4 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
5 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
7 * You may distribute under the terms of either the GNU General Public
8 * License or the Artistic License, as specified in the README file.
13 * 'You see: Mr. Drogo, he married poor Miss Primula Brandybuck. She was
14 * our Mr. Bilbo's first cousin on the mother's side (her mother being the
15 * youngest of the Old Took's daughters); and Mr. Drogo was his second
16 * cousin. So Mr. Frodo is his first *and* second cousin, once removed
17 * either way, as the saying is, if you follow me.' --the Gaffer
19 * [p.23 of _The Lord of the Rings_, I/i: "A Long-Expected Party"]
22 /* This file contains the functions that create, manipulate and optimize
23 * the OP structures that hold a compiled perl program.
25 * A Perl program is compiled into a tree of OPs. Each op contains
26 * structural pointers (eg to its siblings and the next op in the
27 * execution sequence), a pointer to the function that would execute the
28 * op, plus any data specific to that op. For example, an OP_CONST op
29 * points to the pp_const() function and to an SV containing the constant
30 * value. When pp_const() is executed, its job is to push that SV onto the
33 * OPs are mainly created by the newFOO() functions, which are mainly
34 * called from the parser (in perly.y) as the code is parsed. For example
35 * the Perl code $a + $b * $c would cause the equivalent of the following
36 * to be called (oversimplifying a bit):
38 * newBINOP(OP_ADD, flags,
40 * newBINOP(OP_MULTIPLY, flags, newSVREF($b), newSVREF($c))
43 * Note that during the build of miniperl, a temporary copy of this file
44 * is made, called opmini.c.
48 Perl's compiler is essentially a 3-pass compiler with interleaved phases:
52 An execution-order pass
54 The bottom-up pass is represented by all the "newOP" routines and
55 the ck_ routines. The bottom-upness is actually driven by yacc.
56 So at the point that a ck_ routine fires, we have no idea what the
57 context is, either upward in the syntax tree, or either forward or
58 backward in the execution order. (The bottom-up parser builds that
59 part of the execution order it knows about, but if you follow the "next"
60 links around, you'll find it's actually a closed loop through the
63 Whenever the bottom-up parser gets to a node that supplies context to
64 its components, it invokes that portion of the top-down pass that applies
65 to that part of the subtree (and marks the top node as processed, so
66 if a node further up supplies context, it doesn't have to take the
67 plunge again). As a particular subcase of this, as the new node is
68 built, it takes all the closed execution loops of its subcomponents
69 and links them into a new closed loop for the higher level node. But
70 it's still not the real execution order.
72 The actual execution order is not known till we get a grammar reduction
73 to a top-level unit like a subroutine or file that will be called by
74 "name" rather than via a "next" pointer. At that point, we can call
75 into peep() to do that code's portion of the 3rd pass. It has to be
76 recursive, but it's recursive on basic blocks, not on tree nodes.
79 /* To implement user lexical pragmas, there needs to be a way at run time to
80 get the compile time state of %^H for that block. Storing %^H in every
81 block (or even COP) would be very expensive, so a different approach is
82 taken. The (running) state of %^H is serialised into a tree of HE-like
83 structs. Stores into %^H are chained onto the current leaf as a struct
84 refcounted_he * with the key and the value. Deletes from %^H are saved
85 with a value of PL_sv_placeholder. The state of %^H at any point can be
86 turned back into a regular HV by walking back up the tree from that point's
87 leaf, ignoring any key you've already seen (placeholder or not), storing
88 the rest into the HV structure, then removing the placeholders. Hence
89 memory is only used to store the %^H deltas from the enclosing COP, rather
90 than the entire %^H on each COP.
92 To cause actions on %^H to write out the serialisation records, it has
93 magic type 'H'. This magic (itself) does nothing, but its presence causes
94 the values to gain magic type 'h', which has entries for set and clear.
95 C<Perl_magic_sethint> updates C<PL_compiling.cop_hints_hash> with a store
96 record, with deletes written by C<Perl_magic_clearhint>. C<SAVEHINTS>
97 saves the current C<PL_compiling.cop_hints_hash> on the save stack, so that
98 it will be correctly restored when any inner compiling scope is exited.
104 #include "keywords.h"
108 #define CALL_PEEP(o) PL_peepp(aTHX_ o)
109 #define CALL_RPEEP(o) PL_rpeepp(aTHX_ o)
110 #define CALL_OPFREEHOOK(o) if (PL_opfreehook) PL_opfreehook(aTHX_ o)
112 static const char array_passed_to_stat[] = "Array passed to stat will be coerced to a scalar";
114 /* Used to avoid recursion through the op tree in scalarvoid() and
118 #define DEFERRED_OP_STEP 100
119 #define DEFER_OP(o) \
121 if (UNLIKELY(defer_ix == (defer_stack_alloc-1))) { \
122 defer_stack_alloc += DEFERRED_OP_STEP; \
123 assert(defer_stack_alloc > 0); \
124 Renew(defer_stack, defer_stack_alloc, OP *); \
126 defer_stack[++defer_ix] = o; \
129 #define POP_DEFERRED_OP() (defer_ix >= 0 ? defer_stack[defer_ix--] : (OP *)NULL)
131 /* remove any leading "empty" ops from the op_next chain whose first
132 * node's address is stored in op_p. Store the updated address of the
133 * first node in op_p.
137 S_prune_chain_head(OP** op_p)
140 && ( (*op_p)->op_type == OP_NULL
141 || (*op_p)->op_type == OP_SCOPE
142 || (*op_p)->op_type == OP_SCALAR
143 || (*op_p)->op_type == OP_LINESEQ)
145 *op_p = (*op_p)->op_next;
149 /* See the explanatory comments above struct opslab in op.h. */
151 #ifdef PERL_DEBUG_READONLY_OPS
152 # define PERL_SLAB_SIZE 128
153 # define PERL_MAX_SLAB_SIZE 4096
154 # include <sys/mman.h>
157 #ifndef PERL_SLAB_SIZE
158 # define PERL_SLAB_SIZE 64
160 #ifndef PERL_MAX_SLAB_SIZE
161 # define PERL_MAX_SLAB_SIZE 2048
164 /* rounds up to nearest pointer */
165 #define SIZE_TO_PSIZE(x) (((x) + sizeof(I32 *) - 1)/sizeof(I32 *))
166 #define DIFF(o,p) ((size_t)((I32 **)(p) - (I32**)(o)))
169 S_new_slab(pTHX_ size_t sz)
171 #ifdef PERL_DEBUG_READONLY_OPS
172 OPSLAB *slab = (OPSLAB *) mmap(0, sz * sizeof(I32 *),
173 PROT_READ|PROT_WRITE,
174 MAP_ANON|MAP_PRIVATE, -1, 0);
175 DEBUG_m(PerlIO_printf(Perl_debug_log, "mapped %lu at %p\n",
176 (unsigned long) sz, slab));
177 if (slab == MAP_FAILED) {
178 perror("mmap failed");
181 slab->opslab_size = (U16)sz;
183 OPSLAB *slab = (OPSLAB *)PerlMemShared_calloc(sz, sizeof(I32 *));
186 /* The context is unused in non-Windows */
189 slab->opslab_first = (OPSLOT *)((I32 **)slab + sz - 1);
193 /* requires double parens and aTHX_ */
194 #define DEBUG_S_warn(args) \
196 PerlIO_printf(Perl_debug_log, "%s", SvPVx_nolen(Perl_mess args)) \
200 Perl_Slab_Alloc(pTHX_ size_t sz)
208 /* We only allocate ops from the slab during subroutine compilation.
209 We find the slab via PL_compcv, hence that must be non-NULL. It could
210 also be pointing to a subroutine which is now fully set up (CvROOT()
211 pointing to the top of the optree for that sub), or a subroutine
212 which isn't using the slab allocator. If our sanity checks aren't met,
213 don't use a slab, but allocate the OP directly from the heap. */
214 if (!PL_compcv || CvROOT(PL_compcv)
215 || (CvSTART(PL_compcv) && !CvSLABBED(PL_compcv)))
217 o = (OP*)PerlMemShared_calloc(1, sz);
221 /* While the subroutine is under construction, the slabs are accessed via
222 CvSTART(), to avoid needing to expand PVCV by one pointer for something
223 unneeded at runtime. Once a subroutine is constructed, the slabs are
224 accessed via CvROOT(). So if CvSTART() is NULL, no slab has been
225 allocated yet. See the commit message for 8be227ab5eaa23f2 for more
227 if (!CvSTART(PL_compcv)) {
229 (OP *)(slab = S_new_slab(aTHX_ PERL_SLAB_SIZE));
230 CvSLABBED_on(PL_compcv);
231 slab->opslab_refcnt = 2; /* one for the CV; one for the new OP */
233 else ++(slab = (OPSLAB *)CvSTART(PL_compcv))->opslab_refcnt;
235 opsz = SIZE_TO_PSIZE(sz);
236 sz = opsz + OPSLOT_HEADER_P;
238 /* The slabs maintain a free list of OPs. In particular, constant folding
239 will free up OPs, so it makes sense to re-use them where possible. A
240 freed up slot is used in preference to a new allocation. */
241 if (slab->opslab_freed) {
242 OP **too = &slab->opslab_freed;
244 DEBUG_S_warn((aTHX_ "found free op at %p, slab %p", (void*)o, (void*)slab));
245 while (o && DIFF(OpSLOT(o), OpSLOT(o)->opslot_next) < sz) {
246 DEBUG_S_warn((aTHX_ "Alas! too small"));
247 o = *(too = &o->op_next);
248 if (o) { DEBUG_S_warn((aTHX_ "found another free op at %p", (void*)o)); }
252 Zero(o, opsz, I32 *);
258 #define INIT_OPSLOT \
259 slot->opslot_slab = slab; \
260 slot->opslot_next = slab2->opslab_first; \
261 slab2->opslab_first = slot; \
262 o = &slot->opslot_op; \
265 /* The partially-filled slab is next in the chain. */
266 slab2 = slab->opslab_next ? slab->opslab_next : slab;
267 if ((space = DIFF(&slab2->opslab_slots, slab2->opslab_first)) < sz) {
268 /* Remaining space is too small. */
270 /* If we can fit a BASEOP, add it to the free chain, so as not
272 if (space >= SIZE_TO_PSIZE(sizeof(OP)) + OPSLOT_HEADER_P) {
273 slot = &slab2->opslab_slots;
275 o->op_type = OP_FREED;
276 o->op_next = slab->opslab_freed;
277 slab->opslab_freed = o;
280 /* Create a new slab. Make this one twice as big. */
281 slot = slab2->opslab_first;
282 while (slot->opslot_next) slot = slot->opslot_next;
283 slab2 = S_new_slab(aTHX_
284 (DIFF(slab2, slot)+1)*2 > PERL_MAX_SLAB_SIZE
286 : (DIFF(slab2, slot)+1)*2);
287 slab2->opslab_next = slab->opslab_next;
288 slab->opslab_next = slab2;
290 assert(DIFF(&slab2->opslab_slots, slab2->opslab_first) >= sz);
292 /* Create a new op slot */
293 slot = (OPSLOT *)((I32 **)slab2->opslab_first - sz);
294 assert(slot >= &slab2->opslab_slots);
295 if (DIFF(&slab2->opslab_slots, slot)
296 < SIZE_TO_PSIZE(sizeof(OP)) + OPSLOT_HEADER_P)
297 slot = &slab2->opslab_slots;
299 DEBUG_S_warn((aTHX_ "allocating op at %p, slab %p", (void*)o, (void*)slab));
302 #ifdef PERL_OP_PARENT
303 /* moresib == 0, op_sibling == 0 implies a solitary unattached op */
304 assert(!o->op_moresib);
305 assert(!o->op_sibparent);
313 #ifdef PERL_DEBUG_READONLY_OPS
315 Perl_Slab_to_ro(pTHX_ OPSLAB *slab)
317 PERL_ARGS_ASSERT_SLAB_TO_RO;
319 if (slab->opslab_readonly) return;
320 slab->opslab_readonly = 1;
321 for (; slab; slab = slab->opslab_next) {
322 /*DEBUG_U(PerlIO_printf(Perl_debug_log,"mprotect ->ro %lu at %p\n",
323 (unsigned long) slab->opslab_size, slab));*/
324 if (mprotect(slab, slab->opslab_size * sizeof(I32 *), PROT_READ))
325 Perl_warn(aTHX_ "mprotect for %p %lu failed with %d", slab,
326 (unsigned long)slab->opslab_size, errno);
331 Perl_Slab_to_rw(pTHX_ OPSLAB *const slab)
335 PERL_ARGS_ASSERT_SLAB_TO_RW;
337 if (!slab->opslab_readonly) return;
339 for (; slab2; slab2 = slab2->opslab_next) {
340 /*DEBUG_U(PerlIO_printf(Perl_debug_log,"mprotect ->rw %lu at %p\n",
341 (unsigned long) size, slab2));*/
342 if (mprotect((void *)slab2, slab2->opslab_size * sizeof(I32 *),
343 PROT_READ|PROT_WRITE)) {
344 Perl_warn(aTHX_ "mprotect RW for %p %lu failed with %d", slab,
345 (unsigned long)slab2->opslab_size, errno);
348 slab->opslab_readonly = 0;
352 # define Slab_to_rw(op) NOOP
355 /* This cannot possibly be right, but it was copied from the old slab
356 allocator, to which it was originally added, without explanation, in
359 # define PerlMemShared PerlMem
363 Perl_Slab_Free(pTHX_ void *op)
365 OP * const o = (OP *)op;
368 PERL_ARGS_ASSERT_SLAB_FREE;
370 if (!o->op_slabbed) {
372 PerlMemShared_free(op);
377 /* If this op is already freed, our refcount will get screwy. */
378 assert(o->op_type != OP_FREED);
379 o->op_type = OP_FREED;
380 o->op_next = slab->opslab_freed;
381 slab->opslab_freed = o;
382 DEBUG_S_warn((aTHX_ "free op at %p, recorded in slab %p", (void*)o, (void*)slab));
383 OpslabREFCNT_dec_padok(slab);
387 Perl_opslab_free_nopad(pTHX_ OPSLAB *slab)
389 const bool havepad = !!PL_comppad;
390 PERL_ARGS_ASSERT_OPSLAB_FREE_NOPAD;
393 PAD_SAVE_SETNULLPAD();
400 Perl_opslab_free(pTHX_ OPSLAB *slab)
403 PERL_ARGS_ASSERT_OPSLAB_FREE;
405 DEBUG_S_warn((aTHX_ "freeing slab %p", (void*)slab));
406 assert(slab->opslab_refcnt == 1);
408 slab2 = slab->opslab_next;
410 slab->opslab_refcnt = ~(size_t)0;
412 #ifdef PERL_DEBUG_READONLY_OPS
413 DEBUG_m(PerlIO_printf(Perl_debug_log, "Deallocate slab at %p\n",
415 if (munmap(slab, slab->opslab_size * sizeof(I32 *))) {
416 perror("munmap failed");
420 PerlMemShared_free(slab);
427 Perl_opslab_force_free(pTHX_ OPSLAB *slab)
432 size_t savestack_count = 0;
434 PERL_ARGS_ASSERT_OPSLAB_FORCE_FREE;
437 for (slot = slab2->opslab_first;
439 slot = slot->opslot_next) {
440 if (slot->opslot_op.op_type != OP_FREED
441 && !(slot->opslot_op.op_savefree
447 assert(slot->opslot_op.op_slabbed);
448 op_free(&slot->opslot_op);
449 if (slab->opslab_refcnt == 1) goto free;
452 } while ((slab2 = slab2->opslab_next));
453 /* > 1 because the CV still holds a reference count. */
454 if (slab->opslab_refcnt > 1) { /* still referenced by the savestack */
456 assert(savestack_count == slab->opslab_refcnt-1);
458 /* Remove the CV’s reference count. */
459 slab->opslab_refcnt--;
466 #ifdef PERL_DEBUG_READONLY_OPS
468 Perl_op_refcnt_inc(pTHX_ OP *o)
471 OPSLAB *const slab = o->op_slabbed ? OpSLAB(o) : NULL;
472 if (slab && slab->opslab_readonly) {
485 Perl_op_refcnt_dec(pTHX_ OP *o)
488 OPSLAB *const slab = o->op_slabbed ? OpSLAB(o) : NULL;
490 PERL_ARGS_ASSERT_OP_REFCNT_DEC;
492 if (slab && slab->opslab_readonly) {
494 result = --o->op_targ;
497 result = --o->op_targ;
503 * In the following definition, the ", (OP*)0" is just to make the compiler
504 * think the expression is of the right type: croak actually does a Siglongjmp.
