5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
77 #ifndef PERL_IN_XSUB_RE
82 #ifdef PERL_IN_XSUB_RE
84 EXTERN_C const struct regexp_engine my_reg_engine;
89 #include "dquote_inline.h"
90 #include "invlist_inline.h"
91 #include "unicode_constants.h"
93 #define HAS_NONLATIN1_FOLD_CLOSURE(i) \
94 _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
95 #define HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(i) \
96 _HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
97 #define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
98 #define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
101 #define STATIC static
104 /* this is a chain of data about sub patterns we are processing that
105 need to be handled separately/specially in study_chunk. Its so
106 we can simulate recursion without losing state. */
108 typedef struct scan_frame {
109 regnode *last_regnode; /* last node to process in this frame */
110 regnode *next_regnode; /* next node to process when last is reached */
111 U32 prev_recursed_depth;
112 I32 stopparen; /* what stopparen do we use */
114 struct scan_frame *this_prev_frame; /* this previous frame */
115 struct scan_frame *prev_frame; /* previous frame */
116 struct scan_frame *next_frame; /* next frame */
119 /* Certain characters are output as a sequence with the first being a
121 #define isBACKSLASHED_PUNCT(c) strchr("-[]\\^", c)
124 struct RExC_state_t {
125 U32 flags; /* RXf_* are we folding, multilining? */
126 U32 pm_flags; /* PMf_* stuff from the calling PMOP */
127 char *precomp; /* uncompiled string. */
128 char *precomp_end; /* pointer to end of uncompiled string. */
129 REGEXP *rx_sv; /* The SV that is the regexp. */
130 regexp *rx; /* perl core regexp structure */
131 regexp_internal *rxi; /* internal data for regexp object
133 char *start; /* Start of input for compile */
134 char *end; /* End of input for compile */
135 char *parse; /* Input-scan pointer. */
136 char *copy_start; /* start of copy of input within
137 constructed parse string */
138 char *copy_start_in_input; /* Position in input string
139 corresponding to copy_start */
140 SSize_t whilem_seen; /* number of WHILEM in this expr */
141 regnode *emit_start; /* Start of emitted-code area */
142 regnode *emit_bound; /* First regnode outside of the
144 regnode_offset emit; /* Code-emit pointer */
145 I32 naughty; /* How bad is this pattern? */
146 I32 sawback; /* Did we see \1, ...? */
148 SSize_t size; /* Number of regnode equivalents in
150 I32 npar; /* Capture buffer count, (OPEN) plus
151 one. ("par" 0 is the whole
153 I32 total_par; /* Capture buffer count after parse
154 completed, (OPEN) plus one. ("par" 0
155 is the whole pattern)*/
156 I32 nestroot; /* root parens we are in - used by
160 regnode_offset *open_parens; /* offsets to open parens */
161 regnode_offset *close_parens; /* offsets to close parens */
162 regnode *end_op; /* END node in program */
163 I32 utf8; /* whether the pattern is utf8 or not */
164 I32 orig_utf8; /* whether the pattern was originally in utf8 */
165 /* XXX use this for future optimisation of case
166 * where pattern must be upgraded to utf8. */
167 I32 uni_semantics; /* If a d charset modifier should use unicode
168 rules, even if the pattern is not in
170 HV *paren_names; /* Paren names */
172 regnode **recurse; /* Recurse regops */
173 I32 recurse_count; /* Number of recurse regops we have generated */
174 U8 *study_chunk_recursed; /* bitmap of which subs we have moved
176 U32 study_chunk_recursed_bytes; /* bytes in bitmap */
179 I32 override_recoding;
181 I32 recode_x_to_native;
183 I32 in_multi_char_class;
184 struct reg_code_blocks *code_blocks;/* positions of literal (?{})
186 int code_index; /* next code_blocks[] slot */
187 SSize_t maxlen; /* mininum possible number of chars in string to match */
188 scan_frame *frame_head;
189 scan_frame *frame_last;
192 #ifdef ADD_TO_REGEXEC
193 char *starttry; /* -Dr: where regtry was called. */
194 #define RExC_starttry (pRExC_state->starttry)
196 SV *runtime_code_qr; /* qr with the runtime code blocks */
198 const char *lastparse;
200 AV *paren_name_list; /* idx -> name */
201 U32 study_chunk_recursed_count;
205 #define RExC_lastparse (pRExC_state->lastparse)
206 #define RExC_lastnum (pRExC_state->lastnum)
207 #define RExC_paren_name_list (pRExC_state->paren_name_list)
208 #define RExC_study_chunk_recursed_count (pRExC_state->study_chunk_recursed_count)
209 #define RExC_mysv (pRExC_state->mysv1)
210 #define RExC_mysv1 (pRExC_state->mysv1)
211 #define RExC_mysv2 (pRExC_state->mysv2)
214 bool seen_unfolded_sharp_s;
221 #define RExC_flags (pRExC_state->flags)
222 #define RExC_pm_flags (pRExC_state->pm_flags)
223 #define RExC_precomp (pRExC_state->precomp)
224 #define RExC_copy_start_in_input (pRExC_state->copy_start_in_input)
225 #define RExC_copy_start_in_constructed (pRExC_state->copy_start)
226 #define RExC_precomp_end (pRExC_state->precomp_end)
227 #define RExC_rx_sv (pRExC_state->rx_sv)
228 #define RExC_rx (pRExC_state->rx)
229 #define RExC_rxi (pRExC_state->rxi)
230 #define RExC_start (pRExC_state->start)
231 #define RExC_end (pRExC_state->end)
232 #define RExC_parse (pRExC_state->parse)
233 #define RExC_whilem_seen (pRExC_state->whilem_seen)
235 /* Set during the sizing pass when there is a LATIN SMALL LETTER SHARP S in any
236 * EXACTF node, hence was parsed under /di rules. If later in the parse,
237 * something forces the pattern into using /ui rules, the sharp s should be
238 * folded into the sequence 'ss', which takes up more space than previously
239 * calculated. This means that the sizing pass needs to be restarted. (The
240 * node also becomes an EXACTFU_SS.) For all other characters, an EXACTF node
241 * that gets converted to /ui (and EXACTFU) occupies the same amount of space,
242 * so there is no need to resize [perl #125990]. */
243 #define RExC_seen_unfolded_sharp_s (pRExC_state->seen_unfolded_sharp_s)
245 #ifdef RE_TRACK_PATTERN_OFFSETS
246 # define RExC_offsets (RExC_rxi->u.offsets) /* I am not like the
249 #define RExC_emit (pRExC_state->emit)
250 #define RExC_pass1 (pRExC_state->pass1)
251 #define RExC_emit_start (pRExC_state->emit_start)
252 #define RExC_emit_bound (pRExC_state->emit_bound)
253 #define RExC_sawback (pRExC_state->sawback)
254 #define RExC_seen (pRExC_state->seen)
255 #define RExC_size (pRExC_state->size)
256 #define RExC_maxlen (pRExC_state->maxlen)
257 #define RExC_npar (pRExC_state->npar)
258 #define RExC_total_parens (pRExC_state->total_par)
259 #define RExC_nestroot (pRExC_state->nestroot)
260 #define RExC_extralen (pRExC_state->extralen)
261 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
262 #define RExC_utf8 (pRExC_state->utf8)
263 #define RExC_uni_semantics (pRExC_state->uni_semantics)
264 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
265 #define RExC_open_parens (pRExC_state->open_parens)
266 #define RExC_close_parens (pRExC_state->close_parens)
267 #define RExC_end_op (pRExC_state->end_op)
268 #define RExC_paren_names (pRExC_state->paren_names)
269 #define RExC_recurse (pRExC_state->recurse)
270 #define RExC_recurse_count (pRExC_state->recurse_count)
271 #define RExC_study_chunk_recursed (pRExC_state->study_chunk_recursed)
272 #define RExC_study_chunk_recursed_bytes \
273 (pRExC_state->study_chunk_recursed_bytes)
274 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
275 #define RExC_contains_locale (pRExC_state->contains_locale)
277 # define RExC_recode_x_to_native (pRExC_state->recode_x_to_native)
279 #define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
280 #define RExC_frame_head (pRExC_state->frame_head)
281 #define RExC_frame_last (pRExC_state->frame_last)
282 #define RExC_frame_count (pRExC_state->frame_count)
283 #define RExC_strict (pRExC_state->strict)
284 #define RExC_study_started (pRExC_state->study_started)
285 #define RExC_warn_text (pRExC_state->warn_text)
286 #define RExC_in_script_run (pRExC_state->in_script_run)
287 #define RExC_use_BRANCHJ (!SIZE_ONLY && RExC_extralen)
289 /* Heuristic check on the complexity of the pattern: if TOO_NAUGHTY, we set
290 * a flag to disable back-off on the fixed/floating substrings - if it's
291 * a high complexity pattern we assume the benefit of avoiding a full match
292 * is worth the cost of checking for the substrings even if they rarely help.
294 #define RExC_naughty (pRExC_state->naughty)
295 #define TOO_NAUGHTY (10)
296 #define MARK_NAUGHTY(add) \
297 if (RExC_naughty < TOO_NAUGHTY) \
298 RExC_naughty += (add)
299 #define MARK_NAUGHTY_EXP(exp, add) \
300 if (RExC_naughty < TOO_NAUGHTY) \
301 RExC_naughty += RExC_naughty / (exp) + (add)
303 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
304 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
305 ((*s) == '{' && regcurly(s)))
308 * Flags to be passed up and down.
310 #define WORST 0 /* Worst case. */
311 #define HASWIDTH 0x01 /* Known to match non-null strings. */
313 /* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
314 * character. (There needs to be a case: in the switch statement in regexec.c
315 * for any node marked SIMPLE.) Note that this is not the same thing as
318 #define SPSTART 0x04 /* Starts with * or + */
319 #define POSTPONED 0x08 /* (?1),(?&name), (??{...}) or similar */
320 #define TRYAGAIN 0x10 /* Weeded out a declaration. */
321 #define RESTART_PARSE 0x20 /* Need to redo the parse */
322 #define NEED_UTF8 0x40 /* In conjunction with RESTART_PARSE, need to
323 calcuate sizes as UTF-8 */
325 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
327 /* whether trie related optimizations are enabled */
328 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
329 #define TRIE_STUDY_OPT
330 #define FULL_TRIE_STUDY
336 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
337 #define PBITVAL(paren) (1 << ((paren) & 7))
338 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
339 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
340 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
342 #define REQUIRE_UTF8(flagp) STMT_START { \
345 *flagp = RESTART_PARSE|NEED_UTF8; \
350 /* Change from /d into /u rules, and restart the parse if we've already seen
351 * something whose size would increase as a result, by setting *flagp and
352 * returning 'restart_retval'. RExC_uni_semantics is a flag that indicates
353 * we've changed to /u during the parse. */
354 #define REQUIRE_UNI_RULES(flagp, restart_retval) \
356 if (DEPENDS_SEMANTICS) { \
358 set_regex_charset(&RExC_flags, REGEX_UNICODE_CHARSET); \
359 RExC_uni_semantics = 1; \
360 if (RExC_seen_unfolded_sharp_s) { \
361 *flagp |= RESTART_PARSE; \
362 return restart_retval; \
367 /* Executes a return statement with the value 'X', if 'flags' contains any of
368 * 'RESTART_PARSE', 'NEED_UTF8', or 'extra'. If so, *flagp is set to those
370 #define RETURN_X_ON_RESTART_OR_FLAGS(X, flags, flagp, extra) \
372 if ((flags) & (RESTART_PARSE|NEED_UTF8|(extra))) { \
373 *(flagp) = (flags) & (RESTART_PARSE|NEED_UTF8|(extra)); \
378 #define RETURN_FAIL_ON_RESTART_OR_FLAGS(flags,flagp,extra) \
379 RETURN_X_ON_RESTART_OR_FLAGS(0,flags,flagp,extra)
381 #define RETURN_X_ON_RESTART(X, flags,flagp) \
382 RETURN_X_ON_RESTART_OR_FLAGS( X, flags, flagp, 0)
385 #define RETURN_FAIL_ON_RESTART_FLAGP_OR_FLAGS(flagp,extra) \
386 if (*(flagp) & (RESTART_PARSE|(extra))) return 0
388 #define MUST_RESTART(flags) ((flags) & (RESTART_PARSE))
390 #define RETURN_FAIL_ON_RESTART(flags,flagp) \
391 RETURN_X_ON_RESTART(0, flags,flagp)
392 #define RETURN_FAIL_ON_RESTART_FLAGP(flagp) \
393 RETURN_FAIL_ON_RESTART_FLAGP_OR_FLAGS(flagp, 0)
395 /* This converts the named class defined in regcomp.h to its equivalent class
396 * number defined in handy.h. */
397 #define namedclass_to_classnum(class) ((int) ((class) / 2))
398 #define classnum_to_namedclass(classnum) ((classnum) * 2)
400 #define _invlist_union_complement_2nd(a, b, output) \
401 _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
402 #define _invlist_intersection_complement_2nd(a, b, output) \
403 _invlist_intersection_maybe_complement_2nd(a, b, TRUE, output)
405 /* About scan_data_t.
407 During optimisation we recurse through the regexp program performing
408 various inplace (keyhole style) optimisations. In addition study_chunk
409 and scan_commit populate this data structure with information about
410 what strings MUST appear in the pattern. We look for the longest
411 string that must appear at a fixed location, and we look for the
412 longest string that may appear at a floating location. So for instance
417 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
418 strings (because they follow a .* construct). study_chunk will identify
419 both FOO and BAR as being the longest fixed and floating strings respectively.
421 The strings can be composites, for instance
425 will result in a composite fixed substring 'foo'.
427 For each string some basic information is maintained:
430 This is the position the string must appear at, or not before.
431 It also implicitly (when combined with minlenp) tells us how many
432 characters must match before the string we are searching for.
433 Likewise when combined with minlenp and the length of the string it
434 tells us how many characters must appear after the string we have
438 Only used for floating strings. This is the rightmost point that
439 the string can appear at. If set to SSize_t_MAX it indicates that the
440 string can occur infinitely far to the right.
441 For fixed strings, it is equal to min_offset.
444 A pointer to the minimum number of characters of the pattern that the
445 string was found inside. This is important as in the case of positive
446 lookahead or positive lookbehind we can have multiple patterns
451 The minimum length of the pattern overall is 3, the minimum length
452 of the lookahead part is 3, but the minimum length of the part that
453 will actually match is 1. So 'FOO's minimum length is 3, but the
454 minimum length for the F is 1. This is important as the minimum length
455 is used to determine offsets in front of and behind the string being
456 looked for. Since strings can be composites this is the length of the
457 pattern at the time it was committed with a scan_commit. Note that
458 the length is calculated by study_chunk, so that the minimum lengths
459 are not known until the full pattern has been compiled, thus the
460 pointer to the value.
464 In the case of lookbehind the string being searched for can be
465 offset past the start point of the final matching string.
466 If this value was just blithely removed from the min_offset it would
467 invalidate some of the calculations for how many chars must match
468 before or after (as they are derived from min_offset and minlen and
469 the length of the string being searched for).
470 When the final pattern is compiled and the data is moved from the
471 scan_data_t structure into the regexp structure the information
472 about lookbehind is factored in, with the information that would
473 have been lost precalculated in the end_shift field for the
476 The fields pos_min and pos_delta are used to store the minimum offset
477 and the delta to the maximum offset at the current point in the pattern.
