5 * One Ring to rule them all, One Ring to find them
7 * [p.v of _The Lord of the Rings_, opening poem]
8 * [p.50 of _The Lord of the Rings_, I/iii: "The Shadow of the Past"]
9 * [p.254 of _The Lord of the Rings_, II/ii: "The Council of Elrond"]
12 /* This file contains functions for executing a regular expression. See
13 * also regcomp.c which funnily enough, contains functions for compiling
14 * a regular expression.
16 * This file is also copied at build time to ext/re/re_exec.c, where
17 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
18 * This causes the main functions to be compiled under new names and with
19 * debugging support added, which makes "use re 'debug'" work.
22 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
23 * confused with the original package (see point 3 below). Thanks, Henry!
26 /* Additional note: this code is very heavily munged from Henry's version
27 * in places. In some spots I've traded clarity for efficiency, so don't
28 * blame Henry for some of the lack of readability.
31 /* The names of the functions have been changed from regcomp and
32 * regexec to pregcomp and pregexec in order to avoid conflicts
33 * with the POSIX routines of the same names.
36 #ifdef PERL_EXT_RE_BUILD
41 * pregcomp and pregexec -- regsub and regerror are not used in perl
43 * Copyright (c) 1986 by University of Toronto.
44 * Written by Henry Spencer. Not derived from licensed software.
46 * Permission is granted to anyone to use this software for any
47 * purpose on any computer system, and to redistribute it freely,
48 * subject to the following restrictions:
50 * 1. The author is not responsible for the consequences of use of
51 * this software, no matter how awful, even if they arise
54 * 2. The origin of this software must not be misrepresented, either
55 * by explicit claim or by omission.
57 * 3. Altered versions must be plainly marked as such, and must not
58 * be misrepresented as being the original software.
60 **** Alterations to Henry's code are...
62 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
63 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
64 **** by Larry Wall and others
66 **** You may distribute under the terms of either the GNU General Public
67 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGEXEC_C
77 #ifdef PERL_IN_XSUB_RE
83 #include "invlist_inline.h"
84 #include "unicode_constants.h"
86 #define B_ON_NON_UTF8_LOCALE_IS_WRONG \
87 "Use of \\b{} or \\B{} for non-UTF-8 locale is wrong. Assuming a UTF-8 locale"
89 static const char utf8_locale_required[] =
90 "Use of (?[ ]) for non-UTF-8 locale is wrong. Assuming a UTF-8 locale";
93 /* At least one required character in the target string is expressible only in
95 static const char* const non_utf8_target_but_utf8_required
96 = "Can't match, because target string needs to be in UTF-8\n";
99 #define NON_UTF8_TARGET_BUT_UTF8_REQUIRED(target) STMT_START { \
100 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ "%s", non_utf8_target_but_utf8_required));\
104 #define HAS_NONLATIN1_FOLD_CLOSURE(i) _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
107 #define STATIC static
110 /* Valid only if 'c', the character being looke-up, is an invariant under
111 * UTF-8: it avoids the reginclass call if there are no complications: i.e., if
112 * everything matchable is straight forward in the bitmap */
113 #define REGINCLASS(prog,p,c,u) (ANYOF_FLAGS(p) \
114 ? reginclass(prog,p,c,c+1,u) \
115 : ANYOF_BITMAP_TEST(p,*(c)))
121 #define CHR_SVLEN(sv) (utf8_target ? sv_len_utf8(sv) : SvCUR(sv))
123 #define HOPc(pos,off) \
124 (char *)(reginfo->is_utf8_target \
125 ? reghop3((U8*)pos, off, \
126 (U8*)(off >= 0 ? reginfo->strend : reginfo->strbeg)) \
129 #define HOPBACKc(pos, off) \
130 (char*)(reginfo->is_utf8_target \
131 ? reghopmaybe3((U8*)pos, (SSize_t)0-off, (U8*)(reginfo->strbeg)) \
132 : (pos - off >= reginfo->strbeg) \
136 #define HOP3(pos,off,lim) (reginfo->is_utf8_target ? reghop3((U8*)(pos), off, (U8*)(lim)) : (U8*)(pos + off))
137 #define HOP3c(pos,off,lim) ((char*)HOP3(pos,off,lim))
139 /* lim must be +ve. Returns NULL on overshoot */
140 #define HOPMAYBE3(pos,off,lim) \
141 (reginfo->is_utf8_target \
142 ? reghopmaybe3((U8*)pos, off, (U8*)(lim)) \
143 : ((U8*)pos + off <= lim) \
147 /* like HOP3, but limits the result to <= lim even for the non-utf8 case.
148 * off must be >=0; args should be vars rather than expressions */
149 #define HOP3lim(pos,off,lim) (reginfo->is_utf8_target \
150 ? reghop3((U8*)(pos), off, (U8*)(lim)) \
151 : (U8*)((pos + off) > lim ? lim : (pos + off)))
152 #define HOP3clim(pos,off,lim) ((char*)HOP3lim(pos,off,lim))
154 #define HOP4(pos,off,llim, rlim) (reginfo->is_utf8_target \
155 ? reghop4((U8*)(pos), off, (U8*)(llim), (U8*)(rlim)) \
157 #define HOP4c(pos,off,llim, rlim) ((char*)HOP4(pos,off,llim, rlim))
159 #define NEXTCHR_EOS -10 /* nextchr has fallen off the end */
160 #define NEXTCHR_IS_EOS (nextchr < 0)
162 #define SET_nextchr \
163 nextchr = ((locinput < reginfo->strend) ? UCHARAT(locinput) : NEXTCHR_EOS)
165 #define SET_locinput(p) \
170 #define LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist) STMT_START { \
172 U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST; \
173 swash_ptr = _core_swash_init("utf8", property_name, &PL_sv_undef, \
174 1, 0, invlist, &flags); \
179 /* If in debug mode, we test that a known character properly matches */
181 # define LOAD_UTF8_CHARCLASS_DEBUG_TEST(swash_ptr, \
184 utf8_char_in_property) \
185 LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist); \
186 assert(swash_fetch(swash_ptr, (U8 *) utf8_char_in_property, TRUE));
188 # define LOAD_UTF8_CHARCLASS_DEBUG_TEST(swash_ptr, \
191 utf8_char_in_property) \
192 LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist)
195 #define LOAD_UTF8_CHARCLASS_ALNUM() LOAD_UTF8_CHARCLASS_DEBUG_TEST( \
196 PL_utf8_swash_ptrs[_CC_WORDCHAR], \
198 PL_XPosix_ptrs[_CC_WORDCHAR], \
199 LATIN_SMALL_LIGATURE_LONG_S_T_UTF8);
201 #define PLACEHOLDER /* Something for the preprocessor to grab onto */
202 /* TODO: Combine JUMPABLE and HAS_TEXT to cache OP(rn) */
204 /* for use after a quantifier and before an EXACT-like node -- japhy */
205 /* it would be nice to rework regcomp.sym to generate this stuff. sigh
207 * NOTE that *nothing* that affects backtracking should be in here, specifically
208 * VERBS must NOT be included. JUMPABLE is used to determine if we can ignore a
209 * node that is in between two EXACT like nodes when ascertaining what the required
210 * "follow" character is. This should probably be moved to regex compile time
211 * although it may be done at run time beause of the REF possibility - more
212 * investigation required. -- demerphq
214 #define JUMPABLE(rn) ( \
216 (OP(rn) == CLOSE && \
217 !EVAL_CLOSE_PAREN_IS(cur_eval,ARG(rn)) ) || \
219 OP(rn) == SUSPEND || OP(rn) == IFMATCH || \
220 OP(rn) == PLUS || OP(rn) == MINMOD || \
222 (PL_regkind[OP(rn)] == CURLY && ARG1(rn) > 0) \
224 #define IS_EXACT(rn) (PL_regkind[OP(rn)] == EXACT)
226 #define HAS_TEXT(rn) ( IS_EXACT(rn) || PL_regkind[OP(rn)] == REF )
229 /* Currently these are only used when PL_regkind[OP(rn)] == EXACT so
230 we don't need this definition. XXX These are now out-of-sync*/
231 #define IS_TEXT(rn) ( OP(rn)==EXACT || OP(rn)==REF || OP(rn)==NREF )
232 #define IS_TEXTF(rn) ( OP(rn)==EXACTFU || OP(rn)==EXACTFU_SS || OP(rn)==EXACTFA || OP(rn)==EXACTFA_NO_TRIE || OP(rn)==EXACTF || OP(rn)==REFF || OP(rn)==NREFF )
233 #define IS_TEXTFL(rn) ( OP(rn)==EXACTFL || OP(rn)==REFFL || OP(rn)==NREFFL )
236 /* ... so we use this as its faster. */
237 #define IS_TEXT(rn) ( OP(rn)==EXACT || OP(rn)==EXACTL )
238 #define IS_TEXTFU(rn) ( OP(rn)==EXACTFU || OP(rn)==EXACTFLU8 || OP(rn)==EXACTFU_SS || OP(rn) == EXACTFA || OP(rn) == EXACTFA_NO_TRIE)
239 #define IS_TEXTF(rn) ( OP(rn)==EXACTF )
240 #define IS_TEXTFL(rn) ( OP(rn)==EXACTFL )
245 Search for mandatory following text node; for lookahead, the text must
246 follow but for lookbehind (rn->flags != 0) we skip to the next step.