506 #define CHECKOP(type,o) \
507 ((PL_op_mask && PL_op_mask[type]) \
508 ? ( op_free((OP*)o), \
509 Perl_croak(aTHX_ "'%s' trapped by operation mask", PL_op_desc[type]), \
511 : PL_check[type](aTHX_ (OP*)o))
513 #define RETURN_UNLIMITED_NUMBER (PERL_INT_MAX / 2)
515 #define OpTYPE_set(o,type) \
517 o->op_type = (OPCODE)type; \
518 o->op_ppaddr = PL_ppaddr[type]; \
522 S_no_fh_allowed(pTHX_ OP *o)
524 PERL_ARGS_ASSERT_NO_FH_ALLOWED;
526 yyerror(Perl_form(aTHX_ "Missing comma after first argument to %s function",
532 S_too_few_arguments_pv(pTHX_ OP *o, const char* name, U32 flags)
534 PERL_ARGS_ASSERT_TOO_FEW_ARGUMENTS_PV;
535 yyerror_pv(Perl_form(aTHX_ "Not enough arguments for %s", name), flags);
540 S_too_many_arguments_pv(pTHX_ OP *o, const char *name, U32 flags)
542 PERL_ARGS_ASSERT_TOO_MANY_ARGUMENTS_PV;
544 yyerror_pv(Perl_form(aTHX_ "Too many arguments for %s", name), flags);
549 S_bad_type_pv(pTHX_ I32 n, const char *t, const OP *o, const OP *kid)
551 PERL_ARGS_ASSERT_BAD_TYPE_PV;
553 yyerror_pv(Perl_form(aTHX_ "Type of arg %d to %s must be %s (not %s)",
554 (int)n, PL_op_desc[(o)->op_type], t, OP_DESC(kid)), 0);
557 /* remove flags var, its unused in all callers, move to to right end since gv
558 and kid are always the same */
560 S_bad_type_gv(pTHX_ I32 n, GV *gv, const OP *kid, const char *t)
562 SV * const namesv = cv_name((CV *)gv, NULL, 0);
563 PERL_ARGS_ASSERT_BAD_TYPE_GV;
565 yyerror_pv(Perl_form(aTHX_ "Type of arg %d to %"SVf" must be %s (not %s)",
566 (int)n, SVfARG(namesv), t, OP_DESC(kid)), SvUTF8(namesv));
570 S_no_bareword_allowed(pTHX_ OP *o)
572 PERL_ARGS_ASSERT_NO_BAREWORD_ALLOWED;
574 qerror(Perl_mess(aTHX_
575 "Bareword \"%"SVf"\" not allowed while \"strict subs\" in use",
577 o->op_private &= ~OPpCONST_STRICT; /* prevent warning twice about the same OP */
580 /* "register" allocation */
583 Perl_allocmy(pTHX_ const char *const name, const STRLEN len, const U32 flags)
586 const bool is_our = (PL_parser->in_my == KEY_our);
588 PERL_ARGS_ASSERT_ALLOCMY;
590 if (flags & ~SVf_UTF8)
591 Perl_croak(aTHX_ "panic: allocmy illegal flag bits 0x%" UVxf,
594 /* complain about "my $<special_var>" etc etc */
598 ((flags & SVf_UTF8) && isIDFIRST_utf8((U8 *)name+1)) ||
599 (name[1] == '_' && len > 2)))
601 if (!(flags & SVf_UTF8 && UTF8_IS_START(name[1]))
603 && (!isPRINT(name[1]) || strchr("\t\n\r\f", name[1]))) {
604 yyerror(Perl_form(aTHX_ "Can't use global %c^%c%.*s in \"%s\"",
605 name[0], toCTRL(name[1]), (int)(len - 2), name + 2,
606 PL_parser->in_my == KEY_state ? "state" : "my"));
608 yyerror_pv(Perl_form(aTHX_ "Can't use global %.*s in \"%s\"", (int) len, name,
609 PL_parser->in_my == KEY_state ? "state" : "my"), flags & SVf_UTF8);
613 /* allocate a spare slot and store the name in that slot */
615 off = pad_add_name_pvn(name, len,
616 (is_our ? padadd_OUR :
617 PL_parser->in_my == KEY_state ? padadd_STATE : 0),
618 PL_parser->in_my_stash,
620 /* $_ is always in main::, even with our */
621 ? (PL_curstash && !memEQs(name,len,"$_")
627 /* anon sub prototypes contains state vars should always be cloned,
628 * otherwise the state var would be shared between anon subs */
630 if (PL_parser->in_my == KEY_state && CvANON(PL_compcv))
631 CvCLONE_on(PL_compcv);
637 =head1 Optree Manipulation Functions
639 =for apidoc alloccopstash
641 Available only under threaded builds, this function allocates an entry in
642 C<PL_stashpad> for the stash passed to it.
649 Perl_alloccopstash(pTHX_ HV *hv)
651 PADOFFSET off = 0, o = 1;
652 bool found_slot = FALSE;
654 PERL_ARGS_ASSERT_ALLOCCOPSTASH;
656 if (PL_stashpad[PL_stashpadix] == hv) return PL_stashpadix;
658 for (; o < PL_stashpadmax; ++o) {
659 if (PL_stashpad[o] == hv) return PL_stashpadix = o;
660 if (!PL_stashpad[o] || SvTYPE(PL_stashpad[o]) != SVt_PVHV)
661 found_slot = TRUE, off = o;
664 Renew(PL_stashpad, PL_stashpadmax + 10, HV *);
665 Zero(PL_stashpad + PL_stashpadmax, 10, HV *);
666 off = PL_stashpadmax;
667 PL_stashpadmax += 10;
670 PL_stashpad[PL_stashpadix = off] = hv;
675 /* free the body of an op without examining its contents.
676 * Always use this rather than FreeOp directly */
679 S_op_destroy(pTHX_ OP *o)
687 =for apidoc Am|void|op_free|OP *o
689 Free an op. Only use this when an op is no longer linked to from any
696 Perl_op_free(pTHX_ OP *o)
700 SSize_t defer_ix = -1;
701 SSize_t defer_stack_alloc = 0;
702 OP **defer_stack = NULL;
706 /* Though ops may be freed twice, freeing the op after its slab is a
708 assert(!o || !o->op_slabbed || OpSLAB(o)->opslab_refcnt != ~(size_t)0);
709 /* During the forced freeing of ops after compilation failure, kidops
710 may be freed before their parents. */
711 if (!o || o->op_type == OP_FREED)
716 /* an op should only ever acquire op_private flags that we know about.
717 * If this fails, you may need to fix something in regen/op_private.
718 * Don't bother testing if:
719 * * the op_ppaddr doesn't match the op; someone may have
720 * overridden the op and be doing strange things with it;
721 * * we've errored, as op flags are often left in an
722 * inconsistent state then. Note that an error when
723 * compiling the main program leaves PL_parser NULL, so
724 * we can't spot faults in the main code, only
725 * evaled/required code */
727 if ( o->op_ppaddr == PL_ppaddr[o->op_type]
729 && !PL_parser->error_count)
731 assert(!(o->op_private & ~PL_op_private_valid[type]));
735 if (o->op_private & OPpREFCOUNTED) {
746 refcnt = OpREFCNT_dec(o);
749 /* Need to find and remove any pattern match ops from the list
750 we maintain for reset(). */
751 find_and_forget_pmops(o);
761 /* Call the op_free hook if it has been set. Do it now so that it's called
762 * at the right time for refcounted ops, but still before all of the kids
766 if (o->op_flags & OPf_KIDS) {
768 for (kid = cUNOPo->op_first; kid; kid = nextkid) {
769 nextkid = OpSIBLING(kid); /* Get before next freeing kid */
770 if (!kid || kid->op_type == OP_FREED)
771 /* During the forced freeing of ops after
772 compilation failure, kidops may be freed before
775 if (!(kid->op_flags & OPf_KIDS))
776 /* If it has no kids, just free it now */
783 type = (OPCODE)o->op_targ;
786 Slab_to_rw(OpSLAB(o));
788 /* COP* is not cleared by op_clear() so that we may track line
789 * numbers etc even after null() */
790 if (type == OP_NEXTSTATE || type == OP_DBSTATE) {
796 #ifdef DEBUG_LEAKING_SCALARS
800 } while ( (o = POP_DEFERRED_OP()) );
802 Safefree(defer_stack);
805 /* S_op_clear_gv(): free a GV attached to an OP */
809 void S_op_clear_gv(pTHX_ OP *o, PADOFFSET *ixp)
811 void S_op_clear_gv(pTHX_ OP *o, SV**svp)
815 GV *gv = (o->op_type == OP_GV || o->op_type == OP_GVSV
816 || o->op_type == OP_MULTIDEREF)
819 ? ((GV*)PAD_SVl(*ixp)) : NULL;
821 ? (GV*)(*svp) : NULL;
823 /* It's possible during global destruction that the GV is freed
824 before the optree. Whilst the SvREFCNT_inc is happy to bump from
825 0 to 1 on a freed SV, the corresponding SvREFCNT_dec from 1 to 0
826 will trigger an assertion failure, because the entry to sv_clear
827 checks that the scalar is not already freed. A check of for
828 !SvIS_FREED(gv) turns out to be invalid, because during global
829 destruction the reference count can be forced down to zero
830 (with SVf_BREAK set). In which case raising to 1 and then
831 dropping to 0 triggers cleanup before it should happen. I
832 *think* that this might actually be a general, systematic,
833 weakness of the whole idea of SVf_BREAK, in that code *is*
834 allowed to raise and lower references during global destruction,
835 so any *valid* code that happens to do this during global
836 destruction might well trigger premature cleanup. */
837 bool still_valid = gv && SvREFCNT(gv);
840 SvREFCNT_inc_simple_void(gv);
843 pad_swipe(*ixp, TRUE);
851 int try_downgrade = SvREFCNT(gv) == 2;
854 gv_try_downgrade(gv);
860 Perl_op_clear(pTHX_ OP *o)
865 PERL_ARGS_ASSERT_OP_CLEAR;
867 switch (o->op_type) {
868 case OP_NULL: /* Was holding old type, if any. */
871 case OP_ENTEREVAL: /* Was holding hints. */
875 if (!(o->op_flags & OPf_REF)
876 || (PL_check[o->op_type] != Perl_ck_ftst))
883 S_op_clear_gv(aTHX_ o, &(cPADOPx(o)->op_padix));
885 S_op_clear_gv(aTHX_ o, &(cSVOPx(o)->op_sv));
888 case OP_METHOD_REDIR:
889 case OP_METHOD_REDIR_SUPER:
891 if (cMETHOPx(o)->op_rclass_targ) {
892 pad_swipe(cMETHOPx(o)->op_rclass_targ, 1);
893 cMETHOPx(o)->op_rclass_targ = 0;
896 SvREFCNT_dec(cMETHOPx(o)->op_rclass_sv);
897 cMETHOPx(o)->op_rclass_sv = NULL;
899 case OP_METHOD_NAMED:
900 case OP_METHOD_SUPER:
901 SvREFCNT_dec(cMETHOPx(o)->op_u.op_meth_sv);
902 cMETHOPx(o)->op_u.op_meth_sv = NULL;
905 pad_swipe(o->op_targ, 1);
912 SvREFCNT_dec(cSVOPo->op_sv);
913 cSVOPo->op_sv = NULL;
916 Even if op_clear does a pad_free for the target of the op,
917 pad_free doesn't actually remove the sv that exists in the pad;
918 instead it lives on. This results in that it could be reused as
919 a target later on when the pad was reallocated.
922 pad_swipe(o->op_targ,1);
932 if (o->op_flags & (OPf_SPECIAL|OPf_STACKED|OPf_KIDS))
937 if (o->op_private & (OPpTRANS_FROM_UTF|OPpTRANS_TO_UTF)) {
938 assert(o->op_type == OP_TRANS || o->op_type == OP_TRANSR);
940 if (cPADOPo->op_padix > 0) {
941 pad_swipe(cPADOPo->op_padix, TRUE);
942 cPADOPo->op_padix = 0;
945 SvREFCNT_dec(cSVOPo->op_sv);
946 cSVOPo->op_sv = NULL;
950 PerlMemShared_free(cPVOPo->op_pv);
951 cPVOPo->op_pv = NULL;
955 op_free(cPMOPo->op_pmreplrootu.op_pmreplroot);
959 if (cPMOPo->op_pmreplrootu.op_pmtargetoff) {
960 pad_swipe(cPMOPo->op_pmreplrootu.op_pmtargetoff, TRUE);
963 SvREFCNT_dec(MUTABLE_SV(cPMOPo->op_pmreplrootu.op_pmtargetgv));
969 if (!(cPMOPo->op_pmflags & PMf_CODELIST_PRIVATE))
970 op_free(cPMOPo->op_code_list);
971 cPMOPo->op_code_list = NULL;
973 cPMOPo->op_pmreplrootu.op_pmreplroot = NULL;
974 /* we use the same protection as the "SAFE" version of the PM_ macros
975 * here since sv_clean_all might release some PMOPs
976 * after PL_regex_padav has been cleared
977 * and the clearing of PL_regex_padav needs to
978 * happen before sv_clean_all
981 if(PL_regex_pad) { /* We could be in destruction */
982 const IV offset = (cPMOPo)->op_pmoffset;
983 ReREFCNT_dec(PM_GETRE(cPMOPo));
984 PL_regex_pad[offset] = &PL_sv_undef;
985 sv_catpvn_nomg(PL_regex_pad[0], (const char *)&offset,
989 ReREFCNT_dec(PM_GETRE(cPMOPo));
990 PM_SETRE(cPMOPo, NULL);
997 UNOP_AUX_item *items = cUNOP_AUXo->op_aux;
998 UV actions = items->uv;
1000 bool is_hash = FALSE;
1003 switch (actions & MDEREF_ACTION_MASK) {
1006 actions = (++items)->uv;
1009 case MDEREF_HV_padhv_helem:
1011 case MDEREF_AV_padav_aelem:
1012 pad_free((++items)->pad_offset);
1015 case MDEREF_HV_gvhv_helem:
1017 case MDEREF_AV_gvav_aelem:
1019 S_op_clear_gv(aTHX_ o, &((++items)->pad_offset));
1021 S_op_clear_gv(aTHX_ o, &((++items)->sv));
1025 case MDEREF_HV_gvsv_vivify_rv2hv_helem:
1027 case MDEREF_AV_gvsv_vivify_rv2av_aelem:
1029 S_op_clear_gv(aTHX_ o, &((++items)->pad_offset));
1031 S_op_clear_gv(aTHX_ o, &((++items)->sv));
1033 goto do_vivify_rv2xv_elem;
1035 case MDEREF_HV_padsv_vivify_rv2hv_helem:
1037 case MDEREF_AV_padsv_vivify_rv2av_aelem:
1038 pad_free((++items)->pad_offset);
1039 goto do_vivify_rv2xv_elem;
1041 case MDEREF_HV_pop_rv2hv_helem:
1042 case MDEREF_HV_vivify_rv2hv_helem:
1044 do_vivify_rv2xv_elem:
1045 case MDEREF_AV_pop_rv2av_aelem:
1046 case MDEREF_AV_vivify_rv2av_aelem:
1048 switch (actions & MDEREF_INDEX_MASK) {
1049 case MDEREF_INDEX_none:
1052 case MDEREF_INDEX_const:
1056 pad_swipe((++items)->pad_offset, 1);
1058 SvREFCNT_dec((++items)->sv);
1064 case MDEREF_INDEX_padsv:
1065 pad_free((++items)->pad_offset);
1067 case MDEREF_INDEX_gvsv:
1069 S_op_clear_gv(aTHX_ o, &((++items)->pad_offset));
1071 S_op_clear_gv(aTHX_ o, &((++items)->sv));
1076 if (actions & MDEREF_FLAG_last)
1089 actions >>= MDEREF_SHIFT;
1092 /* start of malloc is at op_aux[-1], where the length is
1094 PerlMemShared_free(cUNOP_AUXo->op_aux - 1);
1099 if (o->op_targ > 0) {
1100 pad_free(o->op_targ);
1106 S_cop_free(pTHX_ COP* cop)
1108 PERL_ARGS_ASSERT_COP_FREE;
1111 if (! specialWARN(cop->cop_warnings))
1112 PerlMemShared_free(cop->cop_warnings);
1113 cophh_free(CopHINTHASH_get(cop));
1114 if (PL_curcop == cop)
1119 S_forget_pmop(pTHX_ PMOP *const o
1122 HV * const pmstash = PmopSTASH(o);
1124 PERL_ARGS_ASSERT_FORGET_PMOP;
1126 if (pmstash && !SvIS_FREED(pmstash) && SvMAGICAL(pmstash)) {
1127 MAGIC * const mg = mg_find((const SV *)pmstash, PERL_MAGIC_symtab);
1129 PMOP **const array = (PMOP**) mg->mg_ptr;
1130 U32 count = mg->mg_len / sizeof(PMOP**);
1134 if (array[i] == o) {
1135 /* Found it. Move the entry at the end to overwrite it. */
1136 array[i] = array[--count];
1137 mg->mg_len = count * sizeof(PMOP**);
1138 /* Could realloc smaller at this point always, but probably
1139 not worth it. Probably worth free()ing if we're the
1142 Safefree(mg->mg_ptr);
1155 S_find_and_forget_pmops(pTHX_ OP *o)
1157 PERL_ARGS_ASSERT_FIND_AND_FORGET_PMOPS;
1159 if (o->op_flags & OPf_KIDS) {
1160 OP *kid = cUNOPo->op_first;
1162 switch (kid->op_type) {
1167 forget_pmop((PMOP*)kid);
1169 find_and_forget_pmops(kid);
1170 kid = OpSIBLING(kid);
1176 =for apidoc Am|void|op_null|OP *o
1178 Neutralizes an op when it is no longer needed, but is still linked to from
1185 Perl_op_null(pTHX_ OP *o)
1189 PERL_ARGS_ASSERT_OP_NULL;
1191 if (o->op_type == OP_NULL)
1194 o->op_targ = o->op_type;
1195 OpTYPE_set(o, OP_NULL);
1199 Perl_op_refcnt_lock(pTHX)
1200 PERL_TSA_ACQUIRE(PL_op_mutex)
1205 PERL_UNUSED_CONTEXT;
1210 Perl_op_refcnt_unlock(pTHX)
1211 PERL_TSA_RELEASE(PL_op_mutex)
1216 PERL_UNUSED_CONTEXT;
1222 =for apidoc op_sibling_splice
1224 A general function for editing the structure of an existing chain of
1225 op_sibling nodes. By analogy with the perl-level C<splice()> function, allows
1226 you to delete zero or more sequential nodes, replacing them with zero or
1227 more different nodes. Performs the necessary op_first/op_last
1228 housekeeping on the parent node and op_sibling manipulation on the
1229 children. The last deleted node will be marked as as the last node by
1230 updating the op_sibling/op_sibparent or op_moresib field as appropriate.