481 struct scan_data_substrs {
482 SV *str; /* longest substring found in pattern */
483 SSize_t min_offset; /* earliest point in string it can appear */
484 SSize_t max_offset; /* latest point in string it can appear */
485 SSize_t *minlenp; /* pointer to the minlen relevant to the string */
486 SSize_t lookbehind; /* is the pos of the string modified by LB */
487 I32 flags; /* per substring SF_* and SCF_* flags */
490 typedef struct scan_data_t {
491 /*I32 len_min; unused */
492 /*I32 len_delta; unused */
496 SSize_t last_end; /* min value, <0 unless valid. */
497 SSize_t last_start_min;
498 SSize_t last_start_max;
499 U8 cur_is_floating; /* whether the last_* values should be set as
500 * the next fixed (0) or floating (1)
503 /* [0] is longest fixed substring so far, [1] is longest float so far */
504 struct scan_data_substrs substrs[2];
506 I32 flags; /* common SF_* and SCF_* flags */
508 SSize_t *last_closep;
509 regnode_ssc *start_class;
513 * Forward declarations for pregcomp()'s friends.
516 static const scan_data_t zero_scan_data = {
517 0, 0, NULL, 0, 0, 0, 0,
519 { NULL, 0, 0, 0, 0, 0 },
520 { NULL, 0, 0, 0, 0, 0 },
527 #define SF_BEFORE_SEOL 0x0001
528 #define SF_BEFORE_MEOL 0x0002
529 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
531 #define SF_IS_INF 0x0040
532 #define SF_HAS_PAR 0x0080
533 #define SF_IN_PAR 0x0100
534 #define SF_HAS_EVAL 0x0200
537 /* SCF_DO_SUBSTR is the flag that tells the regexp analyzer to track the
538 * longest substring in the pattern. When it is not set the optimiser keeps
539 * track of position, but does not keep track of the actual strings seen,
541 * So for instance /foo/ will be parsed with SCF_DO_SUBSTR being true, but
544 * Similarly, /foo.*(blah|erm|huh).*fnorble/ will have "foo" and "fnorble"
545 * parsed with SCF_DO_SUBSTR on, but while processing the (...) it will be
546 * turned off because of the alternation (BRANCH). */
547 #define SCF_DO_SUBSTR 0x0400
549 #define SCF_DO_STCLASS_AND 0x0800
550 #define SCF_DO_STCLASS_OR 0x1000
551 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
552 #define SCF_WHILEM_VISITED_POS 0x2000
554 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
555 #define SCF_SEEN_ACCEPT 0x8000
556 #define SCF_TRIE_DOING_RESTUDY 0x10000
557 #define SCF_IN_DEFINE 0x20000
562 #define UTF cBOOL(RExC_utf8)
564 /* The enums for all these are ordered so things work out correctly */
565 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
566 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) \
567 == REGEX_DEPENDS_CHARSET)
568 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
569 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) \
570 >= REGEX_UNICODE_CHARSET)
571 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
572 == REGEX_ASCII_RESTRICTED_CHARSET)
573 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
574 >= REGEX_ASCII_RESTRICTED_CHARSET)
575 #define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) \
576 == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
578 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
580 /* For programs that want to be strictly Unicode compatible by dying if any
581 * attempt is made to match a non-Unicode code point against a Unicode
583 #define ALWAYS_WARN_SUPER ckDEAD(packWARN(WARN_NON_UNICODE))
585 #define OOB_NAMEDCLASS -1
587 /* There is no code point that is out-of-bounds, so this is problematic. But
588 * its only current use is to initialize a variable that is always set before
590 #define OOB_UNICODE 0xDEADBEEF
592 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
595 /* length of regex to show in messages that don't mark a position within */
596 #define RegexLengthToShowInErrorMessages 127
599 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
600 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
601 * op/pragma/warn/regcomp.
603 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
604 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
606 #define REPORT_LOCATION " in regex; marked by " MARKER1 \
607 " in m/%" UTF8f MARKER2 "%" UTF8f "/"
609 /* The code in this file in places uses one level of recursion with parsing
610 * rebased to an alternate string constructed by us in memory. This can take
611 * the form of something that is completely different from the input, or
612 * something that uses the input as part of the alternate. In the first case,
613 * there should be no possibility of an error, as we are in complete control of
614 * the alternate string. But in the second case we don't completely control
615 * the input portion, so there may be errors in that. Here's an example:
617 * is handled specially because \x{df} folds to a sequence of more than one
618 * character: 'ss'. What is done is to create and parse an alternate string,
619 * which looks like this:
620 * /(?:\x{DF}|[abc\x{DF}def])/ui
621 * where it uses the input unchanged in the middle of something it constructs,
622 * which is a branch for the DF outside the character class, and clustering
623 * parens around the whole thing. (It knows enough to skip the DF inside the
624 * class while in this substitute parse.) 'abc' and 'def' may have errors that
625 * need to be reported. The general situation looks like this:
627 * |<------- identical ------>|
629 * Input: ---------------------------------------------------------------
630 * Constructed: ---------------------------------------------------
632 * |<------- identical ------>|
634 * sI..eI is the portion of the input pattern we are concerned with here.
635 * sC..EC is the constructed substitute parse string.
636 * sC..tC is constructed by us
637 * tC..eC is an exact duplicate of the portion of the input pattern tI..eI.
638 * In the diagram, these are vertically aligned.
639 * eC..EC is also constructed by us.
640 * xC is the position in the substitute parse string where we found a
642 * xI is the position in the original pattern corresponding to xC.
644 * We want to display a message showing the real input string. Thus we need to
645 * translate from xC to xI. We know that xC >= tC, since the portion of the
646 * string sC..tC has been constructed by us, and so shouldn't have errors. We
648 * xI = tI + (xC - tC)
650 * When the substitute parse is constructed, the code needs to set:
653 * RExC_copy_start_in_input (tI)
654 * RExC_copy_start_in_constructed (tC)
655 * and restore them when done.
657 * During normal processing of the input pattern, both
658 * 'RExC_copy_start_in_input' and 'RExC_copy_start_in_constructed' are set to
659 * sI, so that xC equals xI.
662 #define sI RExC_precomp
663 #define eI RExC_precomp_end
664 #define sC RExC_start
666 #define tI RExC_copy_start_in_input
667 #define tC RExC_copy_start_in_constructed
668 #define xI(xC) (tI + (xC - tC))
669 #define xI_offset(xC) (xI(xC) - sI)
671 #define REPORT_LOCATION_ARGS(xC) \
673 (xI(xC) > eI) /* Don't run off end */ \
674 ? eC - sC /* Length before the <--HERE */ \
675 : ((xI_offset(xC) >= 0) \
677 : (Perl_croak(aTHX_ "panic: %s: %d: negative offset: %" \
678 IVdf " trying to output message for " \
680 __FILE__, __LINE__, (IV) xI_offset(xC), \
681 ((int) (eC - sC)), sC), 0)), \
682 sI), /* The input pattern printed up to the <--HERE */ \
684 (xI(xC) > eI) ? 0 : eI - xI(xC), /* Length after <--HERE */ \
685 (xI(xC) > eI) ? eI : xI(xC)) /* pattern after <--HERE */
687 /* Used to point after bad bytes for an error message, but avoid skipping
688 * past a nul byte. */
689 #define SKIP_IF_CHAR(s) (!*(s) ? 0 : UTF ? UTF8SKIP(s) : 1)
691 /* Set up to clean up after our imminent demise */
692 #define PREPARE_TO_DIE \
695 SAVEFREESV(RExC_rx_sv); \
699 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
700 * arg. Show regex, up to a maximum length. If it's too long, chop and add
703 #define _FAIL(code) STMT_START { \
704 const char *ellipses = ""; \
705 IV len = RExC_precomp_end - RExC_precomp; \
708 if (len > RegexLengthToShowInErrorMessages) { \
709 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
710 len = RegexLengthToShowInErrorMessages - 10; \
716 #define FAIL(msg) _FAIL( \
717 Perl_croak(aTHX_ "%s in regex m/%" UTF8f "%s/", \
718 msg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
720 #define FAIL2(msg,arg) _FAIL( \
721 Perl_croak(aTHX_ msg " in regex m/%" UTF8f "%s/", \
722 arg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
725 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
727 #define Simple_vFAIL(m) STMT_START { \
728 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
729 m, REPORT_LOCATION_ARGS(RExC_parse)); \
733 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
735 #define vFAIL(m) STMT_START { \
741 * Like Simple_vFAIL(), but accepts two arguments.
743 #define Simple_vFAIL2(m,a1) STMT_START { \
744 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
745 REPORT_LOCATION_ARGS(RExC_parse)); \
749 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
751 #define vFAIL2(m,a1) STMT_START { \
753 Simple_vFAIL2(m, a1); \
758 * Like Simple_vFAIL(), but accepts three arguments.
760 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
761 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
762 REPORT_LOCATION_ARGS(RExC_parse)); \
766 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
768 #define vFAIL3(m,a1,a2) STMT_START { \
770 Simple_vFAIL3(m, a1, a2); \
774 * Like Simple_vFAIL(), but accepts four arguments.
776 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
777 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, a3, \
778 REPORT_LOCATION_ARGS(RExC_parse)); \
781 #define vFAIL4(m,a1,a2,a3) STMT_START { \
783 Simple_vFAIL4(m, a1, a2, a3); \
786 /* A specialized version of vFAIL2 that works with UTF8f */
787 #define vFAIL2utf8f(m, a1) STMT_START { \
789 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
790 REPORT_LOCATION_ARGS(RExC_parse)); \
793 #define vFAIL3utf8f(m, a1, a2) STMT_START { \
795 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
796 REPORT_LOCATION_ARGS(RExC_parse)); \
799 /* Setting this to NULL is a signal to not output warnings */
800 #define TURN_OFF_WARNINGS_IN_SUBSTITUTE_PARSE RExC_copy_start_in_constructed = NULL
801 #define RESTORE_WARNINGS RExC_copy_start_in_constructed = RExC_precomp
803 /* Outputting warnings is generally deferred until the 2nd pass. This is
804 * because the first pass can be restarted, for example if the pattern has to
805 * be converted to UTF-8. If a warning had already been output earlier in the
806 * pass, it would be re-output after the restart. Pass 2 is never restarted,
807 * so the problem simply goes away if we defer the output to that pass. See
808 * [perl #122671]. 'RExC_copy_start_in_constructed' being NULL is a flag to
809 * not generate any warnings */
810 #define TO_OUTPUT_WARNINGS(loc) \
811 (PASS2 && RExC_copy_start_in_constructed)
813 #define UPDATE_WARNINGS_LOC(loc) NOOP
815 /* 'warns' is the output of the packWARNx macro used in 'code' */
816 #define _WARN_HELPER(loc, warns, code) \
818 if (! RExC_copy_start_in_constructed) { \
819 Perl_croak( aTHX_ "panic! %s: %d: Tried to warn when none" \
820 " expected at '%s'", \
821 __FILE__, __LINE__, loc); \
823 if (TO_OUTPUT_WARNINGS(loc)) { \
827 UPDATE_WARNINGS_LOC(loc); \
831 /* m is not necessarily a "literal string", in this macro */
832 #define reg_warn_non_literal_string(loc, m) \
833 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
834 Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
835 "%s" REPORT_LOCATION, \
836 m, REPORT_LOCATION_ARGS(loc)))
838 #define ckWARNreg(loc,m) \
839 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
840 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
842 REPORT_LOCATION_ARGS(loc)))
844 #define vWARN(loc, m) \
845 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
846 Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
848 REPORT_LOCATION_ARGS(loc))) \
850 #define vWARN_dep(loc, m) \
851 _WARN_HELPER(loc, packWARN(WARN_DEPRECATED), \
852 Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), \
854 REPORT_LOCATION_ARGS(loc)))
856 #define ckWARNdep(loc,m) \
857 _WARN_HELPER(loc, packWARN(WARN_DEPRECATED), \
858 Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
860 REPORT_LOCATION_ARGS(loc)))
862 #define ckWARNregdep(loc,m) \
863 _WARN_HELPER(loc, packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
864 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, \
867 REPORT_LOCATION_ARGS(loc)))
869 #define ckWARN2reg_d(loc,m, a1) \
870 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
871 Perl_ck_warner_d(aTHX_ packWARN(WARN_REGEXP), \
873 a1, REPORT_LOCATION_ARGS(loc)))
875 #define ckWARN2reg(loc, m, a1) \
876 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
877 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
879 a1, REPORT_LOCATION_ARGS(loc)))
881 #define vWARN3(loc, m, a1, a2) \
882 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
883 Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
885 a1, a2, REPORT_LOCATION_ARGS(loc)))
887 #define ckWARN3reg(loc, m, a1, a2) \
888 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
889 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
892 REPORT_LOCATION_ARGS(loc)))
894 #define vWARN4(loc, m, a1, a2, a3) \
895 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
896 Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
899 REPORT_LOCATION_ARGS(loc)))
901 #define ckWARN4reg(loc, m, a1, a2, a3) \
902 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
903 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
906 REPORT_LOCATION_ARGS(loc)))
908 #define vWARN5(loc, m, a1, a2, a3, a4) \
909 _WARN_HELPER(loc, packWARN(WARN_REGEXP), \
910 Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
913 REPORT_LOCATION_ARGS(loc)))
915 #define ckWARNexperimental(loc, class, m) \
916 _WARN_HELPER(loc, packWARN(class), \
917 Perl_ck_warner_d(aTHX_ packWARN(class), \
919 REPORT_LOCATION_ARGS(loc)))
921 /* Convert between a pointer to a node and its offset from the beginning of the
923 #define REGNODE_p(offset) (RExC_emit_start + (offset))
924 #define REGNODE_OFFSET(node) ((node) - RExC_emit_start)
926 /* Macros for recording node offsets. 20001227 mjd@plover.com
927 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
928 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
929 * Element 0 holds the number n.
930 * Position is 1 indexed.
