This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
msgrcv: properly downgrade the receive buffer
[perl5.git] / time64.c
1 /*
2
3 Copyright (c) 2007-2008  Michael G Schwern
4
5 This software originally derived from Paul Sheer's pivotal_gmtime_r.c.
6
7 The MIT License:
8
9 Permission is hereby granted, free of charge, to any person obtaining a copy
10 of this software and associated documentation files (the "Software"), to deal
11 in the Software without restriction, including without limitation the rights
12 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13 copies of the Software, and to permit persons to whom the Software is
14 furnished to do so, subject to the following conditions:
15
16 The above copyright notice and this permission notice shall be included in
17 all copies or substantial portions of the Software.
18
19 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
22 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 THE SOFTWARE.
26
27 */
28
29 /*
30
31 Programmers who have available to them 64-bit time values as a 'long
32 long' type can use localtime64_r() and gmtime64_r() which correctly
33 converts the time even on 32-bit systems. Whether you have 64-bit time
34 values will depend on the operating system.
35
36 Perl_localtime64_r() is a 64-bit equivalent of localtime_r().
37
38 Perl_gmtime64_r() is a 64-bit equivalent of gmtime_r().
39
40 */
41
42 #include "EXTERN.h"
43 #define PERL_IN_TIME64_C
44 #include "perl.h"
45 #include "time64.h"
46
47 static const char days_in_month[2][12] = {
48     {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
49     {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
50 };
51
52 static const short julian_days_by_month[2][12] = {
53     {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334},
54     {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335},
55 };
56
57 static const short length_of_year[2] = { 365, 366 };
58
59 /* Number of days in a 400 year Gregorian cycle */
60 static const Year years_in_gregorian_cycle = 400;
61 static const int days_in_gregorian_cycle  = (365 * 400) + 100 - 4 + 1;
62
63 /* 28 year calendar cycle between 2010 and 2037 */
64 #define SOLAR_CYCLE_LENGTH 28
65 static const short safe_years[SOLAR_CYCLE_LENGTH] = {
66     2016, 2017, 2018, 2019,
67     2020, 2021, 2022, 2023,
68     2024, 2025, 2026, 2027,
69     2028, 2029, 2030, 2031,
70     2032, 2033, 2034, 2035,
71     2036, 2037, 2010, 2011,
72     2012, 2013, 2014, 2015
73 };
74
75 /* Let's assume people are going to be looking for dates in the future.
76    Let's provide some cheats so you can skip ahead.
77    This has a 4x speed boost when near 2008.
78 */
79 /* Number of days since epoch on Jan 1st, 2008 GMT */
80 #define CHEAT_DAYS  (1199145600 / 24 / 60 / 60)
81 #define CHEAT_YEARS 108
82
83 #define IS_LEAP(n)      ((!(((n) + 1900) % 400) || (!(((n) + 1900) % 4) && (((n) + 1900) % 100))) != 0)
84 #undef WRAP /* some <termios.h> define this */
85 #define WRAP(a,b,m)     ((a) = ((a) <  0  ) ? ((b)--, (a) + (m)) : (a))
86
87 #ifdef USE_SYSTEM_LOCALTIME
88 #    define SHOULD_USE_SYSTEM_LOCALTIME(a)  (       \
89     (a) <= SYSTEM_LOCALTIME_MAX &&              \
90     (a) >= SYSTEM_LOCALTIME_MIN                 \
91 )
92 #else
93 #    define SHOULD_USE_SYSTEM_LOCALTIME(a)      (0)
94 #endif
95
96 #ifdef USE_SYSTEM_GMTIME
97 #    define SHOULD_USE_SYSTEM_GMTIME(a)     (       \
98     (a) <= SYSTEM_GMTIME_MAX    &&              \
99     (a) >= SYSTEM_GMTIME_MIN                    \
100 )
101 #else
102 #    define SHOULD_USE_SYSTEM_GMTIME(a)         (0)
103 #endif
104
105 /* Multi varadic macros are a C99 thing, alas */
106 #ifdef TIME_64_DEBUG
107 #    define TIME64_TRACE(format) (fprintf(stderr, format))
108 #    define TIME64_TRACE1(format, var1)    (fprintf(stderr, format, var1))
109 #    define TIME64_TRACE2(format, var1, var2)    (fprintf(stderr, format, var1, var2))
110 #    define TIME64_TRACE3(format, var1, var2, var3)    (fprintf(stderr, format, var1, var2, var3))
111 #else
112 #    define TIME64_TRACE(format) ((void)0)
113 #    define TIME64_TRACE1(format, var1) ((void)0)
114 #    define TIME64_TRACE2(format, var1, var2) ((void)0)
115 #    define TIME64_TRACE3(format, var1, var2, var3) ((void)0)
116 #endif
117
118 /* Set up the mutexes for this file.  There are no races possible on
119  * non-threaded perls, nor platforms that naturally don't have them.
