5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
77 #ifndef PERL_IN_XSUB_RE
82 #ifdef PERL_IN_XSUB_RE
84 EXTERN_C const struct regexp_engine my_reg_engine;
89 #include "dquote_inline.h"
90 #include "invlist_inline.h"
91 #include "unicode_constants.h"
93 #define HAS_NONLATIN1_FOLD_CLOSURE(i) \
94 _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
95 #define HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(i) \
96 _HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
97 #define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
98 #define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
101 #define STATIC static
104 /* this is a chain of data about sub patterns we are processing that
105 need to be handled separately/specially in study_chunk. Its so
106 we can simulate recursion without losing state. */
108 typedef struct scan_frame {
109 regnode *last_regnode; /* last node to process in this frame */
110 regnode *next_regnode; /* next node to process when last is reached */
111 U32 prev_recursed_depth;
112 I32 stopparen; /* what stopparen do we use */
113 U32 is_top_frame; /* what flags do we use? */
115 struct scan_frame *this_prev_frame; /* this previous frame */
116 struct scan_frame *prev_frame; /* previous frame */
117 struct scan_frame *next_frame; /* next frame */
120 /* Certain characters are output as a sequence with the first being a
122 #define isBACKSLASHED_PUNCT(c) \
123 ((c) == '-' || (c) == ']' || (c) == '\\' || (c) == '^')
126 struct RExC_state_t {
127 U32 flags; /* RXf_* are we folding, multilining? */
128 U32 pm_flags; /* PMf_* stuff from the calling PMOP */
129 char *precomp; /* uncompiled string. */
130 char *precomp_end; /* pointer to end of uncompiled string. */
131 REGEXP *rx_sv; /* The SV that is the regexp. */
132 regexp *rx; /* perl core regexp structure */
133 regexp_internal *rxi; /* internal data for regexp object
135 char *start; /* Start of input for compile */
136 char *end; /* End of input for compile */
137 char *parse; /* Input-scan pointer. */
138 char *adjusted_start; /* 'start', adjusted. See code use */
139 STRLEN precomp_adj; /* an offset beyond precomp. See code use */
140 SSize_t whilem_seen; /* number of WHILEM in this expr */
141 regnode *emit_start; /* Start of emitted-code area */
142 regnode *emit_bound; /* First regnode outside of the
144 regnode *emit; /* Code-emit pointer; if = &emit_dummy,
145 implies compiling, so don't emit */
146 regnode_ssc emit_dummy; /* placeholder for emit to point to;
147 large enough for the largest
148 non-EXACTish node, so can use it as
150 I32 naughty; /* How bad is this pattern? */
151 I32 sawback; /* Did we see \1, ...? */
153 SSize_t size; /* Code size. */
154 I32 npar; /* Capture buffer count, (OPEN) plus
155 one. ("par" 0 is the whole
157 I32 nestroot; /* root parens we are in - used by
161 regnode **open_parens; /* pointers to open parens */
162 regnode **close_parens; /* pointers to close parens */
163 regnode *end_op; /* END node in program */
164 I32 utf8; /* whether the pattern is utf8 or not */
165 I32 orig_utf8; /* whether the pattern was originally in utf8 */
166 /* XXX use this for future optimisation of case
167 * where pattern must be upgraded to utf8. */
168 I32 uni_semantics; /* If a d charset modifier should use unicode
169 rules, even if the pattern is not in
171 HV *paren_names; /* Paren names */
173 regnode **recurse; /* Recurse regops */
174 I32 recurse_count; /* Number of recurse regops we have generated */
175 U8 *study_chunk_recursed; /* bitmap of which subs we have moved
177 U32 study_chunk_recursed_bytes; /* bytes in bitmap */
181 I32 override_recoding;
183 I32 recode_x_to_native;
185 I32 in_multi_char_class;
186 struct reg_code_block *code_blocks; /* positions of literal (?{})
188 int num_code_blocks; /* size of code_blocks[] */
189 int code_index; /* next code_blocks[] slot */
190 SSize_t maxlen; /* mininum possible number of chars in string to match */
191 scan_frame *frame_head;
192 scan_frame *frame_last;
195 #ifdef ADD_TO_REGEXEC
196 char *starttry; /* -Dr: where regtry was called. */
197 #define RExC_starttry (pRExC_state->starttry)
199 SV *runtime_code_qr; /* qr with the runtime code blocks */
201 const char *lastparse;
203 AV *paren_name_list; /* idx -> name */
204 U32 study_chunk_recursed_count;
207 #define RExC_lastparse (pRExC_state->lastparse)
208 #define RExC_lastnum (pRExC_state->lastnum)
209 #define RExC_paren_name_list (pRExC_state->paren_name_list)
210 #define RExC_study_chunk_recursed_count (pRExC_state->study_chunk_recursed_count)
211 #define RExC_mysv (pRExC_state->mysv1)
212 #define RExC_mysv1 (pRExC_state->mysv1)
213 #define RExC_mysv2 (pRExC_state->mysv2)
216 bool seen_unfolded_sharp_s;
221 #define RExC_flags (pRExC_state->flags)
222 #define RExC_pm_flags (pRExC_state->pm_flags)
223 #define RExC_precomp (pRExC_state->precomp)
224 #define RExC_precomp_adj (pRExC_state->precomp_adj)
225 #define RExC_adjusted_start (pRExC_state->adjusted_start)
226 #define RExC_precomp_end (pRExC_state->precomp_end)
227 #define RExC_rx_sv (pRExC_state->rx_sv)
228 #define RExC_rx (pRExC_state->rx)
229 #define RExC_rxi (pRExC_state->rxi)
230 #define RExC_start (pRExC_state->start)
231 #define RExC_end (pRExC_state->end)
232 #define RExC_parse (pRExC_state->parse)
233 #define RExC_whilem_seen (pRExC_state->whilem_seen)
235 /* Set during the sizing pass when there is a LATIN SMALL LETTER SHARP S in any
236 * EXACTF node, hence was parsed under /di rules. If later in the parse,
237 * something forces the pattern into using /ui rules, the sharp s should be
238 * folded into the sequence 'ss', which takes up more space than previously
239 * calculated. This means that the sizing pass needs to be restarted. (The
240 * node also becomes an EXACTFU_SS.) For all other characters, an EXACTF node
241 * that gets converted to /ui (and EXACTFU) occupies the same amount of space,
242 * so there is no need to resize [perl #125990]. */
243 #define RExC_seen_unfolded_sharp_s (pRExC_state->seen_unfolded_sharp_s)
245 #ifdef RE_TRACK_PATTERN_OFFSETS
246 #define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the
249 #define RExC_emit (pRExC_state->emit)
250 #define RExC_emit_dummy (pRExC_state->emit_dummy)
251 #define RExC_emit_start (pRExC_state->emit_start)
252 #define RExC_emit_bound (pRExC_state->emit_bound)
253 #define RExC_sawback (pRExC_state->sawback)
254 #define RExC_seen (pRExC_state->seen)
255 #define RExC_size (pRExC_state->size)
256 #define RExC_maxlen (pRExC_state->maxlen)
257 #define RExC_npar (pRExC_state->npar)
258 #define RExC_nestroot (pRExC_state->nestroot)
259 #define RExC_extralen (pRExC_state->extralen)
260 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
261 #define RExC_utf8 (pRExC_state->utf8)
262 #define RExC_uni_semantics (pRExC_state->uni_semantics)
263 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
264 #define RExC_open_parens (pRExC_state->open_parens)
265 #define RExC_close_parens (pRExC_state->close_parens)
266 #define RExC_end_op (pRExC_state->end_op)
267 #define RExC_paren_names (pRExC_state->paren_names)
268 #define RExC_recurse (pRExC_state->recurse)
269 #define RExC_recurse_count (pRExC_state->recurse_count)
270 #define RExC_study_chunk_recursed (pRExC_state->study_chunk_recursed)
271 #define RExC_study_chunk_recursed_bytes \
272 (pRExC_state->study_chunk_recursed_bytes)
273 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
274 #define RExC_contains_locale (pRExC_state->contains_locale)
275 #define RExC_contains_i (pRExC_state->contains_i)
276 #define RExC_override_recoding (pRExC_state->override_recoding)
278 # define RExC_recode_x_to_native (pRExC_state->recode_x_to_native)
280 #define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
281 #define RExC_frame_head (pRExC_state->frame_head)
282 #define RExC_frame_last (pRExC_state->frame_last)
283 #define RExC_frame_count (pRExC_state->frame_count)
284 #define RExC_strict (pRExC_state->strict)
285 #define RExC_study_started (pRExC_state->study_started)
286 #define RExC_warn_text (pRExC_state->warn_text)
288 /* Heuristic check on the complexity of the pattern: if TOO_NAUGHTY, we set
289 * a flag to disable back-off on the fixed/floating substrings - if it's
290 * a high complexity pattern we assume the benefit of avoiding a full match
291 * is worth the cost of checking for the substrings even if they rarely help.
293 #define RExC_naughty (pRExC_state->naughty)
294 #define TOO_NAUGHTY (10)
295 #define MARK_NAUGHTY(add) \
296 if (RExC_naughty < TOO_NAUGHTY) \
297 RExC_naughty += (add)
298 #define MARK_NAUGHTY_EXP(exp, add) \
299 if (RExC_naughty < TOO_NAUGHTY) \
300 RExC_naughty += RExC_naughty / (exp) + (add)
302 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
303 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
304 ((*s) == '{' && regcurly(s)))
307 * Flags to be passed up and down.
309 #define WORST 0 /* Worst case. */
310 #define HASWIDTH 0x01 /* Known to match non-null strings. */
312 /* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
313 * character. (There needs to be a case: in the switch statement in regexec.c
314 * for any node marked SIMPLE.) Note that this is not the same thing as
317 #define SPSTART 0x04 /* Starts with * or + */
318 #define POSTPONED 0x08 /* (?1),(?&name), (??{...}) or similar */
319 #define TRYAGAIN 0x10 /* Weeded out a declaration. */
320 #define RESTART_PASS1 0x20 /* Need to restart sizing pass */
321 #define NEED_UTF8 0x40 /* In conjunction with RESTART_PASS1, need to
322 calcuate sizes as UTF-8 */
324 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
326 /* whether trie related optimizations are enabled */
327 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
328 #define TRIE_STUDY_OPT
329 #define FULL_TRIE_STUDY
335 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
336 #define PBITVAL(paren) (1 << ((paren) & 7))
337 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
338 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
339 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
341 #define REQUIRE_UTF8(flagp) STMT_START { \
344 *flagp = RESTART_PASS1|NEED_UTF8; \
349 /* Change from /d into /u rules, and restart the parse if we've already seen
350 * something whose size would increase as a result, by setting *flagp and
351 * returning 'restart_retval'. RExC_uni_semantics is a flag that indicates
352 * we've change to /u during the parse. */
353 #define REQUIRE_UNI_RULES(flagp, restart_retval) \
355 if (DEPENDS_SEMANTICS) { \
357 set_regex_charset(&RExC_flags, REGEX_UNICODE_CHARSET); \
358 RExC_uni_semantics = 1; \
359 if (RExC_seen_unfolded_sharp_s) { \
360 *flagp |= RESTART_PASS1; \
361 return restart_retval; \
366 /* This converts the named class defined in regcomp.h to its equivalent class
367 * number defined in handy.h. */
368 #define namedclass_to_classnum(class) ((int) ((class) / 2))
369 #define classnum_to_namedclass(classnum) ((classnum) * 2)
371 #define _invlist_union_complement_2nd(a, b, output) \
372 _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
373 #define _invlist_intersection_complement_2nd(a, b, output) \
374 _invlist_intersection_maybe_complement_2nd(a, b, TRUE, output)
376 /* About scan_data_t.
378 During optimisation we recurse through the regexp program performing
379 various inplace (keyhole style) optimisations. In addition study_chunk
380 and scan_commit populate this data structure with information about
381 what strings MUST appear in the pattern. We look for the longest
382 string that must appear at a fixed location, and we look for the
383 longest string that may appear at a floating location. So for instance
388 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
389 strings (because they follow a .* construct). study_chunk will identify
390 both FOO and BAR as being the longest fixed and floating strings respectively.
392 The strings can be composites, for instance
396 will result in a composite fixed substring 'foo'.
398 For each string some basic information is maintained:
400 - offset or min_offset
401 This is the position the string must appear at, or not before.
402 It also implicitly (when combined with minlenp) tells us how many
403 characters must match before the string we are searching for.
404 Likewise when combined with minlenp and the length of the string it
405 tells us how many characters must appear after the string we have
409 Only used for floating strings. This is the rightmost point that
410 the string can appear at. If set to SSize_t_MAX it indicates that the
411 string can occur infinitely far to the right.
414 A pointer to the minimum number of characters of the pattern that the
415 string was found inside. This is important as in the case of positive
416 lookahead or positive lookbehind we can have multiple patterns
421 The minimum length of the pattern overall is 3, the minimum length
422 of the lookahead part is 3, but the minimum length of the part that
423 will actually match is 1. So 'FOO's minimum length is 3, but the
424 minimum length for the F is 1. This is important as the minimum length
425 is used to determine offsets in front of and behind the string being
426 looked for. Since strings can be composites this is the length of the
427 pattern at the time it was committed with a scan_commit. Note that
428 the length is calculated by study_chunk, so that the minimum lengths
429 are not known until the full pattern has been compiled, thus the
430 pointer to the value.
434 In the case of lookbehind the string being searched for can be
435 offset past the start point of the final matching string.
436 If this value was just blithely removed from the min_offset it would
437 invalidate some of the calculations for how many chars must match
438 before or after (as they are derived from min_offset and minlen and
439 the length of the string being searched for).
440 When the final pattern is compiled and the data is moved from the
441 scan_data_t structure into the regexp structure the information
442 about lookbehind is factored in, with the information that would
443 have been lost precalculated in the end_shift field for the
446 The fields pos_min and pos_delta are used to store the minimum offset
447 and the delta to the maximum offset at the current point in the pattern.
451 typedef struct scan_data_t {
452 /*I32 len_min; unused */
453 /*I32 len_delta; unused */
457 SSize_t last_end; /* min value, <0 unless valid. */
458 SSize_t last_start_min;
459 SSize_t last_start_max;
460 SV **longest; /* Either &l_fixed, or &l_float. */
461 SV *longest_fixed; /* longest fixed string found in pattern */
462 SSize_t offset_fixed; /* offset where it starts */
463 SSize_t *minlen_fixed; /* pointer to the minlen relevant to the string */
464 I32 lookbehind_fixed; /* is the position of the string modfied by LB */
465 SV *longest_float; /* longest floating string found in pattern */
466 SSize_t offset_float_min; /* earliest point in string it can appear */
467 SSize_t offset_float_max; /* latest point in string it can appear */
468 SSize_t *minlen_float; /* pointer to the minlen relevant to the string */
469 SSize_t lookbehind_float; /* is the pos of the string modified by LB */
472 SSize_t *last_closep;
473 regnode_ssc *start_class;
477 * Forward declarations for pregcomp()'s friends.
