new_SV(aTHX_ __FILE__, __LINE__, FUNCTION__)
316 (p) = S_more_sv(aTHX); \
320 MEM_LOG_NEW_SV(p, __FILE__, __LINE__, FUNCTION__); \
325 /* del_SV(): return an empty SV head to the free list */
338 S_del_sv(pTHX_ SV *p)
342 PERL_ARGS_ASSERT_DEL_SV;
347 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
348 const SV * const sv = sva + 1;
349 const SV * const svend = &sva[SvREFCNT(sva)];
350 if (p >= sv && p < svend) {
356 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
357 "Attempt to free non-arena SV: 0x%"UVxf
358 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
365 #else /* ! DEBUGGING */
367 #define del_SV(p) plant_SV(p)
369 #endif /* DEBUGGING */
373 =head1 SV Manipulation Functions
375 =for apidoc sv_add_arena
377 Given a chunk of memory, link it to the head of the list of arenas,
378 and split it into a list of free SVs.
384 S_sv_add_arena(pTHX_ char *const ptr, const U32 size, const U32 flags)
387 SV *const sva = MUTABLE_SV(ptr);
391 PERL_ARGS_ASSERT_SV_ADD_ARENA;
393 /* The first SV in an arena isn't an SV. */
394 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
395 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
396 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
398 PL_sv_arenaroot = sva;
399 PL_sv_root = sva + 1;
401 svend = &sva[SvREFCNT(sva) - 1];
404 SvARENA_CHAIN_SET(sv, (sv + 1));
408 /* Must always set typemask because it's always checked in on cleanup
409 when the arenas are walked looking for objects. */
410 SvFLAGS(sv) = SVTYPEMASK;
413 SvARENA_CHAIN_SET(sv, 0);
417 SvFLAGS(sv) = SVTYPEMASK;
420 /* visit(): call the named function for each non-free SV in the arenas
421 * whose flags field matches the flags/mask args. */
424 S_visit(pTHX_ SVFUNC_t f, const U32 flags, const U32 mask)
430 PERL_ARGS_ASSERT_VISIT;
432 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
433 register const SV * const svend = &sva[SvREFCNT(sva)];
435 for (sv = sva + 1; sv < svend; ++sv) {
436 if (SvTYPE(sv) != SVTYPEMASK
437 && (sv->sv_flags & mask) == flags
450 /* called by sv_report_used() for each live SV */
453 do_report_used(pTHX_ SV *const sv)
455 if (SvTYPE(sv) != SVTYPEMASK) {
456 PerlIO_printf(Perl_debug_log, "****\n");
463 =for apidoc sv_report_used
465 Dump the contents of all SVs not yet freed. (Debugging aid).
471 Perl_sv_report_used(pTHX)
474 visit(do_report_used, 0, 0);
480 /* called by sv_clean_objs() for each live SV */
483 do_clean_objs(pTHX_ SV *const ref)
488 SV * const target = SvRV(ref);
489 if (SvOBJECT(target)) {
490 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
491 if (SvWEAKREF(ref)) {
492 sv_del_backref(target, ref);
498 SvREFCNT_dec(target);
503 /* XXX Might want to check arrays, etc. */
506 /* called by sv_clean_objs() for each live SV */
508 #ifndef DISABLE_DESTRUCTOR_KLUDGE
510 do_clean_named_objs(pTHX_ SV *const sv)
513 assert(SvTYPE(sv) == SVt_PVGV);
514 assert(isGV_with_GP(sv));
517 #ifdef PERL_DONT_CREATE_GVSV
520 SvOBJECT(GvSV(sv))) ||
521 (GvAV(sv) && SvOBJECT(GvAV(sv))) ||
522 (GvHV(sv) && SvOBJECT(GvHV(sv))) ||
523 /* In certain rare cases GvIOp(sv) can be NULL, which would make SvOBJECT(GvIO(sv)) dereference NULL. */
524 (GvIO(sv) ? (SvFLAGS(GvIOp(sv)) & SVs_OBJECT) : 0) ||
525 (GvCV(sv) && SvOBJECT(GvCV(sv))) )
527 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning named glob object:\n "), sv_dump(sv)));
528 SvFLAGS(sv) |= SVf_BREAK;
536 =for apidoc sv_clean_objs
538 Attempt to destroy all objects not yet freed
544 Perl_sv_clean_objs(pTHX)
547 PL_in_clean_objs = TRUE;
548 visit(do_clean_objs, SVf_ROK, SVf_ROK);
549 #ifndef DISABLE_DESTRUCTOR_KLUDGE
550 /* some barnacles may yet remain, clinging to typeglobs */
551 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
553 PL_in_clean_objs = FALSE;
556 /* called by sv_clean_all() for each live SV */
559 do_clean_all(pTHX_ SV *const sv)
562 if (sv == (const SV *) PL_fdpid || sv == (const SV *)PL_strtab) {
563 /* don't clean pid table and strtab */
566 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
567 SvFLAGS(sv) |= SVf_BREAK;
572 =for apidoc sv_clean_all
574 Decrement the refcnt of each remaining SV, possibly triggering a
575 cleanup. This function may have to be called multiple times to free
576 SVs which are in complex self-referential hierarchies.
582 Perl_sv_clean_all(pTHX)
586 PL_in_clean_all = TRUE;
587 cleaned = visit(do_clean_all, 0,0);
588 PL_in_clean_all = FALSE;
593 ARENASETS: a meta-arena implementation which separates arena-info
594 into struct arena_set, which contains an array of struct
595 arena_descs, each holding info for a single arena. By separating
596 the meta-info from the arena, we recover the 1st slot, formerly
597 borrowed for list management. The arena_set is about the size of an
598 arena, avoiding the needless malloc overhead of a naive linked-list.
600 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
601 memory in the last arena-set (1/2 on average). In trade, we get
602 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
603 smaller types). The recovery of the wasted space allows use of
604 small arenas for large, rare body types, by changing array* fields
605 in body_details_by_type[] below.
608 char *arena; /* the raw storage, allocated aligned */
609 size_t size; /* its size ~4k typ */
610 svtype utype; /* bodytype stored in arena */
615 /* Get the maximum number of elements in set[] such that struct arena_set
616 will fit within PERL_ARENA_SIZE, which is probably just under 4K, and
617 therefore likely to be 1 aligned memory page. */
619 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
620 - 2 * sizeof(int)) / sizeof (struct arena_desc))
623 struct arena_set* next;
624 unsigned int set_size; /* ie ARENAS_PER_SET */
625 unsigned int curr; /* index of next available arena-desc */
626 struct arena_desc set[ARENAS_PER_SET];
630 =for apidoc sv_free_arenas
632 Deallocate the memory used by all arenas. Note that all the individual SV
633 heads and bodies within the arenas must already have been freed.
638 Perl_sv_free_arenas(pTHX)
645 /* Free arenas here, but be careful about fake ones. (We assume
646 contiguity of the fake ones with the corresponding real ones.) */
648 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
649 svanext = MUTABLE_SV(SvANY(sva));
650 while (svanext && SvFAKE(svanext))
651 svanext = MUTABLE_SV(SvANY(svanext));
658 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
661 struct arena_set *current = aroot;
664 assert(aroot->set[i].arena);
665 Safefree(aroot->set[i].arena);
673 i = PERL_ARENA_ROOTS_SIZE;
675 PL_body_roots[i] = 0;
677 Safefree(PL_nice_chunk);
678 PL_nice_chunk = NULL;
679 PL_nice_chunk_size = 0;
685 Here are mid-level routines that manage the allocation of bodies out
686 of the various arenas. There are 5 kinds of arenas:
688 1. SV-head arenas, which are discussed and handled above
689 2. regular body arenas
690 3. arenas for reduced-size bodies
693 Arena types 2 & 3 are chained by body-type off an array of
694 arena-root pointers, which is indexed by svtype. Some of the
695 larger/less used body types are malloced singly, since a large
696 unused block of them is wasteful. Also, several svtypes dont have
697 bodies; the data fits into the sv-head itself. The arena-root
698 pointer thus has a few unused root-pointers (which may be hijacked
699 later for arena types 4,5)
701 3 differs from 2 as an optimization; some body types have several
702 unused fields in the front of the structure (which are kept in-place
703 for consistency). These bodies can be allocated in smaller chunks,
704 because the leading fields arent accessed. Pointers to such bodies
705 are decremented to point at the unused 'ghost' memory, knowing that
706 the pointers are used with offsets to the real memory.
708 HE, HEK arenas are managed separately, with separate code, but may
709 be merge-able later..
712 /* get_arena(size): this creates custom-sized arenas
713 TBD: export properly for hv.c: S_more_he().
716 Perl_get_arena(pTHX_ const size_t arena_size, const svtype bodytype)
719 struct arena_desc* adesc;
720 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
723 /* shouldnt need this
724 if (!arena_size) arena_size = PERL_ARENA_SIZE;
727 /* may need new arena-set to hold new arena */
728 if (!aroot || aroot->curr >= aroot->set_size) {
729 struct arena_set *newroot;
730 Newxz(newroot, 1, struct arena_set);
731 newroot->set_size = ARENAS_PER_SET;
732 newroot->next = aroot;
734 PL_body_arenas = (void *) newroot;
735 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
738 /* ok, now have arena-set with at least 1 empty/available arena-desc */
739 curr = aroot->curr++;
740 adesc = &(aroot->set[curr]);
741 assert(!adesc->arena);
743 Newx(adesc->arena, arena_size, char);
744 adesc->size = arena_size;
745 adesc->utype = bodytype;
746 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %"UVuf"\n",
747 curr, (void*)adesc->arena, (UV)arena_size));
753 /* return a thing to the free list */
755 #define del_body(thing, root) \
757 void ** const thing_copy = (void **)thing;\
758 *thing_copy = *root; \
759 *root = (void*)thing_copy; \
764 =head1 SV-Body Allocation
766 Allocation of SV-bodies is similar to SV-heads, differing as follows;
767 the allocation mechanism is used for many body types, so is somewhat
768 more complicated, it uses arena-sets, and has no need for still-live
771 At the outermost level, (new|del)_X*V macros return bodies of the
772 appropriate type. These macros call either (new|del)_body_type or
773 (new|del)_body_allocated macro pairs, depending on specifics of the
774 type. Most body types use the former pair, the latter pair is used to
775 allocate body types with "ghost fields".
777 "ghost fields" are fields that are unused in certain types, and
778 consequently don't need to actually exist. They are declared because
779 they're part of a "base type", which allows use of functions as
780 methods. The simplest examples are AVs and HVs, 2 aggregate types
781 which don't use the fields which support SCALAR semantics.
783 For these types, the arenas are carved up into appropriately sized
784 chunks, we thus avoid wasted memory for those unaccessed members.
785 When bodies are allocated, we adjust the pointer back in memory by the
786 size of the part not allocated, so it's as if we allocated the full
787 structure. (But things will all go boom if you write to the part that
788 is "not there", because you'll be overwriting the last members of the
789 preceding structure in memory.)
791 We calculate the correction using the STRUCT_OFFSET macro on the first
792 member present. If the allocated structure is smaller (no initial NV
793 actually allocated) then the net effect is to subtract the size of the NV
794 from the pointer, to return a new pointer as if an initial NV were actually
795 allocated. (We were using structures named *_allocated for this, but
796 this turned out to be a subtle bug, because a structure without an NV
797 could have a lower alignment constraint, but the compiler is allowed to
798 optimised accesses based on the alignment constraint of the actual pointer
799 to the full structure, for example, using a single 64 bit load instruction
800 because it "knows" that two adjacent 32 bit members will be 8-byte aligned.)
802 This is the same trick as was used for NV and IV bodies. Ironically it
803 doesn't need to be used for NV bodies any more, because NV is now at
804 the start of the structure. IV bodies don't need it either, because
805 they are no longer allocated.
807 In turn, the new_body_* allocators call S_new_body(), which invokes
808 new_body_inline macro, which takes a lock, and takes a body off the
809 linked list at PL_body_roots[sv_type], calling S_more_bodies() if
810 necessary to refresh an empty list. Then the lock is released, and
811 the body is returned.
813 S_more_bodies calls get_arena(), and carves it up into an array of N
814 bodies, which it strings into a linked list. It looks up arena-size
815 and body-size from the body_details table described below, thus
816 supporting the multiple body-types.
818 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
819 the (new|del)_X*V macros are mapped directly to malloc/free.
825 For each sv-type, struct body_details bodies_by_type[] carries
826 parameters which control these aspects of SV handling:
828 Arena_size determines whether arenas are used for this body type, and if
829 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
830 zero, forcing individual mallocs and frees.
832 Body_size determines how big a body is, and therefore how many fit into
833 each arena. Offset carries the body-pointer adjustment needed for
834 "ghost fields", and is used in *_allocated macros.
836 But its main purpose is to parameterize info needed in
837 Perl_sv_upgrade(). The info here dramatically simplifies the function
838 vs the implementation in 5.8.8, making it table-driven. All fields
839 are used for this, except for arena_size.
841 For the sv-types that have no bodies, arenas are not used, so those
842 PL_body_roots[sv_type] are unused, and can be overloaded. In
843 something of a special case, SVt_NULL is borrowed for HE arenas;
844 PL_body_roots[HE_SVSLOT=SVt_NULL] is filled by S_more_he, but the
845 bodies_by_type[SVt_NULL] slot is not used, as the table is not
850 struct body_details {
851 U8 body_size; /* Size to allocate */
852 U8 copy; /* Size of structure to copy (may be shorter) */
854 unsigned int type : 4; /* We have space for a sanity check. */
855 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
856 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
857 unsigned int arena : 1; /* Allocated from an arena */
858 size_t arena_size; /* Size of arena to allocate */
866 /* With -DPURFIY we allocate everything directly, and don't use arenas.