932 #ifndef RE_TRACK_PATTERN_OFFSETS
933 #define Set_Node_Offset_To_R(offset,byte)
934 #define Set_Node_Offset(node,byte)
935 #define Set_Cur_Node_Offset
936 #define Set_Node_Length_To_R(node,len)
937 #define Set_Node_Length(node,len)
938 #define Set_Node_Cur_Length(node,start)
939 #define Node_Offset(n)
940 #define Node_Length(n)
941 #define Set_Node_Offset_Length(node,offset,len)
942 #define ProgLen(ri) ri->u.proglen
943 #define SetProgLen(ri,x) ri->u.proglen = x
945 #define ProgLen(ri) ri->u.offsets[0]
946 #define SetProgLen(ri,x) ri->u.offsets[0] = x
947 #define Set_Node_Offset_To_R(offset,byte) STMT_START { \
949 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
950 __LINE__, (int)(offset), (int)(byte))); \
952 Perl_croak(aTHX_ "value of node is %d in Offset macro", \
955 RExC_offsets[2*(offset)-1] = (byte); \
960 #define Set_Node_Offset(node,byte) \
961 Set_Node_Offset_To_R(REGNODE_OFFSET(node), (byte)-RExC_start)
962 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
964 #define Set_Node_Length_To_R(node,len) STMT_START { \
966 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
967 __LINE__, (int)(node), (int)(len))); \
969 Perl_croak(aTHX_ "value of node is %d in Length macro", \
972 RExC_offsets[2*(node)] = (len); \
977 #define Set_Node_Length(node,len) \
978 Set_Node_Length_To_R(REGNODE_OFFSET(node), len)
979 #define Set_Node_Cur_Length(node, start) \
980 Set_Node_Length(node, RExC_parse - start)
982 /* Get offsets and lengths */
983 #define Node_Offset(n) (RExC_offsets[2*(REGNODE_OFFSET(n))-1])
984 #define Node_Length(n) (RExC_offsets[2*(REGNODE_OFFSET(n))])
986 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
987 Set_Node_Offset_To_R(REGNODE_OFFSET(node), (offset)); \
988 Set_Node_Length_To_R(REGNODE_OFFSET(node), (len)); \
992 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
993 #define EXPERIMENTAL_INPLACESCAN
994 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
998 Perl_re_printf(pTHX_ const char *fmt, ...)
1002 PerlIO *f= Perl_debug_log;
1003 PERL_ARGS_ASSERT_RE_PRINTF;
1005 result = PerlIO_vprintf(f, fmt, ap);
1011 Perl_re_indentf(pTHX_ const char *fmt, U32 depth, ...)
1015 PerlIO *f= Perl_debug_log;
1016 PERL_ARGS_ASSERT_RE_INDENTF;
1017 va_start(ap, depth);
1018 PerlIO_printf(f, "%*s", ( (int)depth % 20 ) * 2, "");
1019 result = PerlIO_vprintf(f, fmt, ap);
1023 #endif /* DEBUGGING */
1025 #define DEBUG_RExC_seen() \
1026 DEBUG_OPTIMISE_MORE_r({ \
1027 Perl_re_printf( aTHX_ "RExC_seen: "); \
1029 if (RExC_seen & REG_ZERO_LEN_SEEN) \
1030 Perl_re_printf( aTHX_ "REG_ZERO_LEN_SEEN "); \
1032 if (RExC_seen & REG_LOOKBEHIND_SEEN) \
1033 Perl_re_printf( aTHX_ "REG_LOOKBEHIND_SEEN "); \
1035 if (RExC_seen & REG_GPOS_SEEN) \
1036 Perl_re_printf( aTHX_ "REG_GPOS_SEEN "); \
1038 if (RExC_seen & REG_RECURSE_SEEN) \
1039 Perl_re_printf( aTHX_ "REG_RECURSE_SEEN "); \
1041 if (RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN) \
1042 Perl_re_printf( aTHX_ "REG_TOP_LEVEL_BRANCHES_SEEN "); \
1044 if (RExC_seen & REG_VERBARG_SEEN) \
1045 Perl_re_printf( aTHX_ "REG_VERBARG_SEEN "); \
1047 if (RExC_seen & REG_CUTGROUP_SEEN) \
1048 Perl_re_printf( aTHX_ "REG_CUTGROUP_SEEN "); \
1050 if (RExC_seen & REG_RUN_ON_COMMENT_SEEN) \
1051 Perl_re_printf( aTHX_ "REG_RUN_ON_COMMENT_SEEN "); \
1053 if (RExC_seen & REG_UNFOLDED_MULTI_SEEN) \
1054 Perl_re_printf( aTHX_ "REG_UNFOLDED_MULTI_SEEN "); \
1056 if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) \
1057 Perl_re_printf( aTHX_ "REG_UNBOUNDED_QUANTIFIER_SEEN "); \
1059 Perl_re_printf( aTHX_ "\n"); \
1062 #define DEBUG_SHOW_STUDY_FLAG(flags,flag) \
1063 if ((flags) & flag) Perl_re_printf( aTHX_ "%s ", #flag)
1068 S_debug_show_study_flags(pTHX_ U32 flags, const char *open_str,
1069 const char *close_str)
1074 Perl_re_printf( aTHX_ "%s", open_str);
1075 DEBUG_SHOW_STUDY_FLAG(flags, SF_BEFORE_SEOL);
1076 DEBUG_SHOW_STUDY_FLAG(flags, SF_BEFORE_MEOL);
1077 DEBUG_SHOW_STUDY_FLAG(flags, SF_IS_INF);
1078 DEBUG_SHOW_STUDY_FLAG(flags, SF_HAS_PAR);
1079 DEBUG_SHOW_STUDY_FLAG(flags, SF_IN_PAR);
1080 DEBUG_SHOW_STUDY_FLAG(flags, SF_HAS_EVAL);
1081 DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_SUBSTR);
1082 DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_STCLASS_AND);
1083 DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_STCLASS_OR);
1084 DEBUG_SHOW_STUDY_FLAG(flags, SCF_DO_STCLASS);
1085 DEBUG_SHOW_STUDY_FLAG(flags, SCF_WHILEM_VISITED_POS);
1086 DEBUG_SHOW_STUDY_FLAG(flags, SCF_TRIE_RESTUDY);
1087 DEBUG_SHOW_STUDY_FLAG(flags, SCF_SEEN_ACCEPT);
1088 DEBUG_SHOW_STUDY_FLAG(flags, SCF_TRIE_DOING_RESTUDY);
1089 DEBUG_SHOW_STUDY_FLAG(flags, SCF_IN_DEFINE);
1090 Perl_re_printf( aTHX_ "%s", close_str);
1095 S_debug_studydata(pTHX_ const char *where, scan_data_t *data,
1096 U32 depth, int is_inf)
1098 GET_RE_DEBUG_FLAGS_DECL;
1100 DEBUG_OPTIMISE_MORE_r({
1103 Perl_re_indentf(aTHX_ "%s: Pos:%" IVdf "/%" IVdf " Flags: 0x%" UVXf,
1107 (IV)data->pos_delta,
1111 S_debug_show_study_flags(aTHX_ data->flags," [","]");
1113 Perl_re_printf( aTHX_
1114 " Whilem_c: %" IVdf " Lcp: %" IVdf " %s",
1116 (IV)(data->last_closep ? *((data)->last_closep) : -1),
1117 is_inf ? "INF " : ""
1120 if (data->last_found) {
1122 Perl_re_printf(aTHX_
1123 "Last:'%s' %" IVdf ":%" IVdf "/%" IVdf,
1124 SvPVX_const(data->last_found),
1126 (IV)data->last_start_min,
1127 (IV)data->last_start_max
1130 for (i = 0; i < 2; i++) {
1131 Perl_re_printf(aTHX_
1132 " %s%s: '%s' @ %" IVdf "/%" IVdf,
1133 data->cur_is_floating == i ? "*" : "",
1134 i ? "Float" : "Fixed",
1135 SvPVX_const(data->substrs[i].str),
1136 (IV)data->substrs[i].min_offset,
1137 (IV)data->substrs[i].max_offset
1139 S_debug_show_study_flags(aTHX_ data->substrs[i].flags," [","]");
1143 Perl_re_printf( aTHX_ "\n");
1149 S_debug_peep(pTHX_ const char *str, const RExC_state_t *pRExC_state,
1150 regnode *scan, U32 depth, U32 flags)
1152 GET_RE_DEBUG_FLAGS_DECL;
1159 Next = regnext(scan);
1160 regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);
1161 Perl_re_indentf( aTHX_ "%s>%3d: %s (%d)",
1164 REG_NODE_NUM(scan), SvPV_nolen_const(RExC_mysv),
1165 Next ? (REG_NODE_NUM(Next)) : 0 );
1166 S_debug_show_study_flags(aTHX_ flags," [ ","]");
1167 Perl_re_printf( aTHX_ "\n");
1172 # define DEBUG_STUDYDATA(where, data, depth, is_inf) \
1173 S_debug_studydata(aTHX_ where, data, depth, is_inf)
1175 # define DEBUG_PEEP(str, scan, depth, flags) \
1176 S_debug_peep(aTHX_ str, pRExC_state, scan, depth, flags)
1179 # define DEBUG_STUDYDATA(where, data, depth, is_inf) NOOP
1180 # define DEBUG_PEEP(str, scan, depth, flags) NOOP
1184 /* =========================================================
1185 * BEGIN edit_distance stuff.
1187 * This calculates how many single character changes of any type are needed to
1188 * transform a string into another one. It is taken from version 3.1 of
1190 * https://metacpan.org/pod/Text::Levenshtein::Damerau::XS
1193 /* Our unsorted dictionary linked list. */
1194 /* Note we use UVs, not chars. */
1199 struct dictionary* next;
1201 typedef struct dictionary item;
1204 PERL_STATIC_INLINE item*
1205 push(UV key, item* curr)
1208 Newx(head, 1, item);
1216 PERL_STATIC_INLINE item*
1217 find(item* head, UV key)
1219 item* iterator = head;
1221 if (iterator->key == key){
1224 iterator = iterator->next;
1230 PERL_STATIC_INLINE item*
1231 uniquePush(item* head, UV key)
1233 item* iterator = head;
1236 if (iterator->key == key) {
1239 iterator = iterator->next;
1242 return push(key, head);
1245 PERL_STATIC_INLINE void
1246 dict_free(item* head)
1248 item* iterator = head;
1251 item* temp = iterator;
1252 iterator = iterator->next;
1259 /* End of Dictionary Stuff */
1261 /* All calculations/work are done here */
1263 S_edit_distance(const UV* src,
1265 const STRLEN x, /* length of src[] */
1266 const STRLEN y, /* length of tgt[] */
1267 const SSize_t maxDistance
1271 UV swapCount, swapScore, targetCharCount, i, j;
1273 UV score_ceil = x + y;
1275 PERL_ARGS_ASSERT_EDIT_DISTANCE;
1277 /* intialize matrix start values */
1278 Newx(scores, ( (x + 2) * (y + 2)), UV);
1279 scores[0] = score_ceil;
1280 scores[1 * (y + 2) + 0] = score_ceil;
1281 scores[0 * (y + 2) + 1] = score_ceil;
1282 scores[1 * (y + 2) + 1] = 0;
1283 head = uniquePush(uniquePush(head, src[0]), tgt[0]);
1288 for (i=1;i<=x;i++) {
1290 head = uniquePush(head, src[i]);
1291 scores[(i+1) * (y + 2) + 1] = i;
1292 scores[(i+1) * (y + 2) + 0] = score_ceil;
1295 for (j=1;j<=y;j++) {
1298 head = uniquePush(head, tgt[j]);
1299 scores[1 * (y + 2) + (j + 1)] = j;
1300 scores[0 * (y + 2) + (j + 1)] = score_ceil;
1303 targetCharCount = find(head, tgt[j-1])->value;
1304 swapScore = scores[targetCharCount * (y + 2) + swapCount] + i - targetCharCount - 1 + j - swapCount;
1306 if (src[i-1] != tgt[j-1]){
1307 scores[(i+1) * (y + 2) + (j + 1)] = MIN(swapScore,(MIN(scores[i * (y + 2) + j], MIN(scores[(i+1) * (y + 2) + j], scores[i * (y + 2) + (j + 1)])) + 1));
1311 scores[(i+1) * (y + 2) + (j + 1)] = MIN(scores[i * (y + 2) + j], swapScore);
1315 find(head, src[i-1])->value = i;
1319 IV score = scores[(x+1) * (y + 2) + (y + 1)];
1322 return (maxDistance != 0 && maxDistance < score)?(-1):score;
1326 /* END of edit_distance() stuff
1327 * ========================================================= */
1329 /* is c a control character for which we have a mnemonic? */
1330 #define isMNEMONIC_CNTRL(c) _IS_MNEMONIC_CNTRL_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
1333 S_cntrl_to_mnemonic(const U8 c)
1335 /* Returns the mnemonic string that represents character 'c', if one
1336 * exists; NULL otherwise. The only ones that exist for the purposes of
1337 * this routine are a few control characters */
1340 case '\a': return "\\a";
1341 case '\b': return "\\b";
1342 case ESC_NATIVE: return "\\e";
1343 case '\f': return "\\f";
1344 case '\n': return "\\n";
1345 case '\r': return "\\r";
1346 case '\t': return "\\t";
1352 /* Mark that we cannot extend a found fixed substring at this point.
1353 Update the longest found anchored substring or the longest found
1354 floating substrings if needed. */
1357 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data,
1358 SSize_t *minlenp, int is_inf)
1360 const STRLEN l = CHR_SVLEN(data->last_found);
1361 SV * const longest_sv = data->substrs[data->cur_is_floating].str;
1362 const STRLEN old_l = CHR_SVLEN(longest_sv);
1363 GET_RE_DEBUG_FLAGS_DECL;
1365 PERL_ARGS_ASSERT_SCAN_COMMIT;
1367 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
1368 const U8 i = data->cur_is_floating;
1369 SvSetMagicSV(longest_sv, data->last_found);
1370 data->substrs[i].min_offset = l ? data->last_start_min : data->pos_min;
1373 data->substrs[0].max_offset = data->substrs[0].min_offset;
1375 data->substrs[1].max_offset = (l
1376 ? data->last_start_max
1377 : (data->pos_delta > SSize_t_MAX - data->pos_min
1379 : data->pos_min + data->pos_delta));
1381 || (STRLEN)data->substrs[1].max_offset > (STRLEN)SSize_t_MAX)
1382 data->substrs[1].max_offset = SSize_t_MAX;
1385 if (data->flags & SF_BEFORE_EOL)
1386 data->substrs[i].flags |= (data->flags & SF_BEFORE_EOL);
1388 data->substrs[i].flags &= ~SF_BEFORE_EOL;
1389 data->substrs[i].minlenp = minlenp;
1390 data->substrs[i].lookbehind = 0;
1393 SvCUR_set(data->last_found, 0);
1395 SV * const sv = data->last_found;
1396 if (SvUTF8(sv) && SvMAGICAL(sv)) {
1397 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
1402 data->last_end = -1;
1403 data->flags &= ~SF_BEFORE_EOL;
1404 DEBUG_STUDYDATA("commit", data, 0, is_inf);
1407 /* An SSC is just a regnode_charclass_posix with an extra field: the inversion
1408 * list that describes which code points it matches */
1411 S_ssc_anything(pTHX_ regnode_ssc *ssc)
1413 /* Set the SSC 'ssc' to match an empty string or any code point */
1415 PERL_ARGS_ASSERT_SSC_ANYTHING;
1417 assert(is_ANYOF_SYNTHETIC(ssc));
1419 /* mortalize so won't leak */
1420 ssc->invlist = sv_2mortal(_add_range_to_invlist(NULL, 0, UV_MAX));
1421 ANYOF_FLAGS(ssc) |= SSC_MATCHES_EMPTY_STRING; /* Plus matches empty */
1425 S_ssc_is_anything(const regnode_ssc *ssc)
1427 /* Returns TRUE if the SSC 'ssc' can match the empty string and any code
1428 * point; FALSE otherwise. Thus, this is used to see if using 'ssc' buys
1429 * us anything: if the function returns TRUE, 'ssc' hasn't been restricted
1430 * in any way, so there's no point in using it */
1435 PERL_ARGS_ASSERT_SSC_IS_ANYTHING;
1437 assert(is_ANYOF_SYNTHETIC(ssc));
1439 if (! (ANYOF_FLAGS(ssc) & SSC_MATCHES_EMPTY_STRING)) {
1443 /* See if the list consists solely of the range 0 - Infinity */
1444 invlist_iterinit(ssc->invlist);
1445 ret = invlist_iternext(ssc->invlist, &start, &end)
1449 invlist_iterfinish(ssc->invlist);
1455 /* If e.g., both \w and \W are set, matches everything */
1456 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1458 for (i = 0; i < ANYOF_POSIXL_MAX; i += 2) {
1459 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i+1)) {
1469 S_ssc_init(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc)
1471 /* Initializes the SSC 'ssc'. This includes setting it to match an empty
1472 * string, any code point, or any posix class under locale */
1474 PERL_ARGS_ASSERT_SSC_INIT;
1476 Zero(ssc, 1, regnode_ssc);
1477 set_ANYOF_SYNTHETIC(ssc);
1478 ARG_SET(ssc, ANYOF_ONLY_HAS_BITMAP);
1481 /* If any portion of the regex is to operate under locale rules that aren't
1482 * fully known at compile time, initialization includes it. The reason
1483 * this isn't done for all regexes is that the optimizer was written under
1484 * the assumption that locale was all-or-nothing. Given the complexity and
1485 * lack of documentation in the optimizer, and that there are inadequate
1486 * test cases for locale, many parts of it may not work properly, it is
1487 * safest to avoid locale unless necessary. */
1488 if (RExC_contains_locale) {
1489 ANYOF_POSIXL_SETALL(ssc);
1492 ANYOF_POSIXL_ZERO(ssc);
1497 S_ssc_is_cp_posixl_init(const RExC_state_t *pRExC_state,
1498 const regnode_ssc *ssc)
1500 /* Returns TRUE if the SSC 'ssc' is in its initial state with regard only
1501 * to the list of code points matched, and locale posix classes; hence does
1502 * not check its flags) */
1507 PERL_ARGS_ASSERT_SSC_IS_CP_POSIXL_INIT;
1509 assert(is_ANYOF_SYNTHETIC(ssc));
1511 invlist_iterinit(ssc->invlist);
1512 ret = invlist_iternext(ssc->invlist, &start, &end)
1516 invlist_iterfinish(ssc->invlist);
1522 if (RExC_contains_locale && ! ANYOF_POSIXL_SSC_TEST_ALL_SET(ssc)) {
1530 S_get_ANYOF_cp_list_for_ssc(pTHX_ const RExC_state_t *pRExC_state,
1531 const regnode_charclass* const node)
1533 /* Returns a mortal inversion list defining which code points are matched
1534 * by 'node', which is of type ANYOF. Handles complementing the result if
1535 * appropriate. If some code points aren't knowable at this time, the
1536 * returned list must, and will, contain every code point that is a
1540 SV* only_utf8_locale_invlist = NULL;
1542 const U32 n = ARG(node);
1543 bool new_node_has_latin1 = FALSE;
1545 PERL_ARGS_ASSERT_GET_ANYOF_CP_LIST_FOR_SSC;
1547 /* Look at the data structure created by S_set_ANYOF_arg() */
1548 if (n != ANYOF_ONLY_HAS_BITMAP) {
1549 SV * const rv = MUTABLE_SV(RExC_rxi->data->data[n]);
1550 AV * const av = MUTABLE_AV(SvRV(rv));
1551 SV **const ary = AvARRAY(av);
1552 assert(RExC_rxi->data->what[n] == 's');
1554 if (ary[1] && ary[1] != &PL_sv_undef) { /* Has compile-time swash */
1555 invlist = sv_2mortal(invlist_clone(_get_swash_invlist(ary[1]), NULL));
1557 else if (ary[0] && ary[0] != &PL_sv_undef) {
1559 /* Here, no compile-time swash, and there are things that won't be
1560 * known until runtime -- we have to assume it could be anything */
1561 invlist = sv_2mortal(_new_invlist(1));
1562 return _add_range_to_invlist(invlist, 0, UV_MAX);
1564 else if (ary[3] && ary[3] != &PL_sv_undef) {
1566 /* Here no compile-time swash, and no run-time only data. Use the
1567 * node's inversion list */
1568 invlist = sv_2mortal(invlist_clone(ary[3], NULL));
1571 /* Get the code points valid only under UTF-8 locales */
1572 if ((ANYOF_FLAGS(node) & ANYOFL_FOLD)
1573 && ary[2] && ary[2] != &PL_sv_undef)
1575 only_utf8_locale_invlist = ary[2];
1580 invlist = sv_2mortal(_new_invlist(0));
1583 /* An ANYOF node contains a bitmap for the first NUM_ANYOF_CODE_POINTS
1584 * code points, and an inversion list for the others, but if there are code
1585 * points that should match only conditionally on the target string being
1586 * UTF-8, those are placed in the inversion list, and not the bitmap.
