3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
12 * 'It all comes from here, the stench and the peril.' --Frodo
14 * [p.719 of _The Lord of the Rings_, IV/ix: "Shelob's Lair"]
18 * This file is the lexer for Perl. It's closely linked to the
21 * The main routine is yylex(), which returns the next token.
25 =head1 Lexer interface
26 This is the lower layer of the Perl parser, managing characters and tokens.
28 =for apidoc AmnU|yy_parser *|PL_parser
30 Pointer to a structure encapsulating the state of the parsing operation
31 currently in progress. The pointer can be locally changed to perform
32 a nested parse without interfering with the state of an outer parse.
33 Individual members of C<PL_parser> have their own documentation.
39 #define PERL_IN_TOKE_C
41 #include "invlist_inline.h"
43 #define new_constant(a,b,c,d,e,f,g, h) \
44 S_new_constant(aTHX_ a,b,STR_WITH_LEN(c),d,e,f, g, h)
46 #define pl_yylval (PL_parser->yylval)
48 /* XXX temporary backwards compatibility */
49 #define PL_lex_brackets (PL_parser->lex_brackets)
50 #define PL_lex_allbrackets (PL_parser->lex_allbrackets)
51 #define PL_lex_fakeeof (PL_parser->lex_fakeeof)
52 #define PL_lex_brackstack (PL_parser->lex_brackstack)
53 #define PL_lex_casemods (PL_parser->lex_casemods)
54 #define PL_lex_casestack (PL_parser->lex_casestack)
55 #define PL_lex_dojoin (PL_parser->lex_dojoin)
56 #define PL_lex_formbrack (PL_parser->lex_formbrack)
57 #define PL_lex_inpat (PL_parser->lex_inpat)
58 #define PL_lex_inwhat (PL_parser->lex_inwhat)
59 #define PL_lex_op (PL_parser->lex_op)
60 #define PL_lex_repl (PL_parser->lex_repl)
61 #define PL_lex_starts (PL_parser->lex_starts)
62 #define PL_lex_stuff (PL_parser->lex_stuff)
63 #define PL_multi_start (PL_parser->multi_start)
64 #define PL_multi_open (PL_parser->multi_open)
65 #define PL_multi_close (PL_parser->multi_close)
66 #define PL_preambled (PL_parser->preambled)
67 #define PL_linestr (PL_parser->linestr)
68 #define PL_expect (PL_parser->expect)
69 #define PL_copline (PL_parser->copline)
70 #define PL_bufptr (PL_parser->bufptr)
71 #define PL_oldbufptr (PL_parser->oldbufptr)
72 #define PL_oldoldbufptr (PL_parser->oldoldbufptr)
73 #define PL_linestart (PL_parser->linestart)
74 #define PL_bufend (PL_parser->bufend)
75 #define PL_last_uni (PL_parser->last_uni)
76 #define PL_last_lop (PL_parser->last_lop)
77 #define PL_last_lop_op (PL_parser->last_lop_op)
78 #define PL_lex_state (PL_parser->lex_state)
79 #define PL_rsfp (PL_parser->rsfp)
80 #define PL_rsfp_filters (PL_parser->rsfp_filters)
81 #define PL_in_my (PL_parser->in_my)
82 #define PL_in_my_stash (PL_parser->in_my_stash)
83 #define PL_tokenbuf (PL_parser->tokenbuf)
84 #define PL_multi_end (PL_parser->multi_end)
85 #define PL_error_count (PL_parser->error_count)
87 # define PL_nexttoke (PL_parser->nexttoke)
88 # define PL_nexttype (PL_parser->nexttype)
89 # define PL_nextval (PL_parser->nextval)
92 #define SvEVALED(sv) \
93 (SvTYPE(sv) >= SVt_PVNV \
94 && ((XPVIV*)SvANY(sv))->xiv_u.xivu_eval_seen)
96 static const char* const ident_too_long = "Identifier too long";
97 static const char* const ident_var_zero_multi_digit = "Numeric variables with more than one digit may not start with '0'";
99 # define NEXTVAL_NEXTTOKE PL_nextval[PL_nexttoke]
101 #define XENUMMASK 0x3f
102 #define XFAKEEOF 0x40
103 #define XFAKEBRACK 0x80
105 #ifdef USE_UTF8_SCRIPTS
106 # define UTF cBOOL(!IN_BYTES)
108 # define UTF cBOOL((PL_linestr && DO_UTF8(PL_linestr)) || ( !(PL_parser->lex_flags & LEX_IGNORE_UTF8_HINTS) && (PL_hints & HINT_UTF8)))
111 /* The maximum number of characters preceding the unrecognized one to display */
112 #define UNRECOGNIZED_PRECEDE_COUNT 10
114 /* In variables named $^X, these are the legal values for X.
115 * 1999-02-27 mjd-perl-patch@plover.com */
116 #define isCONTROLVAR(x) (isUPPER(x) || memCHRs("[\\]^_?", (x)))
118 #define SPACE_OR_TAB(c) isBLANK_A(c)
120 #define HEXFP_PEEK(s) \
122 (isXDIGIT(s[1]) || isALPHA_FOLD_EQ(s[1], 'p'))) || \
123 isALPHA_FOLD_EQ(s[0], 'p'))
125 /* LEX_* are values for PL_lex_state, the state of the lexer.
126 * They are arranged oddly so that the guard on the switch statement
127 * can get by with a single comparison (if the compiler is smart enough).
129 * These values refer to the various states within a sublex parse,
130 * i.e. within a double quotish string
133 /* #define LEX_NOTPARSING 11 is done in perl.h. */
135 #define LEX_NORMAL 10 /* normal code (ie not within "...") */
136 #define LEX_INTERPNORMAL 9 /* code within a string, eg "$foo[$x+1]" */
137 #define LEX_INTERPCASEMOD 8 /* expecting a \U, \Q or \E etc */
138 #define LEX_INTERPPUSH 7 /* starting a new sublex parse level */
139 #define LEX_INTERPSTART 6 /* expecting the start of a $var */
141 /* at end of code, eg "$x" followed by: */
142 #define LEX_INTERPEND 5 /* ... eg not one of [, { or -> */
143 #define LEX_INTERPENDMAYBE 4 /* ... eg one of [, { or -> */
145 #define LEX_INTERPCONCAT 3 /* expecting anything, eg at start of
146 string or after \E, $foo, etc */
147 #define LEX_INTERPCONST 2 /* NOT USED */
148 #define LEX_FORMLINE 1 /* expecting a format line */
150 /* returned to yyl_try() to request it to retry the parse loop, expected to only
151 be returned directly by yyl_fake_eof(), but functions that call yyl_fake_eof()
154 yylex (aka Perl_yylex) returns 0 on EOF rather than returning -1,
155 other token values are 258 or higher (see perly.h), so -1 should be
158 #define YYL_RETRY (-1)
161 static const char* const lex_state_names[] = {
176 #include "keywords.h"
178 /* CLINE is a macro that ensures PL_copline has a sane value */
180 #define CLINE (PL_copline = (CopLINE(PL_curcop) < PL_copline ? CopLINE(PL_curcop) : PL_copline))
183 * Convenience functions to return different tokens and prime the
184 * lexer for the next token. They all take an argument.
186 * TOKEN : generic token (used for '(', DOLSHARP, etc)
187 * OPERATOR : generic operator
188 * AOPERATOR : assignment operator
189 * PREBLOCK : beginning the block after an if, while, foreach, ...
190 * PRETERMBLOCK : beginning a non-code-defining {} block (eg, hash ref)
191 * PREREF : *EXPR where EXPR is not a simple identifier
192 * TERM : expression term
193 * POSTDEREF : postfix dereference (->$* ->@[...] etc.)
194 * LOOPX : loop exiting command (goto, last, dump, etc)
195 * FTST : file test operator
196 * FUN0 : zero-argument function
197 * FUN0OP : zero-argument function, with its op created in this file
198 * FUN1 : not used, except for not, which isn't a UNIOP
199 * BOop : bitwise or or xor
201 * BCop : bitwise complement
202 * SHop : shift operator
203 * PWop : power operator
204 * PMop : pattern-matching operator
205 * Aop : addition-level operator
206 * AopNOASSIGN : addition-level operator that is never part of .=
207 * Mop : multiplication-level operator
208 * ChEop : chaining equality-testing operator
209 * NCEop : non-chaining comparison operator at equality precedence
210 * ChRop : chaining relational operator <= != gt
211 * NCRop : non-chaining relational operator isa
213 * Also see LOP and lop() below.
216 #ifdef DEBUGGING /* Serve -DT. */
217 # define REPORT(retval) tokereport((I32)retval, &pl_yylval)
219 # define REPORT(retval) (retval)
222 #define TOKEN(retval) return ( PL_bufptr = s, REPORT(retval))
223 #define OPERATOR(retval) return (PL_expect = XTERM, PL_bufptr = s, REPORT(retval))
224 #define AOPERATOR(retval) return ao((PL_expect = XTERM, PL_bufptr = s, retval))
225 #define PREBLOCK(retval) return (PL_expect = XBLOCK,PL_bufptr = s, REPORT(retval))
226 #define PRETERMBLOCK(retval) return (PL_expect = XTERMBLOCK,PL_bufptr = s, REPORT(retval))
227 #define PREREF(retval) return (PL_expect = XREF,PL_bufptr = s, REPORT(retval))
228 #define TERM(retval) return (CLINE, PL_expect = XOPERATOR, PL_bufptr = s, REPORT(retval))
229 #define POSTDEREF(f) return (PL_bufptr = s, S_postderef(aTHX_ REPORT(f),s[1]))
230 #define LOOPX(f) return (PL_bufptr = force_word(s,BAREWORD,TRUE,FALSE), \
232 PL_expect = PL_nexttoke ? XOPERATOR : XTERM, \
234 #define FTST(f) return (pl_yylval.ival=f, PL_expect=XTERMORDORDOR, PL_bufptr=s, REPORT((int)UNIOP))
235 #define FUN0(f) return (pl_yylval.ival=f, PL_expect=XOPERATOR, PL_bufptr=s, REPORT((int)FUNC0))
236 #define FUN0OP(f) return (pl_yylval.opval=f, CLINE, PL_expect=XOPERATOR, PL_bufptr=s, REPORT((int)FUNC0OP))
237 #define FUN1(f) return (pl_yylval.ival=f, PL_expect=XOPERATOR, PL_bufptr=s, REPORT((int)FUNC1))
238 #define BOop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)BITOROP))
239 #define BAop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)BITANDOP))
240 #define BCop(f) return pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr = s, \
242 #define SHop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)SHIFTOP))
243 #define PWop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)POWOP))
244 #define PMop(f) return(pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, REPORT((int)MATCHOP))
245 #define Aop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)ADDOP))
246 #define AopNOASSIGN(f) return (pl_yylval.ival=f, PL_bufptr=s, REPORT((int)ADDOP))
247 #define Mop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)MULOP))
248 #define ChEop(f) return (pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, REPORT((int)CHEQOP))
249 #define NCEop(f) return (pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, REPORT((int)NCEQOP))
250 #define ChRop(f) return (pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, REPORT((int)CHRELOP))
251 #define NCRop(f) return (pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, REPORT((int)NCRELOP))
253 /* This bit of chicanery makes a unary function followed by
254 * a parenthesis into a function with one argument, highest precedence.
255 * The UNIDOR macro is for unary functions that can be followed by the //
256 * operator (such as C<shift // 0>).
258 #define UNI3(f,x,have_x) { \
259 pl_yylval.ival = f; \
260 if (have_x) PL_expect = x; \
262 PL_last_uni = PL_oldbufptr; \
263 PL_last_lop_op = (f) < 0 ? -(f) : (f); \
265 return REPORT( (int)FUNC1 ); \
267 return REPORT( *s=='(' ? (int)FUNC1 : (int)UNIOP ); \
269 #define UNI(f) UNI3(f,XTERM,1)
270 #define UNIDOR(f) UNI3(f,XTERMORDORDOR,1)
271 #define UNIPROTO(f,optional) { \
272 if (optional) PL_last_uni = PL_oldbufptr; \
276 #define UNIBRACK(f) UNI3(f,0,0)
278 /* grandfather return to old style */
281 if (!PL_lex_allbrackets && PL_lex_fakeeof > LEX_FAKEEOF_LOWLOGIC) \
282 PL_lex_fakeeof = LEX_FAKEEOF_LOWLOGIC; \
283 pl_yylval.ival = (f); \
289 #define COPLINE_INC_WITH_HERELINES \
291 CopLINE_inc(PL_curcop); \
292 if (PL_parser->herelines) \
293 CopLINE(PL_curcop) += PL_parser->herelines, \
294 PL_parser->herelines = 0; \
296 /* Called after scan_str to update CopLINE(PL_curcop), but only when there
297 * is no sublex_push to follow. */
298 #define COPLINE_SET_FROM_MULTI_END \
300 CopLINE_set(PL_curcop, PL_multi_end); \
301 if (PL_multi_end != PL_multi_start) \
302 PL_parser->herelines = 0; \
306 /* A file-local structure for passing around information about subroutines and
307 * related definable words */
317 static const struct code no_code = { NULL, NULL, NULL, NULL, NULL, 0, FALSE };
321 /* how to interpret the pl_yylval associated with the token */
325 TOKENTYPE_OPNUM, /* pl_yylval.ival contains an opcode number */
330 static struct debug_tokens {
332 enum token_type type;
334 } const debug_tokens[] =
336 { ADDOP, TOKENTYPE_OPNUM, "ADDOP" },
337 { ANDAND, TOKENTYPE_NONE, "ANDAND" },
338 { ANDOP, TOKENTYPE_NONE, "ANDOP" },
339 { ANONSUB, TOKENTYPE_IVAL, "ANONSUB" },
340 { ANON_SIGSUB, TOKENTYPE_IVAL, "ANON_SIGSUB" },
341 { ARROW, TOKENTYPE_NONE, "ARROW" },
342 { ASSIGNOP, TOKENTYPE_OPNUM, "ASSIGNOP" },
343 { BITANDOP, TOKENTYPE_OPNUM, "BITANDOP" },
344 { BITOROP, TOKENTYPE_OPNUM, "BITOROP" },
345 { CHEQOP, TOKENTYPE_OPNUM, "CHEQOP" },
346 { CHRELOP, TOKENTYPE_OPNUM, "CHRELOP" },
347 { COLONATTR, TOKENTYPE_NONE, "COLONATTR" },
348 { CONTINUE, TOKENTYPE_NONE, "CONTINUE" },
349 { DEFAULT, TOKENTYPE_NONE, "DEFAULT" },
350 { DO, TOKENTYPE_NONE, "DO" },
351 { DOLSHARP, TOKENTYPE_NONE, "DOLSHARP" },
352 { DORDOR, TOKENTYPE_NONE, "DORDOR" },
353 { DOROP, TOKENTYPE_OPNUM, "DOROP" },
354 { DOTDOT, TOKENTYPE_IVAL, "DOTDOT" },
355 { ELSE, TOKENTYPE_NONE, "ELSE" },
356 { ELSIF, TOKENTYPE_IVAL, "ELSIF" },
357 { FOR, TOKENTYPE_IVAL, "FOR" },
358 { FORMAT, TOKENTYPE_NONE, "FORMAT" },
359 { FORMLBRACK, TOKENTYPE_NONE, "FORMLBRACK" },
360 { FORMRBRACK, TOKENTYPE_NONE, "FORMRBRACK" },
361 { FUNC, TOKENTYPE_OPNUM, "FUNC" },
362 { FUNC0, TOKENTYPE_OPNUM, "FUNC0" },
363 { FUNC0OP, TOKENTYPE_OPVAL, "FUNC0OP" },
364 { FUNC0SUB, TOKENTYPE_OPVAL, "FUNC0SUB" },
365 { FUNC1, TOKENTYPE_OPNUM, "FUNC1" },
366 { FUNCMETH, TOKENTYPE_OPVAL, "FUNCMETH" },
367 { GIVEN, TOKENTYPE_IVAL, "GIVEN" },
368 { HASHBRACK, TOKENTYPE_NONE, "HASHBRACK" },
369 { IF, TOKENTYPE_IVAL, "IF" },
370 { LABEL, TOKENTYPE_OPVAL, "LABEL" },
371 { LOCAL, TOKENTYPE_IVAL, "LOCAL" },
372 { LOOPEX, TOKENTYPE_OPNUM, "LOOPEX" },
373 { LSTOP, TOKENTYPE_OPNUM, "LSTOP" },
374 { LSTOPSUB, TOKENTYPE_OPVAL, "LSTOPSUB" },
375 { MATCHOP, TOKENTYPE_OPNUM, "MATCHOP" },
376 { METHOD, TOKENTYPE_OPVAL, "METHOD" },
377 { MULOP, TOKENTYPE_OPNUM, "MULOP" },
378 { MY, TOKENTYPE_IVAL, "MY" },
379 { NCEQOP, TOKENTYPE_OPNUM, "NCEQOP" },
380 { NCRELOP, TOKENTYPE_OPNUM, "NCRELOP" },
381 { NOAMP, TOKENTYPE_NONE, "NOAMP" },
382 { NOTOP, TOKENTYPE_NONE, "NOTOP" },
383 { OROP, TOKENTYPE_IVAL, "OROP" },
384 { OROR, TOKENTYPE_NONE, "OROR" },
385 { PACKAGE, TOKENTYPE_NONE, "PACKAGE" },
386 { PLUGEXPR, TOKENTYPE_OPVAL, "PLUGEXPR" },
387 { PLUGSTMT, TOKENTYPE_OPVAL, "PLUGSTMT" },
388 { PMFUNC, TOKENTYPE_OPVAL, "PMFUNC" },
389 { POSTJOIN, TOKENTYPE_NONE, "POSTJOIN" },
390 { POSTDEC, TOKENTYPE_NONE, "POSTDEC" },
391 { POSTINC, TOKENTYPE_NONE, "POSTINC" },
392 { POWOP, TOKENTYPE_OPNUM, "POWOP" },
393 { PREDEC, TOKENTYPE_NONE, "PREDEC" },
394 { PREINC, TOKENTYPE_NONE, "PREINC" },
395 { PRIVATEREF, TOKENTYPE_OPVAL, "PRIVATEREF" },
396 { QWLIST, TOKENTYPE_OPVAL, "QWLIST" },
397 { REFGEN, TOKENTYPE_NONE, "REFGEN" },
398 { REQUIRE, TOKENTYPE_NONE, "REQUIRE" },
399 { SHIFTOP, TOKENTYPE_OPNUM, "SHIFTOP" },
400 { SIGSUB, TOKENTYPE_NONE, "SIGSUB" },
401 { SUB, TOKENTYPE_NONE, "SUB" },
402 { SUBLEXEND, TOKENTYPE_NONE, "SUBLEXEND" },
403 { SUBLEXSTART, TOKENTYPE_NONE, "SUBLEXSTART" },
404 { THING, TOKENTYPE_OPVAL, "THING" },
405 { UMINUS, TOKENTYPE_NONE, "UMINUS" },
406 { UNIOP, TOKENTYPE_OPNUM, "UNIOP" },
407 { UNIOPSUB, TOKENTYPE_OPVAL, "UNIOPSUB" },
408 { UNLESS, TOKENTYPE_IVAL, "UNLESS" },
409 { UNTIL, TOKENTYPE_IVAL, "UNTIL" },
410 { USE, TOKENTYPE_IVAL, "USE" },
411 { WHEN, TOKENTYPE_IVAL, "WHEN" },
412 { WHILE, TOKENTYPE_IVAL, "WHILE" },
413 { BAREWORD, TOKENTYPE_OPVAL, "BAREWORD" },
414 { YADAYADA, TOKENTYPE_IVAL, "YADAYADA" },
415 { 0, TOKENTYPE_NONE, NULL }
418 /* dump the returned token in rv, plus any optional arg in pl_yylval */
421 S_tokereport(pTHX_ I32 rv, const YYSTYPE* lvalp)
423 PERL_ARGS_ASSERT_TOKEREPORT;
426 const char *name = NULL;
427 enum token_type type = TOKENTYPE_NONE;
428 const struct debug_tokens *p;
429 SV* const report = newSVpvs("<== ");
431 for (p = debug_tokens; p->token; p++) {
432 if (p->token == (int)rv) {
439 Perl_sv_catpv(aTHX_ report, name);
440 else if (isGRAPH(rv))
442 Perl_sv_catpvf(aTHX_ report, "'%c'", (char)rv);
444 sv_catpvs(report, " (pending identifier)");
447 sv_catpvs(report, "EOF");
449 Perl_sv_catpvf(aTHX_ report, "?? %" IVdf, (IV)rv);
454 Perl_sv_catpvf(aTHX_ report, "(ival=%" IVdf ")", (IV)lvalp->ival);
456 case TOKENTYPE_OPNUM:
457 Perl_sv_catpvf(aTHX_ report, "(ival=op_%s)",
458 PL_op_name[lvalp->ival]);
461 Perl_sv_catpvf(aTHX_ report, "(pval=\"%s\")", lvalp->pval);
463 case TOKENTYPE_OPVAL:
465 Perl_sv_catpvf(aTHX_ report, "(opval=op_%s)",
466 PL_op_name[lvalp->opval->op_type]);
467 if (lvalp->opval->op_type == OP_CONST) {
468 Perl_sv_catpvf(aTHX_ report, " %s",
469 SvPEEK(cSVOPx_sv(lvalp->opval)));
474 sv_catpvs(report, "(opval=null)");
477 PerlIO_printf(Perl_debug_log, "### %s\n\n", SvPV_nolen_const(report));
483 /* print the buffer with suitable escapes */
486 S_printbuf(pTHX_ const char *const fmt, const char *const s)
488 SV* const tmp = newSVpvs("");
490 PERL_ARGS_ASSERT_PRINTBUF;
492 GCC_DIAG_IGNORE_STMT(-Wformat-nonliteral); /* fmt checked by caller */
493 PerlIO_printf(Perl_debug_log, fmt, pv_display(tmp, s, strlen(s), 0, 60));
494 GCC_DIAG_RESTORE_STMT;
503 * This subroutine looks for an '=' next to the operator that has just been
504 * parsed and turns it into an ASSIGNOP if it finds one.