867 This seems a rather elegant way to simplify some of the code below. */
868 #define HASARENA FALSE
870 #define HASARENA TRUE
872 #define NOARENA FALSE
874 /* Size the arenas to exactly fit a given number of bodies. A count
875 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
876 simplifying the default. If count > 0, the arena is sized to fit
877 only that many bodies, allowing arenas to be used for large, rare
878 bodies (XPVFM, XPVIO) without undue waste. The arena size is
879 limited by PERL_ARENA_SIZE, so we can safely oversize the
882 #define FIT_ARENA0(body_size) \
883 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
884 #define FIT_ARENAn(count,body_size) \
885 ( count * body_size <= PERL_ARENA_SIZE) \
886 ? count * body_size \
887 : FIT_ARENA0 (body_size)
888 #define FIT_ARENA(count,body_size) \
890 ? FIT_ARENAn (count, body_size) \
891 : FIT_ARENA0 (body_size)
893 /* Calculate the length to copy. Specifically work out the length less any
894 final padding the compiler needed to add. See the comment in sv_upgrade
895 for why copying the padding proved to be a bug. */
897 #define copy_length(type, last_member) \
898 STRUCT_OFFSET(type, last_member) \
899 + sizeof (((type*)SvANY((const SV *)0))->last_member)
901 static const struct body_details bodies_by_type[] = {
902 { sizeof(HE), 0, 0, SVt_NULL,
903 FALSE, NONV, NOARENA, FIT_ARENA(0, sizeof(HE)) },
905 /* The bind placeholder pretends to be an RV for now.
906 Also it's marked as "can't upgrade" to stop anyone using it before it's
908 { 0, 0, 0, SVt_BIND, TRUE, NONV, NOARENA, 0 },
910 /* IVs are in the head, so the allocation size is 0. */
912 sizeof(IV), /* This is used to copy out the IV body. */
913 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
914 NOARENA /* IVS don't need an arena */, 0
917 /* 8 bytes on most ILP32 with IEEE doubles */
918 { sizeof(NV), sizeof(NV),
919 STRUCT_OFFSET(XPVNV, xnv_u),
920 SVt_NV, FALSE, HADNV, HASARENA, FIT_ARENA(0, sizeof(NV)) },
922 /* 8 bytes on most ILP32 with IEEE doubles */
924 copy_length(XPV, xpv_len) - STRUCT_OFFSET(XPV, xpv_cur),
925 + STRUCT_OFFSET(XPV, xpv_cur),
926 SVt_PV, FALSE, NONV, HASARENA,
927 FIT_ARENA(0, sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur)) },
929 #if 2 *PTRSIZE <= IVSIZE
932 copy_length(XPVIV, xiv_u) - STRUCT_OFFSET(XPV, xpv_cur),
933 + STRUCT_OFFSET(XPV, xpv_cur),
934 SVt_PVIV, FALSE, NONV, HASARENA,
935 FIT_ARENA(0, sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur)) },
939 copy_length(XPVIV, xiv_u),
941 SVt_PVIV, FALSE, NONV, HASARENA,
942 FIT_ARENA(0, sizeof(XPVIV)) },
945 #if (2 *PTRSIZE <= IVSIZE) && (2 *PTRSIZE <= NVSIZE)
948 copy_length(XPVNV, xnv_u) - STRUCT_OFFSET(XPV, xpv_cur),
949 + STRUCT_OFFSET(XPV, xpv_cur),
950 SVt_PVNV, FALSE, HADNV, HASARENA,
951 FIT_ARENA(0, sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur)) },
954 { sizeof(XPVNV), copy_length(XPVNV, xnv_u), 0, SVt_PVNV, FALSE, HADNV,
955 HASARENA, FIT_ARENA(0, sizeof(XPVNV)) },
959 { sizeof(XPVMG), copy_length(XPVMG, xnv_u), 0, SVt_PVMG, FALSE, HADNV,
960 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
966 SVt_REGEXP, FALSE, NONV, HASARENA,
967 FIT_ARENA(0, sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur))
971 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
972 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
975 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
976 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
979 copy_length(XPVAV, xav_alloc),
981 SVt_PVAV, TRUE, NONV, HASARENA,
982 FIT_ARENA(0, sizeof(XPVAV)) },
985 copy_length(XPVHV, xhv_max),
987 SVt_PVHV, TRUE, NONV, HASARENA,
988 FIT_ARENA(0, sizeof(XPVHV)) },
994 SVt_PVCV, TRUE, NONV, HASARENA,
995 FIT_ARENA(0, sizeof(XPVCV)) },
1000 SVt_PVFM, TRUE, NONV, NOARENA,
1001 FIT_ARENA(20, sizeof(XPVFM)) },
1003 /* XPVIO is 84 bytes, fits 48x */
1007 SVt_PVIO, TRUE, NONV, HASARENA,
1008 FIT_ARENA(24, sizeof(XPVIO)) },
1011 #define new_body_allocated(sv_type) \
1012 (void *)((char *)S_new_body(aTHX_ sv_type) \
1013 - bodies_by_type[sv_type].offset)
1015 #define del_body_allocated(p, sv_type) \
1016 del_body(p + bodies_by_type[sv_type].offset, &PL_body_roots[sv_type])
1019 #define my_safemalloc(s) (void*)safemalloc(s)
1020 #define my_safecalloc(s) (void*)safecalloc(s, 1)
1021 #define my_safefree(p) safefree((char*)p)
1025 #define new_XNV() my_safemalloc(sizeof(XPVNV))
1026 #define del_XNV(p) my_safefree(p)
1028 #define new_XPVNV() my_safemalloc(sizeof(XPVNV))
1029 #define del_XPVNV(p) my_safefree(p)
1031 #define new_XPVAV() my_safemalloc(sizeof(XPVAV))
1032 #define del_XPVAV(p) my_safefree(p)
1034 #define new_XPVHV() my_safemalloc(sizeof(XPVHV))
1035 #define del_XPVHV(p) my_safefree(p)
1037 #define new_XPVMG() my_safemalloc(sizeof(XPVMG))
1038 #define del_XPVMG(p) my_safefree(p)
1040 #define new_XPVGV() my_safemalloc(sizeof(XPVGV))
1041 #define del_XPVGV(p) my_safefree(p)
1045 #define new_XNV() new_body_allocated(SVt_NV)
1046 #define del_XNV(p) del_body_allocated(p, SVt_NV)
1048 #define new_XPVNV() new_body_allocated(SVt_PVNV)
1049 #define del_XPVNV(p) del_body_allocated(p, SVt_PVNV)
1051 #define new_XPVAV() new_body_allocated(SVt_PVAV)
1052 #define del_XPVAV(p) del_body_allocated(p, SVt_PVAV)
1054 #define new_XPVHV() new_body_allocated(SVt_PVHV)
1055 #define del_XPVHV(p) del_body_allocated(p, SVt_PVHV)
1057 #define new_XPVMG() new_body_allocated(SVt_PVMG)
1058 #define del_XPVMG(p) del_body_allocated(p, SVt_PVMG)
1060 #define new_XPVGV() new_body_allocated(SVt_PVGV)
1061 #define del_XPVGV(p) del_body_allocated(p, SVt_PVGV)
1065 /* no arena for you! */
1067 #define new_NOARENA(details) \
1068 my_safemalloc((details)->body_size + (details)->offset)
1069 #define new_NOARENAZ(details) \
1070 my_safecalloc((details)->body_size + (details)->offset)
1073 S_more_bodies (pTHX_ const svtype sv_type)
1076 void ** const root = &PL_body_roots[sv_type];
1077 const struct body_details * const bdp = &bodies_by_type[sv_type];
1078 const size_t body_size = bdp->body_size;
1081 const size_t arena_size = Perl_malloc_good_size(bdp->arena_size);
1082 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1083 static bool done_sanity_check;
1085 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1086 * variables like done_sanity_check. */
1087 if (!done_sanity_check) {
1088 unsigned int i = SVt_LAST;
1090 done_sanity_check = TRUE;
1093 assert (bodies_by_type[i].type == i);
1097 assert(bdp->arena_size);
1099 start = (char*) Perl_get_arena(aTHX_ arena_size, sv_type);
1101 end = start + arena_size - 2 * body_size;
1103 /* computed count doesnt reflect the 1st slot reservation */
1104 #if defined(MYMALLOC) || defined(HAS_MALLOC_GOOD_SIZE)
1105 DEBUG_m(PerlIO_printf(Perl_debug_log,
1106 "arena %p end %p arena-size %d (from %d) type %d "
1108 (void*)start, (void*)end, (int)arena_size,
1109 (int)bdp->arena_size, sv_type, (int)body_size,
1110 (int)arena_size / (int)body_size));
1112 DEBUG_m(PerlIO_printf(Perl_debug_log,
1113 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1114 (void*)start, (void*)end,
1115 (int)bdp->arena_size, sv_type, (int)body_size,
1116 (int)bdp->arena_size / (int)body_size));
1118 *root = (void *)start;
1120 while (start <= end) {
1121 char * const next = start + body_size;
1122 *(void**) start = (void *)next;
1125 *(void **)start = 0;
1130 /* grab a new thing from the free list, allocating more if necessary.
1131 The inline version is used for speed in hot routines, and the
1132 function using it serves the rest (unless PURIFY).
1134 #define new_body_inline(xpv, sv_type) \
1136 void ** const r3wt = &PL_body_roots[sv_type]; \
1137 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1138 ? *((void **)(r3wt)) : more_bodies(sv_type)); \
1139 *(r3wt) = *(void**)(xpv); \
1145 S_new_body(pTHX_ const svtype sv_type)
1149 new_body_inline(xpv, sv_type);
1155 static const struct body_details fake_rv =
1156 { 0, 0, 0, SVt_IV, FALSE, NONV, NOARENA, 0 };
1159 =for apidoc sv_upgrade
1161 Upgrade an SV to a more complex form. Generally adds a new body type to the
1162 SV, then copies across as much information as possible from the old body.
1163 You generally want to use the C<SvUPGRADE> macro wrapper. See also C<svtype>.
1169 Perl_sv_upgrade(pTHX_ register SV *const sv, svtype new_type)
1174 const svtype old_type = SvTYPE(sv);
1175 const struct body_details *new_type_details;
1176 const struct body_details *old_type_details
1177 = bodies_by_type + old_type;
1178 SV *referant = NULL;
1180 PERL_ARGS_ASSERT_SV_UPGRADE;
1182 if (old_type == new_type)
1185 /* This clause was purposefully added ahead of the early return above to
1186 the shared string hackery for (sort {$a <=> $b} keys %hash), with the
1187 inference by Nick I-S that it would fix other troublesome cases. See
1188 changes 7162, 7163 (f130fd4589cf5fbb24149cd4db4137c8326f49c1 and parent)
1190 Given that shared hash key scalars are no longer PVIV, but PV, there is
1191 no longer need to unshare so as to free up the IVX slot for its proper
1192 purpose. So it's safe to move the early return earlier. */
1194 if (new_type != SVt_PV && SvIsCOW(sv)) {
1195 sv_force_normal_flags(sv, 0);
1198 old_body = SvANY(sv);
1200 /* Copying structures onto other structures that have been neatly zeroed
1201 has a subtle gotcha. Consider XPVMG
1203 +------+------+------+------+------+-------+-------+
1204 | NV | CUR | LEN | IV | MAGIC | STASH |
1205 +------+------+------+------+------+-------+-------+
1206 0 4 8 12 16 20 24 28
1208 where NVs are aligned to 8 bytes, so that sizeof that structure is
1209 actually 32 bytes long, with 4 bytes of padding at the end:
1211 +------+------+------+------+------+-------+-------+------+
1212 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1213 +------+------+------+------+------+-------+-------+------+
1214 0 4 8 12 16 20 24 28 32
1216 so what happens if you allocate memory for this structure:
1218 +------+------+------+------+------+-------+-------+------+------+...
1219 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1220 +------+------+------+------+------+-------+-------+------+------+...
1221 0 4 8 12 16 20 24 28 32 36
1223 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1224 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1225 started out as zero once, but it's quite possible that it isn't. So now,
1226 rather than a nicely zeroed GP, you have it pointing somewhere random.
1229 (In fact, GP ends up pointing at a previous GP structure, because the
1230 principle cause of the padding in XPVMG getting garbage is a copy of
1231 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1232 this happens to be moot because XPVGV has been re-ordered, with GP
1233 no longer after STASH)
1235 So we are careful and work out the size of used parts of all the
1243 referant = SvRV(sv);
1244 old_type_details = &fake_rv;
1245 if (new_type == SVt_NV)
1246 new_type = SVt_PVNV;
1248 if (new_type < SVt_PVIV) {
1249 new_type = (new_type == SVt_NV)
1250 ? SVt_PVNV : SVt_PVIV;
1255 if (new_type < SVt_PVNV) {
1256 new_type = SVt_PVNV;
1260 assert(new_type > SVt_PV);
1261 assert(SVt_IV < SVt_PV);
1262 assert(SVt_NV < SVt_PV);
1269 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1270 there's no way that it can be safely upgraded, because perl.c
1271 expects to Safefree(SvANY(PL_mess_sv)) */
1272 assert(sv != PL_mess_sv);
1273 /* This flag bit is used to mean other things in other scalar types.
1274 Given that it only has meaning inside the pad, it shouldn't be set
1275 on anything that can get upgraded. */
1276 assert(!SvPAD_TYPED(sv));
1279 if (old_type_details->cant_upgrade)
1280 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1281 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1284 if (old_type > new_type)
1285 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1286 (int)old_type, (int)new_type);
1288 new_type_details = bodies_by_type + new_type;
1290 SvFLAGS(sv) &= ~SVTYPEMASK;
1291 SvFLAGS(sv) |= new_type;
1293 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1294 the return statements above will have triggered. */
1295 assert (new_type != SVt_NULL);
1298 assert(old_type == SVt_NULL);
1299 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1303 assert(old_type == SVt_NULL);
1304 SvANY(sv) = new_XNV();
1309 assert(new_type_details->body_size);
1312 assert(new_type_details->arena);
1313 assert(new_type_details->arena_size);
1314 /* This points to the start of the allocated area. */
1315 new_body_inline(new_body, new_type);
1316 Zero(new_body, new_type_details->body_size, char);
1317 new_body = ((char *)new_body) - new_type_details->offset;
1319 /* We always allocated the full length item with PURIFY. To do this
1320 we fake things so that arena is false for all 16 types.. */
1321 new_body = new_NOARENAZ(new_type_details);
1323 SvANY(sv) = new_body;
1324 if (new_type == SVt_PVAV) {
1328 if (old_type_details->body_size) {
1331 /* It will have been zeroed when the new body was allocated.
1332 Lets not write to it, in case it confuses a write-back
1338 #ifndef NODEFAULT_SHAREKEYS
1339 HvSHAREKEYS_on(sv); /* key-sharing on by default */
1341 HvMAX(sv) = 7; /* (start with 8 buckets) */
1344 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1345 The target created by newSVrv also is, and it can have magic.