248 #define FIND_NEXT_IMPT(rn) STMT_START { \
249 while (JUMPABLE(rn)) { \
250 const OPCODE type = OP(rn); \
251 if (type == SUSPEND || PL_regkind[type] == CURLY) \
252 rn = NEXTOPER(NEXTOPER(rn)); \
253 else if (type == PLUS) \
255 else if (type == IFMATCH) \
256 rn = (rn->flags == 0) ? NEXTOPER(NEXTOPER(rn)) : rn + ARG(rn); \
257 else rn += NEXT_OFF(rn); \
261 #define SLAB_FIRST(s) (&(s)->states[0])
262 #define SLAB_LAST(s) (&(s)->states[PERL_REGMATCH_SLAB_SLOTS-1])
264 static void S_setup_eval_state(pTHX_ regmatch_info *const reginfo);
265 static void S_cleanup_regmatch_info_aux(pTHX_ void *arg);
266 static regmatch_state * S_push_slab(pTHX);
268 #define REGCP_PAREN_ELEMS 3
269 #define REGCP_OTHER_ELEMS 3
270 #define REGCP_FRAME_ELEMS 1
271 /* REGCP_FRAME_ELEMS are not part of the REGCP_OTHER_ELEMS and
272 * are needed for the regexp context stack bookkeeping. */
275 S_regcppush(pTHX_ const regexp *rex, I32 parenfloor, U32 maxopenparen _pDEPTH)
277 const int retval = PL_savestack_ix;
278 const int paren_elems_to_push =
279 (maxopenparen - parenfloor) * REGCP_PAREN_ELEMS;
280 const UV total_elems = paren_elems_to_push + REGCP_OTHER_ELEMS;
281 const UV elems_shifted = total_elems << SAVE_TIGHT_SHIFT;
283 GET_RE_DEBUG_FLAGS_DECL;
285 PERL_ARGS_ASSERT_REGCPPUSH;
287 if (paren_elems_to_push < 0)
288 Perl_croak(aTHX_ "panic: paren_elems_to_push, %i < 0, maxopenparen: %i parenfloor: %i REGCP_PAREN_ELEMS: %u",
289 (int)paren_elems_to_push, (int)maxopenparen,
290 (int)parenfloor, (unsigned)REGCP_PAREN_ELEMS);
292 if ((elems_shifted >> SAVE_TIGHT_SHIFT) != total_elems)
293 Perl_croak(aTHX_ "panic: paren_elems_to_push offset %" UVuf
294 " out of range (%lu-%ld)",
296 (unsigned long)maxopenparen,
299 SSGROW(total_elems + REGCP_FRAME_ELEMS);
302 if ((int)maxopenparen > (int)parenfloor)
303 Perl_re_exec_indentf( aTHX_
304 "rex=0x%" UVxf " offs=0x%" UVxf ": saving capture indices:\n",
310 for (p = parenfloor+1; p <= (I32)maxopenparen; p++) {
311 /* REGCP_PARENS_ELEMS are pushed per pairs of parentheses. */
312 SSPUSHIV(rex->offs[p].end);
313 SSPUSHIV(rex->offs[p].start);
314 SSPUSHINT(rex->offs[p].start_tmp);
315 DEBUG_BUFFERS_r(Perl_re_exec_indentf( aTHX_
316 " \\%" UVuf ": %" IVdf "(%" IVdf ")..%" IVdf "\n",
319 (IV)rex->offs[p].start,
320 (IV)rex->offs[p].start_tmp,
324 /* REGCP_OTHER_ELEMS are pushed in any case, parentheses or no. */
325 SSPUSHINT(maxopenparen);
326 SSPUSHINT(rex->lastparen);
327 SSPUSHINT(rex->lastcloseparen);
328 SSPUSHUV(SAVEt_REGCONTEXT | elems_shifted); /* Magic cookie. */
333 /* These are needed since we do not localize EVAL nodes: */
334 #define REGCP_SET(cp) \
336 Perl_re_exec_indentf( aTHX_ \
337 "Setting an EVAL scope, savestack=%" IVdf ",\n", \
338 depth, (IV)PL_savestack_ix \
343 #define REGCP_UNWIND(cp) \
345 if (cp != PL_savestack_ix) \
346 Perl_re_exec_indentf( aTHX_ \
347 "Clearing an EVAL scope, savestack=%" \
348 IVdf "..%" IVdf "\n", \
349 depth, (IV)(cp), (IV)PL_savestack_ix \
354 #define UNWIND_PAREN(lp, lcp) \
355 for (n = rex->lastparen; n > lp; n--) \
356 rex->offs[n].end = -1; \
357 rex->lastparen = n; \
358 rex->lastcloseparen = lcp;
362 S_regcppop(pTHX_ regexp *rex, U32 *maxopenparen_p _pDEPTH)
366 GET_RE_DEBUG_FLAGS_DECL;
368 PERL_ARGS_ASSERT_REGCPPOP;
370 /* Pop REGCP_OTHER_ELEMS before the parentheses loop starts. */
372 assert((i & SAVE_MASK) == SAVEt_REGCONTEXT); /* Check that the magic cookie is there. */
373 i >>= SAVE_TIGHT_SHIFT; /* Parentheses elements to pop. */
374 rex->lastcloseparen = SSPOPINT;
375 rex->lastparen = SSPOPINT;
376 *maxopenparen_p = SSPOPINT;
378 i -= REGCP_OTHER_ELEMS;
379 /* Now restore the parentheses context. */
381 if (i || rex->lastparen + 1 <= rex->nparens)
382 Perl_re_exec_indentf( aTHX_
383 "rex=0x%" UVxf " offs=0x%" UVxf ": restoring capture indices to:\n",
389 paren = *maxopenparen_p;
390 for ( ; i > 0; i -= REGCP_PAREN_ELEMS) {
392 rex->offs[paren].start_tmp = SSPOPINT;
393 rex->offs[paren].start = SSPOPIV;
395 if (paren <= rex->lastparen)
396 rex->offs[paren].end = tmps;
397 DEBUG_BUFFERS_r( Perl_re_exec_indentf( aTHX_
398 " \\%" UVuf ": %" IVdf "(%" IVdf ")..%" IVdf "%s\n",
401 (IV)rex->offs[paren].start,
402 (IV)rex->offs[paren].start_tmp,
403 (IV)rex->offs[paren].end,
404 (paren > rex->lastparen ? "(skipped)" : ""));
409 /* It would seem that the similar code in regtry()
410 * already takes care of this, and in fact it is in
411 * a better location to since this code can #if 0-ed out
412 * but the code in regtry() is needed or otherwise tests
413 * requiring null fields (pat.t#187 and split.t#{13,14}
414 * (as of patchlevel 7877) will fail. Then again,
415 * this code seems to be necessary or otherwise
416 * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
417 * --jhi updated by dapm */
418 for (i = rex->lastparen + 1; i <= rex->nparens; i++) {
419 if (i > *maxopenparen_p)
420 rex->offs[i].start = -1;
421 rex->offs[i].end = -1;
422 DEBUG_BUFFERS_r( Perl_re_exec_indentf( aTHX_
423 " \\%" UVuf ": %s ..-1 undeffing\n",
426 (i > *maxopenparen_p) ? "-1" : " "
432 /* restore the parens and associated vars at savestack position ix,
433 * but without popping the stack */
436 S_regcp_restore(pTHX_ regexp *rex, I32 ix, U32 *maxopenparen_p _pDEPTH)
438 I32 tmpix = PL_savestack_ix;
439 PERL_ARGS_ASSERT_REGCP_RESTORE;
441 PL_savestack_ix = ix;
442 regcppop(rex, maxopenparen_p);
443 PL_savestack_ix = tmpix;
446 #define regcpblow(cp) LEAVE_SCOPE(cp) /* Ignores regcppush()ed data. */
448 #ifndef PERL_IN_XSUB_RE
451 Perl_isFOO_lc(pTHX_ const U8 classnum, const U8 character)
453 /* Returns a boolean as to whether or not 'character' is a member of the
454 * Posix character class given by 'classnum' that should be equivalent to a
455 * value in the typedef '_char_class_number'.
457 * Ideally this could be replaced by a just an array of function pointers
458 * to the C library functions that implement the macros this calls.
459 * However, to compile, the precise function signatures are required, and
460 * these may vary from platform to to platform. To avoid having to figure
461 * out what those all are on each platform, I (khw) am using this method,
462 * which adds an extra layer of function call overhead (unless the C
463 * optimizer strips it away). But we don't particularly care about
464 * performance with locales anyway. */
466 switch ((_char_class_number) classnum) {
467 case _CC_ENUM_ALPHANUMERIC: return isALPHANUMERIC_LC(character);
468 case _CC_ENUM_ALPHA: return isALPHA_LC(character);
469 case _CC_ENUM_ASCII: return isASCII_LC(character);
470 case _CC_ENUM_BLANK: return isBLANK_LC(character);
471 case _CC_ENUM_CASED: return isLOWER_LC(character)
472 || isUPPER_LC(character);
473 case _CC_ENUM_CNTRL: return isCNTRL_LC(character);
474 case _CC_ENUM_DIGIT: return isDIGIT_LC(character);
475 case _CC_ENUM_GRAPH: return isGRAPH_LC(character);
476 case _CC_ENUM_LOWER: return isLOWER_LC(character);
477 case _CC_ENUM_PRINT: return isPRINT_LC(character);
478 case _CC_ENUM_PUNCT: return isPUNCT_LC(character);
479 case _CC_ENUM_SPACE: return isSPACE_LC(character);
480 case _CC_ENUM_UPPER: return isUPPER_LC(character);
481 case _CC_ENUM_WORDCHAR: return isWORDCHAR_LC(character);
482 case _CC_ENUM_XDIGIT: return isXDIGIT_LC(character);
483 default: /* VERTSPACE should never occur in locales */
484 Perl_croak(aTHX_ "panic: isFOO_lc() has an unexpected character class '%d'", classnum);
487 NOT_REACHED; /* NOTREACHED */
494 S_isFOO_utf8_lc(pTHX_ const U8 classnum, const U8* character)
496 /* Returns a boolean as to whether or not the (well-formed) UTF-8-encoded
497 * 'character' is a member of the Posix character class given by 'classnum'
498 * that should be equivalent to a value in the typedef
499 * '_char_class_number'.
501 * This just calls isFOO_lc on the code point for the character if it is in
502 * the range 0-255. Outside that range, all characters use Unicode
503 * rules, ignoring any locale. So use the Unicode function if this class
504 * requires a swash, and use the Unicode macro otherwise. */
506 PERL_ARGS_ASSERT_ISFOO_UTF8_LC;
508 if (UTF8_IS_INVARIANT(*character)) {
509 return isFOO_lc(classnum, *character);
511 else if (UTF8_IS_DOWNGRADEABLE_START(*character)) {
512 return isFOO_lc(classnum,
513 EIGHT_BIT_UTF8_TO_NATIVE(*character, *(character + 1)));
516 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(character, character + UTF8SKIP(character));
518 if (classnum < _FIRST_NON_SWASH_CC) {
520 /* Initialize the swash unless done already */
521 if (! PL_utf8_swash_ptrs[classnum]) {
522 U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
523 PL_utf8_swash_ptrs[classnum] =
524 _core_swash_init("utf8",
527 PL_XPosix_ptrs[classnum], &flags);
530 return cBOOL(swash_fetch(PL_utf8_swash_ptrs[classnum], (U8 *)
532 TRUE /* is UTF */ ));
535 switch ((_char_class_number) classnum) {
536 case _CC_ENUM_SPACE: return is_XPERLSPACE_high(character);
537 case _CC_ENUM_BLANK: return is_HORIZWS_high(character);
538 case _CC_ENUM_XDIGIT: return is_XDIGIT_high(character);
539 case _CC_ENUM_VERTSPACE: return is_VERTWS_high(character);
543 return FALSE; /* Things like CNTRL are always below 256 */
547 * pregexec and friends
550 #ifndef PERL_IN_XSUB_RE
552 - pregexec - match a regexp against a string
555 Perl_pregexec(pTHX_ REGEXP * const prog, char* stringarg, char *strend,
556 char *strbeg, SSize_t minend, SV *screamer, U32 nosave)
557 /* stringarg: the point in the string at which to begin matching */
558 /* strend: pointer to null at end of string */
559 /* strbeg: real beginning of string */
560 /* minend: end of match must be >= minend bytes after stringarg. */
561 /* screamer: SV being matched: only used for utf8 flag, pos() etc; string
562 * itself is accessed via the pointers above */
563 /* nosave: For optimizations. */
565 PERL_ARGS_ASSERT_PREGEXEC;
568 regexec_flags(prog, stringarg, strend, strbeg, minend, screamer, NULL,
569 nosave ? 0 : REXEC_COPY_STR);
575 /* re_intuit_start():
577 * Based on some optimiser hints, try to find the earliest position in the
578 * string where the regex could match.
580 * rx: the regex to match against
581 * sv: the SV being matched: only used for utf8 flag; the string
582 * itself is accessed via the pointers below. Note that on
583 * something like an overloaded SV, SvPOK(sv) may be false
584 * and the string pointers may point to something unrelated to
586 * strbeg: real beginning of string
587 * strpos: the point in the string at which to begin matching
588 * strend: pointer to the byte following the last char of the string
589 * flags currently unused; set to 0
590 * data: currently unused; set to NULL
592 * The basic idea of re_intuit_start() is to use some known information
593 * about the pattern, namely:
595 * a) the longest known anchored substring (i.e. one that's at a
596 * constant offset from the beginning of the pattern; but not
597 * necessarily at a fixed offset from the beginning of the
599 * b) the longest floating substring (i.e. one that's not at a constant
600 * offset from the beginning of the pattern);
601 * c) Whether the pattern is anchored to the string; either
602 * an absolute anchor: /^../, or anchored to \n: /^.../m,
603 * or anchored to pos(): /\G/;
604 * d) A start class: a real or synthetic character class which
605 * represents which characters are legal at the start of the pattern;
607 * to either quickly reject the match, or to find the earliest position
608 * within the string at which the pattern might match, thus avoiding
609 * running the full NFA engine at those earlier locations, only to
610 * eventually fail and retry further along.
612 * Returns NULL if the pattern can't match, or returns the address within
613 * the string which is the earliest place the match could occur.