1587 * Since there are circumstances under which they could match, they are
1588 * included in the SSC. But if the ANYOF node is to be inverted, we have
1589 * to exclude them here, so that when we invert below, the end result
1590 * actually does include them. (Think about "\xe0" =~ /[^\xc0]/di;). We
1591 * have to do this here before we add the unconditionally matched code
1593 if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
1594 _invlist_intersection_complement_2nd(invlist,
1599 /* Add in the points from the bit map */
1600 for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
1601 if (ANYOF_BITMAP_TEST(node, i)) {
1602 unsigned int start = i++;
1604 for (; i < NUM_ANYOF_CODE_POINTS && ANYOF_BITMAP_TEST(node, i); ++i) {
1607 invlist = _add_range_to_invlist(invlist, start, i-1);
1608 new_node_has_latin1 = TRUE;
1612 /* If this can match all upper Latin1 code points, have to add them
1613 * as well. But don't add them if inverting, as when that gets done below,
1614 * it would exclude all these characters, including the ones it shouldn't
1615 * that were added just above */
1616 if (! (ANYOF_FLAGS(node) & ANYOF_INVERT) && OP(node) == ANYOFD
1617 && (ANYOF_FLAGS(node) & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER))
1619 _invlist_union(invlist, PL_UpperLatin1, &invlist);
1622 /* Similarly for these */
1623 if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
1624 _invlist_union_complement_2nd(invlist, PL_InBitmap, &invlist);
1627 if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
1628 _invlist_invert(invlist);
1630 else if (new_node_has_latin1 && ANYOF_FLAGS(node) & ANYOFL_FOLD) {
1632 /* Under /li, any 0-255 could fold to any other 0-255, depending on the
1633 * locale. We can skip this if there are no 0-255 at all. */
1634 _invlist_union(invlist, PL_Latin1, &invlist);
1637 /* Similarly add the UTF-8 locale possible matches. These have to be
1638 * deferred until after the non-UTF-8 locale ones are taken care of just
1639 * above, or it leads to wrong results under ANYOF_INVERT */
1640 if (only_utf8_locale_invlist) {
1641 _invlist_union_maybe_complement_2nd(invlist,
1642 only_utf8_locale_invlist,
1643 ANYOF_FLAGS(node) & ANYOF_INVERT,
1650 /* These two functions currently do the exact same thing */
1651 #define ssc_init_zero ssc_init
1653 #define ssc_add_cp(ssc, cp) ssc_add_range((ssc), (cp), (cp))
1654 #define ssc_match_all_cp(ssc) ssc_add_range(ssc, 0, UV_MAX)
1656 /* 'AND' a given class with another one. Can create false positives. 'ssc'
1657 * should not be inverted. 'and_with->flags & ANYOF_MATCHES_POSIXL' should be
1658 * 0 if 'and_with' is a regnode_charclass instead of a regnode_ssc. */
1661 S_ssc_and(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1662 const regnode_charclass *and_with)
1664 /* Accumulate into SSC 'ssc' its 'AND' with 'and_with', which is either
1665 * another SSC or a regular ANYOF class. Can create false positives. */
1670 PERL_ARGS_ASSERT_SSC_AND;
1672 assert(is_ANYOF_SYNTHETIC(ssc));
1674 /* 'and_with' is used as-is if it too is an SSC; otherwise have to extract
1675 * the code point inversion list and just the relevant flags */
1676 if (is_ANYOF_SYNTHETIC(and_with)) {
1677 anded_cp_list = ((regnode_ssc *)and_with)->invlist;
1678 anded_flags = ANYOF_FLAGS(and_with);
1680 /* XXX This is a kludge around what appears to be deficiencies in the
1681 * optimizer. If we make S_ssc_anything() add in the WARN_SUPER flag,
1682 * there are paths through the optimizer where it doesn't get weeded
1683 * out when it should. And if we don't make some extra provision for
1684 * it like the code just below, it doesn't get added when it should.
1685 * This solution is to add it only when AND'ing, which is here, and
1686 * only when what is being AND'ed is the pristine, original node
1687 * matching anything. Thus it is like adding it to ssc_anything() but
1688 * only when the result is to be AND'ed. Probably the same solution
1689 * could be adopted for the same problem we have with /l matching,
1690 * which is solved differently in S_ssc_init(), and that would lead to
1691 * fewer false positives than that solution has. But if this solution
1692 * creates bugs, the consequences are only that a warning isn't raised
1693 * that should be; while the consequences for having /l bugs is
1694 * incorrect matches */
1695 if (ssc_is_anything((regnode_ssc *)and_with)) {
1696 anded_flags |= ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER;
1700 anded_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, and_with);
1701 if (OP(and_with) == ANYOFD) {
1702 anded_flags = ANYOF_FLAGS(and_with) & ANYOF_COMMON_FLAGS;
1705 anded_flags = ANYOF_FLAGS(and_with)
1706 &( ANYOF_COMMON_FLAGS
1707 |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1708 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
1709 if (ANYOFL_UTF8_LOCALE_REQD(ANYOF_FLAGS(and_with))) {
1711 ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
1716 ANYOF_FLAGS(ssc) &= anded_flags;
1718 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1719 * C2 is the list of code points in 'and-with'; P2, its posix classes.
1720 * 'and_with' may be inverted. When not inverted, we have the situation of
1722 * (C1 | P1) & (C2 | P2)
1723 * = (C1 & (C2 | P2)) | (P1 & (C2 | P2))
1724 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1725 * <= ((C1 & C2) | P2)) | ( P1 | (P1 & P2))
1726 * <= ((C1 & C2) | P1 | P2)
1727 * Alternatively, the last few steps could be:
1728 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1729 * <= ((C1 & C2) | C1 ) | ( C2 | (P1 & P2))
1730 * <= (C1 | C2 | (P1 & P2))
1731 * We favor the second approach if either P1 or P2 is non-empty. This is
1732 * because these components are a barrier to doing optimizations, as what
1733 * they match cannot be known until the moment of matching as they are
1734 * dependent on the current locale, 'AND"ing them likely will reduce or
1736 * But we can do better if we know that C1,P1 are in their initial state (a
1737 * frequent occurrence), each matching everything:
1738 * (<everything>) & (C2 | P2) = C2 | P2
1739 * Similarly, if C2,P2 are in their initial state (again a frequent
1740 * occurrence), the result is a no-op
1741 * (C1 | P1) & (<everything>) = C1 | P1
1744 * (C1 | P1) & ~(C2 | P2) = (C1 | P1) & (~C2 & ~P2)
1745 * = (C1 & (~C2 & ~P2)) | (P1 & (~C2 & ~P2))
1746 * <= (C1 & ~C2) | (P1 & ~P2)
1749 if ((ANYOF_FLAGS(and_with) & ANYOF_INVERT)
1750 && ! is_ANYOF_SYNTHETIC(and_with))
1754 ssc_intersection(ssc,
1756 FALSE /* Has already been inverted */
1759 /* If either P1 or P2 is empty, the intersection will be also; can skip
1761 if (! (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL)) {
1762 ANYOF_POSIXL_ZERO(ssc);
1764 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1766 /* Note that the Posix class component P from 'and_with' actually
1768 * P = Pa | Pb | ... | Pn
1769 * where each component is one posix class, such as in [\w\s].
1771 * ~P = ~(Pa | Pb | ... | Pn)
1772 * = ~Pa & ~Pb & ... & ~Pn
1773 * <= ~Pa | ~Pb | ... | ~Pn
1774 * The last is something we can easily calculate, but unfortunately
1775 * is likely to have many false positives. We could do better
1776 * in some (but certainly not all) instances if two classes in
1777 * P have known relationships. For example
1778 * :lower: <= :alpha: <= :alnum: <= \w <= :graph: <= :print:
1780 * :lower: & :print: = :lower:
1781 * And similarly for classes that must be disjoint. For example,
1782 * since \s and \w can have no elements in common based on rules in
1783 * the POSIX standard,
1784 * \w & ^\S = nothing
1785 * Unfortunately, some vendor locales do not meet the Posix
1786 * standard, in particular almost everything by Microsoft.
1787 * The loop below just changes e.g., \w into \W and vice versa */
1789 regnode_charclass_posixl temp;
1790 int add = 1; /* To calculate the index of the complement */
1792 Zero(&temp, 1, regnode_charclass_posixl);
1793 ANYOF_POSIXL_ZERO(&temp);
1794 for (i = 0; i < ANYOF_MAX; i++) {
1796 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)
1797 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i + 1));
1799 if (ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)) {
1800 ANYOF_POSIXL_SET(&temp, i + add);
1802 add = 0 - add; /* 1 goes to -1; -1 goes to 1 */
1804 ANYOF_POSIXL_AND(&temp, ssc);
1806 } /* else ssc already has no posixes */
1807 } /* else: Not inverted. This routine is a no-op if 'and_with' is an SSC
1808 in its initial state */
1809 else if (! is_ANYOF_SYNTHETIC(and_with)
1810 || ! ssc_is_cp_posixl_init(pRExC_state, (regnode_ssc *)and_with))
1812 /* But if 'ssc' is in its initial state, the result is just 'and_with';
1813 * copy it over 'ssc' */
1814 if (ssc_is_cp_posixl_init(pRExC_state, ssc)) {
1815 if (is_ANYOF_SYNTHETIC(and_with)) {
1816 StructCopy(and_with, ssc, regnode_ssc);
1819 ssc->invlist = anded_cp_list;
1820 ANYOF_POSIXL_ZERO(ssc);
1821 if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
1822 ANYOF_POSIXL_OR((regnode_charclass_posixl*) and_with, ssc);
1826 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)
1827 || (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL))
1829 /* One or the other of P1, P2 is non-empty. */
1830 if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
1831 ANYOF_POSIXL_AND((regnode_charclass_posixl*) and_with, ssc);
1833 ssc_union(ssc, anded_cp_list, FALSE);
1835 else { /* P1 = P2 = empty */
1836 ssc_intersection(ssc, anded_cp_list, FALSE);
1842 S_ssc_or(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1843 const regnode_charclass *or_with)
1845 /* Accumulate into SSC 'ssc' its 'OR' with 'or_with', which is either
1846 * another SSC or a regular ANYOF class. Can create false positives if
1847 * 'or_with' is to be inverted. */
1852 PERL_ARGS_ASSERT_SSC_OR;
1854 assert(is_ANYOF_SYNTHETIC(ssc));
1856 /* 'or_with' is used as-is if it too is an SSC; otherwise have to extract
1857 * the code point inversion list and just the relevant flags */
1858 if (is_ANYOF_SYNTHETIC(or_with)) {
1859 ored_cp_list = ((regnode_ssc*) or_with)->invlist;
1860 ored_flags = ANYOF_FLAGS(or_with);
1863 ored_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, or_with);
1864 ored_flags = ANYOF_FLAGS(or_with) & ANYOF_COMMON_FLAGS;
1865 if (OP(or_with) != ANYOFD) {
1867 |= ANYOF_FLAGS(or_with)
1868 & ( ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1869 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
1870 if (ANYOFL_UTF8_LOCALE_REQD(ANYOF_FLAGS(or_with))) {
1872 ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
1877 ANYOF_FLAGS(ssc) |= ored_flags;
1879 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1880 * C2 is the list of code points in 'or-with'; P2, its posix classes.
1881 * 'or_with' may be inverted. When not inverted, we have the simple
1882 * situation of computing:
1883 * (C1 | P1) | (C2 | P2) = (C1 | C2) | (P1 | P2)
1884 * If P1|P2 yields a situation with both a class and its complement are
1885 * set, like having both \w and \W, this matches all code points, and we
1886 * can delete these from the P component of the ssc going forward. XXX We
1887 * might be able to delete all the P components, but I (khw) am not certain
1888 * about this, and it is better to be safe.