508 S_ao(pTHX_ int toketype)
510 if (*PL_bufptr == '=') {
512 if (toketype == ANDAND)
513 pl_yylval.ival = OP_ANDASSIGN;
514 else if (toketype == OROR)
515 pl_yylval.ival = OP_ORASSIGN;
516 else if (toketype == DORDOR)
517 pl_yylval.ival = OP_DORASSIGN;
520 return REPORT(toketype);
525 * When Perl expects an operator and finds something else, no_op
526 * prints the warning. It always prints "<something> found where
527 * operator expected. It prints "Missing semicolon on previous line?"
528 * if the surprise occurs at the start of the line. "do you need to
529 * predeclare ..." is printed out for code like "sub bar; foo bar $x"
530 * where the compiler doesn't know if foo is a method call or a function.
531 * It prints "Missing operator before end of line" if there's nothing
532 * after the missing operator, or "... before <...>" if there is something
533 * after the missing operator.
535 * PL_bufptr is expected to point to the start of the thing that was found,
536 * and s after the next token or partial token.
540 S_no_op(pTHX_ const char *const what, char *s)
542 char * const oldbp = PL_bufptr;
543 const bool is_first = (PL_oldbufptr == PL_linestart);
545 PERL_ARGS_ASSERT_NO_OP;
551 yywarn(Perl_form(aTHX_ "%s found where operator expected", what), UTF ? SVf_UTF8 : 0);
552 if (ckWARN_d(WARN_SYNTAX)) {
554 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
555 "\t(Missing semicolon on previous line?)\n");
556 else if (PL_oldoldbufptr && isIDFIRST_lazy_if_safe(PL_oldoldbufptr,
561 for (t = PL_oldoldbufptr;
562 (isWORDCHAR_lazy_if_safe(t, PL_bufend, UTF) || *t == ':');
563 t += UTF ? UTF8SKIP(t) : 1)
567 if (t < PL_bufptr && isSPACE(*t))
568 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
569 "\t(Do you need to predeclare %" UTF8f "?)\n",
570 UTF8fARG(UTF, t - PL_oldoldbufptr, PL_oldoldbufptr));
574 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
575 "\t(Missing operator before %" UTF8f "?)\n",
576 UTF8fARG(UTF, s - oldbp, oldbp));
584 * Complain about missing quote/regexp/heredoc terminator.
585 * If it's called with NULL then it cauterizes the line buffer.
586 * If we're in a delimited string and the delimiter is a control
587 * character, it's reformatted into a two-char sequence like ^C.
592 S_missingterm(pTHX_ char *s, STRLEN len)
594 char tmpbuf[UTF8_MAXBYTES + 1];
599 char * const nl = (char *) my_memrchr(s, '\n', len);
606 else if (PL_multi_close < 32) {
608 tmpbuf[1] = (char)toCTRL(PL_multi_close);
614 if (LIKELY(PL_multi_close < 256)) {
615 *tmpbuf = (char)PL_multi_close;
620 char *end = (char *)uvchr_to_utf8((U8 *)tmpbuf, PL_multi_close);
627 q = memchr(s, '"', len) ? '\'' : '"';
628 sv = sv_2mortal(newSVpvn(s, len));
631 Perl_croak(aTHX_ "Can't find string terminator %c%" SVf "%c"
632 " anywhere before EOF", q, SVfARG(sv), q);
638 * experimental text filters for win32 carriage-returns, utf16-to-utf8 and
639 * utf16-to-utf8-reversed.
642 #ifdef PERL_CR_FILTER
646 const char *s = SvPVX_const(sv);
647 const char * const e = s + SvCUR(sv);
649 PERL_ARGS_ASSERT_STRIP_RETURN;
651 /* outer loop optimized to do nothing if there are no CR-LFs */
653 if (*s++ == '\r' && *s == '\n') {
654 /* hit a CR-LF, need to copy the rest */
658 if (*s == '\r' && s[1] == '\n')
669 S_cr_textfilter(pTHX_ int idx, SV *sv, int maxlen)
671 const I32 count = FILTER_READ(idx+1, sv, maxlen);
672 if (count > 0 && !maxlen)
679 =for apidoc lex_start
681 Creates and initialises a new lexer/parser state object, supplying
682 a context in which to lex and parse from a new source of Perl code.
683 A pointer to the new state object is placed in L</PL_parser>. An entry
684 is made on the save stack so that upon unwinding, the new state object
685 will be destroyed and the former value of L</PL_parser> will be restored.
686 Nothing else need be done to clean up the parsing context.
688 The code to be parsed comes from C<line> and C<rsfp>. C<line>, if
689 non-null, provides a string (in SV form) containing code to be parsed.
690 A copy of the string is made, so subsequent modification of C<line>
691 does not affect parsing. C<rsfp>, if non-null, provides an input stream
692 from which code will be read to be parsed. If both are non-null, the
693 code in C<line> comes first and must consist of complete lines of input,
694 and C<rsfp> supplies the remainder of the source.
696 The C<flags> parameter is reserved for future use. Currently it is only
697 used by perl internally, so extensions should always pass zero.
702 /* LEX_START_SAME_FILTER indicates that this is not a new file, so it
703 can share filters with the current parser.
704 LEX_START_DONT_CLOSE indicates that the file handle wasn't opened by the
705 caller, hence isn't owned by the parser, so shouldn't be closed on parser
706 destruction. This is used to handle the case of defaulting to reading the
707 script from the standard input because no filename was given on the command
708 line (without getting confused by situation where STDIN has been closed, so
709 the script handle is opened on fd 0) */
712 Perl_lex_start(pTHX_ SV *line, PerlIO *rsfp, U32 flags)
714 const char *s = NULL;
715 yy_parser *parser, *oparser;
717 if (flags && flags & ~LEX_START_FLAGS)
718 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_start");
720 /* create and initialise a parser */
722 Newxz(parser, 1, yy_parser);
723 parser->old_parser = oparser = PL_parser;
726 parser->stack = NULL;
727 parser->stack_max1 = NULL;
730 /* on scope exit, free this parser and restore any outer one */
732 parser->saved_curcop = PL_curcop;
734 /* initialise lexer state */
736 parser->nexttoke = 0;
737 parser->error_count = oparser ? oparser->error_count : 0;
738 parser->copline = parser->preambling = NOLINE;
739 parser->lex_state = LEX_NORMAL;
740 parser->expect = XSTATE;
742 parser->recheck_utf8_validity = TRUE;
743 parser->rsfp_filters =
744 !(flags & LEX_START_SAME_FILTER) || !oparser
746 : MUTABLE_AV(SvREFCNT_inc(
747 oparser->rsfp_filters
748 ? oparser->rsfp_filters
749 : (oparser->rsfp_filters = newAV())
752 Newx(parser->lex_brackstack, 120, char);
753 Newx(parser->lex_casestack, 12, char);
754 *parser->lex_casestack = '\0';
755 Newxz(parser->lex_shared, 1, LEXSHARED);
759 const U8* first_bad_char_loc;
761 s = SvPV_const(line, len);
764 && UNLIKELY(! is_utf8_string_loc((U8 *) s,
766 &first_bad_char_loc)))
768 _force_out_malformed_utf8_message(first_bad_char_loc,
769 (U8 *) s + SvCUR(line),
771 1 /* 1 means die */ );
772 NOT_REACHED; /* NOTREACHED */
775 parser->linestr = flags & LEX_START_COPIED
776 ? SvREFCNT_inc_simple_NN(line)
777 : newSVpvn_flags(s, len, SvUTF8(line));
779 sv_catpvs(parser->linestr, "\n;");
781 parser->linestr = newSVpvn("\n;", rsfp ? 1 : 2);
784 parser->oldoldbufptr =
787 parser->linestart = SvPVX(parser->linestr);
788 parser->bufend = parser->bufptr + SvCUR(parser->linestr);
789 parser->last_lop = parser->last_uni = NULL;
791 STATIC_ASSERT_STMT(FITS_IN_8_BITS(LEX_IGNORE_UTF8_HINTS|LEX_EVALBYTES
792 |LEX_DONT_CLOSE_RSFP));
793 parser->lex_flags = (U8) (flags & (LEX_IGNORE_UTF8_HINTS|LEX_EVALBYTES
794 |LEX_DONT_CLOSE_RSFP));
796 parser->in_pod = parser->filtered = 0;
800 /* delete a parser object */
803 Perl_parser_free(pTHX_ const yy_parser *parser)
805 PERL_ARGS_ASSERT_PARSER_FREE;
807 PL_curcop = parser->saved_curcop;
808 SvREFCNT_dec(parser->linestr);
810 if (PL_parser->lex_flags & LEX_DONT_CLOSE_RSFP)
811 PerlIO_clearerr(parser->rsfp);
812 else if (parser->rsfp && (!parser->old_parser
813 || (parser->old_parser && parser->rsfp != parser->old_parser->rsfp)))
814 PerlIO_close(parser->rsfp);
815 SvREFCNT_dec(parser->rsfp_filters);
816 SvREFCNT_dec(parser->lex_stuff);
817 SvREFCNT_dec(parser->lex_sub_repl);
819 Safefree(parser->lex_brackstack);
820 Safefree(parser->lex_casestack);
821 Safefree(parser->lex_shared);
822 PL_parser = parser->old_parser;
827 Perl_parser_free_nexttoke_ops(pTHX_ yy_parser *parser, OPSLAB *slab)
829 I32 nexttoke = parser->nexttoke;
830 PERL_ARGS_ASSERT_PARSER_FREE_NEXTTOKE_OPS;
832 if (S_is_opval_token(parser->nexttype[nexttoke] & 0xffff)
833 && parser->nextval[nexttoke].opval
834 && parser->nextval[nexttoke].opval->op_slabbed
835 && OpSLAB(parser->nextval[nexttoke].opval) == slab) {
836 op_free(parser->nextval[nexttoke].opval);
837 parser->nextval[nexttoke].opval = NULL;
844 =for apidoc AmnxUN|SV *|PL_parser-E<gt>linestr
846 Buffer scalar containing the chunk currently under consideration of the
847 text currently being lexed. This is always a plain string scalar (for
848 which C<SvPOK> is true). It is not intended to be used as a scalar by
849 normal scalar means; instead refer to the buffer directly by the pointer
850 variables described below.
852 The lexer maintains various C<char*> pointers to things in the
853 C<PL_parser-E<gt>linestr> buffer. If C<PL_parser-E<gt>linestr> is ever
854 reallocated, all of these pointers must be updated. Don't attempt to
855 do this manually, but rather use L</lex_grow_linestr> if you need to
856 reallocate the buffer.
858 The content of the text chunk in the buffer is commonly exactly one
859 complete line of input, up to and including a newline terminator,
860 but there are situations where it is otherwise. The octets of the
861 buffer may be intended to be interpreted as either UTF-8 or Latin-1.
862 The function L</lex_bufutf8> tells you which. Do not use the C<SvUTF8>
863 flag on this scalar, which may disagree with it.
865 For direct examination of the buffer, the variable
866 L</PL_parser-E<gt>bufend> points to the end of the buffer. The current
867 lexing position is pointed to by L</PL_parser-E<gt>bufptr>. Direct use
868 of these pointers is usually preferable to examination of the scalar
869 through normal scalar means.
871 =for apidoc AmnxUN|char *|PL_parser-E<gt>bufend
873 Direct pointer to the end of the chunk of text currently being lexed, the
874 end of the lexer buffer. This is equal to C<SvPVX(PL_parser-E<gt>linestr)
875 + SvCUR(PL_parser-E<gt>linestr)>. A C<NUL> character (zero octet) is
876 always located at the end of the buffer, and does not count as part of
877 the buffer's contents.
879 =for apidoc AmnxUN|char *|PL_parser-E<gt>bufptr
881 Points to the current position of lexing inside the lexer buffer.
882 Characters around this point may be freely examined, within
883 the range delimited by C<SvPVX(L</PL_parser-E<gt>linestr>)> and
884 L</PL_parser-E<gt>bufend>. The octets of the buffer may be intended to be
885 interpreted as either UTF-8 or Latin-1, as indicated by L</lex_bufutf8>.
887 Lexing code (whether in the Perl core or not) moves this pointer past
888 the characters that it consumes. It is also expected to perform some
889 bookkeeping whenever a newline character is consumed. This movement
890 can be more conveniently performed by the function L</lex_read_to>,
891 which handles newlines appropriately.