615 * The longest of the anchored and floating substrings is called 'check'
616 * and is checked first. The other is called 'other' and is checked
617 * second. The 'other' substring may not be present. For example,
619 * /(abc|xyz)ABC\d{0,3}DEFG/
623 * check substr (float) = "DEFG", offset 6..9 chars
624 * other substr (anchored) = "ABC", offset 3..3 chars
627 * Be aware that during the course of this function, sometimes 'anchored'
628 * refers to a substring being anchored relative to the start of the
629 * pattern, and sometimes to the pattern itself being anchored relative to
630 * the string. For example:
632 * /\dabc/: "abc" is anchored to the pattern;
633 * /^\dabc/: "abc" is anchored to the pattern and the string;
634 * /\d+abc/: "abc" is anchored to neither the pattern nor the string;
635 * /^\d+abc/: "abc" is anchored to neither the pattern nor the string,
636 * but the pattern is anchored to the string.
640 Perl_re_intuit_start(pTHX_
643 const char * const strbeg,
647 re_scream_pos_data *data)
649 struct regexp *const prog = ReANY(rx);
650 SSize_t start_shift = prog->check_offset_min;
651 /* Should be nonnegative! */
652 SSize_t end_shift = 0;
653 /* current lowest pos in string where the regex can start matching */
654 char *rx_origin = strpos;
656 const bool utf8_target = (sv && SvUTF8(sv)) ? 1 : 0; /* if no sv we have to assume bytes */
657 U8 other_ix = 1 - prog->substrs->check_ix;
659 char *other_last = strpos;/* latest pos 'other' substr already checked to */
660 char *check_at = NULL; /* check substr found at this pos */
661 const I32 multiline = prog->extflags & RXf_PMf_MULTILINE;
662 RXi_GET_DECL(prog,progi);
663 regmatch_info reginfo_buf; /* create some info to pass to find_byclass */
664 regmatch_info *const reginfo = ®info_buf;
665 GET_RE_DEBUG_FLAGS_DECL;
667 PERL_ARGS_ASSERT_RE_INTUIT_START;
668 PERL_UNUSED_ARG(flags);
669 PERL_UNUSED_ARG(data);
671 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
672 "Intuit: trying to determine minimum start position...\n"));
674 /* for now, assume that all substr offsets are positive. If at some point
675 * in the future someone wants to do clever things with lookbehind and
676 * -ve offsets, they'll need to fix up any code in this function
677 * which uses these offsets. See the thread beginning
678 * <20140113145929.GF27210@iabyn.com>
680 assert(prog->substrs->data[0].min_offset >= 0);
681 assert(prog->substrs->data[0].max_offset >= 0);
682 assert(prog->substrs->data[1].min_offset >= 0);
683 assert(prog->substrs->data[1].max_offset >= 0);
684 assert(prog->substrs->data[2].min_offset >= 0);
685 assert(prog->substrs->data[2].max_offset >= 0);
687 /* for now, assume that if both present, that the floating substring
688 * doesn't start before the anchored substring.
689 * If you break this assumption (e.g. doing better optimisations
690 * with lookahead/behind), then you'll need to audit the code in this
691 * function carefully first
694 ! ( (prog->anchored_utf8 || prog->anchored_substr)
695 && (prog->float_utf8 || prog->float_substr))
696 || (prog->float_min_offset >= prog->anchored_offset));
698 /* byte rather than char calculation for efficiency. It fails
699 * to quickly reject some cases that can't match, but will reject
700 * them later after doing full char arithmetic */
701 if (prog->minlen > strend - strpos) {
702 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
703 " String too short...\n"));
707 RX_MATCH_UTF8_set(rx,utf8_target);
708 reginfo->is_utf8_target = cBOOL(utf8_target);
709 reginfo->info_aux = NULL;
710 reginfo->strbeg = strbeg;
711 reginfo->strend = strend;
712 reginfo->is_utf8_pat = cBOOL(RX_UTF8(rx));
714 /* not actually used within intuit, but zero for safety anyway */
715 reginfo->poscache_maxiter = 0;
718 if ((!prog->anchored_utf8 && prog->anchored_substr)
719 || (!prog->float_utf8 && prog->float_substr))
720 to_utf8_substr(prog);
721 check = prog->check_utf8;
723 if (!prog->check_substr && prog->check_utf8) {
724 if (! to_byte_substr(prog)) {
725 NON_UTF8_TARGET_BUT_UTF8_REQUIRED(fail);
728 check = prog->check_substr;
731 /* dump the various substring data */
732 DEBUG_OPTIMISE_MORE_r({
734 for (i=0; i<=2; i++) {
735 SV *sv = (utf8_target ? prog->substrs->data[i].utf8_substr
736 : prog->substrs->data[i].substr);
740 Perl_re_printf( aTHX_
741 " substrs[%d]: min=%" IVdf " max=%" IVdf " end shift=%" IVdf
742 " useful=%" IVdf " utf8=%d [%s]\n",
744 (IV)prog->substrs->data[i].min_offset,
745 (IV)prog->substrs->data[i].max_offset,
746 (IV)prog->substrs->data[i].end_shift,
753 if (prog->intflags & PREGf_ANCH) { /* Match at \G, beg-of-str or after \n */
755 /* ml_anch: check after \n?
757 * A note about PREGf_IMPLICIT: on an un-anchored pattern beginning
758 * with /.*.../, these flags will have been added by the
760 * /.*abc/, /.*abc/m: PREGf_IMPLICIT | PREGf_ANCH_MBOL
761 * /.*abc/s: PREGf_IMPLICIT | PREGf_ANCH_SBOL
763 ml_anch = (prog->intflags & PREGf_ANCH_MBOL)
764 && !(prog->intflags & PREGf_IMPLICIT);
766 if (!ml_anch && !(prog->intflags & PREGf_IMPLICIT)) {
767 /* we are only allowed to match at BOS or \G */
769 /* trivially reject if there's a BOS anchor and we're not at BOS.
771 * Note that we don't try to do a similar quick reject for
772 * \G, since generally the caller will have calculated strpos
773 * based on pos() and gofs, so the string is already correctly
774 * anchored by definition; and handling the exceptions would
775 * be too fiddly (e.g. REXEC_IGNOREPOS).
777 if ( strpos != strbeg
778 && (prog->intflags & PREGf_ANCH_SBOL))
780 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
781 " Not at start...\n"));
785 /* in the presence of an anchor, the anchored (relative to the
786 * start of the regex) substr must also be anchored relative
787 * to strpos. So quickly reject if substr isn't found there.
788 * This works for \G too, because the caller will already have
789 * subtracted gofs from pos, and gofs is the offset from the
790 * \G to the start of the regex. For example, in /.abc\Gdef/,
791 * where substr="abcdef", pos()=3, gofs=4, offset_min=1:
792 * caller will have set strpos=pos()-4; we look for the substr
793 * at position pos()-4+1, which lines up with the "a" */
795 if (prog->check_offset_min == prog->check_offset_max) {
796 /* Substring at constant offset from beg-of-str... */
797 SSize_t slen = SvCUR(check);
798 char *s = HOP3c(strpos, prog->check_offset_min, strend);
800 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
801 " Looking for check substr at fixed offset %" IVdf "...\n",
802 (IV)prog->check_offset_min));
805 /* In this case, the regex is anchored at the end too.
806 * Unless it's a multiline match, the lengths must match
807 * exactly, give or take a \n. NB: slen >= 1 since
808 * the last char of check is \n */
810 && ( strend - s > slen
811 || strend - s < slen - 1
812 || (strend - s == slen && strend[-1] != '\n')))
814 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
815 " String too long...\n"));
818 /* Now should match s[0..slen-2] */
821 if (slen && (strend - s < slen
822 || *SvPVX_const(check) != *s
823 || (slen > 1 && (memNE(SvPVX_const(check), s, slen)))))
825 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
826 " String not equal...\n"));
831 goto success_at_start;
836 end_shift = prog->check_end_shift;
838 #ifdef DEBUGGING /* 7/99: reports of failure (with the older version) */
840 Perl_croak(aTHX_ "panic: end_shift: %" IVdf " pattern:\n%s\n ",
841 (IV)end_shift, RX_PRECOMP(prog));
846 /* This is the (re)entry point of the main loop in this function.
847 * The goal of this loop is to:
848 * 1) find the "check" substring in the region rx_origin..strend
849 * (adjusted by start_shift / end_shift). If not found, reject
851 * 2) If it exists, look for the "other" substr too if defined; for
852 * example, if the check substr maps to the anchored substr, then
853 * check the floating substr, and vice-versa. If not found, go
854 * back to (1) with rx_origin suitably incremented.
855 * 3) If we find an rx_origin position that doesn't contradict
856 * either of the substrings, then check the possible additional
857 * constraints on rx_origin of /^.../m or a known start class.
858 * If these fail, then depending on which constraints fail, jump
859 * back to here, or to various other re-entry points further along
860 * that skip some of the first steps.
861 * 4) If we pass all those tests, update the BmUSEFUL() count on the
862 * substring. If the start position was determined to be at the
863 * beginning of the string - so, not rejected, but not optimised,
864 * since we have to run regmatch from position 0 - decrement the
865 * BmUSEFUL() count. Otherwise increment it.
869 /* first, look for the 'check' substring */
875 DEBUG_OPTIMISE_MORE_r({
876 Perl_re_printf( aTHX_
877 " At restart: rx_origin=%" IVdf " Check offset min: %" IVdf
878 " Start shift: %" IVdf " End shift %" IVdf
879 " Real end Shift: %" IVdf "\n",
880 (IV)(rx_origin - strbeg),
881 (IV)prog->check_offset_min,
884 (IV)prog->check_end_shift);
887 end_point = HOP3(strend, -end_shift, strbeg);
888 start_point = HOPMAYBE3(rx_origin, start_shift, end_point);
893 /* If the regex is absolutely anchored to either the start of the
894 * string (SBOL) or to pos() (ANCH_GPOS), then
895 * check_offset_max represents an upper bound on the string where
896 * the substr could start. For the ANCH_GPOS case, we assume that
897 * the caller of intuit will have already set strpos to
898 * pos()-gofs, so in this case strpos + offset_max will still be
899 * an upper bound on the substr.
902 && prog->intflags & PREGf_ANCH
903 && prog->check_offset_max != SSize_t_MAX)
905 SSize_t len = SvCUR(check) - !!SvTAIL(check);
906 const char * const anchor =
907 (prog->intflags & PREGf_ANCH_GPOS ? strpos : strbeg);
909 /* do a bytes rather than chars comparison. It's conservative;
910 * so it skips doing the HOP if the result can't possibly end
911 * up earlier than the old value of end_point.
913 if ((char*)end_point - anchor > prog->check_offset_max) {
914 end_point = HOP3lim((U8*)anchor,
915 prog->check_offset_max,
921 check_at = fbm_instr( start_point, end_point,
922 check, multiline ? FBMrf_MULTILINE : 0);
924 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
925 " doing 'check' fbm scan, [%" IVdf "..%" IVdf "] gave %" IVdf "\n",
926 (IV)((char*)start_point - strbeg),
927 (IV)((char*)end_point - strbeg),
928 (IV)(check_at ? check_at - strbeg : -1)
931 /* Update the count-of-usability, remove useless subpatterns,
935 RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
936 SvPVX_const(check), RE_SV_DUMPLEN(check), 30);
937 Perl_re_printf( aTHX_ " %s %s substr %s%s%s",
938 (check_at ? "Found" : "Did not find"),
939 (check == (utf8_target ? prog->anchored_utf8 : prog->anchored_substr)
940 ? "anchored" : "floating"),
943 (check_at ? " at offset " : "...\n") );
948 /* set rx_origin to the minimum position where the regex could start
949 * matching, given the constraint of the just-matched check substring.
950 * But don't set it lower than previously.
953 if (check_at - rx_origin > prog->check_offset_max)
954 rx_origin = HOP3c(check_at, -prog->check_offset_max, rx_origin);
955 /* Finish the diagnostic message */
956 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
957 "%ld (rx_origin now %" IVdf ")...\n",
958 (long)(check_at - strbeg),
959 (IV)(rx_origin - strbeg)
964 /* now look for the 'other' substring if defined */
966 if (utf8_target ? prog->substrs->data[other_ix].utf8_substr
967 : prog->substrs->data[other_ix].substr)
969 /* Take into account the "other" substring. */
973 struct reg_substr_datum *other;
976 other = &prog->substrs->data[other_ix];
978 /* if "other" is anchored:
979 * we've previously found a floating substr starting at check_at.