120  * Otherwise, we need to have mutexes.  If we have reentrant versions of the
121  * functions below, they automatically will be substituted for the
122  * non-reentrant ones.  That solves the problem of the buffers being trashed by
123  * another thread, but not of the environment or locale changing during their
124  * execution.  To do that, we only need a read lock (which prevents writing by
125  * others).  However, if we don't have re-entrant functions, we can gain some
126  * measure of thread-safety by using an exclusive lock during their execution.
127  * That will protect against any other use of the functions that use the
128  * mutexes, which all of core should be using. */
129 #ifdef USE_REENTRANT_API  /* This indicates a platform where we need reentrant
130                              versions if have them */
131 #  ifdef PERL_REENTR_USING_LOCALTIME_R
132 #    define LOCALTIME_LOCK    ENV_LOCALE_READ_LOCK
133 #    define LOCALTIME_UNLOCK  ENV_LOCALE_READ_UNLOCK
134 #  else
135 #    define LOCALTIME_LOCK    ENV_LOCALE_LOCK
136 #    define LOCALTIME_UNLOCK  ENV_LOCALE_UNLOCK
137 #  endif
138 #  ifdef PERL_REENTR_USING_GMTIME_R
139 #    define GMTIME_LOCK    ENV_LOCALE_READ_LOCK
140 #    define GMTIME_UNLOCK  ENV_LOCALE_READ_UNLOCK
141 #  else
142 #    define GMTIME_LOCK    ENV_LOCALE_LOCK
143 #    define GMTIME_UNLOCK  ENV_LOCALE_UNLOCK
144 #  endif
145 #else   /* Reentrant not needed, so races not possible */
146 #  define LOCALTIME_LOCK    NOOP
147 #  define LOCALTIME_UNLOCK  NOOP
148 #  define GMTIME_LOCK       NOOP
149 #  define GMTIME_UNLOCK     NOOP
150 #endif
151
152 static int S_is_exception_century(Year year)
153 {
154     const int is_exception = ((year % 100 == 0) && !(year % 400 == 0));
155     TIME64_TRACE1("# is_exception_century: %s\n", is_exception ? "yes" : "no");
156
157     return(is_exception);
158 }
159
160
161 static Time64_T S_timegm64(const struct TM *date) {
162     int      days    = 0;
163     Time64_T seconds = 0;
164
165     if( date->tm_year > 70 ) {
166         Year year = 70;
167         while( year < date->tm_year ) {
168             days += length_of_year[IS_LEAP(year)];
169             year++;
170         }
171     }
172     else if ( date->tm_year < 70 ) {
173         Year year = 69;
174         do {
175             days -= length_of_year[IS_LEAP(year)];
176             year--;
177         } while( year >= date->tm_year );
178     }
179
180     days += julian_days_by_month[IS_LEAP(date->tm_year)][date->tm_mon];
181     days += date->tm_mday - 1;
182
183     /* Avoid overflowing the days integer */
184     seconds = days;
185     seconds = seconds * 60 * 60 * 24;
186
187     seconds += date->tm_hour * 60 * 60;
188     seconds += date->tm_min * 60;
189     seconds += date->tm_sec;
190
191     return(seconds);
192 }
193
194
195 #ifdef DEBUGGING
196 static int S_check_tm(const struct TM *tm)
197 {
198     /* Don't forget leap seconds */
199     assert(tm->tm_sec >= 0);
200     assert(tm->tm_sec <= 61);
201
202     assert(tm->tm_min >= 0);
203     assert(tm->tm_min <= 59);
204
205     assert(tm->tm_hour >= 0);
206     assert(tm->tm_hour <= 23);
207
208     assert(tm->tm_mday >= 1);
209     assert(tm->tm_mday <= days_in_month[IS_LEAP(tm->tm_year)][tm->tm_mon]);
210
211     assert(tm->tm_mon  >= 0);
212     assert(tm->tm_mon  <= 11);
213
214     assert(tm->tm_wday >= 0);
215     assert(tm->tm_wday <= 6);
216
217     assert(tm->tm_yday >= 0);
218     assert(tm->tm_yday <= length_of_year[IS_LEAP(tm->tm_year)]);
219
220 #ifdef HAS_TM_TM_GMTOFF
221     assert(tm->tm_gmtoff >= -24 * 60 * 60);
222     assert(tm->tm_gmtoff <=  24 * 60 * 60);
223 #endif
224
225     return 1;
226 }
227 #endif
228
229
230 /* The exceptional centuries without leap years cause the cycle to
231    shift by 16
232 */
233 static Year S_cycle_offset(Year year)
234 {
235     const Year start_year = 2000;
236     Year year_diff  = year - start_year;
237     Year exceptions;
238
239     if( year > start_year )
240         year_diff--;
241
242     exceptions  = year_diff / 100;
243     exceptions -= year_diff / 400;
244
245     TIME64_TRACE3("# year: %lld, exceptions: %lld, year_diff: %lld\n",
246           year, exceptions, year_diff);
247
248     return exceptions * 16;
249 }
250
251 /* For a given year after 2038, pick the latest possible matching
252    year in the 28 year calendar cycle.