1346 However, it never has SvPVX set.
1348 if (old_type == SVt_IV) {
1350 } else if (old_type >= SVt_PV) {
1351 assert(SvPVX_const(sv) == 0);
1354 if (old_type >= SVt_PVMG) {
1355 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1356 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1358 sv->sv_u.svu_array = NULL; /* or svu_hash */
1364 /* This ensures that SvTHINKFIRST(sv) is true, and hence that
1365 sv_force_normal_flags(sv) is called. */
1368 /* XXX Is this still needed? Was it ever needed? Surely as there is
1369 no route from NV to PVIV, NOK can never be true */
1370 assert(!SvNOKp(sv));
1381 assert(new_type_details->body_size);
1382 /* We always allocated the full length item with PURIFY. To do this
1383 we fake things so that arena is false for all 16 types.. */
1384 if(new_type_details->arena) {
1385 /* This points to the start of the allocated area. */
1386 new_body_inline(new_body, new_type);
1387 Zero(new_body, new_type_details->body_size, char);
1388 new_body = ((char *)new_body) - new_type_details->offset;
1390 new_body = new_NOARENAZ(new_type_details);
1392 SvANY(sv) = new_body;
1394 if (old_type_details->copy) {
1395 /* There is now the potential for an upgrade from something without
1396 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1397 int offset = old_type_details->offset;
1398 int length = old_type_details->copy;
1400 if (new_type_details->offset > old_type_details->offset) {
1401 const int difference
1402 = new_type_details->offset - old_type_details->offset;
1403 offset += difference;
1404 length -= difference;
1406 assert (length >= 0);
1408 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1412 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1413 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1414 * correct 0.0 for us. Otherwise, if the old body didn't have an
1415 * NV slot, but the new one does, then we need to initialise the
1416 * freshly created NV slot with whatever the correct bit pattern is
1418 if (old_type_details->zero_nv && !new_type_details->zero_nv
1419 && !isGV_with_GP(sv))
1423 if (new_type == SVt_PVIO) {
1424 IO * const io = MUTABLE_IO(sv);
1425 GV *iogv = gv_fetchpvs("IO::File::", GV_ADD, SVt_PVHV);
1428 /* Clear the stashcache because a new IO could overrule a package
1430 hv_clear(PL_stashcache);
1432 SvSTASH_set(io, MUTABLE_HV(SvREFCNT_inc(GvHV(iogv))));
1433 IoPAGE_LEN(sv) = 60;
1435 if (old_type < SVt_PV) {
1436 /* referant will be NULL unless the old type was SVt_IV emulating
1438 sv->sv_u.svu_rv = referant;
1442 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1443 (unsigned long)new_type);
1446 if (old_type > SVt_IV) {
1448 my_safefree(old_body);
1450 /* Note that there is an assumption that all bodies of types that
1451 can be upgraded came from arenas. Only the more complex non-
1452 upgradable types are allowed to be directly malloc()ed. */
1453 assert(old_type_details->arena);
1454 del_body((void*)((char*)old_body + old_type_details->offset),
1455 &PL_body_roots[old_type]);
1461 =for apidoc sv_backoff
1463 Remove any string offset. You should normally use the C<SvOOK_off> macro
1470 Perl_sv_backoff(pTHX_ register SV *const sv)
1473 const char * const s = SvPVX_const(sv);
1475 PERL_ARGS_ASSERT_SV_BACKOFF;
1476 PERL_UNUSED_CONTEXT;
1479 assert(SvTYPE(sv) != SVt_PVHV);
1480 assert(SvTYPE(sv) != SVt_PVAV);
1482 SvOOK_offset(sv, delta);
1484 SvLEN_set(sv, SvLEN(sv) + delta);
1485 SvPV_set(sv, SvPVX(sv) - delta);
1486 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1487 SvFLAGS(sv) &= ~SVf_OOK;
1494 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1495 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1496 Use the C<SvGROW> wrapper instead.
1502 Perl_sv_grow(pTHX_ register SV *const sv, register STRLEN newlen)
1506 PERL_ARGS_ASSERT_SV_GROW;
1508 if (PL_madskills && newlen >= 0x100000) {
1509 PerlIO_printf(Perl_debug_log,
1510 "Allocation too large: %"UVxf"\n", (UV)newlen);
1512 #ifdef HAS_64K_LIMIT
1513 if (newlen >= 0x10000) {
1514 PerlIO_printf(Perl_debug_log,
1515 "Allocation too large: %"UVxf"\n", (UV)newlen);
1518 #endif /* HAS_64K_LIMIT */
1521 if (SvTYPE(sv) < SVt_PV) {
1522 sv_upgrade(sv, SVt_PV);
1523 s = SvPVX_mutable(sv);
1525 else if (SvOOK(sv)) { /* pv is offset? */
1527 s = SvPVX_mutable(sv);
1528 if (newlen > SvLEN(sv))
1529 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1530 #ifdef HAS_64K_LIMIT
1531 if (newlen >= 0x10000)
1536 s = SvPVX_mutable(sv);
1538 if (newlen > SvLEN(sv)) { /* need more room? */
1539 #ifndef Perl_safesysmalloc_size
1540 newlen = PERL_STRLEN_ROUNDUP(newlen);
1542 if (SvLEN(sv) && s) {
1543 s = (char*)saferealloc(s, newlen);
1546 s = (char*)safemalloc(newlen);
1547 if (SvPVX_const(sv) && SvCUR(sv)) {
1548 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1552 #ifdef Perl_safesysmalloc_size
1553 /* Do this here, do it once, do it right, and then we will never get
1554 called back into sv_grow() unless there really is some growing
1556 SvLEN_set(sv, Perl_safesysmalloc_size(s));
1558 SvLEN_set(sv, newlen);
1565 =for apidoc sv_setiv
1567 Copies an integer into the given SV, upgrading first if necessary.
1568 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1574 Perl_sv_setiv(pTHX_ register SV *const sv, const IV i)
1578 PERL_ARGS_ASSERT_SV_SETIV;
1580 SV_CHECK_THINKFIRST_COW_DROP(sv);
1581 switch (SvTYPE(sv)) {
1584 sv_upgrade(sv, SVt_IV);
1587 sv_upgrade(sv, SVt_PVIV);
1591 if (!isGV_with_GP(sv))
1598 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1602 (void)SvIOK_only(sv); /* validate number */
1608 =for apidoc sv_setiv_mg
1610 Like C<sv_setiv>, but also handles 'set' magic.
1616 Perl_sv_setiv_mg(pTHX_ register SV *const sv, const IV i)
1618 PERL_ARGS_ASSERT_SV_SETIV_MG;
1625 =for apidoc sv_setuv
1627 Copies an unsigned integer into the given SV, upgrading first if necessary.
1628 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1634 Perl_sv_setuv(pTHX_ register SV *const sv, const UV u)
1636 PERL_ARGS_ASSERT_SV_SETUV;
1638 /* With these two if statements:
1639 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1642 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1644 If you wish to remove them, please benchmark to see what the effect is
1646 if (u <= (UV)IV_MAX) {
1647 sv_setiv(sv, (IV)u);
1656 =for apidoc sv_setuv_mg
1658 Like C<sv_setuv>, but also handles 'set' magic.
1664 Perl_sv_setuv_mg(pTHX_ register SV *const sv, const UV u)
1666 PERL_ARGS_ASSERT_SV_SETUV_MG;
1673 =for apidoc sv_setnv
1675 Copies a double into the given SV, upgrading first if necessary.
1676 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1682 Perl_sv_setnv(pTHX_ register SV *const sv, const NV num)
1686 PERL_ARGS_ASSERT_SV_SETNV;
1688 SV_CHECK_THINKFIRST_COW_DROP(sv);
1689 switch (SvTYPE(sv)) {
1692 sv_upgrade(sv, SVt_NV);
1696 sv_upgrade(sv, SVt_PVNV);
1700 if (!isGV_with_GP(sv))
1707 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1712 (void)SvNOK_only(sv); /* validate number */
1717 =for apidoc sv_setnv_mg
1719 Like C<sv_setnv>, but also handles 'set' magic.
1725 Perl_sv_setnv_mg(pTHX_ register SV *const sv, const NV num)
1727 PERL_ARGS_ASSERT_SV_SETNV_MG;
1733 /* Print an "isn't numeric" warning, using a cleaned-up,
1734 * printable version of the offending string
1738 S_not_a_number(pTHX_ SV *const sv)
1745 PERL_ARGS_ASSERT_NOT_A_NUMBER;
1748 dsv = newSVpvs_flags("", SVs_TEMP);
1749 pv = sv_uni_display(dsv, sv, 10, 0);
1752 const char * const limit = tmpbuf + sizeof(tmpbuf) - 8;
1753 /* each *s can expand to 4 chars + "...\0",
1754 i.e. need room for 8 chars */
1756 const char *s = SvPVX_const(sv);
1757 const char * const end = s + SvCUR(sv);
1758 for ( ; s < end && d < limit; s++ ) {
1760 if (ch & 128 && !isPRINT_LC(ch)) {
1769 else if (ch == '\r') {
1773 else if (ch == '\f') {
1777 else if (ch == '\\') {
1781 else if (ch == '\0') {
1785 else if (isPRINT_LC(ch))
1802 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1803 "Argument \"%s\" isn't numeric in %s", pv,
1806 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1807 "Argument \"%s\" isn't numeric", pv);
1811 =for apidoc looks_like_number
1813 Test if the content of an SV looks like a number (or is a number).
1814 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1815 non-numeric warning), even if your atof() doesn't grok them.
1821 Perl_looks_like_number(pTHX_ SV *const sv)
1823 register const char *sbegin;
1826 PERL_ARGS_ASSERT_LOOKS_LIKE_NUMBER;
1829 sbegin = SvPVX_const(sv);
1832 else if (SvPOKp(sv))
1833 sbegin = SvPV_const(sv, len);
1835 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1836 return grok_number(sbegin, len, NULL);
1840 S_glob_2number(pTHX_ GV * const gv)
1842 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1843 SV *const buffer = sv_newmortal();
1845 PERL_ARGS_ASSERT_GLOB_2NUMBER;
1847 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1850 gv_efullname3(buffer, gv, "*");
1851 SvFLAGS(gv) |= wasfake;
1853 /* We know that all GVs stringify to something that is not-a-number,
1854 so no need to test that. */
1855 if (ckWARN(WARN_NUMERIC))
1856 not_a_number(buffer);
1857 /* We just want something true to return, so that S_sv_2iuv_common
1858 can tail call us and return true. */
1862 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1863 until proven guilty, assume that things are not that bad... */
1868 As 64 bit platforms often have an NV that doesn't preserve all bits of
1869 an IV (an assumption perl has been based on to date) it becomes necessary
1870 to remove the assumption that the NV always carries enough precision to
1871 recreate the IV whenever needed, and that the NV is the canonical form.
1872 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1873 precision as a side effect of conversion (which would lead to insanity
1874 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1875 1) to distinguish between IV/UV/NV slots that have cached a valid
1876 conversion where precision was lost and IV/UV/NV slots that have a
1877 valid conversion which has lost no precision
1878 2) to ensure that if a numeric conversion to one form is requested that
1879 would lose precision, the precise conversion (or differently
1880 imprecise conversion) is also performed and cached, to prevent
1881 requests for different numeric formats on the same SV causing
1882 lossy conversion chains. (lossless conversion chains are perfectly
1887 SvIOKp is true if the IV slot contains a valid value
1888 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1889 SvNOKp is true if the NV slot contains a valid value
1890 SvNOK is true only if the NV value is accurate
1893 while converting from PV to NV, check to see if converting that NV to an
1894 IV(or UV) would lose accuracy over a direct conversion from PV to
1895 IV(or UV). If it would, cache both conversions, return NV, but mark
1896 SV as IOK NOKp (ie not NOK).
1898 While converting from PV to IV, check to see if converting that IV to an
1899 NV would lose accuracy over a direct conversion from PV to NV. If it
1900 would, cache both conversions, flag similarly.
1902 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1903 correctly because if IV & NV were set NV *always* overruled.
1904 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1905 changes - now IV and NV together means that the two are interchangeable:
1906 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1908 The benefit of this is that operations such as pp_add know that if
1909 SvIOK is true for both left and right operands, then integer addition
1910 can be used instead of floating point (for cases where the result won't
1911 overflow). Before, floating point was always used, which could lead to
1912 loss of precision compared with integer addition.
1914 * making IV and NV equal status should make maths accurate on 64 bit
1916 * may speed up maths somewhat if pp_add and friends start to use
1917 integers when possible instead of fp. (Hopefully the overhead in
1918 looking for SvIOK and checking for overflow will not outweigh the
1919 fp to integer speedup)
1920 * will slow down integer operations (callers of SvIV) on "inaccurate"
1921 values, as the change from SvIOK to SvIOKp will cause a call into
1922 sv_2iv each time rather than a macro access direct to the IV slot
1923 * should speed up number->string conversion on integers as IV is
1924 favoured when IV and NV are equally accurate
1926 ####################################################################
1927 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1928 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1929 On the other hand, SvUOK is true iff UV.
1930 ####################################################################
1932 Your mileage will vary depending your CPU's relative fp to integer
1936 #ifndef NV_PRESERVES_UV
1937 # define IS_NUMBER_UNDERFLOW_IV 1
1938 # define IS_NUMBER_UNDERFLOW_UV 2
1939 # define IS_NUMBER_IV_AND_UV 2
1940 # define IS_NUMBER_OVERFLOW_IV 4
1941 # define IS_NUMBER_OVERFLOW_UV 5
1943 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1945 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1947 S_sv_2iuv_non_preserve(pTHX_ register SV *const sv
1955 PERL_ARGS_ASSERT_SV_2IUV_NON_PRESERVE;
1957 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1958 if (SvNVX(sv) < (NV)IV_MIN) {
1959 (void)SvIOKp_on(sv);
1961 SvIV_set(sv, IV_MIN);
1962 return IS_NUMBER_UNDERFLOW_IV;
1964 if (SvNVX(sv) > (NV)UV_MAX) {
1965 (void)SvIOKp_on(sv);
1968 SvUV_set(sv, UV_MAX);
1969 return IS_NUMBER_OVERFLOW_UV;
1971 (void)SvIOKp_on(sv);
1973 /* Can't use strtol etc to convert this string. (See truth table in
1975 if (SvNVX(sv) <= (UV)IV_MAX) {
1976 SvIV_set(sv, I_V(SvNVX(sv)));
1977 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1978 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1980 /* Integer is imprecise. NOK, IOKp */
1982 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
1985 SvUV_set(sv, U_V(SvNVX(sv)));
1986 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
1987 if (SvUVX(sv) == UV_MAX) {
1988 /* As we know that NVs don't preserve UVs, UV_MAX cannot
1989 possibly be preserved by NV. Hence, it must be overflow.