480 static const scan_data_t zero_scan_data =
481 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
483 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
484 #define SF_BEFORE_SEOL 0x0001
485 #define SF_BEFORE_MEOL 0x0002
486 #define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
487 #define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
489 #define SF_FIX_SHIFT_EOL (+2)
490 #define SF_FL_SHIFT_EOL (+4)
492 #define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
493 #define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
495 #define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
496 #define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
497 #define SF_IS_INF 0x0040
498 #define SF_HAS_PAR 0x0080
499 #define SF_IN_PAR 0x0100
500 #define SF_HAS_EVAL 0x0200
503 /* SCF_DO_SUBSTR is the flag that tells the regexp analyzer to track the
504 * longest substring in the pattern. When it is not set the optimiser keeps
505 * track of position, but does not keep track of the actual strings seen,
507 * So for instance /foo/ will be parsed with SCF_DO_SUBSTR being true, but
510 * Similarly, /foo.*(blah|erm|huh).*fnorble/ will have "foo" and "fnorble"
511 * parsed with SCF_DO_SUBSTR on, but while processing the (...) it will be
512 * turned off because of the alternation (BRANCH). */
513 #define SCF_DO_SUBSTR 0x0400
515 #define SCF_DO_STCLASS_AND 0x0800
516 #define SCF_DO_STCLASS_OR 0x1000
517 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
518 #define SCF_WHILEM_VISITED_POS 0x2000
520 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
521 #define SCF_SEEN_ACCEPT 0x8000
522 #define SCF_TRIE_DOING_RESTUDY 0x10000
523 #define SCF_IN_DEFINE 0x20000
528 #define UTF cBOOL(RExC_utf8)
530 /* The enums for all these are ordered so things work out correctly */
531 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
532 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) \
533 == REGEX_DEPENDS_CHARSET)
534 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
535 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) \
536 >= REGEX_UNICODE_CHARSET)
537 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
538 == REGEX_ASCII_RESTRICTED_CHARSET)
539 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
540 >= REGEX_ASCII_RESTRICTED_CHARSET)
541 #define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) \
542 == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
544 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
546 /* For programs that want to be strictly Unicode compatible by dying if any
547 * attempt is made to match a non-Unicode code point against a Unicode
549 #define ALWAYS_WARN_SUPER ckDEAD(packWARN(WARN_NON_UNICODE))
551 #define OOB_NAMEDCLASS -1
553 /* There is no code point that is out-of-bounds, so this is problematic. But
554 * its only current use is to initialize a variable that is always set before
556 #define OOB_UNICODE 0xDEADBEEF
558 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
559 #define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
562 /* length of regex to show in messages that don't mark a position within */
563 #define RegexLengthToShowInErrorMessages 127
566 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
567 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
568 * op/pragma/warn/regcomp.
570 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
571 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
573 #define REPORT_LOCATION " in regex; marked by " MARKER1 \
574 " in m/%"UTF8f MARKER2 "%"UTF8f"/"
576 /* The code in this file in places uses one level of recursion with parsing
577 * rebased to an alternate string constructed by us in memory. This can take
578 * the form of something that is completely different from the input, or
579 * something that uses the input as part of the alternate. In the first case,
580 * there should be no possibility of an error, as we are in complete control of
581 * the alternate string. But in the second case we don't control the input
582 * portion, so there may be errors in that. Here's an example:
584 * is handled specially because \x{df} folds to a sequence of more than one
585 * character, 'ss'. What is done is to create and parse an alternate string,
586 * which looks like this:
587 * /(?:\x{DF}|[abc\x{DF}def])/ui
588 * where it uses the input unchanged in the middle of something it constructs,
589 * which is a branch for the DF outside the character class, and clustering
590 * parens around the whole thing. (It knows enough to skip the DF inside the
591 * class while in this substitute parse.) 'abc' and 'def' may have errors that
592 * need to be reported. The general situation looks like this:
595 * Input: ----------------------------------------------------
596 * Constructed: ---------------------------------------------------
599 * The input string sI..eI is the input pattern. The string sC..EC is the
600 * constructed substitute parse string. The portions sC..tC and eC..EC are
601 * constructed by us. The portion tC..eC is an exact duplicate of the input
602 * pattern tI..eI. In the diagram, these are vertically aligned. Suppose that
603 * while parsing, we find an error at xC. We want to display a message showing
604 * the real input string. Thus we need to find the point xI in it which
605 * corresponds to xC. xC >= tC, since the portion of the string sC..tC has
606 * been constructed by us, and so shouldn't have errors. We get:
608 * xI = sI + (tI - sI) + (xC - tC)
610 * and, the offset into sI is:
612 * (xI - sI) = (tI - sI) + (xC - tC)
614 * When the substitute is constructed, we save (tI -sI) as RExC_precomp_adj,
615 * and we save tC as RExC_adjusted_start.
617 * During normal processing of the input pattern, everything points to that,
618 * with RExC_precomp_adj set to 0, and RExC_adjusted_start set to sI.
621 #define tI_sI RExC_precomp_adj
622 #define tC RExC_adjusted_start
623 #define sC RExC_precomp
624 #define xI_offset(xC) ((IV) (tI_sI + (xC - tC)))
625 #define xI(xC) (sC + xI_offset(xC))
626 #define eC RExC_precomp_end
628 #define REPORT_LOCATION_ARGS(xC) \
630 (xI(xC) > eC) /* Don't run off end */ \
631 ? eC - sC /* Length before the <--HERE */ \
633 sC), /* The input pattern printed up to the <--HERE */ \
635 (xI(xC) > eC) ? 0 : eC - xI(xC), /* Length after <--HERE */ \
636 (xI(xC) > eC) ? eC : xI(xC)) /* pattern after <--HERE */
638 /* Used to point after bad bytes for an error message, but avoid skipping
639 * past a nul byte. */
640 #define SKIP_IF_CHAR(s) (!*(s) ? 0 : UTF ? UTF8SKIP(s) : 1)
643 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
644 * arg. Show regex, up to a maximum length. If it's too long, chop and add
647 #define _FAIL(code) STMT_START { \
648 const char *ellipses = ""; \
649 IV len = RExC_precomp_end - RExC_precomp; \
652 SAVEFREESV(RExC_rx_sv); \
653 if (len > RegexLengthToShowInErrorMessages) { \
654 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
655 len = RegexLengthToShowInErrorMessages - 10; \
661 #define FAIL(msg) _FAIL( \
662 Perl_croak(aTHX_ "%s in regex m/%"UTF8f"%s/", \
663 msg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
665 #define FAIL2(msg,arg) _FAIL( \
666 Perl_croak(aTHX_ msg " in regex m/%"UTF8f"%s/", \
667 arg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
670 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
672 #define Simple_vFAIL(m) STMT_START { \
673 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
674 m, REPORT_LOCATION_ARGS(RExC_parse)); \
678 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
680 #define vFAIL(m) STMT_START { \
682 SAVEFREESV(RExC_rx_sv); \
687 * Like Simple_vFAIL(), but accepts two arguments.
689 #define Simple_vFAIL2(m,a1) STMT_START { \
690 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
691 REPORT_LOCATION_ARGS(RExC_parse)); \
695 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
697 #define vFAIL2(m,a1) STMT_START { \
699 SAVEFREESV(RExC_rx_sv); \
700 Simple_vFAIL2(m, a1); \
705 * Like Simple_vFAIL(), but accepts three arguments.
707 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
708 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
709 REPORT_LOCATION_ARGS(RExC_parse)); \
713 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
715 #define vFAIL3(m,a1,a2) STMT_START { \
717 SAVEFREESV(RExC_rx_sv); \
718 Simple_vFAIL3(m, a1, a2); \
722 * Like Simple_vFAIL(), but accepts four arguments.
724 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
725 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, a3, \
726 REPORT_LOCATION_ARGS(RExC_parse)); \
729 #define vFAIL4(m,a1,a2,a3) STMT_START { \
731 SAVEFREESV(RExC_rx_sv); \
732 Simple_vFAIL4(m, a1, a2, a3); \
735 /* A specialized version of vFAIL2 that works with UTF8f */
736 #define vFAIL2utf8f(m, a1) STMT_START { \
738 SAVEFREESV(RExC_rx_sv); \
739 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
740 REPORT_LOCATION_ARGS(RExC_parse)); \
743 #define vFAIL3utf8f(m, a1, a2) STMT_START { \
745 SAVEFREESV(RExC_rx_sv); \
746 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
747 REPORT_LOCATION_ARGS(RExC_parse)); \
750 /* These have asserts in them because of [perl #122671] Many warnings in
751 * regcomp.c can occur twice. If they get output in pass1 and later in that
752 * pass, the pattern has to be converted to UTF-8 and the pass restarted, they
753 * would get output again. So they should be output in pass2, and these
754 * asserts make sure new warnings follow that paradigm. */
756 /* m is not necessarily a "literal string", in this macro */
757 #define reg_warn_non_literal_string(loc, m) STMT_START { \
758 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
759 "%s" REPORT_LOCATION, \
760 m, REPORT_LOCATION_ARGS(loc)); \
763 #define ckWARNreg(loc,m) STMT_START { \
764 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
766 REPORT_LOCATION_ARGS(loc)); \
769 #define vWARN(loc, m) STMT_START { \
770 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
772 REPORT_LOCATION_ARGS(loc)); \
775 #define vWARN_dep(loc, m) STMT_START { \
776 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), \
778 REPORT_LOCATION_ARGS(loc)); \
781 #define ckWARNdep(loc,m) STMT_START { \
782 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
784 REPORT_LOCATION_ARGS(loc)); \
787 #define ckWARNregdep(loc,m) STMT_START { \
788 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, \
791 REPORT_LOCATION_ARGS(loc)); \
794 #define ckWARN2reg_d(loc,m, a1) STMT_START { \
795 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_REGEXP), \
797 a1, REPORT_LOCATION_ARGS(loc)); \
800 #define ckWARN2reg(loc, m, a1) STMT_START { \
801 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
803 a1, REPORT_LOCATION_ARGS(loc)); \
806 #define vWARN3(loc, m, a1, a2) STMT_START { \
807 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
809 a1, a2, REPORT_LOCATION_ARGS(loc)); \
812 #define ckWARN3reg(loc, m, a1, a2) STMT_START { \
813 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
816 REPORT_LOCATION_ARGS(loc)); \
819 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \
820 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
823 REPORT_LOCATION_ARGS(loc)); \
826 #define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
827 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
830 REPORT_LOCATION_ARGS(loc)); \
833 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
834 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
837 REPORT_LOCATION_ARGS(loc)); \
840 /* Macros for recording node offsets. 20001227 mjd@plover.com
841 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
842 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
843 * Element 0 holds the number n.
844 * Position is 1 indexed.
846 #ifndef RE_TRACK_PATTERN_OFFSETS
847 #define Set_Node_Offset_To_R(node,byte)
848 #define Set_Node_Offset(node,byte)
849 #define Set_Cur_Node_Offset
850 #define Set_Node_Length_To_R(node,len)
851 #define Set_Node_Length(node,len)
852 #define Set_Node_Cur_Length(node,start)
853 #define Node_Offset(n)
854 #define Node_Length(n)
855 #define Set_Node_Offset_Length(node,offset,len)
856 #define ProgLen(ri) ri->u.proglen
857 #define SetProgLen(ri,x) ri->u.proglen = x
859 #define ProgLen(ri) ri->u.offsets[0]
860 #define SetProgLen(ri,x) ri->u.offsets[0] = x
861 #define Set_Node_Offset_To_R(node,byte) STMT_START { \
863 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
864 __LINE__, (int)(node), (int)(byte))); \
866 Perl_croak(aTHX_ "value of node is %d in Offset macro", \
869 RExC_offsets[2*(node)-1] = (byte); \
874 #define Set_Node_Offset(node,byte) \
875 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
876 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
878 #define Set_Node_Length_To_R(node,len) STMT_START { \
880 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
881 __LINE__, (int)(node), (int)(len))); \
883 Perl_croak(aTHX_ "value of node is %d in Length macro", \
886 RExC_offsets[2*(node)] = (len); \
891 #define Set_Node_Length(node,len) \
892 Set_Node_Length_To_R((node)-RExC_emit_start, len)
893 #define Set_Node_Cur_Length(node, start) \
894 Set_Node_Length(node, RExC_parse - start)
896 /* Get offsets and lengths */
897 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
898 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
900 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
901 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
902 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
906 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
907 #define EXPERIMENTAL_INPLACESCAN
908 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
912 Perl_re_printf(pTHX_ const char *fmt, ...)
916 PerlIO *f= Perl_debug_log;
917 PERL_ARGS_ASSERT_RE_PRINTF;
919 result = PerlIO_vprintf(f, fmt, ap);
925 Perl_re_indentf(pTHX_ const char *fmt, U32 depth, ...)
929 PerlIO *f= Perl_debug_log;
930 PERL_ARGS_ASSERT_RE_INDENTF;
932 PerlIO_printf(f, "%*s", ( (int)depth % 20 ) * 2, "");
933 result = PerlIO_vprintf(f, fmt, ap);
937 #endif /* DEBUGGING */
939 #define DEBUG_RExC_seen() \
940 DEBUG_OPTIMISE_MORE_r({ \
941 Perl_re_printf( aTHX_ "RExC_seen: "); \
943 if (RExC_seen & REG_ZERO_LEN_SEEN) \
944 Perl_re_printf( aTHX_ "REG_ZERO_LEN_SEEN "); \
946 if (RExC_seen & REG_LOOKBEHIND_SEEN) \
947 Perl_re_printf( aTHX_ "REG_LOOKBEHIND_SEEN "); \
949 if (RExC_seen & REG_GPOS_SEEN) \
950 Perl_re_printf( aTHX_ "REG_GPOS_SEEN "); \
952 if (RExC_seen & REG_RECURSE_SEEN) \
953 Perl_re_printf( aTHX_ "REG_RECURSE_SEEN "); \
955 if (RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN) \
956 Perl_re_printf( aTHX_ "REG_TOP_LEVEL_BRANCHES_SEEN "); \
958 if (RExC_seen & REG_VERBARG_SEEN) \
959 Perl_re_printf( aTHX_ "REG_VERBARG_SEEN "); \
961 if (RExC_seen & REG_CUTGROUP_SEEN) \
962 Perl_re_printf( aTHX_ "REG_CUTGROUP_SEEN "); \
964 if (RExC_seen & REG_RUN_ON_COMMENT_SEEN) \
965 Perl_re_printf( aTHX_ "REG_RUN_ON_COMMENT_SEEN "); \
967 if (RExC_seen & REG_UNFOLDED_MULTI_SEEN) \
968 Perl_re_printf( aTHX_ "REG_UNFOLDED_MULTI_SEEN "); \
970 if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) \
971 Perl_re_printf( aTHX_ "REG_UNBOUNDED_QUANTIFIER_SEEN "); \
973 Perl_re_printf( aTHX_ "\n"); \
976 #define DEBUG_SHOW_STUDY_FLAG(flags,flag) \
977 if ((flags) & flag) Perl_re_printf( aTHX_ "%s ", #flag)
979 #define DEBUG_SHOW_STUDY_FLAGS(flags,open_str,close_str) \
981 Perl_re_printf( aTHX_ "%s", open_str); \
982 DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_SEOL); \
983 DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_MEOL); \
984 DEBUG_SHOW_STUDY_FLAG(flags,SF_IS_INF); \
985 DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_PAR); \
986 DEBUG_SHOW_STUDY_FLAG(flags,SF_IN_PAR); \
987 DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_EVAL); \
988 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_SUBSTR); \
989 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_AND); \
990 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_OR); \
991 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS); \
992 DEBUG_SHOW_STUDY_FLAG(flags,SCF_WHILEM_VISITED_POS); \
993 DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_RESTUDY); \
994 DEBUG_SHOW_STUDY_FLAG(flags,SCF_SEEN_ACCEPT); \
995 DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_DOING_RESTUDY); \
996 DEBUG_SHOW_STUDY_FLAG(flags,SCF_IN_DEFINE); \
997 Perl_re_printf( aTHX_ "%s", close_str); \
1001 #define DEBUG_STUDYDATA(str,data,depth) \
1002 DEBUG_OPTIMISE_MORE_r(if(data){ \
1003 Perl_re_indentf( aTHX_ "" str "Pos:%"IVdf"/%"IVdf \
1004 " Flags: 0x%"UVXf, \
1006 (IV)((data)->pos_min), \
1007 (IV)((data)->pos_delta), \
1008 (UV)((data)->flags) \
1010 DEBUG_SHOW_STUDY_FLAGS((data)->flags," [ ","]"); \
1011 Perl_re_printf( aTHX_ \
1012 " Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
1013 (IV)((data)->whilem_c), \
1014 (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
1015 is_inf ? "INF " : "" \
1017 if ((data)->last_found) \
1018 Perl_re_printf( aTHX_ \
1019 "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
1020 " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
1021 SvPVX_const((data)->last_found), \
1022 (IV)((data)->last_end), \
1023 (IV)((data)->last_start_min), \
1024 (IV)((data)->last_start_max), \
1025 ((data)->longest && \
1026 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
1027 SvPVX_const((data)->longest_fixed), \
1028 (IV)((data)->offset_fixed), \
1029 ((data)->longest && \
1030 (data)->longest==&((data)->longest_float)) ? "*" : "", \
1031 SvPVX_const((data)->longest_float), \
1032 (IV)((data)->offset_float_min), \
1033 (IV)((data)->offset_float_max) \
1035 Perl_re_printf( aTHX_ "\n"); \
1039 /* =========================================================
1040 * BEGIN edit_distance stuff.