1232 Note that op_next is not manipulated, and nodes are not freed; that is the
1233 responsibility of the caller. It also won't create a new list op for an
1234 empty list etc; use higher-level functions like op_append_elem() for that.
1236 C<parent> is the parent node of the sibling chain. It may passed as C<NULL> if
1237 the splicing doesn't affect the first or last op in the chain.
1239 C<start> is the node preceding the first node to be spliced. Node(s)
1240 following it will be deleted, and ops will be inserted after it. If it is
1241 C<NULL>, the first node onwards is deleted, and nodes are inserted at the
1244 C<del_count> is the number of nodes to delete. If zero, no nodes are deleted.
1245 If -1 or greater than or equal to the number of remaining kids, all
1246 remaining kids are deleted.
1248 C<insert> is the first of a chain of nodes to be inserted in place of the nodes.
1249 If C<NULL>, no nodes are inserted.
1251 The head of the chain of deleted ops is returned, or C<NULL> if no ops were
1256 action before after returns
1257 ------ ----- ----- -------
1260 splice(P, A, 2, X-Y-Z) | | B-C
1264 splice(P, NULL, 1, X-Y) | | A
1268 splice(P, NULL, 3, NULL) | | A-B-C
1272 splice(P, B, 0, X-Y) | | NULL
1276 For lower-level direct manipulation of C<op_sibparent> and C<op_moresib>,
1277 see C<L</OpMORESIB_set>>, C<L</OpLASTSIB_set>>, C<L</OpMAYBESIB_set>>.
1283 Perl_op_sibling_splice(OP *parent, OP *start, int del_count, OP* insert)
1287 OP *last_del = NULL;
1288 OP *last_ins = NULL;
1291 first = OpSIBLING(start);
1295 first = cLISTOPx(parent)->op_first;
1297 assert(del_count >= -1);
1299 if (del_count && first) {
1301 while (--del_count && OpHAS_SIBLING(last_del))
1302 last_del = OpSIBLING(last_del);
1303 rest = OpSIBLING(last_del);
1304 OpLASTSIB_set(last_del, NULL);
1311 while (OpHAS_SIBLING(last_ins))
1312 last_ins = OpSIBLING(last_ins);
1313 OpMAYBESIB_set(last_ins, rest, NULL);
1319 OpMAYBESIB_set(start, insert, NULL);
1324 cLISTOPx(parent)->op_first = insert;
1326 parent->op_flags |= OPf_KIDS;
1328 parent->op_flags &= ~OPf_KIDS;
1332 /* update op_last etc */
1339 /* ought to use OP_CLASS(parent) here, but that can't handle
1340 * ex-foo OP_NULL ops. Also note that XopENTRYCUSTOM() can't
1342 type = parent->op_type;
1343 if (type == OP_CUSTOM) {
1345 type = XopENTRYCUSTOM(parent, xop_class);
1348 if (type == OP_NULL)
1349 type = parent->op_targ;
1350 type = PL_opargs[type] & OA_CLASS_MASK;
1353 lastop = last_ins ? last_ins : start ? start : NULL;
1354 if ( type == OA_BINOP
1355 || type == OA_LISTOP
1359 cLISTOPx(parent)->op_last = lastop;
1362 OpLASTSIB_set(lastop, parent);
1364 return last_del ? first : NULL;
1367 Perl_croak_nocontext("panic: op_sibling_splice(): NULL parent");
1371 #ifdef PERL_OP_PARENT
1374 =for apidoc op_parent
1376 Returns the parent OP of C<o>, if it has a parent. Returns C<NULL> otherwise.
1377 This function is only available on perls built with C<-DPERL_OP_PARENT>.
1383 Perl_op_parent(OP *o)
1385 PERL_ARGS_ASSERT_OP_PARENT;
1386 while (OpHAS_SIBLING(o))
1388 return o->op_sibparent;
1394 /* replace the sibling following start with a new UNOP, which becomes
1395 * the parent of the original sibling; e.g.
1397 * op_sibling_newUNOP(P, A, unop-args...)
1405 * where U is the new UNOP.
1407 * parent and start args are the same as for op_sibling_splice();
1408 * type and flags args are as newUNOP().
1410 * Returns the new UNOP.
1414 S_op_sibling_newUNOP(pTHX_ OP *parent, OP *start, I32 type, I32 flags)
1418 kid = op_sibling_splice(parent, start, 1, NULL);
1419 newop = newUNOP(type, flags, kid);
1420 op_sibling_splice(parent, start, 0, newop);
1425 /* lowest-level newLOGOP-style function - just allocates and populates
1426 * the struct. Higher-level stuff should be done by S_new_logop() /
1427 * newLOGOP(). This function exists mainly to avoid op_first assignment
1428 * being spread throughout this file.
1432 S_alloc_LOGOP(pTHX_ I32 type, OP *first, OP* other)
1437 NewOp(1101, logop, 1, LOGOP);
1438 OpTYPE_set(logop, type);
1439 logop->op_first = first;
1440 logop->op_other = other;
1441 logop->op_flags = OPf_KIDS;
1442 while (kid && OpHAS_SIBLING(kid))
1443 kid = OpSIBLING(kid);
1445 OpLASTSIB_set(kid, (OP*)logop);
1450 /* Contextualizers */
1453 =for apidoc Am|OP *|op_contextualize|OP *o|I32 context
1455 Applies a syntactic context to an op tree representing an expression.
1456 C<o> is the op tree, and C<context> must be C<G_SCALAR>, C<G_ARRAY>,
1457 or C<G_VOID> to specify the context to apply. The modified op tree
1464 Perl_op_contextualize(pTHX_ OP *o, I32 context)
1466 PERL_ARGS_ASSERT_OP_CONTEXTUALIZE;
1468 case G_SCALAR: return scalar(o);
1469 case G_ARRAY: return list(o);
1470 case G_VOID: return scalarvoid(o);
1472 Perl_croak(aTHX_ "panic: op_contextualize bad context %ld",
1479 =for apidoc Am|OP*|op_linklist|OP *o
1480 This function is the implementation of the L</LINKLIST> macro. It should
1481 not be called directly.
1487 Perl_op_linklist(pTHX_ OP *o)
1491 PERL_ARGS_ASSERT_OP_LINKLIST;
1496 /* establish postfix order */
1497 first = cUNOPo->op_first;
1500 o->op_next = LINKLIST(first);
1503 OP *sibl = OpSIBLING(kid);
1505 kid->op_next = LINKLIST(sibl);
1520 S_scalarkids(pTHX_ OP *o)
1522 if (o && o->op_flags & OPf_KIDS) {
1524 for (kid = cLISTOPo->op_first; kid; kid = OpSIBLING(kid))
1531 S_scalarboolean(pTHX_ OP *o)
1533 PERL_ARGS_ASSERT_SCALARBOOLEAN;
1535 if ((o->op_type == OP_SASSIGN && cBINOPo->op_first->op_type == OP_CONST &&
1536 !(cBINOPo->op_first->op_flags & OPf_SPECIAL)) ||
1537 (o->op_type == OP_NOT && cUNOPo->op_first->op_type == OP_SASSIGN &&
1538 cBINOPx(cUNOPo->op_first)->op_first->op_type == OP_CONST &&
1539 !(cBINOPx(cUNOPo->op_first)->op_first->op_flags & OPf_SPECIAL))) {
1540 if (ckWARN(WARN_SYNTAX)) {
1541 const line_t oldline = CopLINE(PL_curcop);
1543 if (PL_parser && PL_parser->copline != NOLINE) {
1544 /* This ensures that warnings are reported at the first line
1545 of the conditional, not the last. */
1546 CopLINE_set(PL_curcop, PL_parser->copline);
1548 Perl_warner(aTHX_ packWARN(WARN_SYNTAX), "Found = in conditional, should be ==");
1549 CopLINE_set(PL_curcop, oldline);
1556 S_op_varname_subscript(pTHX_ const OP *o, int subscript_type)
1559 assert(o->op_type == OP_PADAV || o->op_type == OP_RV2AV ||
1560 o->op_type == OP_PADHV || o->op_type == OP_RV2HV);
1562 const char funny = o->op_type == OP_PADAV
1563 || o->op_type == OP_RV2AV ? '@' : '%';
1564 if (o->op_type == OP_RV2AV || o->op_type == OP_RV2HV) {
1566 if (cUNOPo->op_first->op_type != OP_GV
1567 || !(gv = cGVOPx_gv(cUNOPo->op_first)))
1569 return varname(gv, funny, 0, NULL, 0, subscript_type);
1572 varname(MUTABLE_GV(PL_compcv), funny, o->op_targ, NULL, 0, subscript_type);
1577 S_op_varname(pTHX_ const OP *o)
1579 return S_op_varname_subscript(aTHX_ o, 1);
1583 S_op_pretty(pTHX_ const OP *o, SV **retsv, const char **retpv)
1584 { /* or not so pretty :-) */
1585 if (o->op_type == OP_CONST) {
1587 if (SvPOK(*retsv)) {
1589 *retsv = sv_newmortal();
1590 pv_pretty(*retsv, SvPVX_const(sv), SvCUR(sv), 32, NULL, NULL,
1591 PERL_PV_PRETTY_DUMP |PERL_PV_ESCAPE_UNI_DETECT);
1593 else if (!SvOK(*retsv))
1596 else *retpv = "...";
1600 S_scalar_slice_warning(pTHX_ const OP *o)
1604 o->op_type == OP_HSLICE ? '{' : '[';
1606 o->op_type == OP_HSLICE ? '}' : ']';
1608 SV *keysv = NULL; /* just to silence compiler warnings */
1609 const char *key = NULL;
1611 if (!(o->op_private & OPpSLICEWARNING))
1613 if (PL_parser && PL_parser->error_count)
1614 /* This warning can be nonsensical when there is a syntax error. */
1617 kid = cLISTOPo->op_first;
1618 kid = OpSIBLING(kid); /* get past pushmark */
1619 /* weed out false positives: any ops that can return lists */
1620 switch (kid->op_type) {
1646 /* Don't warn if we have a nulled list either. */
1647 if (kid->op_type == OP_NULL && kid->op_targ == OP_LIST)
1650 assert(OpSIBLING(kid));
1651 name = S_op_varname(aTHX_ OpSIBLING(kid));
1652 if (!name) /* XS module fiddling with the op tree */
1654 S_op_pretty(aTHX_ kid, &keysv, &key);
1655 assert(SvPOK(name));
1656 sv_chop(name,SvPVX(name)+1);
1658 /* diag_listed_as: Scalar value @%s[%s] better written as $%s[%s] */
1659 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
1660 "Scalar value @%"SVf"%c%s%c better written as $%"SVf
1662 SVfARG(name), lbrack, key, rbrack, SVfARG(name),
1663 lbrack, key, rbrack);
1665 /* diag_listed_as: Scalar value @%s[%s] better written as $%s[%s] */
1666 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
1667 "Scalar value @%"SVf"%c%"SVf"%c better written as $%"
1669 SVfARG(name), lbrack, SVfARG(keysv), rbrack,
1670 SVfARG(name), lbrack, SVfARG(keysv), rbrack);
1674 Perl_scalar(pTHX_ OP *o)
1678 /* assumes no premature commitment */
1679 if (!o || (PL_parser && PL_parser->error_count)
1680 || (o->op_flags & OPf_WANT)
1681 || o->op_type == OP_RETURN)
1686 o->op_flags = (o->op_flags & ~OPf_WANT) | OPf_WANT_SCALAR;
1688 switch (o->op_type) {
1690 scalar(cBINOPo->op_first);
1691 if (o->op_private & OPpREPEAT_DOLIST) {
1692 kid = cLISTOPx(cUNOPo->op_first)->op_first;
1693 assert(kid->op_type == OP_PUSHMARK);
1694 if (OpHAS_SIBLING(kid) && !OpHAS_SIBLING(OpSIBLING(kid))) {
1695 op_null(cLISTOPx(cUNOPo->op_first)->op_first);
1696 o->op_private &=~ OPpREPEAT_DOLIST;
1703 for (kid = OpSIBLING(cUNOPo->op_first); kid; kid = OpSIBLING(kid))
1713 if (o->op_flags & OPf_KIDS) {
1714 for (kid = cUNOPo->op_first; kid; kid = OpSIBLING(kid))
1720 kid = cLISTOPo->op_first;
1722 kid = OpSIBLING(kid);
1725 OP *sib = OpSIBLING(kid);
1726 if (sib && kid->op_type != OP_LEAVEWHEN
1727 && ( OpHAS_SIBLING(sib) || sib->op_type != OP_NULL
1728 || ( sib->op_targ != OP_NEXTSTATE
1729 && sib->op_targ != OP_DBSTATE )))
1735 PL_curcop = &PL_compiling;
1740 kid = cLISTOPo->op_first;
1743 Perl_ck_warner(aTHX_ packWARN(WARN_VOID), "Useless use of sort in scalar context");
1748 /* Warn about scalar context */
1749 const char lbrack = o->op_type == OP_KVHSLICE ? '{' : '[';
1750 const char rbrack = o->op_type == OP_KVHSLICE ? '}' : ']';
1753 const char *key = NULL;
1755 /* This warning can be nonsensical when there is a syntax error. */
1756 if (PL_parser && PL_parser->error_count)
1759 if (!ckWARN(WARN_SYNTAX)) break;
1761 kid = cLISTOPo->op_first;
1762 kid = OpSIBLING(kid); /* get past pushmark */
1763 assert(OpSIBLING(kid));
1764 name = S_op_varname(aTHX_ OpSIBLING(kid));
1765 if (!name) /* XS module fiddling with the op tree */
1767 S_op_pretty(aTHX_ kid, &keysv, &key);
1768 assert(SvPOK(name));
1769 sv_chop(name,SvPVX(name)+1);
1771 /* diag_listed_as: %%s[%s] in scalar context better written as $%s[%s] */
1772 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
1773 "%%%"SVf"%c%s%c in scalar context better written "