1891 * (C1 | P1) | ~(C2 | P2) = (C1 | P1) | (~C2 & ~P2)
1892 * <= (C1 | P1) | ~C2
1893 * <= (C1 | ~C2) | P1
1894 * (which results in actually simpler code than the non-inverted case)
1897 if ((ANYOF_FLAGS(or_with) & ANYOF_INVERT)
1898 && ! is_ANYOF_SYNTHETIC(or_with))
1900 /* We ignore P2, leaving P1 going forward */
1901 } /* else Not inverted */
1902 else if (ANYOF_FLAGS(or_with) & ANYOF_MATCHES_POSIXL) {
1903 ANYOF_POSIXL_OR((regnode_charclass_posixl*)or_with, ssc);
1904 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1906 for (i = 0; i < ANYOF_MAX; i += 2) {
1907 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i + 1))
1909 ssc_match_all_cp(ssc);
1910 ANYOF_POSIXL_CLEAR(ssc, i);
1911 ANYOF_POSIXL_CLEAR(ssc, i+1);
1919 FALSE /* Already has been inverted */
1923 PERL_STATIC_INLINE void
1924 S_ssc_union(pTHX_ regnode_ssc *ssc, SV* const invlist, const bool invert2nd)
1926 PERL_ARGS_ASSERT_SSC_UNION;
1928 assert(is_ANYOF_SYNTHETIC(ssc));
1930 _invlist_union_maybe_complement_2nd(ssc->invlist,
1936 PERL_STATIC_INLINE void
1937 S_ssc_intersection(pTHX_ regnode_ssc *ssc,
1939 const bool invert2nd)
1941 PERL_ARGS_ASSERT_SSC_INTERSECTION;
1943 assert(is_ANYOF_SYNTHETIC(ssc));
1945 _invlist_intersection_maybe_complement_2nd(ssc->invlist,
1951 PERL_STATIC_INLINE void
1952 S_ssc_add_range(pTHX_ regnode_ssc *ssc, const UV start, const UV end)
1954 PERL_ARGS_ASSERT_SSC_ADD_RANGE;
1956 assert(is_ANYOF_SYNTHETIC(ssc));
1958 ssc->invlist = _add_range_to_invlist(ssc->invlist, start, end);
1961 PERL_STATIC_INLINE void
1962 S_ssc_cp_and(pTHX_ regnode_ssc *ssc, const UV cp)
1964 /* AND just the single code point 'cp' into the SSC 'ssc' */
1966 SV* cp_list = _new_invlist(2);
1968 PERL_ARGS_ASSERT_SSC_CP_AND;
1970 assert(is_ANYOF_SYNTHETIC(ssc));
1972 cp_list = add_cp_to_invlist(cp_list, cp);
1973 ssc_intersection(ssc, cp_list,
1974 FALSE /* Not inverted */
1976 SvREFCNT_dec_NN(cp_list);
1979 PERL_STATIC_INLINE void
1980 S_ssc_clear_locale(regnode_ssc *ssc)
1982 /* Set the SSC 'ssc' to not match any locale things */
1983 PERL_ARGS_ASSERT_SSC_CLEAR_LOCALE;
1985 assert(is_ANYOF_SYNTHETIC(ssc));
1987 ANYOF_POSIXL_ZERO(ssc);
1988 ANYOF_FLAGS(ssc) &= ~ANYOF_LOCALE_FLAGS;
1991 #define NON_OTHER_COUNT NON_OTHER_COUNT_FOR_USE_ONLY_BY_REGCOMP_DOT_C
1994 S_is_ssc_worth_it(const RExC_state_t * pRExC_state, const regnode_ssc * ssc)
1996 /* The synthetic start class is used to hopefully quickly winnow down
1997 * places where a pattern could start a match in the target string. If it
1998 * doesn't really narrow things down that much, there isn't much point to
1999 * having the overhead of using it. This function uses some very crude
2000 * heuristics to decide if to use the ssc or not.
2002 * It returns TRUE if 'ssc' rules out more than half what it considers to
2003 * be the "likely" possible matches, but of course it doesn't know what the
2004 * actual things being matched are going to be; these are only guesses
2006 * For /l matches, it assumes that the only likely matches are going to be
2007 * in the 0-255 range, uniformly distributed, so half of that is 127
2008 * For /a and /d matches, it assumes that the likely matches will be just
2009 * the ASCII range, so half of that is 63
2010 * For /u and there isn't anything matching above the Latin1 range, it
2011 * assumes that that is the only range likely to be matched, and uses
2012 * half that as the cut-off: 127. If anything matches above Latin1,
2013 * it assumes that all of Unicode could match (uniformly), except for
2014 * non-Unicode code points and things in the General Category "Other"
2015 * (unassigned, private use, surrogates, controls and formats). This
2016 * is a much large number. */
2018 U32 count = 0; /* Running total of number of code points matched by
2020 UV start, end; /* Start and end points of current range in inversion
2022 const U32 max_code_points = (LOC)
2024 : (( ! UNI_SEMANTICS
2025 || invlist_highest(ssc->invlist) < 256)
2028 const U32 max_match = max_code_points / 2;
2030 PERL_ARGS_ASSERT_IS_SSC_WORTH_IT;
2032 invlist_iterinit(ssc->invlist);
2033 while (invlist_iternext(ssc->invlist, &start, &end)) {
2034 if (start >= max_code_points) {
2037 end = MIN(end, max_code_points - 1);
2038 count += end - start + 1;
2039 if (count >= max_match) {
2040 invlist_iterfinish(ssc->invlist);
2050 S_ssc_finalize(pTHX_ RExC_state_t *pRExC_state, regnode_ssc *ssc)
2052 /* The inversion list in the SSC is marked mortal; now we need a more
2053 * permanent copy, which is stored the same way that is done in a regular
2054 * ANYOF node, with the first NUM_ANYOF_CODE_POINTS code points in a bit
2057 SV* invlist = invlist_clone(ssc->invlist, NULL);
2059 PERL_ARGS_ASSERT_SSC_FINALIZE;
2061 assert(is_ANYOF_SYNTHETIC(ssc));
2063 /* The code in this file assumes that all but these flags aren't relevant
2064 * to the SSC, except SSC_MATCHES_EMPTY_STRING, which should be cleared
2065 * by the time we reach here */
2066 assert(! (ANYOF_FLAGS(ssc)
2067 & ~( ANYOF_COMMON_FLAGS
2068 |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
2069 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP)));
2071 populate_ANYOF_from_invlist( (regnode *) ssc, &invlist);
2073 set_ANYOF_arg(pRExC_state, (regnode *) ssc, invlist,
2074 NULL, NULL, NULL, FALSE);
2076 /* Make sure is clone-safe */
2077 ssc->invlist = NULL;
2079 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
2080 ANYOF_FLAGS(ssc) |= ANYOF_MATCHES_POSIXL;
2081 OP(ssc) = ANYOFPOSIXL;
2083 else if (RExC_contains_locale) {
2087 assert(! (ANYOF_FLAGS(ssc) & ANYOF_LOCALE_FLAGS) || RExC_contains_locale);
2090 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
2091 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
2092 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
2093 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list \
2094 ? (TRIE_LIST_CUR( idx ) - 1) \
2100 dump_trie(trie,widecharmap,revcharmap)
2101 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
2102 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
2104 These routines dump out a trie in a somewhat readable format.
2105 The _interim_ variants are used for debugging the interim
2106 tables that are used to generate the final compressed
2107 representation which is what dump_trie expects.
2109 Part of the reason for their existence is to provide a form
2110 of documentation as to how the different representations function.
2115 Dumps the final compressed table form of the trie to Perl_debug_log.
2116 Used for debugging make_trie().
2120 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
2121 AV *revcharmap, U32 depth)
2124 SV *sv=sv_newmortal();
2125 int colwidth= widecharmap ? 6 : 4;
2127 GET_RE_DEBUG_FLAGS_DECL;
2129 PERL_ARGS_ASSERT_DUMP_TRIE;
2131 Perl_re_indentf( aTHX_ "Char : %-6s%-6s%-4s ",
2132 depth+1, "Match","Base","Ofs" );
2134 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
2135 SV ** const tmp = av_fetch( revcharmap, state, 0);
2137 Perl_re_printf( aTHX_ "%*s",
2139 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
2140 PL_colors[0], PL_colors[1],
2141 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2142 PERL_PV_ESCAPE_FIRSTCHAR
2147 Perl_re_printf( aTHX_ "\n");
2148 Perl_re_indentf( aTHX_ "State|-----------------------", depth+1);
2150 for( state = 0 ; state < trie->uniquecharcount ; state++ )
2151 Perl_re_printf( aTHX_ "%.*s", colwidth, "--------");
2152 Perl_re_printf( aTHX_ "\n");
2154 for( state = 1 ; state < trie->statecount ; state++ ) {
2155 const U32 base = trie->states[ state ].trans.base;
2157 Perl_re_indentf( aTHX_ "#%4" UVXf "|", depth+1, (UV)state);
2159 if ( trie->states[ state ].wordnum ) {
2160 Perl_re_printf( aTHX_ " W%4X", trie->states[ state ].wordnum );
2162 Perl_re_printf( aTHX_ "%6s", "" );
2165 Perl_re_printf( aTHX_ " @%4" UVXf " ", (UV)base );
2170 while( ( base + ofs < trie->uniquecharcount ) ||
2171 ( base + ofs - trie->uniquecharcount < trie->lasttrans
2172 && trie->trans[ base + ofs - trie->uniquecharcount ].check
2176 Perl_re_printf( aTHX_ "+%2" UVXf "[ ", (UV)ofs);
2178 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2179 if ( ( base + ofs >= trie->uniquecharcount )
2180 && ( base + ofs - trie->uniquecharcount
2182 && trie->trans[ base + ofs
2183 - trie->uniquecharcount ].check == state )
2185 Perl_re_printf( aTHX_ "%*" UVXf, colwidth,
2186 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next
2189 Perl_re_printf( aTHX_ "%*s", colwidth," ." );
2193 Perl_re_printf( aTHX_ "]");
2196 Perl_re_printf( aTHX_ "\n" );
2198 Perl_re_indentf( aTHX_ "word_info N:(prev,len)=",
2200 for (word=1; word <= trie->wordcount; word++) {
2201 Perl_re_printf( aTHX_ " %d:(%d,%d)",
2202 (int)word, (int)(trie->wordinfo[word].prev),
2203 (int)(trie->wordinfo[word].len));
2205 Perl_re_printf( aTHX_ "\n" );
2208 Dumps a fully constructed but uncompressed trie in list form.
2209 List tries normally only are used for construction when the number of
2210 possible chars (trie->uniquecharcount) is very high.
2211 Used for debugging make_trie().
2214 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
2215 HV *widecharmap, AV *revcharmap, U32 next_alloc,
2219 SV *sv=sv_newmortal();
2220 int colwidth= widecharmap ? 6 : 4;
2221 GET_RE_DEBUG_FLAGS_DECL;
2223 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
2225 /* print out the table precompression. */
2226 Perl_re_indentf( aTHX_ "State :Word | Transition Data\n",
2228 Perl_re_indentf( aTHX_ "%s",
2229 depth+1, "------:-----+-----------------\n" );
2231 for( state=1 ; state < next_alloc ; state ++ ) {
2234 Perl_re_indentf( aTHX_ " %4" UVXf " :",
2235 depth+1, (UV)state );
2236 if ( ! trie->states[ state ].wordnum ) {
2237 Perl_re_printf( aTHX_ "%5s| ","");
2239 Perl_re_printf( aTHX_ "W%4x| ",
2240 trie->states[ state ].wordnum
2243 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
2244 SV ** const tmp = av_fetch( revcharmap,
2245 TRIE_LIST_ITEM(state, charid).forid, 0);
2247 Perl_re_printf( aTHX_ "%*s:%3X=%4" UVXf " | ",
2249 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp),
2251 PL_colors[0], PL_colors[1],
2252 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
2253 | PERL_PV_ESCAPE_FIRSTCHAR
2255 TRIE_LIST_ITEM(state, charid).forid,
2256 (UV)TRIE_LIST_ITEM(state, charid).newstate
2259 Perl_re_printf( aTHX_ "\n%*s| ",
2260 (int)((depth * 2) + 14), "");
2263 Perl_re_printf( aTHX_ "\n");
2268 Dumps a fully constructed but uncompressed trie in table form.
2269 This is the normal DFA style state transition table, with a few
2270 twists to facilitate compression later.
2271 Used for debugging make_trie().
2274 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
2275 HV *widecharmap, AV *revcharmap, U32 next_alloc,
2280 SV *sv=sv_newmortal();
2281 int colwidth= widecharmap ? 6 : 4;
2282 GET_RE_DEBUG_FLAGS_DECL;
2284 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
2287 print out the table precompression so that we can do a visual check
2288 that they are identical.
2291 Perl_re_indentf( aTHX_ "Char : ", depth+1 );
2293 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
2294 SV ** const tmp = av_fetch( revcharmap, charid, 0);
2296 Perl_re_printf( aTHX_ "%*s",
2298 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
2299 PL_colors[0], PL_colors[1],
2300 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2301 PERL_PV_ESCAPE_FIRSTCHAR
2307 Perl_re_printf( aTHX_ "\n");
2308 Perl_re_indentf( aTHX_ "State+-", depth+1 );
2310 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
2311 Perl_re_printf( aTHX_ "%.*s", colwidth,"--------");
2314 Perl_re_printf( aTHX_ "\n" );
2316 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
2318 Perl_re_indentf( aTHX_ "%4" UVXf " : ",
2320 (UV)TRIE_NODENUM( state ) );
2322 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
2323 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
2325 Perl_re_printf( aTHX_ "%*" UVXf, colwidth, v );
2327 Perl_re_printf( aTHX_ "%*s", colwidth, "." );
2329 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
2330 Perl_re_printf( aTHX_ " (%4" UVXf ")\n",
2331 (UV)trie->trans[ state ].check );
2333 Perl_re_printf( aTHX_ " (%4" UVXf ") W%4X\n",
2334 (UV)trie->trans[ state ].check,
2335 trie->states[ TRIE_NODENUM( state ) ].wordnum );
2343 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
2344 startbranch: the first branch in the whole branch sequence
2345 first : start branch of sequence of branch-exact nodes.
2346 May be the same as startbranch
2347 last : Thing following the last branch.
2348 May be the same as tail.
2349 tail : item following the branch sequence
2350 count : words in the sequence
2351 flags : currently the OP() type we will be building one of /EXACT(|F|FA|FU|FU_SS|L|FLU8)/
2352 depth : indent depth
2354 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
2356 A trie is an N'ary tree where the branches are determined by digital
2357 decomposition of the key. IE, at the root node you look up the 1st character and
2358 follow that branch repeat until you find the end of the branches. Nodes can be
2359 marked as "accepting" meaning they represent a complete word. Eg:
2363 would convert into the following structure. Numbers represent states, letters
2364 following numbers represent valid transitions on the letter from that state, if
2365 the number is in square brackets it represents an accepting state, otherwise it
2366 will be in parenthesis.
2368 +-h->+-e->[3]-+-r->(8)-+-s->[9]
2372 (1) +-i->(6)-+-s->[7]
2374 +-s->(3)-+-h->(4)-+-e->[5]
2376 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
2378 This shows that when matching against the string 'hers' we will begin at state 1
2379 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
2380 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
2381 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
2382 single traverse. We store a mapping from accepting to state to which word was
2383 matched, and then when we have multiple possibilities we try to complete the
2384 rest of the regex in the order in which they occurred in the alternation.
2386 The only prior NFA like behaviour that would be changed by the TRIE support is
2387 the silent ignoring of duplicate alternations which are of the form:
2389 / (DUPE|DUPE) X? (?{ ... }) Y /x
2391 Thus EVAL blocks following a trie may be called a different number of times with
2392 and without the optimisation. With the optimisations dupes will be silently
2393 ignored. This inconsistent behaviour of EVAL type nodes is well established as
2394 the following demonstrates:
2396 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
2398 which prints out 'word' three times, but
2400 'words'=~/(word|word|word)(?{ print $1 })S/
2402 which doesnt print it out at all. This is due to other optimisations kicking in.