1042 * This calculates how many single character changes of any type are needed to
1043 * transform a string into another one. It is taken from version 3.1 of
1045 * https://metacpan.org/pod/Text::Levenshtein::Damerau::XS
1048 /* Our unsorted dictionary linked list. */
1049 /* Note we use UVs, not chars. */
1054 struct dictionary* next;
1056 typedef struct dictionary item;
1059 PERL_STATIC_INLINE item*
1060 push(UV key,item* curr)
1063 Newxz(head, 1, item);
1071 PERL_STATIC_INLINE item*
1072 find(item* head, UV key)
1074 item* iterator = head;
1076 if (iterator->key == key){
1079 iterator = iterator->next;
1085 PERL_STATIC_INLINE item*
1086 uniquePush(item* head,UV key)
1088 item* iterator = head;
1091 if (iterator->key == key) {
1094 iterator = iterator->next;
1097 return push(key,head);
1100 PERL_STATIC_INLINE void
1101 dict_free(item* head)
1103 item* iterator = head;
1106 item* temp = iterator;
1107 iterator = iterator->next;
1114 /* End of Dictionary Stuff */
1116 /* All calculations/work are done here */
1118 S_edit_distance(const UV* src,
1120 const STRLEN x, /* length of src[] */
1121 const STRLEN y, /* length of tgt[] */
1122 const SSize_t maxDistance
1126 UV swapCount,swapScore,targetCharCount,i,j;
1128 UV score_ceil = x + y;
1130 PERL_ARGS_ASSERT_EDIT_DISTANCE;
1132 /* intialize matrix start values */
1133 Newxz(scores, ( (x + 2) * (y + 2)), UV);
1134 scores[0] = score_ceil;
1135 scores[1 * (y + 2) + 0] = score_ceil;
1136 scores[0 * (y + 2) + 1] = score_ceil;
1137 scores[1 * (y + 2) + 1] = 0;
1138 head = uniquePush(uniquePush(head,src[0]),tgt[0]);
1143 for (i=1;i<=x;i++) {
1145 head = uniquePush(head,src[i]);
1146 scores[(i+1) * (y + 2) + 1] = i;
1147 scores[(i+1) * (y + 2) + 0] = score_ceil;
1150 for (j=1;j<=y;j++) {
1153 head = uniquePush(head,tgt[j]);
1154 scores[1 * (y + 2) + (j + 1)] = j;
1155 scores[0 * (y + 2) + (j + 1)] = score_ceil;
1158 targetCharCount = find(head,tgt[j-1])->value;
1159 swapScore = scores[targetCharCount * (y + 2) + swapCount] + i - targetCharCount - 1 + j - swapCount;
1161 if (src[i-1] != tgt[j-1]){
1162 scores[(i+1) * (y + 2) + (j + 1)] = MIN(swapScore,(MIN(scores[i * (y + 2) + j], MIN(scores[(i+1) * (y + 2) + j], scores[i * (y + 2) + (j + 1)])) + 1));
1166 scores[(i+1) * (y + 2) + (j + 1)] = MIN(scores[i * (y + 2) + j], swapScore);
1170 find(head,src[i-1])->value = i;
1174 IV score = scores[(x+1) * (y + 2) + (y + 1)];
1177 return (maxDistance != 0 && maxDistance < score)?(-1):score;
1181 /* END of edit_distance() stuff
1182 * ========================================================= */
1184 /* is c a control character for which we have a mnemonic? */
1185 #define isMNEMONIC_CNTRL(c) _IS_MNEMONIC_CNTRL_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
1188 S_cntrl_to_mnemonic(const U8 c)
1190 /* Returns the mnemonic string that represents character 'c', if one
1191 * exists; NULL otherwise. The only ones that exist for the purposes of
1192 * this routine are a few control characters */
1195 case '\a': return "\\a";
1196 case '\b': return "\\b";
1197 case ESC_NATIVE: return "\\e";
1198 case '\f': return "\\f";
1199 case '\n': return "\\n";
1200 case '\r': return "\\r";
1201 case '\t': return "\\t";
1207 /* Mark that we cannot extend a found fixed substring at this point.
1208 Update the longest found anchored substring and the longest found
1209 floating substrings if needed. */
1212 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data,
1213 SSize_t *minlenp, int is_inf)
1215 const STRLEN l = CHR_SVLEN(data->last_found);
1216 const STRLEN old_l = CHR_SVLEN(*data->longest);
1217 GET_RE_DEBUG_FLAGS_DECL;
1219 PERL_ARGS_ASSERT_SCAN_COMMIT;
1221 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
1222 SvSetMagicSV(*data->longest, data->last_found);
1223 if (*data->longest == data->longest_fixed) {
1224 data->offset_fixed = l ? data->last_start_min : data->pos_min;
1225 if (data->flags & SF_BEFORE_EOL)
1227 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
1229 data->flags &= ~SF_FIX_BEFORE_EOL;
1230 data->minlen_fixed=minlenp;
1231 data->lookbehind_fixed=0;
1233 else { /* *data->longest == data->longest_float */
1234 data->offset_float_min = l ? data->last_start_min : data->pos_min;
1235 data->offset_float_max = (l
1236 ? data->last_start_max
1237 : (data->pos_delta > SSize_t_MAX - data->pos_min
1239 : data->pos_min + data->pos_delta));
1241 || (STRLEN)data->offset_float_max > (STRLEN)SSize_t_MAX)
1242 data->offset_float_max = SSize_t_MAX;
1243 if (data->flags & SF_BEFORE_EOL)
1245 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
1247 data->flags &= ~SF_FL_BEFORE_EOL;
1248 data->minlen_float=minlenp;
1249 data->lookbehind_float=0;
1252 SvCUR_set(data->last_found, 0);
1254 SV * const sv = data->last_found;
1255 if (SvUTF8(sv) && SvMAGICAL(sv)) {
1256 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
1261 data->last_end = -1;
1262 data->flags &= ~SF_BEFORE_EOL;
1263 DEBUG_STUDYDATA("commit: ",data,0);
1266 /* An SSC is just a regnode_charclass_posix with an extra field: the inversion
1267 * list that describes which code points it matches */
1270 S_ssc_anything(pTHX_ regnode_ssc *ssc)
1272 /* Set the SSC 'ssc' to match an empty string or any code point */
1274 PERL_ARGS_ASSERT_SSC_ANYTHING;
1276 assert(is_ANYOF_SYNTHETIC(ssc));
1278 /* mortalize so won't leak */
1279 ssc->invlist = sv_2mortal(_add_range_to_invlist(NULL, 0, UV_MAX));
1280 ANYOF_FLAGS(ssc) |= SSC_MATCHES_EMPTY_STRING; /* Plus matches empty */
1284 S_ssc_is_anything(const regnode_ssc *ssc)
1286 /* Returns TRUE if the SSC 'ssc' can match the empty string and any code
1287 * point; FALSE otherwise. Thus, this is used to see if using 'ssc' buys
1288 * us anything: if the function returns TRUE, 'ssc' hasn't been restricted
1289 * in any way, so there's no point in using it */
1294 PERL_ARGS_ASSERT_SSC_IS_ANYTHING;
1296 assert(is_ANYOF_SYNTHETIC(ssc));
1298 if (! (ANYOF_FLAGS(ssc) & SSC_MATCHES_EMPTY_STRING)) {
1302 /* See if the list consists solely of the range 0 - Infinity */
1303 invlist_iterinit(ssc->invlist);
1304 ret = invlist_iternext(ssc->invlist, &start, &end)
1308 invlist_iterfinish(ssc->invlist);
1314 /* If e.g., both \w and \W are set, matches everything */
1315 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1317 for (i = 0; i < ANYOF_POSIXL_MAX; i += 2) {
1318 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i+1)) {
1328 S_ssc_init(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc)
1330 /* Initializes the SSC 'ssc'. This includes setting it to match an empty
1331 * string, any code point, or any posix class under locale */
1333 PERL_ARGS_ASSERT_SSC_INIT;
1335 Zero(ssc, 1, regnode_ssc);
1336 set_ANYOF_SYNTHETIC(ssc);
1337 ARG_SET(ssc, ANYOF_ONLY_HAS_BITMAP);
1340 /* If any portion of the regex is to operate under locale rules that aren't
1341 * fully known at compile time, initialization includes it. The reason
1342 * this isn't done for all regexes is that the optimizer was written under
1343 * the assumption that locale was all-or-nothing. Given the complexity and
1344 * lack of documentation in the optimizer, and that there are inadequate
1345 * test cases for locale, many parts of it may not work properly, it is
1346 * safest to avoid locale unless necessary. */
1347 if (RExC_contains_locale) {
1348 ANYOF_POSIXL_SETALL(ssc);
1351 ANYOF_POSIXL_ZERO(ssc);
1356 S_ssc_is_cp_posixl_init(const RExC_state_t *pRExC_state,
1357 const regnode_ssc *ssc)
1359 /* Returns TRUE if the SSC 'ssc' is in its initial state with regard only
1360 * to the list of code points matched, and locale posix classes; hence does
1361 * not check its flags) */
1366 PERL_ARGS_ASSERT_SSC_IS_CP_POSIXL_INIT;
1368 assert(is_ANYOF_SYNTHETIC(ssc));
1370 invlist_iterinit(ssc->invlist);
1371 ret = invlist_iternext(ssc->invlist, &start, &end)
1375 invlist_iterfinish(ssc->invlist);
1381 if (RExC_contains_locale && ! ANYOF_POSIXL_SSC_TEST_ALL_SET(ssc)) {
1389 S_get_ANYOF_cp_list_for_ssc(pTHX_ const RExC_state_t *pRExC_state,
1390 const regnode_charclass* const node)
1392 /* Returns a mortal inversion list defining which code points are matched
1393 * by 'node', which is of type ANYOF. Handles complementing the result if
1394 * appropriate. If some code points aren't knowable at this time, the
1395 * returned list must, and will, contain every code point that is a
1399 SV* only_utf8_locale_invlist = NULL;
1401 const U32 n = ARG(node);
1402 bool new_node_has_latin1 = FALSE;
1404 PERL_ARGS_ASSERT_GET_ANYOF_CP_LIST_FOR_SSC;
1406 /* Look at the data structure created by S_set_ANYOF_arg() */
1407 if (n != ANYOF_ONLY_HAS_BITMAP) {
1408 SV * const rv = MUTABLE_SV(RExC_rxi->data->data[n]);
1409 AV * const av = MUTABLE_AV(SvRV(rv));
1410 SV **const ary = AvARRAY(av);
1411 assert(RExC_rxi->data->what[n] == 's');
1413 if (ary[1] && ary[1] != &PL_sv_undef) { /* Has compile-time swash */
1414 invlist = sv_2mortal(invlist_clone(_get_swash_invlist(ary[1])));
1416 else if (ary[0] && ary[0] != &PL_sv_undef) {
1418 /* Here, no compile-time swash, and there are things that won't be
1419 * known until runtime -- we have to assume it could be anything */
1420 invlist = sv_2mortal(_new_invlist(1));
1421 return _add_range_to_invlist(invlist, 0, UV_MAX);
1423 else if (ary[3] && ary[3] != &PL_sv_undef) {
1425 /* Here no compile-time swash, and no run-time only data. Use the
1426 * node's inversion list */
1427 invlist = sv_2mortal(invlist_clone(ary[3]));
1430 /* Get the code points valid only under UTF-8 locales */
1431 if ((ANYOF_FLAGS(node) & ANYOFL_FOLD)
1432 && ary[2] && ary[2] != &PL_sv_undef)
1434 only_utf8_locale_invlist = ary[2];
1439 invlist = sv_2mortal(_new_invlist(0));
1442 /* An ANYOF node contains a bitmap for the first NUM_ANYOF_CODE_POINTS
1443 * code points, and an inversion list for the others, but if there are code
1444 * points that should match only conditionally on the target string being
1445 * UTF-8, those are placed in the inversion list, and not the bitmap.