1775 SVfARG(name), lbrack, key, rbrack, SVfARG(name),
1776 lbrack, key, rbrack);
1778 /* diag_listed_as: %%s[%s] in scalar context better written as $%s[%s] */
1779 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
1780 "%%%"SVf"%c%"SVf"%c in scalar context better "
1781 "written as $%"SVf"%c%"SVf"%c",
1782 SVfARG(name), lbrack, SVfARG(keysv), rbrack,
1783 SVfARG(name), lbrack, SVfARG(keysv), rbrack);
1790 Perl_scalarvoid(pTHX_ OP *arg)
1796 SSize_t defer_stack_alloc = 0;
1797 SSize_t defer_ix = -1;
1798 OP **defer_stack = NULL;
1801 PERL_ARGS_ASSERT_SCALARVOID;
1804 SV *useless_sv = NULL;
1805 const char* useless = NULL;
1807 if (o->op_type == OP_NEXTSTATE
1808 || o->op_type == OP_DBSTATE
1809 || (o->op_type == OP_NULL && (o->op_targ == OP_NEXTSTATE
1810 || o->op_targ == OP_DBSTATE)))
1811 PL_curcop = (COP*)o; /* for warning below */
1813 /* assumes no premature commitment */
1814 want = o->op_flags & OPf_WANT;
1815 if ((want && want != OPf_WANT_SCALAR)
1816 || (PL_parser && PL_parser->error_count)
1817 || o->op_type == OP_RETURN || o->op_type == OP_REQUIRE || o->op_type == OP_LEAVEWHEN)
1822 if ((o->op_private & OPpTARGET_MY)
1823 && (PL_opargs[o->op_type] & OA_TARGLEX))/* OPp share the meaning */
1825 /* newASSIGNOP has already applied scalar context, which we
1826 leave, as if this op is inside SASSIGN. */
1830 o->op_flags = (o->op_flags & ~OPf_WANT) | OPf_WANT_VOID;
1832 switch (o->op_type) {
1834 if (!(PL_opargs[o->op_type] & OA_FOLDCONST))
1838 if (o->op_flags & OPf_STACKED)
1840 if (o->op_type == OP_REPEAT)
1841 scalar(cBINOPo->op_first);
1844 if (o->op_private == 4)
1879 case OP_GETSOCKNAME:
1880 case OP_GETPEERNAME:
1885 case OP_GETPRIORITY:
1910 useless = OP_DESC(o);
1920 case OP_AELEMFAST_LEX:
1924 if (!(o->op_private & (OPpLVAL_INTRO|OPpOUR_INTRO)))
1925 /* Otherwise it's "Useless use of grep iterator" */
1926 useless = OP_DESC(o);
1930 kid = cLISTOPo->op_first;
1931 if (kid && kid->op_type == OP_PUSHRE
1933 && !(o->op_flags & OPf_STACKED)
1935 && !((PMOP*)kid)->op_pmreplrootu.op_pmtargetoff
1937 && !((PMOP*)kid)->op_pmreplrootu.op_pmtargetgv
1940 useless = OP_DESC(o);
1944 kid = cUNOPo->op_first;
1945 if (kid->op_type != OP_MATCH && kid->op_type != OP_SUBST &&
1946 kid->op_type != OP_TRANS && kid->op_type != OP_TRANSR) {
1949 useless = "negative pattern binding (!~)";
1953 if (cPMOPo->op_pmflags & PMf_NONDESTRUCT)
1954 useless = "non-destructive substitution (s///r)";
1958 useless = "non-destructive transliteration (tr///r)";
1965 if (!(o->op_private & (OPpLVAL_INTRO|OPpOUR_INTRO)) &&
1966 (!OpHAS_SIBLING(o) || OpSIBLING(o)->op_type != OP_READLINE))
1967 useless = "a variable";
1972 if (cSVOPo->op_private & OPpCONST_STRICT)
1973 no_bareword_allowed(o);
1975 if (ckWARN(WARN_VOID)) {
1977 /* don't warn on optimised away booleans, eg
1978 * use constant Foo, 5; Foo || print; */
1979 if (cSVOPo->op_private & OPpCONST_SHORTCIRCUIT)
1981 /* the constants 0 and 1 are permitted as they are
1982 conventionally used as dummies in constructs like
1983 1 while some_condition_with_side_effects; */
1984 else if (SvNIOK(sv) && ((nv = SvNV(sv)) == 0.0 || nv == 1.0))
1986 else if (SvPOK(sv)) {
1987 SV * const dsv = newSVpvs("");
1989 = Perl_newSVpvf(aTHX_
1991 pv_pretty(dsv, SvPVX_const(sv),
1992 SvCUR(sv), 32, NULL, NULL,
1994 | PERL_PV_ESCAPE_NOCLEAR
1995 | PERL_PV_ESCAPE_UNI_DETECT));
1996 SvREFCNT_dec_NN(dsv);
1998 else if (SvOK(sv)) {
1999 useless_sv = Perl_newSVpvf(aTHX_ "a constant (%"SVf")", SVfARG(sv));
2002 useless = "a constant (undef)";
2005 op_null(o); /* don't execute or even remember it */
2009 OpTYPE_set(o, OP_PREINC); /* pre-increment is faster */
2013 OpTYPE_set(o, OP_PREDEC); /* pre-decrement is faster */
2017 OpTYPE_set(o, OP_I_PREINC); /* pre-increment is faster */
2021 OpTYPE_set(o, OP_I_PREDEC); /* pre-decrement is faster */
2026 UNOP *refgen, *rv2cv;
2029 if ((o->op_private & ~OPpASSIGN_BACKWARDS) != 2)
2032 rv2gv = ((BINOP *)o)->op_last;
2033 if (!rv2gv || rv2gv->op_type != OP_RV2GV)
2036 refgen = (UNOP *)((BINOP *)o)->op_first;
2038 if (!refgen || (refgen->op_type != OP_REFGEN
2039 && refgen->op_type != OP_SREFGEN))
2042 exlist = (LISTOP *)refgen->op_first;
2043 if (!exlist || exlist->op_type != OP_NULL
2044 || exlist->op_targ != OP_LIST)
2047 if (exlist->op_first->op_type != OP_PUSHMARK
2048 && exlist->op_first != exlist->op_last)
2051 rv2cv = (UNOP*)exlist->op_last;
2053 if (rv2cv->op_type != OP_RV2CV)
2056 assert ((rv2gv->op_private & OPpDONT_INIT_GV) == 0);
2057 assert ((o->op_private & OPpASSIGN_CV_TO_GV) == 0);
2058 assert ((rv2cv->op_private & OPpMAY_RETURN_CONSTANT) == 0);
2060 o->op_private |= OPpASSIGN_CV_TO_GV;
2061 rv2gv->op_private |= OPpDONT_INIT_GV;
2062 rv2cv->op_private |= OPpMAY_RETURN_CONSTANT;
2074 kid = cLOGOPo->op_first;
2075 if (kid->op_type == OP_NOT
2076 && (kid->op_flags & OPf_KIDS)) {
2077 if (o->op_type == OP_AND) {
2078 OpTYPE_set(o, OP_OR);
2080 OpTYPE_set(o, OP_AND);
2090 for (kid = OpSIBLING(cUNOPo->op_first); kid; kid = OpSIBLING(kid))
2091 if (!(kid->op_flags & OPf_KIDS))
2098 if (o->op_flags & OPf_STACKED)
2105 if (!(o->op_flags & OPf_KIDS))
2116 for (kid = cLISTOPo->op_first; kid; kid = OpSIBLING(kid))
2117 if (!(kid->op_flags & OPf_KIDS))
2123 /* If the first kid after pushmark is something that the padrange
2124 optimisation would reject, then null the list and the pushmark.
2126 if ((kid = cLISTOPo->op_first)->op_type == OP_PUSHMARK
2127 && ( !(kid = OpSIBLING(kid))
2128 || ( kid->op_type != OP_PADSV
2129 && kid->op_type != OP_PADAV
2130 && kid->op_type != OP_PADHV)
2131 || kid->op_private & ~OPpLVAL_INTRO
2132 || !(kid = OpSIBLING(kid))
2133 || ( kid->op_type != OP_PADSV
2134 && kid->op_type != OP_PADAV
2135 && kid->op_type != OP_PADHV)
2136 || kid->op_private & ~OPpLVAL_INTRO)
2138 op_null(cUNOPo->op_first); /* NULL the pushmark */
2139 op_null(o); /* NULL the list */
2151 /* mortalise it, in case warnings are fatal. */
2152 Perl_ck_warner(aTHX_ packWARN(WARN_VOID),
2153 "Useless use of %"SVf" in void context",
2154 SVfARG(sv_2mortal(useless_sv)));
2157 Perl_ck_warner(aTHX_ packWARN(WARN_VOID),
2158 "Useless use of %s in void context",
2161 } while ( (o = POP_DEFERRED_OP()) );
2163 Safefree(defer_stack);
2169 S_listkids(pTHX_ OP *o)
2171 if (o && o->op_flags & OPf_KIDS) {
2173 for (kid = cLISTOPo->op_first; kid; kid = OpSIBLING(kid))
2180 Perl_list(pTHX_ OP *o)
2184 /* assumes no premature commitment */
2185 if (!o || (o->op_flags & OPf_WANT)
2186 || (PL_parser && PL_parser->error_count)
2187 || o->op_type == OP_RETURN)
2192 if ((o->op_private & OPpTARGET_MY)
2193 && (PL_opargs[o->op_type] & OA_TARGLEX))/* OPp share the meaning */
2195 return o; /* As if inside SASSIGN */
2198 o->op_flags = (o->op_flags & ~OPf_WANT) | OPf_WANT_LIST;
2200 switch (o->op_type) {
2202 list(cBINOPo->op_first);
2205 if (o->op_private & OPpREPEAT_DOLIST
2206 && !(o->op_flags & OPf_STACKED))
2208 list(cBINOPo->op_first);
2209 kid = cBINOPo->op_last;
2210 if (kid->op_type == OP_CONST && SvIOK(kSVOP_sv)
2211 && SvIVX(kSVOP_sv) == 1)
2213 op_null(o); /* repeat */
2214 op_null(cUNOPx(cBINOPo->op_first)->op_first);/* pushmark */
2216 op_free(op_sibling_splice(o, cBINOPo->op_first, 1, NULL));
2223 for (kid = OpSIBLING(cUNOPo->op_first); kid; kid = OpSIBLING(kid))
2231 if (!(o->op_flags & OPf_KIDS))
2233 if (!o->op_next && cUNOPo->op_first->op_type == OP_FLOP) {
2234 list(cBINOPo->op_first);
2235 return gen_constant_list(o);
2241 if (cLISTOPo->op_first->op_type == OP_PUSHMARK) {
2242 op_null(cUNOPo->op_first); /* NULL the pushmark */
2243 op_null(o); /* NULL the list */
2248 kid = cLISTOPo->op_first;
2250 kid = OpSIBLING(kid);
2253 OP *sib = OpSIBLING(kid);
2254 if (sib && kid->op_type != OP_LEAVEWHEN)
2260 PL_curcop = &PL_compiling;
2264 kid = cLISTOPo->op_first;
2271 S_scalarseq(pTHX_ OP *o)
2274 const OPCODE type = o->op_type;
2276 if (type == OP_LINESEQ || type == OP_SCOPE ||
2277 type == OP_LEAVE || type == OP_LEAVETRY)
2280 for (kid = cLISTOPo->op_first; kid; kid = sib) {
2281 if ((sib = OpSIBLING(kid))
2282 && ( OpHAS_SIBLING(sib) || sib->op_type != OP_NULL
2283 || ( sib->op_targ != OP_NEXTSTATE
2284 && sib->op_targ != OP_DBSTATE )))
2289 PL_curcop = &PL_compiling;
2291 o->op_flags &= ~OPf_PARENS;
2292 if (PL_hints & HINT_BLOCK_SCOPE)
2293 o->op_flags |= OPf_PARENS;
2296 o = newOP(OP_STUB, 0);
2301 S_modkids(pTHX_ OP *o, I32 type)
2303 if (o && o->op_flags & OPf_KIDS) {
2305 for (kid = cLISTOPo->op_first; kid; kid = OpSIBLING(kid))
2306 op_lvalue(kid, type);
2312 /* for a helem/hslice/kvslice, if its a fixed hash, croak on invalid
2313 * const fields. Also, convert CONST keys to HEK-in-SVs.
2314 * rop is the op that retrieves the hash;
2315 * key_op is the first key
2319 S_check_hash_fields_and_hekify(pTHX_ UNOP *rop, SVOP *key_op)
2325 /* find the padsv corresponding to $lex->{} or @{$lex}{} */
2327 if (rop->op_first->op_type == OP_PADSV)
2328 /* @$hash{qw(keys here)} */
2329 rop = (UNOP*)rop->op_first;
2331 /* @{$hash}{qw(keys here)} */
2332 if (rop->op_first->op_type == OP_SCOPE
2333 && cLISTOPx(rop->op_first)->op_last->op_type == OP_PADSV)
2335 rop = (UNOP*)cLISTOPx(rop->op_first)->op_last;
2342 lexname = NULL; /* just to silence compiler warnings */
2343 fields = NULL; /* just to silence compiler warnings */
2347 && (lexname = padnamelist_fetch(PL_comppad_name, rop->op_targ),
2348 SvPAD_TYPED(lexname))
2349 && (fields = (GV**)hv_fetchs(PadnameTYPE(lexname), "FIELDS", FALSE))
2350 && isGV(*fields) && GvHV(*fields);
2352 for (; key_op; key_op = (SVOP*)OpSIBLING(key_op)) {
2354 if (key_op->op_type != OP_CONST)
2356 svp = cSVOPx_svp(key_op);
2358 /* make sure it's not a bareword under strict subs */
2359 if (key_op->op_private & OPpCONST_BARE &&
2360 key_op->op_private & OPpCONST_STRICT)
2362 no_bareword_allowed((OP*)key_op);
2365 /* Make the CONST have a shared SV */
2366 if ( !SvIsCOW_shared_hash(sv = *svp)
2367 && SvTYPE(sv) < SVt_PVMG
2372 const char * const key = SvPV_const(sv, *(STRLEN*)&keylen);
2373 SV *nsv = newSVpvn_share(key, SvUTF8(sv) ? -keylen : keylen, 0);
2374 SvREFCNT_dec_NN(sv);
2379 && !hv_fetch_ent(GvHV(*fields), *svp, FALSE, 0))
2381 Perl_croak(aTHX_ "No such class field \"%"SVf"\" "
2382 "in variable %"PNf" of type %"HEKf,
2383 SVfARG(*svp), PNfARG(lexname),
2384 HEKfARG(HvNAME_HEK(PadnameTYPE(lexname))));
2391 =for apidoc finalize_optree
2393 This function finalizes the optree. Should be called directly after
2394 the complete optree is built. It does some additional
2395 checking which can't be done in the normal C<ck_>xxx functions and makes
2396 the tree thread-safe.
2401 Perl_finalize_optree(pTHX_ OP* o)
2403 PERL_ARGS_ASSERT_FINALIZE_OPTREE;
2406 SAVEVPTR(PL_curcop);
2414 /* Relocate sv to the pad for thread safety.