1991 return IS_NUMBER_OVERFLOW_UV;
1993 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
1995 /* Integer is imprecise. NOK, IOKp */
1997 return IS_NUMBER_OVERFLOW_IV;
1999 #endif /* !NV_PRESERVES_UV*/
2002 S_sv_2iuv_common(pTHX_ SV *const sv)
2006 PERL_ARGS_ASSERT_SV_2IUV_COMMON;
2009 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
2010 * without also getting a cached IV/UV from it at the same time
2011 * (ie PV->NV conversion should detect loss of accuracy and cache
2012 * IV or UV at same time to avoid this. */
2013 /* IV-over-UV optimisation - choose to cache IV if possible */
2015 if (SvTYPE(sv) == SVt_NV)
2016 sv_upgrade(sv, SVt_PVNV);
2018 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
2019 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
2020 certainly cast into the IV range at IV_MAX, whereas the correct
2021 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
2023 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
2024 if (Perl_isnan(SvNVX(sv))) {
2030 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2031 SvIV_set(sv, I_V(SvNVX(sv)));
2032 if (SvNVX(sv) == (NV) SvIVX(sv)
2033 #ifndef NV_PRESERVES_UV
2034 && (((UV)1 << NV_PRESERVES_UV_BITS) >
2035 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
2036 /* Don't flag it as "accurately an integer" if the number
2037 came from a (by definition imprecise) NV operation, and
2038 we're outside the range of NV integer precision */
2042 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
2044 /* scalar has trailing garbage, eg "42a" */
2046 DEBUG_c(PerlIO_printf(Perl_debug_log,
2047 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
2053 /* IV not precise. No need to convert from PV, as NV
2054 conversion would already have cached IV if it detected
2055 that PV->IV would be better than PV->NV->IV
2056 flags already correct - don't set public IOK. */
2057 DEBUG_c(PerlIO_printf(Perl_debug_log,
2058 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
2063 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
2064 but the cast (NV)IV_MIN rounds to a the value less (more
2065 negative) than IV_MIN which happens to be equal to SvNVX ??
2066 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
2067 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
2068 (NV)UVX == NVX are both true, but the values differ. :-(
2069 Hopefully for 2s complement IV_MIN is something like
2070 0x8000000000000000 which will be exact. NWC */
2073 SvUV_set(sv, U_V(SvNVX(sv)));
2075 (SvNVX(sv) == (NV) SvUVX(sv))
2076 #ifndef NV_PRESERVES_UV
2077 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
2078 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
2079 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
2080 /* Don't flag it as "accurately an integer" if the number
2081 came from a (by definition imprecise) NV operation, and
2082 we're outside the range of NV integer precision */
2088 DEBUG_c(PerlIO_printf(Perl_debug_log,
2089 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
2095 else if (SvPOKp(sv) && SvLEN(sv)) {
2097 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2098 /* We want to avoid a possible problem when we cache an IV/ a UV which
2099 may be later translated to an NV, and the resulting NV is not
2100 the same as the direct translation of the initial string
2101 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
2102 be careful to ensure that the value with the .456 is around if the
2103 NV value is requested in the future).
2105 This means that if we cache such an IV/a UV, we need to cache the
2106 NV as well. Moreover, we trade speed for space, and do not
2107 cache the NV if we are sure it's not needed.
2110 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
2111 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2112 == IS_NUMBER_IN_UV) {
2113 /* It's definitely an integer, only upgrade to PVIV */
2114 if (SvTYPE(sv) < SVt_PVIV)
2115 sv_upgrade(sv, SVt_PVIV);
2117 } else if (SvTYPE(sv) < SVt_PVNV)
2118 sv_upgrade(sv, SVt_PVNV);
2120 /* If NVs preserve UVs then we only use the UV value if we know that
2121 we aren't going to call atof() below. If NVs don't preserve UVs
2122 then the value returned may have more precision than atof() will
2123 return, even though value isn't perfectly accurate. */
2124 if ((numtype & (IS_NUMBER_IN_UV
2125 #ifdef NV_PRESERVES_UV
2128 )) == IS_NUMBER_IN_UV) {
2129 /* This won't turn off the public IOK flag if it was set above */
2130 (void)SvIOKp_on(sv);
2132 if (!(numtype & IS_NUMBER_NEG)) {
2134 if (value <= (UV)IV_MAX) {
2135 SvIV_set(sv, (IV)value);
2137 /* it didn't overflow, and it was positive. */
2138 SvUV_set(sv, value);
2142 /* 2s complement assumption */
2143 if (value <= (UV)IV_MIN) {
2144 SvIV_set(sv, -(IV)value);
2146 /* Too negative for an IV. This is a double upgrade, but
2147 I'm assuming it will be rare. */
2148 if (SvTYPE(sv) < SVt_PVNV)
2149 sv_upgrade(sv, SVt_PVNV);
2153 SvNV_set(sv, -(NV)value);
2154 SvIV_set(sv, IV_MIN);
2158 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2159 will be in the previous block to set the IV slot, and the next
2160 block to set the NV slot. So no else here. */
2162 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2163 != IS_NUMBER_IN_UV) {
2164 /* It wasn't an (integer that doesn't overflow the UV). */
2165 SvNV_set(sv, Atof(SvPVX_const(sv)));
2167 if (! numtype && ckWARN(WARN_NUMERIC))
2170 #if defined(USE_LONG_DOUBLE)
2171 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2172 PTR2UV(sv), SvNVX(sv)));
2174 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2175 PTR2UV(sv), SvNVX(sv)));
2178 #ifdef NV_PRESERVES_UV
2179 (void)SvIOKp_on(sv);
2181 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2182 SvIV_set(sv, I_V(SvNVX(sv)));
2183 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2186 NOOP; /* Integer is imprecise. NOK, IOKp */
2188 /* UV will not work better than IV */
2190 if (SvNVX(sv) > (NV)UV_MAX) {
2192 /* Integer is inaccurate. NOK, IOKp, is UV */
2193 SvUV_set(sv, UV_MAX);
2195 SvUV_set(sv, U_V(SvNVX(sv)));
2196 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2197 NV preservse UV so can do correct comparison. */
2198 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2201 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2206 #else /* NV_PRESERVES_UV */
2207 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2208 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2209 /* The IV/UV slot will have been set from value returned by
2210 grok_number above. The NV slot has just been set using
2213 assert (SvIOKp(sv));
2215 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2216 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2217 /* Small enough to preserve all bits. */
2218 (void)SvIOKp_on(sv);
2220 SvIV_set(sv, I_V(SvNVX(sv)));
2221 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2223 /* Assumption: first non-preserved integer is < IV_MAX,
2224 this NV is in the preserved range, therefore: */
2225 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2227 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2231 0 0 already failed to read UV.
2232 0 1 already failed to read UV.
2233 1 0 you won't get here in this case. IV/UV
2234 slot set, public IOK, Atof() unneeded.
2235 1 1 already read UV.
2236 so there's no point in sv_2iuv_non_preserve() attempting
2237 to use atol, strtol, strtoul etc. */
2239 sv_2iuv_non_preserve (sv, numtype);
2241 sv_2iuv_non_preserve (sv);
2245 #endif /* NV_PRESERVES_UV */
2246 /* It might be more code efficient to go through the entire logic above
2247 and conditionally set with SvIOKp_on() rather than SvIOK(), but it
2248 gets complex and potentially buggy, so more programmer efficient
2249 to do it this way, by turning off the public flags: */
2251 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2255 if (isGV_with_GP(sv))
2256 return glob_2number(MUTABLE_GV(sv));
2258 if (!(SvFLAGS(sv) & SVs_PADTMP)) {
2259 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2262 if (SvTYPE(sv) < SVt_IV)
2263 /* Typically the caller expects that sv_any is not NULL now. */
2264 sv_upgrade(sv, SVt_IV);
2265 /* Return 0 from the caller. */
2272 =for apidoc sv_2iv_flags
2274 Return the integer value of an SV, doing any necessary string
2275 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2276 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2282 Perl_sv_2iv_flags(pTHX_ register SV *const sv, const I32 flags)
2287 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2288 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2289 cache IVs just in case. In practice it seems that they never
2290 actually anywhere accessible by user Perl code, let alone get used
2291 in anything other than a string context. */
2292 if (flags & SV_GMAGIC)
2297 return I_V(SvNVX(sv));
2299 if (SvPOKp(sv) && SvLEN(sv)) {
2302 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2304 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2305 == IS_NUMBER_IN_UV) {
2306 /* It's definitely an integer */
2307 if (numtype & IS_NUMBER_NEG) {
2308 if (value < (UV)IV_MIN)
2311 if (value < (UV)IV_MAX)
2316 if (ckWARN(WARN_NUMERIC))
2319 return I_V(Atof(SvPVX_const(sv)));
2324 assert(SvTYPE(sv) >= SVt_PVMG);
2325 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2326 } else if (SvTHINKFIRST(sv)) {
2331 if (flags & SV_SKIP_OVERLOAD)
2333 tmpstr=AMG_CALLun(sv,numer);
2334 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2335 return SvIV(tmpstr);
2338 return PTR2IV(SvRV(sv));
2341 sv_force_normal_flags(sv, 0);
2343 if (SvREADONLY(sv) && !SvOK(sv)) {
2344 if (ckWARN(WARN_UNINITIALIZED))
2350 if (S_sv_2iuv_common(aTHX_ sv))
2353 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2354 PTR2UV(sv),SvIVX(sv)));
2355 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2359 =for apidoc sv_2uv_flags
2361 Return the unsigned integer value of an SV, doing any necessary string
2362 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2363 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2369 Perl_sv_2uv_flags(pTHX_ register SV *const sv, const I32 flags)
2374 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2375 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2376 cache IVs just in case. */
2377 if (flags & SV_GMAGIC)
2382 return U_V(SvNVX(sv));
2383 if (SvPOKp(sv) && SvLEN(sv)) {
2386 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2388 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2389 == IS_NUMBER_IN_UV) {
2390 /* It's definitely an integer */
2391 if (!(numtype & IS_NUMBER_NEG))
2395 if (ckWARN(WARN_NUMERIC))
2398 return U_V(Atof(SvPVX_const(sv)));
2403 assert(SvTYPE(sv) >= SVt_PVMG);
2404 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2405 } else if (SvTHINKFIRST(sv)) {
2410 if (flags & SV_SKIP_OVERLOAD)
2412 tmpstr = AMG_CALLun(sv,numer);
2413 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2414 return SvUV(tmpstr);
2417 return PTR2UV(SvRV(sv));
2420 sv_force_normal_flags(sv, 0);
2422 if (SvREADONLY(sv) && !SvOK(sv)) {
2423 if (ckWARN(WARN_UNINITIALIZED))
2429 if (S_sv_2iuv_common(aTHX_ sv))
2433 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2434 PTR2UV(sv),SvUVX(sv)));
2435 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2439 =for apidoc sv_2nv_flags
2441 Return the num value of an SV, doing any necessary string or integer
2442 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2443 Normally used via the C<SvNV(sv)> and C<SvNVx(sv)> macros.
2449 Perl_sv_2nv_flags(pTHX_ register SV *const sv, const I32 flags)
2454 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2455 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2456 cache IVs just in case. */
2457 if (flags & SV_GMAGIC)
2461 if ((SvPOKp(sv) && SvLEN(sv)) && !SvIOKp(sv)) {
2462 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2463 !grok_number(SvPVX_const(sv), SvCUR(sv), NULL))
2465 return Atof(SvPVX_const(sv));
2469 return (NV)SvUVX(sv);
2471 return (NV)SvIVX(sv);
2476 assert(SvTYPE(sv) >= SVt_PVMG);
2477 /* This falls through to the report_uninit near the end of the
2479 } else if (SvTHINKFIRST(sv)) {
2484 if (flags & SV_SKIP_OVERLOAD)
2486 tmpstr = AMG_CALLun(sv,numer);
2487 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2488 return SvNV(tmpstr);
2491 return PTR2NV(SvRV(sv));
2494 sv_force_normal_flags(sv, 0);
2496 if (SvREADONLY(sv) && !SvOK(sv)) {
2497 if (ckWARN(WARN_UNINITIALIZED))
2502 if (SvTYPE(sv) < SVt_NV) {
2503 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2504 sv_upgrade(sv, SVt_NV);
2505 #ifdef USE_LONG_DOUBLE
2507 STORE_NUMERIC_LOCAL_SET_STANDARD();
2508 PerlIO_printf(Perl_debug_log,
2509 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2510 PTR2UV(sv), SvNVX(sv));
2511 RESTORE_NUMERIC_LOCAL();
2515 STORE_NUMERIC_LOCAL_SET_STANDARD();
2516 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2517 PTR2UV(sv), SvNVX(sv));
2518 RESTORE_NUMERIC_LOCAL();
2522 else if (SvTYPE(sv) < SVt_PVNV)
2523 sv_upgrade(sv, SVt_PVNV);
2528 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2529 #ifdef NV_PRESERVES_UV
2535 /* Only set the public NV OK flag if this NV preserves the IV */
2536 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2538 SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2539 : (SvIVX(sv) == I_V(SvNVX(sv))))
2545 else if (SvPOKp(sv) && SvLEN(sv)) {
2547 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2548 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2550 #ifdef NV_PRESERVES_UV
2551 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2552 == IS_NUMBER_IN_UV) {
2553 /* It's definitely an integer */
2554 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2556 SvNV_set(sv, Atof(SvPVX_const(sv)));
2562 SvNV_set(sv, Atof(SvPVX_const(sv)));
2563 /* Only set the public NV OK flag if this NV preserves the value in
2564 the PV at least as well as an IV/UV would.
2565 Not sure how to do this 100% reliably. */
2566 /* if that shift count is out of range then Configure's test is
2567 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2569 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2570 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2571 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2572 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2573 /* Can't use strtol etc to convert this string, so don't try.