893 Interpretation of the buffer's octets can be abstracted out by
894 using the slightly higher-level functions L</lex_peek_unichar> and
895 L</lex_read_unichar>.
897 =for apidoc AmnxUN|char *|PL_parser-E<gt>linestart
899 Points to the start of the current line inside the lexer buffer.
900 This is useful for indicating at which column an error occurred, and
901 not much else. This must be updated by any lexing code that consumes
902 a newline; the function L</lex_read_to> handles this detail.
908 =for apidoc lex_bufutf8
910 Indicates whether the octets in the lexer buffer
911 (L</PL_parser-E<gt>linestr>) should be interpreted as the UTF-8 encoding
912 of Unicode characters. If not, they should be interpreted as Latin-1
913 characters. This is analogous to the C<SvUTF8> flag for scalars.
915 In UTF-8 mode, it is not guaranteed that the lexer buffer actually
916 contains valid UTF-8. Lexing code must be robust in the face of invalid
919 The actual C<SvUTF8> flag of the L</PL_parser-E<gt>linestr> scalar
920 is significant, but not the whole story regarding the input character
921 encoding. Normally, when a file is being read, the scalar contains octets
922 and its C<SvUTF8> flag is off, but the octets should be interpreted as
923 UTF-8 if the C<use utf8> pragma is in effect. During a string eval,
924 however, the scalar may have the C<SvUTF8> flag on, and in this case its
925 octets should be interpreted as UTF-8 unless the C<use bytes> pragma
926 is in effect. This logic may change in the future; use this function
927 instead of implementing the logic yourself.
933 Perl_lex_bufutf8(pTHX)
939 =for apidoc lex_grow_linestr
941 Reallocates the lexer buffer (L</PL_parser-E<gt>linestr>) to accommodate
942 at least C<len> octets (including terminating C<NUL>). Returns a
943 pointer to the reallocated buffer. This is necessary before making
944 any direct modification of the buffer that would increase its length.
945 L</lex_stuff_pvn> provides a more convenient way to insert text into
948 Do not use C<SvGROW> or C<sv_grow> directly on C<PL_parser-E<gt>linestr>;
949 this function updates all of the lexer's variables that point directly
956 Perl_lex_grow_linestr(pTHX_ STRLEN len)
960 STRLEN bufend_pos, bufptr_pos, oldbufptr_pos, oldoldbufptr_pos;
961 STRLEN linestart_pos, last_uni_pos, last_lop_pos, re_eval_start_pos;
964 linestr = PL_parser->linestr;
965 buf = SvPVX(linestr);
966 if (len <= SvLEN(linestr))
969 /* Is the lex_shared linestr SV the same as the current linestr SV?
970 * Only in this case does re_eval_start need adjusting, since it
971 * points within lex_shared->ls_linestr's buffer */
972 current = ( !PL_parser->lex_shared->ls_linestr
973 || linestr == PL_parser->lex_shared->ls_linestr);
975 bufend_pos = PL_parser->bufend - buf;
976 bufptr_pos = PL_parser->bufptr - buf;
977 oldbufptr_pos = PL_parser->oldbufptr - buf;
978 oldoldbufptr_pos = PL_parser->oldoldbufptr - buf;
979 linestart_pos = PL_parser->linestart - buf;
980 last_uni_pos = PL_parser->last_uni ? PL_parser->last_uni - buf : 0;
981 last_lop_pos = PL_parser->last_lop ? PL_parser->last_lop - buf : 0;
982 re_eval_start_pos = (current && PL_parser->lex_shared->re_eval_start) ?
983 PL_parser->lex_shared->re_eval_start - buf : 0;
985 buf = sv_grow(linestr, len);
987 PL_parser->bufend = buf + bufend_pos;
988 PL_parser->bufptr = buf + bufptr_pos;
989 PL_parser->oldbufptr = buf + oldbufptr_pos;
990 PL_parser->oldoldbufptr = buf + oldoldbufptr_pos;
991 PL_parser->linestart = buf + linestart_pos;
992 if (PL_parser->last_uni)
993 PL_parser->last_uni = buf + last_uni_pos;
994 if (PL_parser->last_lop)
995 PL_parser->last_lop = buf + last_lop_pos;
996 if (current && PL_parser->lex_shared->re_eval_start)
997 PL_parser->lex_shared->re_eval_start = buf + re_eval_start_pos;
1002 =for apidoc lex_stuff_pvn
1004 Insert characters into the lexer buffer (L</PL_parser-E<gt>linestr>),
1005 immediately after the current lexing point (L</PL_parser-E<gt>bufptr>),
1006 reallocating the buffer if necessary. This means that lexing code that
1007 runs later will see the characters as if they had appeared in the input.
1008 It is not recommended to do this as part of normal parsing, and most
1009 uses of this facility run the risk of the inserted characters being
1010 interpreted in an unintended manner.
1012 The string to be inserted is represented by C<len> octets starting
1013 at C<pv>. These octets are interpreted as either UTF-8 or Latin-1,
1014 according to whether the C<LEX_STUFF_UTF8> flag is set in C<flags>.
1015 The characters are recoded for the lexer buffer, according to how the
1016 buffer is currently being interpreted (L</lex_bufutf8>). If a string
1017 to be inserted is available as a Perl scalar, the L</lex_stuff_sv>
1018 function is more convenient.
1020 =for apidoc Amnh||LEX_STUFF_UTF8
1026 Perl_lex_stuff_pvn(pTHX_ const char *pv, STRLEN len, U32 flags)
1029 PERL_ARGS_ASSERT_LEX_STUFF_PVN;
1030 if (flags & ~(LEX_STUFF_UTF8))
1031 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_stuff_pvn");
1033 if (flags & LEX_STUFF_UTF8) {
1036 STRLEN highhalf = variant_under_utf8_count((U8 *) pv,
1038 const char *p, *e = pv+len;;
1041 lex_grow_linestr(SvCUR(PL_parser->linestr)+1+len+highhalf);
1042 bufptr = PL_parser->bufptr;
1043 Move(bufptr, bufptr+len+highhalf, PL_parser->bufend+1-bufptr, char);
1044 SvCUR_set(PL_parser->linestr,
1045 SvCUR(PL_parser->linestr) + len+highhalf);
1046 PL_parser->bufend += len+highhalf;
1047 for (p = pv; p != e; p++) {
1048 append_utf8_from_native_byte(*p, (U8 **) &bufptr);
1052 if (flags & LEX_STUFF_UTF8) {
1053 STRLEN highhalf = 0;
1054 const char *p, *e = pv+len;
1055 for (p = pv; p != e; p++) {
1057 if (UTF8_IS_ABOVE_LATIN1(c)) {
1058 Perl_croak(aTHX_ "Lexing code attempted to stuff "
1059 "non-Latin-1 character into Latin-1 input");
1060 } else if (UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(p, e)) {
1063 } else assert(UTF8_IS_INVARIANT(c));
1067 lex_grow_linestr(SvCUR(PL_parser->linestr)+1+len-highhalf);
1068 bufptr = PL_parser->bufptr;
1069 Move(bufptr, bufptr+len-highhalf, PL_parser->bufend+1-bufptr, char);
1070 SvCUR_set(PL_parser->linestr,
1071 SvCUR(PL_parser->linestr) + len-highhalf);
1072 PL_parser->bufend += len-highhalf;
1075 if (UTF8_IS_INVARIANT(*p)) {
1081 *bufptr++ = EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1));
1087 lex_grow_linestr(SvCUR(PL_parser->linestr)+1+len);
1088 bufptr = PL_parser->bufptr;
1089 Move(bufptr, bufptr+len, PL_parser->bufend+1-bufptr, char);
1090 SvCUR_set(PL_parser->linestr, SvCUR(PL_parser->linestr) + len);
1091 PL_parser->bufend += len;
1092 Copy(pv, bufptr, len, char);
1098 =for apidoc lex_stuff_pv
1100 Insert characters into the lexer buffer (L</PL_parser-E<gt>linestr>),
1101 immediately after the current lexing point (L</PL_parser-E<gt>bufptr>),
1102 reallocating the buffer if necessary. This means that lexing code that
1103 runs later will see the characters as if they had appeared in the input.
1104 It is not recommended to do this as part of normal parsing, and most
1105 uses of this facility run the risk of the inserted characters being
1106 interpreted in an unintended manner.
1108 The string to be inserted is represented by octets starting at C<pv>
1109 and continuing to the first nul. These octets are interpreted as either
1110 UTF-8 or Latin-1, according to whether the C<LEX_STUFF_UTF8> flag is set
1111 in C<flags>. The characters are recoded for the lexer buffer, according
1112 to how the buffer is currently being interpreted (L</lex_bufutf8>).
1113 If it is not convenient to nul-terminate a string to be inserted, the
1114 L</lex_stuff_pvn> function is more appropriate.
1120 Perl_lex_stuff_pv(pTHX_ const char *pv, U32 flags)
1122 PERL_ARGS_ASSERT_LEX_STUFF_PV;
1123 lex_stuff_pvn(pv, strlen(pv), flags);
1127 =for apidoc lex_stuff_sv
1129 Insert characters into the lexer buffer (L</PL_parser-E<gt>linestr>),
1130 immediately after the current lexing point (L</PL_parser-E<gt>bufptr>),
1131 reallocating the buffer if necessary. This means that lexing code that
1132 runs later will see the characters as if they had appeared in the input.
1133 It is not recommended to do this as part of normal parsing, and most
1134 uses of this facility run the risk of the inserted characters being
1135 interpreted in an unintended manner.
1137 The string to be inserted is the string value of C<sv>. The characters
1138 are recoded for the lexer buffer, according to how the buffer is currently
1139 being interpreted (L</lex_bufutf8>). If a string to be inserted is
1140 not already a Perl scalar, the L</lex_stuff_pvn> function avoids the
1141 need to construct a scalar.
1147 Perl_lex_stuff_sv(pTHX_ SV *sv, U32 flags)
1151 PERL_ARGS_ASSERT_LEX_STUFF_SV;
1153 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_stuff_sv");
1155 lex_stuff_pvn(pv, len, flags | (SvUTF8(sv) ? LEX_STUFF_UTF8 : 0));
1159 =for apidoc lex_unstuff
1161 Discards text about to be lexed, from L</PL_parser-E<gt>bufptr> up to
1162 C<ptr>. Text following C<ptr> will be moved, and the buffer shortened.
1163 This hides the discarded text from any lexing code that runs later,
1164 as if the text had never appeared.
1166 This is not the normal way to consume lexed text. For that, use
1173 Perl_lex_unstuff(pTHX_ char *ptr)
1177 PERL_ARGS_ASSERT_LEX_UNSTUFF;
1178 buf = PL_parser->bufptr;
1180 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_unstuff");
1183 bufend = PL_parser->bufend;
1185 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_unstuff");
1186 unstuff_len = ptr - buf;
1187 Move(ptr, buf, bufend+1-ptr, char);
1188 SvCUR_set(PL_parser->linestr, SvCUR(PL_parser->linestr) - unstuff_len);
1189 PL_parser->bufend = bufend - unstuff_len;
1193 =for apidoc lex_read_to
1195 Consume text in the lexer buffer, from L</PL_parser-E<gt>bufptr> up
1196 to C<ptr>. This advances L</PL_parser-E<gt>bufptr> to match C<ptr>,
1197 performing the correct bookkeeping whenever a newline character is passed.
1198 This is the normal way to consume lexed text.
1200 Interpretation of the buffer's octets can be abstracted out by
1201 using the slightly higher-level functions L</lex_peek_unichar> and
1202 L</lex_read_unichar>.
1208 Perl_lex_read_to(pTHX_ char *ptr)
1211 PERL_ARGS_ASSERT_LEX_READ_TO;
1212 s = PL_parser->bufptr;
1213 if (ptr < s || ptr > PL_parser->bufend)
1214 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_read_to");
1215 for (; s != ptr; s++)
1217 COPLINE_INC_WITH_HERELINES;
1218 PL_parser->linestart = s+1;
1220 PL_parser->bufptr = ptr;
1224 =for apidoc lex_discard_to
1226 Discards the first part of the L</PL_parser-E<gt>linestr> buffer,
1227 up to C<ptr>. The remaining content of the buffer will be moved, and
1228 all pointers into the buffer updated appropriately. C<ptr> must not
1229 be later in the buffer than the position of L</PL_parser-E<gt>bufptr>:
1230 it is not permitted to discard text that has yet to be lexed.
1232 Normally it is not necessarily to do this directly, because it suffices to
1233 use the implicit discarding behaviour of L</lex_next_chunk> and things
1234 based on it. However, if a token stretches across multiple lines,
1235 and the lexing code has kept multiple lines of text in the buffer for
1236 that purpose, then after completion of the token it would be wise to
1237 explicitly discard the now-unneeded earlier lines, to avoid future
1238 multi-line tokens growing the buffer without bound.
1244 Perl_lex_discard_to(pTHX_ char *ptr)
1248 PERL_ARGS_ASSERT_LEX_DISCARD_TO;
1249 buf = SvPVX(PL_parser->linestr);
1251 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_discard_to");
1254 if (ptr > PL_parser->bufptr)
1255 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_discard_to");
1256 discard_len = ptr - buf;
1257 if (PL_parser->oldbufptr < ptr)
1258 PL_parser->oldbufptr = ptr;
1259 if (PL_parser->oldoldbufptr < ptr)
1260 PL_parser->oldoldbufptr = ptr;
1261 if (PL_parser->last_uni && PL_parser->last_uni < ptr)
1262 PL_parser->last_uni = NULL;
1263 if (PL_parser->last_lop && PL_parser->last_lop < ptr)
1264 PL_parser->last_lop = NULL;
1265 Move(ptr, buf, PL_parser->bufend+1-ptr, char);
1266 SvCUR_set(PL_parser->linestr, SvCUR(PL_parser->linestr) - discard_len);
1267 PL_parser->bufend -= discard_len;
1268 PL_parser->bufptr -= discard_len;
1269 PL_parser->oldbufptr -= discard_len;
1270 PL_parser->oldoldbufptr -= discard_len;
1271 if (PL_parser->last_uni)
1272 PL_parser->last_uni -= discard_len;
1273 if (PL_parser->last_lop)
1274 PL_parser->last_lop -= discard_len;
1278 Perl_notify_parser_that_changed_to_utf8(pTHX)
1280 /* Called when $^H is changed to indicate that HINT_UTF8 has changed from
1281 * off to on. At compile time, this has the effect of entering a 'use
1282 * utf8' section. This means that any input was not previously checked for
1283 * UTF-8 (because it was off), but now we do need to check it, or our
1284 * assumptions about the input being sane could be wrong, and we could
1285 * segfault. This routine just sets a flag so that the next time we look
1286 * at the input we do the well-formed UTF-8 check. If we aren't in the
1287 * proper phase, there may not be a parser object, but if there is, setting
1288 * the flag is harmless */
1291 PL_parser->recheck_utf8_validity = TRUE;
1296 =for apidoc lex_next_chunk
1298 Reads in the next chunk of text to be lexed, appending it to
1299 L</PL_parser-E<gt>linestr>. This should be called when lexing code has
1300 looked to the end of the current chunk and wants to know more. It is
1301 usual, but not necessary, for lexing to have consumed the entirety of
1302 the current chunk at this time.
1304 If L</PL_parser-E<gt>bufptr> is pointing to the very end of the current
1305 chunk (i.e., the current chunk has been entirely consumed), normally the
1306 current chunk will be discarded at the same time that the new chunk is
1307 read in. If C<flags> has the C<LEX_KEEP_PREVIOUS> bit set, the current chunk
1308 will not be discarded. If the current chunk has not been entirely
1309 consumed, then it will not be discarded regardless of the flag.
1311 Returns true if some new text was added to the buffer, or false if the
1312 buffer has reached the end of the input text.
1314 =for apidoc Amnh||LEX_KEEP_PREVIOUS
1319 #define LEX_FAKE_EOF 0x80000000
1320 #define LEX_NO_TERM 0x40000000 /* here-doc */
1323 Perl_lex_next_chunk(pTHX_ U32 flags)
1327 STRLEN old_bufend_pos, new_bufend_pos;
1328 STRLEN bufptr_pos, oldbufptr_pos, oldoldbufptr_pos;
1329 STRLEN linestart_pos, last_uni_pos, last_lop_pos;
1330 bool got_some_for_debugger = 0;
1333 if (flags & ~(LEX_KEEP_PREVIOUS|LEX_FAKE_EOF|LEX_NO_TERM))
1334 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_next_chunk");
1335 if (!(flags & LEX_NO_TERM) && PL_lex_inwhat)
1337 linestr = PL_parser->linestr;
1338 buf = SvPVX(linestr);
1339 if (!(flags & LEX_KEEP_PREVIOUS)
1340 && PL_parser->bufptr == PL_parser->bufend)
1342 old_bufend_pos = bufptr_pos = oldbufptr_pos = oldoldbufptr_pos = 0;
1344 if (PL_parser->last_uni != PL_parser->bufend)
1345 PL_parser->last_uni = NULL;
1346 if (PL_parser->last_lop != PL_parser->bufend)
1347 PL_parser->last_lop = NULL;
1348 last_uni_pos = last_lop_pos = 0;
1350 SvCUR_set(linestr, 0);
1352 old_bufend_pos = PL_parser->bufend - buf;
1353 bufptr_pos = PL_parser->bufptr - buf;
1354 oldbufptr_pos = PL_parser->oldbufptr - buf;
1355 oldoldbufptr_pos = PL_parser->oldoldbufptr - buf;
1356 linestart_pos = PL_parser->linestart - buf;
1357 last_uni_pos = PL_parser->last_uni ? PL_parser->last_uni - buf : 0;
1358 last_lop_pos = PL_parser->last_lop ? PL_parser->last_lop - buf : 0;
1360 if (flags & LEX_FAKE_EOF) {
1362 } else if (!PL_parser->rsfp && !PL_parser->filtered) {
1364 } else if (filter_gets(linestr, old_bufend_pos)) {
1366 got_some_for_debugger = 1;
1367 } else if (flags & LEX_NO_TERM) {
1370 if (!SvPOK(linestr)) /* can get undefined by filter_gets */
1373 /* End of real input. Close filehandle (unless it was STDIN),
1374 * then add implicit termination.