2415 * Despite being a "constant", the SV is written to,
2416 * for reference counts, sv_upgrade() etc. */
2417 PERL_STATIC_INLINE void
2418 S_op_relocate_sv(pTHX_ SV** svp, PADOFFSET* targp)
2421 PERL_ARGS_ASSERT_OP_RELOCATE_SV;
2423 ix = pad_alloc(OP_CONST, SVf_READONLY);
2424 SvREFCNT_dec(PAD_SVl(ix));
2425 PAD_SETSV(ix, *svp);
2426 /* XXX I don't know how this isn't readonly already. */
2427 if (!SvIsCOW(PAD_SVl(ix))) SvREADONLY_on(PAD_SVl(ix));
2435 S_finalize_op(pTHX_ OP* o)
2437 PERL_ARGS_ASSERT_FINALIZE_OP;
2440 switch (o->op_type) {
2443 PL_curcop = ((COP*)o); /* for warnings */
2446 if (OpHAS_SIBLING(o)) {
2447 OP *sib = OpSIBLING(o);
2448 if (( sib->op_type == OP_NEXTSTATE || sib->op_type == OP_DBSTATE)
2449 && ckWARN(WARN_EXEC)
2450 && OpHAS_SIBLING(sib))
2452 const OPCODE type = OpSIBLING(sib)->op_type;
2453 if (type != OP_EXIT && type != OP_WARN && type != OP_DIE) {
2454 const line_t oldline = CopLINE(PL_curcop);
2455 CopLINE_set(PL_curcop, CopLINE((COP*)sib));
2456 Perl_warner(aTHX_ packWARN(WARN_EXEC),
2457 "Statement unlikely to be reached");
2458 Perl_warner(aTHX_ packWARN(WARN_EXEC),
2459 "\t(Maybe you meant system() when you said exec()?)\n");
2460 CopLINE_set(PL_curcop, oldline);
2467 if ((o->op_private & OPpEARLY_CV) && ckWARN(WARN_PROTOTYPE)) {
2468 GV * const gv = cGVOPo_gv;
2469 if (SvTYPE(gv) == SVt_PVGV && GvCV(gv) && SvPVX_const(GvCV(gv))) {
2470 /* XXX could check prototype here instead of just carping */
2471 SV * const sv = sv_newmortal();
2472 gv_efullname3(sv, gv, NULL);
2473 Perl_warner(aTHX_ packWARN(WARN_PROTOTYPE),
2474 "%"SVf"() called too early to check prototype",
2481 if (cSVOPo->op_private & OPpCONST_STRICT)
2482 no_bareword_allowed(o);
2486 op_relocate_sv(&cSVOPo->op_sv, &o->op_targ);
2491 /* Relocate all the METHOP's SVs to the pad for thread safety. */
2492 case OP_METHOD_NAMED:
2493 case OP_METHOD_SUPER:
2494 case OP_METHOD_REDIR:
2495 case OP_METHOD_REDIR_SUPER:
2496 op_relocate_sv(&cMETHOPx(o)->op_u.op_meth_sv, &o->op_targ);
2505 if ((key_op = cSVOPx(((BINOP*)o)->op_last))->op_type != OP_CONST)
2508 rop = (UNOP*)((BINOP*)o)->op_first;
2513 S_scalar_slice_warning(aTHX_ o);
2517 kid = OpSIBLING(cLISTOPo->op_first);
2518 if (/* I bet there's always a pushmark... */
2519 OP_TYPE_ISNT_AND_WASNT_NN(kid, OP_LIST)
2520 && OP_TYPE_ISNT_NN(kid, OP_CONST))
2525 key_op = (SVOP*)(kid->op_type == OP_CONST
2527 : OpSIBLING(kLISTOP->op_first));
2529 rop = (UNOP*)((LISTOP*)o)->op_last;
2532 if (o->op_private & OPpLVAL_INTRO || rop->op_type != OP_RV2HV)
2534 S_check_hash_fields_and_hekify(aTHX_ rop, key_op);
2538 S_scalar_slice_warning(aTHX_ o);
2542 if (cPMOPo->op_pmreplrootu.op_pmreplroot)
2543 finalize_op(cPMOPo->op_pmreplrootu.op_pmreplroot);
2550 if (o->op_flags & OPf_KIDS) {
2554 /* check that op_last points to the last sibling, and that
2555 * the last op_sibling/op_sibparent field points back to the
2556 * parent, and that the only ops with KIDS are those which are
2557 * entitled to them */
2558 U32 type = o->op_type;
2562 if (type == OP_NULL) {
2564 /* ck_glob creates a null UNOP with ex-type GLOB
2565 * (which is a list op. So pretend it wasn't a listop */
2566 if (type == OP_GLOB)
2569 family = PL_opargs[type] & OA_CLASS_MASK;
2571 has_last = ( family == OA_BINOP
2572 || family == OA_LISTOP
2573 || family == OA_PMOP
2574 || family == OA_LOOP
2576 assert( has_last /* has op_first and op_last, or ...
2577 ... has (or may have) op_first: */
2578 || family == OA_UNOP
2579 || family == OA_UNOP_AUX
2580 || family == OA_LOGOP
2581 || family == OA_BASEOP_OR_UNOP
2582 || family == OA_FILESTATOP
2583 || family == OA_LOOPEXOP
2584 || family == OA_METHOP
2585 /* I don't know why SASSIGN is tagged as OA_BASEOP - DAPM */
2586 || type == OP_SASSIGN
2587 || type == OP_CUSTOM
2588 || type == OP_NULL /* new_logop does this */
2591 for (kid = cUNOPo->op_first; kid; kid = OpSIBLING(kid)) {
2592 # ifdef PERL_OP_PARENT
2593 if (!OpHAS_SIBLING(kid)) {
2595 assert(kid == cLISTOPo->op_last);
2596 assert(kid->op_sibparent == o);
2599 if (has_last && !OpHAS_SIBLING(kid))
2600 assert(kid == cLISTOPo->op_last);
2605 for (kid = cUNOPo->op_first; kid; kid = OpSIBLING(kid))
2611 =for apidoc Amx|OP *|op_lvalue|OP *o|I32 type
2613 Propagate lvalue ("modifiable") context to an op and its children.
2614 C<type> represents the context type, roughly based on the type of op that
2615 would do the modifying, although C<local()> is represented by C<OP_NULL>,
2616 because it has no op type of its own (it is signalled by a flag on
2619 This function detects things that can't be modified, such as C<$x+1>, and
2620 generates errors for them. For example, C<$x+1 = 2> would cause it to be
2621 called with an op of type C<OP_ADD> and a C<type> argument of C<OP_SASSIGN>.
2623 It also flags things that need to behave specially in an lvalue context,
2624 such as C<$$x = 5> which might have to vivify a reference in C<$x>.
2630 S_mark_padname_lvalue(pTHX_ PADNAME *pn)
2633 PadnameLVALUE_on(pn);
2634 while (PadnameOUTER(pn) && PARENT_PAD_INDEX(pn)) {
2636 /* RT #127786: cv can be NULL due to an eval within the DB package
2637 * called from an anon sub - anon subs don't have CvOUTSIDE() set
2638 * unless they contain an eval, but calling eval within DB
2639 * pretends the eval was done in the caller's scope.
2643 assert(CvPADLIST(cv));
2645 PadlistNAMESARRAY(CvPADLIST(cv))[PARENT_PAD_INDEX(pn)];
2646 assert(PadnameLEN(pn));
2647 PadnameLVALUE_on(pn);
2652 S_vivifies(const OPCODE type)
2655 case OP_RV2AV: case OP_ASLICE:
2656 case OP_RV2HV: case OP_KVASLICE:
2657 case OP_RV2SV: case OP_HSLICE:
2658 case OP_AELEMFAST: case OP_KVHSLICE:
2667 S_lvref(pTHX_ OP *o, I32 type)
2671 switch (o->op_type) {
2673 for (kid = OpSIBLING(cUNOPo->op_first); kid;
2674 kid = OpSIBLING(kid))
2675 S_lvref(aTHX_ kid, type);
2680 if (cUNOPo->op_first->op_type != OP_GV) goto badref;
2681 o->op_flags |= OPf_STACKED;
2682 if (o->op_flags & OPf_PARENS) {
2683 if (o->op_private & OPpLVAL_INTRO) {
2684 yyerror(Perl_form(aTHX_ "Can't modify reference to "
2685 "localized parenthesized array in list assignment"));
2689 OpTYPE_set(o, OP_LVAVREF);
2690 o->op_private &= OPpLVAL_INTRO|OPpPAD_STATE;
2691 o->op_flags |= OPf_MOD|OPf_REF;
2694 o->op_private |= OPpLVREF_AV;
2697 kid = cUNOPo->op_first;
2698 if (kid->op_type == OP_NULL)
2699 kid = cUNOPx(OpSIBLING(kUNOP->op_first))
2701 o->op_private = OPpLVREF_CV;
2702 if (kid->op_type == OP_GV)
2703 o->op_flags |= OPf_STACKED;
2704 else if (kid->op_type == OP_PADCV) {
2705 o->op_targ = kid->op_targ;
2707 op_free(cUNOPo->op_first);
2708 cUNOPo->op_first = NULL;
2709 o->op_flags &=~ OPf_KIDS;
2714 if (o->op_flags & OPf_PARENS) {
2716 yyerror(Perl_form(aTHX_ "Can't modify reference to "
2717 "parenthesized hash in list assignment"));
2720 o->op_private |= OPpLVREF_HV;
2724 if (cUNOPo->op_first->op_type != OP_GV) goto badref;
2725 o->op_flags |= OPf_STACKED;
2728 if (o->op_flags & OPf_PARENS) goto parenhash;
2729 o->op_private |= OPpLVREF_HV;
2732 PAD_COMPNAME_GEN_set(o->op_targ, PERL_INT_MAX);
2735 PAD_COMPNAME_GEN_set(o->op_targ, PERL_INT_MAX);
2736 if (o->op_flags & OPf_PARENS) goto slurpy;
2737 o->op_private |= OPpLVREF_AV;
2741 o->op_private |= OPpLVREF_ELEM;
2742 o->op_flags |= OPf_STACKED;
2746 OpTYPE_set(o, OP_LVREFSLICE);
2747 o->op_private &= OPpLVAL_INTRO|OPpLVREF_ELEM;
2750 if (o->op_flags & OPf_SPECIAL) /* do BLOCK */
2752 else if (!(o->op_flags & OPf_KIDS))
2754 if (o->op_targ != OP_LIST) {
2755 S_lvref(aTHX_ cBINOPo->op_first, type);
2760 for (kid = cLISTOPo->op_first; kid; kid = OpSIBLING(kid)) {
2761 assert((kid->op_flags & OPf_WANT) != OPf_WANT_VOID);
2762 S_lvref(aTHX_ kid, type);
2766 if (o->op_flags & OPf_PARENS)
2771 /* diag_listed_as: Can't modify reference to %s in %s assignment */
2772 yyerror(Perl_form(aTHX_ "Can't modify reference to %s in %s",
2773 o->op_type == OP_NULL && o->op_flags & OPf_SPECIAL
2778 OpTYPE_set(o, OP_LVREF);
2780 OPpLVAL_INTRO|OPpLVREF_ELEM|OPpLVREF_TYPE|OPpPAD_STATE;
2781 if (type == OP_ENTERLOOP)
2782 o->op_private |= OPpLVREF_ITER;
2786 Perl_op_lvalue_flags(pTHX_ OP *o, I32 type, U32 flags)
2790 /* -1 = error on localize, 0 = ignore localize, 1 = ok to localize */
2793 if (!o || (PL_parser && PL_parser->error_count))
2796 if ((o->op_private & OPpTARGET_MY)
2797 && (PL_opargs[o->op_type] & OA_TARGLEX))/* OPp share the meaning */
2802 assert( (o->op_flags & OPf_WANT) != OPf_WANT_VOID );
2804 if (type == OP_PRTF || type == OP_SPRINTF) type = OP_ENTERSUB;
2806 switch (o->op_type) {
2811 if ((o->op_flags & OPf_PARENS))
2815 if ((type == OP_UNDEF || type == OP_REFGEN || type == OP_LOCK) &&
2816 !(o->op_flags & OPf_STACKED)) {
2817 OpTYPE_set(o, OP_RV2CV); /* entersub => rv2cv */
2818 assert(cUNOPo->op_first->op_type == OP_NULL);
2819 op_null(((LISTOP*)cUNOPo->op_first)->op_first);/* disable pushmark */
2822 else { /* lvalue subroutine call */
2823 o->op_private |= OPpLVAL_INTRO;
2824 PL_modcount = RETURN_UNLIMITED_NUMBER;
2825 if (type == OP_GREPSTART || type == OP_ENTERSUB
2826 || type == OP_REFGEN || type == OP_LEAVESUBLV) {
2827 /* Potential lvalue context: */
2828 o->op_private |= OPpENTERSUB_INARGS;
2831 else { /* Compile-time error message: */
2832 OP *kid = cUNOPo->op_first;
2837 if (kid->op_type != OP_PUSHMARK) {
2838 if (kid->op_type != OP_NULL || kid->op_targ != OP_LIST)
2840 "panic: unexpected lvalue entersub "
2841 "args: type/targ %ld:%"UVuf,
2842 (long)kid->op_type, (UV)kid->op_targ);
2843 kid = kLISTOP->op_first;
2845 while (OpHAS_SIBLING(kid))
2846 kid = OpSIBLING(kid);
2847 if (!(kid->op_type == OP_NULL && kid->op_targ == OP_RV2CV)) {
2848 break; /* Postpone until runtime */
2851 kid = kUNOP->op_first;
2852 if (kid->op_type == OP_NULL && kid->op_targ == OP_RV2SV)
2853 kid = kUNOP->op_first;
2854 if (kid->op_type == OP_NULL)
2856 "Unexpected constant lvalue entersub "
2857 "entry via type/targ %ld:%"UVuf,
2858 (long)kid->op_type, (UV)kid->op_targ);
2859 if (kid->op_type != OP_GV) {
2866 : SvROK(gv) && SvTYPE(SvRV(gv)) == SVt_PVCV
2867 ? MUTABLE_CV(SvRV(gv))
2873 if (flags & OP_LVALUE_NO_CROAK)
2876 namesv = cv_name(cv, NULL, 0);
2877 yyerror_pv(Perl_form(aTHX_ "Can't modify non-lvalue "
2878 "subroutine call of &%"SVf" in %s",
2879 SVfARG(namesv), PL_op_desc[type]),
2887 if (flags & OP_LVALUE_NO_CROAK) return NULL;
2888 /* grep, foreach, subcalls, refgen */
2889 if (type == OP_GREPSTART || type == OP_ENTERSUB
2890 || type == OP_REFGEN || type == OP_LEAVESUBLV)
2892 yyerror(Perl_form(aTHX_ "Can't modify %s in %s",
2893 (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL)
2896 type ? PL_op_desc[type] : "local"));
2909 case OP_RIGHT_SHIFT:
2918 if (!(o->op_flags & OPf_STACKED))
2924 if (o->op_flags & OPf_STACKED) {
2928 if (!(o->op_private & OPpREPEAT_DOLIST))
2931 const I32 mods = PL_modcount;
2932 modkids(cBINOPo->op_first, type);
2933 if (type != OP_AASSIGN)
2935 kid = cBINOPo->op_last;
2936 if (kid->op_type == OP_CONST && SvIOK(kSVOP_sv)) {
2937 const IV iv = SvIV(kSVOP_sv);
2938 if (PL_modcount != RETURN_UNLIMITED_NUMBER)
2940 mods + (PL_modcount - mods) * (iv < 0 ? 0 : iv);
2943 PL_modcount = RETURN_UNLIMITED_NUMBER;
2949 for (kid = OpSIBLING(cUNOPo->op_first); kid; kid = OpSIBLING(kid))
2950 op_lvalue(kid, type);
2955 if (type == OP_REFGEN && o->op_flags & OPf_PARENS) {
2956 PL_modcount = RETURN_UNLIMITED_NUMBER;
2957 return o; /* Treat \(@foo) like ordinary list. */
2961 if (scalar_mod_type(o, type))
2963 ref(cUNOPo->op_first, o->op_type);
2970 /* Do not apply the lvsub flag for rv2[ah]v in scalar context. */
2971 if (type == OP_LEAVESUBLV && (
2972 (o->op_type != OP_RV2AV && o->op_type != OP_RV2HV)
2973 || (o->op_flags & OPf_WANT) != OPf_WANT_SCALAR
2975 o->op_private |= OPpMAYBE_LVSUB;
2979 PL_modcount = RETURN_UNLIMITED_NUMBER;
2984 if (type == OP_LEAVESUBLV)
2985 o->op_private |= OPpMAYBE_LVSUB;
2988 if (type == OP_LEAVESUBLV
2989 && (o->op_private & 3) + OP_EACH == OP_KEYS)
2990 o->op_private |= OPpMAYBE_LVSUB;
2993 PL_hints |= HINT_BLOCK_SCOPE;
2994 if (type == OP_LEAVESUBLV)
2995 o->op_private |= OPpMAYBE_LVSUB;
2999 ref(cUNOPo->op_first, o->op_type);