253
254    A matching year...
255    1) Starts on the same day of the week.
256    2) Has the same leap year status.
257
258    This is so the calendars match up.
259
260    Also the previous year must match.  When doing Jan 1st you might
261    wind up on Dec 31st the previous year when doing a -UTC time zone.
262
263    Finally, the next year must have the same start day of week.  This
264    is for Dec 31st with a +UTC time zone.
265    It doesn't need the same leap year status since we only care about
266    January 1st.
267 */
268 static int S_safe_year(Year year)
269 {
270     int safe_year;
271     Year year_cycle = year + S_cycle_offset(year);
272
273     /* Change non-leap xx00 years to an equivalent */
274     if( S_is_exception_century(year) )
275         year_cycle += 11;
276
277     /* Also xx01 years, since the previous year will be wrong */
278     if( S_is_exception_century(year - 1) )
279         year_cycle += 17;
280
281     year_cycle %= SOLAR_CYCLE_LENGTH;
282     if( year_cycle < 0 )
283         year_cycle = SOLAR_CYCLE_LENGTH + year_cycle;
284
285     assert( year_cycle >= 0 );
286     assert( year_cycle < SOLAR_CYCLE_LENGTH );
287     safe_year = safe_years[year_cycle];
288
289     assert(safe_year <= 2037 && safe_year >= 2010);
290
291     TIME64_TRACE3("# year: %lld, year_cycle: %lld, safe_year: %d\n",
292           year, year_cycle, safe_year);
293
294     return safe_year;
295 }
296
297
298 static void S_copy_little_tm_to_big_TM(const struct tm *src, struct TM *dest) {
299     assert(src);
300     assert(dest);
301 #ifdef USE_TM64
302     dest->tm_sec        = src->tm_sec;
303     dest->tm_min        = src->tm_min;
304     dest->tm_hour       = src->tm_hour;
305     dest->tm_mday       = src->tm_mday;
306     dest->tm_mon        = src->tm_mon;
307     dest->tm_year       = (Year)src->tm_year;
308     dest->tm_wday       = src->tm_wday;
309     dest->tm_yday       = src->tm_yday;
310     dest->tm_isdst      = src->tm_isdst;
311
312 #  ifdef HAS_TM_TM_GMTOFF
313     dest->tm_gmtoff     = src->tm_gmtoff;
314 #  endif
315
316 #  ifdef HAS_TM_TM_ZONE
317     dest->tm_zone       = src->tm_zone;
318 #  endif
319
320 #else
321     /* They're the same type */
322     memcpy(dest, src, sizeof(*dest));
323 #endif
324 }
325
326 struct TM *Perl_gmtime64_r (const Time64_T *in_time, struct TM *p)
327 {
328     int v_tm_sec, v_tm_min, v_tm_hour, v_tm_mon, v_tm_wday;
329     Time64_T v_tm_tday;
330     int leap;
331     Time64_T m;
332     Time64_T time = *in_time;
333     Year year = 70;
334     dTHX;
335
336     assert(p != NULL);
337
338     /* Use the system gmtime() if time_t is small enough */
339     if( SHOULD_USE_SYSTEM_GMTIME(*in_time) ) {
340         time_t safe_time = (time_t)*in_time;
341         struct tm safe_date;
342         struct tm * result;
343
344         GMTIME_LOCK;
345
346         /* reentr.h will automatically replace this with a call to gmtime_r()
347          * when appropriate */
348         result = gmtime(&safe_time);
349
350         assert(result != NULL);
351
352 #if defined(HAS_GMTIME_R) && defined(USE_REENTRANT_API)
353
354         PERL_UNUSED_VAR(safe_date);
355 #else
356         /* Here, no gmtime_r() and is a threaded perl where the result can be
357          * overwritten by a call in another thread.  Copy to a safe place,
358          * hopefully before another gmtime that isn't using the mutexes can
359          * jump in and trash this result. */
360         memcpy(&safe_date, result, sizeof(safe_date));
361         result = &safe_date;
362 #endif
363         GMTIME_UNLOCK;