980 * This means that the regex origin must lie somewhere
981 * between min (rx_origin): HOP3(check_at, -check_offset_max)
982 * and max: HOP3(check_at, -check_offset_min)
983 * (except that min will be >= strpos)
984 * So the fixed substr must lie somewhere between
985 * HOP3(min, anchored_offset)
986 * HOP3(max, anchored_offset) + SvCUR(substr)
989 /* if "other" is floating
990 * Calculate last1, the absolute latest point where the
991 * floating substr could start in the string, ignoring any
992 * constraints from the earlier fixed match. It is calculated
995 * strend - prog->minlen (in chars) is the absolute latest
996 * position within the string where the origin of the regex
997 * could appear. The latest start point for the floating
998 * substr is float_min_offset(*) on from the start of the
999 * regex. last1 simply combines thee two offsets.
1001 * (*) You might think the latest start point should be
1002 * float_max_offset from the regex origin, and technically
1003 * you'd be correct. However, consider
1005 * Here, float min, max are 3,5 and minlen is 7.
1006 * This can match either
1010 * In the first case, the regex matches minlen chars; in the
1011 * second, minlen+1, in the third, minlen+2.
1012 * In the first case, the floating offset is 3 (which equals
1013 * float_min), in the second, 4, and in the third, 5 (which
1014 * equals float_max). In all cases, the floating string bcd
1015 * can never start more than 4 chars from the end of the
1016 * string, which equals minlen - float_min. As the substring
1017 * starts to match more than float_min from the start of the
1018 * regex, it makes the regex match more than minlen chars,
1019 * and the two cancel each other out. So we can always use
1020 * float_min - minlen, rather than float_max - minlen for the
1021 * latest position in the string.
1023 * Note that -minlen + float_min_offset is equivalent (AFAIKT)
1024 * to CHR_SVLEN(must) - !!SvTAIL(must) + prog->float_end_shift
1027 assert(prog->minlen >= other->min_offset);
1028 last1 = HOP3c(strend,
1029 other->min_offset - prog->minlen, strbeg);
1031 if (other_ix) {/* i.e. if (other-is-float) */
1032 /* last is the latest point where the floating substr could
1033 * start, *given* any constraints from the earlier fixed
1034 * match. This constraint is that the floating string starts
1035 * <= float_max_offset chars from the regex origin (rx_origin).
1036 * If this value is less than last1, use it instead.
1038 assert(rx_origin <= last1);
1040 /* this condition handles the offset==infinity case, and
1041 * is a short-cut otherwise. Although it's comparing a
1042 * byte offset to a char length, it does so in a safe way,
1043 * since 1 char always occupies 1 or more bytes,
1044 * so if a string range is (last1 - rx_origin) bytes,
1045 * it will be less than or equal to (last1 - rx_origin)
1046 * chars; meaning it errs towards doing the accurate HOP3
1047 * rather than just using last1 as a short-cut */
1048 (last1 - rx_origin) < other->max_offset
1050 : (char*)HOP3lim(rx_origin, other->max_offset, last1);
1053 assert(strpos + start_shift <= check_at);
1054 last = HOP4c(check_at, other->min_offset - start_shift,
1058 s = HOP3c(rx_origin, other->min_offset, strend);
1059 if (s < other_last) /* These positions already checked */
1062 must = utf8_target ? other->utf8_substr : other->substr;
1063 assert(SvPOK(must));
1066 char *to = last + SvCUR(must) - (SvTAIL(must)!=0);
1072 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1073 " skipping 'other' fbm scan: %" IVdf " > %" IVdf "\n",
1074 (IV)(from - strbeg),
1080 (unsigned char*)from,
1083 multiline ? FBMrf_MULTILINE : 0
1085 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1086 " doing 'other' fbm scan, [%" IVdf "..%" IVdf "] gave %" IVdf "\n",
1087 (IV)(from - strbeg),
1089 (IV)(s ? s - strbeg : -1)
1095 RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
1096 SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
1097 Perl_re_printf( aTHX_ " %s %s substr %s%s",
1098 s ? "Found" : "Contradicts",
1099 other_ix ? "floating" : "anchored",
1100 quoted, RE_SV_TAIL(must));
1105 /* last1 is latest possible substr location. If we didn't
1106 * find it before there, we never will */
1107 if (last >= last1) {
1108 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1109 "; giving up...\n"));
1113 /* try to find the check substr again at a later
1114 * position. Maybe next time we'll find the "other" substr
1116 other_last = HOP3c(last, 1, strend) /* highest failure */;
1118 other_ix /* i.e. if other-is-float */
1119 ? HOP3c(rx_origin, 1, strend)
1120 : HOP4c(last, 1 - other->min_offset, strbeg, strend);
1121 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1122 "; about to retry %s at offset %ld (rx_origin now %" IVdf ")...\n",
1123 (other_ix ? "floating" : "anchored"),
1124 (long)(HOP3c(check_at, 1, strend) - strbeg),
1125 (IV)(rx_origin - strbeg)
1130 if (other_ix) { /* if (other-is-float) */
1131 /* other_last is set to s, not s+1, since its possible for
1132 * a floating substr to fail first time, then succeed
1133 * second time at the same floating position; e.g.:
1134 * "-AB--AABZ" =~ /\wAB\d*Z/
1135 * The first time round, anchored and float match at
1136 * "-(AB)--AAB(Z)" then fail on the initial \w character
1137 * class. Second time round, they match at "-AB--A(AB)(Z)".
1142 rx_origin = HOP3c(s, -other->min_offset, strbeg);
1143 other_last = HOP3c(s, 1, strend);
1145 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1146 " at offset %ld (rx_origin now %" IVdf ")...\n",
1148 (IV)(rx_origin - strbeg)
1154 DEBUG_OPTIMISE_MORE_r(
1155 Perl_re_printf( aTHX_
1156 " Check-only match: offset min:%" IVdf " max:%" IVdf
1157 " check_at:%" IVdf " rx_origin:%" IVdf " rx_origin-check_at:%" IVdf
1158 " strend:%" IVdf "\n",
1159 (IV)prog->check_offset_min,
1160 (IV)prog->check_offset_max,
1161 (IV)(check_at-strbeg),
1162 (IV)(rx_origin-strbeg),
1163 (IV)(rx_origin-check_at),
1169 postprocess_substr_matches:
1171 /* handle the extra constraint of /^.../m if present */
1173 if (ml_anch && rx_origin != strbeg && rx_origin[-1] != '\n') {
1176 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1177 " looking for /^/m anchor"));
1179 /* we have failed the constraint of a \n before rx_origin.
1180 * Find the next \n, if any, even if it's beyond the current
1181 * anchored and/or floating substrings. Whether we should be
1182 * scanning ahead for the next \n or the next substr is debatable.
1183 * On the one hand you'd expect rare substrings to appear less
1184 * often than \n's. On the other hand, searching for \n means
1185 * we're effectively flipping between check_substr and "\n" on each
1186 * iteration as the current "rarest" string candidate, which
1187 * means for example that we'll quickly reject the whole string if
1188 * hasn't got a \n, rather than trying every substr position
1192 s = HOP3c(strend, - prog->minlen, strpos);
1193 if (s <= rx_origin ||
1194 ! ( rx_origin = (char *)memchr(rx_origin, '\n', s - rx_origin)))
1196 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1197 " Did not find /%s^%s/m...\n",
1198 PL_colors[0], PL_colors[1]));
1202 /* earliest possible origin is 1 char after the \n.
1203 * (since *rx_origin == '\n', it's safe to ++ here rather than
1204 * HOP(rx_origin, 1)) */
1207 if (prog->substrs->check_ix == 0 /* check is anchored */
1208 || rx_origin >= HOP3c(check_at, - prog->check_offset_min, strpos))
1210 /* Position contradicts check-string; either because
1211 * check was anchored (and thus has no wiggle room),
1212 * or check was float and rx_origin is above the float range */
1213 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1214 " Found /%s^%s/m, about to restart lookup for check-string with rx_origin %ld...\n",
1215 PL_colors[0], PL_colors[1], (long)(rx_origin - strbeg)));
1219 /* if we get here, the check substr must have been float,
1220 * is in range, and we may or may not have had an anchored
1221 * "other" substr which still contradicts */
1222 assert(prog->substrs->check_ix); /* check is float */
1224 if (utf8_target ? prog->anchored_utf8 : prog->anchored_substr) {
1225 /* whoops, the anchored "other" substr exists, so we still
1226 * contradict. On the other hand, the float "check" substr
1227 * didn't contradict, so just retry the anchored "other"
1229 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1230 " Found /%s^%s/m, rescanning for anchored from offset %" IVdf " (rx_origin now %" IVdf ")...\n",
1231 PL_colors[0], PL_colors[1],
1232 (IV)(rx_origin - strbeg + prog->anchored_offset),
1233 (IV)(rx_origin - strbeg)
1235 goto do_other_substr;
1238 /* success: we don't contradict the found floating substring
1239 * (and there's no anchored substr). */
1240 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1241 " Found /%s^%s/m with rx_origin %ld...\n",
1242 PL_colors[0], PL_colors[1], (long)(rx_origin - strbeg)));
1245 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1246 " (multiline anchor test skipped)\n"));
1252 /* if we have a starting character class, then test that extra constraint.
1253 * (trie stclasses are too expensive to use here, we are better off to
1254 * leave it to regmatch itself) */
1256 if (progi->regstclass && PL_regkind[OP(progi->regstclass)]!=TRIE) {
1257 const U8* const str = (U8*)STRING(progi->regstclass);
1259 /* XXX this value could be pre-computed */
1260 const int cl_l = (PL_regkind[OP(progi->regstclass)] == EXACT
1261 ? (reginfo->is_utf8_pat
1262 ? utf8_distance(str + STR_LEN(progi->regstclass), str)
1263 : STR_LEN(progi->regstclass))
1267 /* latest pos that a matching float substr constrains rx start to */
1268 char *rx_max_float = NULL;
1270 /* if the current rx_origin is anchored, either by satisfying an
1271 * anchored substring constraint, or a /^.../m constraint, then we
1272 * can reject the current origin if the start class isn't found
1273 * at the current position. If we have a float-only match, then
1274 * rx_origin is constrained to a range; so look for the start class
1275 * in that range. if neither, then look for the start class in the
1276 * whole rest of the string */
1278 /* XXX DAPM it's not clear what the minlen test is for, and why
1279 * it's not used in the floating case. Nothing in the test suite
1280 * causes minlen == 0 here. See <20140313134639.GS12844@iabyn.com>.
1281 * Here are some old comments, which may or may not be correct:
1283 * minlen == 0 is possible if regstclass is \b or \B,
1284 * and the fixed substr is ''$.
1285 * Since minlen is already taken into account, rx_origin+1 is
1286 * before strend; accidentally, minlen >= 1 guaranties no false
1287 * positives at rx_origin + 1 even for \b or \B. But (minlen? 1 :
1288 * 0) below assumes that regstclass does not come from lookahead...
1289 * If regstclass takes bytelength more than 1: If charlength==1, OK.