2574 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2577 /* value has been set. It may not be precise. */
2578 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2579 /* 2s complement assumption for (UV)IV_MIN */
2580 SvNOK_on(sv); /* Integer is too negative. */
2585 if (numtype & IS_NUMBER_NEG) {
2586 SvIV_set(sv, -(IV)value);
2587 } else if (value <= (UV)IV_MAX) {
2588 SvIV_set(sv, (IV)value);
2590 SvUV_set(sv, value);
2594 if (numtype & IS_NUMBER_NOT_INT) {
2595 /* I believe that even if the original PV had decimals,
2596 they are lost beyond the limit of the FP precision.
2597 However, neither is canonical, so both only get p
2598 flags. NWC, 2000/11/25 */
2599 /* Both already have p flags, so do nothing */
2601 const NV nv = SvNVX(sv);
2602 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2603 if (SvIVX(sv) == I_V(nv)) {
2606 /* It had no "." so it must be integer. */
2610 /* between IV_MAX and NV(UV_MAX).
2611 Could be slightly > UV_MAX */
2613 if (numtype & IS_NUMBER_NOT_INT) {
2614 /* UV and NV both imprecise. */
2616 const UV nv_as_uv = U_V(nv);
2618 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2627 /* It might be more code efficient to go through the entire logic above
2628 and conditionally set with SvNOKp_on() rather than SvNOK(), but it
2629 gets complex and potentially buggy, so more programmer efficient
2630 to do it this way, by turning off the public flags: */
2632 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2633 #endif /* NV_PRESERVES_UV */
2636 if (isGV_with_GP(sv)) {
2637 glob_2number(MUTABLE_GV(sv));
2641 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2643 assert (SvTYPE(sv) >= SVt_NV);
2644 /* Typically the caller expects that sv_any is not NULL now. */
2645 /* XXX Ilya implies that this is a bug in callers that assume this
2646 and ideally should be fixed. */
2649 #if defined(USE_LONG_DOUBLE)
2651 STORE_NUMERIC_LOCAL_SET_STANDARD();
2652 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2653 PTR2UV(sv), SvNVX(sv));
2654 RESTORE_NUMERIC_LOCAL();
2658 STORE_NUMERIC_LOCAL_SET_STANDARD();
2659 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2660 PTR2UV(sv), SvNVX(sv));
2661 RESTORE_NUMERIC_LOCAL();
2670 Return an SV with the numeric value of the source SV, doing any necessary
2671 reference or overload conversion. You must use the C<SvNUM(sv)> macro to
2672 access this function.
2678 Perl_sv_2num(pTHX_ register SV *const sv)
2680 PERL_ARGS_ASSERT_SV_2NUM;
2685 SV * const tmpsv = AMG_CALLun(sv,numer);
2686 TAINT_IF(tmpsv && SvTAINTED(tmpsv));
2687 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2688 return sv_2num(tmpsv);
2690 return sv_2mortal(newSVuv(PTR2UV(SvRV(sv))));
2693 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2694 * UV as a string towards the end of buf, and return pointers to start and
2697 * We assume that buf is at least TYPE_CHARS(UV) long.
2701 S_uiv_2buf(char *const buf, const IV iv, UV uv, const int is_uv, char **const peob)
2703 char *ptr = buf + TYPE_CHARS(UV);
2704 char * const ebuf = ptr;
2707 PERL_ARGS_ASSERT_UIV_2BUF;
2719 *--ptr = '0' + (char)(uv % 10);
2728 =for apidoc sv_2pv_flags
2730 Returns a pointer to the string value of an SV, and sets *lp to its length.
2731 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a string
2733 Normally invoked via the C<SvPV_flags> macro. C<sv_2pv()> and C<sv_2pv_nomg>
2734 usually end up here too.
2740 Perl_sv_2pv_flags(pTHX_ register SV *const sv, STRLEN *const lp, const I32 flags)
2750 if (SvGMAGICAL(sv)) {
2751 if (flags & SV_GMAGIC)
2756 if (flags & SV_MUTABLE_RETURN)
2757 return SvPVX_mutable(sv);
2758 if (flags & SV_CONST_RETURN)
2759 return (char *)SvPVX_const(sv);
2762 if (SvIOKp(sv) || SvNOKp(sv)) {
2763 char tbuf[64]; /* Must fit sprintf/Gconvert of longest IV/NV */
2768 ? my_snprintf(tbuf, sizeof(tbuf), "%"UVuf, (UV)SvUVX(sv))
2769 : my_snprintf(tbuf, sizeof(tbuf), "%"IVdf, (IV)SvIVX(sv));
2771 Gconvert(SvNVX(sv), NV_DIG, 0, tbuf);
2778 #ifdef FIXNEGATIVEZERO
2779 if (len == 2 && tbuf[0] == '-' && tbuf[1] == '0') {
2785 SvUPGRADE(sv, SVt_PV);
2788 s = SvGROW_mutable(sv, len + 1);
2791 return (char*)memcpy(s, tbuf, len + 1);
2797 assert(SvTYPE(sv) >= SVt_PVMG);
2798 /* This falls through to the report_uninit near the end of the
2800 } else if (SvTHINKFIRST(sv)) {
2805 if (flags & SV_SKIP_OVERLOAD)
2807 tmpstr = AMG_CALLun(sv,string);
2808 TAINT_IF(tmpstr && SvTAINTED(tmpstr));
2809 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2811 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2815 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2816 if (flags & SV_CONST_RETURN) {
2817 pv = (char *) SvPVX_const(tmpstr);
2819 pv = (flags & SV_MUTABLE_RETURN)
2820 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2823 *lp = SvCUR(tmpstr);
2825 pv = sv_2pv_flags(tmpstr, lp, flags);
2838 SV *const referent = SvRV(sv);
2842 retval = buffer = savepvn("NULLREF", len);
2843 } else if (SvTYPE(referent) == SVt_REGEXP) {
2844 REGEXP * const re = (REGEXP *)MUTABLE_PTR(referent);
2849 /* If the regex is UTF-8 we want the containing scalar to
2850 have an UTF-8 flag too */
2856 if ((seen_evals = RX_SEEN_EVALS(re)))
2857 PL_reginterp_cnt += seen_evals;
2860 *lp = RX_WRAPLEN(re);
2862 return RX_WRAPPED(re);
2864 const char *const typestr = sv_reftype(referent, 0);
2865 const STRLEN typelen = strlen(typestr);
2866 UV addr = PTR2UV(referent);
2867 const char *stashname = NULL;
2868 STRLEN stashnamelen = 0; /* hush, gcc */
2869 const char *buffer_end;
2871 if (SvOBJECT(referent)) {
2872 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2875 stashname = HEK_KEY(name);
2876 stashnamelen = HEK_LEN(name);
2878 if (HEK_UTF8(name)) {
2884 stashname = "__ANON__";
2887 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2888 + 2 * sizeof(UV) + 2 /* )\0 */;
2890 len = typelen + 3 /* (0x */
2891 + 2 * sizeof(UV) + 2 /* )\0 */;
2894 Newx(buffer, len, char);
2895 buffer_end = retval = buffer + len;
2897 /* Working backwards */
2901 *--retval = PL_hexdigit[addr & 15];
2902 } while (addr >>= 4);
2908 memcpy(retval, typestr, typelen);
2912 retval -= stashnamelen;
2913 memcpy(retval, stashname, stashnamelen);
2915 /* retval may not neccesarily have reached the start of the
2917 assert (retval >= buffer);
2919 len = buffer_end - retval - 1; /* -1 for that \0 */
2927 if (SvREADONLY(sv) && !SvOK(sv)) {
2930 if (flags & SV_UNDEF_RETURNS_NULL)
2932 if (ckWARN(WARN_UNINITIALIZED))
2937 if (SvIOK(sv) || ((SvIOKp(sv) && !SvNOKp(sv)))) {
2938 /* I'm assuming that if both IV and NV are equally valid then
2939 converting the IV is going to be more efficient */
2940 const U32 isUIOK = SvIsUV(sv);
2941 char buf[TYPE_CHARS(UV)];
2945 if (SvTYPE(sv) < SVt_PVIV)
2946 sv_upgrade(sv, SVt_PVIV);
2947 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2949 /* inlined from sv_setpvn */
2950 s = SvGROW_mutable(sv, len + 1);
2951 Move(ptr, s, len, char);
2955 else if (SvNOKp(sv)) {
2957 if (SvTYPE(sv) < SVt_PVNV)
2958 sv_upgrade(sv, SVt_PVNV);
2959 /* The +20 is pure guesswork. Configure test needed. --jhi */
2960 s = SvGROW_mutable(sv, NV_DIG + 20);
2961 /* some Xenix systems wipe out errno here */
2963 if (SvNVX(sv) == 0.0)
2964 my_strlcpy(s, "0", SvLEN(sv));
2968 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2971 #ifdef FIXNEGATIVEZERO
2972 if (*s == '-' && s[1] == '0' && !s[2]) {
2984 if (isGV_with_GP(sv)) {
2985 GV *const gv = MUTABLE_GV(sv);
2986 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
2987 SV *const buffer = sv_newmortal();
2989 /* FAKE globs can get coerced, so need to turn this off temporarily
2992 gv_efullname3(buffer, gv, "*");
2993 SvFLAGS(gv) |= wasfake;
2995 if (SvPOK(buffer)) {
2997 *lp = SvCUR(buffer);
2999 return SvPVX(buffer);
3010 if (flags & SV_UNDEF_RETURNS_NULL)
3012 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
3014 if (SvTYPE(sv) < SVt_PV)
3015 /* Typically the caller expects that sv_any is not NULL now. */
3016 sv_upgrade(sv, SVt_PV);
3020 const STRLEN len = s - SvPVX_const(sv);
3026 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
3027 PTR2UV(sv),SvPVX_const(sv)));
3028 if (flags & SV_CONST_RETURN)
3029 return (char *)SvPVX_const(sv);
3030 if (flags & SV_MUTABLE_RETURN)
3031 return SvPVX_mutable(sv);
3036 =for apidoc sv_copypv
3038 Copies a stringified representation of the source SV into the
3039 destination SV. Automatically performs any necessary mg_get and
3040 coercion of numeric values into strings. Guaranteed to preserve
3041 UTF8 flag even from overloaded objects. Similar in nature to
3042 sv_2pv[_flags] but operates directly on an SV instead of just the
3043 string. Mostly uses sv_2pv_flags to do its work, except when that
3044 would lose the UTF-8'ness of the PV.
3050 Perl_sv_copypv(pTHX_ SV *const dsv, register SV *const ssv)
3053 const char * const s = SvPV_const(ssv,len);
3055 PERL_ARGS_ASSERT_SV_COPYPV;
3057 sv_setpvn(dsv,s,len);
3065 =for apidoc sv_2pvbyte
3067 Return a pointer to the byte-encoded representation of the SV, and set *lp
3068 to its length. May cause the SV to be downgraded from UTF-8 as a
3071 Usually accessed via the C<SvPVbyte> macro.
3077 Perl_sv_2pvbyte(pTHX_ register SV *const sv, STRLEN *const lp)
3079 PERL_ARGS_ASSERT_SV_2PVBYTE;
3081 sv_utf8_downgrade(sv,0);
3082 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
3086 =for apidoc sv_2pvutf8
3088 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
3089 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
3091 Usually accessed via the C<SvPVutf8> macro.
3097 Perl_sv_2pvutf8(pTHX_ register SV *const sv, STRLEN *const lp)
3099 PERL_ARGS_ASSERT_SV_2PVUTF8;
3101 sv_utf8_upgrade(sv);
3102 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
3107 =for apidoc sv_2bool
3109 This function is only called on magical items, and is only used by
3110 sv_true() or its macro equivalent.
3116 Perl_sv_2bool(pTHX_ register SV *const sv)
3120 PERL_ARGS_ASSERT_SV_2BOOL;
3128 SV * const tmpsv = AMG_CALLun(sv,bool_);
3129 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
3130 return cBOOL(SvTRUE(tmpsv));
3132 return SvRV(sv) != 0;
3135 register XPV* const Xpvtmp = (XPV*)SvANY(sv);
3137 (*sv->sv_u.svu_pv > '0' ||
3138 Xpvtmp->xpv_cur > 1 ||
3139 (Xpvtmp->xpv_cur && *sv->sv_u.svu_pv != '0')))
3146 return SvIVX(sv) != 0;
3149 return SvNVX(sv) != 0.0;
3151 if (isGV_with_GP(sv))
3161 =for apidoc sv_utf8_upgrade
3163 Converts the PV of an SV to its UTF-8-encoded form.
3164 Forces the SV to string form if it is not already.
3165 Will C<mg_get> on C<sv> if appropriate.
3166 Always sets the SvUTF8 flag to avoid future validity checks even
3167 if the whole string is the same in UTF-8 as not.
3168 Returns the number of bytes in the converted string
3170 This is not as a general purpose byte encoding to Unicode interface:
3171 use the Encode extension for that.
3173 =for apidoc sv_utf8_upgrade_nomg
3175 Like sv_utf8_upgrade, but doesn't do magic on C<sv>
3177 =for apidoc sv_utf8_upgrade_flags
3179 Converts the PV of an SV to its UTF-8-encoded form.
3180 Forces the SV to string form if it is not already.
3181 Always sets the SvUTF8 flag to avoid future validity checks even
3182 if all the bytes are invariant in UTF-8. If C<flags> has C<SV_GMAGIC> bit set,
3183 will C<mg_get> on C<sv> if appropriate, else not.
3184 Returns the number of bytes in the converted string
3185 C<sv_utf8_upgrade> and
3186 C<sv_utf8_upgrade_nomg> are implemented in terms of this function.
3188 This is not as a general purpose byte encoding to Unicode interface:
3189 use the Encode extension for that.
3193 The grow version is currently not externally documented. It adds a parameter,
3194 extra, which is the number of unused bytes the string of 'sv' is guaranteed to
3195 have free after it upon return. This allows the caller to reserve extra space
3196 that it intends to fill, to avoid extra grows.
3198 Also externally undocumented for the moment is the flag SV_FORCE_UTF8_UPGRADE,
3199 which can be used to tell this function to not first check to see if there are
3200 any characters that are different in UTF-8 (variant characters) which would
3201 force it to allocate a new string to sv, but to assume there are. Typically
3202 this flag is used by a routine that has already parsed the string to find that
3203 there are such characters, and passes this information on so that the work
3204 doesn't have to be repeated.