2404 Example of what happens on a structural level:
2406 The regexp /(ac|ad|ab)+/ will produce the following debug output:
2408 1: CURLYM[1] {1,32767}(18)
2419 This would be optimizable with startbranch=5, first=5, last=16, tail=16
2420 and should turn into:
2422 1: CURLYM[1] {1,32767}(18)
2424 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
2432 Cases where tail != last would be like /(?foo|bar)baz/:
2442 which would be optimizable with startbranch=1, first=1, last=7, tail=8
2443 and would end up looking like:
2446 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
2453 d = uvchr_to_utf8_flags(d, uv, 0);
2455 is the recommended Unicode-aware way of saying
2460 #define TRIE_STORE_REVCHAR(val) \
2463 SV *zlopp = newSV(UTF8_MAXBYTES); \
2464 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
2465 unsigned const char *const kapow = uvchr_to_utf8(flrbbbbb, val); \
2466 SvCUR_set(zlopp, kapow - flrbbbbb); \
2469 av_push(revcharmap, zlopp); \
2471 char ooooff = (char)val; \
2472 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
2476 /* This gets the next character from the input, folding it if not already
2478 #define TRIE_READ_CHAR STMT_START { \
2481 /* if it is UTF then it is either already folded, or does not need \
2483 uvc = valid_utf8_to_uvchr( (const U8*) uc, &len); \
2485 else if (folder == PL_fold_latin1) { \
2486 /* This folder implies Unicode rules, which in the range expressible \
2487 * by not UTF is the lower case, with the two exceptions, one of \
2488 * which should have been taken care of before calling this */ \
2489 assert(*uc != LATIN_SMALL_LETTER_SHARP_S); \
2490 uvc = toLOWER_L1(*uc); \
2491 if (UNLIKELY(uvc == MICRO_SIGN)) uvc = GREEK_SMALL_LETTER_MU; \
2494 /* raw data, will be folded later if needed */ \
2502 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
2503 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
2504 U32 ging = TRIE_LIST_LEN( state ) * 2; \
2505 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
2506 TRIE_LIST_LEN( state ) = ging; \
2508 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
2509 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
2510 TRIE_LIST_CUR( state )++; \
2513 #define TRIE_LIST_NEW(state) STMT_START { \
2514 Newx( trie->states[ state ].trans.list, \
2515 4, reg_trie_trans_le ); \
2516 TRIE_LIST_CUR( state ) = 1; \
2517 TRIE_LIST_LEN( state ) = 4; \
2520 #define TRIE_HANDLE_WORD(state) STMT_START { \
2521 U16 dupe= trie->states[ state ].wordnum; \
2522 regnode * const noper_next = regnext( noper ); \
2525 /* store the word for dumping */ \
2527 if (OP(noper) != NOTHING) \
2528 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
2530 tmp = newSVpvn_utf8( "", 0, UTF ); \
2531 av_push( trie_words, tmp ); \
2535 trie->wordinfo[curword].prev = 0; \
2536 trie->wordinfo[curword].len = wordlen; \
2537 trie->wordinfo[curword].accept = state; \
2539 if ( noper_next < tail ) { \
2541 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, \
2543 trie->jump[curword] = (U16)(noper_next - convert); \
2545 jumper = noper_next; \
2547 nextbranch= regnext(cur); \
2551 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
2552 /* chain, so that when the bits of chain are later */\
2553 /* linked together, the dups appear in the chain */\
2554 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
2555 trie->wordinfo[dupe].prev = curword; \
2557 /* we haven't inserted this word yet. */ \
2558 trie->states[ state ].wordnum = curword; \
2563 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
2564 ( ( base + charid >= ucharcount \
2565 && base + charid < ubound \
2566 && state == trie->trans[ base - ucharcount + charid ].check \
2567 && trie->trans[ base - ucharcount + charid ].next ) \
2568 ? trie->trans[ base - ucharcount + charid ].next \
2569 : ( state==1 ? special : 0 ) \
2572 #define TRIE_BITMAP_SET_FOLDED(trie, uvc, folder) \
2574 TRIE_BITMAP_SET(trie, uvc); \
2575 /* store the folded codepoint */ \
2577 TRIE_BITMAP_SET(trie, folder[(U8) uvc ]); \
2580 /* store first byte of utf8 representation of */ \
2581 /* variant codepoints */ \
2582 if (! UVCHR_IS_INVARIANT(uvc)) { \
2583 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc)); \
2588 #define MADE_JUMP_TRIE 2
2589 #define MADE_EXACT_TRIE 4
2592 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch,
2593 regnode *first, regnode *last, regnode *tail,
2594 U32 word_count, U32 flags, U32 depth)
2596 /* first pass, loop through and scan words */
2597 reg_trie_data *trie;
2598 HV *widecharmap = NULL;
2599 AV *revcharmap = newAV();
2605 regnode *jumper = NULL;
2606 regnode *nextbranch = NULL;
2607 regnode *convert = NULL;
2608 U32 *prev_states; /* temp array mapping each state to previous one */
2609 /* we just use folder as a flag in utf8 */
2610 const U8 * folder = NULL;
2612 /* in the below add_data call we are storing either 'tu' or 'tuaa'
2613 * which stands for one trie structure, one hash, optionally followed
2616 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tuaa"));
2617 AV *trie_words = NULL;
2618 /* along with revcharmap, this only used during construction but both are
2619 * useful during debugging so we store them in the struct when debugging.
2622 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tu"));
2623 STRLEN trie_charcount=0;
2625 SV *re_trie_maxbuff;
2626 GET_RE_DEBUG_FLAGS_DECL;
2628 PERL_ARGS_ASSERT_MAKE_TRIE;
2630 PERL_UNUSED_ARG(depth);
2634 case EXACT: case EXACTL: break;
2638 case EXACTFLU8: folder = PL_fold_latin1; break;
2639 case EXACTF: folder = PL_fold; break;
2640 default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
2643 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
2645 trie->startstate = 1;
2646 trie->wordcount = word_count;
2647 RExC_rxi->data->data[ data_slot ] = (void*)trie;
2648 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
2649 if (flags == EXACT || flags == EXACTL)
2650 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
2651 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
2652 trie->wordcount+1, sizeof(reg_trie_wordinfo));
2655 trie_words = newAV();
2658 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
2659 assert(re_trie_maxbuff);
2660 if (!SvIOK(re_trie_maxbuff)) {
2661 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
2663 DEBUG_TRIE_COMPILE_r({
2664 Perl_re_indentf( aTHX_
2665 "make_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
2667 REG_NODE_NUM(startbranch), REG_NODE_NUM(first),
2668 REG_NODE_NUM(last), REG_NODE_NUM(tail), (int)depth);
2671 /* Find the node we are going to overwrite */
2672 if ( first == startbranch && OP( last ) != BRANCH ) {
2673 /* whole branch chain */
2676 /* branch sub-chain */
2677 convert = NEXTOPER( first );
2680 /* -- First loop and Setup --
2682 We first traverse the branches and scan each word to determine if it
2683 contains widechars, and how many unique chars there are, this is
2684 important as we have to build a table with at least as many columns as we
2687 We use an array of integers to represent the character codes 0..255
2688 (trie->charmap) and we use a an HV* to store Unicode characters. We use
2689 the native representation of the character value as the key and IV's for
2692 *TODO* If we keep track of how many times each character is used we can
2693 remap the columns so that the table compression later on is more
2694 efficient in terms of memory by ensuring the most common value is in the
2695 middle and the least common are on the outside. IMO this would be better
2696 than a most to least common mapping as theres a decent chance the most
2697 common letter will share a node with the least common, meaning the node
2698 will not be compressible. With a middle is most common approach the worst
2699 case is when we have the least common nodes twice.
2703 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2704 regnode *noper = NEXTOPER( cur );
2708 U32 wordlen = 0; /* required init */
2709 STRLEN minchars = 0;
2710 STRLEN maxchars = 0;
2711 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the
2714 if (OP(noper) == NOTHING) {
2715 /* skip past a NOTHING at the start of an alternation
2716 * eg, /(?:)a|(?:b)/ should be the same as /a|b/
2718 regnode *noper_next= regnext(noper);
2719 if (noper_next < tail)
2723 if ( noper < tail &&
2725 OP(noper) == flags ||
2728 OP(noper) == EXACTFU_SS
2732 uc= (U8*)STRING(noper);
2733 e= uc + STR_LEN(noper);
2740 if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
2741 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
2742 regardless of encoding */
2743 if (OP( noper ) == EXACTFU_SS) {
2744 /* false positives are ok, so just set this */
2745 TRIE_BITMAP_SET(trie, LATIN_SMALL_LETTER_SHARP_S);
2749 for ( ; uc < e ; uc += len ) { /* Look at each char in the current
2751 TRIE_CHARCOUNT(trie)++;
2754 /* TRIE_READ_CHAR returns the current character, or its fold if /i
2755 * is in effect. Under /i, this character can match itself, or
2756 * anything that folds to it. If not under /i, it can match just
2757 * itself. Most folds are 1-1, for example k, K, and KELVIN SIGN
2758 * all fold to k, and all are single characters. But some folds
2759 * expand to more than one character, so for example LATIN SMALL
2760 * LIGATURE FFI folds to the three character sequence 'ffi'. If
2761 * the string beginning at 'uc' is 'ffi', it could be matched by
2762 * three characters, or just by the one ligature character. (It
2763 * could also be matched by two characters: LATIN SMALL LIGATURE FF
2764 * followed by 'i', or by 'f' followed by LATIN SMALL LIGATURE FI).
2765 * (Of course 'I' and/or 'F' instead of 'i' and 'f' can also
2766 * match.) The trie needs to know the minimum and maximum number
2767 * of characters that could match so that it can use size alone to
2768 * quickly reject many match attempts. The max is simple: it is
2769 * the number of folded characters in this branch (since a fold is
2770 * never shorter than what folds to it. */
2774 /* And the min is equal to the max if not under /i (indicated by
2775 * 'folder' being NULL), or there are no multi-character folds. If
2776 * there is a multi-character fold, the min is incremented just
2777 * once, for the character that folds to the sequence. Each
2778 * character in the sequence needs to be added to the list below of
2779 * characters in the trie, but we count only the first towards the
2780 * min number of characters needed. This is done through the
2781 * variable 'foldlen', which is returned by the macros that look
2782 * for these sequences as the number of bytes the sequence
2783 * occupies. Each time through the loop, we decrement 'foldlen' by
2784 * how many bytes the current char occupies. Only when it reaches
2785 * 0 do we increment 'minchars' or look for another multi-character
2787 if (folder == NULL) {
2790 else if (foldlen > 0) {
2791 foldlen -= (UTF) ? UTF8SKIP(uc) : 1;
2796 /* See if *uc is the beginning of a multi-character fold. If
2797 * so, we decrement the length remaining to look at, to account
2798 * for the current character this iteration. (We can use 'uc'
2799 * instead of the fold returned by TRIE_READ_CHAR because for
2800 * non-UTF, the latin1_safe macro is smart enough to account
2801 * for all the unfolded characters, and because for UTF, the
2802 * string will already have been folded earlier in the
2803 * compilation process */
2805 if ((foldlen = is_MULTI_CHAR_FOLD_utf8_safe(uc, e))) {
2806 foldlen -= UTF8SKIP(uc);
2809 else if ((foldlen = is_MULTI_CHAR_FOLD_latin1_safe(uc, e))) {
2814 /* The current character (and any potential folds) should be added
2815 * to the possible matching characters for this position in this
2819 U8 folded= folder[ (U8) uvc ];
2820 if ( !trie->charmap[ folded ] ) {
2821 trie->charmap[ folded ]=( ++trie->uniquecharcount );
2822 TRIE_STORE_REVCHAR( folded );
2825 if ( !trie->charmap[ uvc ] ) {
2826 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
2827 TRIE_STORE_REVCHAR( uvc );
2830 /* store the codepoint in the bitmap, and its folded
2832 TRIE_BITMAP_SET_FOLDED(trie, uvc, folder);
2833 set_bit = 0; /* We've done our bit :-) */
2837 /* XXX We could come up with the list of code points that fold
2838 * to this using PL_utf8_foldclosures, except not for
2839 * multi-char folds, as there may be multiple combinations
2840 * there that could work, which needs to wait until runtime to
2841 * resolve (The comment about LIGATURE FFI above is such an
2846 widecharmap = newHV();
2848 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
2851 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%" UVXf, uvc );
2853 if ( !SvTRUE( *svpp ) ) {
2854 sv_setiv( *svpp, ++trie->uniquecharcount );
2855 TRIE_STORE_REVCHAR(uvc);
2858 } /* end loop through characters in this branch of the trie */
2860 /* We take the min and max for this branch and combine to find the min
2861 * and max for all branches processed so far */
2862 if( cur == first ) {
2863 trie->minlen = minchars;
2864 trie->maxlen = maxchars;
2865 } else if (minchars < trie->minlen) {
2866 trie->minlen = minchars;
2867 } else if (maxchars > trie->maxlen) {
2868 trie->maxlen = maxchars;
2870 } /* end first pass */
2871 DEBUG_TRIE_COMPILE_r(
2872 Perl_re_indentf( aTHX_
2873 "TRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
2875 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
2876 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
2877 (int)trie->minlen, (int)trie->maxlen )
2881 We now know what we are dealing with in terms of unique chars and
2882 string sizes so we can calculate how much memory a naive
2883 representation using a flat table will take. If it's over a reasonable
2884 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
2885 conservative but potentially much slower representation using an array
2888 At the end we convert both representations into the same compressed
2889 form that will be used in regexec.c for matching with. The latter
2890 is a form that cannot be used to construct with but has memory
2891 properties similar to the list form and access properties similar
2892 to the table form making it both suitable for fast searches and
2893 small enough that its feasable to store for the duration of a program.
2895 See the comment in the code where the compressed table is produced
2896 inplace from the flat tabe representation for an explanation of how
2897 the compression works.
2902 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
2905 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1)
2906 > SvIV(re_trie_maxbuff) )
2909 Second Pass -- Array Of Lists Representation
2911 Each state will be represented by a list of charid:state records
2912 (reg_trie_trans_le) the first such element holds the CUR and LEN
2913 points of the allocated array. (See defines above).
2915 We build the initial structure using the lists, and then convert
2916 it into the compressed table form which allows faster lookups
2917 (but cant be modified once converted).
2920 STRLEN transcount = 1;
2922 DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_ "Compiling trie using list compiler\n",
2925 trie->states = (reg_trie_state *)
2926 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2927 sizeof(reg_trie_state) );
2931 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2933 regnode *noper = NEXTOPER( cur );
2934 U32 state = 1; /* required init */
2935 U16 charid = 0; /* sanity init */
2936 U32 wordlen = 0; /* required init */
2938 if (OP(noper) == NOTHING) {
2939 regnode *noper_next= regnext(noper);
2940 if (noper_next < tail)
2944 if ( noper < tail && ( OP(noper) == flags || ( flags == EXACTFU && OP(noper) == EXACTFU_SS ) ) ) {
2945 const U8 *uc= (U8*)STRING(noper);
2946 const U8 *e= uc + STR_LEN(noper);
2948 for ( ; uc < e ; uc += len ) {
2953 charid = trie->charmap[ uvc ];
2955 SV** const svpp = hv_fetch( widecharmap,
2962 charid=(U16)SvIV( *svpp );
2965 /* charid is now 0 if we dont know the char read, or
2966 * nonzero if we do */
2973 if ( !trie->states[ state ].trans.list ) {
2974 TRIE_LIST_NEW( state );
2977 check <= TRIE_LIST_USED( state );
2980 if ( TRIE_LIST_ITEM( state, check ).forid
2983 newstate = TRIE_LIST_ITEM( state, check ).newstate;
2988 newstate = next_alloc++;
2989 prev_states[newstate] = state;
2990 TRIE_LIST_PUSH( state, charid, newstate );
2995 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %" IVdf, uvc );
2999 TRIE_HANDLE_WORD(state);
3001 } /* end second pass */
3003 /* next alloc is the NEXT state to be allocated */
3004 trie->statecount = next_alloc;
3005 trie->states = (reg_trie_state *)
3006 PerlMemShared_realloc( trie->states,
3008 * sizeof(reg_trie_state) );
3010 /* and now dump it out before we compress it */
3011 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
3012 revcharmap, next_alloc,
3016 trie->trans = (reg_trie_trans *)
3017 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
3024 for( state=1 ; state < next_alloc ; state ++ ) {
3028 DEBUG_TRIE_COMPILE_MORE_r(
3029 Perl_re_printf( aTHX_ "tp: %d zp: %d ",tp,zp)
3033 if (trie->states[state].trans.list) {
3034 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
3038 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
3039 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
3040 if ( forid < minid ) {
3042 } else if ( forid > maxid ) {
3046 if ( transcount < tp + maxid - minid + 1) {
3048 trie->trans = (reg_trie_trans *)
3049 PerlMemShared_realloc( trie->trans,
3051 * sizeof(reg_trie_trans) );
3052 Zero( trie->trans + (transcount / 2),
3056 base = trie->uniquecharcount + tp - minid;
3057 if ( maxid == minid ) {
3059 for ( ; zp < tp ; zp++ ) {
3060 if ( ! trie->trans[ zp ].next ) {
3061 base = trie->uniquecharcount + zp - minid;
3062 trie->trans[ zp ].next = TRIE_LIST_ITEM( state,
3064 trie->trans[ zp ].check = state;
3070 trie->trans[ tp ].next = TRIE_LIST_ITEM( state,
3072 trie->trans[ tp ].check = state;
3077 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
3078 const U32 tid = base
3079 - trie->uniquecharcount
3080 + TRIE_LIST_ITEM( state, idx ).forid;
3081 trie->trans[ tid ].next = TRIE_LIST_ITEM( state,
3083 trie->trans[ tid ].check = state;
3085 tp += ( maxid - minid + 1 );
3087 Safefree(trie->states[ state ].trans.list);
3090 DEBUG_TRIE_COMPILE_MORE_r(
3091 Perl_re_printf( aTHX_ " base: %d\n",base);
3094 trie->states[ state ].trans.base=base;
3096 trie->lasttrans = tp + 1;
3100 Second Pass -- Flat Table Representation.
3102 we dont use the 0 slot of either trans[] or states[] so we add 1 to
3103 each. We know that we will need Charcount+1 trans at most to store
3104 the data (one row per char at worst case) So we preallocate both
3105 structures assuming worst case.