1290 * This leaves EXACTF-ish only, which are dealt with in
1294 if (prog->anchored_substr || prog->anchored_utf8 || ml_anch)
1295 endpos = HOP3clim(rx_origin, (prog->minlen ? cl_l : 0), strend);
1296 else if (prog->float_substr || prog->float_utf8) {
1297 rx_max_float = HOP3c(check_at, -start_shift, strbeg);
1298 endpos = HOP3clim(rx_max_float, cl_l, strend);
1303 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1304 " looking for class: start_shift: %" IVdf " check_at: %" IVdf
1305 " rx_origin: %" IVdf " endpos: %" IVdf "\n",
1306 (IV)start_shift, (IV)(check_at - strbeg),
1307 (IV)(rx_origin - strbeg), (IV)(endpos - strbeg)));
1309 s = find_byclass(prog, progi->regstclass, rx_origin, endpos,
1312 if (endpos == strend) {
1313 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
1314 " Could not match STCLASS...\n") );
1317 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
1318 " This position contradicts STCLASS...\n") );
1319 if ((prog->intflags & PREGf_ANCH) && !ml_anch
1320 && !(prog->intflags & PREGf_IMPLICIT))
1323 /* Contradict one of substrings */
1324 if (prog->anchored_substr || prog->anchored_utf8) {
1325 if (prog->substrs->check_ix == 1) { /* check is float */
1326 /* Have both, check_string is floating */
1327 assert(rx_origin + start_shift <= check_at);
1328 if (rx_origin + start_shift != check_at) {
1329 /* not at latest position float substr could match:
1330 * Recheck anchored substring, but not floating.
1331 * The condition above is in bytes rather than
1332 * chars for efficiency. It's conservative, in
1333 * that it errs on the side of doing 'goto
1334 * do_other_substr'. In this case, at worst,
1335 * an extra anchored search may get done, but in
1336 * practice the extra fbm_instr() is likely to
1337 * get skipped anyway. */
1338 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
1339 " about to retry anchored at offset %ld (rx_origin now %" IVdf ")...\n",
1340 (long)(other_last - strbeg),
1341 (IV)(rx_origin - strbeg)
1343 goto do_other_substr;
1351 /* In the presence of ml_anch, we might be able to
1352 * find another \n without breaking the current float
1355 /* strictly speaking this should be HOP3c(..., 1, ...),
1356 * but since we goto a block of code that's going to
1357 * search for the next \n if any, its safe here */
1359 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
1360 " about to look for /%s^%s/m starting at rx_origin %ld...\n",
1361 PL_colors[0], PL_colors[1],
1362 (long)(rx_origin - strbeg)) );
1363 goto postprocess_substr_matches;
1366 /* strictly speaking this can never be true; but might
1367 * be if we ever allow intuit without substrings */
1368 if (!(utf8_target ? prog->float_utf8 : prog->float_substr))
1371 rx_origin = rx_max_float;
1374 /* at this point, any matching substrings have been
1375 * contradicted. Start again... */
1377 rx_origin = HOP3c(rx_origin, 1, strend);
1379 /* uses bytes rather than char calculations for efficiency.
1380 * It's conservative: it errs on the side of doing 'goto restart',
1381 * where there is code that does a proper char-based test */
1382 if (rx_origin + start_shift + end_shift > strend) {
1383 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
1384 " Could not match STCLASS...\n") );
1387 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
1388 " about to look for %s substr starting at offset %ld (rx_origin now %" IVdf ")...\n",
1389 (prog->substrs->check_ix ? "floating" : "anchored"),
1390 (long)(rx_origin + start_shift - strbeg),
1391 (IV)(rx_origin - strbeg)
1398 if (rx_origin != s) {
1399 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1400 " By STCLASS: moving %ld --> %ld\n",
1401 (long)(rx_origin - strbeg), (long)(s - strbeg))
1405 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1406 " Does not contradict STCLASS...\n");
1411 /* Decide whether using the substrings helped */
1413 if (rx_origin != strpos) {
1414 /* Fixed substring is found far enough so that the match
1415 cannot start at strpos. */
1417 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ " try at offset...\n"));
1418 ++BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr); /* hooray/5 */
1421 /* The found rx_origin position does not prohibit matching at
1422 * strpos, so calling intuit didn't gain us anything. Decrement
1423 * the BmUSEFUL() count on the check substring, and if we reach
1425 if (!(prog->intflags & PREGf_NAUGHTY)
1427 prog->check_utf8 /* Could be deleted already */
1428 && --BmUSEFUL(prog->check_utf8) < 0
1429 && (prog->check_utf8 == prog->float_utf8)
1431 prog->check_substr /* Could be deleted already */
1432 && --BmUSEFUL(prog->check_substr) < 0
1433 && (prog->check_substr == prog->float_substr)
1436 /* If flags & SOMETHING - do not do it many times on the same match */
1437 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ " ... Disabling check substring...\n"));
1438 /* XXX Does the destruction order has to change with utf8_target? */
1439 SvREFCNT_dec(utf8_target ? prog->check_utf8 : prog->check_substr);
1440 SvREFCNT_dec(utf8_target ? prog->check_substr : prog->check_utf8);
1441 prog->check_substr = prog->check_utf8 = NULL; /* disable */
1442 prog->float_substr = prog->float_utf8 = NULL; /* clear */
1443 check = NULL; /* abort */
1444 /* XXXX This is a remnant of the old implementation. It
1445 looks wasteful, since now INTUIT can use many
1446 other heuristics. */
1447 prog->extflags &= ~RXf_USE_INTUIT;
1451 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1452 "Intuit: %sSuccessfully guessed:%s match at offset %ld\n",
1453 PL_colors[4], PL_colors[5], (long)(rx_origin - strbeg)) );
1457 fail_finish: /* Substring not found */
1458 if (prog->check_substr || prog->check_utf8) /* could be removed already */
1459 BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr) += 5; /* hooray */
1461 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ "%sMatch rejected by optimizer%s\n",
1462 PL_colors[4], PL_colors[5]));
1467 #define DECL_TRIE_TYPE(scan) \
1468 const enum { trie_plain, trie_utf8, trie_utf8_fold, trie_latin_utf8_fold, \
1469 trie_utf8_exactfa_fold, trie_latin_utf8_exactfa_fold, \
1470 trie_utf8l, trie_flu8 } \
1471 trie_type = ((scan->flags == EXACT) \
1472 ? (utf8_target ? trie_utf8 : trie_plain) \
1473 : (scan->flags == EXACTL) \
1474 ? (utf8_target ? trie_utf8l : trie_plain) \
1475 : (scan->flags == EXACTFA) \
1477 ? trie_utf8_exactfa_fold \
1478 : trie_latin_utf8_exactfa_fold) \
1479 : (scan->flags == EXACTFLU8 \
1483 : trie_latin_utf8_fold)))
1485 #define REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc, uscan, len, uvc, charid, foldlen, foldbuf, uniflags) \
1488 U8 flags = FOLD_FLAGS_FULL; \
1489 switch (trie_type) { \
1491 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; \
1492 if (utf8_target && UTF8_IS_ABOVE_LATIN1(*uc)) { \
1493 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(uc, uc + UTF8SKIP(uc)); \
1495 goto do_trie_utf8_fold; \
1496 case trie_utf8_exactfa_fold: \
1497 flags |= FOLD_FLAGS_NOMIX_ASCII; \
1499 case trie_utf8_fold: \
1500 do_trie_utf8_fold: \
1501 if ( foldlen>0 ) { \
1502 uvc = utf8n_to_uvchr( (const U8*) uscan, UTF8_MAXLEN, &len, uniflags ); \
1507 len = UTF8SKIP(uc); \
1508 uvc = _toFOLD_utf8_flags( (const U8*) uc, uc + len, foldbuf, &foldlen, \
1510 skiplen = UVCHR_SKIP( uvc ); \
1511 foldlen -= skiplen; \
1512 uscan = foldbuf + skiplen; \
1515 case trie_latin_utf8_exactfa_fold: \
1516 flags |= FOLD_FLAGS_NOMIX_ASCII; \
1518 case trie_latin_utf8_fold: \
1519 if ( foldlen>0 ) { \
1520 uvc = utf8n_to_uvchr( (const U8*) uscan, UTF8_MAXLEN, &len, uniflags ); \
1526 uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, flags); \
1527 skiplen = UVCHR_SKIP( uvc ); \
1528 foldlen -= skiplen; \
1529 uscan = foldbuf + skiplen; \
1533 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; \
1534 if (utf8_target && UTF8_IS_ABOVE_LATIN1(*uc)) { \
1535 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(uc, uc + UTF8SKIP(uc)); \
1539 uvc = utf8n_to_uvchr( (const U8*) uc, UTF8_MAXLEN, &len, uniflags ); \
1546 charid = trie->charmap[ uvc ]; \
1550 if (widecharmap) { \
1551 SV** const svpp = hv_fetch(widecharmap, \
1552 (char*)&uvc, sizeof(UV), 0); \
1554 charid = (U16)SvIV(*svpp); \
1559 #define DUMP_EXEC_POS(li,s,doutf8,depth) \
1560 dump_exec_pos(li,s,(reginfo->strend),(reginfo->strbeg), \
1561 startpos, doutf8, depth)
1563 #define REXEC_FBC_EXACTISH_SCAN(COND) \
1567 && (ln == 1 || folder(s, pat_string, ln)) \
1568 && (reginfo->intuit || regtry(reginfo, &s)) )\
1574 #define REXEC_FBC_UTF8_SCAN(CODE) \
1576 while (s < strend) { \
1582 #define REXEC_FBC_SCAN(CODE) \
1584 while (s < strend) { \
1590 #define REXEC_FBC_UTF8_CLASS_SCAN(COND) \
1591 REXEC_FBC_UTF8_SCAN( /* Loops while (s < strend) */ \
1593 if (tmp && (reginfo->intuit || regtry(reginfo, &s))) \
1602 #define REXEC_FBC_CLASS_SCAN(COND) \
1603 REXEC_FBC_SCAN( /* Loops while (s < strend) */ \
1605 if (tmp && (reginfo->intuit || regtry(reginfo, &s))) \
1614 #define REXEC_FBC_CSCAN(CONDUTF8,COND) \
1615 if (utf8_target) { \
1616 REXEC_FBC_UTF8_CLASS_SCAN(CONDUTF8); \
1619 REXEC_FBC_CLASS_SCAN(COND); \
1622 /* The three macros below are slightly different versions of the same logic.
1624 * The first is for /a and /aa when the target string is UTF-8. This can only
1625 * match ascii, but it must advance based on UTF-8. The other two handle the
1626 * non-UTF-8 and the more generic UTF-8 cases. In all three, we are looking
1627 * for the boundary (or non-boundary) between a word and non-word character.
1628 * The utf8 and non-utf8 cases have the same logic, but the details must be
1629 * different. Find the "wordness" of the character just prior to this one, and
1630 * compare it with the wordness of this one. If they differ, we have a
1631 * boundary. At the beginning of the string, pretend that the previous
1632 * character was a new-line.
1634 * All these macros uncleanly have side-effects with each other and outside
1635 * variables. So far it's been too much trouble to clean-up
1637 * TEST_NON_UTF8 is the macro or function to call to test if its byte input is
1638 * a word character or not.
1639 * IF_SUCCESS is code to do if it finds that we are at a boundary between
1641 * IF_FAIL is code to do if we aren't at a boundary between word/non-word
1643 * Exactly one of the two IF_FOO parameters is a no-op, depending on whether we
1644 * are looking for a boundary or for a non-boundary. If we are looking for a
1645 * boundary, we want IF_FAIL to be the no-op, and for IF_SUCCESS to go out and
1646 * see if this tentative match actually works, and if so, to quit the loop
1647 * here. And vice-versa if we are looking for a non-boundary.