364
365         S_copy_little_tm_to_big_TM(result, p);
366         assert(S_check_tm(p));
367
368         return p;
369     }
370
371 #ifdef HAS_TM_TM_GMTOFF
372     p->tm_gmtoff = 0;
373 #endif
374     p->tm_isdst  = 0;
375
376 #ifdef HAS_TM_TM_ZONE
377     p->tm_zone   = "UTC";
378 #endif
379
380     v_tm_sec  = (int)Perl_fmod(time, 60.0);
381     time      = time >= 0 ? Perl_floor(time / 60.0) : Perl_ceil(time / 60.0);
382     v_tm_min  = (int)Perl_fmod(time, 60.0);
383     time      = time >= 0 ? Perl_floor(time / 60.0) : Perl_ceil(time / 60.0);
384     v_tm_hour = (int)Perl_fmod(time, 24.0);
385     time      = time >= 0 ? Perl_floor(time / 24.0) : Perl_ceil(time / 24.0);
386     v_tm_tday = time;
387
388     WRAP (v_tm_sec, v_tm_min, 60);
389     WRAP (v_tm_min, v_tm_hour, 60);
390     WRAP (v_tm_hour, v_tm_tday, 24);
391
392     v_tm_wday = (int)Perl_fmod((v_tm_tday + 4.0), 7.0);
393     if (v_tm_wday < 0)
394         v_tm_wday += 7;
395     m = v_tm_tday;
396
397     if (m >= CHEAT_DAYS) {
398         year = CHEAT_YEARS;
399         m -= CHEAT_DAYS;
400     }
401
402     if (m >= 0) {
403         /* Gregorian cycles, this is huge optimization for distant times */
404         const int cycles = (int)Perl_floor(m / (Time64_T) days_in_gregorian_cycle);
405         if( cycles ) {
406             m -= (cycles * (Time64_T) days_in_gregorian_cycle);
407             year += (cycles * years_in_gregorian_cycle);
408         }
409
410         /* Years */
411         leap = IS_LEAP (year);
412         while (m >= (Time64_T) length_of_year[leap]) {
413             m -= (Time64_T) length_of_year[leap];
414             year++;
415             leap = IS_LEAP (year);
416         }
417
418         /* Months */
419         v_tm_mon = 0;
420         while (m >= (Time64_T) days_in_month[leap][v_tm_mon]) {
421             m -= (Time64_T) days_in_month[leap][v_tm_mon];
422             v_tm_mon++;
423         }
424     } else {
425         int cycles;
426
427         year--;
428
429         /* Gregorian cycles */
430         cycles = (int)Perl_ceil((m / (Time64_T) days_in_gregorian_cycle) + 1);
431         if( cycles ) {
432             m -= (cycles * (Time64_T) days_in_gregorian_cycle);
433             year += (cycles * years_in_gregorian_cycle);
434         }
435
436         /* Years */
437         leap = IS_LEAP (year);
438         while (m < (Time64_T) -length_of_year[leap]) {
439             m += (Time64_T) length_of_year[leap];
440             year--;
441             leap = IS_LEAP (year);
442         }
443
444         /* Months */
445         v_tm_mon = 11;
446         while (m < (Time64_T) -days_in_month[leap][v_tm_mon]) {
447             m += (Time64_T) days_in_month[leap][v_tm_mon];
448             v_tm_mon--;
449         }
450         m += (Time64_T) days_in_month[leap][v_tm_mon];
451     }
452
453     p->tm_year = year;
454     if( p->tm_year != year ) {
455 #ifdef EOVERFLOW
456         errno = EOVERFLOW;
457 #endif
458         return NULL;
459     }
460
461     /* At this point m is less than a year so casting to an int is safe */
462     p->tm_mday = (int) m + 1;
463     p->tm_yday = julian_days_by_month[leap][v_tm_mon] + (int)m;
464     p->tm_sec  = v_tm_sec;
465     p->tm_min  = v_tm_min;
466     p->tm_hour = v_tm_hour;
467     p->tm_mon  = v_tm_mon;
468     p->tm_wday = v_tm_wday;
469
470     assert(S_check_tm(p));
471
472     return p;
473 }
474
475
476 struct TM *Perl_localtime64_r (const Time64_T *time, struct TM *local_tm)
477 {
478     time_t safe_time;
479     struct tm safe_date;