1376 if (PL_parser->lex_flags & LEX_DONT_CLOSE_RSFP)
1377 PerlIO_clearerr(PL_parser->rsfp);
1378 else if (PL_parser->rsfp)
1379 (void)PerlIO_close(PL_parser->rsfp);
1380 PL_parser->rsfp = NULL;
1381 PL_parser->in_pod = PL_parser->filtered = 0;
1382 if (!PL_in_eval && PL_minus_p) {
1384 /*{*/";}continue{print or die qq(-p destination: $!\\n);}");
1385 PL_minus_n = PL_minus_p = 0;
1386 } else if (!PL_in_eval && PL_minus_n) {
1387 sv_catpvs(linestr, /*{*/";}");
1390 sv_catpvs(linestr, ";");
1393 buf = SvPVX(linestr);
1394 new_bufend_pos = SvCUR(linestr);
1395 PL_parser->bufend = buf + new_bufend_pos;
1396 PL_parser->bufptr = buf + bufptr_pos;
1399 const U8* first_bad_char_loc;
1400 if (UNLIKELY(! is_utf8_string_loc(
1401 (U8 *) PL_parser->bufptr,
1402 PL_parser->bufend - PL_parser->bufptr,
1403 &first_bad_char_loc)))
1405 _force_out_malformed_utf8_message(first_bad_char_loc,
1406 (U8 *) PL_parser->bufend,
1408 1 /* 1 means die */ );
1409 NOT_REACHED; /* NOTREACHED */
1413 PL_parser->oldbufptr = buf + oldbufptr_pos;
1414 PL_parser->oldoldbufptr = buf + oldoldbufptr_pos;
1415 PL_parser->linestart = buf + linestart_pos;
1416 if (PL_parser->last_uni)
1417 PL_parser->last_uni = buf + last_uni_pos;
1418 if (PL_parser->last_lop)
1419 PL_parser->last_lop = buf + last_lop_pos;
1420 if (PL_parser->preambling != NOLINE) {
1421 CopLINE_set(PL_curcop, PL_parser->preambling + 1);
1422 PL_parser->preambling = NOLINE;
1424 if ( got_some_for_debugger
1425 && PERLDB_LINE_OR_SAVESRC
1426 && PL_curstash != PL_debstash)
1428 /* debugger active and we're not compiling the debugger code,
1429 * so store the line into the debugger's array of lines
1431 update_debugger_info(NULL, buf+old_bufend_pos,
1432 new_bufend_pos-old_bufend_pos);
1438 =for apidoc lex_peek_unichar
1440 Looks ahead one (Unicode) character in the text currently being lexed.
1441 Returns the codepoint (unsigned integer value) of the next character,
1442 or -1 if lexing has reached the end of the input text. To consume the
1443 peeked character, use L</lex_read_unichar>.
1445 If the next character is in (or extends into) the next chunk of input
1446 text, the next chunk will be read in. Normally the current chunk will be
1447 discarded at the same time, but if C<flags> has the C<LEX_KEEP_PREVIOUS>
1448 bit set, then the current chunk will not be discarded.
1450 If the input is being interpreted as UTF-8 and a UTF-8 encoding error
1451 is encountered, an exception is generated.
1457 Perl_lex_peek_unichar(pTHX_ U32 flags)
1460 if (flags & ~(LEX_KEEP_PREVIOUS))
1461 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_peek_unichar");
1462 s = PL_parser->bufptr;
1463 bufend = PL_parser->bufend;
1469 if (!lex_next_chunk(flags))
1471 s = PL_parser->bufptr;
1472 bufend = PL_parser->bufend;
1475 if (UTF8_IS_INVARIANT(head))
1477 if (UTF8_IS_START(head)) {
1478 len = UTF8SKIP(&head);
1479 while ((STRLEN)(bufend-s) < len) {
1480 if (!lex_next_chunk(flags | LEX_KEEP_PREVIOUS))
1482 s = PL_parser->bufptr;
1483 bufend = PL_parser->bufend;
1486 unichar = utf8n_to_uvchr((U8*)s, bufend-s, &retlen, UTF8_CHECK_ONLY);
1487 if (retlen == (STRLEN)-1) {
1488 _force_out_malformed_utf8_message((U8 *) s,
1491 1 /* 1 means die */ );
1492 NOT_REACHED; /* NOTREACHED */
1497 if (!lex_next_chunk(flags))
1499 s = PL_parser->bufptr;
1506 =for apidoc lex_read_unichar
1508 Reads the next (Unicode) character in the text currently being lexed.
1509 Returns the codepoint (unsigned integer value) of the character read,
1510 and moves L</PL_parser-E<gt>bufptr> past the character, or returns -1
1511 if lexing has reached the end of the input text. To non-destructively
1512 examine the next character, use L</lex_peek_unichar> instead.
1514 If the next character is in (or extends into) the next chunk of input
1515 text, the next chunk will be read in. Normally the current chunk will be
1516 discarded at the same time, but if C<flags> has the C<LEX_KEEP_PREVIOUS>
1517 bit set, then the current chunk will not be discarded.
1519 If the input is being interpreted as UTF-8 and a UTF-8 encoding error
1520 is encountered, an exception is generated.
1526 Perl_lex_read_unichar(pTHX_ U32 flags)
1529 if (flags & ~(LEX_KEEP_PREVIOUS))
1530 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_read_unichar");
1531 c = lex_peek_unichar(flags);
1534 COPLINE_INC_WITH_HERELINES;
1536 PL_parser->bufptr += UTF8SKIP(PL_parser->bufptr);
1538 ++(PL_parser->bufptr);
1544 =for apidoc lex_read_space
1546 Reads optional spaces, in Perl style, in the text currently being
1547 lexed. The spaces may include ordinary whitespace characters and
1548 Perl-style comments. C<#line> directives are processed if encountered.
1549 L</PL_parser-E<gt>bufptr> is moved past the spaces, so that it points
1550 at a non-space character (or the end of the input text).
1552 If spaces extend into the next chunk of input text, the next chunk will
1553 be read in. Normally the current chunk will be discarded at the same
1554 time, but if C<flags> has the C<LEX_KEEP_PREVIOUS> bit set, then the current
1555 chunk will not be discarded.
1560 #define LEX_NO_INCLINE 0x40000000
1561 #define LEX_NO_NEXT_CHUNK 0x80000000
1564 Perl_lex_read_space(pTHX_ U32 flags)
1567 const bool can_incline = !(flags & LEX_NO_INCLINE);
1568 bool need_incline = 0;
1569 if (flags & ~(LEX_KEEP_PREVIOUS|LEX_NO_NEXT_CHUNK|LEX_NO_INCLINE))
1570 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_read_space");
1571 s = PL_parser->bufptr;
1572 bufend = PL_parser->bufend;
1578 } while (!(c == '\n' || (c == 0 && s == bufend)));
1579 } else if (c == '\n') {
1582 PL_parser->linestart = s;
1588 } else if (isSPACE(c)) {
1590 } else if (c == 0 && s == bufend) {
1593 if (flags & LEX_NO_NEXT_CHUNK)
1595 PL_parser->bufptr = s;
1596 l = CopLINE(PL_curcop);
1597 CopLINE(PL_curcop) += PL_parser->herelines + 1;
1598 got_more = lex_next_chunk(flags);
1599 CopLINE_set(PL_curcop, l);
1600 s = PL_parser->bufptr;
1601 bufend = PL_parser->bufend;
1604 if (can_incline && need_incline && PL_parser->rsfp) {
1614 PL_parser->bufptr = s;
1619 =for apidoc validate_proto
1621 This function performs syntax checking on a prototype, C<proto>.
1622 If C<warn> is true, any illegal characters or mismatched brackets
1623 will trigger illegalproto warnings, declaring that they were
1624 detected in the prototype for C<name>.
1626 The return value is C<true> if this is a valid prototype, and
1627 C<false> if it is not, regardless of whether C<warn> was C<true> or
1630 Note that C<NULL> is a valid C<proto> and will always return C<true>.
1637 Perl_validate_proto(pTHX_ SV *name, SV *proto, bool warn, bool curstash)
1639 STRLEN len, origlen;
1641 bool bad_proto = FALSE;
1642 bool in_brackets = FALSE;
1643 bool after_slash = FALSE;
1644 char greedy_proto = ' ';
1645 bool proto_after_greedy_proto = FALSE;
1646 bool must_be_last = FALSE;
1647 bool underscore = FALSE;
1648 bool bad_proto_after_underscore = FALSE;
1650 PERL_ARGS_ASSERT_VALIDATE_PROTO;
1655 p = SvPV(proto, len);
1657 for (; len--; p++) {
1660 proto_after_greedy_proto = TRUE;
1662 if (!memCHRs(";@%", *p))
1663 bad_proto_after_underscore = TRUE;
1666 if (!memCHRs("$@%*;[]&\\_+", *p) || *p == '\0') {
1673 in_brackets = FALSE;
1674 else if ((*p == '@' || *p == '%')
1678 must_be_last = TRUE;
1687 after_slash = FALSE;
1692 SV *tmpsv = newSVpvs_flags("", SVs_TEMP);
1695 ? sv_uni_display(tmpsv, newSVpvn_flags(p, origlen, SVs_TEMP | SVf_UTF8),
1696 origlen, UNI_DISPLAY_ISPRINT)
1697 : pv_pretty(tmpsv, p, origlen, 60, NULL, NULL, PERL_PV_ESCAPE_NONASCII);
1699 if (curstash && !memchr(SvPVX(name), ':', SvCUR(name))) {
1700 SV *name2 = sv_2mortal(newSVsv(PL_curstname));
1701 sv_catpvs(name2, "::");
1702 sv_catsv(name2, (SV *)name);
1706 if (proto_after_greedy_proto)
1707 Perl_warner(aTHX_ packWARN(WARN_ILLEGALPROTO),
1708 "Prototype after '%c' for %" SVf " : %s",
1709 greedy_proto, SVfARG(name), p);
1711 Perl_warner(aTHX_ packWARN(WARN_ILLEGALPROTO),
1712 "Missing ']' in prototype for %" SVf " : %s",
1715 Perl_warner(aTHX_ packWARN(WARN_ILLEGALPROTO),
1716 "Illegal character in prototype for %" SVf " : %s",
1718 if (bad_proto_after_underscore)
1719 Perl_warner(aTHX_ packWARN(WARN_ILLEGALPROTO),
1720 "Illegal character after '_' in prototype for %" SVf " : %s",
1724 return (! (proto_after_greedy_proto || bad_proto) );
1729 * This subroutine has nothing to do with tilting, whether at windmills
1730 * or pinball tables. Its name is short for "increment line". It
1731 * increments the current line number in CopLINE(PL_curcop) and checks
1732 * to see whether the line starts with a comment of the form
1733 * # line 500 "foo.pm"
1734 * If so, it sets the current line number and file to the values in the comment.
1738 S_incline(pTHX_ const char *s, const char *end)
1746 PERL_ARGS_ASSERT_INCLINE;
1750 COPLINE_INC_WITH_HERELINES;
1751 if (!PL_rsfp && !PL_parser->filtered && PL_lex_state == LEX_NORMAL
1752 && s+1 == PL_bufend && *s == ';') {
1753 /* fake newline in string eval */
1754 CopLINE_dec(PL_curcop);
1759 while (SPACE_OR_TAB(*s))
1761 if (memBEGINs(s, (STRLEN) (end - s), "line"))
1762 s += sizeof("line") - 1;
1765 if (SPACE_OR_TAB(*s))
1769 while (SPACE_OR_TAB(*s))
1777 if (!SPACE_OR_TAB(*s) && *s != '\r' && *s != '\n' && *s != '\0')
1779 while (SPACE_OR_TAB(*s))
1781 if (*s == '"' && (t = (char *) memchr(s+1, '"', end - s))) {
1787 while (*t && !isSPACE(*t))
1791 while (SPACE_OR_TAB(*e) || *e == '\r' || *e == '\f')
1793 if (*e != '\n' && *e != '\0')
1794 return; /* false alarm */
1796 if (!grok_atoUV(n, &uv, &e))
1798 line_num = ((line_t)uv) - 1;
1801 const STRLEN len = t - s;
1803 if (!PL_rsfp && !PL_parser->filtered) {
1804 /* must copy *{"::_<(eval N)[oldfilename:L]"}
1805 * to *{"::_<newfilename"} */
1806 /* However, the long form of evals is only turned on by the
1807 debugger - usually they're "(eval %lu)" */
1808 GV * const cfgv = CopFILEGV(PL_curcop);
1811 STRLEN tmplen2 = len;
1815 if (tmplen2 + 2 <= sizeof smallbuf)
1818 Newx(tmpbuf2, tmplen2 + 2, char);
1823 memcpy(tmpbuf2 + 2, s, tmplen2);
1826 gv2 = *(GV**)hv_fetch(PL_defstash, tmpbuf2, tmplen2, TRUE);
1828 gv_init(gv2, PL_defstash, tmpbuf2, tmplen2, FALSE);
1829 /* adjust ${"::_<newfilename"} to store the new file name */
1830 GvSV(gv2) = newSVpvn(tmpbuf2 + 2, tmplen2 - 2);
1831 /* The line number may differ. If that is the case,
1832 alias the saved lines that are in the array.
1833 Otherwise alias the whole array. */
1834 if (CopLINE(PL_curcop) == line_num) {
1835 GvHV(gv2) = MUTABLE_HV(SvREFCNT_inc(GvHV(cfgv)));
1836 GvAV(gv2) = MUTABLE_AV(SvREFCNT_inc(GvAV(cfgv)));
1838 else if (GvAV(cfgv)) {
1839 AV * const av = GvAV(cfgv);
1840 const line_t start = CopLINE(PL_curcop)+1;
1841 SSize_t items = AvFILLp(av) - start;
1843 AV * const av2 = GvAVn(gv2);
1844 SV **svp = AvARRAY(av) + start;
1845 Size_t l = line_num+1;
1846 while (items-- && l < SSize_t_MAX && l == (line_t)l)
1847 av_store(av2, (SSize_t)l++, SvREFCNT_inc(*svp++));
1852 if (tmpbuf2 != smallbuf) Safefree(tmpbuf2);
1855 CopFILE_free(PL_curcop);
1856 CopFILE_setn(PL_curcop, s, len);
1858 CopLINE_set(PL_curcop, line_num);
1862 S_update_debugger_info(pTHX_ SV *orig_sv, const char *const buf, STRLEN len)
1864 AV *av = CopFILEAVx(PL_curcop);
1867 if (PL_parser->preambling == NOLINE) sv = newSV_type(SVt_PVMG);
1869 sv = *av_fetch(av, 0, 1);
1870 SvUPGRADE(sv, SVt_PVMG);
1872 if (!SvPOK(sv)) SvPVCLEAR(sv);
1874 sv_catsv(sv, orig_sv);
1876 sv_catpvn(sv, buf, len);
1881 if (PL_parser->preambling == NOLINE)
1882 av_store(av, CopLINE(PL_curcop), sv);
1888 * Called to gobble the appropriate amount and type of whitespace.
1889 * Skips comments as well.
1890 * Returns the next character after the whitespace that is skipped.
1893 * Same thing, but look ahead without incrementing line numbers or
1894 * adjusting PL_linestart.
1897 #define skipspace(s) skipspace_flags(s, 0)
1898 #define peekspace(s) skipspace_flags(s, LEX_NO_INCLINE)
1901 Perl_skipspace_flags(pTHX_ char *s, U32 flags)
1903 PERL_ARGS_ASSERT_SKIPSPACE_FLAGS;
1904 if (PL_lex_formbrack && PL_lex_brackets <= PL_lex_formbrack) {
1905 while (s < PL_bufend && (SPACE_OR_TAB(*s) || !*s))
1908 STRLEN bufptr_pos = PL_bufptr - SvPVX(PL_linestr);
1910 lex_read_space(flags | LEX_KEEP_PREVIOUS |
1911 (PL_lex_inwhat || PL_lex_state == LEX_FORMLINE ?
1912 LEX_NO_NEXT_CHUNK : 0));
1914 PL_bufptr = SvPVX(PL_linestr) + bufptr_pos;
1915 if (PL_linestart > PL_bufptr)
1916 PL_bufptr = PL_linestart;
1924 * Check the unary operators to ensure there's no ambiguity in how they're
1925 * used. An ambiguous piece of code would be:
1927 * This doesn't mean rand() + 5. Because rand() is a unary operator,
1928 * the +5 is its argument.