3206 (One might think that the calling routine could pass in the position of the
3207 first such variant, so it wouldn't have to be found again. But that is not the
3208 case, because typically when the caller is likely to use this flag, it won't be
3209 calling this routine unless it finds something that won't fit into a byte.
3210 Otherwise it tries to not upgrade and just use bytes. But some things that
3211 do fit into a byte are variants in utf8, and the caller may not have been
3212 keeping track of these.)
3214 If the routine itself changes the string, it adds a trailing NUL. Such a NUL
3215 isn't guaranteed due to having other routines do the work in some input cases,
3216 or if the input is already flagged as being in utf8.
3218 The speed of this could perhaps be improved for many cases if someone wanted to
3219 write a fast function that counts the number of variant characters in a string,
3220 especially if it could return the position of the first one.
3225 Perl_sv_utf8_upgrade_flags_grow(pTHX_ register SV *const sv, const I32 flags, STRLEN extra)
3229 PERL_ARGS_ASSERT_SV_UTF8_UPGRADE_FLAGS_GROW;
3231 if (sv == &PL_sv_undef)
3235 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
3236 (void) sv_2pv_flags(sv,&len, flags);
3238 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3242 (void) SvPV_force(sv,len);
3247 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3252 sv_force_normal_flags(sv, 0);
3255 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING)) {
3256 sv_recode_to_utf8(sv, PL_encoding);
3257 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3261 if (SvCUR(sv) == 0) {
3262 if (extra) SvGROW(sv, extra);
3263 } else { /* Assume Latin-1/EBCDIC */
3264 /* This function could be much more efficient if we
3265 * had a FLAG in SVs to signal if there are any variant
3266 * chars in the PV. Given that there isn't such a flag
3267 * make the loop as fast as possible (although there are certainly ways
3268 * to speed this up, eg. through vectorization) */
3269 U8 * s = (U8 *) SvPVX_const(sv);
3270 U8 * e = (U8 *) SvEND(sv);
3272 STRLEN two_byte_count = 0;
3274 if (flags & SV_FORCE_UTF8_UPGRADE) goto must_be_utf8;
3276 /* See if really will need to convert to utf8. We mustn't rely on our
3277 * incoming SV being well formed and having a trailing '\0', as certain
3278 * code in pp_formline can send us partially built SVs. */
3282 if (NATIVE_IS_INVARIANT(ch)) continue;
3284 t--; /* t already incremented; re-point to first variant */
3289 /* utf8 conversion not needed because all are invariants. Mark as
3290 * UTF-8 even if no variant - saves scanning loop */
3296 /* Here, the string should be converted to utf8, either because of an
3297 * input flag (two_byte_count = 0), or because a character that
3298 * requires 2 bytes was found (two_byte_count = 1). t points either to
3299 * the beginning of the string (if we didn't examine anything), or to
3300 * the first variant. In either case, everything from s to t - 1 will
3301 * occupy only 1 byte each on output.
3303 * There are two main ways to convert. One is to create a new string
3304 * and go through the input starting from the beginning, appending each
3305 * converted value onto the new string as we go along. It's probably
3306 * best to allocate enough space in the string for the worst possible
3307 * case rather than possibly running out of space and having to
3308 * reallocate and then copy what we've done so far. Since everything
3309 * from s to t - 1 is invariant, the destination can be initialized
3310 * with these using a fast memory copy
3312 * The other way is to figure out exactly how big the string should be
3313 * by parsing the entire input. Then you don't have to make it big
3314 * enough to handle the worst possible case, and more importantly, if
3315 * the string you already have is large enough, you don't have to
3316 * allocate a new string, you can copy the last character in the input
3317 * string to the final position(s) that will be occupied by the
3318 * converted string and go backwards, stopping at t, since everything
3319 * before that is invariant.
3321 * There are advantages and disadvantages to each method.
3323 * In the first method, we can allocate a new string, do the memory
3324 * copy from the s to t - 1, and then proceed through the rest of the
3325 * string byte-by-byte.
3327 * In the second method, we proceed through the rest of the input
3328 * string just calculating how big the converted string will be. Then
3329 * there are two cases:
3330 * 1) if the string has enough extra space to handle the converted
3331 * value. We go backwards through the string, converting until we
3332 * get to the position we are at now, and then stop. If this
3333 * position is far enough along in the string, this method is
3334 * faster than the other method. If the memory copy were the same
3335 * speed as the byte-by-byte loop, that position would be about
3336 * half-way, as at the half-way mark, parsing to the end and back
3337 * is one complete string's parse, the same amount as starting
3338 * over and going all the way through. Actually, it would be
3339 * somewhat less than half-way, as it's faster to just count bytes
3340 * than to also copy, and we don't have the overhead of allocating
3341 * a new string, changing the scalar to use it, and freeing the
3342 * existing one. But if the memory copy is fast, the break-even
3343 * point is somewhere after half way. The counting loop could be
3344 * sped up by vectorization, etc, to move the break-even point
3345 * further towards the beginning.
3346 * 2) if the string doesn't have enough space to handle the converted
3347 * value. A new string will have to be allocated, and one might
3348 * as well, given that, start from the beginning doing the first
3349 * method. We've spent extra time parsing the string and in
3350 * exchange all we've gotten is that we know precisely how big to
3351 * make the new one. Perl is more optimized for time than space,
3352 * so this case is a loser.
3353 * So what I've decided to do is not use the 2nd method unless it is
3354 * guaranteed that a new string won't have to be allocated, assuming
3355 * the worst case. I also decided not to put any more conditions on it
3356 * than this, for now. It seems likely that, since the worst case is
3357 * twice as big as the unknown portion of the string (plus 1), we won't
3358 * be guaranteed enough space, causing us to go to the first method,
3359 * unless the string is short, or the first variant character is near
3360 * the end of it. In either of these cases, it seems best to use the
3361 * 2nd method. The only circumstance I can think of where this would
3362 * be really slower is if the string had once had much more data in it
3363 * than it does now, but there is still a substantial amount in it */
3366 STRLEN invariant_head = t - s;
3367 STRLEN size = invariant_head + (e - t) * 2 + 1 + extra;
3368 if (SvLEN(sv) < size) {
3370 /* Here, have decided to allocate a new string */
3375 Newx(dst, size, U8);
3377 /* If no known invariants at the beginning of the input string,
3378 * set so starts from there. Otherwise, can use memory copy to
3379 * get up to where we are now, and then start from here */
3381 if (invariant_head <= 0) {
3384 Copy(s, dst, invariant_head, char);
3385 d = dst + invariant_head;
3389 const UV uv = NATIVE8_TO_UNI(*t++);
3390 if (UNI_IS_INVARIANT(uv))
3391 *d++ = (U8)UNI_TO_NATIVE(uv);
3393 *d++ = (U8)UTF8_EIGHT_BIT_HI(uv);
3394 *d++ = (U8)UTF8_EIGHT_BIT_LO(uv);
3398 SvPV_free(sv); /* No longer using pre-existing string */
3399 SvPV_set(sv, (char*)dst);
3400 SvCUR_set(sv, d - dst);
3401 SvLEN_set(sv, size);
3404 /* Here, have decided to get the exact size of the string.
3405 * Currently this happens only when we know that there is
3406 * guaranteed enough space to fit the converted string, so
3407 * don't have to worry about growing. If two_byte_count is 0,
3408 * then t points to the first byte of the string which hasn't
3409 * been examined yet. Otherwise two_byte_count is 1, and t
3410 * points to the first byte in the string that will expand to
3411 * two. Depending on this, start examining at t or 1 after t.
3414 U8 *d = t + two_byte_count;
3417 /* Count up the remaining bytes that expand to two */
3420 const U8 chr = *d++;
3421 if (! NATIVE_IS_INVARIANT(chr)) two_byte_count++;
3424 /* The string will expand by just the number of bytes that
3425 * occupy two positions. But we are one afterwards because of
3426 * the increment just above. This is the place to put the
3427 * trailing NUL, and to set the length before we decrement */
3429 d += two_byte_count;
3430 SvCUR_set(sv, d - s);
3434 /* Having decremented d, it points to the position to put the
3435 * very last byte of the expanded string. Go backwards through
3436 * the string, copying and expanding as we go, stopping when we
3437 * get to the part that is invariant the rest of the way down */
3441 const U8 ch = NATIVE8_TO_UNI(*e--);
3442 if (UNI_IS_INVARIANT(ch)) {
3443 *d-- = UNI_TO_NATIVE(ch);
3445 *d-- = (U8)UTF8_EIGHT_BIT_LO(ch);
3446 *d-- = (U8)UTF8_EIGHT_BIT_HI(ch);
3453 /* Mark as UTF-8 even if no variant - saves scanning loop */
3459 =for apidoc sv_utf8_downgrade
3461 Attempts to convert the PV of an SV from characters to bytes.
3462 If the PV contains a character that cannot fit
3463 in a byte, this conversion will fail;
3464 in this case, either returns false or, if C<fail_ok> is not
3467 This is not as a general purpose Unicode to byte encoding interface:
3468 use the Encode extension for that.
3474 Perl_sv_utf8_downgrade(pTHX_ register SV *const sv, const bool fail_ok)
3478 PERL_ARGS_ASSERT_SV_UTF8_DOWNGRADE;
3480 if (SvPOKp(sv) && SvUTF8(sv)) {
3486 sv_force_normal_flags(sv, 0);
3488 s = (U8 *) SvPV(sv, len);
3489 if (!utf8_to_bytes(s, &len)) {
3494 Perl_croak(aTHX_ "Wide character in %s",
3497 Perl_croak(aTHX_ "Wide character");
3508 =for apidoc sv_utf8_encode
3510 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3511 flag off so that it looks like octets again.
3517 Perl_sv_utf8_encode(pTHX_ register SV *const sv)
3519 PERL_ARGS_ASSERT_SV_UTF8_ENCODE;
3522 sv_force_normal_flags(sv, 0);
3524 if (SvREADONLY(sv)) {
3525 Perl_croak_no_modify(aTHX);
3527 (void) sv_utf8_upgrade(sv);
3532 =for apidoc sv_utf8_decode
3534 If the PV of the SV is an octet sequence in UTF-8
3535 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3536 so that it looks like a character. If the PV contains only single-byte
3537 characters, the C<SvUTF8> flag stays being off.
3538 Scans PV for validity and returns false if the PV is invalid UTF-8.
3544 Perl_sv_utf8_decode(pTHX_ register SV *const sv)
3546 PERL_ARGS_ASSERT_SV_UTF8_DECODE;
3552 /* The octets may have got themselves encoded - get them back as
3555 if (!sv_utf8_downgrade(sv, TRUE))
3558 /* it is actually just a matter of turning the utf8 flag on, but
3559 * we want to make sure everything inside is valid utf8 first.
3561 c = (const U8 *) SvPVX_const(sv);
3562 if (!is_utf8_string(c, SvCUR(sv)+1))
3564 e = (const U8 *) SvEND(sv);
3567 if (!UTF8_IS_INVARIANT(ch)) {
3577 =for apidoc sv_setsv
3579 Copies the contents of the source SV C<ssv> into the destination SV
3580 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3581 function if the source SV needs to be reused. Does not handle 'set' magic.
3582 Loosely speaking, it performs a copy-by-value, obliterating any previous
3583 content of the destination.
3585 You probably want to use one of the assortment of wrappers, such as
3586 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3587 C<SvSetMagicSV_nosteal>.
3589 =for apidoc sv_setsv_flags
3591 Copies the contents of the source SV C<ssv> into the destination SV
3592 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3593 function if the source SV needs to be reused. Does not handle 'set' magic.
3594 Loosely speaking, it performs a copy-by-value, obliterating any previous
3595 content of the destination.
3596 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3597 C<ssv> if appropriate, else not. If the C<flags> parameter has the
3598 C<NOSTEAL> bit set then the buffers of temps will not be stolen. <sv_setsv>
3599 and C<sv_setsv_nomg> are implemented in terms of this function.
3601 You probably want to use one of the assortment of wrappers, such as
3602 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3603 C<SvSetMagicSV_nosteal>.
3605 This is the primary function for copying scalars, and most other
3606 copy-ish functions and macros use this underneath.
3612 S_glob_assign_glob(pTHX_ SV *const dstr, SV *const sstr, const int dtype)
3614 I32 mro_changes = 0; /* 1 = method, 2 = isa */
3616 PERL_ARGS_ASSERT_GLOB_ASSIGN_GLOB;
3618 if (dtype != SVt_PVGV) {
3619 const char * const name = GvNAME(sstr);
3620 const STRLEN len = GvNAMELEN(sstr);
3622 if (dtype >= SVt_PV) {
3628 SvUPGRADE(dstr, SVt_PVGV);
3629 (void)SvOK_off(dstr);
3630 /* FIXME - why are we doing this, then turning it off and on again
3632 isGV_with_GP_on(dstr);
3634 GvSTASH(dstr) = GvSTASH(sstr);
3636 Perl_sv_add_backref(aTHX_ MUTABLE_SV(GvSTASH(dstr)), dstr);
3637 gv_name_set(MUTABLE_GV(dstr), name, len, GV_ADD);
3638 SvFAKE_on(dstr); /* can coerce to non-glob */
3641 if(GvGP(MUTABLE_GV(sstr))) {
3642 /* If source has method cache entry, clear it */
3644 SvREFCNT_dec(GvCV(sstr));
3648 /* If source has a real method, then a method is
3650 else if(GvCV((const GV *)sstr)) {
3655 /* If dest already had a real method, that's a change as well */
3656 if(!mro_changes && GvGP(MUTABLE_GV(dstr)) && GvCVu((const GV *)dstr)) {
3660 if(strEQ(GvNAME((const GV *)dstr),"ISA"))
3663 gp_free(MUTABLE_GV(dstr));
3664 isGV_with_GP_off(dstr);
3665 (void)SvOK_off(dstr);
3666 isGV_with_GP_on(dstr);
3667 GvINTRO_off(dstr); /* one-shot flag */
3668 GvGP(dstr) = gp_ref(GvGP(sstr));
3669 if (SvTAINTED(sstr))
3671 if (GvIMPORTED(dstr) != GVf_IMPORTED
3672 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3674 GvIMPORTED_on(dstr);
3677 if(mro_changes == 2) mro_isa_changed_in(GvSTASH(dstr));
3678 else if(mro_changes) mro_method_changed_in(GvSTASH(dstr));
3683 S_glob_assign_ref(pTHX_ SV *const dstr, SV *const sstr)
3685 SV * const sref = SvREFCNT_inc(SvRV(sstr));
3687 const int intro = GvINTRO(dstr);
3690 const U32 stype = SvTYPE(sref);
3692 PERL_ARGS_ASSERT_GLOB_ASSIGN_REF;
3695 GvINTRO_off(dstr); /* one-shot flag */
3696 GvLINE(dstr) = CopLINE(PL_curcop);
3697 GvEGV(dstr) = MUTABLE_GV(dstr);
3702 location = (SV **) &GvCV(dstr);
3703 import_flag = GVf_IMPORTED_CV;
3706 location = (SV **) &GvHV(dstr);
3707 import_flag = GVf_IMPORTED_HV;
3710 location = (SV **) &GvAV(dstr);
3711 import_flag = GVf_IMPORTED_AV;
3714 location = (SV **) &GvIOp(dstr);
3717 location = (SV **) &GvFORM(dstr);
3720 location = &GvSV(dstr);
3721 import_flag = GVf_IMPORTED_SV;
3724 if (stype == SVt_PVCV) {
3725 /*if (GvCVGEN(dstr) && (GvCV(dstr) != (const CV *)sref || GvCVGEN(dstr))) {*/
3726 if (GvCVGEN(dstr)) {
3727 SvREFCNT_dec(GvCV(dstr));
3729 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3732 SAVEGENERICSV(*location);
3736 if (stype == SVt_PVCV && (*location != sref || GvCVGEN(dstr))) {
3737 CV* const cv = MUTABLE_CV(*location);
3739 if (!GvCVGEN((const GV *)dstr) &&
3740 (CvROOT(cv) || CvXSUB(cv)))
3742 /* Redefining a sub - warning is mandatory if
3743 it was a const and its value changed. */
3744 if (CvCONST(cv) && CvCONST((const CV *)sref)
3746 == cv_const_sv((const CV *)sref)) {
3748 /* They are 2 constant subroutines generated from
3749 the same constant. This probably means that
3750 they are really the "same" proxy subroutine
3751 instantiated in 2 places. Most likely this is
3752 when a constant is exported twice. Don't warn.