3003 PL_hints |= HINT_BLOCK_SCOPE;
3013 case OP_AELEMFAST_LEX:
3020 PL_modcount = RETURN_UNLIMITED_NUMBER;
3021 if (type == OP_REFGEN && o->op_flags & OPf_PARENS)
3022 return o; /* Treat \(@foo) like ordinary list. */
3023 if (scalar_mod_type(o, type))
3025 if ((o->op_flags & OPf_WANT) != OPf_WANT_SCALAR
3026 && type == OP_LEAVESUBLV)
3027 o->op_private |= OPpMAYBE_LVSUB;
3031 if (!type) /* local() */
3032 Perl_croak(aTHX_ "Can't localize lexical variable %"PNf,
3033 PNfARG(PAD_COMPNAME(o->op_targ)));
3034 if (!(o->op_private & OPpLVAL_INTRO)
3035 || ( type != OP_SASSIGN && type != OP_AASSIGN
3036 && PadnameIsSTATE(PAD_COMPNAME_SV(o->op_targ)) ))
3037 S_mark_padname_lvalue(aTHX_ PAD_COMPNAME_SV(o->op_targ));
3045 if (type != OP_SASSIGN && type != OP_LEAVESUBLV)
3049 if (o->op_private == 4) /* don't allow 4 arg substr as lvalue */
3055 if (type == OP_LEAVESUBLV)
3056 o->op_private |= OPpMAYBE_LVSUB;
3057 if (o->op_flags & OPf_KIDS)
3058 op_lvalue(OpSIBLING(cBINOPo->op_first), type);
3063 ref(cBINOPo->op_first, o->op_type);
3064 if (type == OP_ENTERSUB &&
3065 !(o->op_private & (OPpLVAL_INTRO | OPpDEREF)))
3066 o->op_private |= OPpLVAL_DEFER;
3067 if (type == OP_LEAVESUBLV)
3068 o->op_private |= OPpMAYBE_LVSUB;
3075 o->op_private |= OPpLVALUE;
3081 if (o->op_flags & OPf_KIDS)
3082 op_lvalue(cLISTOPo->op_last, type);
3087 if (o->op_flags & OPf_SPECIAL) /* do BLOCK */
3089 else if (!(o->op_flags & OPf_KIDS))
3091 if (o->op_targ != OP_LIST) {
3092 op_lvalue(cBINOPo->op_first, type);
3098 for (kid = cLISTOPo->op_first; kid; kid = OpSIBLING(kid))
3099 /* elements might be in void context because the list is
3100 in scalar context or because they are attribute sub calls */
3101 if ( (kid->op_flags & OPf_WANT) != OPf_WANT_VOID )
3102 op_lvalue(kid, type);
3110 if (type == OP_LEAVESUBLV
3111 || !S_vivifies(cLOGOPo->op_first->op_type))
3112 op_lvalue(cLOGOPo->op_first, type);
3113 if (type == OP_LEAVESUBLV
3114 || !S_vivifies(OpSIBLING(cLOGOPo->op_first)->op_type))
3115 op_lvalue(OpSIBLING(cLOGOPo->op_first), type);
3119 if (type != OP_AASSIGN && type != OP_SASSIGN
3120 && type != OP_ENTERLOOP)
3122 /* Don’t bother applying lvalue context to the ex-list. */
3123 kid = cUNOPx(cUNOPo->op_first)->op_first;
3124 assert (!OpHAS_SIBLING(kid));
3127 if (type != OP_AASSIGN) goto nomod;
3128 kid = cUNOPo->op_first;
3131 const U8 ec = PL_parser ? PL_parser->error_count : 0;
3132 S_lvref(aTHX_ kid, type);
3133 if (!PL_parser || PL_parser->error_count == ec) {
3134 if (!FEATURE_REFALIASING_IS_ENABLED)
3136 "Experimental aliasing via reference not enabled");
3137 Perl_ck_warner_d(aTHX_
3138 packWARN(WARN_EXPERIMENTAL__REFALIASING),
3139 "Aliasing via reference is experimental");
3142 if (o->op_type == OP_REFGEN)
3143 op_null(cUNOPx(cUNOPo->op_first)->op_first); /* pushmark */
3148 kid = cLISTOPo->op_first;
3149 if (kid && kid->op_type == OP_PUSHRE &&
3151 || o->op_flags & OPf_STACKED
3153 || ((PMOP*)kid)->op_pmreplrootu.op_pmtargetoff
3155 || ((PMOP*)kid)->op_pmreplrootu.op_pmtargetgv
3158 /* This is actually @array = split. */
3159 PL_modcount = RETURN_UNLIMITED_NUMBER;
3165 op_lvalue(cUNOPo->op_first, OP_ENTERSUB);
3169 /* [20011101.069] File test operators interpret OPf_REF to mean that
3170 their argument is a filehandle; thus \stat(".") should not set
3172 if (type == OP_REFGEN &&
3173 PL_check[o->op_type] == Perl_ck_ftst)
3176 if (type != OP_LEAVESUBLV)
3177 o->op_flags |= OPf_MOD;
3179 if (type == OP_AASSIGN || type == OP_SASSIGN)
3180 o->op_flags |= OPf_SPECIAL|OPf_REF;
3181 else if (!type) { /* local() */
3184 o->op_private |= OPpLVAL_INTRO;
3185 o->op_flags &= ~OPf_SPECIAL;
3186 PL_hints |= HINT_BLOCK_SCOPE;
3191 Perl_ck_warner(aTHX_ packWARN(WARN_SYNTAX),
3192 "Useless localization of %s", OP_DESC(o));
3195 else if (type != OP_GREPSTART && type != OP_ENTERSUB
3196 && type != OP_LEAVESUBLV)
3197 o->op_flags |= OPf_REF;
3202 S_scalar_mod_type(const OP *o, I32 type)
3207 if (o && o->op_type == OP_RV2GV)
3231 case OP_RIGHT_SHIFT:
3258 S_is_handle_constructor(const OP *o, I32 numargs)
3260 PERL_ARGS_ASSERT_IS_HANDLE_CONSTRUCTOR;
3262 switch (o->op_type) {
3270 case OP_SELECT: /* XXX c.f. SelectSaver.pm */
3283 S_refkids(pTHX_ OP *o, I32 type)
3285 if (o && o->op_flags & OPf_KIDS) {
3287 for (kid = cLISTOPo->op_first; kid; kid = OpSIBLING(kid))
3294 Perl_doref(pTHX_ OP *o, I32 type, bool set_op_ref)
3299 PERL_ARGS_ASSERT_DOREF;
3301 if (PL_parser && PL_parser->error_count)
3304 switch (o->op_type) {
3306 if ((type == OP_EXISTS || type == OP_DEFINED) &&
3307 !(o->op_flags & OPf_STACKED)) {
3308 OpTYPE_set(o, OP_RV2CV); /* entersub => rv2cv */
3309 assert(cUNOPo->op_first->op_type == OP_NULL);
3310 op_null(((LISTOP*)cUNOPo->op_first)->op_first); /* disable pushmark */
3311 o->op_flags |= OPf_SPECIAL;
3313 else if (type == OP_RV2SV || type == OP_RV2AV || type == OP_RV2HV){
3314 o->op_private |= (type == OP_RV2AV ? OPpDEREF_AV
3315 : type == OP_RV2HV ? OPpDEREF_HV
3317 o->op_flags |= OPf_MOD;
3323 for (kid = OpSIBLING(cUNOPo->op_first); kid; kid = OpSIBLING(kid))
3324 doref(kid, type, set_op_ref);
3327 if (type == OP_DEFINED)
3328 o->op_flags |= OPf_SPECIAL; /* don't create GV */
3329 doref(cUNOPo->op_first, o->op_type, set_op_ref);
3332 if (type == OP_RV2SV || type == OP_RV2AV || type == OP_RV2HV) {
3333 o->op_private |= (type == OP_RV2AV ? OPpDEREF_AV
3334 : type == OP_RV2HV ? OPpDEREF_HV
3336 o->op_flags |= OPf_MOD;
3343 o->op_flags |= OPf_REF;
3346 if (type == OP_DEFINED)
3347 o->op_flags |= OPf_SPECIAL; /* don't create GV */
3348 doref(cUNOPo->op_first, o->op_type, set_op_ref);
3354 o->op_flags |= OPf_REF;
3359 if (!(o->op_flags & OPf_KIDS) || type == OP_DEFINED)
3361 doref(cBINOPo->op_first, type, set_op_ref);
3365 doref(cBINOPo->op_first, o->op_type, set_op_ref);
3366 if (type == OP_RV2SV || type == OP_RV2AV || type == OP_RV2HV) {
3367 o->op_private |= (type == OP_RV2AV ? OPpDEREF_AV
3368 : type == OP_RV2HV ? OPpDEREF_HV
3370 o->op_flags |= OPf_MOD;
3380 if (!(o->op_flags & OPf_KIDS))
3382 doref(cLISTOPo->op_last, type, set_op_ref);
3392 S_dup_attrlist(pTHX_ OP *o)
3396 PERL_ARGS_ASSERT_DUP_ATTRLIST;
3398 /* An attrlist is either a simple OP_CONST or an OP_LIST with kids,
3399 * where the first kid is OP_PUSHMARK and the remaining ones
3400 * are OP_CONST. We need to push the OP_CONST values.
3402 if (o->op_type == OP_CONST)
3403 rop = newSVOP(OP_CONST, o->op_flags, SvREFCNT_inc_NN(cSVOPo->op_sv));
3405 assert((o->op_type == OP_LIST) && (o->op_flags & OPf_KIDS));
3407 for (o = cLISTOPo->op_first; o; o = OpSIBLING(o)) {
3408 if (o->op_type == OP_CONST)
3409 rop = op_append_elem(OP_LIST, rop,
3410 newSVOP(OP_CONST, o->op_flags,
3411 SvREFCNT_inc_NN(cSVOPo->op_sv)));
3418 S_apply_attrs(pTHX_ HV *stash, SV *target, OP *attrs)
3420 PERL_ARGS_ASSERT_APPLY_ATTRS;
3422 SV * const stashsv = newSVhek(HvNAME_HEK(stash));
3424 /* fake up C<use attributes $pkg,$rv,@attrs> */
3426 #define ATTRSMODULE "attributes"
3427 #define ATTRSMODULE_PM "attributes.pm"
3430 aTHX_ PERL_LOADMOD_IMPORT_OPS,
3431 newSVpvs(ATTRSMODULE),
3433 op_prepend_elem(OP_LIST,
3434 newSVOP(OP_CONST, 0, stashsv),
3435 op_prepend_elem(OP_LIST,
3436 newSVOP(OP_CONST, 0,
3438 dup_attrlist(attrs))));
3443 S_apply_attrs_my(pTHX_ HV *stash, OP *target, OP *attrs, OP **imopsp)
3445 OP *pack, *imop, *arg;
3446 SV *meth, *stashsv, **svp;
3448 PERL_ARGS_ASSERT_APPLY_ATTRS_MY;
3453 assert(target->op_type == OP_PADSV ||
3454 target->op_type == OP_PADHV ||
3455 target->op_type == OP_PADAV);
3457 /* Ensure that attributes.pm is loaded. */
3458 /* Don't force the C<use> if we don't need it. */
3459 svp = hv_fetchs(GvHVn(PL_incgv), ATTRSMODULE_PM, FALSE);
3460 if (svp && *svp != &PL_sv_undef)
3461 NOOP; /* already in %INC */
3463 Perl_load_module(aTHX_ PERL_LOADMOD_NOIMPORT,
3464 newSVpvs(ATTRSMODULE), NULL);
3466 /* Need package name for method call. */
3467 pack = newSVOP(OP_CONST, 0, newSVpvs(ATTRSMODULE));
3469 /* Build up the real arg-list. */
3470 stashsv = newSVhek(HvNAME_HEK(stash));
3472 arg = newOP(OP_PADSV, 0);
3473 arg->op_targ = target->op_targ;
3474 arg = op_prepend_elem(OP_LIST,
3475 newSVOP(OP_CONST, 0, stashsv),
3476 op_prepend_elem(OP_LIST,
3477 newUNOP(OP_REFGEN, 0,
3479 dup_attrlist(attrs)));
3481 /* Fake up a method call to import */
3482 meth = newSVpvs_share("import");
3483 imop = op_convert_list(OP_ENTERSUB, OPf_STACKED|OPf_SPECIAL|OPf_WANT_VOID,
3484 op_append_elem(OP_LIST,
3485 op_prepend_elem(OP_LIST, pack, arg),
3486 newMETHOP_named(OP_METHOD_NAMED, 0, meth)));
3488 /* Combine the ops. */
3489 *imopsp = op_append_elem(OP_LIST, *imopsp, imop);
3493 =notfor apidoc apply_attrs_string
3495 Attempts to apply a list of attributes specified by the C<attrstr> and
3496 C<len> arguments to the subroutine identified by the C<cv> argument which
3497 is expected to be associated with the package identified by the C<stashpv>
3498 argument (see L<attributes>). It gets this wrong, though, in that it
3499 does not correctly identify the boundaries of the individual attribute
3500 specifications within C<attrstr>. This is not really intended for the
3501 public API, but has to be listed here for systems such as AIX which
3502 need an explicit export list for symbols. (It's called from XS code
3503 in support of the C<ATTRS:> keyword from F<xsubpp>.) Patches to fix it
3504 to respect attribute syntax properly would be welcome.
3510 Perl_apply_attrs_string(pTHX_ const char *stashpv, CV *cv,
3511 const char *attrstr, STRLEN len)
3515 PERL_ARGS_ASSERT_APPLY_ATTRS_STRING;
3518 len = strlen(attrstr);
3522 for (; isSPACE(*attrstr) && len; --len, ++attrstr) ;
3524 const char * const sstr = attrstr;
3525 for (; !isSPACE(*attrstr) && len; --len, ++attrstr) ;
3526 attrs = op_append_elem(OP_LIST, attrs,
3527 newSVOP(OP_CONST, 0,
3528 newSVpvn(sstr, attrstr-sstr)));
3532 Perl_load_module(aTHX_ PERL_LOADMOD_IMPORT_OPS,
3533 newSVpvs(ATTRSMODULE),
3534 NULL, op_prepend_elem(OP_LIST,
3535 newSVOP(OP_CONST, 0, newSVpv(stashpv,0)),
3536 op_prepend_elem(OP_LIST,
3537 newSVOP(OP_CONST, 0,
3538 newRV(MUTABLE_SV(cv))),
3543 S_move_proto_attr(pTHX_ OP **proto, OP **attrs, const GV * name)
3545 OP *new_proto = NULL;
3550 PERL_ARGS_ASSERT_MOVE_PROTO_ATTR;
3556 if (o->op_type == OP_CONST) {
3557 pv = SvPV(cSVOPo_sv, pvlen);
3558 if (pvlen >= 10 && memEQ(pv, "prototype(", 10)) {
3559 SV * const tmpsv = newSVpvn_flags(pv + 10, pvlen - 11, SvUTF8(cSVOPo_sv));
3560 SV ** const tmpo = cSVOPx_svp(o);
3561 SvREFCNT_dec(cSVOPo_sv);
3566 } else if (o->op_type == OP_LIST) {
3568 assert(o->op_flags & OPf_KIDS);
3569 lasto = cLISTOPo->op_first;
3570 assert(lasto->op_type == OP_PUSHMARK);
3571 for (o = OpSIBLING(lasto); o; o = OpSIBLING(o)) {
3572 if (o->op_type == OP_CONST) {
3573 pv = SvPV(cSVOPo_sv, pvlen);
3574 if (pvlen >= 10 && memEQ(pv, "prototype(", 10)) {
3575 SV * const tmpsv = newSVpvn_flags(pv + 10, pvlen - 11, SvUTF8(cSVOPo_sv));
3576 SV ** const tmpo = cSVOPx_svp(o);
3577 SvREFCNT_dec(cSVOPo_sv);
3579 if (new_proto && ckWARN(WARN_MISC)) {
3581 const char * newp = SvPV(cSVOPo_sv, new_len);
3582 Perl_warner(aTHX_ packWARN(WARN_MISC),
3583 "Attribute prototype(%"UTF8f") discards earlier prototype attribute in same sub",
3584 UTF8fARG(SvUTF8(cSVOPo_sv), new_len, newp));
3590 /* excise new_proto from the list */
3591 op_sibling_splice(*attrs, lasto, 1, NULL);
3598 /* If the list is now just the PUSHMARK, scrap the whole thing; otherwise attributes.xs
3599 would get pulled in with no real need */
3600 if (!OpHAS_SIBLING(cLISTOPx(*attrs)->op_first)) {
3609 svname = sv_newmortal();
3610 gv_efullname3(svname, name, NULL);
3612 else if (SvPOK(name) && *SvPVX((SV *)name) == '&')
3613 svname = newSVpvn_flags(SvPVX((SV *)name)+1, SvCUR(name)-1, SvUTF8(name)|SVs_TEMP);
3615 svname = (SV *)name;
3616 if (ckWARN(WARN_ILLEGALPROTO))
3617 (void)validate_proto(svname, cSVOPx_sv(new_proto), TRUE);
3618 if (*proto && ckWARN(WARN_PROTOTYPE)) {
3619 STRLEN old_len, new_len;
3620 const char * oldp = SvPV(cSVOPx_sv(*proto), old_len);
3621 const char * newp = SvPV(cSVOPx_sv(new_proto), new_len);
3623 Perl_warner(aTHX_ packWARN(WARN_PROTOTYPE),