1936 if (PL_oldoldbufptr != PL_last_uni)
1938 while (isSPACE(*PL_last_uni))
1941 while (isWORDCHAR_lazy_if_safe(s, PL_bufend, UTF) || *s == '-')
1942 s += UTF ? UTF8SKIP(s) : 1;
1943 if (s < PL_bufptr && memchr(s, '(', PL_bufptr - s))
1946 Perl_ck_warner_d(aTHX_ packWARN(WARN_AMBIGUOUS),
1947 "Warning: Use of \"%" UTF8f "\" without parentheses is ambiguous",
1948 UTF8fARG(UTF, (int)(s - PL_last_uni), PL_last_uni));
1952 * LOP : macro to build a list operator. Its behaviour has been replaced
1953 * with a subroutine, S_lop() for which LOP is just another name.
1956 #define LOP(f,x) return lop(f,x,s)
1960 * Build a list operator (or something that might be one). The rules:
1961 * - if we have a next token, then it's a list operator (no parens) for
1962 * which the next token has already been parsed; e.g.,
1965 * - if the next thing is an opening paren, then it's a function
1966 * - else it's a list operator
1970 S_lop(pTHX_ I32 f, U8 x, char *s)
1972 PERL_ARGS_ASSERT_LOP;
1977 PL_last_lop = PL_oldbufptr;
1978 PL_last_lop_op = (OPCODE)f;
1983 return REPORT(FUNC);
1986 return REPORT(FUNC);
1989 if (!PL_lex_allbrackets && PL_lex_fakeeof > LEX_FAKEEOF_LOWLOGIC)
1990 PL_lex_fakeeof = LEX_FAKEEOF_LOWLOGIC;
1991 return REPORT(LSTOP);
1997 * When the lexer realizes it knows the next token (for instance,
1998 * it is reordering tokens for the parser) then it can call S_force_next
1999 * to know what token to return the next time the lexer is called. Caller
2000 * will need to set PL_nextval[] and possibly PL_expect to ensure
2001 * the lexer handles the token correctly.
2005 S_force_next(pTHX_ I32 type)
2009 PerlIO_printf(Perl_debug_log, "### forced token:\n");
2010 tokereport(type, &NEXTVAL_NEXTTOKE);
2013 assert(PL_nexttoke < C_ARRAY_LENGTH(PL_nexttype));
2014 PL_nexttype[PL_nexttoke] = type;
2021 * This subroutine handles postfix deref syntax after the arrow has already
2022 * been emitted. @* $* etc. are emitted as two separate tokens right here.
2023 * @[ @{ %[ %{ *{ are emitted also as two tokens, but this function emits
2024 * only the first, leaving yylex to find the next.
2028 S_postderef(pTHX_ int const funny, char const next)
2030 assert(funny == DOLSHARP || memCHRs("$@%&*", funny));
2032 PL_expect = XOPERATOR;
2033 if (PL_lex_state == LEX_INTERPNORMAL && !PL_lex_brackets) {
2034 assert('@' == funny || '$' == funny || DOLSHARP == funny);
2035 PL_lex_state = LEX_INTERPEND;
2037 force_next(POSTJOIN);
2043 if ('@' == funny && PL_lex_state == LEX_INTERPNORMAL
2044 && !PL_lex_brackets)
2046 PL_expect = XOPERATOR;
2055 int yyc = PL_parser->yychar;
2056 if (yyc != YYEMPTY) {
2058 NEXTVAL_NEXTTOKE = PL_parser->yylval;
2059 if (yyc == '{'/*}*/ || yyc == HASHBRACK || yyc == '['/*]*/) {
2060 PL_lex_allbrackets--;
2062 yyc |= (3<<24) | (PL_lex_brackstack[PL_lex_brackets] << 16);
2063 } else if (yyc == '('/*)*/) {
2064 PL_lex_allbrackets--;
2069 PL_parser->yychar = YYEMPTY;
2074 S_newSV_maybe_utf8(pTHX_ const char *const start, STRLEN len)
2076 SV * const sv = newSVpvn_utf8(start, len,
2080 && is_utf8_non_invariant_string((const U8*)start, len));
2086 * When the lexer knows the next thing is a word (for instance, it has
2087 * just seen -> and it knows that the next char is a word char, then
2088 * it calls S_force_word to stick the next word into the PL_nexttoke/val
2092 * char *start : buffer position (must be within PL_linestr)
2093 * int token : PL_next* will be this type of bare word
2094 * (e.g., METHOD,BAREWORD)
2095 * int check_keyword : if true, Perl checks to make sure the word isn't
2096 * a keyword (do this if the word is a label, e.g. goto FOO)
2097 * int allow_pack : if true, : characters will also be allowed (require,
2098 * use, etc. do this)
2102 S_force_word(pTHX_ char *start, int token, int check_keyword, int allow_pack)
2107 PERL_ARGS_ASSERT_FORCE_WORD;
2109 start = skipspace(start);
2111 if ( isIDFIRST_lazy_if_safe(s, PL_bufend, UTF)
2112 || (allow_pack && *s == ':' && s[1] == ':') )
2114 s = scan_word(s, PL_tokenbuf, sizeof PL_tokenbuf, allow_pack, &len);
2115 if (check_keyword) {
2116 char *s2 = PL_tokenbuf;
2118 if (allow_pack && memBEGINPs(s2, len, "CORE::")) {
2119 s2 += sizeof("CORE::") - 1;
2120 len2 -= sizeof("CORE::") - 1;
2122 if (keyword(s2, len2, 0))
2125 if (token == METHOD) {
2130 PL_expect = XOPERATOR;
2133 NEXTVAL_NEXTTOKE.opval
2134 = newSVOP(OP_CONST,0,
2135 S_newSV_maybe_utf8(aTHX_ PL_tokenbuf, len));
2136 NEXTVAL_NEXTTOKE.opval->op_private |= OPpCONST_BARE;
2144 * Called when the lexer wants $foo *foo &foo etc, but the program
2145 * text only contains the "foo" portion. The first argument is a pointer
2146 * to the "foo", and the second argument is the type symbol to prefix.
2147 * Forces the next token to be a "BAREWORD".
2148 * Creates the symbol if it didn't already exist (via gv_fetchpv()).
2152 S_force_ident(pTHX_ const char *s, int kind)
2154 PERL_ARGS_ASSERT_FORCE_IDENT;
2157 const STRLEN len = s[1] ? strlen(s) : 1; /* s = "\"" see yylex */
2158 OP* const o = newSVOP(OP_CONST, 0, newSVpvn_flags(s, len,
2159 UTF ? SVf_UTF8 : 0));
2160 NEXTVAL_NEXTTOKE.opval = o;
2161 force_next(BAREWORD);
2163 o->op_private = OPpCONST_ENTERED;
2164 /* XXX see note in pp_entereval() for why we forgo typo
2165 warnings if the symbol must be introduced in an eval.
2167 gv_fetchpvn_flags(s, len,
2168 (PL_in_eval ? GV_ADDMULTI
2169 : GV_ADD) | ( UTF ? SVf_UTF8 : 0 ),
2170 kind == '$' ? SVt_PV :
2171 kind == '@' ? SVt_PVAV :
2172 kind == '%' ? SVt_PVHV :
2180 S_force_ident_maybe_lex(pTHX_ char pit)
2182 NEXTVAL_NEXTTOKE.ival = pit;
2187 Perl_str_to_version(pTHX_ SV *sv)
2192 const char *start = SvPV_const(sv,len);
2193 const char * const end = start + len;
2194 const bool utf = cBOOL(SvUTF8(sv));
2196 PERL_ARGS_ASSERT_STR_TO_VERSION;
2198 while (start < end) {
2202 n = utf8n_to_uvchr((U8*)start, len, &skip, 0);
2207 retval += ((NV)n)/nshift;
2216 * Forces the next token to be a version number.
2217 * If the next token appears to be an invalid version number, (e.g. "v2b"),
2218 * and if "guessing" is TRUE, then no new token is created (and the caller
2219 * must use an alternative parsing method).
2223 S_force_version(pTHX_ char *s, int guessing)
2228 PERL_ARGS_ASSERT_FORCE_VERSION;
2236 while (isDIGIT(*d) || *d == '_' || *d == '.')
2238 if (*d == ';' || isSPACE(*d) || *d == '{' || *d == '}' || !*d) {
2240 s = scan_num(s, &pl_yylval);
2241 version = pl_yylval.opval;
2242 ver = cSVOPx(version)->op_sv;
2243 if (SvPOK(ver) && !SvNIOK(ver)) {
2244 SvUPGRADE(ver, SVt_PVNV);
2245 SvNV_set(ver, str_to_version(ver));
2246 SvNOK_on(ver); /* hint that it is a version */
2249 else if (guessing) {
2254 /* NOTE: The parser sees the package name and the VERSION swapped */
2255 NEXTVAL_NEXTTOKE.opval = version;
2256 force_next(BAREWORD);
2262 * S_force_strict_version
2263 * Forces the next token to be a version number using strict syntax rules.
2267 S_force_strict_version(pTHX_ char *s)
2270 const char *errstr = NULL;
2272 PERL_ARGS_ASSERT_FORCE_STRICT_VERSION;
2274 while (isSPACE(*s)) /* leading whitespace */
2277 if (is_STRICT_VERSION(s,&errstr)) {
2279 s = (char *)scan_version(s, ver, 0);
2280 version = newSVOP(OP_CONST, 0, ver);
2282 else if ((*s != ';' && *s != '{' && *s != '}' )
2283 && (s = skipspace(s), (*s != ';' && *s != '{' && *s != '}' )))
2287 yyerror(errstr); /* version required */
2291 /* NOTE: The parser sees the package name and the VERSION swapped */
2292 NEXTVAL_NEXTTOKE.opval = version;
2293 force_next(BAREWORD);
2300 * Turns any \\ into \ in a quoted string passed in in 'sv', returning 'sv',
2301 * modified as necessary. However, if HINT_NEW_STRING is on, 'sv' is
2302 * unchanged, and a new SV containing the modified input is returned.
2306 S_tokeq(pTHX_ SV *sv)
2313 PERL_ARGS_ASSERT_TOKEQ;
2317 assert (!SvIsCOW(sv));
2318 if (SvTYPE(sv) >= SVt_PVIV && SvIVX(sv) == -1) /* <<'heredoc' */
2322 /* This is relying on the SV being "well formed" with a trailing '\0' */
2323 while (s < send && !(*s == '\\' && s[1] == '\\'))
2328 if ( PL_hints & HINT_NEW_STRING ) {
2329 pv = newSVpvn_flags(SvPVX_const(pv), SvCUR(sv),
2330 SVs_TEMP | SvUTF8(sv));
2334 if (s + 1 < send && (s[1] == '\\'))
2335 s++; /* all that, just for this */
2340 SvCUR_set(sv, d - SvPVX_const(sv));
2342 if ( PL_hints & HINT_NEW_STRING )
2343 return new_constant(NULL, 0, "q", sv, pv, "q", 1, NULL);
2348 * Now come three functions related to double-quote context,
2349 * S_sublex_start, S_sublex_push, and S_sublex_done. They're used when
2350 * converting things like "\u\Lgnat" into ucfirst(lc("gnat")). They
2351 * interact with PL_lex_state, and create fake ( ... ) argument lists
2352 * to handle functions and concatenation.
2356 * stringify ( const[foo] concat lcfirst ( const[bar] ) )
2361 * Assumes that pl_yylval.ival is the op we're creating (e.g. OP_LCFIRST).
2363 * Pattern matching will set PL_lex_op to the pattern-matching op to
2364 * make (we return THING if pl_yylval.ival is OP_NULL, PMFUNC otherwise).
2366 * OP_CONST is easy--just make the new op and return.
2368 * Everything else becomes a FUNC.
2370 * Sets PL_lex_state to LEX_INTERPPUSH unless ival was OP_NULL or we
2371 * had an OP_CONST. This just sets us up for a
2372 * call to S_sublex_push().
2376 S_sublex_start(pTHX)
2378 const I32 op_type = pl_yylval.ival;
2380 if (op_type == OP_NULL) {
2381 pl_yylval.opval = PL_lex_op;
2385 if (op_type == OP_CONST) {
2386 SV *sv = PL_lex_stuff;
2387 PL_lex_stuff = NULL;
2390 if (SvTYPE(sv) == SVt_PVIV) {
2391 /* Overloaded constants, nothing fancy: Convert to SVt_PV: */
2393 const char * const p = SvPV_const(sv, len);
2394 SV * const nsv = newSVpvn_flags(p, len, SvUTF8(sv));
2398 pl_yylval.opval = newSVOP(op_type, 0, sv);
2402 PL_parser->lex_super_state = PL_lex_state;
2403 PL_parser->lex_sub_inwhat = (U16)op_type;
2404 PL_parser->lex_sub_op = PL_lex_op;
2405 PL_parser->sub_no_recover = FALSE;
2406 PL_parser->sub_error_count = PL_error_count;
2407 PL_lex_state = LEX_INTERPPUSH;
2411 pl_yylval.opval = PL_lex_op;
2421 * Create a new scope to save the lexing state. The scope will be
2422 * ended in S_sublex_done. Returns a '(', starting the function arguments
2423 * to the uc, lc, etc. found before.
2424 * Sets PL_lex_state to LEX_INTERPCONCAT.
2431 const bool is_heredoc = PL_multi_close == '<';
2434 PL_lex_state = PL_parser->lex_super_state;
2435 SAVEI8(PL_lex_dojoin);
2436 SAVEI32(PL_lex_brackets);
2437 SAVEI32(PL_lex_allbrackets);
2438 SAVEI32(PL_lex_formbrack);
2439 SAVEI8(PL_lex_fakeeof);
2440 SAVEI32(PL_lex_casemods);
2441 SAVEI32(PL_lex_starts);
2442 SAVEI8(PL_lex_state);
2443 SAVESPTR(PL_lex_repl);
2444 SAVEVPTR(PL_lex_inpat);
2445 SAVEI16(PL_lex_inwhat);
2448 SAVECOPLINE(PL_curcop);
2449 SAVEI32(PL_multi_end);
2450 SAVEI32(PL_parser->herelines);
2451 PL_parser->herelines = 0;
2453 SAVEIV(PL_multi_close);
2454 SAVEPPTR(PL_bufptr);
2455 SAVEPPTR(PL_bufend);
2456 SAVEPPTR(PL_oldbufptr);
2457 SAVEPPTR(PL_oldoldbufptr);
2458 SAVEPPTR(PL_last_lop);
2459 SAVEPPTR(PL_last_uni);
2460 SAVEPPTR(PL_linestart);
2461 SAVESPTR(PL_linestr);
2462 SAVEGENERICPV(PL_lex_brackstack);
2463 SAVEGENERICPV(PL_lex_casestack);
2464 SAVEGENERICPV(PL_parser->lex_shared);
2465 SAVEBOOL(PL_parser->lex_re_reparsing);
2466 SAVEI32(PL_copline);
2468 /* The here-doc parser needs to be able to peek into outer lexing
2469 scopes to find the body of the here-doc. So we put PL_linestr and
2470 PL_bufptr into lex_shared, to ‘share’ those values.
2472 PL_parser->lex_shared->ls_linestr = PL_linestr;
2473 PL_parser->lex_shared->ls_bufptr = PL_bufptr;
2475 PL_linestr = PL_lex_stuff;
2476 PL_lex_repl = PL_parser->lex_sub_repl;
2477 PL_lex_stuff = NULL;
2478 PL_parser->lex_sub_repl = NULL;
2480 /* Arrange for PL_lex_stuff to be freed on scope exit, in case it gets
2481 set for an inner quote-like operator and then an error causes scope-
2482 popping. We must not have a PL_lex_stuff value left dangling, as
2483 that breaks assumptions elsewhere. See bug #123617. */
2484 SAVEGENERICSV(PL_lex_stuff);
2485 SAVEGENERICSV(PL_parser->lex_sub_repl);
2487 PL_bufend = PL_bufptr = PL_oldbufptr = PL_oldoldbufptr = PL_linestart
2488 = SvPVX(PL_linestr);
2489 PL_bufend += SvCUR(PL_linestr);
2490 PL_last_lop = PL_last_uni = NULL;
2491 SAVEFREESV(PL_linestr);
2492 if (PL_lex_repl) SAVEFREESV(PL_lex_repl);
2494 PL_lex_dojoin = FALSE;
2495 PL_lex_brackets = PL_lex_formbrack = 0;
2496 PL_lex_allbrackets = 0;
2497 PL_lex_fakeeof = LEX_FAKEEOF_NEVER;
2498 Newx(PL_lex_brackstack, 120, char);
2499 Newx(PL_lex_casestack, 12, char);
2500 PL_lex_casemods = 0;
2501 *PL_lex_casestack = '\0';
2503 PL_lex_state = LEX_INTERPCONCAT;
2505 CopLINE_set(PL_curcop, (line_t)PL_multi_start);
2506 PL_copline = NOLINE;
2508 Newxz(shared, 1, LEXSHARED);
2509 shared->ls_prev = PL_parser->lex_shared;
2510 PL_parser->lex_shared = shared;
2512 PL_lex_inwhat = PL_parser->lex_sub_inwhat;
2513 if (PL_lex_inwhat == OP_TRANSR) PL_lex_inwhat = OP_TRANS;
2514 if (PL_lex_inwhat == OP_MATCH || PL_lex_inwhat == OP_QR || PL_lex_inwhat == OP_SUBST)
2515 PL_lex_inpat = PL_parser->lex_sub_op;
2517 PL_lex_inpat = NULL;
2519 PL_parser->lex_re_reparsing = cBOOL(PL_in_eval & EVAL_RE_REPARSING);
2520 PL_in_eval &= ~EVAL_RE_REPARSING;
2527 * Restores lexer state after a S_sublex_push.