1649 * 'tmp' below in the next three macros in the REXEC_FBC_SCAN and
1650 * REXEC_FBC_UTF8_SCAN loops is a loop invariant, a bool giving the return of
1651 * TEST_NON_UTF8(s-1). To see this, note that that's what it is defined to be
1652 * at entry to the loop, and to get to the IF_FAIL branch, tmp must equal
1653 * TEST_NON_UTF8(s), and in the opposite branch, IF_SUCCESS, tmp is that
1654 * complement. But in that branch we complement tmp, meaning that at the
1655 * bottom of the loop tmp is always going to be equal to TEST_NON_UTF8(s),
1656 * which means at the top of the loop in the next iteration, it is
1657 * TEST_NON_UTF8(s-1) */
1658 #define FBC_UTF8_A(TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \
1659 tmp = (s != reginfo->strbeg) ? UCHARAT(s - 1) : '\n'; \
1660 tmp = TEST_NON_UTF8(tmp); \
1661 REXEC_FBC_UTF8_SCAN( /* advances s while s < strend */ \
1662 if (tmp == ! TEST_NON_UTF8((U8) *s)) { \
1664 IF_SUCCESS; /* Is a boundary if values for s-1 and s differ */ \
1671 /* Like FBC_UTF8_A, but TEST_UV is a macro which takes a UV as its input, and
1672 * TEST_UTF8 is a macro that for the same input code points returns identically
1673 * to TEST_UV, but takes a pointer to a UTF-8 encoded string instead */
1674 #define FBC_UTF8(TEST_UV, TEST_UTF8, IF_SUCCESS, IF_FAIL) \
1675 if (s == reginfo->strbeg) { \
1678 else { /* Back-up to the start of the previous character */ \
1679 U8 * const r = reghop3((U8*)s, -1, (U8*)reginfo->strbeg); \
1680 tmp = utf8n_to_uvchr(r, (U8*) reginfo->strend - r, \
1681 0, UTF8_ALLOW_DEFAULT); \
1683 tmp = TEST_UV(tmp); \
1684 LOAD_UTF8_CHARCLASS_ALNUM(); \
1685 REXEC_FBC_UTF8_SCAN( /* advances s while s < strend */ \
1686 if (tmp == ! (TEST_UTF8((U8 *) s, (U8 *) reginfo->strend))) { \
1695 /* Like the above two macros. UTF8_CODE is the complete code for handling
1696 * UTF-8. Common to the BOUND and NBOUND cases, set-up by the FBC_BOUND, etc
1698 #define FBC_BOUND_COMMON(UTF8_CODE, TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \
1699 if (utf8_target) { \
1702 else { /* Not utf8 */ \
1703 tmp = (s != reginfo->strbeg) ? UCHARAT(s - 1) : '\n'; \
1704 tmp = TEST_NON_UTF8(tmp); \
1705 REXEC_FBC_SCAN( /* advances s while s < strend */ \
1706 if (tmp == ! TEST_NON_UTF8((U8) *s)) { \
1715 /* Here, things have been set up by the previous code so that tmp is the \
1716 * return of TEST_NON_UTF(s-1) or TEST_UTF8(s-1) (depending on the \
1717 * utf8ness of the target). We also have to check if this matches against \
1718 * the EOS, which we treat as a \n (which is the same value in both UTF-8 \
1719 * or non-UTF8, so can use the non-utf8 test condition even for a UTF-8 \
1721 if (tmp == ! TEST_NON_UTF8('\n')) { \
1728 /* This is the macro to use when we want to see if something that looks like it
1729 * could match, actually does, and if so exits the loop */
1730 #define REXEC_FBC_TRYIT \
1731 if ((reginfo->intuit || regtry(reginfo, &s))) \
1734 /* The only difference between the BOUND and NBOUND cases is that
1735 * REXEC_FBC_TRYIT is called when matched in BOUND, and when non-matched in
1736 * NBOUND. This is accomplished by passing it as either the if or else clause,
1737 * with the other one being empty (PLACEHOLDER is defined as empty).
1739 * The TEST_FOO parameters are for operating on different forms of input, but
1740 * all should be ones that return identically for the same underlying code
1742 #define FBC_BOUND(TEST_NON_UTF8, TEST_UV, TEST_UTF8) \
1744 FBC_UTF8(TEST_UV, TEST_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER), \
1745 TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
1747 #define FBC_BOUND_A(TEST_NON_UTF8) \
1749 FBC_UTF8_A(TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER), \
1750 TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
1752 #define FBC_NBOUND(TEST_NON_UTF8, TEST_UV, TEST_UTF8) \
1754 FBC_UTF8(TEST_UV, TEST_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), \
1755 TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
1757 #define FBC_NBOUND_A(TEST_NON_UTF8) \
1759 FBC_UTF8_A(TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), \
1760 TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
1764 S_get_break_val_cp_checked(SV* const invlist, const UV cp_in) {
1765 IV cp_out = Perl__invlist_search(invlist, cp_in);
1766 assert(cp_out >= 0);
1769 # define _generic_GET_BREAK_VAL_CP_CHECKED(invlist, invmap, cp) \
1770 invmap[S_get_break_val_cp_checked(invlist, cp)]
1772 # define _generic_GET_BREAK_VAL_CP_CHECKED(invlist, invmap, cp) \
1773 invmap[_invlist_search(invlist, cp)]
1776 /* Takes a pointer to an inversion list, a pointer to its corresponding
1777 * inversion map, and a code point, and returns the code point's value
1778 * according to the two arrays. It assumes that all code points have a value.
1779 * This is used as the base macro for macros for particular properties */
1780 #define _generic_GET_BREAK_VAL_CP(invlist, invmap, cp) \
1781 _generic_GET_BREAK_VAL_CP_CHECKED(invlist, invmap, cp)
1783 /* Same as above, but takes begin, end ptrs to a UTF-8 encoded string instead
1784 * of a code point, returning the value for the first code point in the string.
1785 * And it takes the particular macro name that finds the desired value given a
1786 * code point. Merely convert the UTF-8 to code point and call the cp macro */
1787 #define _generic_GET_BREAK_VAL_UTF8(cp_macro, pos, strend) \
1788 (__ASSERT_(pos < strend) \
1789 /* Note assumes is valid UTF-8 */ \
1790 (cp_macro(utf8_to_uvchr_buf((pos), (strend), NULL))))
1792 /* Returns the GCB value for the input code point */
1793 #define getGCB_VAL_CP(cp) \
1794 _generic_GET_BREAK_VAL_CP( \
1799 /* Returns the GCB value for the first code point in the UTF-8 encoded string
1800 * bounded by pos and strend */
1801 #define getGCB_VAL_UTF8(pos, strend) \
1802 _generic_GET_BREAK_VAL_UTF8(getGCB_VAL_CP, pos, strend)
1804 /* Returns the LB value for the input code point */
1805 #define getLB_VAL_CP(cp) \
1806 _generic_GET_BREAK_VAL_CP( \
1811 /* Returns the LB value for the first code point in the UTF-8 encoded string
1812 * bounded by pos and strend */
1813 #define getLB_VAL_UTF8(pos, strend) \
1814 _generic_GET_BREAK_VAL_UTF8(getLB_VAL_CP, pos, strend)
1817 /* Returns the SB value for the input code point */
1818 #define getSB_VAL_CP(cp) \
1819 _generic_GET_BREAK_VAL_CP( \
1824 /* Returns the SB value for the first code point in the UTF-8 encoded string
1825 * bounded by pos and strend */
1826 #define getSB_VAL_UTF8(pos, strend) \
1827 _generic_GET_BREAK_VAL_UTF8(getSB_VAL_CP, pos, strend)
1829 /* Returns the WB value for the input code point */
1830 #define getWB_VAL_CP(cp) \
1831 _generic_GET_BREAK_VAL_CP( \
1836 /* Returns the WB value for the first code point in the UTF-8 encoded string
1837 * bounded by pos and strend */
1838 #define getWB_VAL_UTF8(pos, strend) \
1839 _generic_GET_BREAK_VAL_UTF8(getWB_VAL_CP, pos, strend)
1841 /* We know what class REx starts with. Try to find this position... */
1842 /* if reginfo->intuit, its a dryrun */
1843 /* annoyingly all the vars in this routine have different names from their counterparts
1844 in regmatch. /grrr */
1846 S_find_byclass(pTHX_ regexp * prog, const regnode *c, char *s,
1847 const char *strend, regmatch_info *reginfo)
1850 const I32 doevery = (prog->intflags & PREGf_SKIP) == 0;
1851 char *pat_string; /* The pattern's exactish string */
1852 char *pat_end; /* ptr to end char of pat_string */
1853 re_fold_t folder; /* Function for computing non-utf8 folds */
1854 const U8 *fold_array; /* array for folding ords < 256 */
1860 I32 tmp = 1; /* Scratch variable? */
1861 const bool utf8_target = reginfo->is_utf8_target;
1862 UV utf8_fold_flags = 0;
1863 const bool is_utf8_pat = reginfo->is_utf8_pat;
1864 bool to_complement = FALSE; /* Invert the result? Taking the xor of this
1865 with a result inverts that result, as 0^1 =
1867 _char_class_number classnum;
1869 RXi_GET_DECL(prog,progi);
1871 PERL_ARGS_ASSERT_FIND_BYCLASS;
1873 /* We know what class it must start with. */
1876 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
1878 if (ANYOFL_UTF8_LOCALE_REQD(FLAGS(c)) && ! IN_UTF8_CTYPE_LOCALE) {
1879 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE), utf8_locale_required);
1886 REXEC_FBC_UTF8_CLASS_SCAN(
1887 reginclass(prog, c, (U8*)s, (U8*) strend, utf8_target));
1889 else if (ANYOF_FLAGS(c)) {
1890 REXEC_FBC_CLASS_SCAN(reginclass(prog,c, (U8*)s, (U8*)s+1, 0));
1893 REXEC_FBC_CLASS_SCAN(ANYOF_BITMAP_TEST(c, *((U8*)s)));
1897 case EXACTFA_NO_TRIE: /* This node only generated for non-utf8 patterns */
1898 assert(! is_utf8_pat);
1901 if (is_utf8_pat || utf8_target) {
1902 utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
1903 goto do_exactf_utf8;
1905 fold_array = PL_fold_latin1; /* Latin1 folds are not affected by */
1906 folder = foldEQ_latin1; /* /a, except the sharp s one which */
1907 goto do_exactf_non_utf8; /* isn't dealt with by these */
1909 case EXACTF: /* This node only generated for non-utf8 patterns */
1910 assert(! is_utf8_pat);
1912 utf8_fold_flags = 0;
1913 goto do_exactf_utf8;
1915 fold_array = PL_fold;
1917 goto do_exactf_non_utf8;
1920 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
1921 if (is_utf8_pat || utf8_target || IN_UTF8_CTYPE_LOCALE) {
1922 utf8_fold_flags = FOLDEQ_LOCALE;
1923 goto do_exactf_utf8;
1925 fold_array = PL_fold_locale;
1926 folder = foldEQ_locale;
1927 goto do_exactf_non_utf8;
1931 utf8_fold_flags = FOLDEQ_S2_ALREADY_FOLDED;
1933 goto do_exactf_utf8;
1936 if (! utf8_target) { /* All code points in this node require
1937 UTF-8 to express. */
1940 utf8_fold_flags = FOLDEQ_LOCALE | FOLDEQ_S2_ALREADY_FOLDED
1941 | FOLDEQ_S2_FOLDS_SANE;
1942 goto do_exactf_utf8;
1945 if (is_utf8_pat || utf8_target) {
1946 utf8_fold_flags = is_utf8_pat ? FOLDEQ_S2_ALREADY_FOLDED : 0;
1947 goto do_exactf_utf8;
1950 /* Any 'ss' in the pattern should have been replaced by regcomp,
1951 * so we don't have to worry here about this single special case
1952 * in the Latin1 range */
1953 fold_array = PL_fold_latin1;
1954 folder = foldEQ_latin1;
1958 do_exactf_non_utf8: /* Neither pattern nor string are UTF8, and there
1959 are no glitches with fold-length differences
1960 between the target string and pattern */
1962 /* The idea in the non-utf8 EXACTF* cases is to first find the
1963 * first character of the EXACTF* node and then, if necessary,
1964 * case-insensitively compare the full text of the node. c1 is the
1965 * first character. c2 is its fold. This logic will not work for
1966 * Unicode semantics and the german sharp ss, which hence should
1967 * not be compiled into a node that gets here. */
1968 pat_string = STRING(c);
1969 ln = STR_LEN(c); /* length to match in octets/bytes */
1971 /* We know that we have to match at least 'ln' bytes (which is the
1972 * same as characters, since not utf8). If we have to match 3
1973 * characters, and there are only 2 availabe, we know without
1974 * trying that it will fail; so don't start a match past the
1975 * required minimum number from the far end */
1976 e = HOP3c(strend, -((SSize_t)ln), s);
1978 if (reginfo->intuit && e < s) {
1979 e = s; /* Due to minlen logic of intuit() */
1983 c2 = fold_array[c1];
1984 if (c1 == c2) { /* If char and fold are the same */
1985 REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1);
1988 REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1 || *(U8*)s == c2);
1996 /* If one of the operands is in utf8, we can't use the simpler folding
1997 * above, due to the fact that many different characters can have the
1998 * same fold, or portion of a fold, or different- length fold */
1999 pat_string = STRING(c);
2000 ln = STR_LEN(c); /* length to match in octets/bytes */
2001 pat_end = pat_string + ln;
2002 lnc = is_utf8_pat /* length to match in characters */
2003 ? utf8_length((U8 *) pat_string, (U8 *) pat_end)
2006 /* We have 'lnc' characters to match in the pattern, but because of
2007 * multi-character folding, each character in the target can match
2008 * up to 3 characters (Unicode guarantees it will never exceed
2009 * this) if it is utf8-encoded; and up to 2 if not (based on the
2010 * fact that the Latin 1 folds are already determined, and the
2011 * only multi-char fold in that range is the sharp-s folding to
2012 * 'ss'. Thus, a pattern character can match as little as 1/3 of a
2013 * string character. Adjust lnc accordingly, rounding up, so that
2014 * if we need to match at least 4+1/3 chars, that really is 5. */
2015 expansion = (utf8_target) ? UTF8_MAX_FOLD_CHAR_EXPAND : 2;
2016 lnc = (lnc + expansion - 1) / expansion;
2018 /* As in the non-UTF8 case, if we have to match 3 characters, and
2019 * only 2 are left, it's guaranteed to fail, so don't start a
2020 * match that would require us to go beyond the end of the string
2022 e = HOP3c(strend, -((SSize_t)lnc), s);
2024 if (reginfo->intuit && e < s) {
2025 e = s; /* Due to minlen logic of intuit() */
2028 /* XXX Note that we could recalculate e to stop the loop earlier,
2029 * as the worst case expansion above will rarely be met, and as we
2030 * go along we would usually find that e moves further to the left.