3624 "Prototype '%"UTF8f"' overridden by attribute 'prototype(%"UTF8f")'"
3626 UTF8fARG(SvUTF8(cSVOPx_sv(*proto)), old_len, oldp),
3627 UTF8fARG(SvUTF8(cSVOPx_sv(new_proto)), new_len, newp),
3637 S_cant_declare(pTHX_ OP *o)
3639 if (o->op_type == OP_NULL
3640 && (o->op_flags & (OPf_SPECIAL|OPf_KIDS)) == OPf_KIDS)
3641 o = cUNOPo->op_first;
3642 yyerror(Perl_form(aTHX_ "Can't declare %s in \"%s\"",
3643 o->op_type == OP_NULL
3644 && o->op_flags & OPf_SPECIAL
3647 PL_parser->in_my == KEY_our ? "our" :
3648 PL_parser->in_my == KEY_state ? "state" :
3653 S_my_kid(pTHX_ OP *o, OP *attrs, OP **imopsp)
3656 const bool stately = PL_parser && PL_parser->in_my == KEY_state;
3658 PERL_ARGS_ASSERT_MY_KID;
3660 if (!o || (PL_parser && PL_parser->error_count))
3665 if (type == OP_LIST) {
3667 for (kid = cLISTOPo->op_first; kid; kid = OpSIBLING(kid))
3668 my_kid(kid, attrs, imopsp);
3670 } else if (type == OP_UNDEF || type == OP_STUB) {
3672 } else if (type == OP_RV2SV || /* "our" declaration */
3675 if (cUNOPo->op_first->op_type != OP_GV) { /* MJD 20011224 */
3676 S_cant_declare(aTHX_ o);
3678 GV * const gv = cGVOPx_gv(cUNOPo->op_first);
3680 PL_parser->in_my = FALSE;
3681 PL_parser->in_my_stash = NULL;
3682 apply_attrs(GvSTASH(gv),
3683 (type == OP_RV2SV ? GvSV(gv) :
3684 type == OP_RV2AV ? MUTABLE_SV(GvAV(gv)) :
3685 type == OP_RV2HV ? MUTABLE_SV(GvHV(gv)) : MUTABLE_SV(gv)),
3688 o->op_private |= OPpOUR_INTRO;
3691 else if (type != OP_PADSV &&
3694 type != OP_PUSHMARK)
3696 S_cant_declare(aTHX_ o);
3699 else if (attrs && type != OP_PUSHMARK) {
3703 PL_parser->in_my = FALSE;
3704 PL_parser->in_my_stash = NULL;
3706 /* check for C<my Dog $spot> when deciding package */
3707 stash = PAD_COMPNAME_TYPE(o->op_targ);
3709 stash = PL_curstash;
3710 apply_attrs_my(stash, o, attrs, imopsp);
3712 o->op_flags |= OPf_MOD;
3713 o->op_private |= OPpLVAL_INTRO;
3715 o->op_private |= OPpPAD_STATE;
3720 Perl_my_attrs(pTHX_ OP *o, OP *attrs)
3723 int maybe_scalar = 0;
3725 PERL_ARGS_ASSERT_MY_ATTRS;
3727 /* [perl #17376]: this appears to be premature, and results in code such as
3728 C< our(%x); > executing in list mode rather than void mode */
3730 if (o->op_flags & OPf_PARENS)
3740 o = my_kid(o, attrs, &rops);
3742 if (maybe_scalar && o->op_type == OP_PADSV) {
3743 o = scalar(op_append_list(OP_LIST, rops, o));
3744 o->op_private |= OPpLVAL_INTRO;
3747 /* The listop in rops might have a pushmark at the beginning,
3748 which will mess up list assignment. */
3749 LISTOP * const lrops = (LISTOP *)rops; /* for brevity */
3750 if (rops->op_type == OP_LIST &&
3751 lrops->op_first && lrops->op_first->op_type == OP_PUSHMARK)
3753 OP * const pushmark = lrops->op_first;
3754 /* excise pushmark */
3755 op_sibling_splice(rops, NULL, 1, NULL);
3758 o = op_append_list(OP_LIST, o, rops);
3761 PL_parser->in_my = FALSE;
3762 PL_parser->in_my_stash = NULL;
3767 Perl_sawparens(pTHX_ OP *o)
3769 PERL_UNUSED_CONTEXT;
3771 o->op_flags |= OPf_PARENS;
3776 Perl_bind_match(pTHX_ I32 type, OP *left, OP *right)
3780 const OPCODE ltype = left->op_type;
3781 const OPCODE rtype = right->op_type;
3783 PERL_ARGS_ASSERT_BIND_MATCH;
3785 if ( (ltype == OP_RV2AV || ltype == OP_RV2HV || ltype == OP_PADAV
3786 || ltype == OP_PADHV) && ckWARN(WARN_MISC))
3788 const char * const desc
3790 rtype == OP_SUBST || rtype == OP_TRANS
3791 || rtype == OP_TRANSR
3793 ? (int)rtype : OP_MATCH];
3794 const bool isary = ltype == OP_RV2AV || ltype == OP_PADAV;
3796 S_op_varname(aTHX_ left);
3798 Perl_warner(aTHX_ packWARN(WARN_MISC),
3799 "Applying %s to %"SVf" will act on scalar(%"SVf")",
3800 desc, SVfARG(name), SVfARG(name));
3802 const char * const sample = (isary
3803 ? "@array" : "%hash");
3804 Perl_warner(aTHX_ packWARN(WARN_MISC),
3805 "Applying %s to %s will act on scalar(%s)",
3806 desc, sample, sample);
3810 if (rtype == OP_CONST &&
3811 cSVOPx(right)->op_private & OPpCONST_BARE &&
3812 cSVOPx(right)->op_private & OPpCONST_STRICT)
3814 no_bareword_allowed(right);
3817 /* !~ doesn't make sense with /r, so error on it for now */
3818 if (rtype == OP_SUBST && (cPMOPx(right)->op_pmflags & PMf_NONDESTRUCT) &&
3820 /* diag_listed_as: Using !~ with %s doesn't make sense */
3821 yyerror("Using !~ with s///r doesn't make sense");
3822 if (rtype == OP_TRANSR && type == OP_NOT)
3823 /* diag_listed_as: Using !~ with %s doesn't make sense */
3824 yyerror("Using !~ with tr///r doesn't make sense");
3826 ismatchop = (rtype == OP_MATCH ||
3827 rtype == OP_SUBST ||
3828 rtype == OP_TRANS || rtype == OP_TRANSR)
3829 && !(right->op_flags & OPf_SPECIAL);
3830 if (ismatchop && right->op_private & OPpTARGET_MY) {
3832 right->op_private &= ~OPpTARGET_MY;
3834 if (!(right->op_flags & OPf_STACKED) && !right->op_targ && ismatchop) {
3835 if (left->op_type == OP_PADSV
3836 && !(left->op_private & OPpLVAL_INTRO))
3838 right->op_targ = left->op_targ;
3843 right->op_flags |= OPf_STACKED;
3844 if (rtype != OP_MATCH && rtype != OP_TRANSR &&
3845 ! (rtype == OP_TRANS &&
3846 right->op_private & OPpTRANS_IDENTICAL) &&
3847 ! (rtype == OP_SUBST &&
3848 (cPMOPx(right)->op_pmflags & PMf_NONDESTRUCT)))
3849 left = op_lvalue(left, rtype);
3850 if (right->op_type == OP_TRANS || right->op_type == OP_TRANSR)
3851 o = newBINOP(OP_NULL, OPf_STACKED, scalar(left), right);
3853 o = op_prepend_elem(rtype, scalar(left), right);
3856 return newUNOP(OP_NOT, 0, scalar(o));
3860 return bind_match(type, left,
3861 pmruntime(newPMOP(OP_MATCH, 0), right, NULL, 0, 0));
3865 Perl_invert(pTHX_ OP *o)
3869 return newUNOP(OP_NOT, OPf_SPECIAL, scalar(o));
3873 =for apidoc Amx|OP *|op_scope|OP *o
3875 Wraps up an op tree with some additional ops so that at runtime a dynamic
3876 scope will be created. The original ops run in the new dynamic scope,
3877 and then, provided that they exit normally, the scope will be unwound.
3878 The additional ops used to create and unwind the dynamic scope will
3879 normally be an C<enter>/C<leave> pair, but a C<scope> op may be used
3880 instead if the ops are simple enough to not need the full dynamic scope
3887 Perl_op_scope(pTHX_ OP *o)
3891 if (o->op_flags & OPf_PARENS || PERLDB_NOOPT || TAINTING_get) {
3892 o = op_prepend_elem(OP_LINESEQ, newOP(OP_ENTER, 0), o);
3893 OpTYPE_set(o, OP_LEAVE);
3895 else if (o->op_type == OP_LINESEQ) {
3897 OpTYPE_set(o, OP_SCOPE);
3898 kid = ((LISTOP*)o)->op_first;
3899 if (kid->op_type == OP_NEXTSTATE || kid->op_type == OP_DBSTATE) {
3902 /* The following deals with things like 'do {1 for 1}' */
3903 kid = OpSIBLING(kid);
3905 (kid->op_type == OP_NEXTSTATE || kid->op_type == OP_DBSTATE))
3910 o = newLISTOP(OP_SCOPE, 0, o, NULL);
3916 Perl_op_unscope(pTHX_ OP *o)
3918 if (o && o->op_type == OP_LINESEQ) {
3919 OP *kid = cLISTOPo->op_first;
3920 for(; kid; kid = OpSIBLING(kid))
3921 if (kid->op_type == OP_NEXTSTATE || kid->op_type == OP_DBSTATE)
3928 =for apidoc Am|int|block_start|int full
3930 Handles compile-time scope entry.
3931 Arranges for hints to be restored on block
3932 exit and also handles pad sequence numbers to make lexical variables scope
3933 right. Returns a savestack index for use with C<block_end>.
3939 Perl_block_start(pTHX_ int full)
3941 const int retval = PL_savestack_ix;
3943 PL_compiling.cop_seq = PL_cop_seqmax;
3945 pad_block_start(full);
3947 PL_hints &= ~HINT_BLOCK_SCOPE;
3948 SAVECOMPILEWARNINGS();
3949 PL_compiling.cop_warnings = DUP_WARNINGS(PL_compiling.cop_warnings);
3950 SAVEI32(PL_compiling.cop_seq);
3951 PL_compiling.cop_seq = 0;
3953 CALL_BLOCK_HOOKS(bhk_start, full);
3959 =for apidoc Am|OP *|block_end|I32 floor|OP *seq
3961 Handles compile-time scope exit. C<floor>
3962 is the savestack index returned by
3963 C<block_start>, and C<seq> is the body of the block. Returns the block,
3970 Perl_block_end(pTHX_ I32 floor, OP *seq)
3972 const int needblockscope = PL_hints & HINT_BLOCK_SCOPE;
3973 OP* retval = scalarseq(seq);
3976 /* XXX Is the null PL_parser check necessary here? */
3977 assert(PL_parser); /* Let’s find out under debugging builds. */
3978 if (PL_parser && PL_parser->parsed_sub) {
3979 o = newSTATEOP(0, NULL, NULL);
3981 retval = op_append_elem(OP_LINESEQ, retval, o);
3984 CALL_BLOCK_HOOKS(bhk_pre_end, &retval);
3988 PL_hints |= HINT_BLOCK_SCOPE; /* propagate out */
3992 /* pad_leavemy has created a sequence of introcv ops for all my
3993 subs declared in the block. We have to replicate that list with
3994 clonecv ops, to deal with this situation:
3999 sub s1 { state sub foo { \&s2 } }
4002 Originally, I was going to have introcv clone the CV and turn
4003 off the stale flag. Since &s1 is declared before &s2, the
4004 introcv op for &s1 is executed (on sub entry) before the one for
4005 &s2. But the &foo sub inside &s1 (which is cloned when &s1 is
4006 cloned, since it is a state sub) closes over &s2 and expects
4007 to see it in its outer CV’s pad. If the introcv op clones &s1,
4008 then &s2 is still marked stale. Since &s1 is not active, and
4009 &foo closes over &s1’s implicit entry for &s2, we get a ‘Varia-
4010 ble will not stay shared’ warning. Because it is the same stub
4011 that will be used when the introcv op for &s2 is executed, clos-
4012 ing over it is safe. Hence, we have to turn off the stale flag
4013 on all lexical subs in the block before we clone any of them.
4014 Hence, having introcv clone the sub cannot work. So we create a
4015 list of ops like this:
4039 OP *kid = o->op_flags & OPf_KIDS ? cLISTOPo->op_first : o;
4040 OP * const last = o->op_flags & OPf_KIDS ? cLISTOPo->op_last : o;
4041 for (;; kid = OpSIBLING(kid)) {
4042 OP *newkid = newOP(OP_CLONECV, 0);
4043 newkid->op_targ = kid->op_targ;
4044 o = op_append_elem(OP_LINESEQ, o, newkid);
4045 if (kid == last) break;
4047 retval = op_prepend_elem(OP_LINESEQ, o, retval);
4050 CALL_BLOCK_HOOKS(bhk_post_end, &retval);
4056 =head1 Compile-time scope hooks
4058 =for apidoc Aox||blockhook_register
4060 Register a set of hooks to be called when the Perl lexical scope changes
4061 at compile time. See L<perlguts/"Compile-time scope hooks">.
4067 Perl_blockhook_register(pTHX_ BHK *hk)
4069 PERL_ARGS_ASSERT_BLOCKHOOK_REGISTER;
4071 Perl_av_create_and_push(aTHX_ &PL_blockhooks, newSViv(PTR2IV(hk)));
4075 Perl_newPROG(pTHX_ OP *o)
4077 PERL_ARGS_ASSERT_NEWPROG;
4084 PL_eval_root = newUNOP(OP_LEAVEEVAL,
4085 ((PL_in_eval & EVAL_KEEPERR)
4086 ? OPf_SPECIAL : 0), o);
4089 assert(CxTYPE(cx) == CXt_EVAL);
4091 if ((cx->blk_gimme & G_WANT) == G_VOID)
4092 scalarvoid(PL_eval_root);
4093 else if ((cx->blk_gimme & G_WANT) == G_ARRAY)
4096 scalar(PL_eval_root);
4098 PL_eval_start = op_linklist(PL_eval_root);
4099 PL_eval_root->op_private |= OPpREFCOUNTED;
4100 OpREFCNT_set(PL_eval_root, 1);
4101 PL_eval_root->op_next = 0;
4102 i = PL_savestack_ix;
4105 CALL_PEEP(PL_eval_start);
4106 finalize_optree(PL_eval_root);
4107 S_prune_chain_head(&PL_eval_start);
4109 PL_savestack_ix = i;
4112 if (o->op_type == OP_STUB) {
4113 /* This block is entered if nothing is compiled for the main
4114 program. This will be the case for an genuinely empty main
4115 program, or one which only has BEGIN blocks etc, so already
4118 Historically (5.000) the guard above was !o. However, commit
4119 f8a08f7b8bd67b28 (Jun 2001), integrated to blead as
4120 c71fccf11fde0068, changed perly.y so that newPROG() is now
4121 called with the output of block_end(), which returns a new
4122 OP_STUB for the case of an empty optree. ByteLoader (and
4123 maybe other things) also take this path, because they set up
4124 PL_main_start and PL_main_root directly, without generating an
4127 If the parsing the main program aborts (due to parse errors,
4128 or due to BEGIN or similar calling exit), then newPROG()
4129 isn't even called, and hence this code path and its cleanups
4130 are skipped. This shouldn't make a make a difference:
4131 * a non-zero return from perl_parse is a failure, and
4132 perl_destruct() should be called immediately.
4133 * however, if exit(0) is called during the parse, then
4134 perl_parse() returns 0, and perl_run() is called. As
4135 PL_main_start will be NULL, perl_run() will return
4136 promptly, and the exit code will remain 0.