2533 if (!PL_lex_starts++) {
2534 SV * const sv = newSVpvs("");
2535 if (SvUTF8(PL_linestr))
2537 PL_expect = XOPERATOR;
2538 pl_yylval.opval = newSVOP(OP_CONST, 0, sv);
2542 if (PL_lex_casemods) { /* oops, we've got some unbalanced parens */
2543 PL_lex_state = LEX_INTERPCASEMOD;
2547 /* Is there a right-hand side to take care of? (s//RHS/ or tr//RHS/) */
2548 assert(PL_lex_inwhat != OP_TRANSR);
2550 assert (PL_lex_inwhat == OP_SUBST || PL_lex_inwhat == OP_TRANS);
2551 PL_linestr = PL_lex_repl;
2553 PL_bufend = PL_bufptr = PL_oldbufptr = PL_oldoldbufptr = PL_linestart = SvPVX(PL_linestr);
2554 PL_bufend += SvCUR(PL_linestr);
2555 PL_last_lop = PL_last_uni = NULL;
2556 PL_lex_dojoin = FALSE;
2557 PL_lex_brackets = 0;
2558 PL_lex_allbrackets = 0;
2559 PL_lex_fakeeof = LEX_FAKEEOF_NEVER;
2560 PL_lex_casemods = 0;
2561 *PL_lex_casestack = '\0';
2563 if (SvEVALED(PL_lex_repl)) {
2564 PL_lex_state = LEX_INTERPNORMAL;
2566 /* we don't clear PL_lex_repl here, so that we can check later
2567 whether this is an evalled subst; that means we rely on the
2568 logic to ensure sublex_done() is called again only via the
2569 branch (in yylex()) that clears PL_lex_repl, else we'll loop */
2572 PL_lex_state = LEX_INTERPCONCAT;
2575 if (SvTYPE(PL_linestr) >= SVt_PVNV) {
2576 CopLINE(PL_curcop) +=
2577 ((XPVNV*)SvANY(PL_linestr))->xnv_u.xnv_lines
2578 + PL_parser->herelines;
2579 PL_parser->herelines = 0;
2584 const line_t l = CopLINE(PL_curcop);
2586 if (PL_parser->sub_error_count != PL_error_count) {
2587 if (PL_parser->sub_no_recover) {
2592 if (PL_multi_close == '<')
2593 PL_parser->herelines += l - PL_multi_end;
2594 PL_bufend = SvPVX(PL_linestr);
2595 PL_bufend += SvCUR(PL_linestr);
2596 PL_expect = XOPERATOR;
2602 Perl_load_charnames(pTHX_ SV * char_name, const char * context,
2603 const STRLEN context_len, const char ** error_msg)
2605 /* Load the official _charnames module if not already there. The
2606 * parameters are just to give info for any error messages generated:
2607 * char_name a name to look up which is the reason for loading this
2608 * context 'char_name' in the context in the input in which it appears
2609 * context_len how many bytes 'context' occupies
2610 * error_msg *error_msg will be set to any error
2612 * Returns the ^H table if success; otherwise NULL */
2619 PERL_ARGS_ASSERT_LOAD_CHARNAMES;
2621 /* This loop is executed 1 1/2 times. On the first time through, if it
2622 * isn't already loaded, try loading it, and iterate just once to see if it
2624 for (i = 0; i < 2; i++) {
2625 table = GvHV(PL_hintgv); /* ^H */
2628 && (PL_hints & HINT_LOCALIZE_HH)
2629 && (cvp = hv_fetchs(table, "charnames", FALSE))
2632 return table; /* Quit if already loaded */
2636 Perl_load_module(aTHX_
2638 newSVpvs("_charnames"),
2640 /* version parameter; no need to specify it, as if we get too early
2641 * a version, will fail anyway, not being able to find 'charnames'
2650 /* Here, it failed; new_constant will give appropriate error messages */
2652 res = new_constant( NULL, 0, "charnames", char_name, NULL,
2653 context, context_len, error_msg);
2660 S_get_and_check_backslash_N_name_wrapper(pTHX_ const char* s, const char* const e)
2662 /* This justs wraps get_and_check_backslash_N_name() to output any error
2663 * message it returns. */
2665 const char * error_msg = NULL;
2668 PERL_ARGS_ASSERT_GET_AND_CHECK_BACKSLASH_N_NAME_WRAPPER;
2670 /* charnames doesn't work well if there have been errors found */
2671 if (PL_error_count > 0) {
2675 result = get_and_check_backslash_N_name(s, e, cBOOL(UTF), &error_msg);
2678 yyerror_pv(error_msg, UTF ? SVf_UTF8 : 0);
2685 Perl_get_and_check_backslash_N_name(pTHX_ const char* s,
2686 const char* const e,
2688 const char ** error_msg)
2690 /* <s> points to first character of interior of \N{}, <e> to one beyond the
2691 * interior, hence to the "}". Finds what the name resolves to, returning
2692 * an SV* containing it; NULL if no valid one found.
2694 * 'is_utf8' is TRUE if we know we want the result to be UTF-8 even if it
2695 * doesn't have to be. */
2705 /* Points to the beginning of the \N{... so that any messages include the
2706 * context of what's failing*/
2707 const char* context = s - 3;
2708 STRLEN context_len = e - context + 1; /* include all of \N{...} */
2711 PERL_ARGS_ASSERT_GET_AND_CHECK_BACKSLASH_N_NAME;
2714 assert(s > (char *) 3);
2716 char_name = newSVpvn_flags(s, e - s, (is_utf8) ? SVf_UTF8 : 0);
2718 if (!SvCUR(char_name)) {
2719 SvREFCNT_dec_NN(char_name);
2720 /* diag_listed_as: Unknown charname '%s' */
2721 *error_msg = Perl_form(aTHX_ "Unknown charname ''");
2725 /* Autoload the charnames module */
2727 table = load_charnames(char_name, context, context_len, error_msg);
2728 if (table == NULL) {
2733 res = new_constant( NULL, 0, "charnames", char_name, NULL,
2734 context, context_len, error_msg);
2736 *error_msg = Perl_form(aTHX_ "Unknown charname '%s'", SvPVX(char_name));
2742 /* See if the charnames handler is the Perl core's, and if so, we can skip
2743 * the validation needed for a user-supplied one, as Perl's does its own
2745 cvp = hv_fetchs(table, "charnames", FALSE);
2746 if (cvp && (cv = *cvp) && SvROK(cv) && (rv = SvRV(cv),
2747 SvTYPE(rv) == SVt_PVCV) && ((stash = CvSTASH(rv)) != NULL))
2749 const char * const name = HvNAME(stash);
2750 if (memEQs(name, HvNAMELEN(stash), "_charnames")) {
2755 /* Here, it isn't Perl's charname handler. We can't rely on a
2756 * user-supplied handler to validate the input name. For non-ut8 input,
2757 * look to see that the first character is legal. Then loop through the
2758 * rest checking that each is a continuation */
2760 /* This code makes the reasonable assumption that the only Latin1-range
2761 * characters that begin a character name alias are alphabetic, otherwise
2762 * would have to create a isCHARNAME_BEGIN macro */
2765 if (! isALPHAU(*s)) {
2770 if (! isCHARNAME_CONT(*s)) {
2773 if (*s == ' ' && *(s-1) == ' ') {
2780 /* Similarly for utf8. For invariants can check directly; for other
2781 * Latin1, can calculate their code point and check; otherwise use an
2783 if (UTF8_IS_INVARIANT(*s)) {
2784 if (! isALPHAU(*s)) {
2788 } else if (UTF8_IS_DOWNGRADEABLE_START(*s)) {
2789 if (! isALPHAU(EIGHT_BIT_UTF8_TO_NATIVE(*s, *(s+1)))) {
2795 if (! _invlist_contains_cp(PL_utf8_charname_begin,
2796 utf8_to_uvchr_buf((U8 *) s,
2806 if (UTF8_IS_INVARIANT(*s)) {
2807 if (! isCHARNAME_CONT(*s)) {
2810 if (*s == ' ' && *(s-1) == ' ') {
2815 else if (UTF8_IS_DOWNGRADEABLE_START(*s)) {
2816 if (! isCHARNAME_CONT(EIGHT_BIT_UTF8_TO_NATIVE(*s, *(s+1))))
2823 if (! _invlist_contains_cp(PL_utf8_charname_continue,
2824 utf8_to_uvchr_buf((U8 *) s,
2834 if (*(s-1) == ' ') {
2835 /* diag_listed_as: charnames alias definitions may not contain
2836 trailing white-space; marked by <-- HERE in %s
2838 *error_msg = Perl_form(aTHX_
2839 "charnames alias definitions may not contain trailing "
2840 "white-space; marked by <-- HERE in %.*s<-- HERE %.*s",
2841 (int)(s - context + 1), context,
2842 (int)(e - s + 1), s + 1);
2846 if (SvUTF8(res)) { /* Don't accept malformed charname value */
2847 const U8* first_bad_char_loc;
2849 const char* const str = SvPV_const(res, len);
2850 if (UNLIKELY(! is_utf8_string_loc((U8 *) str, len,
2851 &first_bad_char_loc)))
2853 _force_out_malformed_utf8_message(first_bad_char_loc,
2854 (U8 *) PL_parser->bufend,
2856 0 /* 0 means don't die */ );
2857 /* diag_listed_as: Malformed UTF-8 returned by \N{%s}
2858 immediately after '%s' */
2859 *error_msg = Perl_form(aTHX_
2860 "Malformed UTF-8 returned by %.*s immediately after '%.*s'",
2861 (int) context_len, context,
2862 (int) ((char *) first_bad_char_loc - str), str);
2871 /* The final %.*s makes sure that should the trailing NUL be missing
2872 * that this print won't run off the end of the string */
2873 /* diag_listed_as: Invalid character in \N{...}; marked by <-- HERE
2875 *error_msg = Perl_form(aTHX_
2876 "Invalid character in \\N{...}; marked by <-- HERE in %.*s<-- HERE %.*s",
2877 (int)(s - context + 1), context,
2878 (int)(e - s + 1), s + 1);
2883 /* diag_listed_as: charnames alias definitions may not contain a
2884 sequence of multiple spaces; marked by <-- HERE
2886 *error_msg = Perl_form(aTHX_
2887 "charnames alias definitions may not contain a sequence of "
2888 "multiple spaces; marked by <-- HERE in %.*s<-- HERE %.*s",
2889 (int)(s - context + 1), context,
2890 (int)(e - s + 1), s + 1);
2897 Extracts the next constant part of a pattern, double-quoted string,
2898 or transliteration. This is terrifying code.
2900 For example, in parsing the double-quoted string "ab\x63$d", it would
2901 stop at the '$' and return an OP_CONST containing 'abc'.
2903 It looks at PL_lex_inwhat and PL_lex_inpat to find out whether it's
2904 processing a pattern (PL_lex_inpat is true), a transliteration
2905 (PL_lex_inwhat == OP_TRANS is true), or a double-quoted string.
2907 Returns a pointer to the character scanned up to. If this is
2908 advanced from the start pointer supplied (i.e. if anything was
2909 successfully parsed), will leave an OP_CONST for the substring scanned
2910 in pl_yylval. Caller must intuit reason for not parsing further
2911 by looking at the next characters herself.
2915 \N{FOO} => \N{U+hex_for_character_FOO}
2916 (if FOO expands to multiple characters, expands to \N{U+xx.XX.yy ...})
2919 all other \-char, including \N and \N{ apart from \N{ABC}
2922 @ and $ where it appears to be a var, but not for $ as tail anchor
2926 In transliterations:
2927 characters are VERY literal, except for - not at the start or end
2928 of the string, which indicates a range. However some backslash sequences
2929 are recognized: \r, \n, and the like
2930 \007 \o{}, \x{}, \N{}
2931 If all elements in the transliteration are below 256,
2932 scan_const expands the range to the full set of intermediate
2933 characters. If the range is in utf8, the hyphen is replaced with
2934 a certain range mark which will be handled by pmtrans() in op.c.
2936 In double-quoted strings:
2938 all those recognized in transliterations
2939 deprecated backrefs: \1 (in substitution replacements)
2940 case and quoting: \U \Q \E
2943 scan_const does *not* construct ops to handle interpolated strings.
2944 It stops processing as soon as it finds an embedded $ or @ variable
2945 and leaves it to the caller to work out what's going on.
2947 embedded arrays (whether in pattern or not) could be:
2948 @foo, @::foo, @'foo, @{foo}, @$foo, @+, @-.
2950 $ in double-quoted strings must be the symbol of an embedded scalar.
2952 $ in pattern could be $foo or could be tail anchor. Assumption:
2953 it's a tail anchor if $ is the last thing in the string, or if it's
2954 followed by one of "()| \r\n\t"
2956 \1 (backreferences) are turned into $1 in substitutions
2958 The structure of the code is
2959 while (there's a character to process) {
2960 handle transliteration ranges
2961 skip regexp comments /(?#comment)/ and codes /(?{code})/
2962 skip #-initiated comments in //x patterns
2963 check for embedded arrays
2964 check for embedded scalars
2966 deprecate \1 in substitution replacements
2967 handle string-changing backslashes \l \U \Q \E, etc.
2968 switch (what was escaped) {
2969 handle \- in a transliteration (becomes a literal -)
2970 if a pattern and not \N{, go treat as regular character
2971 handle \132 (octal characters)
2972 handle \x15 and \x{1234} (hex characters)
2973 handle \N{name} (named characters, also \N{3,5} in a pattern)
2974 handle \cV (control characters)
2975 handle printf-style backslashes (\f, \r, \n, etc)
2978 } (end if backslash)
2979 handle regular character
2980 } (end while character to read)
2985 S_scan_const(pTHX_ char *start)
2987 char *send = PL_bufend; /* end of the constant */
2988 SV *sv = newSV(send - start); /* sv for the constant. See note below
2990 char *s = start; /* start of the constant */
2991 char *d = SvPVX(sv); /* destination for copies */
2992 bool dorange = FALSE; /* are we in a translit range? */
2993 bool didrange = FALSE; /* did we just finish a range? */
2994 bool in_charclass = FALSE; /* within /[...]/ */
2995 bool s_is_utf8 = cBOOL(UTF); /* Is the source string assumed to be
2996 UTF8? But, this can show as true
2997 when the source isn't utf8, as for
2998 example when it is entirely composed
3000 bool d_is_utf8 = FALSE; /* Output constant is UTF8 */
3001 STRLEN utf8_variant_count = 0; /* When not in UTF-8, this counts the
3002 number of characters found so far
3003 that will expand (into 2 bytes)
3004 should we have to convert to
3006 SV *res; /* result from charnames */
3007 STRLEN offset_to_max = 0; /* The offset in the output to where the range
3008 high-end character is temporarily placed */
3010 /* Does something require special handling in tr/// ? This avoids extra
3011 * work in a less likely case. As such, khw didn't feel it was worth
3012 * adding any branches to the more mainline code to handle this, which
3013 * means that this doesn't get set in some circumstances when things like
3014 * \x{100} get expanded out. As a result there needs to be extra testing
3015 * done in the tr code */
3016 bool has_above_latin1 = FALSE;
3018 /* Note on sizing: The scanned constant is placed into sv, which is
3019 * initialized by newSV() assuming one byte of output for every byte of
3020 * input. This routine expects newSV() to allocate an extra byte for a
3021 * trailing NUL, which this routine will append if it gets to the end of
3022 * the input. There may be more bytes of input than output (eg., \N{LATIN
3023 * CAPITAL LETTER A}), or more output than input if the constant ends up
3024 * recoded to utf8, but each time a construct is found that might increase
3025 * the needed size, SvGROW() is called. Its size parameter each time is
3026 * based on the best guess estimate at the time, namely the length used so
3027 * far, plus the length the current construct will occupy, plus room for
3028 * the trailing NUL, plus one byte for every input byte still unscanned */
3030 UV uv = UV_MAX; /* Initialize to weird value to try to catch any uses
3033 int backslash_N = 0; /* ? was the character from \N{} */
3034 int non_portable_endpoint = 0; /* ? In a range is an endpoint
3035 platform-specific like \x65 */
3038 PERL_ARGS_ASSERT_SCAN_CONST;
3040 assert(PL_lex_inwhat != OP_TRANSR);
3042 /* Protect sv from errors and fatal warnings. */
3043 ENTER_with_name("scan_const");
3046 /* A bunch of code in the loop below assumes that if s[n] exists and is not
3047 * NUL, then s[n+1] exists. This assertion makes sure that assumption is
3049 assert(*send == '\0');
3052 || dorange /* Handle tr/// range at right edge of input */
3055 /* get transliterations out of the way (they're most literal) */
3056 if (PL_lex_inwhat == OP_TRANS) {
3058 /* But there isn't any special handling necessary unless there is a
3059 * range, so for most cases we just drop down and handle the value
3060 * as any other. There are two exceptions.
3062 * 1. A hyphen indicates that we are actually going to have a
3063 * range. In this case, skip the '-', set a flag, then drop
3064 * down to handle what should be the end range value.