1446 * Since there are circumstances under which they could match, they are
1447 * included in the SSC. But if the ANYOF node is to be inverted, we have
1448 * to exclude them here, so that when we invert below, the end result
1449 * actually does include them. (Think about "\xe0" =~ /[^\xc0]/di;). We
1450 * have to do this here before we add the unconditionally matched code
1452 if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
1453 _invlist_intersection_complement_2nd(invlist,
1458 /* Add in the points from the bit map */
1459 for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
1460 if (ANYOF_BITMAP_TEST(node, i)) {
1461 unsigned int start = i++;
1463 for (; i < NUM_ANYOF_CODE_POINTS && ANYOF_BITMAP_TEST(node, i); ++i) {
1466 invlist = _add_range_to_invlist(invlist, start, i-1);
1467 new_node_has_latin1 = TRUE;
1471 /* If this can match all upper Latin1 code points, have to add them
1472 * as well. But don't add them if inverting, as when that gets done below,
1473 * it would exclude all these characters, including the ones it shouldn't
1474 * that were added just above */
1475 if (! (ANYOF_FLAGS(node) & ANYOF_INVERT) && OP(node) == ANYOFD
1476 && (ANYOF_FLAGS(node) & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER))
1478 _invlist_union(invlist, PL_UpperLatin1, &invlist);
1481 /* Similarly for these */
1482 if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
1483 _invlist_union_complement_2nd(invlist, PL_InBitmap, &invlist);
1486 if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
1487 _invlist_invert(invlist);
1489 else if (new_node_has_latin1 && ANYOF_FLAGS(node) & ANYOFL_FOLD) {
1491 /* Under /li, any 0-255 could fold to any other 0-255, depending on the
1492 * locale. We can skip this if there are no 0-255 at all. */
1493 _invlist_union(invlist, PL_Latin1, &invlist);
1496 /* Similarly add the UTF-8 locale possible matches. These have to be
1497 * deferred until after the non-UTF-8 locale ones are taken care of just
1498 * above, or it leads to wrong results under ANYOF_INVERT */
1499 if (only_utf8_locale_invlist) {
1500 _invlist_union_maybe_complement_2nd(invlist,
1501 only_utf8_locale_invlist,
1502 ANYOF_FLAGS(node) & ANYOF_INVERT,
1509 /* These two functions currently do the exact same thing */
1510 #define ssc_init_zero ssc_init
1512 #define ssc_add_cp(ssc, cp) ssc_add_range((ssc), (cp), (cp))
1513 #define ssc_match_all_cp(ssc) ssc_add_range(ssc, 0, UV_MAX)
1515 /* 'AND' a given class with another one. Can create false positives. 'ssc'
1516 * should not be inverted. 'and_with->flags & ANYOF_MATCHES_POSIXL' should be
1517 * 0 if 'and_with' is a regnode_charclass instead of a regnode_ssc. */
1520 S_ssc_and(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1521 const regnode_charclass *and_with)
1523 /* Accumulate into SSC 'ssc' its 'AND' with 'and_with', which is either
1524 * another SSC or a regular ANYOF class. Can create false positives. */
1529 PERL_ARGS_ASSERT_SSC_AND;
1531 assert(is_ANYOF_SYNTHETIC(ssc));
1533 /* 'and_with' is used as-is if it too is an SSC; otherwise have to extract
1534 * the code point inversion list and just the relevant flags */
1535 if (is_ANYOF_SYNTHETIC(and_with)) {
1536 anded_cp_list = ((regnode_ssc *)and_with)->invlist;
1537 anded_flags = ANYOF_FLAGS(and_with);
1539 /* XXX This is a kludge around what appears to be deficiencies in the
1540 * optimizer. If we make S_ssc_anything() add in the WARN_SUPER flag,
1541 * there are paths through the optimizer where it doesn't get weeded
1542 * out when it should. And if we don't make some extra provision for
1543 * it like the code just below, it doesn't get added when it should.
1544 * This solution is to add it only when AND'ing, which is here, and
1545 * only when what is being AND'ed is the pristine, original node
1546 * matching anything. Thus it is like adding it to ssc_anything() but
1547 * only when the result is to be AND'ed. Probably the same solution
1548 * could be adopted for the same problem we have with /l matching,
1549 * which is solved differently in S_ssc_init(), and that would lead to
1550 * fewer false positives than that solution has. But if this solution
1551 * creates bugs, the consequences are only that a warning isn't raised
1552 * that should be; while the consequences for having /l bugs is
1553 * incorrect matches */
1554 if (ssc_is_anything((regnode_ssc *)and_with)) {
1555 anded_flags |= ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER;
1559 anded_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, and_with);
1560 if (OP(and_with) == ANYOFD) {
1561 anded_flags = ANYOF_FLAGS(and_with) & ANYOF_COMMON_FLAGS;
1564 anded_flags = ANYOF_FLAGS(and_with)
1565 &( ANYOF_COMMON_FLAGS
1566 |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1567 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
1568 if (ANYOFL_UTF8_LOCALE_REQD(ANYOF_FLAGS(and_with))) {
1570 ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
1575 ANYOF_FLAGS(ssc) &= anded_flags;
1577 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1578 * C2 is the list of code points in 'and-with'; P2, its posix classes.
1579 * 'and_with' may be inverted. When not inverted, we have the situation of
1581 * (C1 | P1) & (C2 | P2)
1582 * = (C1 & (C2 | P2)) | (P1 & (C2 | P2))
1583 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1584 * <= ((C1 & C2) | P2)) | ( P1 | (P1 & P2))
1585 * <= ((C1 & C2) | P1 | P2)
1586 * Alternatively, the last few steps could be:
1587 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1588 * <= ((C1 & C2) | C1 ) | ( C2 | (P1 & P2))
1589 * <= (C1 | C2 | (P1 & P2))
1590 * We favor the second approach if either P1 or P2 is non-empty. This is
1591 * because these components are a barrier to doing optimizations, as what
1592 * they match cannot be known until the moment of matching as they are
1593 * dependent on the current locale, 'AND"ing them likely will reduce or
1595 * But we can do better if we know that C1,P1 are in their initial state (a
1596 * frequent occurrence), each matching everything:
1597 * (<everything>) & (C2 | P2) = C2 | P2
1598 * Similarly, if C2,P2 are in their initial state (again a frequent
1599 * occurrence), the result is a no-op
1600 * (C1 | P1) & (<everything>) = C1 | P1
1603 * (C1 | P1) & ~(C2 | P2) = (C1 | P1) & (~C2 & ~P2)
1604 * = (C1 & (~C2 & ~P2)) | (P1 & (~C2 & ~P2))
1605 * <= (C1 & ~C2) | (P1 & ~P2)
1608 if ((ANYOF_FLAGS(and_with) & ANYOF_INVERT)
1609 && ! is_ANYOF_SYNTHETIC(and_with))
1613 ssc_intersection(ssc,
1615 FALSE /* Has already been inverted */
1618 /* If either P1 or P2 is empty, the intersection will be also; can skip
1620 if (! (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL)) {
1621 ANYOF_POSIXL_ZERO(ssc);
1623 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1625 /* Note that the Posix class component P from 'and_with' actually
1627 * P = Pa | Pb | ... | Pn
1628 * where each component is one posix class, such as in [\w\s].
1630 * ~P = ~(Pa | Pb | ... | Pn)
1631 * = ~Pa & ~Pb & ... & ~Pn
1632 * <= ~Pa | ~Pb | ... | ~Pn
1633 * The last is something we can easily calculate, but unfortunately
1634 * is likely to have many false positives. We could do better
1635 * in some (but certainly not all) instances if two classes in
1636 * P have known relationships. For example
1637 * :lower: <= :alpha: <= :alnum: <= \w <= :graph: <= :print:
1639 * :lower: & :print: = :lower:
1640 * And similarly for classes that must be disjoint. For example,
1641 * since \s and \w can have no elements in common based on rules in
1642 * the POSIX standard,
1643 * \w & ^\S = nothing
1644 * Unfortunately, some vendor locales do not meet the Posix
1645 * standard, in particular almost everything by Microsoft.
1646 * The loop below just changes e.g., \w into \W and vice versa */
1648 regnode_charclass_posixl temp;
1649 int add = 1; /* To calculate the index of the complement */
1651 ANYOF_POSIXL_ZERO(&temp);
1652 for (i = 0; i < ANYOF_MAX; i++) {
1654 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)
1655 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i + 1));
1657 if (ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)) {
1658 ANYOF_POSIXL_SET(&temp, i + add);
1660 add = 0 - add; /* 1 goes to -1; -1 goes to 1 */
1662 ANYOF_POSIXL_AND(&temp, ssc);
1664 } /* else ssc already has no posixes */
1665 } /* else: Not inverted. This routine is a no-op if 'and_with' is an SSC
1666 in its initial state */
1667 else if (! is_ANYOF_SYNTHETIC(and_with)
1668 || ! ssc_is_cp_posixl_init(pRExC_state, (regnode_ssc *)and_with))
1670 /* But if 'ssc' is in its initial state, the result is just 'and_with';
1671 * copy it over 'ssc' */
1672 if (ssc_is_cp_posixl_init(pRExC_state, ssc)) {
1673 if (is_ANYOF_SYNTHETIC(and_with)) {
1674 StructCopy(and_with, ssc, regnode_ssc);
1677 ssc->invlist = anded_cp_list;
1678 ANYOF_POSIXL_ZERO(ssc);
1679 if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
1680 ANYOF_POSIXL_OR((regnode_charclass_posixl*) and_with, ssc);
1684 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)
1685 || (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL))
1687 /* One or the other of P1, P2 is non-empty. */
1688 if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
1689 ANYOF_POSIXL_AND((regnode_charclass_posixl*) and_with, ssc);
1691 ssc_union(ssc, anded_cp_list, FALSE);
1693 else { /* P1 = P2 = empty */
1694 ssc_intersection(ssc, anded_cp_list, FALSE);
1700 S_ssc_or(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1701 const regnode_charclass *or_with)
1703 /* Accumulate into SSC 'ssc' its 'OR' with 'or_with', which is either
1704 * another SSC or a regular ANYOF class. Can create false positives if
1705 * 'or_with' is to be inverted. */
1710 PERL_ARGS_ASSERT_SSC_OR;
1712 assert(is_ANYOF_SYNTHETIC(ssc));
1714 /* 'or_with' is used as-is if it too is an SSC; otherwise have to extract
1715 * the code point inversion list and just the relevant flags */
1716 if (is_ANYOF_SYNTHETIC(or_with)) {
1717 ored_cp_list = ((regnode_ssc*) or_with)->invlist;
1718 ored_flags = ANYOF_FLAGS(or_with);
1721 ored_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, or_with);
1722 ored_flags = ANYOF_FLAGS(or_with) & ANYOF_COMMON_FLAGS;
1723 if (OP(or_with) != ANYOFD) {
1725 |= ANYOF_FLAGS(or_with)
1726 & ( ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1727 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
1728 if (ANYOFL_UTF8_LOCALE_REQD(ANYOF_FLAGS(or_with))) {
1730 ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
1735 ANYOF_FLAGS(ssc) |= ored_flags;
1737 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1738 * C2 is the list of code points in 'or-with'; P2, its posix classes.
1739 * 'or_with' may be inverted. When not inverted, we have the simple
1740 * situation of computing:
1741 * (C1 | P1) | (C2 | P2) = (C1 | C2) | (P1 | P2)
1742 * If P1|P2 yields a situation with both a class and its complement are
1743 * set, like having both \w and \W, this matches all code points, and we
1744 * can delete these from the P component of the ssc going forward. XXX We
1745 * might be able to delete all the P components, but I (khw) am not certain
1746 * about this, and it is better to be safe.
1749 * (C1 | P1) | ~(C2 | P2) = (C1 | P1) | (~C2 & ~P2)
1750 * <= (C1 | P1) | ~C2
1751 * <= (C1 | ~C2) | P1
1752 * (which results in actually simpler code than the non-inverted case)
1755 if ((ANYOF_FLAGS(or_with) & ANYOF_INVERT)
1756 && ! is_ANYOF_SYNTHETIC(or_with))
1758 /* We ignore P2, leaving P1 going forward */
1759 } /* else Not inverted */
1760 else if (ANYOF_FLAGS(or_with) & ANYOF_MATCHES_POSIXL) {
1761 ANYOF_POSIXL_OR((regnode_charclass_posixl*)or_with, ssc);
1762 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1764 for (i = 0; i < ANYOF_MAX; i += 2) {
1765 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i + 1))
1767 ssc_match_all_cp(ssc);
1768 ANYOF_POSIXL_CLEAR(ssc, i);
1769 ANYOF_POSIXL_CLEAR(ssc, i+1);
1777 FALSE /* Already has been inverted */
1781 PERL_STATIC_INLINE void
1782 S_ssc_union(pTHX_ regnode_ssc *ssc, SV* const invlist, const bool invert2nd)
1784 PERL_ARGS_ASSERT_SSC_UNION;
1786 assert(is_ANYOF_SYNTHETIC(ssc));
1788 _invlist_union_maybe_complement_2nd(ssc->invlist,
1794 PERL_STATIC_INLINE void
1795 S_ssc_intersection(pTHX_ regnode_ssc *ssc,
1797 const bool invert2nd)
1799 PERL_ARGS_ASSERT_SSC_INTERSECTION;
1801 assert(is_ANYOF_SYNTHETIC(ssc));
1803 _invlist_intersection_maybe_complement_2nd(ssc->invlist,
1809 PERL_STATIC_INLINE void
1810 S_ssc_add_range(pTHX_ regnode_ssc *ssc, const UV start, const UV end)
1812 PERL_ARGS_ASSERT_SSC_ADD_RANGE;
1814 assert(is_ANYOF_SYNTHETIC(ssc));
1816 ssc->invlist = _add_range_to_invlist(ssc->invlist, start, end);
1819 PERL_STATIC_INLINE void
1820 S_ssc_cp_and(pTHX_ regnode_ssc *ssc, const UV cp)
1822 /* AND just the single code point 'cp' into the SSC 'ssc' */
1824 SV* cp_list = _new_invlist(2);
1826 PERL_ARGS_ASSERT_SSC_CP_AND;
1828 assert(is_ANYOF_SYNTHETIC(ssc));
1830 cp_list = add_cp_to_invlist(cp_list, cp);
1831 ssc_intersection(ssc, cp_list,
1832 FALSE /* Not inverted */
1834 SvREFCNT_dec_NN(cp_list);
1837 PERL_STATIC_INLINE void
1838 S_ssc_clear_locale(regnode_ssc *ssc)
1840 /* Set the SSC 'ssc' to not match any locale things */
1841 PERL_ARGS_ASSERT_SSC_CLEAR_LOCALE;
1843 assert(is_ANYOF_SYNTHETIC(ssc));
1845 ANYOF_POSIXL_ZERO(ssc);
1846 ANYOF_FLAGS(ssc) &= ~ANYOF_LOCALE_FLAGS;
1849 #define NON_OTHER_COUNT NON_OTHER_COUNT_FOR_USE_ONLY_BY_REGCOMP_DOT_C
1852 S_is_ssc_worth_it(const RExC_state_t * pRExC_state, const regnode_ssc * ssc)
1854 /* The synthetic start class is used to hopefully quickly winnow down
1855 * places where a pattern could start a match in the target string. If it
1856 * doesn't really narrow things down that much, there isn't much point to
1857 * having the overhead of using it. This function uses some very crude
1858 * heuristics to decide if to use the ssc or not.
1860 * It returns TRUE if 'ssc' rules out more than half what it considers to
1861 * be the "likely" possible matches, but of course it doesn't know what the
1862 * actual things being matched are going to be; these are only guesses
1864 * For /l matches, it assumes that the only likely matches are going to be
1865 * in the 0-255 range, uniformly distributed, so half of that is 127
1866 * For /a and /d matches, it assumes that the likely matches will be just
1867 * the ASCII range, so half of that is 63
1868 * For /u and there isn't anything matching above the Latin1 range, it
1869 * assumes that that is the only range likely to be matched, and uses
1870 * half that as the cut-off: 127. If anything matches above Latin1,
1871 * it assumes that all of Unicode could match (uniformly), except for
1872 * non-Unicode code points and things in the General Category "Other"
1873 * (unassigned, private use, surrogates, controls and formats). This
1874 * is a much large number. */
1876 U32 count = 0; /* Running total of number of code points matched by
1878 UV start, end; /* Start and end points of current range in inversion
1880 const U32 max_code_points = (LOC)
1882 : (( ! UNI_SEMANTICS
1883 || invlist_highest(ssc->invlist) < 256)
1886 const U32 max_match = max_code_points / 2;
1888 PERL_ARGS_ASSERT_IS_SSC_WORTH_IT;
1890 invlist_iterinit(ssc->invlist);
1891 while (invlist_iternext(ssc->invlist, &start, &end)) {
1892 if (start >= max_code_points) {
1895 end = MIN(end, max_code_points - 1);
1896 count += end - start + 1;
1897 if (count >= max_match) {
1898 invlist_iterfinish(ssc->invlist);
1908 S_ssc_finalize(pTHX_ RExC_state_t *pRExC_state, regnode_ssc *ssc)
1910 /* The inversion list in the SSC is marked mortal; now we need a more
1911 * permanent copy, which is stored the same way that is done in a regular
1912 * ANYOF node, with the first NUM_ANYOF_CODE_POINTS code points in a bit
1915 SV* invlist = invlist_clone(ssc->invlist);
1917 PERL_ARGS_ASSERT_SSC_FINALIZE;
1919 assert(is_ANYOF_SYNTHETIC(ssc));
1921 /* The code in this file assumes that all but these flags aren't relevant
1922 * to the SSC, except SSC_MATCHES_EMPTY_STRING, which should be cleared
1923 * by the time we reach here */
1924 assert(! (ANYOF_FLAGS(ssc)
1925 & ~( ANYOF_COMMON_FLAGS
1926 |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1927 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP)));
1929 populate_ANYOF_from_invlist( (regnode *) ssc, &invlist);
1931 set_ANYOF_arg(pRExC_state, (regnode *) ssc, invlist,
1932 NULL, NULL, NULL, FALSE);
1934 /* Make sure is clone-safe */
1935 ssc->invlist = NULL;
1937 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1938 ANYOF_FLAGS(ssc) |= ANYOF_MATCHES_POSIXL;
1941 if (RExC_contains_locale) {
1945 assert(! (ANYOF_FLAGS(ssc) & ANYOF_LOCALE_FLAGS) || RExC_contains_locale);
1948 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
1949 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
1950 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
1951 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list \
1952 ? (TRIE_LIST_CUR( idx ) - 1) \
1958 dump_trie(trie,widecharmap,revcharmap)
1959 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
1960 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
1962 These routines dump out a trie in a somewhat readable format.
1963 The _interim_ variants are used for debugging the interim
1964 tables that are used to generate the final compressed
1965 representation which is what dump_trie expects.