480     const struct tm * result;
481     struct TM gm_tm;
482     Year orig_year;
483     int month_diff;
484     const bool use_system = SHOULD_USE_SYSTEM_LOCALTIME(*time);
485     dTHX;
486
487     assert(local_tm != NULL);
488
489     /* Use the system localtime() if time_t is small enough */
490     if (use_system) {
491         safe_time = (time_t)*time;
492
493         TIME64_TRACE1("Using system localtime for %lld\n", *time);
494     }
495     else {
496         if (Perl_gmtime64_r(time, &gm_tm) == NULL) {
497             TIME64_TRACE1("gmtime64_r returned null for %lld\n", *time);
498             return NULL;
499         }
500
501         orig_year = gm_tm.tm_year;
502
503         if (gm_tm.tm_year > (2037 - 1900) ||
504             gm_tm.tm_year < (1970 - 1900)
505            )
506         {
507             TIME64_TRACE1("Mapping tm_year %lld to safe_year\n",
508                                                         (Year)gm_tm.tm_year);
509             gm_tm.tm_year = S_safe_year((Year)(gm_tm.tm_year + 1900)) - 1900;
510         }
511
512         safe_time = (time_t)S_timegm64(&gm_tm);
513     }
514
515     LOCALTIME_LOCK;
516
517     /* reentr.h will automatically replace this with a call to localtime_r()
518      * when appropriate */
519     result = localtime(&safe_time);
520
521     if(UNLIKELY(result == NULL)) {
522         LOCALTIME_UNLOCK;
523         TIME64_TRACE1("localtime(%d) returned NULL\n", (int)safe_time);
524         return NULL;
525     }
526
527 #if ! defined(USE_REENTRANT_API) || defined(PERL_REENTR_USING_LOCALTIME_R)
528
529     PERL_UNUSED_VAR(safe_date);
530
531 #else
532
533     /* Here, would be using localtime_r() if it could, meaning there isn't one,
534      * and is a threaded perl where the result can be overwritten by a call in
535      * another thread.  Copy to a safe place, hopefully before another
536      * localtime that isn't using the mutexes can jump in and trash this
537      * result. */
538     memcpy(&safe_date, result, sizeof(safe_date));
539     result = &safe_date;
540
541 #endif
542
543     LOCALTIME_UNLOCK;
544
545     S_copy_little_tm_to_big_TM(result, local_tm);
546
547     if (! use_system) {
548
549         local_tm->tm_year = orig_year;
550         if( local_tm->tm_year != orig_year ) {
551             TIME64_TRACE2("tm_year overflow: tm_year %lld, orig_year %lld\n",
552                   (Year)local_tm->tm_year, (Year)orig_year);
553
554 #ifdef EOVERFLOW
555             errno = EOVERFLOW;
556 #endif
557             return NULL;
558         }
559
560         month_diff = local_tm->tm_mon - gm_tm.tm_mon;
561
562         /*  When localtime is Dec 31st previous year and
563             gmtime is Jan 1st next year.
564         */
565         if( month_diff == 11 ) {
566             local_tm->tm_year--;
567         }
568
569         /*  When localtime is Jan 1st, next year and
570             gmtime is Dec 31st, previous year.
571         */
572         if( month_diff == -11 ) {
573             local_tm->tm_year++;
574         }
575
576         /* GMT is Jan 1st, xx01 year, but localtime is still Dec 31st
577            in a non-leap xx00.  There is one point in the cycle
578            we can't account for which the safe xx00 year is a leap
579            year.  So we need to correct for Dec 31st coming out as
580            the 366th day of the year.
581         */
582         if( !IS_LEAP(local_tm->tm_year) && local_tm->tm_yday == 365 )
583             local_tm->tm_yday--;
584
585     }
586
587     assert(S_check_tm(local_tm));
588
589     return local_tm;
590 }