2031 * This would happen only after we reached the point in the loop
2032 * where if there were no expansion we should fail. Unclear if
2033 * worth the expense */
2036 char *my_strend= (char *)strend;
2037 if (foldEQ_utf8_flags(s, &my_strend, 0, utf8_target,
2038 pat_string, NULL, ln, is_utf8_pat, utf8_fold_flags)
2039 && (reginfo->intuit || regtry(reginfo, &s)) )
2043 s += (utf8_target) ? UTF8SKIP(s) : 1;
2049 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2050 if (FLAGS(c) != TRADITIONAL_BOUND) {
2051 if (! IN_UTF8_CTYPE_LOCALE) {
2052 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
2053 B_ON_NON_UTF8_LOCALE_IS_WRONG);
2058 FBC_BOUND(isWORDCHAR_LC, isWORDCHAR_LC_uvchr, isWORDCHAR_LC_utf8_safe);
2062 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2063 if (FLAGS(c) != TRADITIONAL_BOUND) {
2064 if (! IN_UTF8_CTYPE_LOCALE) {
2065 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
2066 B_ON_NON_UTF8_LOCALE_IS_WRONG);
2071 FBC_NBOUND(isWORDCHAR_LC, isWORDCHAR_LC_uvchr, isWORDCHAR_LC_utf8_safe);
2074 case BOUND: /* regcomp.c makes sure that this only has the traditional \b
2076 assert(FLAGS(c) == TRADITIONAL_BOUND);
2078 FBC_BOUND(isWORDCHAR, isWORDCHAR_uni, isWORDCHAR_utf8_safe);
2081 case BOUNDA: /* regcomp.c makes sure that this only has the traditional \b
2083 assert(FLAGS(c) == TRADITIONAL_BOUND);
2085 FBC_BOUND_A(isWORDCHAR_A);
2088 case NBOUND: /* regcomp.c makes sure that this only has the traditional \b
2090 assert(FLAGS(c) == TRADITIONAL_BOUND);
2092 FBC_NBOUND(isWORDCHAR, isWORDCHAR_uni, isWORDCHAR_utf8_safe);
2095 case NBOUNDA: /* regcomp.c makes sure that this only has the traditional \b
2097 assert(FLAGS(c) == TRADITIONAL_BOUND);
2099 FBC_NBOUND_A(isWORDCHAR_A);
2103 if ((bound_type) FLAGS(c) == TRADITIONAL_BOUND) {
2104 FBC_NBOUND(isWORDCHAR_L1, isWORDCHAR_uni, isWORDCHAR_utf8_safe);
2115 switch((bound_type) FLAGS(c)) {
2116 case TRADITIONAL_BOUND:
2117 FBC_BOUND(isWORDCHAR_L1, isWORDCHAR_uni, isWORDCHAR_utf8_safe);
2120 if (s == reginfo->strbeg) {
2121 if (reginfo->intuit || regtry(reginfo, &s))
2126 /* Didn't match. Try at the next position (if there is one) */
2127 s += (utf8_target) ? UTF8SKIP(s) : 1;
2128 if (UNLIKELY(s >= reginfo->strend)) {
2134 GCB_enum before = getGCB_VAL_UTF8(
2136 (U8*)(reginfo->strbeg)),
2137 (U8*) reginfo->strend);
2138 while (s < strend) {
2139 GCB_enum after = getGCB_VAL_UTF8((U8*) s,
2140 (U8*) reginfo->strend);
2141 if ( (to_complement ^ isGCB(before,
2143 (U8*) reginfo->strbeg,
2146 && (reginfo->intuit || regtry(reginfo, &s)))
2154 else { /* Not utf8. Everything is a GCB except between CR and
2156 while (s < strend) {
2157 if ((to_complement ^ ( UCHARAT(s - 1) != '\r'
2158 || UCHARAT(s) != '\n'))
2159 && (reginfo->intuit || regtry(reginfo, &s)))
2167 /* And, since this is a bound, it can match after the final
2168 * character in the string */
2169 if ((reginfo->intuit || regtry(reginfo, &s))) {
2175 if (s == reginfo->strbeg) {
2176 if (reginfo->intuit || regtry(reginfo, &s)) {
2179 s += (utf8_target) ? UTF8SKIP(s) : 1;
2180 if (UNLIKELY(s >= reginfo->strend)) {
2186 LB_enum before = getLB_VAL_UTF8(reghop3((U8*)s,
2188 (U8*)(reginfo->strbeg)),
2189 (U8*) reginfo->strend);
2190 while (s < strend) {
2191 LB_enum after = getLB_VAL_UTF8((U8*) s, (U8*) reginfo->strend);
2192 if (to_complement ^ isLB(before,
2194 (U8*) reginfo->strbeg,
2196 (U8*) reginfo->strend,
2198 && (reginfo->intuit || regtry(reginfo, &s)))
2206 else { /* Not utf8. */
2207 LB_enum before = getLB_VAL_CP((U8) *(s -1));
2208 while (s < strend) {
2209 LB_enum after = getLB_VAL_CP((U8) *s);
2210 if (to_complement ^ isLB(before,
2212 (U8*) reginfo->strbeg,
2214 (U8*) reginfo->strend,
2216 && (reginfo->intuit || regtry(reginfo, &s)))
2225 if (reginfo->intuit || regtry(reginfo, &s)) {
2232 if (s == reginfo->strbeg) {
2233 if (reginfo->intuit || regtry(reginfo, &s)) {
2236 s += (utf8_target) ? UTF8SKIP(s) : 1;
2237 if (UNLIKELY(s >= reginfo->strend)) {
2243 SB_enum before = getSB_VAL_UTF8(reghop3((U8*)s,
2245 (U8*)(reginfo->strbeg)),
2246 (U8*) reginfo->strend);
2247 while (s < strend) {
2248 SB_enum after = getSB_VAL_UTF8((U8*) s,
2249 (U8*) reginfo->strend);
2250 if ((to_complement ^ isSB(before,
2252 (U8*) reginfo->strbeg,
2254 (U8*) reginfo->strend,
2256 && (reginfo->intuit || regtry(reginfo, &s)))
2264 else { /* Not utf8. */
2265 SB_enum before = getSB_VAL_CP((U8) *(s -1));
2266 while (s < strend) {
2267 SB_enum after = getSB_VAL_CP((U8) *s);
2268 if ((to_complement ^ isSB(before,
2270 (U8*) reginfo->strbeg,
2272 (U8*) reginfo->strend,
2274 && (reginfo->intuit || regtry(reginfo, &s)))
2283 /* Here are at the final position in the target string. The SB
2284 * value is always true here, so matches, depending on other
2286 if (reginfo->intuit || regtry(reginfo, &s)) {
2293 if (s == reginfo->strbeg) {
2294 if (reginfo->intuit || regtry(reginfo, &s)) {
2297 s += (utf8_target) ? UTF8SKIP(s) : 1;
2298 if (UNLIKELY(s >= reginfo->strend)) {
2304 /* We are at a boundary between char_sub_0 and char_sub_1.