1967 Part of the reason for their existence is to provide a form
1968 of documentation as to how the different representations function.
1973 Dumps the final compressed table form of the trie to Perl_debug_log.
1974 Used for debugging make_trie().
1978 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
1979 AV *revcharmap, U32 depth)
1982 SV *sv=sv_newmortal();
1983 int colwidth= widecharmap ? 6 : 4;
1985 GET_RE_DEBUG_FLAGS_DECL;
1987 PERL_ARGS_ASSERT_DUMP_TRIE;
1989 Perl_re_indentf( aTHX_ "Char : %-6s%-6s%-4s ",
1990 depth+1, "Match","Base","Ofs" );
1992 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
1993 SV ** const tmp = av_fetch( revcharmap, state, 0);
1995 Perl_re_printf( aTHX_ "%*s",
1997 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1998 PL_colors[0], PL_colors[1],
1999 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2000 PERL_PV_ESCAPE_FIRSTCHAR
2005 Perl_re_printf( aTHX_ "\n");
2006 Perl_re_indentf( aTHX_ "State|-----------------------", depth+1);
2008 for( state = 0 ; state < trie->uniquecharcount ; state++ )
2009 Perl_re_printf( aTHX_ "%.*s", colwidth, "--------");
2010 Perl_re_printf( aTHX_ "\n");
2012 for( state = 1 ; state < trie->statecount ; state++ ) {
2013 const U32 base = trie->states[ state ].trans.base;
2015 Perl_re_indentf( aTHX_ "#%4"UVXf"|", depth+1, (UV)state);
2017 if ( trie->states[ state ].wordnum ) {
2018 Perl_re_printf( aTHX_ " W%4X", trie->states[ state ].wordnum );
2020 Perl_re_printf( aTHX_ "%6s", "" );
2023 Perl_re_printf( aTHX_ " @%4"UVXf" ", (UV)base );
2028 while( ( base + ofs < trie->uniquecharcount ) ||
2029 ( base + ofs - trie->uniquecharcount < trie->lasttrans
2030 && trie->trans[ base + ofs - trie->uniquecharcount ].check
2034 Perl_re_printf( aTHX_ "+%2"UVXf"[ ", (UV)ofs);
2036 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2037 if ( ( base + ofs >= trie->uniquecharcount )
2038 && ( base + ofs - trie->uniquecharcount
2040 && trie->trans[ base + ofs
2041 - trie->uniquecharcount ].check == state )
2043 Perl_re_printf( aTHX_ "%*"UVXf, colwidth,
2044 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next
2047 Perl_re_printf( aTHX_ "%*s",colwidth," ." );
2051 Perl_re_printf( aTHX_ "]");
2054 Perl_re_printf( aTHX_ "\n" );
2056 Perl_re_indentf( aTHX_ "word_info N:(prev,len)=",
2058 for (word=1; word <= trie->wordcount; word++) {
2059 Perl_re_printf( aTHX_ " %d:(%d,%d)",
2060 (int)word, (int)(trie->wordinfo[word].prev),
2061 (int)(trie->wordinfo[word].len));
2063 Perl_re_printf( aTHX_ "\n" );
2066 Dumps a fully constructed but uncompressed trie in list form.
2067 List tries normally only are used for construction when the number of
2068 possible chars (trie->uniquecharcount) is very high.
2069 Used for debugging make_trie().
2072 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
2073 HV *widecharmap, AV *revcharmap, U32 next_alloc,
2077 SV *sv=sv_newmortal();
2078 int colwidth= widecharmap ? 6 : 4;
2079 GET_RE_DEBUG_FLAGS_DECL;
2081 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
2083 /* print out the table precompression. */
2084 Perl_re_indentf( aTHX_ "State :Word | Transition Data\n",
2086 Perl_re_indentf( aTHX_ "%s",
2087 depth+1, "------:-----+-----------------\n" );
2089 for( state=1 ; state < next_alloc ; state ++ ) {
2092 Perl_re_indentf( aTHX_ " %4"UVXf" :",
2093 depth+1, (UV)state );
2094 if ( ! trie->states[ state ].wordnum ) {
2095 Perl_re_printf( aTHX_ "%5s| ","");
2097 Perl_re_printf( aTHX_ "W%4x| ",
2098 trie->states[ state ].wordnum
2101 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
2102 SV ** const tmp = av_fetch( revcharmap,
2103 TRIE_LIST_ITEM(state,charid).forid, 0);
2105 Perl_re_printf( aTHX_ "%*s:%3X=%4"UVXf" | ",
2107 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp),
2109 PL_colors[0], PL_colors[1],
2110 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
2111 | PERL_PV_ESCAPE_FIRSTCHAR
2113 TRIE_LIST_ITEM(state,charid).forid,
2114 (UV)TRIE_LIST_ITEM(state,charid).newstate
2117 Perl_re_printf( aTHX_ "\n%*s| ",
2118 (int)((depth * 2) + 14), "");
2121 Perl_re_printf( aTHX_ "\n");
2126 Dumps a fully constructed but uncompressed trie in table form.
2127 This is the normal DFA style state transition table, with a few
2128 twists to facilitate compression later.
2129 Used for debugging make_trie().
2132 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
2133 HV *widecharmap, AV *revcharmap, U32 next_alloc,
2138 SV *sv=sv_newmortal();
2139 int colwidth= widecharmap ? 6 : 4;
2140 GET_RE_DEBUG_FLAGS_DECL;
2142 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
2145 print out the table precompression so that we can do a visual check
2146 that they are identical.
2149 Perl_re_indentf( aTHX_ "Char : ", depth+1 );
2151 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
2152 SV ** const tmp = av_fetch( revcharmap, charid, 0);
2154 Perl_re_printf( aTHX_ "%*s",
2156 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
2157 PL_colors[0], PL_colors[1],
2158 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2159 PERL_PV_ESCAPE_FIRSTCHAR
2165 Perl_re_printf( aTHX_ "\n");
2166 Perl_re_indentf( aTHX_ "State+-", depth+1 );
2168 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
2169 Perl_re_printf( aTHX_ "%.*s", colwidth,"--------");
2172 Perl_re_printf( aTHX_ "\n" );
2174 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
2176 Perl_re_indentf( aTHX_ "%4"UVXf" : ",
2178 (UV)TRIE_NODENUM( state ) );
2180 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
2181 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
2183 Perl_re_printf( aTHX_ "%*"UVXf, colwidth, v );
2185 Perl_re_printf( aTHX_ "%*s", colwidth, "." );
2187 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
2188 Perl_re_printf( aTHX_ " (%4"UVXf")\n",
2189 (UV)trie->trans[ state ].check );
2191 Perl_re_printf( aTHX_ " (%4"UVXf") W%4X\n",
2192 (UV)trie->trans[ state ].check,
2193 trie->states[ TRIE_NODENUM( state ) ].wordnum );
2201 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
2202 startbranch: the first branch in the whole branch sequence
2203 first : start branch of sequence of branch-exact nodes.
2204 May be the same as startbranch
2205 last : Thing following the last branch.
2206 May be the same as tail.
2207 tail : item following the branch sequence
2208 count : words in the sequence
2209 flags : currently the OP() type we will be building one of /EXACT(|F|FA|FU|FU_SS|L|FLU8)/
2210 depth : indent depth
2212 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
2214 A trie is an N'ary tree where the branches are determined by digital
2215 decomposition of the key. IE, at the root node you look up the 1st character and
2216 follow that branch repeat until you find the end of the branches. Nodes can be
2217 marked as "accepting" meaning they represent a complete word. Eg:
2221 would convert into the following structure. Numbers represent states, letters
2222 following numbers represent valid transitions on the letter from that state, if
2223 the number is in square brackets it represents an accepting state, otherwise it
2224 will be in parenthesis.
2226 +-h->+-e->[3]-+-r->(8)-+-s->[9]
2230 (1) +-i->(6)-+-s->[7]
2232 +-s->(3)-+-h->(4)-+-e->[5]
2234 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
2236 This shows that when matching against the string 'hers' we will begin at state 1
2237 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
2238 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
2239 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
2240 single traverse. We store a mapping from accepting to state to which word was
2241 matched, and then when we have multiple possibilities we try to complete the
2242 rest of the regex in the order in which they occurred in the alternation.
2244 The only prior NFA like behaviour that would be changed by the TRIE support is
2245 the silent ignoring of duplicate alternations which are of the form:
2247 / (DUPE|DUPE) X? (?{ ... }) Y /x
2249 Thus EVAL blocks following a trie may be called a different number of times with
2250 and without the optimisation. With the optimisations dupes will be silently
2251 ignored. This inconsistent behaviour of EVAL type nodes is well established as
2252 the following demonstrates:
2254 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
2256 which prints out 'word' three times, but
2258 'words'=~/(word|word|word)(?{ print $1 })S/
2260 which doesnt print it out at all. This is due to other optimisations kicking in.
2262 Example of what happens on a structural level:
2264 The regexp /(ac|ad|ab)+/ will produce the following debug output:
2266 1: CURLYM[1] {1,32767}(18)
2277 This would be optimizable with startbranch=5, first=5, last=16, tail=16
2278 and should turn into:
2280 1: CURLYM[1] {1,32767}(18)
2282 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
2290 Cases where tail != last would be like /(?foo|bar)baz/:
2300 which would be optimizable with startbranch=1, first=1, last=7, tail=8
2301 and would end up looking like:
2304 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
2311 d = uvchr_to_utf8_flags(d, uv, 0);
2313 is the recommended Unicode-aware way of saying
2318 #define TRIE_STORE_REVCHAR(val) \
2321 SV *zlopp = newSV(UTF8_MAXBYTES); \
2322 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
2323 unsigned const char *const kapow = uvchr_to_utf8(flrbbbbb, val); \
2324 SvCUR_set(zlopp, kapow - flrbbbbb); \
2327 av_push(revcharmap, zlopp); \
2329 char ooooff = (char)val; \
2330 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
2334 /* This gets the next character from the input, folding it if not already
2336 #define TRIE_READ_CHAR STMT_START { \
2339 /* if it is UTF then it is either already folded, or does not need \
2341 uvc = valid_utf8_to_uvchr( (const U8*) uc, &len); \
2343 else if (folder == PL_fold_latin1) { \
2344 /* This folder implies Unicode rules, which in the range expressible \
2345 * by not UTF is the lower case, with the two exceptions, one of \
2346 * which should have been taken care of before calling this */ \
2347 assert(*uc != LATIN_SMALL_LETTER_SHARP_S); \
2348 uvc = toLOWER_L1(*uc); \
2349 if (UNLIKELY(uvc == MICRO_SIGN)) uvc = GREEK_SMALL_LETTER_MU; \
2352 /* raw data, will be folded later if needed */ \
2360 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
2361 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
2362 U32 ging = TRIE_LIST_LEN( state ) *= 2; \
2363 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
2365 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
2366 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
2367 TRIE_LIST_CUR( state )++; \
2370 #define TRIE_LIST_NEW(state) STMT_START { \
2371 Newxz( trie->states[ state ].trans.list, \
2372 4, reg_trie_trans_le ); \
2373 TRIE_LIST_CUR( state ) = 1; \
2374 TRIE_LIST_LEN( state ) = 4; \
2377 #define TRIE_HANDLE_WORD(state) STMT_START { \
2378 U16 dupe= trie->states[ state ].wordnum; \
2379 regnode * const noper_next = regnext( noper ); \
2382 /* store the word for dumping */ \
2384 if (OP(noper) != NOTHING) \
2385 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
2387 tmp = newSVpvn_utf8( "", 0, UTF ); \
2388 av_push( trie_words, tmp ); \
2392 trie->wordinfo[curword].prev = 0; \
2393 trie->wordinfo[curword].len = wordlen; \
2394 trie->wordinfo[curword].accept = state; \
2396 if ( noper_next < tail ) { \
2398 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, \
2400 trie->jump[curword] = (U16)(noper_next - convert); \
2402 jumper = noper_next; \
2404 nextbranch= regnext(cur); \
2408 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
2409 /* chain, so that when the bits of chain are later */\
2410 /* linked together, the dups appear in the chain */\
2411 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
2412 trie->wordinfo[dupe].prev = curword; \
2414 /* we haven't inserted this word yet. */ \
2415 trie->states[ state ].wordnum = curword; \
2420 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
2421 ( ( base + charid >= ucharcount \
2422 && base + charid < ubound \
2423 && state == trie->trans[ base - ucharcount + charid ].check \
2424 && trie->trans[ base - ucharcount + charid ].next ) \
2425 ? trie->trans[ base - ucharcount + charid ].next \
2426 : ( state==1 ? special : 0 ) \
2430 #define MADE_JUMP_TRIE 2
2431 #define MADE_EXACT_TRIE 4
2434 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch,
2435 regnode *first, regnode *last, regnode *tail,
2436 U32 word_count, U32 flags, U32 depth)
2438 /* first pass, loop through and scan words */
2439 reg_trie_data *trie;
2440 HV *widecharmap = NULL;
2441 AV *revcharmap = newAV();
2447 regnode *jumper = NULL;
2448 regnode *nextbranch = NULL;
2449 regnode *convert = NULL;
2450 U32 *prev_states; /* temp array mapping each state to previous one */
2451 /* we just use folder as a flag in utf8 */
2452 const U8 * folder = NULL;
2455 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tuuu"));
2456 AV *trie_words = NULL;
2457 /* along with revcharmap, this only used during construction but both are
2458 * useful during debugging so we store them in the struct when debugging.