3755 else if (ckWARN(WARN_REDEFINE)
3757 && (!CvCONST((const CV *)sref)
3758 || sv_cmp(cv_const_sv(cv),
3759 cv_const_sv((const CV *)
3761 Perl_warner(aTHX_ packWARN(WARN_REDEFINE),
3764 ? "Constant subroutine %s::%s redefined"
3765 : "Subroutine %s::%s redefined"),
3766 HvNAME_get(GvSTASH((const GV *)dstr)),
3767 GvENAME(MUTABLE_GV(dstr)));
3771 cv_ckproto_len(cv, (const GV *)dstr,
3772 SvPOK(sref) ? SvPVX_const(sref) : NULL,
3773 SvPOK(sref) ? SvCUR(sref) : 0);
3775 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3776 GvASSUMECV_on(dstr);
3777 if(GvSTASH(dstr)) mro_method_changed_in(GvSTASH(dstr)); /* sub foo { 1 } sub bar { 2 } *bar = \&foo */
3780 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3781 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3782 GvFLAGS(dstr) |= import_flag;
3784 if (stype == SVt_PVAV && strEQ(GvNAME((GV*)dstr), "ISA")) {
3785 sv_magic(sref, dstr, PERL_MAGIC_isa, NULL, 0);
3786 mro_isa_changed_in(GvSTASH(dstr));
3791 if (SvTAINTED(sstr))
3797 Perl_sv_setsv_flags(pTHX_ SV *dstr, register SV* sstr, const I32 flags)
3800 register U32 sflags;
3802 register svtype stype;
3804 PERL_ARGS_ASSERT_SV_SETSV_FLAGS;
3809 if (SvIS_FREED(dstr)) {
3810 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
3811 " to a freed scalar %p", SVfARG(sstr), (void *)dstr);
3813 SV_CHECK_THINKFIRST_COW_DROP(dstr);
3815 sstr = &PL_sv_undef;
3816 if (SvIS_FREED(sstr)) {
3817 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
3818 (void*)sstr, (void*)dstr);
3820 stype = SvTYPE(sstr);
3821 dtype = SvTYPE(dstr);
3823 (void)SvAMAGIC_off(dstr);
3826 /* need to nuke the magic */
3830 /* There's a lot of redundancy below but we're going for speed here */
3835 if (dtype != SVt_PVGV) {
3836 (void)SvOK_off(dstr);
3844 sv_upgrade(dstr, SVt_IV);
3848 sv_upgrade(dstr, SVt_PVIV);
3851 goto end_of_first_switch;
3853 (void)SvIOK_only(dstr);
3854 SvIV_set(dstr, SvIVX(sstr));
3857 /* SvTAINTED can only be true if the SV has taint magic, which in
3858 turn means that the SV type is PVMG (or greater). This is the
3859 case statement for SVt_IV, so this cannot be true (whatever gcov
3861 assert(!SvTAINTED(sstr));
3866 if (dtype < SVt_PV && dtype != SVt_IV)
3867 sv_upgrade(dstr, SVt_IV);
3875 sv_upgrade(dstr, SVt_NV);
3879 sv_upgrade(dstr, SVt_PVNV);
3882 goto end_of_first_switch;
3884 SvNV_set(dstr, SvNVX(sstr));
3885 (void)SvNOK_only(dstr);
3886 /* SvTAINTED can only be true if the SV has taint magic, which in
3887 turn means that the SV type is PVMG (or greater). This is the
3888 case statement for SVt_NV, so this cannot be true (whatever gcov
3890 assert(!SvTAINTED(sstr));
3896 #ifdef PERL_OLD_COPY_ON_WRITE
3897 if ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS) {
3898 if (dtype < SVt_PVIV)
3899 sv_upgrade(dstr, SVt_PVIV);
3906 sv_upgrade(dstr, SVt_PV);
3909 if (dtype < SVt_PVIV)
3910 sv_upgrade(dstr, SVt_PVIV);
3913 if (dtype < SVt_PVNV)
3914 sv_upgrade(dstr, SVt_PVNV);
3918 const char * const type = sv_reftype(sstr,0);
3920 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_DESC(PL_op));
3922 Perl_croak(aTHX_ "Bizarre copy of %s", type);
3927 if (dtype < SVt_REGEXP)
3928 sv_upgrade(dstr, SVt_REGEXP);
3931 /* case SVt_BIND: */
3934 if (isGV_with_GP(sstr) && dtype <= SVt_PVGV) {
3935 glob_assign_glob(dstr, sstr, dtype);
3938 /* SvVALID means that this PVGV is playing at being an FBM. */
3942 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
3944 if (SvTYPE(sstr) != stype) {
3945 stype = SvTYPE(sstr);
3946 if (isGV_with_GP(sstr) && stype == SVt_PVGV && dtype <= SVt_PVGV) {
3947 glob_assign_glob(dstr, sstr, dtype);
3952 if (stype == SVt_PVLV)
3953 SvUPGRADE(dstr, SVt_PVNV);
3955 SvUPGRADE(dstr, (svtype)stype);
3957 end_of_first_switch:
3959 /* dstr may have been upgraded. */
3960 dtype = SvTYPE(dstr);
3961 sflags = SvFLAGS(sstr);
3963 if (dtype == SVt_PVCV || dtype == SVt_PVFM) {
3964 /* Assigning to a subroutine sets the prototype. */
3967 const char *const ptr = SvPV_const(sstr, len);
3969 SvGROW(dstr, len + 1);
3970 Copy(ptr, SvPVX(dstr), len + 1, char);
3971 SvCUR_set(dstr, len);
3973 SvFLAGS(dstr) |= sflags & SVf_UTF8;
3977 } else if (dtype == SVt_PVAV || dtype == SVt_PVHV) {
3978 const char * const type = sv_reftype(dstr,0);
3980 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_DESC(PL_op));
3982 Perl_croak(aTHX_ "Cannot copy to %s", type);
3983 } else if (sflags & SVf_ROK) {
3984 if (isGV_with_GP(dstr) && dtype == SVt_PVGV
3985 && SvTYPE(SvRV(sstr)) == SVt_PVGV && isGV_with_GP(SvRV(sstr))) {
3988 if (GvIMPORTED(dstr) != GVf_IMPORTED
3989 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3991 GvIMPORTED_on(dstr);
3996 glob_assign_glob(dstr, sstr, dtype);
4000 if (dtype >= SVt_PV) {
4001 if (dtype == SVt_PVGV && isGV_with_GP(dstr)) {
4002 glob_assign_ref(dstr, sstr);
4005 if (SvPVX_const(dstr)) {
4011 (void)SvOK_off(dstr);
4012 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
4013 SvFLAGS(dstr) |= sflags & SVf_ROK;
4014 assert(!(sflags & SVp_NOK));
4015 assert(!(sflags & SVp_IOK));
4016 assert(!(sflags & SVf_NOK));
4017 assert(!(sflags & SVf_IOK));
4019 else if (dtype == SVt_PVGV && isGV_with_GP(dstr)) {
4020 if (!(sflags & SVf_OK)) {
4021 Perl_ck_warner(aTHX_ packWARN(WARN_MISC),
4022 "Undefined value assigned to typeglob");
4025 GV *gv = gv_fetchsv(sstr, GV_ADD, SVt_PVGV);
4026 if (dstr != (const SV *)gv) {
4028 gp_free(MUTABLE_GV(dstr));
4029 GvGP(dstr) = gp_ref(GvGP(gv));
4033 else if (dtype == SVt_REGEXP && stype == SVt_REGEXP) {
4034 reg_temp_copy((REGEXP*)dstr, (REGEXP*)sstr);
4036 else if (sflags & SVp_POK) {
4040 * Check to see if we can just swipe the string. If so, it's a
4041 * possible small lose on short strings, but a big win on long ones.
4042 * It might even be a win on short strings if SvPVX_const(dstr)
4043 * has to be allocated and SvPVX_const(sstr) has to be freed.
4044 * Likewise if we can set up COW rather than doing an actual copy, we
4045 * drop to the else clause, as the swipe code and the COW setup code
4046 * have much in common.
4049 /* Whichever path we take through the next code, we want this true,
4050 and doing it now facilitates the COW check. */
4051 (void)SvPOK_only(dstr);
4054 /* If we're already COW then this clause is not true, and if COW
4055 is allowed then we drop down to the else and make dest COW
4056 with us. If caller hasn't said that we're allowed to COW
4057 shared hash keys then we don't do the COW setup, even if the
4058 source scalar is a shared hash key scalar. */
4059 (((flags & SV_COW_SHARED_HASH_KEYS)
4060 ? (sflags & (SVf_FAKE|SVf_READONLY)) != (SVf_FAKE|SVf_READONLY)
4061 : 1 /* If making a COW copy is forbidden then the behaviour we
4062 desire is as if the source SV isn't actually already
4063 COW, even if it is. So we act as if the source flags
4064 are not COW, rather than actually testing them. */
4066 #ifndef PERL_OLD_COPY_ON_WRITE
4067 /* The change that added SV_COW_SHARED_HASH_KEYS makes the logic
4068 when PERL_OLD_COPY_ON_WRITE is defined a little wrong.
4069 Conceptually PERL_OLD_COPY_ON_WRITE being defined should
4070 override SV_COW_SHARED_HASH_KEYS, because it means "always COW"
4071 but in turn, it's somewhat dead code, never expected to go
4072 live, but more kept as a placeholder on how to do it better
4073 in a newer implementation. */
4074 /* If we are COW and dstr is a suitable target then we drop down
4075 into the else and make dest a COW of us. */
4076 || (SvFLAGS(dstr) & CAN_COW_MASK) != CAN_COW_FLAGS
4081 (sflags & SVs_TEMP) && /* slated for free anyway? */
4082 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
4083 (!(flags & SV_NOSTEAL)) &&
4084 /* and we're allowed to steal temps */
4085 SvREFCNT(sstr) == 1 && /* and no other references to it? */
4086 SvLEN(sstr)) /* and really is a string */
4087 #ifdef PERL_OLD_COPY_ON_WRITE
4088 && ((flags & SV_COW_SHARED_HASH_KEYS)
4089 ? (!((sflags & CAN_COW_MASK) == CAN_COW_FLAGS
4090 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
4091 && SvTYPE(sstr) >= SVt_PVIV && SvTYPE(sstr) != SVt_PVFM))
4095 /* Failed the swipe test, and it's not a shared hash key either.
4096 Have to copy the string. */
4097 STRLEN len = SvCUR(sstr);
4098 SvGROW(dstr, len + 1); /* inlined from sv_setpvn */
4099 Move(SvPVX_const(sstr),SvPVX(dstr),len,char);
4100 SvCUR_set(dstr, len);
4101 *SvEND(dstr) = '\0';
4103 /* If PERL_OLD_COPY_ON_WRITE is not defined, then isSwipe will always
4105 /* Either it's a shared hash key, or it's suitable for
4106 copy-on-write or we can swipe the string. */
4108 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
4112 #ifdef PERL_OLD_COPY_ON_WRITE
4114 if ((sflags & (SVf_FAKE | SVf_READONLY))
4115 != (SVf_FAKE | SVf_READONLY)) {
4116 SvREADONLY_on(sstr);
4118 /* Make the source SV into a loop of 1.