4139 PL_comppad_name = 0;
4141 S_op_destroy(aTHX_ o);
4144 PL_main_root = op_scope(sawparens(scalarvoid(o)));
4145 PL_curcop = &PL_compiling;
4146 PL_main_start = LINKLIST(PL_main_root);
4147 PL_main_root->op_private |= OPpREFCOUNTED;
4148 OpREFCNT_set(PL_main_root, 1);
4149 PL_main_root->op_next = 0;
4150 CALL_PEEP(PL_main_start);
4151 finalize_optree(PL_main_root);
4152 S_prune_chain_head(&PL_main_start);
4153 cv_forget_slab(PL_compcv);
4156 /* Register with debugger */
4158 CV * const cv = get_cvs("DB::postponed", 0);
4162 XPUSHs(MUTABLE_SV(CopFILEGV(&PL_compiling)));
4164 call_sv(MUTABLE_SV(cv), G_DISCARD);
4171 Perl_localize(pTHX_ OP *o, I32 lex)
4173 PERL_ARGS_ASSERT_LOCALIZE;
4175 if (o->op_flags & OPf_PARENS)
4176 /* [perl #17376]: this appears to be premature, and results in code such as
4177 C< our(%x); > executing in list mode rather than void mode */
4184 if ( PL_parser->bufptr > PL_parser->oldbufptr
4185 && PL_parser->bufptr[-1] == ','
4186 && ckWARN(WARN_PARENTHESIS))
4188 char *s = PL_parser->bufptr;
4191 /* some heuristics to detect a potential error */
4192 while (*s && (strchr(", \t\n", *s)))
4196 if (*s && (strchr("@$%", *s) || (!lex && *s == '*'))
4198 && (isWORDCHAR(*s) || UTF8_IS_CONTINUED(*s))) {
4201 while (*s && (isWORDCHAR(*s) || UTF8_IS_CONTINUED(*s)))
4203 while (*s && (strchr(", \t\n", *s)))
4209 if (sigil && (*s == ';' || *s == '=')) {
4210 Perl_warner(aTHX_ packWARN(WARN_PARENTHESIS),
4211 "Parentheses missing around \"%s\" list",
4213 ? (PL_parser->in_my == KEY_our
4215 : PL_parser->in_my == KEY_state
4225 o = op_lvalue(o, OP_NULL); /* a bit kludgey */
4226 PL_parser->in_my = FALSE;
4227 PL_parser->in_my_stash = NULL;
4232 Perl_jmaybe(pTHX_ OP *o)
4234 PERL_ARGS_ASSERT_JMAYBE;
4236 if (o->op_type == OP_LIST) {
4238 = newSVREF(newGVOP(OP_GV, 0, gv_fetchpvs(";", GV_ADD|GV_NOTQUAL, SVt_PV)));
4239 o = op_convert_list(OP_JOIN, 0, op_prepend_elem(OP_LIST, o2, o));
4244 PERL_STATIC_INLINE OP *
4245 S_op_std_init(pTHX_ OP *o)
4247 I32 type = o->op_type;
4249 PERL_ARGS_ASSERT_OP_STD_INIT;
4251 if (PL_opargs[type] & OA_RETSCALAR)
4253 if (PL_opargs[type] & OA_TARGET && !o->op_targ)
4254 o->op_targ = pad_alloc(type, SVs_PADTMP);
4259 PERL_STATIC_INLINE OP *
4260 S_op_integerize(pTHX_ OP *o)
4262 I32 type = o->op_type;
4264 PERL_ARGS_ASSERT_OP_INTEGERIZE;
4266 /* integerize op. */
4267 if ((PL_opargs[type] & OA_OTHERINT) && (PL_hints & HINT_INTEGER))
4270 o->op_ppaddr = PL_ppaddr[++(o->op_type)];
4273 if (type == OP_NEGATE)
4274 /* XXX might want a ck_negate() for this */
4275 cUNOPo->op_first->op_private &= ~OPpCONST_STRICT;
4281 S_fold_constants(pTHX_ OP *o)
4286 VOL I32 type = o->op_type;
4291 SV * const oldwarnhook = PL_warnhook;
4292 SV * const olddiehook = PL_diehook;
4294 U8 oldwarn = PL_dowarn;
4298 PERL_ARGS_ASSERT_FOLD_CONSTANTS;
4300 if (!(PL_opargs[type] & OA_FOLDCONST))
4309 #ifdef USE_LOCALE_CTYPE
4310 if (IN_LC_COMPILETIME(LC_CTYPE))
4319 #ifdef USE_LOCALE_COLLATE
4320 if (IN_LC_COMPILETIME(LC_COLLATE))
4325 /* XXX what about the numeric ops? */
4326 #ifdef USE_LOCALE_NUMERIC
4327 if (IN_LC_COMPILETIME(LC_NUMERIC))
4332 if (!OpHAS_SIBLING(cLISTOPo->op_first)
4333 || OpSIBLING(cLISTOPo->op_first)->op_type != OP_CONST)
4336 SV * const sv = cSVOPx_sv(OpSIBLING(cLISTOPo->op_first));
4337 if (!SvPOK(sv) || SvGMAGICAL(sv)) goto nope;
4339 const char *s = SvPVX_const(sv);
4340 while (s < SvEND(sv)) {
4341 if (isALPHA_FOLD_EQ(*s, 'p')) goto nope;
4348 if (o->op_private & OPpREPEAT_DOLIST) goto nope;
4351 if (cUNOPx(cUNOPo->op_first)->op_first->op_type != OP_CONST
4352 || SvPADTMP(cSVOPx_sv(cUNOPx(cUNOPo->op_first)->op_first)))
4356 if (PL_parser && PL_parser->error_count)
4357 goto nope; /* Don't try to run w/ errors */
4359 for (curop = LINKLIST(o); curop != o; curop = LINKLIST(curop)) {
4360 switch (curop->op_type) {
4362 if ( (curop->op_private & OPpCONST_BARE)
4363 && (curop->op_private & OPpCONST_STRICT)) {
4364 no_bareword_allowed(curop);
4372 /* Foldable; move to next op in list */
4376 /* No other op types are considered foldable */
4381 curop = LINKLIST(o);
4382 old_next = o->op_next;
4386 old_cxix = cxstack_ix;
4387 create_eval_scope(NULL, G_FAKINGEVAL);
4389 /* Verify that we don't need to save it: */
4390 assert(PL_curcop == &PL_compiling);
4391 StructCopy(&PL_compiling, ¬_compiling, COP);
4392 PL_curcop = ¬_compiling;
4393 /* The above ensures that we run with all the correct hints of the
4394 currently compiling COP, but that IN_PERL_RUNTIME is true. */
4395 assert(IN_PERL_RUNTIME);
4396 PL_warnhook = PERL_WARNHOOK_FATAL;
4400 /* Effective $^W=1. */
4401 if ( ! (PL_dowarn & G_WARN_ALL_MASK))
4402 PL_dowarn |= G_WARN_ON;
4407 sv = *(PL_stack_sp--);
4408 if (o->op_targ && sv == PAD_SV(o->op_targ)) { /* grab pad temp? */
4409 pad_swipe(o->op_targ, FALSE);
4411 else if (SvTEMP(sv)) { /* grab mortal temp? */
4412 SvREFCNT_inc_simple_void(sv);
4415 else { assert(SvIMMORTAL(sv)); }
4418 /* Something tried to die. Abandon constant folding. */
4419 /* Pretend the error never happened. */
4421 o->op_next = old_next;
4425 /* Don't expect 1 (setjmp failed) or 2 (something called my_exit) */
4426 PL_warnhook = oldwarnhook;
4427 PL_diehook = olddiehook;
4428 /* XXX note that this croak may fail as we've already blown away
4429 * the stack - eg any nested evals */
4430 Perl_croak(aTHX_ "panic: fold_constants JMPENV_PUSH returned %d", ret);
4433 PL_dowarn = oldwarn;
4434 PL_warnhook = oldwarnhook;
4435 PL_diehook = olddiehook;
4436 PL_curcop = &PL_compiling;
4438 /* if we croaked, depending on how we croaked the eval scope
4439 * may or may not have already been popped */
4440 if (cxstack_ix > old_cxix) {
4441 assert(cxstack_ix == old_cxix + 1);
4442 assert(CxTYPE(CX_CUR()) == CXt_EVAL);
4443 delete_eval_scope();
4448 /* OP_STRINGIFY and constant folding are used to implement qq.
4449 Here the constant folding is an implementation detail that we
4450 want to hide. If the stringify op is itself already marked
4451 folded, however, then it is actually a folded join. */
4452 is_stringify = type == OP_STRINGIFY && !o->op_folded;
4457 else if (!SvIMMORTAL(sv)) {
4461 newop = newSVOP(OP_CONST, 0, MUTABLE_SV(sv));
4462 if (!is_stringify) newop->op_folded = 1;
4470 S_gen_constant_list(pTHX_ OP *o)
4474 const SSize_t oldtmps_floor = PL_tmps_floor;
4479 if (PL_parser && PL_parser->error_count)
4480 return o; /* Don't attempt to run with errors */
4482 curop = LINKLIST(o);
4485 S_prune_chain_head(&curop);
4487 Perl_pp_pushmark(aTHX);
4490 assert (!(curop->op_flags & OPf_SPECIAL));
4491 assert(curop->op_type == OP_RANGE);
4492 Perl_pp_anonlist(aTHX);
4493 PL_tmps_floor = oldtmps_floor;
4495 OpTYPE_set(o, OP_RV2AV);
4496 o->op_flags &= ~OPf_REF; /* treat \(1..2) like an ordinary list */
4497 o->op_flags |= OPf_PARENS; /* and flatten \(1..2,3) */
4498 o->op_opt = 0; /* needs to be revisited in rpeep() */
4499 av = (AV *)SvREFCNT_inc_NN(*PL_stack_sp--);
4501 /* replace subtree with an OP_CONST */
4502 curop = ((UNOP*)o)->op_first;
4503 op_sibling_splice(o, NULL, -1, newSVOP(OP_CONST, 0, (SV *)av));
4506 if (AvFILLp(av) != -1)
4507 for (svp = AvARRAY(av) + AvFILLp(av); svp >= AvARRAY(av); --svp)
4510 SvREADONLY_on(*svp);
4517 =head1 Optree Manipulation Functions
4520 /* List constructors */
4523 =for apidoc Am|OP *|op_append_elem|I32 optype|OP *first|OP *last
4525 Append an item to the list of ops contained directly within a list-type
4526 op, returning the lengthened list. C<first> is the list-type op,
4527 and C<last> is the op to append to the list. C<optype> specifies the
4528 intended opcode for the list. If C<first> is not already a list of the
4529 right type, it will be upgraded into one. If either C<first> or C<last>
4530 is null, the other is returned unchanged.
4536 Perl_op_append_elem(pTHX_ I32 type, OP *first, OP *last)
4544 if (first->op_type != (unsigned)type
4545 || (type == OP_LIST && (first->op_flags & OPf_PARENS)))
4547 return newLISTOP(type, 0, first, last);
4550 op_sibling_splice(first, ((LISTOP*)first)->op_last, 0, last);
4551 first->op_flags |= OPf_KIDS;
4556 =for apidoc Am|OP *|op_append_list|I32 optype|OP *first|OP *last
4558 Concatenate the lists of ops contained directly within two list-type ops,
4559 returning the combined list. C<first> and C<last> are the list-type ops
4560 to concatenate. C<optype> specifies the intended opcode for the list.
4561 If either C<first> or C<last> is not already a list of the right type,
4562 it will be upgraded into one. If either C<first> or C<last> is null,
4563 the other is returned unchanged.
4569 Perl_op_append_list(pTHX_ I32 type, OP *first, OP *last)
4577 if (first->op_type != (unsigned)type)
4578 return op_prepend_elem(type, first, last);
4580 if (last->op_type != (unsigned)type)
4581 return op_append_elem(type, first, last);
4583 OpMORESIB_set(((LISTOP*)first)->op_last, ((LISTOP*)last)->op_first);
4584 ((LISTOP*)first)->op_last = ((LISTOP*)last)->op_last;
4585 OpLASTSIB_set(((LISTOP*)first)->op_last, first);
4586 first->op_flags |= (last->op_flags & OPf_KIDS);
4588 S_op_destroy(aTHX_ last);
4594 =for apidoc Am|OP *|op_prepend_elem|I32 optype|OP *first|OP *last
4596 Prepend an item to the list of ops contained directly within a list-type
4597 op, returning the lengthened list. C<first> is the op to prepend to the
4598 list, and C<last> is the list-type op. C<optype> specifies the intended
4599 opcode for the list. If C<last> is not already a list of the right type,
4600 it will be upgraded into one. If either C<first> or C<last> is null,
4601 the other is returned unchanged.
4607 Perl_op_prepend_elem(pTHX_ I32 type, OP *first, OP *last)
4615 if (last->op_type == (unsigned)type) {
4616 if (type == OP_LIST) { /* already a PUSHMARK there */
4617 /* insert 'first' after pushmark */
4618 op_sibling_splice(last, cLISTOPx(last)->op_first, 0, first);
4619 if (!(first->op_flags & OPf_PARENS))
4620 last->op_flags &= ~OPf_PARENS;
4623 op_sibling_splice(last, NULL, 0, first);
4624 last->op_flags |= OPf_KIDS;
4628 return newLISTOP(type, 0, first, last);
4632 =for apidoc Am|OP *|op_convert_list|I32 type|I32 flags|OP *o
4634 Converts C<o> into a list op if it is not one already, and then converts it
4635 into the specified C<type>, calling its check function, allocating a target if
4636 it needs one, and folding constants.
4638 A list-type op is usually constructed one kid at a time via C<newLISTOP>,
4639 C<op_prepend_elem> and C<op_append_elem>. Then finally it is passed to
4640 C<op_convert_list> to make it the right type.
4646 Perl_op_convert_list(pTHX_ I32 type, I32 flags, OP *o)
4649 if (type < 0) type = -type, flags |= OPf_SPECIAL;
4650 if (!o || o->op_type != OP_LIST)
4651 o = force_list(o, 0);
4654 o->op_flags &= ~OPf_WANT;
4655 o->op_private &= ~OPpLVAL_INTRO;
4658 if (!(PL_opargs[type] & OA_MARK))
4659 op_null(cLISTOPo->op_first);
4661 OP * const kid2 = OpSIBLING(cLISTOPo->op_first);
4662 if (kid2 && kid2->op_type == OP_COREARGS) {
4663 op_null(cLISTOPo->op_first);
4664 kid2->op_private |= OPpCOREARGS_PUSHMARK;
4668 OpTYPE_set(o, type);
4669 o->op_flags |= flags;
4670 if (flags & OPf_FOLDED)
4673 o = CHECKOP(type, o);
4674 if (o->op_type != (unsigned)type)
4677 return fold_constants(op_integerize(op_std_init(o)));
4684 =head1 Optree construction
4686 =for apidoc Am|OP *|newNULLLIST
4688 Constructs, checks, and returns a new C<stub> op, which represents an
4689 empty list expression.
4695 Perl_newNULLLIST(pTHX)
4697 return newOP(OP_STUB, 0);
4700 /* promote o and any siblings to be a list if its not already; i.e.
4708 * pushmark - o - A - B
4710 * If nullit it true, the list op is nulled.
4714 S_force_list(pTHX_ OP *o, bool nullit)
4716 if (!o || o->op_type != OP_LIST) {
4719 /* manually detach any siblings then add them back later */
4720 rest = OpSIBLING(o);
4721 OpLASTSIB_set(o, NULL);
4723 o = newLISTOP(OP_LIST, 0, o, NULL);
4725 op_sibling_splice(o, cLISTOPo->op_last, 0, rest);
4733 =for apidoc Am|OP *|newLISTOP|I32 type|I32 flags|OP *first|OP *last
4735 Constructs, checks, and returns an op of any list type. C<type> is
4736 the opcode. C<flags> gives the eight bits of C<op_flags>, except that
4737 C<OPf_KIDS> will be set automatically if required. C<first> and C<last>
4738 supply up to two ops to be direct children of the list op; they are
4739 consumed by this function and become part of the constructed op tree.
4741 For most list operators, the check function expects all the kid ops to be
4742 present already, so calling C<newLISTOP(OP_JOIN, ...)> (e.g.) is not
4743 appropriate. What you want to do in that case is create an op of type
4744 C<OP_LIST>, append more children to it, and then call L</op_convert_list>.
4745 See L</op_convert_list> for more information.
4752 Perl_newLISTOP(pTHX_ I32 type, I32 flags, OP *first, OP *last)
4757 assert((PL_opargs[type] & OA_CLASS_MASK) == OA_LISTOP
4758 || type == OP_CUSTOM);
4760 NewOp(1101, listop, 1, LISTOP);
4762 OpTYPE_set(listop, type);
4765 listop->op_flags = (U8)flags;
4769 else if (!first && last)
4772 OpMORESIB_set(first, last);
4773 listop->op_first = first;
4774 listop->op_last = last;
4775 if (type == OP_LIST) {
4776 OP* const pushop = newOP(OP_PUSHMARK, 0);
4777 OpMORESIB_set(pushop, first);
4778 listop->op_first = pushop;
4779 listop->op_flags |= OPf_KIDS;
4781 listop->op_last = pushop;
4783 if (listop->op_last)
4784 OpLASTSIB_set(listop->op_last, (OP*)listop);
4786 return CHECKOP(type, listop);
4790 =for apidoc Am|OP *|newOP|I32 type|I32 flags
4792 Constructs, checks, and returns an op of any base type (any type that
4793 has no extra fields). C<type> is the opcode. C<flags> gives the
4794 eight bits of C<op_flags>, and, shifted up eight bits, the eight bits
4801 Perl_newOP(pTHX_ I32 type, I32 flags)
4806 if (type == -OP_ENTEREVAL) {
4807 type = OP_ENTEREVAL;
4808 flags |= OPpEVAL_BYTES<<8;
4811 assert((PL_opargs[type] & OA_CLASS_MASK) == OA_BASEOP
4812 || (PL_opargs[type] & OA_CLASS_MASK) == OA_BASEOP_OR_UNOP
4813 || (PL_opargs[type] & OA_CLASS_MASK) == OA_FILESTATOP
4814 || (PL_opargs[type] & OA_CLASS_MASK) == OA_LOOPEXOP);
4816 NewOp(1101, o, 1, OP);
4817 OpTYPE_set(o, type);
4818 o->op_flags = (U8)flags;
4821 o->op_private = (U8)(0 | (flags >> 8));