2461 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tu"));
2462 STRLEN trie_charcount=0;
2464 SV *re_trie_maxbuff;
2465 GET_RE_DEBUG_FLAGS_DECL;
2467 PERL_ARGS_ASSERT_MAKE_TRIE;
2469 PERL_UNUSED_ARG(depth);
2473 case EXACT: case EXACTL: break;
2477 case EXACTFLU8: folder = PL_fold_latin1; break;
2478 case EXACTF: folder = PL_fold; break;
2479 default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
2482 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
2484 trie->startstate = 1;
2485 trie->wordcount = word_count;
2486 RExC_rxi->data->data[ data_slot ] = (void*)trie;
2487 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
2488 if (flags == EXACT || flags == EXACTL)
2489 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
2490 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
2491 trie->wordcount+1, sizeof(reg_trie_wordinfo));
2494 trie_words = newAV();
2497 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
2498 assert(re_trie_maxbuff);
2499 if (!SvIOK(re_trie_maxbuff)) {
2500 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
2502 DEBUG_TRIE_COMPILE_r({
2503 Perl_re_indentf( aTHX_
2504 "make_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
2506 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
2507 REG_NODE_NUM(last), REG_NODE_NUM(tail), (int)depth);
2510 /* Find the node we are going to overwrite */
2511 if ( first == startbranch && OP( last ) != BRANCH ) {
2512 /* whole branch chain */
2515 /* branch sub-chain */
2516 convert = NEXTOPER( first );
2519 /* -- First loop and Setup --
2521 We first traverse the branches and scan each word to determine if it
2522 contains widechars, and how many unique chars there are, this is
2523 important as we have to build a table with at least as many columns as we
2526 We use an array of integers to represent the character codes 0..255
2527 (trie->charmap) and we use a an HV* to store Unicode characters. We use
2528 the native representation of the character value as the key and IV's for
2531 *TODO* If we keep track of how many times each character is used we can
2532 remap the columns so that the table compression later on is more
2533 efficient in terms of memory by ensuring the most common value is in the
2534 middle and the least common are on the outside. IMO this would be better
2535 than a most to least common mapping as theres a decent chance the most
2536 common letter will share a node with the least common, meaning the node
2537 will not be compressible. With a middle is most common approach the worst
2538 case is when we have the least common nodes twice.
2542 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2543 regnode *noper = NEXTOPER( cur );
2547 U32 wordlen = 0; /* required init */
2548 STRLEN minchars = 0;
2549 STRLEN maxchars = 0;
2550 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the
2553 if (OP(noper) == NOTHING) {
2554 regnode *noper_next= regnext(noper);
2555 if (noper_next < tail)
2559 if ( noper < tail && ( OP(noper) == flags || ( flags == EXACTFU && OP(noper) == EXACTFU_SS ) ) ) {
2560 uc= (U8*)STRING(noper);
2561 e= uc + STR_LEN(noper);
2568 if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
2569 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
2570 regardless of encoding */
2571 if (OP( noper ) == EXACTFU_SS) {
2572 /* false positives are ok, so just set this */
2573 TRIE_BITMAP_SET(trie, LATIN_SMALL_LETTER_SHARP_S);
2576 for ( ; uc < e ; uc += len ) { /* Look at each char in the current
2578 TRIE_CHARCOUNT(trie)++;
2581 /* TRIE_READ_CHAR returns the current character, or its fold if /i
2582 * is in effect. Under /i, this character can match itself, or
2583 * anything that folds to it. If not under /i, it can match just
2584 * itself. Most folds are 1-1, for example k, K, and KELVIN SIGN
2585 * all fold to k, and all are single characters. But some folds
2586 * expand to more than one character, so for example LATIN SMALL
2587 * LIGATURE FFI folds to the three character sequence 'ffi'. If
2588 * the string beginning at 'uc' is 'ffi', it could be matched by
2589 * three characters, or just by the one ligature character. (It
2590 * could also be matched by two characters: LATIN SMALL LIGATURE FF
2591 * followed by 'i', or by 'f' followed by LATIN SMALL LIGATURE FI).
2592 * (Of course 'I' and/or 'F' instead of 'i' and 'f' can also
2593 * match.) The trie needs to know the minimum and maximum number
2594 * of characters that could match so that it can use size alone to
2595 * quickly reject many match attempts. The max is simple: it is
2596 * the number of folded characters in this branch (since a fold is
2597 * never shorter than what folds to it. */
2601 /* And the min is equal to the max if not under /i (indicated by
2602 * 'folder' being NULL), or there are no multi-character folds. If
2603 * there is a multi-character fold, the min is incremented just
2604 * once, for the character that folds to the sequence. Each
2605 * character in the sequence needs to be added to the list below of
2606 * characters in the trie, but we count only the first towards the
2607 * min number of characters needed. This is done through the
2608 * variable 'foldlen', which is returned by the macros that look
2609 * for these sequences as the number of bytes the sequence
2610 * occupies. Each time through the loop, we decrement 'foldlen' by
2611 * how many bytes the current char occupies. Only when it reaches
2612 * 0 do we increment 'minchars' or look for another multi-character
2614 if (folder == NULL) {
2617 else if (foldlen > 0) {
2618 foldlen -= (UTF) ? UTF8SKIP(uc) : 1;
2623 /* See if *uc is the beginning of a multi-character fold. If
2624 * so, we decrement the length remaining to look at, to account
2625 * for the current character this iteration. (We can use 'uc'
2626 * instead of the fold returned by TRIE_READ_CHAR because for
2627 * non-UTF, the latin1_safe macro is smart enough to account
2628 * for all the unfolded characters, and because for UTF, the
2629 * string will already have been folded earlier in the
2630 * compilation process */
2632 if ((foldlen = is_MULTI_CHAR_FOLD_utf8_safe(uc, e))) {
2633 foldlen -= UTF8SKIP(uc);
2636 else if ((foldlen = is_MULTI_CHAR_FOLD_latin1_safe(uc, e))) {
2641 /* The current character (and any potential folds) should be added
2642 * to the possible matching characters for this position in this
2646 U8 folded= folder[ (U8) uvc ];
2647 if ( !trie->charmap[ folded ] ) {
2648 trie->charmap[ folded ]=( ++trie->uniquecharcount );
2649 TRIE_STORE_REVCHAR( folded );
2652 if ( !trie->charmap[ uvc ] ) {
2653 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
2654 TRIE_STORE_REVCHAR( uvc );
2657 /* store the codepoint in the bitmap, and its folded
2659 TRIE_BITMAP_SET(trie, uvc);
2661 /* store the folded codepoint */
2662 if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);
2665 /* store first byte of utf8 representation of
2666 variant codepoints */
2667 if (! UVCHR_IS_INVARIANT(uvc)) {
2668 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
2671 set_bit = 0; /* We've done our bit :-) */
2675 /* XXX We could come up with the list of code points that fold
2676 * to this using PL_utf8_foldclosures, except not for
2677 * multi-char folds, as there may be multiple combinations
2678 * there that could work, which needs to wait until runtime to
2679 * resolve (The comment about LIGATURE FFI above is such an
2684 widecharmap = newHV();
2686 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
2689 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
2691 if ( !SvTRUE( *svpp ) ) {
2692 sv_setiv( *svpp, ++trie->uniquecharcount );
2693 TRIE_STORE_REVCHAR(uvc);
2696 } /* end loop through characters in this branch of the trie */
2698 /* We take the min and max for this branch and combine to find the min
2699 * and max for all branches processed so far */
2700 if( cur == first ) {
2701 trie->minlen = minchars;
2702 trie->maxlen = maxchars;
2703 } else if (minchars < trie->minlen) {
2704 trie->minlen = minchars;
2705 } else if (maxchars > trie->maxlen) {
2706 trie->maxlen = maxchars;
2708 } /* end first pass */
2709 DEBUG_TRIE_COMPILE_r(
2710 Perl_re_indentf( aTHX_
2711 "TRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
2713 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
2714 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
2715 (int)trie->minlen, (int)trie->maxlen )
2719 We now know what we are dealing with in terms of unique chars and
2720 string sizes so we can calculate how much memory a naive
2721 representation using a flat table will take. If it's over a reasonable
2722 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
2723 conservative but potentially much slower representation using an array
2726 At the end we convert both representations into the same compressed
2727 form that will be used in regexec.c for matching with. The latter
2728 is a form that cannot be used to construct with but has memory
2729 properties similar to the list form and access properties similar
2730 to the table form making it both suitable for fast searches and
2731 small enough that its feasable to store for the duration of a program.
2733 See the comment in the code where the compressed table is produced
2734 inplace from the flat tabe representation for an explanation of how
2735 the compression works.
2740 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
2743 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1)
2744 > SvIV(re_trie_maxbuff) )
2747 Second Pass -- Array Of Lists Representation
2749 Each state will be represented by a list of charid:state records
2750 (reg_trie_trans_le) the first such element holds the CUR and LEN
2751 points of the allocated array. (See defines above).
2753 We build the initial structure using the lists, and then convert
2754 it into the compressed table form which allows faster lookups
2755 (but cant be modified once converted).
2758 STRLEN transcount = 1;
2760 DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_ "Compiling trie using list compiler\n",
2763 trie->states = (reg_trie_state *)
2764 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2765 sizeof(reg_trie_state) );
2769 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2771 regnode *noper = NEXTOPER( cur );
2772 U32 state = 1; /* required init */
2773 U16 charid = 0; /* sanity init */
2774 U32 wordlen = 0; /* required init */
2776 if (OP(noper) == NOTHING) {
2777 regnode *noper_next= regnext(noper);
2778 if (noper_next < tail)
2782 if ( noper < tail && ( OP(noper) == flags || ( flags == EXACTFU && OP(noper) == EXACTFU_SS ) ) ) {
2783 const U8 *uc= (U8*)STRING(noper);
2784 const U8 *e= uc + STR_LEN(noper);
2786 for ( ; uc < e ; uc += len ) {
2791 charid = trie->charmap[ uvc ];
2793 SV** const svpp = hv_fetch( widecharmap,
2800 charid=(U16)SvIV( *svpp );
2803 /* charid is now 0 if we dont know the char read, or
2804 * nonzero if we do */
2811 if ( !trie->states[ state ].trans.list ) {
2812 TRIE_LIST_NEW( state );
2815 check <= TRIE_LIST_USED( state );
2818 if ( TRIE_LIST_ITEM( state, check ).forid
2821 newstate = TRIE_LIST_ITEM( state, check ).newstate;
2826 newstate = next_alloc++;
2827 prev_states[newstate] = state;
2828 TRIE_LIST_PUSH( state, charid, newstate );
2833 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
2837 TRIE_HANDLE_WORD(state);
2839 } /* end second pass */
2841 /* next alloc is the NEXT state to be allocated */
2842 trie->statecount = next_alloc;
2843 trie->states = (reg_trie_state *)
2844 PerlMemShared_realloc( trie->states,
2846 * sizeof(reg_trie_state) );
2848 /* and now dump it out before we compress it */
2849 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
2850 revcharmap, next_alloc,
2854 trie->trans = (reg_trie_trans *)
2855 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
2862 for( state=1 ; state < next_alloc ; state ++ ) {
2866 DEBUG_TRIE_COMPILE_MORE_r(
2867 Perl_re_printf( aTHX_ "tp: %d zp: %d ",tp,zp)
2871 if (trie->states[state].trans.list) {
2872 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
2876 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
2877 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
2878 if ( forid < minid ) {
2880 } else if ( forid > maxid ) {
2884 if ( transcount < tp + maxid - minid + 1) {
2886 trie->trans = (reg_trie_trans *)
2887 PerlMemShared_realloc( trie->trans,
2889 * sizeof(reg_trie_trans) );
2890 Zero( trie->trans + (transcount / 2),
2894 base = trie->uniquecharcount + tp - minid;
2895 if ( maxid == minid ) {
2897 for ( ; zp < tp ; zp++ ) {
2898 if ( ! trie->trans[ zp ].next ) {
2899 base = trie->uniquecharcount + zp - minid;
2900 trie->trans[ zp ].next = TRIE_LIST_ITEM( state,
2902 trie->trans[ zp ].check = state;
2908 trie->trans[ tp ].next = TRIE_LIST_ITEM( state,
2910 trie->trans[ tp ].check = state;
2915 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
2916 const U32 tid = base
2917 - trie->uniquecharcount
2918 + TRIE_LIST_ITEM( state, idx ).forid;
2919 trie->trans[ tid ].next = TRIE_LIST_ITEM( state,
2921 trie->trans[ tid ].check = state;
2923 tp += ( maxid - minid + 1 );
2925 Safefree(trie->states[ state ].trans.list);
2928 DEBUG_TRIE_COMPILE_MORE_r(
2929 Perl_re_printf( aTHX_ " base: %d\n",base);
2932 trie->states[ state ].trans.base=base;
2934 trie->lasttrans = tp + 1;
2938 Second Pass -- Flat Table Representation.
2940 we dont use the 0 slot of either trans[] or states[] so we add 1 to
2941 each. We know that we will need Charcount+1 trans at most to store
2942 the data (one row per char at worst case) So we preallocate both
2943 structures assuming worst case.
2945 We then construct the trie using only the .next slots of the entry
2948 We use the .check field of the first entry of the node temporarily
2949 to make compression both faster and easier by keeping track of how
2950 many non zero fields are in the node.
2952 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
2955 There are two terms at use here: state as a TRIE_NODEIDX() which is
2956 a number representing the first entry of the node, and state as a
2957 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1)
2958 and TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3)
2959 if there are 2 entrys per node. eg:
2967 The table is internally in the right hand, idx form. However as we
2968 also have to deal with the states array which is indexed by nodenum
2969 we have to use TRIE_NODENUM() to convert.
2972 DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_ "Compiling trie using table compiler\n",
2975 trie->trans = (reg_trie_trans *)
2976 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
2977 * trie->uniquecharcount + 1,
2978 sizeof(reg_trie_trans) );
2979 trie->states = (reg_trie_state *)
2980 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2981 sizeof(reg_trie_state) );
2982 next_alloc = trie->uniquecharcount + 1;
2985 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2987 regnode *noper = NEXTOPER( cur );
2989 U32 state = 1; /* required init */
2991 U16 charid = 0; /* sanity init */
2992 U32 accept_state = 0; /* sanity init */
2994 U32 wordlen = 0; /* required init */
2996 if (OP(noper) == NOTHING) {
2997 regnode *noper_next= regnext(noper);
2998 if (noper_next < tail)
3002 if ( noper < tail && ( OP(noper) == flags || ( flags == EXACTFU && OP(noper) == EXACTFU_SS ) ) ) {
3003 const U8 *uc= (U8*)STRING(noper);
3004 const U8 *e= uc + STR_LEN(noper);
3006 for ( ; uc < e ; uc += len ) {
3011 charid = trie->charmap[ uvc ];
3013 SV* const * const svpp = hv_fetch( widecharmap,
3017 charid = svpp ? (U16)SvIV(*svpp) : 0;
3021 if ( !trie->trans[ state + charid ].next ) {
3022 trie->trans[ state + charid ].next = next_alloc;
3023 trie->trans[ state ].check++;
3024 prev_states[TRIE_NODENUM(next_alloc)]
3025 = TRIE_NODENUM(state);
3026 next_alloc += trie->uniquecharcount;
3028 state = trie->trans[ state + charid ].next;
3030 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
3032 /* charid is now 0 if we dont know the char read, or
3033 * nonzero if we do */
3036 accept_state = TRIE_NODENUM( state );
3037 TRIE_HANDLE_WORD(accept_state);
3039 } /* end second pass */
3041 /* and now dump it out before we compress it */
3042 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
3044 next_alloc, depth+1));
3048 * Inplace compress the table.*
3050 For sparse data sets the table constructed by the trie algorithm will
3051 be mostly 0/FAIL transitions or to put it another way mostly empty.