3065 * 2. After we've handled that value, the next time through, that
3066 * flag is set and we fix up the range.
3068 * Ranges entirely within Latin1 are expanded out entirely, in
3069 * order to make the transliteration a simple table look-up.
3070 * Ranges that extend above Latin1 have to be done differently, so
3071 * there is no advantage to expanding them here, so they are
3072 * stored here as Min, RANGE_INDICATOR, Max. 'RANGE_INDICATOR' is
3073 * a byte that can't occur in legal UTF-8, and hence can signify a
3074 * hyphen without any possible ambiguity. On EBCDIC machines, if
3075 * the range is expressed as Unicode, the Latin1 portion is
3076 * expanded out even if the range extends above Latin1. This is
3077 * because each code point in it has to be processed here
3078 * individually to get its native translation */
3082 /* Here, we don't think we're in a range. If the new character
3083 * is not a hyphen; or if it is a hyphen, but it's too close to
3084 * either edge to indicate a range, or if we haven't output any
3085 * characters yet then it's a regular character. */
3086 if (*s != '-' || s >= send - 1 || s == start || d == SvPVX(sv))
3089 /* A regular character. Process like any other, but first
3090 * clear any flags */
3094 non_portable_endpoint = 0;
3097 /* The tests here for being above Latin1 and similar ones
3098 * in the following 'else' suffice to find all such
3099 * occurences in the constant, except those added by a
3100 * backslash escape sequence, like \x{100}. Mostly, those
3101 * set 'has_above_latin1' as appropriate */
3102 if (s_is_utf8 && UTF8_IS_ABOVE_LATIN1(*s)) {
3103 has_above_latin1 = TRUE;
3106 /* Drops down to generic code to process current byte */
3108 else { /* Is a '-' in the context where it means a range */
3109 if (didrange) { /* Something like y/A-C-Z// */
3110 Perl_croak(aTHX_ "Ambiguous range in transliteration"
3116 s++; /* Skip past the hyphen */
3118 /* d now points to where the end-range character will be
3119 * placed. Drop down to get that character. We'll finish
3120 * processing the range the next time through the loop */
3122 if (s_is_utf8 && UTF8_IS_ABOVE_LATIN1(*s)) {
3123 has_above_latin1 = TRUE;
3126 /* Drops down to generic code to process current byte */
3128 } /* End of not a range */
3130 /* Here we have parsed a range. Now must handle it. At this
3132 * 'sv' is a SV* that contains the output string we are
3133 * constructing. The final two characters in that string
3134 * are the range start and range end, in order.
3135 * 'd' points to just beyond the range end in the 'sv' string,
3136 * where we would next place something
3141 IV range_max; /* last character in range */
3143 Size_t offset_to_min = 0;
3146 bool convert_unicode;
3147 IV real_range_max = 0;
3149 /* Get the code point values of the range ends. */
3150 max_ptr = (d_is_utf8) ? (char *) utf8_hop( (U8*) d, -1) : d - 1;
3151 offset_to_max = max_ptr - SvPVX_const(sv);
3153 /* We know the utf8 is valid, because we just constructed
3154 * it ourselves in previous loop iterations */
3155 min_ptr = (char*) utf8_hop( (U8*) max_ptr, -1);
3156 range_min = valid_utf8_to_uvchr( (U8*) min_ptr, NULL);
3157 range_max = valid_utf8_to_uvchr( (U8*) max_ptr, NULL);
3159 /* This compensates for not all code setting
3160 * 'has_above_latin1', so that we don't skip stuff that
3161 * should be executed */
3162 if (range_max > 255) {
3163 has_above_latin1 = TRUE;
3167 min_ptr = max_ptr - 1;
3168 range_min = * (U8*) min_ptr;
3169 range_max = * (U8*) max_ptr;
3172 /* If the range is just a single code point, like tr/a-a/.../,
3173 * that code point is already in the output, twice. We can
3174 * just back up over the second instance and avoid all the rest
3175 * of the work. But if it is a variant character, it's been
3176 * counted twice, so decrement. (This unlikely scenario is
3177 * special cased, like the one for a range of 2 code points
3178 * below, only because the main-line code below needs a range
3179 * of 3 or more to work without special casing. Might as well
3180 * get it out of the way now.) */
3181 if (UNLIKELY(range_max == range_min)) {
3183 if (! d_is_utf8 && ! UVCHR_IS_INVARIANT(range_max)) {
3184 utf8_variant_count--;
3190 /* On EBCDIC platforms, we may have to deal with portable
3191 * ranges. These happen if at least one range endpoint is a
3192 * Unicode value (\N{...}), or if the range is a subset of
3193 * [A-Z] or [a-z], and both ends are literal characters,
3194 * like 'A', and not like \x{C1} */
3196 cBOOL(backslash_N) /* \N{} forces Unicode,
3197 hence portable range */
3198 || ( ! non_portable_endpoint
3199 && (( isLOWER_A(range_min) && isLOWER_A(range_max))
3200 || (isUPPER_A(range_min) && isUPPER_A(range_max))));
3201 if (convert_unicode) {
3203 /* Special handling is needed for these portable ranges.
3204 * They are defined to be in Unicode terms, which includes
3205 * all the Unicode code points between the end points.
3206 * Convert to Unicode to get the Unicode range. Later we
3207 * will convert each code point in the range back to
3209 range_min = NATIVE_TO_UNI(range_min);
3210 range_max = NATIVE_TO_UNI(range_max);
3214 if (range_min > range_max) {
3216 if (convert_unicode) {
3217 /* Need to convert back to native for meaningful
3218 * messages for this platform */
3219 range_min = UNI_TO_NATIVE(range_min);
3220 range_max = UNI_TO_NATIVE(range_max);
3223 /* Use the characters themselves for the error message if
3224 * ASCII printables; otherwise some visible representation
3226 if (isPRINT_A(range_min) && isPRINT_A(range_max)) {
3228 "Invalid range \"%c-%c\" in transliteration operator",
3229 (char)range_min, (char)range_max);
3232 else if (convert_unicode) {
3233 /* diag_listed_as: Invalid range "%s" in transliteration operator */
3235 "Invalid range \"\\N{U+%04" UVXf "}-\\N{U+%04"
3236 UVXf "}\" in transliteration operator",
3237 range_min, range_max);
3241 /* diag_listed_as: Invalid range "%s" in transliteration operator */
3243 "Invalid range \"\\x{%04" UVXf "}-\\x{%04" UVXf "}\""
3244 " in transliteration operator",
3245 range_min, range_max);
3249 /* If the range is exactly two code points long, they are
3250 * already both in the output */
3251 if (UNLIKELY(range_min + 1 == range_max)) {
3255 /* Here the range contains at least 3 code points */
3259 /* If everything in the transliteration is below 256, we
3260 * can avoid special handling later. A translation table
3261 * for each of those bytes is created by op.c. So we
3262 * expand out all ranges to their constituent code points.
3263 * But if we've encountered something above 255, the
3264 * expanding won't help, so skip doing that. But if it's
3265 * EBCDIC, we may have to look at each character below 256
3266 * if we have to convert to/from Unicode values */
3267 if ( has_above_latin1
3269 && (range_min > 255 || ! convert_unicode)
3272 const STRLEN off = d - SvPVX(sv);
3273 const STRLEN extra = 1 + (send - s) + 1;
3276 /* Move the high character one byte to the right; then
3277 * insert between it and the range begin, an illegal
3278 * byte which serves to indicate this is a range (using
3279 * a '-' would be ambiguous). */
3281 if (off + extra > SvLEN(sv)) {
3282 d = off + SvGROW(sv, off + extra);
3283 max_ptr = d - off + offset_to_max;
3287 while (e-- > max_ptr) {
3290 *(e + 1) = (char) RANGE_INDICATOR;
3294 /* Here, we're going to expand out the range. For EBCDIC
3295 * the range can extend above 255 (not so in ASCII), so
3296 * for EBCDIC, split it into the parts above and below
3299 if (range_max > 255) {
3300 real_range_max = range_max;
3306 /* Here we need to expand out the string to contain each
3307 * character in the range. Grow the output to handle this.
3308 * For non-UTF8, we need a byte for each code point in the
3309 * range, minus the three that we've already allocated for: the
3310 * hyphen, the min, and the max. For UTF-8, we need this
3311 * plus an extra byte for each code point that occupies two
3312 * bytes (is variant) when in UTF-8 (except we've already
3313 * allocated for the end points, including if they are
3314 * variants). For ASCII platforms and Unicode ranges on EBCDIC
3315 * platforms, it's easy to calculate a precise number. To
3316 * start, we count the variants in the range, which we need
3317 * elsewhere in this function anyway. (For the case where it
3318 * isn't easy to calculate, 'extras' has been initialized to 0,
3319 * and the calculation is done in a loop further down.) */
3321 if (convert_unicode)
3324 /* This is executed unconditionally on ASCII, and for
3325 * Unicode ranges on EBCDIC. Under these conditions, all
3326 * code points above a certain value are variant; and none
3327 * under that value are. We just need to find out how much
3328 * of the range is above that value. We don't count the
3329 * end points here, as they will already have been counted
3330 * as they were parsed. */
3331 if (range_min >= UTF_CONTINUATION_MARK) {
3333 /* The whole range is made up of variants */
3334 extras = (range_max - 1) - (range_min + 1) + 1;
3336 else if (range_max >= UTF_CONTINUATION_MARK) {
3338 /* Only the higher portion of the range is variants */
3339 extras = (range_max - 1) - UTF_CONTINUATION_MARK + 1;
3342 utf8_variant_count += extras;
3345 /* The base growth is the number of code points in the range,
3346 * not including the endpoints, which have already been sized
3347 * for (and output). We don't subtract for the hyphen, as it
3348 * has been parsed but not output, and the SvGROW below is
3349 * based only on what's been output plus what's left to parse.
3351 grow = (range_max - 1) - (range_min + 1) + 1;
3355 /* In some cases in EBCDIC, we haven't yet calculated a
3356 * precise amount needed for the UTF-8 variants. Just
3357 * assume the worst case, that everything will expand by a
3359 if (! convert_unicode) {
3365 /* Otherwise we know exactly how many variants there
3366 * are in the range. */
3371 /* Grow, but position the output to overwrite the range min end
3372 * point, because in some cases we overwrite that */
3373 SvCUR_set(sv, d - SvPVX_const(sv));
3374 offset_to_min = min_ptr - SvPVX_const(sv);
3376 /* See Note on sizing above. */
3377 d = offset_to_min + SvGROW(sv, SvCUR(sv)
3380 + 1 /* Trailing NUL */ );
3382 /* Now, we can expand out the range. */
3384 if (convert_unicode) {
3387 /* Recall that the min and max are now in Unicode terms, so
3388 * we have to convert each character to its native
3391 for (i = range_min; i <= range_max; i++) {
3392 append_utf8_from_native_byte(
3393 LATIN1_TO_NATIVE((U8) i),
3398 for (i = range_min; i <= range_max; i++) {
3399 *d++ = (char)LATIN1_TO_NATIVE((U8) i);
3405 /* Always gets run for ASCII, and sometimes for EBCDIC. */
3407 /* Here, no conversions are necessary, which means that the
3408 * first character in the range is already in 'd' and
3409 * valid, so we can skip overwriting it */
3413 for (i = range_min + 1; i <= range_max; i++) {
3414 append_utf8_from_native_byte((U8) i, (U8 **) &d);
3420 assert(range_min + 1 <= range_max);
3421 for (i = range_min + 1; i < range_max; i++) {
3423 /* In this case on EBCDIC, we haven't calculated
3424 * the variants. Do it here, as we go along */
3425 if (! UVCHR_IS_INVARIANT(i)) {
3426 utf8_variant_count++;
3432 /* The range_max is done outside the loop so as to
3433 * avoid having to special case not incrementing
3434 * 'utf8_variant_count' on EBCDIC (it's already been
3435 * counted when originally parsed) */
3436 *d++ = (char) range_max;
3441 /* If the original range extended above 255, add in that
3443 if (real_range_max) {
3444 *d++ = (char) UTF8_TWO_BYTE_HI(0x100);
3445 *d++ = (char) UTF8_TWO_BYTE_LO(0x100);
3446 if (real_range_max > 0x100) {
3447 if (real_range_max > 0x101) {
3448 *d++ = (char) RANGE_INDICATOR;
3450 d = (char*)uvchr_to_utf8((U8*)d, real_range_max);
3456 /* mark the range as done, and continue */
3460 non_portable_endpoint = 0;
3464 } /* End of is a range */
3465 } /* End of transliteration. Joins main code after these else's */
3466 else if (*s == '[' && PL_lex_inpat && !in_charclass) {
3469 while (s1 >= start && *s1-- == '\\')
3472 in_charclass = TRUE;
3474 else if (*s == ']' && PL_lex_inpat && in_charclass) {
3477 while (s1 >= start && *s1-- == '\\')
3480 in_charclass = FALSE;
3482 /* skip for regexp comments /(?#comment)/, except for the last
3483 * char, which will be done separately. Stop on (?{..}) and
3485 else if (*s == '(' && PL_lex_inpat && s[1] == '?' && !in_charclass) {
3488 PERL_UINT_FAST8_T len = UTF8SKIP(s);
3490 while (s + len < send && *s != ')') {
3491 Copy(s, d, len, U8);
3494 len = UTF8_SAFE_SKIP(s, send);
3497 else while (s+1 < send && *s != ')') {
3501 else if (!PL_lex_casemods
3502 && ( s[2] == '{' /* This should match regcomp.c */
3503 || (s[2] == '?' && s[3] == '{')))
3508 /* likewise skip #-initiated comments in //x patterns */
3512 && ((PMOP*)PL_lex_inpat)->op_pmflags & RXf_PMf_EXTENDED)
3514 while (s < send && *s != '\n')
3517 /* no further processing of single-quoted regex */
3518 else if (PL_lex_inpat && SvIVX(PL_linestr) == '\'')
3519 goto default_action;
3521 /* check for embedded arrays
3522 * (@foo, @::foo, @'foo, @{foo}, @$foo, @+, @-)
3524 else if (*s == '@' && s[1]) {
3526 ? isIDFIRST_utf8_safe(s+1, send)
3527 : isWORDCHAR_A(s[1]))
3531 if (memCHRs(":'{$", s[1]))
3533 if (!PL_lex_inpat && (s[1] == '+' || s[1] == '-'))
3534 break; /* in regexp, neither @+ nor @- are interpolated */
3536 /* check for embedded scalars. only stop if we're sure it's a
3538 else if (*s == '$') {
3539 if (!PL_lex_inpat) /* not a regexp, so $ must be var */
3541 if (s + 1 < send && !memCHRs("()| \r\n\t", s[1])) {
3543 Perl_ck_warner(aTHX_ packWARN(WARN_AMBIGUOUS),
3544 "Possible unintended interpolation of $\\ in regex");
3546 break; /* in regexp, $ might be tail anchor */
3550 /* End of else if chain - OP_TRANS rejoin rest */
3552 if (UNLIKELY(s >= send)) {
3558 if (*s == '\\' && s+1 < send) {
3559 char* e; /* Can be used for ending '}', etc. */
3563 /* warn on \1 - \9 in substitution replacements, but note that \11
3564 * is an octal; and \19 is \1 followed by '9' */
3565 if (PL_lex_inwhat == OP_SUBST
3571 /* diag_listed_as: \%d better written as $%d */
3572 Perl_ck_warner(aTHX_ packWARN(WARN_SYNTAX), "\\%c better written as $%c", *s, *s);
3577 /* string-change backslash escapes */
3578 if (PL_lex_inwhat != OP_TRANS && *s && memCHRs("lLuUEQF", *s)) {
3582 /* In a pattern, process \N, but skip any other backslash escapes.
3583 * This is because we don't want to translate an escape sequence
3584 * into a meta symbol and have the regex compiler use the meta
3585 * symbol meaning, e.g. \x{2E} would be confused with a dot. But
3586 * in spite of this, we do have to process \N here while the proper
3587 * charnames handler is in scope. See bugs #56444 and #62056.
3589 * There is a complication because \N in a pattern may also stand
3590 * for 'match a non-nl', and not mean a charname, in which case its
3591 * processing should be deferred to the regex compiler. To be a
3592 * charname it must be followed immediately by a '{', and not look
3593 * like \N followed by a curly quantifier, i.e., not something like
3594 * \N{3,}. regcurly returns a boolean indicating if it is a legal
3596 else if (PL_lex_inpat
3599 || regcurly(s + 1)))
3602 goto default_action;
3608 if ((isALPHANUMERIC(*s)))
3609 Perl_ck_warner(aTHX_ packWARN(WARN_MISC),
3610 "Unrecognized escape \\%c passed through",
3612 /* default action is to copy the quoted character */
3613 goto default_action;
3616 /* eg. \132 indicates the octal constant 0132 */
3617 case '0': case '1': case '2': case '3':
3618 case '4': case '5': case '6': case '7':
3620 I32 flags = PERL_SCAN_SILENT_ILLDIGIT
3621 | PERL_SCAN_NOTIFY_ILLDIGIT;
3623 uv = grok_oct(s, &len, &flags, NULL);
3625 if ( (flags & PERL_SCAN_NOTIFY_ILLDIGIT)
3627 && isDIGIT(*s) /* like \08, \178 */
3628 && ckWARN(WARN_MISC))
3630 Perl_warner(aTHX_ packWARN(WARN_MISC), "%s",
3631 form_alien_digit_msg(8, len, s, send, UTF, FALSE));
3634 goto NUM_ESCAPE_INSERT;
3636 /* eg. \o{24} indicates the octal constant \024 */
3641 if (! grok_bslash_o(&s, send,
3644 FALSE, /* Not strict */
3645 FALSE, /* No illegal cp's */
3649 uv = 0; /* drop through to ensure range ends are set */
3651 goto NUM_ESCAPE_INSERT;
3654 /* eg. \x24 indicates the hex constant 0x24 */
3659 if (! grok_bslash_x(&s, send,
3662 FALSE, /* Not strict */
3663 FALSE, /* No illegal cp's */
3667 uv = 0; /* drop through to ensure range ends are set */
3672 /* Insert oct or hex escaped character. */
3674 /* Here uv is the ordinal of the next character being added */
3675 if (UVCHR_IS_INVARIANT(uv)) {
3679 if (!d_is_utf8 && uv > 255) {
3681 /* Here, 'uv' won't fit unless we convert to UTF-8.