3107 We then construct the trie using only the .next slots of the entry
3110 We use the .check field of the first entry of the node temporarily
3111 to make compression both faster and easier by keeping track of how
3112 many non zero fields are in the node.
3114 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
3117 There are two terms at use here: state as a TRIE_NODEIDX() which is
3118 a number representing the first entry of the node, and state as a
3119 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1)
3120 and TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3)
3121 if there are 2 entrys per node. eg:
3129 The table is internally in the right hand, idx form. However as we
3130 also have to deal with the states array which is indexed by nodenum
3131 we have to use TRIE_NODENUM() to convert.
3134 DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_ "Compiling trie using table compiler\n",
3137 trie->trans = (reg_trie_trans *)
3138 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
3139 * trie->uniquecharcount + 1,
3140 sizeof(reg_trie_trans) );
3141 trie->states = (reg_trie_state *)
3142 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
3143 sizeof(reg_trie_state) );
3144 next_alloc = trie->uniquecharcount + 1;
3147 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
3149 regnode *noper = NEXTOPER( cur );
3151 U32 state = 1; /* required init */
3153 U16 charid = 0; /* sanity init */
3154 U32 accept_state = 0; /* sanity init */
3156 U32 wordlen = 0; /* required init */
3158 if (OP(noper) == NOTHING) {
3159 regnode *noper_next= regnext(noper);
3160 if (noper_next < tail)
3164 if ( noper < tail && ( OP(noper) == flags || ( flags == EXACTFU && OP(noper) == EXACTFU_SS ) ) ) {
3165 const U8 *uc= (U8*)STRING(noper);
3166 const U8 *e= uc + STR_LEN(noper);
3168 for ( ; uc < e ; uc += len ) {
3173 charid = trie->charmap[ uvc ];
3175 SV* const * const svpp = hv_fetch( widecharmap,
3179 charid = svpp ? (U16)SvIV(*svpp) : 0;
3183 if ( !trie->trans[ state + charid ].next ) {
3184 trie->trans[ state + charid ].next = next_alloc;
3185 trie->trans[ state ].check++;
3186 prev_states[TRIE_NODENUM(next_alloc)]
3187 = TRIE_NODENUM(state);
3188 next_alloc += trie->uniquecharcount;
3190 state = trie->trans[ state + charid ].next;
3192 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %" IVdf, uvc );
3194 /* charid is now 0 if we dont know the char read, or
3195 * nonzero if we do */
3198 accept_state = TRIE_NODENUM( state );
3199 TRIE_HANDLE_WORD(accept_state);
3201 } /* end second pass */
3203 /* and now dump it out before we compress it */
3204 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
3206 next_alloc, depth+1));
3210 * Inplace compress the table.*
3212 For sparse data sets the table constructed by the trie algorithm will
3213 be mostly 0/FAIL transitions or to put it another way mostly empty.
3214 (Note that leaf nodes will not contain any transitions.)
3216 This algorithm compresses the tables by eliminating most such
3217 transitions, at the cost of a modest bit of extra work during lookup:
3219 - Each states[] entry contains a .base field which indicates the
3220 index in the state[] array wheres its transition data is stored.
3222 - If .base is 0 there are no valid transitions from that node.
3224 - If .base is nonzero then charid is added to it to find an entry in
3227 -If trans[states[state].base+charid].check!=state then the
3228 transition is taken to be a 0/Fail transition. Thus if there are fail
3229 transitions at the front of the node then the .base offset will point
3230 somewhere inside the previous nodes data (or maybe even into a node
3231 even earlier), but the .check field determines if the transition is
3235 The following process inplace converts the table to the compressed
3236 table: We first do not compress the root node 1,and mark all its
3237 .check pointers as 1 and set its .base pointer as 1 as well. This
3238 allows us to do a DFA construction from the compressed table later,
3239 and ensures that any .base pointers we calculate later are greater
3242 - We set 'pos' to indicate the first entry of the second node.
3244 - We then iterate over the columns of the node, finding the first and
3245 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
3246 and set the .check pointers accordingly, and advance pos
3247 appropriately and repreat for the next node. Note that when we copy
3248 the next pointers we have to convert them from the original
3249 NODEIDX form to NODENUM form as the former is not valid post
3252 - If a node has no transitions used we mark its base as 0 and do not
3253 advance the pos pointer.
3255 - If a node only has one transition we use a second pointer into the
3256 structure to fill in allocated fail transitions from other states.
3257 This pointer is independent of the main pointer and scans forward
3258 looking for null transitions that are allocated to a state. When it
3259 finds one it writes the single transition into the "hole". If the
3260 pointer doesnt find one the single transition is appended as normal.
3262 - Once compressed we can Renew/realloc the structures to release the
3265 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
3266 specifically Fig 3.47 and the associated pseudocode.
3270 const U32 laststate = TRIE_NODENUM( next_alloc );
3273 trie->statecount = laststate;
3275 for ( state = 1 ; state < laststate ; state++ ) {
3277 const U32 stateidx = TRIE_NODEIDX( state );
3278 const U32 o_used = trie->trans[ stateidx ].check;
3279 U32 used = trie->trans[ stateidx ].check;
3280 trie->trans[ stateidx ].check = 0;
3283 used && charid < trie->uniquecharcount;
3286 if ( flag || trie->trans[ stateidx + charid ].next ) {
3287 if ( trie->trans[ stateidx + charid ].next ) {
3289 for ( ; zp < pos ; zp++ ) {
3290 if ( ! trie->trans[ zp ].next ) {
3294 trie->states[ state ].trans.base
3296 + trie->uniquecharcount
3298 trie->trans[ zp ].next
3299 = SAFE_TRIE_NODENUM( trie->trans[ stateidx
3301 trie->trans[ zp ].check = state;
3302 if ( ++zp > pos ) pos = zp;
3309 trie->states[ state ].trans.base
3310 = pos + trie->uniquecharcount - charid ;
3312 trie->trans[ pos ].next
3313 = SAFE_TRIE_NODENUM(
3314 trie->trans[ stateidx + charid ].next );
3315 trie->trans[ pos ].check = state;
3320 trie->lasttrans = pos + 1;
3321 trie->states = (reg_trie_state *)
3322 PerlMemShared_realloc( trie->states, laststate
3323 * sizeof(reg_trie_state) );
3324 DEBUG_TRIE_COMPILE_MORE_r(
3325 Perl_re_indentf( aTHX_ "Alloc: %d Orig: %" IVdf " elements, Final:%" IVdf ". Savings of %%%5.2f\n",
3327 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount
3331 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
3334 } /* end table compress */
3336 DEBUG_TRIE_COMPILE_MORE_r(
3337 Perl_re_indentf( aTHX_ "Statecount:%" UVxf " Lasttrans:%" UVxf "\n",
3339 (UV)trie->statecount,
3340 (UV)trie->lasttrans)
3342 /* resize the trans array to remove unused space */
3343 trie->trans = (reg_trie_trans *)
3344 PerlMemShared_realloc( trie->trans, trie->lasttrans
3345 * sizeof(reg_trie_trans) );
3347 { /* Modify the program and insert the new TRIE node */
3348 U8 nodetype =(U8)(flags & 0xFF);
3352 regnode *optimize = NULL;
3353 #ifdef RE_TRACK_PATTERN_OFFSETS
3356 U32 mjd_nodelen = 0;
3357 #endif /* RE_TRACK_PATTERN_OFFSETS */
3358 #endif /* DEBUGGING */
3360 This means we convert either the first branch or the first Exact,
3361 depending on whether the thing following (in 'last') is a branch
3362 or not and whther first is the startbranch (ie is it a sub part of
3363 the alternation or is it the whole thing.)
3364 Assuming its a sub part we convert the EXACT otherwise we convert
3365 the whole branch sequence, including the first.
3367 /* Find the node we are going to overwrite */
3368 if ( first != startbranch || OP( last ) == BRANCH ) {
3369 /* branch sub-chain */
3370 NEXT_OFF( first ) = (U16)(last - first);
3371 #ifdef RE_TRACK_PATTERN_OFFSETS
3373 mjd_offset= Node_Offset((convert));
3374 mjd_nodelen= Node_Length((convert));
3377 /* whole branch chain */
3379 #ifdef RE_TRACK_PATTERN_OFFSETS
3382 const regnode *nop = NEXTOPER( convert );
3383 mjd_offset= Node_Offset((nop));
3384 mjd_nodelen= Node_Length((nop));
3388 Perl_re_indentf( aTHX_ "MJD offset:%" UVuf " MJD length:%" UVuf "\n",
3390 (UV)mjd_offset, (UV)mjd_nodelen)
3393 /* But first we check to see if there is a common prefix we can
3394 split out as an EXACT and put in front of the TRIE node. */
3395 trie->startstate= 1;
3396 if ( trie->bitmap && !widecharmap && !trie->jump ) {
3397 /* we want to find the first state that has more than
3398 * one transition, if that state is not the first state
3399 * then we have a common prefix which we can remove.
3402 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
3404 I32 first_ofs = -1; /* keeps track of the ofs of the first
3405 transition, -1 means none */
3407 const U32 base = trie->states[ state ].trans.base;
3409 /* does this state terminate an alternation? */
3410 if ( trie->states[state].wordnum )
3413 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
3414 if ( ( base + ofs >= trie->uniquecharcount ) &&
3415 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
3416 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
3418 if ( ++count > 1 ) {
3419 /* we have more than one transition */
3422 /* if this is the first state there is no common prefix
3423 * to extract, so we can exit */
3424 if ( state == 1 ) break;
3425 tmp = av_fetch( revcharmap, ofs, 0);
3426 ch = (U8*)SvPV_nolen_const( *tmp );
3428 /* if we are on count 2 then we need to initialize the
3429 * bitmap, and store the previous char if there was one
3432 /* clear the bitmap */
3433 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
3435 Perl_re_indentf( aTHX_ "New Start State=%" UVuf " Class: [",
3438 if (first_ofs >= 0) {
3439 SV ** const tmp = av_fetch( revcharmap, first_ofs, 0);
3440 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
3442 TRIE_BITMAP_SET_FOLDED(trie,*ch, folder);
3444 Perl_re_printf( aTHX_ "%s", (char*)ch)
3448 /* store the current firstchar in the bitmap */
3449 TRIE_BITMAP_SET_FOLDED(trie,*ch, folder);
3450 DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "%s", ch));
3456 /* This state has only one transition, its transition is part
3457 * of a common prefix - we need to concatenate the char it
3458 * represents to what we have so far. */
3459 SV **tmp = av_fetch( revcharmap, first_ofs, 0);
3461 char *ch = SvPV( *tmp, len );
3463 SV *sv=sv_newmortal();
3464 Perl_re_indentf( aTHX_ "Prefix State: %" UVuf " Ofs:%" UVuf " Char='%s'\n",
3466 (UV)state, (UV)first_ofs,
3467 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
3468 PL_colors[0], PL_colors[1],
3469 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
3470 PERL_PV_ESCAPE_FIRSTCHAR
3475 OP( convert ) = nodetype;
3476 str=STRING(convert);
3479 STR_LEN(convert) += len;
3485 DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "]\n"));
3490 trie->prefixlen = (state-1);
3492 regnode *n = convert+NODE_SZ_STR(convert);
3493 NEXT_OFF(convert) = NODE_SZ_STR(convert);
3494 trie->startstate = state;
3495 trie->minlen -= (state - 1);
3496 trie->maxlen -= (state - 1);
3498 /* At least the UNICOS C compiler choked on this
3499 * being argument to DEBUG_r(), so let's just have
3502 #ifdef PERL_EXT_RE_BUILD
3508 regnode *fix = convert;
3509 U32 word = trie->wordcount;
3510 #ifdef RE_TRACK_PATTERN_OFFSETS
3513 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
3514 while( ++fix < n ) {
3515 Set_Node_Offset_Length(fix, 0, 0);
3518 SV ** const tmp = av_fetch( trie_words, word, 0 );
3520 if ( STR_LEN(convert) <= SvCUR(*tmp) )
3521 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
3523 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
3531 NEXT_OFF(convert) = (U16)(tail - convert);
3532 DEBUG_r(optimize= n);
3538 if ( trie->maxlen ) {
3539 NEXT_OFF( convert ) = (U16)(tail - convert);
3540 ARG_SET( convert, data_slot );
3541 /* Store the offset to the first unabsorbed branch in
3542 jump[0], which is otherwise unused by the jump logic.
3543 We use this when dumping a trie and during optimisation. */
3545 trie->jump[0] = (U16)(nextbranch - convert);
3547 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
3548 * and there is a bitmap
3549 * and the first "jump target" node we found leaves enough room
3550 * then convert the TRIE node into a TRIEC node, with the bitmap
3551 * embedded inline in the opcode - this is hypothetically faster.
3553 if ( !trie->states[trie->startstate].wordnum
3555 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
3557 OP( convert ) = TRIEC;
3558 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
3559 PerlMemShared_free(trie->bitmap);
3562 OP( convert ) = TRIE;
3564 /* store the type in the flags */
3565 convert->flags = nodetype;
3569 + regarglen[ OP( convert ) ];
3571 /* XXX We really should free up the resource in trie now,
3572 as we won't use them - (which resources?) dmq */
3574 /* needed for dumping*/
3575 DEBUG_r(if (optimize) {
3576 regnode *opt = convert;
3578 while ( ++opt < optimize) {
3579 Set_Node_Offset_Length(opt, 0, 0);
3582 Try to clean up some of the debris left after the
3585 while( optimize < jumper ) {
3586 #ifdef RE_TRACK_PATTERN_OFFSETS
3587 mjd_nodelen += Node_Length((optimize));
3589 OP( optimize ) = OPTIMIZED;
3590 Set_Node_Offset_Length(optimize, 0, 0);
3593 Set_Node_Offset_Length(convert, mjd_offset, mjd_nodelen);
3595 } /* end node insert */
3597 /* Finish populating the prev field of the wordinfo array. Walk back
3598 * from each accept state until we find another accept state, and if
3599 * so, point the first word's .prev field at the second word. If the
3600 * second already has a .prev field set, stop now. This will be the
3601 * case either if we've already processed that word's accept state,
3602 * or that state had multiple words, and the overspill words were
3603 * already linked up earlier.