3052 (Note that leaf nodes will not contain any transitions.)
3054 This algorithm compresses the tables by eliminating most such
3055 transitions, at the cost of a modest bit of extra work during lookup:
3057 - Each states[] entry contains a .base field which indicates the
3058 index in the state[] array wheres its transition data is stored.
3060 - If .base is 0 there are no valid transitions from that node.
3062 - If .base is nonzero then charid is added to it to find an entry in
3065 -If trans[states[state].base+charid].check!=state then the
3066 transition is taken to be a 0/Fail transition. Thus if there are fail
3067 transitions at the front of the node then the .base offset will point
3068 somewhere inside the previous nodes data (or maybe even into a node
3069 even earlier), but the .check field determines if the transition is
3073 The following process inplace converts the table to the compressed
3074 table: We first do not compress the root node 1,and mark all its
3075 .check pointers as 1 and set its .base pointer as 1 as well. This
3076 allows us to do a DFA construction from the compressed table later,
3077 and ensures that any .base pointers we calculate later are greater
3080 - We set 'pos' to indicate the first entry of the second node.
3082 - We then iterate over the columns of the node, finding the first and
3083 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
3084 and set the .check pointers accordingly, and advance pos
3085 appropriately and repreat for the next node. Note that when we copy
3086 the next pointers we have to convert them from the original
3087 NODEIDX form to NODENUM form as the former is not valid post
3090 - If a node has no transitions used we mark its base as 0 and do not
3091 advance the pos pointer.
3093 - If a node only has one transition we use a second pointer into the
3094 structure to fill in allocated fail transitions from other states.
3095 This pointer is independent of the main pointer and scans forward
3096 looking for null transitions that are allocated to a state. When it
3097 finds one it writes the single transition into the "hole". If the
3098 pointer doesnt find one the single transition is appended as normal.
3100 - Once compressed we can Renew/realloc the structures to release the
3103 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
3104 specifically Fig 3.47 and the associated pseudocode.
3108 const U32 laststate = TRIE_NODENUM( next_alloc );
3111 trie->statecount = laststate;
3113 for ( state = 1 ; state < laststate ; state++ ) {
3115 const U32 stateidx = TRIE_NODEIDX( state );
3116 const U32 o_used = trie->trans[ stateidx ].check;
3117 U32 used = trie->trans[ stateidx ].check;
3118 trie->trans[ stateidx ].check = 0;
3121 used && charid < trie->uniquecharcount;
3124 if ( flag || trie->trans[ stateidx + charid ].next ) {
3125 if ( trie->trans[ stateidx + charid ].next ) {
3127 for ( ; zp < pos ; zp++ ) {
3128 if ( ! trie->trans[ zp ].next ) {
3132 trie->states[ state ].trans.base
3134 + trie->uniquecharcount
3136 trie->trans[ zp ].next
3137 = SAFE_TRIE_NODENUM( trie->trans[ stateidx
3139 trie->trans[ zp ].check = state;
3140 if ( ++zp > pos ) pos = zp;
3147 trie->states[ state ].trans.base
3148 = pos + trie->uniquecharcount - charid ;
3150 trie->trans[ pos ].next
3151 = SAFE_TRIE_NODENUM(
3152 trie->trans[ stateidx + charid ].next );
3153 trie->trans[ pos ].check = state;
3158 trie->lasttrans = pos + 1;
3159 trie->states = (reg_trie_state *)
3160 PerlMemShared_realloc( trie->states, laststate
3161 * sizeof(reg_trie_state) );
3162 DEBUG_TRIE_COMPILE_MORE_r(
3163 Perl_re_indentf( aTHX_ "Alloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
3165 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount
3169 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
3172 } /* end table compress */
3174 DEBUG_TRIE_COMPILE_MORE_r(
3175 Perl_re_indentf( aTHX_ "Statecount:%"UVxf" Lasttrans:%"UVxf"\n",
3177 (UV)trie->statecount,
3178 (UV)trie->lasttrans)
3180 /* resize the trans array to remove unused space */
3181 trie->trans = (reg_trie_trans *)
3182 PerlMemShared_realloc( trie->trans, trie->lasttrans
3183 * sizeof(reg_trie_trans) );
3185 { /* Modify the program and insert the new TRIE node */
3186 U8 nodetype =(U8)(flags & 0xFF);
3190 regnode *optimize = NULL;
3191 #ifdef RE_TRACK_PATTERN_OFFSETS
3194 U32 mjd_nodelen = 0;
3195 #endif /* RE_TRACK_PATTERN_OFFSETS */
3196 #endif /* DEBUGGING */
3198 This means we convert either the first branch or the first Exact,
3199 depending on whether the thing following (in 'last') is a branch
3200 or not and whther first is the startbranch (ie is it a sub part of
3201 the alternation or is it the whole thing.)
3202 Assuming its a sub part we convert the EXACT otherwise we convert
3203 the whole branch sequence, including the first.
3205 /* Find the node we are going to overwrite */
3206 if ( first != startbranch || OP( last ) == BRANCH ) {
3207 /* branch sub-chain */
3208 NEXT_OFF( first ) = (U16)(last - first);
3209 #ifdef RE_TRACK_PATTERN_OFFSETS
3211 mjd_offset= Node_Offset((convert));
3212 mjd_nodelen= Node_Length((convert));
3215 /* whole branch chain */
3217 #ifdef RE_TRACK_PATTERN_OFFSETS
3220 const regnode *nop = NEXTOPER( convert );
3221 mjd_offset= Node_Offset((nop));
3222 mjd_nodelen= Node_Length((nop));
3226 Perl_re_indentf( aTHX_ "MJD offset:%"UVuf" MJD length:%"UVuf"\n",
3228 (UV)mjd_offset, (UV)mjd_nodelen)
3231 /* But first we check to see if there is a common prefix we can
3232 split out as an EXACT and put in front of the TRIE node. */
3233 trie->startstate= 1;
3234 if ( trie->bitmap && !widecharmap && !trie->jump ) {
3236 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
3240 const U32 base = trie->states[ state ].trans.base;
3242 if ( trie->states[state].wordnum )
3245 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
3246 if ( ( base + ofs >= trie->uniquecharcount ) &&
3247 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
3248 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
3250 if ( ++count > 1 ) {
3251 SV **tmp = av_fetch( revcharmap, ofs, 0);
3252 const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
3253 if ( state == 1 ) break;
3255 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
3257 Perl_re_indentf( aTHX_ "New Start State=%"UVuf" Class: [",
3261 SV ** const tmp = av_fetch( revcharmap, idx, 0);
3262 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
3264 TRIE_BITMAP_SET(trie,*ch);
3266 TRIE_BITMAP_SET(trie, folder[ *ch ]);
3268 Perl_re_printf( aTHX_ "%s", (char*)ch)
3272 TRIE_BITMAP_SET(trie,*ch);
3274 TRIE_BITMAP_SET(trie,folder[ *ch ]);
3275 DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "%s", ch));
3281 SV **tmp = av_fetch( revcharmap, idx, 0);
3283 char *ch = SvPV( *tmp, len );
3285 SV *sv=sv_newmortal();
3286 Perl_re_indentf( aTHX_ "Prefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
3289 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
3290 PL_colors[0], PL_colors[1],
3291 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
3292 PERL_PV_ESCAPE_FIRSTCHAR
3297 OP( convert ) = nodetype;
3298 str=STRING(convert);
3301 STR_LEN(convert) += len;
3307 DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "]\n"));
3312 trie->prefixlen = (state-1);
3314 regnode *n = convert+NODE_SZ_STR(convert);
3315 NEXT_OFF(convert) = NODE_SZ_STR(convert);
3316 trie->startstate = state;
3317 trie->minlen -= (state - 1);
3318 trie->maxlen -= (state - 1);
3320 /* At least the UNICOS C compiler choked on this
3321 * being argument to DEBUG_r(), so let's just have
3324 #ifdef PERL_EXT_RE_BUILD
3330 regnode *fix = convert;
3331 U32 word = trie->wordcount;
3333 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
3334 while( ++fix < n ) {
3335 Set_Node_Offset_Length(fix, 0, 0);
3338 SV ** const tmp = av_fetch( trie_words, word, 0 );
3340 if ( STR_LEN(convert) <= SvCUR(*tmp) )
3341 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
3343 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
3351 NEXT_OFF(convert) = (U16)(tail - convert);
3352 DEBUG_r(optimize= n);
3358 if ( trie->maxlen ) {
3359 NEXT_OFF( convert ) = (U16)(tail - convert);
3360 ARG_SET( convert, data_slot );
3361 /* Store the offset to the first unabsorbed branch in
3362 jump[0], which is otherwise unused by the jump logic.
3363 We use this when dumping a trie and during optimisation. */
3365 trie->jump[0] = (U16)(nextbranch - convert);
3367 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
3368 * and there is a bitmap
3369 * and the first "jump target" node we found leaves enough room
3370 * then convert the TRIE node into a TRIEC node, with the bitmap
3371 * embedded inline in the opcode - this is hypothetically faster.
3373 if ( !trie->states[trie->startstate].wordnum
3375 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
3377 OP( convert ) = TRIEC;
3378 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
3379 PerlMemShared_free(trie->bitmap);
3382 OP( convert ) = TRIE;
3384 /* store the type in the flags */
3385 convert->flags = nodetype;
3389 + regarglen[ OP( convert ) ];
3391 /* XXX We really should free up the resource in trie now,
3392 as we won't use them - (which resources?) dmq */
3394 /* needed for dumping*/
3395 DEBUG_r(if (optimize) {
3396 regnode *opt = convert;
3398 while ( ++opt < optimize) {
3399 Set_Node_Offset_Length(opt,0,0);
3402 Try to clean up some of the debris left after the
3405 while( optimize < jumper ) {
3406 mjd_nodelen += Node_Length((optimize));
3407 OP( optimize ) = OPTIMIZED;
3408 Set_Node_Offset_Length(optimize,0,0);
3411 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
3413 } /* end node insert */
3415 /* Finish populating the prev field of the wordinfo array. Walk back
3416 * from each accept state until we find another accept state, and if
3417 * so, point the first word's .prev field at the second word. If the
3418 * second already has a .prev field set, stop now. This will be the
3419 * case either if we've already processed that word's accept state,
3420 * or that state had multiple words, and the overspill words were
3421 * already linked up earlier.
3428 for (word=1; word <= trie->wordcount; word++) {
3430 if (trie->wordinfo[word].prev)
3432 state = trie->wordinfo[word].accept;
3434 state = prev_states[state];
3437 prev = trie->states[state].wordnum;
3441 trie->wordinfo[word].prev = prev;
3443 Safefree(prev_states);
3447 /* and now dump out the compressed format */
3448 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
3450 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
3452 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
3453 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
3455 SvREFCNT_dec_NN(revcharmap);
3459 : trie->startstate>1
3465 S_construct_ahocorasick_from_trie(pTHX_ RExC_state_t *pRExC_state, regnode *source, U32 depth)
3467 /* The Trie is constructed and compressed now so we can build a fail array if
3470 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and
3472 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi,
3476 We find the fail state for each state in the trie, this state is the longest
3477 proper suffix of the current state's 'word' that is also a proper prefix of
3478 another word in our trie. State 1 represents the word '' and is thus the
3479 default fail state. This allows the DFA not to have to restart after its
3480 tried and failed a word at a given point, it simply continues as though it
3481 had been matching the other word in the first place.
3483 'abcdgu'=~/abcdefg|cdgu/
3484 When we get to 'd' we are still matching the first word, we would encounter
3485 'g' which would fail, which would bring us to the state representing 'd' in
3486 the second word where we would try 'g' and succeed, proceeding to match
3489 /* add a fail transition */
3490 const U32 trie_offset = ARG(source);
3491 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
3493 const U32 ucharcount = trie->uniquecharcount;
3494 const U32 numstates = trie->statecount;
3495 const U32 ubound = trie->lasttrans + ucharcount;
3499 U32 base = trie->states[ 1 ].trans.base;
3502 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("T"));
3504 GET_RE_DEBUG_FLAGS_DECL;
3506 PERL_ARGS_ASSERT_CONSTRUCT_AHOCORASICK_FROM_TRIE;
3507 PERL_UNUSED_CONTEXT;
3509 PERL_UNUSED_ARG(depth);
3512 if ( OP(source) == TRIE ) {
3513 struct regnode_1 *op = (struct regnode_1 *)
3514 PerlMemShared_calloc(1, sizeof(struct regnode_1));
3515 StructCopy(source,op,struct regnode_1);
3516 stclass = (regnode *)op;
3518 struct regnode_charclass *op = (struct regnode_charclass *)
3519 PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
3520 StructCopy(source,op,struct regnode_charclass);
3521 stclass = (regnode *)op;
3523 OP(stclass)+=2; /* convert the TRIE type to its AHO-CORASICK equivalent */
3525 ARG_SET( stclass, data_slot );
3526 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
3527 RExC_rxi->data->data[ data_slot ] = (void*)aho;
3528 aho->trie=trie_offset;
3529 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
3530 Copy( trie->states, aho->states, numstates, reg_trie_state );
3531 Newxz( q, numstates, U32);
3532 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
3535 /* initialize fail[0..1] to be 1 so that we always have
3536 a valid final fail state */
3537 fail[ 0 ] = fail[ 1 ] = 1;
3539 for ( charid = 0; charid < ucharcount ; charid++ ) {
3540 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
3542 q[ q_write ] = newstate;
3543 /* set to point at the root */
3544 fail[ q[ q_write++ ] ]=1;
3547 while ( q_read < q_write) {
3548 const U32 cur = q[ q_read++ % numstates ];
3549 base = trie->states[ cur ].trans.base;
3551 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
3552 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
3554 U32 fail_state = cur;
3557 fail_state = fail[ fail_state ];
3558 fail_base = aho->states[ fail_state ].trans.base;
3559 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
3561 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
3562 fail[ ch_state ] = fail_state;
3563 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
3565 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
3567 q[ q_write++ % numstates] = ch_state;
3571 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
3572 when we fail in state 1, this allows us to use the
3573 charclass scan to find a valid start char. This is based on the principle
3574 that theres a good chance the string being searched contains lots of stuff
3575 that cant be a start char.
3577 fail[ 0 ] = fail[ 1 ] = 0;
3578 DEBUG_TRIE_COMPILE_r({
3579 Perl_re_indentf( aTHX_ "Stclass Failtable (%"UVuf" states): 0",
3580 depth, (UV)numstates
3582 for( q_read=1; q_read<numstates; q_read++ ) {
3583 Perl_re_printf( aTHX_ ", %"UVuf, (UV)fail[q_read]);
3585 Perl_re_printf( aTHX_ "\n");
3588 /*RExC_seen |= REG_TRIEDFA_SEEN;*/
3593 #define DEBUG_PEEP(str,scan,depth) \
3594 DEBUG_OPTIMISE_r({if (scan){ \
3595 regnode *Next = regnext(scan); \
3596 regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);\
3597 Perl_re_indentf( aTHX_ "" str ">%3d: %s (%d)", \
3598 depth, REG_NODE_NUM(scan), SvPV_nolen_const(RExC_mysv),\
3599 Next ? (REG_NODE_NUM(Next)) : 0 );\
3600 DEBUG_SHOW_STUDY_FLAGS(flags," [ ","]");\
3601 Perl_re_printf( aTHX_ "\n"); \
3604 /* The below joins as many adjacent EXACTish nodes as possible into a single
3605 * one. The regop may be changed if the node(s) contain certain sequences that
3606 * require special handling. The joining is only done if:
3607 * 1) there is room in the current conglomerated node to entirely contain the
3609 * 2) they are the exact same node type
3611 * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
3612 * these get optimized out
3614 * XXX khw thinks this should be enhanced to fill EXACT (at least) nodes as full
3615 * as possible, even if that means splitting an existing node so that its first
3616 * part is moved to the preceeding node. This would maximise the efficiency of
3617 * memEQ during matching. Elsewhere in this file, khw proposes splitting
3618 * EXACTFish nodes into portions that don't change under folding vs those that
3619 * do. Those portions that don't change may be the only things in the pattern that
3620 * could be used to find fixed and floating strings.