4119 (about to become 2) */
4120 SV_COW_NEXT_SV_SET(sstr, sstr);
4124 /* Initial code is common. */
4125 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
4130 /* making another shared SV. */
4131 STRLEN cur = SvCUR(sstr);
4132 STRLEN len = SvLEN(sstr);
4133 #ifdef PERL_OLD_COPY_ON_WRITE
4135 assert (SvTYPE(dstr) >= SVt_PVIV);
4136 /* SvIsCOW_normal */
4137 /* splice us in between source and next-after-source. */
4138 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4139 SV_COW_NEXT_SV_SET(sstr, dstr);
4140 SvPV_set(dstr, SvPVX_mutable(sstr));
4144 /* SvIsCOW_shared_hash */
4145 DEBUG_C(PerlIO_printf(Perl_debug_log,
4146 "Copy on write: Sharing hash\n"));
4148 assert (SvTYPE(dstr) >= SVt_PV);
4150 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
4152 SvLEN_set(dstr, len);
4153 SvCUR_set(dstr, cur);
4154 SvREADONLY_on(dstr);
4158 { /* Passes the swipe test. */
4159 SvPV_set(dstr, SvPVX_mutable(sstr));
4160 SvLEN_set(dstr, SvLEN(sstr));
4161 SvCUR_set(dstr, SvCUR(sstr));
4164 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
4165 SvPV_set(sstr, NULL);
4171 if (sflags & SVp_NOK) {
4172 SvNV_set(dstr, SvNVX(sstr));
4174 if (sflags & SVp_IOK) {
4175 SvIV_set(dstr, SvIVX(sstr));
4176 /* Must do this otherwise some other overloaded use of 0x80000000
4177 gets confused. I guess SVpbm_VALID */
4178 if (sflags & SVf_IVisUV)
4181 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8);
4183 const MAGIC * const smg = SvVSTRING_mg(sstr);
4185 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
4186 smg->mg_ptr, smg->mg_len);
4187 SvRMAGICAL_on(dstr);
4191 else if (sflags & (SVp_IOK|SVp_NOK)) {
4192 (void)SvOK_off(dstr);
4193 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK);
4194 if (sflags & SVp_IOK) {
4195 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
4196 SvIV_set(dstr, SvIVX(sstr));
4198 if (sflags & SVp_NOK) {
4199 SvNV_set(dstr, SvNVX(sstr));
4203 if (isGV_with_GP(sstr)) {
4204 /* This stringification rule for globs is spread in 3 places.
4205 This feels bad. FIXME. */
4206 const U32 wasfake = sflags & SVf_FAKE;
4208 /* FAKE globs can get coerced, so need to turn this off
4209 temporarily if it is on. */
4211 gv_efullname3(dstr, MUTABLE_GV(sstr), "*");
4212 SvFLAGS(sstr) |= wasfake;
4215 (void)SvOK_off(dstr);
4217 if (SvTAINTED(sstr))
4222 =for apidoc sv_setsv_mg
4224 Like C<sv_setsv>, but also handles 'set' magic.
4230 Perl_sv_setsv_mg(pTHX_ SV *const dstr, register SV *const sstr)
4232 PERL_ARGS_ASSERT_SV_SETSV_MG;
4234 sv_setsv(dstr,sstr);
4238 #ifdef PERL_OLD_COPY_ON_WRITE
4240 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
4242 STRLEN cur = SvCUR(sstr);
4243 STRLEN len = SvLEN(sstr);
4244 register char *new_pv;
4246 PERL_ARGS_ASSERT_SV_SETSV_COW;
4249 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
4250 (void*)sstr, (void*)dstr);
4257 if (SvTHINKFIRST(dstr))
4258 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
4259 else if (SvPVX_const(dstr))
4260 Safefree(SvPVX_const(dstr));
4264 SvUPGRADE(dstr, SVt_PVIV);
4266 assert (SvPOK(sstr));
4267 assert (SvPOKp(sstr));
4268 assert (!SvIOK(sstr));
4269 assert (!SvIOKp(sstr));
4270 assert (!SvNOK(sstr));
4271 assert (!SvNOKp(sstr));
4273 if (SvIsCOW(sstr)) {
4275 if (SvLEN(sstr) == 0) {
4276 /* source is a COW shared hash key. */
4277 DEBUG_C(PerlIO_printf(Perl_debug_log,
4278 "Fast copy on write: Sharing hash\n"));
4279 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
4282 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4284 assert ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS);
4285 SvUPGRADE(sstr, SVt_PVIV);
4286 SvREADONLY_on(sstr);
4288 DEBUG_C(PerlIO_printf(Perl_debug_log,
4289 "Fast copy on write: Converting sstr to COW\n"));
4290 SV_COW_NEXT_SV_SET(dstr, sstr);
4292 SV_COW_NEXT_SV_SET(sstr, dstr);
4293 new_pv = SvPVX_mutable(sstr);
4296 SvPV_set(dstr, new_pv);
4297 SvFLAGS(dstr) = (SVt_PVIV|SVf_POK|SVp_POK|SVf_FAKE|SVf_READONLY);
4300 SvLEN_set(dstr, len);
4301 SvCUR_set(dstr, cur);
4310 =for apidoc sv_setpvn
4312 Copies a string into an SV. The C<len> parameter indicates the number of
4313 bytes to be copied. If the C<ptr> argument is NULL the SV will become
4314 undefined. Does not handle 'set' magic. See C<sv_setpvn_mg>.
4320 Perl_sv_setpvn(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4323 register char *dptr;
4325 PERL_ARGS_ASSERT_SV_SETPVN;
4327 SV_CHECK_THINKFIRST_COW_DROP(sv);
4333 /* len is STRLEN which is unsigned, need to copy to signed */
4336 Perl_croak(aTHX_ "panic: sv_setpvn called with negative strlen");
4338 SvUPGRADE(sv, SVt_PV);
4340 dptr = SvGROW(sv, len + 1);
4341 Move(ptr,dptr,len,char);
4344 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4349 =for apidoc sv_setpvn_mg
4351 Like C<sv_setpvn>, but also handles 'set' magic.
4357 Perl_sv_setpvn_mg(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4359 PERL_ARGS_ASSERT_SV_SETPVN_MG;
4361 sv_setpvn(sv,ptr,len);
4366 =for apidoc sv_setpv
4368 Copies a string into an SV. The string must be null-terminated. Does not
4369 handle 'set' magic. See C<sv_setpv_mg>.
4375 Perl_sv_setpv(pTHX_ register SV *const sv, register const char *const ptr)
4378 register STRLEN len;
4380 PERL_ARGS_ASSERT_SV_SETPV;
4382 SV_CHECK_THINKFIRST_COW_DROP(sv);
4388 SvUPGRADE(sv, SVt_PV);
4390 SvGROW(sv, len + 1);
4391 Move(ptr,SvPVX(sv),len+1,char);
4393 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4398 =for apidoc sv_setpv_mg
4400 Like C<sv_setpv>, but also handles 'set' magic.
4406 Perl_sv_setpv_mg(pTHX_ register SV *const sv, register const char *const ptr)
4408 PERL_ARGS_ASSERT_SV_SETPV_MG;
4415 =for apidoc sv_usepvn_flags
4417 Tells an SV to use C<ptr> to find its string value. Normally the
4418 string is stored inside the SV but sv_usepvn allows the SV to use an
4419 outside string. The C<ptr> should point to memory that was allocated
4420 by C<malloc>. The string length, C<len>, must be supplied. By default
4421 this function will realloc (i.e. move) the memory pointed to by C<ptr>,
4422 so that pointer should not be freed or used by the programmer after
4423 giving it to sv_usepvn, and neither should any pointers from "behind"
4424 that pointer (e.g. ptr + 1) be used.
4426 If C<flags> & SV_SMAGIC is true, will call SvSETMAGIC. If C<flags> &
4427 SV_HAS_TRAILING_NUL is true, then C<ptr[len]> must be NUL, and the realloc
4428 will be skipped. (i.e. the buffer is actually at least 1 byte longer than
4429 C<len>, and already meets the requirements for storing in C<SvPVX>)
4435 Perl_sv_usepvn_flags(pTHX_ SV *const sv, char *ptr, const STRLEN len, const U32 flags)
4440 PERL_ARGS_ASSERT_SV_USEPVN_FLAGS;
4442 SV_CHECK_THINKFIRST_COW_DROP(sv);
4443 SvUPGRADE(sv, SVt_PV);
4446 if (flags & SV_SMAGIC)
4450 if (SvPVX_const(sv))
4454 if (flags & SV_HAS_TRAILING_NUL)
4455 assert(ptr[len] == '\0');
4458 allocate = (flags & SV_HAS_TRAILING_NUL)
4460 #ifdef Perl_safesysmalloc_size
4463 PERL_STRLEN_ROUNDUP(len + 1);
4465 if (flags & SV_HAS_TRAILING_NUL) {
4466 /* It's long enough - do nothing.
4467 Specfically Perl_newCONSTSUB is relying on this. */
4470 /* Force a move to shake out bugs in callers. */
4471 char *new_ptr = (char*)safemalloc(allocate);
4472 Copy(ptr, new_ptr, len, char);
4473 PoisonFree(ptr,len,char);
4477 ptr = (char*) saferealloc (ptr, allocate);
4480 #ifdef Perl_safesysmalloc_size
4481 SvLEN_set(sv, Perl_safesysmalloc_size(ptr));
4483 SvLEN_set(sv, allocate);
4487 if (!(flags & SV_HAS_TRAILING_NUL)) {
4490 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4492 if (flags & SV_SMAGIC)
4496 #ifdef PERL_OLD_COPY_ON_WRITE
4497 /* Need to do this *after* making the SV normal, as we need the buffer
4498 pointer to remain valid until after we've copied it. If we let go too early,
4499 another thread could invalidate it by unsharing last of the same hash key
4500 (which it can do by means other than releasing copy-on-write Svs)
4501 or by changing the other copy-on-write SVs in the loop. */
4503 S_sv_release_COW(pTHX_ register SV *sv, const char *pvx, SV *after)
4505 PERL_ARGS_ASSERT_SV_RELEASE_COW;
4507 { /* this SV was SvIsCOW_normal(sv) */
4508 /* we need to find the SV pointing to us. */
4509 SV *current = SV_COW_NEXT_SV(after);
4511 if (current == sv) {
4512 /* The SV we point to points back to us (there were only two of us
4514 Hence other SV is no longer copy on write either. */
4516 SvREADONLY_off(after);
4518 /* We need to follow the pointers around the loop. */
4520 while ((next = SV_COW_NEXT_SV(current)) != sv) {
4523 /* don't loop forever if the structure is bust, and we have
4524 a pointer into a closed loop. */
4525 assert (current != after);
4526 assert (SvPVX_const(current) == pvx);
4528 /* Make the SV before us point to the SV after us. */
4529 SV_COW_NEXT_SV_SET(current, after);
4535 =for apidoc sv_force_normal_flags
4537 Undo various types of fakery on an SV: if the PV is a shared string, make
4538 a private copy; if we're a ref, stop refing; if we're a glob, downgrade to
4539 an xpvmg; if we're a copy-on-write scalar, this is the on-write time when
4540 we do the copy, and is also used locally. If C<SV_COW_DROP_PV> is set
4541 then a copy-on-write scalar drops its PV buffer (if any) and becomes
4542 SvPOK_off rather than making a copy. (Used where this scalar is about to be
4543 set to some other value.) In addition, the C<flags> parameter gets passed to
4544 C<sv_unref_flags()> when unrefing. C<sv_force_normal> calls this function
4545 with flags set to 0.
4551 Perl_sv_force_normal_flags(pTHX_ register SV *const sv, const U32 flags)
4555 PERL_ARGS_ASSERT_SV_FORCE_NORMAL_FLAGS;
4557 #ifdef PERL_OLD_COPY_ON_WRITE
4558 if (SvREADONLY(sv)) {
4560 const char * const pvx = SvPVX_const(sv);
4561 const STRLEN len = SvLEN(sv);
4562 const STRLEN cur = SvCUR(sv);
4563 /* next COW sv in the loop. If len is 0 then this is a shared-hash
4564 key scalar, so we mustn't attempt to call SV_COW_NEXT_SV(), as
4565 we'll fail an assertion. */
4566 SV * const next = len ? SV_COW_NEXT_SV(sv) : 0;
4569 PerlIO_printf(Perl_debug_log,
4570 "Copy on write: Force normal %ld\n",
4576 /* This SV doesn't own the buffer, so need to Newx() a new one: */
4579 if (flags & SV_COW_DROP_PV) {
4580 /* OK, so we don't need to copy our buffer. */
4583 SvGROW(sv, cur + 1);
4584 Move(pvx,SvPVX(sv),cur,char);
4589 sv_release_COW(sv, pvx, next);
4591 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4597 else if (IN_PERL_RUNTIME)
4598 Perl_croak_no_modify(aTHX);
4601 if (SvREADONLY(sv)) {
4603 const char * const pvx = SvPVX_const(sv);
4604 const STRLEN len = SvCUR(sv);
4609 SvGROW(sv, len + 1);
4610 Move(pvx,SvPVX(sv),len,char);
4612 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4614 else if (IN_PERL_RUNTIME)
4615 Perl_croak_no_modify(aTHX);
4619 sv_unref_flags(sv, flags);
4620 else if (SvFAKE(sv) && SvTYPE(sv) == SVt_PVGV)
4622 else if (SvFAKE(sv) && SvTYPE(sv) == SVt_REGEXP) {
4623 /* Need to downgrade the REGEXP to a simple(r) scalar. This is analagous
4624 to sv_unglob. We only need it here, so inline it. */
4625 const svtype new_type = SvMAGIC(sv) || SvSTASH(sv) ? SVt_PVMG : SVt_PV;
4626 SV *const temp = newSV_type(new_type);
4627 void *const temp_p = SvANY(sv);
4629 if (new_type == SVt_PVMG) {
4630 SvMAGIC_set(temp, SvMAGIC(sv));
4631 SvMAGIC_set(sv, NULL);
4632 SvSTASH_set(temp, SvSTASH(sv));
4633 SvSTASH_set(sv, NULL);
4635 SvCUR_set(temp, SvCUR(sv));
4636 /* Remember that SvPVX is in the head, not the body. */
4638 SvLEN_set(temp, SvLEN(sv));
4639 /* This signals "buffer is owned by someone else" in sv_clear,
4640 which is the least effort way to stop it freeing the buffer.
4642 SvLEN_set(sv, SvLEN(sv)+1);
4644 /* Their buffer is already owned by someone else. */
4645 SvPVX(sv) = savepvn(SvPVX(sv), SvCUR(sv));
4646 SvLEN_set(temp, SvCUR(sv)+1);
4649 /* Now swap the rest of the bodies. */
4651 SvFLAGS(sv) &= ~(SVf_FAKE|SVTYPEMASK);
4652 SvFLAGS(sv) |= new_type;
4653 SvANY(sv) = SvANY(temp);
4655 SvFLAGS(temp) &= ~(SVTYPEMASK);
4656 SvFLAGS(temp) |= SVt_REGEXP|SVf_FAKE;
4657 SvANY(temp) = temp_p;
4666 Efficient removal of characters from the beginning of the string buffer.
4667 SvPOK(sv) must be true and the C<ptr> must be a pointer to somewhere inside
4668 the string buffer. The C<ptr> becomes the first character of the adjusted