3610 for (word=1; word <= trie->wordcount; word++) {
3612 if (trie->wordinfo[word].prev)
3614 state = trie->wordinfo[word].accept;
3616 state = prev_states[state];
3619 prev = trie->states[state].wordnum;
3623 trie->wordinfo[word].prev = prev;
3625 Safefree(prev_states);
3629 /* and now dump out the compressed format */
3630 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
3632 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
3634 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
3635 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
3637 SvREFCNT_dec_NN(revcharmap);
3641 : trie->startstate>1
3647 S_construct_ahocorasick_from_trie(pTHX_ RExC_state_t *pRExC_state, regnode *source, U32 depth)
3649 /* The Trie is constructed and compressed now so we can build a fail array if
3652 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and
3654 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi,
3658 We find the fail state for each state in the trie, this state is the longest
3659 proper suffix of the current state's 'word' that is also a proper prefix of
3660 another word in our trie. State 1 represents the word '' and is thus the
3661 default fail state. This allows the DFA not to have to restart after its
3662 tried and failed a word at a given point, it simply continues as though it
3663 had been matching the other word in the first place.
3665 'abcdgu'=~/abcdefg|cdgu/
3666 When we get to 'd' we are still matching the first word, we would encounter
3667 'g' which would fail, which would bring us to the state representing 'd' in
3668 the second word where we would try 'g' and succeed, proceeding to match
3671 /* add a fail transition */
3672 const U32 trie_offset = ARG(source);
3673 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
3675 const U32 ucharcount = trie->uniquecharcount;
3676 const U32 numstates = trie->statecount;
3677 const U32 ubound = trie->lasttrans + ucharcount;
3681 U32 base = trie->states[ 1 ].trans.base;
3684 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("T"));
3686 GET_RE_DEBUG_FLAGS_DECL;
3688 PERL_ARGS_ASSERT_CONSTRUCT_AHOCORASICK_FROM_TRIE;
3689 PERL_UNUSED_CONTEXT;
3691 PERL_UNUSED_ARG(depth);
3694 if ( OP(source) == TRIE ) {
3695 struct regnode_1 *op = (struct regnode_1 *)
3696 PerlMemShared_calloc(1, sizeof(struct regnode_1));
3697 StructCopy(source, op, struct regnode_1);
3698 stclass = (regnode *)op;
3700 struct regnode_charclass *op = (struct regnode_charclass *)
3701 PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
3702 StructCopy(source, op, struct regnode_charclass);
3703 stclass = (regnode *)op;
3705 OP(stclass)+=2; /* convert the TRIE type to its AHO-CORASICK equivalent */
3707 ARG_SET( stclass, data_slot );
3708 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
3709 RExC_rxi->data->data[ data_slot ] = (void*)aho;
3710 aho->trie=trie_offset;
3711 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
3712 Copy( trie->states, aho->states, numstates, reg_trie_state );
3713 Newx( q, numstates, U32);
3714 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
3717 /* initialize fail[0..1] to be 1 so that we always have
3718 a valid final fail state */
3719 fail[ 0 ] = fail[ 1 ] = 1;
3721 for ( charid = 0; charid < ucharcount ; charid++ ) {
3722 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
3724 q[ q_write ] = newstate;
3725 /* set to point at the root */
3726 fail[ q[ q_write++ ] ]=1;
3729 while ( q_read < q_write) {
3730 const U32 cur = q[ q_read++ % numstates ];
3731 base = trie->states[ cur ].trans.base;
3733 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
3734 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
3736 U32 fail_state = cur;
3739 fail_state = fail[ fail_state ];
3740 fail_base = aho->states[ fail_state ].trans.base;
3741 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
3743 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
3744 fail[ ch_state ] = fail_state;
3745 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
3747 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
3749 q[ q_write++ % numstates] = ch_state;
3753 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
3754 when we fail in state 1, this allows us to use the
3755 charclass scan to find a valid start char. This is based on the principle
3756 that theres a good chance the string being searched contains lots of stuff
3757 that cant be a start char.
3759 fail[ 0 ] = fail[ 1 ] = 0;
3760 DEBUG_TRIE_COMPILE_r({
3761 Perl_re_indentf( aTHX_ "Stclass Failtable (%" UVuf " states): 0",
3762 depth, (UV)numstates
3764 for( q_read=1; q_read<numstates; q_read++ ) {
3765 Perl_re_printf( aTHX_ ", %" UVuf, (UV)fail[q_read]);
3767 Perl_re_printf( aTHX_ "\n");
3770 /*RExC_seen |= REG_TRIEDFA_SEEN;*/
3775 /* The below joins as many adjacent EXACTish nodes as possible into a single
3776 * one. The regop may be changed if the node(s) contain certain sequences that
3777 * require special handling. The joining is only done if:
3778 * 1) there is room in the current conglomerated node to entirely contain the
3780 * 2) they are the exact same node type
3782 * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
3783 * these get optimized out
3785 * XXX khw thinks this should be enhanced to fill EXACT (at least) nodes as full
3786 * as possible, even if that means splitting an existing node so that its first
3787 * part is moved to the preceeding node. This would maximise the efficiency of
3788 * memEQ during matching.
3790 * If a node is to match under /i (folded), the number of characters it matches
3791 * can be different than its character length if it contains a multi-character
3792 * fold. *min_subtract is set to the total delta number of characters of the
3795 * And *unfolded_multi_char is set to indicate whether or not the node contains
3796 * an unfolded multi-char fold. This happens when it won't be known until
3797 * runtime whether the fold is valid or not; namely
3798 * 1) for EXACTF nodes that contain LATIN SMALL LETTER SHARP S, as only if the
3799 * target string being matched against turns out to be UTF-8 is that fold
3801 * 2) for EXACTFL nodes whose folding rules depend on the locale in force at
3803 * (Multi-char folds whose components are all above the Latin1 range are not
3804 * run-time locale dependent, and have already been folded by the time this
3805 * function is called.)
3807 * This is as good a place as any to discuss the design of handling these
3808 * multi-character fold sequences. It's been wrong in Perl for a very long
3809 * time. There are three code points in Unicode whose multi-character folds
3810 * were long ago discovered to mess things up. The previous designs for
3811 * dealing with these involved assigning a special node for them. This
3812 * approach doesn't always work, as evidenced by this example:
3813 * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
3814 * Both sides fold to "sss", but if the pattern is parsed to create a node that
3815 * would match just the \xDF, it won't be able to handle the case where a
3816 * successful match would have to cross the node's boundary. The new approach
3817 * that hopefully generally solves the problem generates an EXACTFU_SS node
3818 * that is "sss" in this case.
3820 * It turns out that there are problems with all multi-character folds, and not
3821 * just these three. Now the code is general, for all such cases. The
3822 * approach taken is:
3823 * 1) This routine examines each EXACTFish node that could contain multi-
3824 * character folded sequences. Since a single character can fold into
3825 * such a sequence, the minimum match length for this node is less than
3826 * the number of characters in the node. This routine returns in
3827 * *min_subtract how many characters to subtract from the the actual
3828 * length of the string to get a real minimum match length; it is 0 if
3829 * there are no multi-char foldeds. This delta is used by the caller to
3830 * adjust the min length of the match, and the delta between min and max,
3831 * so that the optimizer doesn't reject these possibilities based on size
3833 * 2) For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS
3834 * is used for an EXACTFU node that contains at least one "ss" sequence in
3835 * it. For non-UTF-8 patterns and strings, this is the only case where
3836 * there is a possible fold length change. That means that a regular
3837 * EXACTFU node without UTF-8 involvement doesn't have to concern itself
3838 * with length changes, and so can be processed faster. regexec.c takes
3839 * advantage of this. Generally, an EXACTFish node that is in UTF-8 is
3840 * pre-folded by regcomp.c (except EXACTFL, some of whose folds aren't
3841 * known until runtime). This saves effort in regex matching. However,
3842 * the pre-folding isn't done for non-UTF8 patterns because the fold of
3843 * the MICRO SIGN requires UTF-8, and we don't want to slow things down by
3844 * forcing the pattern into UTF8 unless necessary. Also what EXACTF (and,
3845 * again, EXACTFL) nodes fold to isn't known until runtime. The fold
3846 * possibilities for the non-UTF8 patterns are quite simple, except for
3847 * the sharp s. All the ones that don't involve a UTF-8 target string are
3848 * members of a fold-pair, and arrays are set up for all of them so that
3849 * the other member of the pair can be found quickly. Code elsewhere in
3850 * this file makes sure that in EXACTFU nodes, the sharp s gets folded to
3851 * 'ss', even if the pattern isn't UTF-8. This avoids the issues
3852 * described in the next item.
3853 * 3) A problem remains for unfolded multi-char folds. (These occur when the
3854 * validity of the fold won't be known until runtime, and so must remain
3855 * unfolded for now. This happens for the sharp s in EXACTF and EXACTFAA
3856 * nodes when the pattern isn't in UTF-8. (Note, BTW, that there cannot
3857 * be an EXACTF node with a UTF-8 pattern.) They also occur for various
3858 * folds in EXACTFL nodes, regardless of the UTF-ness of the pattern.)
3859 * The reason this is a problem is that the optimizer part of regexec.c
3860 * (probably unwittingly, in Perl_regexec_flags()) makes an assumption
3861 * that a character in the pattern corresponds to at most a single
3862 * character in the target string. (And I do mean character, and not byte
3863 * here, unlike other parts of the documentation that have never been
3864 * updated to account for multibyte Unicode.) sharp s in EXACTF and
3865 * EXACTFL nodes can match the two character string 'ss'; in EXACTFAA
3866 * nodes it can match "\x{17F}\x{17F}". These, along with other ones in
3867 * EXACTFL nodes, violate the assumption, and they are the only instances
3868 * where it is violated. I'm reluctant to try to change the assumption,
3869 * as the code involved is impenetrable to me (khw), so instead the code
3870 * here punts. This routine examines EXACTFL nodes, and (when the pattern
3871 * isn't UTF-8) EXACTF and EXACTFAA for such unfolded folds, and returns a
3872 * boolean indicating whether or not the node contains such a fold. When
3873 * it is true, the caller sets a flag that later causes the optimizer in
3874 * this file to not set values for the floating and fixed string lengths,
3875 * and thus avoids the optimizer code in regexec.c that makes the invalid
3876 * assumption. Thus, there is no optimization based on string lengths for
3877 * EXACTFL nodes that contain these few folds, nor for non-UTF8-pattern
3878 * EXACTF and EXACTFAA nodes that contain the sharp s. (The reason the
3879 * assumption is wrong only in these cases is that all other non-UTF-8
3880 * folds are 1-1; and, for UTF-8 patterns, we pre-fold all other folds to
3881 * their expanded versions. (Again, we can't prefold sharp s to 'ss' in
3882 * EXACTF nodes because we don't know at compile time if it actually
3883 * matches 'ss' or not. For EXACTF nodes it will match iff the target
3884 * string is in UTF-8. This is in contrast to EXACTFU nodes, where it
3885 * always matches; and EXACTFAA where it never does. In an EXACTFAA node
3886 * in a UTF-8 pattern, sharp s is folded to "\x{17F}\x{17F}, avoiding the
3887 * problem; but in a non-UTF8 pattern, folding it to that above-Latin1
3888 * string would require the pattern to be forced into UTF-8, the overhead
3889 * of which we want to avoid. Similarly the unfolded multi-char folds in
3890 * EXACTFL nodes will match iff the locale at the time of match is a UTF-8
3893 * Similarly, the code that generates tries doesn't currently handle
3894 * not-already-folded multi-char folds, and it looks like a pain to change
3895 * that. Therefore, trie generation of EXACTFAA nodes with the sharp s
3896 * doesn't work. Instead, such an EXACTFAA is turned into a new regnode,
3897 * EXACTFAA_NO_TRIE, which the trie code knows not to handle. Most people
3898 * using /iaa matching will be doing so almost entirely with ASCII
3899 * strings, so this should rarely be encountered in practice */
3901 #define JOIN_EXACT(scan,min_subtract,unfolded_multi_char, flags) \
3902 if (PL_regkind[OP(scan)] == EXACT) \
3903 join_exact(pRExC_state,(scan),(min_subtract),unfolded_multi_char, (flags), NULL, depth+1)
3906 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan,
3907 UV *min_subtract, bool *unfolded_multi_char,
3908 U32 flags, regnode *val, U32 depth)
3910 /* Merge several consecutive EXACTish nodes into one. */
3911 regnode *n = regnext(scan);
3913 regnode *next = scan + NODE_SZ_STR(scan);
3917 regnode *stop = scan;
3918 GET_RE_DEBUG_FLAGS_DECL;
3920 PERL_UNUSED_ARG(depth);
3923 PERL_ARGS_ASSERT_JOIN_EXACT;
3924 #ifndef EXPERIMENTAL_INPLACESCAN
3925 PERL_UNUSED_ARG(flags);
3926 PERL_UNUSED_ARG(val);
3928 DEBUG_PEEP("join", scan, depth, 0);
3930 /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
3931 * EXACT ones that are mergeable to the current one. */
3933 && (PL_regkind[OP(n)] == NOTHING
3934 || (stringok && OP(n) == OP(scan)))
3936 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
3939 if (OP(n) == TAIL || n > next)
3941 if (PL_regkind[OP(n)] == NOTHING) {
3942 DEBUG_PEEP("skip:", n, depth, 0);
3943 NEXT_OFF(scan) += NEXT_OFF(n);
3944 next = n + NODE_STEP_REGNODE;
3951 else if (stringok) {
3952 const unsigned int oldl = STR_LEN(scan);
3953 regnode * const nnext = regnext(n);
3955 /* XXX I (khw) kind of doubt that this works on platforms (should
3956 * Perl ever run on one) where U8_MAX is above 255 because of lots
3957 * of other assumptions */
3958 /* Don't join if the sum can't fit into a single node */
3959 if (oldl + STR_LEN(n) > U8_MAX)
3962 DEBUG_PEEP("merg", n, depth, 0);
3965 NEXT_OFF(scan) += NEXT_OFF(n);
3966 STR_LEN(scan) += STR_LEN(n);
3967 next = n + NODE_SZ_STR(n);
3968 /* Now we can overwrite *n : */
3969 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
3977 #ifdef EXPERIMENTAL_INPLACESCAN
3978 if (flags && !NEXT_OFF(n)) {
3979 DEBUG_PEEP("atch", val, depth, 0);
3980 if (reg_off_by_arg[OP(n)]) {
3981 ARG_SET(n, val - n);
3984 NEXT_OFF(n) = val - n;
3992 *unfolded_multi_char = FALSE;
3994 /* Here, all the adjacent mergeable EXACTish nodes have been merged. We
3995 * can now analyze for sequences of problematic code points. (Prior to
3996 * this final joining, sequences could have been split over boundaries, and
3997 * hence missed). The sequences only happen in folding, hence for any
3998 * non-EXACT EXACTish node */
3999 if (OP(scan) != EXACT && OP(scan) != EXACTL) {
4000 U8* s0 = (U8*) STRING(scan);
4002 U8* s_end = s0 + STR_LEN(scan);
4004 int total_count_delta = 0; /* Total delta number of characters that
4005 multi-char folds expand to */
4007 /* One pass is made over the node's string looking for all the
4008 * possibilities. To avoid some tests in the loop, there are two main
4009 * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
4014 if (OP(scan) == EXACTFL) {
4017 /* An EXACTFL node would already have been changed to another
4018 * node type unless there is at least one character in it that