3682 * If we've only seen invariants so far, all we have to
3683 * do is turn on the flag */
3684 if (utf8_variant_count == 0) {
3688 SvCUR_set(sv, d - SvPVX_const(sv));
3692 sv_utf8_upgrade_flags_grow(
3694 SV_GMAGIC|SV_FORCE_UTF8_UPGRADE,
3696 /* Since we're having to grow here,
3697 * make sure we have enough room for
3698 * this escape and a NUL, so the
3699 * code immediately below won't have
3700 * to actually grow again */
3702 + (STRLEN)(send - s) + 1);
3703 d = SvPVX(sv) + SvCUR(sv);
3706 has_above_latin1 = TRUE;
3712 utf8_variant_count++;
3715 /* Usually, there will already be enough room in 'sv'
3716 * since such escapes are likely longer than any UTF-8
3717 * sequence they can end up as. This isn't the case on
3718 * EBCDIC where \x{40000000} contains 12 bytes, and the
3719 * UTF-8 for it contains 14. And, we have to allow for
3720 * a trailing NUL. It probably can't happen on ASCII
3721 * platforms, but be safe. See Note on sizing above. */
3722 const STRLEN needed = d - SvPVX(sv)
3726 if (UNLIKELY(needed > SvLEN(sv))) {
3727 SvCUR_set(sv, d - SvPVX_const(sv));
3728 d = SvCUR(sv) + SvGROW(sv, needed);
3731 d = (char*) uvchr_to_utf8_flags((U8*)d, uv,
3732 (ckWARN(WARN_PORTABLE))
3733 ? UNICODE_WARN_PERL_EXTENDED
3738 non_portable_endpoint++;
3743 /* In a non-pattern \N must be like \N{U+0041}, or it can be a
3744 * named character, like \N{LATIN SMALL LETTER A}, or a named
3745 * sequence, like \N{LATIN CAPITAL LETTER A WITH MACRON AND
3746 * GRAVE} (except y/// can't handle the latter, croaking). For
3747 * convenience all three forms are referred to as "named
3748 * characters" below.
3750 * For patterns, \N also can mean to match a non-newline. Code
3751 * before this 'switch' statement should already have handled
3752 * this situation, and hence this code only has to deal with
3753 * the named character cases.
3755 * For non-patterns, the named characters are converted to
3756 * their string equivalents. In patterns, named characters are
3757 * not converted to their ultimate forms for the same reasons
3758 * that other escapes aren't (mainly that the ultimate
3759 * character could be considered a meta-symbol by the regex
3760 * compiler). Instead, they are converted to the \N{U+...}
3761 * form to get the value from the charnames that is in effect
3762 * right now, while preserving the fact that it was a named
3763 * character, so that the regex compiler knows this.
3765 * The structure of this section of code (besides checking for
3766 * errors and upgrading to utf8) is:
3767 * If the named character is of the form \N{U+...}, pass it
3768 * through if a pattern; otherwise convert the code point
3770 * Otherwise must be some \N{NAME}: convert to
3771 * \N{U+c1.c2...} if a pattern; otherwise convert to utf8
3773 * Transliteration is an exception. The conversion to utf8 is
3774 * only done if the code point requires it to be representable.
3776 * Here, 's' points to the 'N'; the test below is guaranteed to
3777 * succeed if we are being called on a pattern, as we already
3778 * know from a test above that the next character is a '{'. A
3779 * non-pattern \N must mean 'named character', which requires
3783 yyerror("Missing braces on \\N{}");
3789 /* If there is no matching '}', it is an error. */
3790 if (! (e = (char *) memchr(s, '}', send - s))) {
3791 if (! PL_lex_inpat) {
3792 yyerror("Missing right brace on \\N{}");
3794 yyerror("Missing right brace on \\N{} or unescaped left brace after \\N");
3796 yyquit(); /* Have exhausted the input. */
3799 /* Here it looks like a named character */
3801 if (*s == 'U' && s[1] == '+') { /* \N{U+...} */
3802 s += 2; /* Skip to next char after the 'U+' */
3805 /* In patterns, we can have \N{U+xxxx.yyyy.zzzz...} */
3806 /* Check the syntax. */
3809 if (!isXDIGIT(*s)) {
3812 "Invalid hexadecimal number in \\N{U+...}"
3821 else if ((*s == '.' || *s == '_')
3827 /* Pass everything through unchanged.
3828 * +1 is for the '}' */
3829 Copy(orig_s, d, e - orig_s + 1, char);
3830 d += e - orig_s + 1;
3832 else { /* Not a pattern: convert the hex to string */
3833 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
3834 | PERL_SCAN_SILENT_ILLDIGIT
3835 | PERL_SCAN_SILENT_OVERFLOW
3836 | PERL_SCAN_DISALLOW_PREFIX;
3839 uv = grok_hex(s, &len, &flags, NULL);
3840 if (len == 0 || (len != (STRLEN)(e - s)))
3843 if ( uv > MAX_LEGAL_CP
3844 || (flags & PERL_SCAN_GREATER_THAN_UV_MAX))
3846 yyerror(form_cp_too_large_msg(16, s, len, 0));
3847 uv = 0; /* drop through to ensure range ends are
3851 /* For non-tr///, if the destination is not in utf8,
3852 * unconditionally recode it to be so. This is
3853 * because \N{} implies Unicode semantics, and scalars
3854 * have to be in utf8 to guarantee those semantics.
3855 * tr/// doesn't care about Unicode rules, so no need
3856 * there to upgrade to UTF-8 for small enough code
3858 if (! d_is_utf8 && ( uv > 0xFF
3859 || PL_lex_inwhat != OP_TRANS))
3861 /* See Note on sizing above. */
3862 const STRLEN extra = OFFUNISKIP(uv) + (send - e) + 1;
3864 SvCUR_set(sv, d - SvPVX_const(sv));
3868 if (utf8_variant_count == 0) {
3870 d = SvCUR(sv) + SvGROW(sv, SvCUR(sv) + extra);
3873 sv_utf8_upgrade_flags_grow(
3875 SV_GMAGIC|SV_FORCE_UTF8_UPGRADE,
3877 d = SvPVX(sv) + SvCUR(sv);
3881 has_above_latin1 = TRUE;
3884 /* Add the (Unicode) code point to the output. */
3885 if (! d_is_utf8 || OFFUNI_IS_INVARIANT(uv)) {
3886 *d++ = (char) LATIN1_TO_NATIVE(uv);
3889 d = (char*) uvoffuni_to_utf8_flags((U8*)d, uv,
3890 (ckWARN(WARN_PORTABLE))
3891 ? UNICODE_WARN_PERL_EXTENDED
3896 else /* Here is \N{NAME} but not \N{U+...}. */
3897 if (! (res = get_and_check_backslash_N_name_wrapper(s, e)))
3898 { /* Failed. We should die eventually, but for now use a NUL
3902 else { /* Successfully evaluated the name */
3904 const char *str = SvPV_const(res, len);
3907 if (! len) { /* The name resolved to an empty string */
3908 const char empty_N[] = "\\N{_}";
3909 Copy(empty_N, d, sizeof(empty_N) - 1, char);
3910 d += sizeof(empty_N) - 1;
3913 /* In order to not lose information for the regex
3914 * compiler, pass the result in the specially made
3915 * syntax: \N{U+c1.c2.c3...}, where c1 etc. are
3916 * the code points in hex of each character
3917 * returned by charnames */
3919 const char *str_end = str + len;
3920 const STRLEN off = d - SvPVX_const(sv);
3922 if (! SvUTF8(res)) {
3923 /* For the non-UTF-8 case, we can determine the
3924 * exact length needed without having to parse
3925 * through the string. Each character takes up
3926 * 2 hex digits plus either a trailing dot or
3928 const char initial_text[] = "\\N{U+";
3929 const STRLEN initial_len = sizeof(initial_text)
3931 d = off + SvGROW(sv, off
3934 /* +1 for trailing NUL */
3937 + (STRLEN)(send - e));
3938 Copy(initial_text, d, initial_len, char);
3940 while (str < str_end) {
3943 my_snprintf(hex_string,
3947 /* The regex compiler is
3948 * expecting Unicode, not
3950 NATIVE_TO_LATIN1(*str));
3951 PERL_MY_SNPRINTF_POST_GUARD(len,
3952 sizeof(hex_string));
3953 Copy(hex_string, d, 3, char);
3957 d--; /* Below, we will overwrite the final
3958 dot with a right brace */
3961 STRLEN char_length; /* cur char's byte length */
3963 /* and the number of bytes after this is
3964 * translated into hex digits */
3965 STRLEN output_length;
3967 /* 2 hex per byte; 2 chars for '\N'; 2 chars
3968 * for max('U+', '.'); and 1 for NUL */
3969 char hex_string[2 * UTF8_MAXBYTES + 5];
3971 /* Get the first character of the result. */
3972 U32 uv = utf8n_to_uvchr((U8 *) str,
3976 /* Convert first code point to Unicode hex,
3977 * including the boiler plate before it. */
3979 my_snprintf(hex_string, sizeof(hex_string),
3981 (unsigned int) NATIVE_TO_UNI(uv));
3983 /* Make sure there is enough space to hold it */
3984 d = off + SvGROW(sv, off
3986 + (STRLEN)(send - e)
3987 + 2); /* '}' + NUL */
3989 Copy(hex_string, d, output_length, char);
3992 /* For each subsequent character, append dot and
3993 * its Unicode code point in hex */
3994 while ((str += char_length) < str_end) {
3995 const STRLEN off = d - SvPVX_const(sv);
3996 U32 uv = utf8n_to_uvchr((U8 *) str,
4001 my_snprintf(hex_string,
4004 (unsigned int) NATIVE_TO_UNI(uv));
4006 d = off + SvGROW(sv, off
4008 + (STRLEN)(send - e)
4009 + 2); /* '}' + NUL */
4010 Copy(hex_string, d, output_length, char);
4015 *d++ = '}'; /* Done. Add the trailing brace */
4018 else { /* Here, not in a pattern. Convert the name to a
4021 if (PL_lex_inwhat == OP_TRANS) {
4022 str = SvPV_const(res, len);
4023 if (len > ((SvUTF8(res))
4027 yyerror(Perl_form(aTHX_
4028 "%.*s must not be a named sequence"
4029 " in transliteration operator",
4030 /* +1 to include the "}" */
4031 (int) (e + 1 - start), start));
4033 goto end_backslash_N;
4036 if (SvUTF8(res) && UTF8_IS_ABOVE_LATIN1(*str)) {
4037 has_above_latin1 = TRUE;
4041 else if (! SvUTF8(res)) {
4042 /* Make sure \N{} return is UTF-8. This is because
4043 * \N{} implies Unicode semantics, and scalars have
4044 * to be in utf8 to guarantee those semantics; but
4045 * not needed in tr/// */
4046 sv_utf8_upgrade_flags(res, 0);
4047 str = SvPV_const(res, len);
4050 /* Upgrade destination to be utf8 if this new
4052 if (! d_is_utf8 && SvUTF8(res)) {
4053 /* See Note on sizing above. */
4054 const STRLEN extra = len + (send - s) + 1;
4056 SvCUR_set(sv, d - SvPVX_const(sv));
4060 if (utf8_variant_count == 0) {
4062 d = SvCUR(sv) + SvGROW(sv, SvCUR(sv) + extra);
4065 sv_utf8_upgrade_flags_grow(sv,
4066 SV_GMAGIC|SV_FORCE_UTF8_UPGRADE,
4068 d = SvPVX(sv) + SvCUR(sv);
4071 } else if (len > (STRLEN)(e - s + 4)) { /* I _guess_ 4 is \N{} --jhi */
4073 /* See Note on sizing above. (NOTE: SvCUR() is not
4074 * set correctly here). */
4075 const STRLEN extra = len + (send - e) + 1;
4076 const STRLEN off = d - SvPVX_const(sv);
4077 d = off + SvGROW(sv, off + extra);
4079 Copy(str, d, len, char);
4085 } /* End \N{NAME} */
4089 backslash_N++; /* \N{} is defined to be Unicode */
4091 s = e + 1; /* Point to just after the '}' */
4094 /* \c is a control character */
4098 const char * message;
4100 if (! grok_bslash_c(*s, (U8 *) d, &message, NULL)) {
4102 yyquit(); /* Have always immediately croaked on
4108 yyerror("Missing control char name in \\c");
4109 yyquit(); /* Are at end of input, no sense continuing */
4112 non_portable_endpoint++;
4116 /* printf-style backslashes, formfeeds, newlines, etc */
4142 } /* end if (backslash) */
4145 /* Just copy the input to the output, though we may have to convert
4148 * If the input has the same representation in UTF-8 as not, it will be
4149 * a single byte, and we don't care about UTF8ness; just copy the byte */
4150 if (NATIVE_BYTE_IS_INVARIANT((U8)(*s))) {
4153 else if (! s_is_utf8 && ! d_is_utf8) {
4154 /* If neither source nor output is UTF-8, is also a single byte,
4155 * just copy it; but this byte counts should we later have to
4156 * convert to UTF-8 */
4158 utf8_variant_count++;
4160 else if (s_is_utf8 && d_is_utf8) { /* Both UTF-8, can just copy */
4161 const STRLEN len = UTF8SKIP(s);
4163 /* We expect the source to have already been checked for
4165 assert(isUTF8_CHAR((U8 *) s, (U8 *) send));
4167 Copy(s, d, len, U8);
4171 else if (s_is_utf8) { /* UTF8ness matters: convert output to utf8 */
4172 STRLEN need = send - s + 1; /* See Note on sizing above. */
4174 SvCUR_set(sv, d - SvPVX_const(sv));
4178 if (utf8_variant_count == 0) {
4180 d = SvCUR(sv) + SvGROW(sv, SvCUR(sv) + need);
4183 sv_utf8_upgrade_flags_grow(sv,
4184 SV_GMAGIC|SV_FORCE_UTF8_UPGRADE,
4186 d = SvPVX(sv) + SvCUR(sv);
4189 goto default_action; /* Redo, having upgraded so both are UTF-8 */
4191 else { /* UTF8ness matters: convert this non-UTF8 source char to
4192 UTF-8 for output. It will occupy 2 bytes, but don't include
4193 the input byte since we haven't incremented 's' yet. See
4194 Note on sizing above. */
4195 const STRLEN off = d - SvPVX(sv);
4196 const STRLEN extra = 2 + (send - s - 1) + 1;
4197 if (off + extra > SvLEN(sv)) {
4198 d = off + SvGROW(sv, off + extra);
4200 *d++ = UTF8_EIGHT_BIT_HI(*s);
4201 *d++ = UTF8_EIGHT_BIT_LO(*s);
4204 } /* while loop to process each character */
4207 const STRLEN off = d - SvPVX(sv);
4209 /* See if room for the terminating NUL */
4210 if (UNLIKELY(off >= SvLEN(sv))) {
4214 if (off > SvLEN(sv))
4216 Perl_croak(aTHX_ "panic: constant overflowed allocated space,"
4217 " %" UVuf " >= %" UVuf, (UV)off, (UV)SvLEN(sv));
4219 /* Whew! Here we don't have room for the terminating NUL, but
4220 * everything else so far has fit. It's not too late to grow
4221 * to fit the NUL and continue on. But it is a bug, as the code
4222 * above was supposed to have made room for this, so under
4223 * DEBUGGING builds, we panic anyway. */
4224 d = off + SvGROW(sv, off + 1);
4228 /* terminate the string and set up the sv */
4230 SvCUR_set(sv, d - SvPVX_const(sv));
4237 /* shrink the sv if we allocated more than we used */
4238 if (SvCUR(sv) + 5 < SvLEN(sv)) {
4239 SvPV_shrink_to_cur(sv);
4242 /* return the substring (via pl_yylval) only if we parsed anything */
4245 for (; s2 < s; s2++) {
4247 COPLINE_INC_WITH_HERELINES;
4249 SvREFCNT_inc_simple_void_NN(sv);
4250 if ( (PL_hints & ( PL_lex_inpat ? HINT_NEW_RE : HINT_NEW_STRING ))
4251 && ! PL_parser->lex_re_reparsing)
4253 const char *const key = PL_lex_inpat ? "qr" : "q";
4254 const STRLEN keylen = PL_lex_inpat ? 2 : 1;
4258 if (PL_lex_inwhat == OP_TRANS) {