3622 * If a node is to match under /i (folded), the number of characters it matches
3623 * can be different than its character length if it contains a multi-character
3624 * fold. *min_subtract is set to the total delta number of characters of the
3627 * And *unfolded_multi_char is set to indicate whether or not the node contains
3628 * an unfolded multi-char fold. This happens when whether the fold is valid or
3629 * not won't be known until runtime; namely for EXACTF nodes that contain LATIN
3630 * SMALL LETTER SHARP S, as only if the target string being matched against
3631 * turns out to be UTF-8 is that fold valid; and also for EXACTFL nodes whose
3632 * folding rules depend on the locale in force at runtime. (Multi-char folds
3633 * whose components are all above the Latin1 range are not run-time locale
3634 * dependent, and have already been folded by the time this function is
3637 * This is as good a place as any to discuss the design of handling these
3638 * multi-character fold sequences. It's been wrong in Perl for a very long
3639 * time. There are three code points in Unicode whose multi-character folds
3640 * were long ago discovered to mess things up. The previous designs for
3641 * dealing with these involved assigning a special node for them. This
3642 * approach doesn't always work, as evidenced by this example:
3643 * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
3644 * Both sides fold to "sss", but if the pattern is parsed to create a node that
3645 * would match just the \xDF, it won't be able to handle the case where a
3646 * successful match would have to cross the node's boundary. The new approach
3647 * that hopefully generally solves the problem generates an EXACTFU_SS node
3648 * that is "sss" in this case.
3650 * It turns out that there are problems with all multi-character folds, and not
3651 * just these three. Now the code is general, for all such cases. The
3652 * approach taken is:
3653 * 1) This routine examines each EXACTFish node that could contain multi-
3654 * character folded sequences. Since a single character can fold into
3655 * such a sequence, the minimum match length for this node is less than
3656 * the number of characters in the node. This routine returns in
3657 * *min_subtract how many characters to subtract from the the actual
3658 * length of the string to get a real minimum match length; it is 0 if
3659 * there are no multi-char foldeds. This delta is used by the caller to
3660 * adjust the min length of the match, and the delta between min and max,
3661 * so that the optimizer doesn't reject these possibilities based on size
3663 * 2) For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS
3664 * is used for an EXACTFU node that contains at least one "ss" sequence in
3665 * it. For non-UTF-8 patterns and strings, this is the only case where
3666 * there is a possible fold length change. That means that a regular
3667 * EXACTFU node without UTF-8 involvement doesn't have to concern itself
3668 * with length changes, and so can be processed faster. regexec.c takes
3669 * advantage of this. Generally, an EXACTFish node that is in UTF-8 is
3670 * pre-folded by regcomp.c (except EXACTFL, some of whose folds aren't
3671 * known until runtime). This saves effort in regex matching. However,
3672 * the pre-folding isn't done for non-UTF8 patterns because the fold of
3673 * the MICRO SIGN requires UTF-8, and we don't want to slow things down by
3674 * forcing the pattern into UTF8 unless necessary. Also what EXACTF (and,
3675 * again, EXACTFL) nodes fold to isn't known until runtime. The fold
3676 * possibilities for the non-UTF8 patterns are quite simple, except for
3677 * the sharp s. All the ones that don't involve a UTF-8 target string are
3678 * members of a fold-pair, and arrays are set up for all of them so that
3679 * the other member of the pair can be found quickly. Code elsewhere in
3680 * this file makes sure that in EXACTFU nodes, the sharp s gets folded to
3681 * 'ss', even if the pattern isn't UTF-8. This avoids the issues
3682 * described in the next item.
3683 * 3) A problem remains for unfolded multi-char folds. (These occur when the
3684 * validity of the fold won't be known until runtime, and so must remain
3685 * unfolded for now. This happens for the sharp s in EXACTF and EXACTFA
3686 * nodes when the pattern isn't in UTF-8. (Note, BTW, that there cannot
3687 * be an EXACTF node with a UTF-8 pattern.) They also occur for various
3688 * folds in EXACTFL nodes, regardless of the UTF-ness of the pattern.)
3689 * The reason this is a problem is that the optimizer part of regexec.c
3690 * (probably unwittingly, in Perl_regexec_flags()) makes an assumption
3691 * that a character in the pattern corresponds to at most a single
3692 * character in the target string. (And I do mean character, and not byte
3693 * here, unlike other parts of the documentation that have never been
3694 * updated to account for multibyte Unicode.) sharp s in EXACTF and
3695 * EXACTFL nodes can match the two character string 'ss'; in EXACTFA nodes
3696 * it can match "\x{17F}\x{17F}". These, along with other ones in EXACTFL
3697 * nodes, violate the assumption, and they are the only instances where it
3698 * is violated. I'm reluctant to try to change the assumption, as the
3699 * code involved is impenetrable to me (khw), so instead the code here
3700 * punts. This routine examines EXACTFL nodes, and (when the pattern
3701 * isn't UTF-8) EXACTF and EXACTFA for such unfolded folds, and returns a
3702 * boolean indicating whether or not the node contains such a fold. When
3703 * it is true, the caller sets a flag that later causes the optimizer in
3704 * this file to not set values for the floating and fixed string lengths,
3705 * and thus avoids the optimizer code in regexec.c that makes the invalid
3706 * assumption. Thus, there is no optimization based on string lengths for
3707 * EXACTFL nodes that contain these few folds, nor for non-UTF8-pattern
3708 * EXACTF and EXACTFA nodes that contain the sharp s. (The reason the
3709 * assumption is wrong only in these cases is that all other non-UTF-8
3710 * folds are 1-1; and, for UTF-8 patterns, we pre-fold all other folds to
3711 * their expanded versions. (Again, we can't prefold sharp s to 'ss' in
3712 * EXACTF nodes because we don't know at compile time if it actually
3713 * matches 'ss' or not. For EXACTF nodes it will match iff the target
3714 * string is in UTF-8. This is in contrast to EXACTFU nodes, where it
3715 * always matches; and EXACTFA where it never does. In an EXACTFA node in
3716 * a UTF-8 pattern, sharp s is folded to "\x{17F}\x{17F}, avoiding the
3717 * problem; but in a non-UTF8 pattern, folding it to that above-Latin1
3718 * string would require the pattern to be forced into UTF-8, the overhead
3719 * of which we want to avoid. Similarly the unfolded multi-char folds in
3720 * EXACTFL nodes will match iff the locale at the time of match is a UTF-8
3723 * Similarly, the code that generates tries doesn't currently handle
3724 * not-already-folded multi-char folds, and it looks like a pain to change
3725 * that. Therefore, trie generation of EXACTFA nodes with the sharp s
3726 * doesn't work. Instead, such an EXACTFA is turned into a new regnode,
3727 * EXACTFA_NO_TRIE, which the trie code knows not to handle. Most people
3728 * using /iaa matching will be doing so almost entirely with ASCII
3729 * strings, so this should rarely be encountered in practice */
3731 #define JOIN_EXACT(scan,min_subtract,unfolded_multi_char, flags) \
3732 if (PL_regkind[OP(scan)] == EXACT) \
3733 join_exact(pRExC_state,(scan),(min_subtract),unfolded_multi_char, (flags),NULL,depth+1)
3736 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan,
3737 UV *min_subtract, bool *unfolded_multi_char,
3738 U32 flags,regnode *val, U32 depth)
3740 /* Merge several consecutive EXACTish nodes into one. */
3741 regnode *n = regnext(scan);
3743 regnode *next = scan + NODE_SZ_STR(scan);
3747 regnode *stop = scan;
3748 GET_RE_DEBUG_FLAGS_DECL;
3750 PERL_UNUSED_ARG(depth);
3753 PERL_ARGS_ASSERT_JOIN_EXACT;
3754 #ifndef EXPERIMENTAL_INPLACESCAN
3755 PERL_UNUSED_ARG(flags);
3756 PERL_UNUSED_ARG(val);
3758 DEBUG_PEEP("join",scan,depth);
3760 /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
3761 * EXACT ones that are mergeable to the current one. */
3763 && (PL_regkind[OP(n)] == NOTHING
3764 || (stringok && OP(n) == OP(scan)))
3766 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
3769 if (OP(n) == TAIL || n > next)
3771 if (PL_regkind[OP(n)] == NOTHING) {
3772 DEBUG_PEEP("skip:",n,depth);
3773 NEXT_OFF(scan) += NEXT_OFF(n);
3774 next = n + NODE_STEP_REGNODE;
3781 else if (stringok) {
3782 const unsigned int oldl = STR_LEN(scan);
3783 regnode * const nnext = regnext(n);
3785 /* XXX I (khw) kind of doubt that this works on platforms (should
3786 * Perl ever run on one) where U8_MAX is above 255 because of lots
3787 * of other assumptions */
3788 /* Don't join if the sum can't fit into a single node */
3789 if (oldl + STR_LEN(n) > U8_MAX)
3792 DEBUG_PEEP("merg",n,depth);
3795 NEXT_OFF(scan) += NEXT_OFF(n);
3796 STR_LEN(scan) += STR_LEN(n);
3797 next = n + NODE_SZ_STR(n);
3798 /* Now we can overwrite *n : */
3799 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
3807 #ifdef EXPERIMENTAL_INPLACESCAN
3808 if (flags && !NEXT_OFF(n)) {
3809 DEBUG_PEEP("atch", val, depth);
3810 if (reg_off_by_arg[OP(n)]) {
3811 ARG_SET(n, val - n);
3814 NEXT_OFF(n) = val - n;
3822 *unfolded_multi_char = FALSE;
3824 /* Here, all the adjacent mergeable EXACTish nodes have been merged. We
3825 * can now analyze for sequences of problematic code points. (Prior to
3826 * this final joining, sequences could have been split over boundaries, and
3827 * hence missed). The sequences only happen in folding, hence for any
3828 * non-EXACT EXACTish node */
3829 if (OP(scan) != EXACT && OP(scan) != EXACTL) {
3830 U8* s0 = (U8*) STRING(scan);
3832 U8* s_end = s0 + STR_LEN(scan);
3834 int total_count_delta = 0; /* Total delta number of characters that
3835 multi-char folds expand to */
3837 /* One pass is made over the node's string looking for all the
3838 * possibilities. To avoid some tests in the loop, there are two main
3839 * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
3844 if (OP(scan) == EXACTFL) {
3847 /* An EXACTFL node would already have been changed to another
3848 * node type unless there is at least one character in it that
3849 * is problematic; likely a character whose fold definition
3850 * won't be known until runtime, and so has yet to be folded.
3851 * For all but the UTF-8 locale, folds are 1-1 in length, but
3852 * to handle the UTF-8 case, we need to create a temporary
3853 * folded copy using UTF-8 locale rules in order to analyze it.
3854 * This is because our macros that look to see if a sequence is
3855 * a multi-char fold assume everything is folded (otherwise the
3856 * tests in those macros would be too complicated and slow).
3857 * Note that here, the non-problematic folds will have already
3858 * been done, so we can just copy such characters. We actually
3859 * don't completely fold the EXACTFL string. We skip the
3860 * unfolded multi-char folds, as that would just create work
3861 * below to figure out the size they already are */
3863 Newx(folded, UTF8_MAX_FOLD_CHAR_EXPAND * STR_LEN(scan) + 1, U8);
3866 STRLEN s_len = UTF8SKIP(s);
3867 if (! is_PROBLEMATIC_LOCALE_FOLD_utf8(s)) {
3868 Copy(s, d, s_len, U8);
3871 else if (is_FOLDS_TO_MULTI_utf8(s)) {
3872 *unfolded_multi_char = TRUE;
3873 Copy(s, d, s_len, U8);
3876 else if (isASCII(*s)) {
3877 *(d++) = toFOLD(*s);
3881 _to_utf8_fold_flags(s, d, &len, FOLD_FLAGS_FULL);
3887 /* Point the remainder of the routine to look at our temporary
3891 } /* End of creating folded copy of EXACTFL string */
3893 /* Examine the string for a multi-character fold sequence. UTF-8
3894 * patterns have all characters pre-folded by the time this code is
3896 while (s < s_end - 1) /* Can stop 1 before the end, as minimum
3897 length sequence we are looking for is 2 */
3899 int count = 0; /* How many characters in a multi-char fold */
3900 int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end);
3901 if (! len) { /* Not a multi-char fold: get next char */
3906 /* Nodes with 'ss' require special handling, except for
3907 * EXACTFA-ish for which there is no multi-char fold to this */
3908 if (len == 2 && *s == 's' && *(s+1) == 's'
3909 && OP(scan) != EXACTFA
3910 && OP(scan) != EXACTFA_NO_TRIE)
3913 if (OP(scan) != EXACTFL) {
3914 OP(scan) = EXACTFU_SS;
3918 else { /* Here is a generic multi-char fold. */
3919 U8* multi_end = s + len;
3921 /* Count how many characters are in it. In the case of
3922 * /aa, no folds which contain ASCII code points are
3923 * allowed, so check for those, and skip if found. */
3924 if (OP(scan) != EXACTFA && OP(scan) != EXACTFA_NO_TRIE) {
3925 count = utf8_length(s, multi_end);
3929 while (s < multi_end) {
3932 goto next_iteration;
3942 /* The delta is how long the sequence is minus 1 (1 is how long
3943 * the character that folds to the sequence is) */
3944 total_count_delta += count - 1;
3948 /* We created a temporary folded copy of the string in EXACTFL
3949 * nodes. Therefore we need to be sure it doesn't go below zero,
3950 * as the real string could be shorter */
3951 if (OP(scan) == EXACTFL) {
3952 int total_chars = utf8_length((U8*) STRING(scan),
3953 (U8*) STRING(scan) + STR_LEN(scan));
3954 if (total_count_delta > total_chars) {
3955 total_count_delta = total_chars;
3959 *min_subtract += total_count_delta;
3962 else if (OP(scan) == EXACTFA) {
3964 /* Non-UTF-8 pattern, EXACTFA node. There can't be a multi-char
3965 * fold to the ASCII range (and there are no existing ones in the
3966 * upper latin1 range). But, as outlined in the comments preceding
3967 * this function, we need to flag any occurrences of the sharp s.
3968 * This character forbids trie formation (because of added
3970 #if UNICODE_MAJOR_VERSION > 3 /* no multifolds in early Unicode */ \
3971 || (UNICODE_MAJOR_VERSION == 3 && ( UNICODE_DOT_VERSION > 0) \
3972 || UNICODE_DOT_DOT_VERSION > 0)
3974 if (*s == LATIN_SMALL_LETTER_SHARP_S) {
3975 OP(scan) = EXACTFA_NO_TRIE;
3976 *unfolded_multi_char = TRUE;