2305 * We also keep track of the value for char_sub_-1 as we
2306 * loop through the line. Context may be needed to make a
2307 * determination, and if so, this can save having to
2309 WB_enum previous = WB_UNKNOWN;
2310 WB_enum before = getWB_VAL_UTF8(
2313 (U8*)(reginfo->strbeg)),
2314 (U8*) reginfo->strend);
2315 while (s < strend) {
2316 WB_enum after = getWB_VAL_UTF8((U8*) s,
2317 (U8*) reginfo->strend);
2318 if ((to_complement ^ isWB(previous,
2321 (U8*) reginfo->strbeg,
2323 (U8*) reginfo->strend,
2325 && (reginfo->intuit || regtry(reginfo, &s)))
2334 else { /* Not utf8. */
2335 WB_enum previous = WB_UNKNOWN;
2336 WB_enum before = getWB_VAL_CP((U8) *(s -1));
2337 while (s < strend) {
2338 WB_enum after = getWB_VAL_CP((U8) *s);
2339 if ((to_complement ^ isWB(previous,
2342 (U8*) reginfo->strbeg,
2344 (U8*) reginfo->strend,
2346 && (reginfo->intuit || regtry(reginfo, &s)))
2356 if (reginfo->intuit || regtry(reginfo, &s)) {
2363 REXEC_FBC_CSCAN(is_LNBREAK_utf8_safe(s, strend),
2364 is_LNBREAK_latin1_safe(s, strend)
2368 /* The argument to all the POSIX node types is the class number to pass to
2369 * _generic_isCC() to build a mask for searching in PL_charclass[] */
2376 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2377 REXEC_FBC_CSCAN(to_complement ^ cBOOL(isFOO_utf8_lc(FLAGS(c), (U8 *) s)),
2378 to_complement ^ cBOOL(isFOO_lc(FLAGS(c), *s)));
2393 /* The complement of something that matches only ASCII matches all
2394 * non-ASCII, plus everything in ASCII that isn't in the class. */
2395 REXEC_FBC_UTF8_CLASS_SCAN( ! isASCII_utf8_safe(s, strend)
2396 || ! _generic_isCC_A(*s, FLAGS(c)));
2405 /* Don't need to worry about utf8, as it can match only a single
2406 * byte invariant character. */
2407 REXEC_FBC_CLASS_SCAN(
2408 to_complement ^ cBOOL(_generic_isCC_A(*s, FLAGS(c))));
2416 if (! utf8_target) {
2417 REXEC_FBC_CLASS_SCAN(to_complement ^ cBOOL(_generic_isCC(*s,
2423 classnum = (_char_class_number) FLAGS(c);
2424 if (classnum < _FIRST_NON_SWASH_CC) {
2425 while (s < strend) {
2427 /* We avoid loading in the swash as long as possible, but
2428 * should we have to, we jump to a separate loop. This
2429 * extra 'if' statement is what keeps this code from being
2430 * just a call to REXEC_FBC_UTF8_CLASS_SCAN() */
2431 if (UTF8_IS_ABOVE_LATIN1(*s)) {
2432 goto found_above_latin1;
2434 if ((UTF8_IS_INVARIANT(*s)
2435 && to_complement ^ cBOOL(_generic_isCC((U8) *s,
2437 || ( UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(s, strend)
2438 && to_complement ^ cBOOL(
2439 _generic_isCC(EIGHT_BIT_UTF8_TO_NATIVE(*s,
2443 if (tmp && (reginfo->intuit || regtry(reginfo, &s)))
2455 else switch (classnum) { /* These classes are implemented as
2457 case _CC_ENUM_SPACE:
2458 REXEC_FBC_UTF8_CLASS_SCAN(
2459 to_complement ^ cBOOL(isSPACE_utf8_safe(s, strend)));
2462 case _CC_ENUM_BLANK:
2463 REXEC_FBC_UTF8_CLASS_SCAN(
2464 to_complement ^ cBOOL(isBLANK_utf8_safe(s, strend)));
2467 case _CC_ENUM_XDIGIT:
2468 REXEC_FBC_UTF8_CLASS_SCAN(
2469 to_complement ^ cBOOL(isXDIGIT_utf8_safe(s, strend)));
2472 case _CC_ENUM_VERTSPACE:
2473 REXEC_FBC_UTF8_CLASS_SCAN(
2474 to_complement ^ cBOOL(isVERTWS_utf8_safe(s, strend)));
2477 case _CC_ENUM_CNTRL:
2478 REXEC_FBC_UTF8_CLASS_SCAN(
2479 to_complement ^ cBOOL(isCNTRL_utf8_safe(s, strend)));
2483 Perl_croak(aTHX_ "panic: find_byclass() node %d='%s' has an unexpected character class '%d'", OP(c), PL_reg_name[OP(c)], classnum);
2484 NOT_REACHED; /* NOTREACHED */
2489 found_above_latin1: /* Here we have to load a swash to get the result
2490 for the current code point */
2491 if (! PL_utf8_swash_ptrs[classnum]) {
2492 U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
2493 PL_utf8_swash_ptrs[classnum] =
2494 _core_swash_init("utf8",
2497 PL_XPosix_ptrs[classnum], &flags);
2500 /* This is a copy of the loop above for swash classes, though using the
2501 * FBC macro instead of being expanded out. Since we've loaded the
2502 * swash, we don't have to check for that each time through the loop */
2503 REXEC_FBC_UTF8_CLASS_SCAN(
2504 to_complement ^ cBOOL(_generic_utf8_safe(
2508 swash_fetch(PL_utf8_swash_ptrs[classnum],
2516 /* what trie are we using right now */
2517 reg_ac_data *aho = (reg_ac_data*)progi->data->data[ ARG( c ) ];
2518 reg_trie_data *trie = (reg_trie_data*)progi->data->data[ aho->trie ];
2519 HV *widecharmap = MUTABLE_HV(progi->data->data[ aho->trie + 1 ]);
2521 const char *last_start = strend - trie->minlen;
2523 const char *real_start = s;
2525 STRLEN maxlen = trie->maxlen;
2527 U8 **points; /* map of where we were in the input string
2528 when reading a given char. For ASCII this
2529 is unnecessary overhead as the relationship
2530 is always 1:1, but for Unicode, especially
2531 case folded Unicode this is not true. */
2532 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
2536 GET_RE_DEBUG_FLAGS_DECL;
2538 /* We can't just allocate points here. We need to wrap it in
2539 * an SV so it gets freed properly if there is a croak while
2540 * running the match */
2543 sv_points=newSV(maxlen * sizeof(U8 *));
2544 SvCUR_set(sv_points,
2545 maxlen * sizeof(U8 *));
2546 SvPOK_on(sv_points);
2547 sv_2mortal(sv_points);
2548 points=(U8**)SvPV_nolen(sv_points );
2549 if ( trie_type != trie_utf8_fold
2550 && (trie->bitmap || OP(c)==AHOCORASICKC) )
2553 bitmap=(U8*)trie->bitmap;
2555 bitmap=(U8*)ANYOF_BITMAP(c);
2557 /* this is the Aho-Corasick algorithm modified a touch
2558 to include special handling for long "unknown char" sequences.
2559 The basic idea being that we use AC as long as we are dealing
2560 with a possible matching char, when we encounter an unknown char
2561 (and we have not encountered an accepting state) we scan forward
2562 until we find a legal starting char.
2563 AC matching is basically that of trie matching, except that when
2564 we encounter a failing transition, we fall back to the current
2565 states "fail state", and try the current char again, a process
2566 we repeat until we reach the root state, state 1, or a legal
2567 transition. If we fail on the root state then we can either
2568 terminate if we have reached an accepting state previously, or
2569 restart the entire process from the beginning if we have not.
2572 while (s <= last_start) {
2573 const U32 uniflags = UTF8_ALLOW_DEFAULT;
2581 U8 *uscan = (U8*)NULL;
2582 U8 *leftmost = NULL;
2584 U32 accepted_word= 0;
2588 while ( state && uc <= (U8*)strend ) {
2590 U32 word = aho->states[ state ].wordnum;
2594 DEBUG_TRIE_EXECUTE_r(
2595 if ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
2596 dump_exec_pos( (char *)uc, c, strend, real_start,
2597 (char *)uc, utf8_target, 0 );
2598 Perl_re_printf( aTHX_
2599 " Scanning for legal start char...\n");
2603 while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
2607 while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
2613 if (uc >(U8*)last_start) break;
2617 U8 *lpos= points[ (pointpos - trie->wordinfo[word].len) % maxlen ];
2618 if (!leftmost || lpos < leftmost) {
2619 DEBUG_r(accepted_word=word);
2625 points[pointpos++ % maxlen]= uc;
2626 if (foldlen || uc < (U8*)strend) {
2627 REXEC_TRIE_READ_CHAR(trie_type, trie,
2629 uscan, len, uvc, charid, foldlen,
2631 DEBUG_TRIE_EXECUTE_r({
2632 dump_exec_pos( (char *)uc, c, strend,
2633 real_start, s, utf8_target, 0);
2634 Perl_re_printf( aTHX_
2635 " Charid:%3u CP:%4" UVxf " ",
2647 word = aho->states[ state ].wordnum;
2649 base = aho->states[ state ].trans.base;
2651 DEBUG_TRIE_EXECUTE_r({
2653 dump_exec_pos( (char *)uc, c, strend, real_start,
2654 s, utf8_target, 0 );
2655 Perl_re_printf( aTHX_
2656 "%sState: %4" UVxf ", word=%" UVxf,
2657 failed ? " Fail transition to " : "",
2658 (UV)state, (UV)word);
2664 ( ((offset = base + charid
2665 - 1 - trie->uniquecharcount)) >= 0)
2666 && ((U32)offset < trie->lasttrans)
2667 && trie->trans[offset].check == state
2668 && (tmp=trie->trans[offset].next))
2670 DEBUG_TRIE_EXECUTE_r(
2671 Perl_re_printf( aTHX_ " - legal\n"));
2676 DEBUG_TRIE_EXECUTE_r(
2677 Perl_re_printf( aTHX_ " - fail\n"));
2679 state = aho->fail[state];
2683 /* we must be accepting here */
2684 DEBUG_TRIE_EXECUTE_r(
2685 Perl_re_printf( aTHX_ " - accepting\n"));
2694 if (!state) state = 1;
2697 if ( aho->states[ state ].wordnum ) {
2698 U8 *lpos = points[ (pointpos - trie->wordinfo[aho->states[ state ].wordnum].len) % maxlen ];
2699 if (!leftmost || lpos < leftmost) {
2700 DEBUG_r(accepted_word=aho->states[ state ].wordnum);
2705 s = (char*)leftmost;
2706 DEBUG_TRIE_EXECUTE_r({
2707 Perl_re_printf( aTHX_ "Matches word #%" UVxf " at position %" IVdf ". Trying full pattern...\n",
2708 (UV)accepted_word, (IV)(s - real_start)
2711 if (reginfo->intuit || regtry(reginfo, &s)) {
2717 DEBUG_TRIE_EXECUTE_r({
2718 Perl_re_printf( aTHX_ "Pattern failed. Looking for new start point...\n");
2721 DEBUG_TRIE_EXECUTE_r(
2722 Perl_re_printf( aTHX_ "No match.\n"));
2731 Perl_croak(aTHX_ "panic: unknown regstclass %d", (int)OP(c));
2738 /* set RX_SAVED_COPY, RX_SUBBEG etc.
2739 * flags have same meanings as with regexec_flags() */
2742 S_reg_set_capture_string(pTHX_ REGEXP * const rx,
2749 struct regexp *const prog = ReANY(rx);
2751 if (flags & REXEC_COPY_STR) {
2754 DEBUG_C(Perl_re_printf( aTHX_
2755 "Copy on write: regexp capture, type %d\n",
2757 /* Create a new COW SV to share the match string and store
2758 * in saved_copy, unless the current COW SV in saved_copy
2759 * is valid and suitable for our purpose */
2760 if (( prog->saved_copy
2761 && SvIsCOW(prog->saved_copy)
2762 && SvPOKp(prog->saved_copy)
2765 && SvPVX(sv) == SvPVX(prog->saved_copy)))
2767 /* just reuse saved_copy SV */
2768 if (RXp_MATCH_COPIED(prog)) {
2769 Safefree(prog->subbeg);
2770 RXp_MATCH_COPIED_off(prog);
2774 /* create new COW SV to share string */
2775 RX_MATCH_COPY_FREE(rx);
2776 prog->saved_copy = sv_setsv_cow(prog->saved_copy, sv);
2778 prog->subbeg = (char *)SvPVX_const(prog->saved_copy);
2779 assert (SvPOKp(prog->saved_copy));
2780 prog->sublen = strend - strbeg;
2781 prog->suboffset = 0;
2782 prog->subcoffset = 0;
2787 SSize_t max = strend - strbeg;
2790 if ( (flags & REXEC_COPY_SKIP_POST)
2791 && !(prog->extflags & RXf_PMf_KEEPCOPY) /* //p */
2792 && !(PL_sawampersand & SAWAMPERSAND_RIGHT)
2793 ) { /* don't copy $' part of string */
2796 /* calculate the right-most part of the string covered
2797 * by a capture. Due to lookahead, this may be to
2798 * the right of $&, so we have to scan all captures */
2799 while (n <= prog->lastparen) {
2800 if (prog->offs[n].end > max)
2801 max = prog->offs[n].end;
2805 max = (PL_sawampersand & SAWAMPERSAND_LEFT)
2806 ? prog->offs[0].start
2808 assert(max >= 0 && max <= strend - strbeg);
2811 if ( (flags & REXEC_COPY_SKIP_PRE)
2812 && !(prog->extflags & RXf_PMf_KEEPCOPY) /* //p */
2813 && !(PL_sawampersand & SAWAMPERSAND_LEFT)
2814 ) { /* don't copy $` part of string */
2817 /* calculate the left-most part of the string covered
2818 * by a capture. Due to lookbehind, this may be to
2819 * the left of $&, so we have to scan all captures */
2820 while (min && n <= prog->lastparen) {
2821 if ( prog->offs[n].start != -1
2822 && prog->offs[n].start < min)
2824 min = prog->offs[n].start;
2828 if ((PL_sawampersand & SAWAMPERSAND_RIGHT)
2829 && min > prog->offs[0].end
2831 min = prog->offs[0].end;
2835 assert(min >= 0 && min <= max && min <= strend - strbeg);
2838 if (RX_MATCH_COPIED(rx)) {
2839 if (sublen > prog->sublen)
2841 (char*)saferealloc(prog->subbeg, sublen+1);
2844 prog->subbeg = (char*)safemalloc(sublen+1);
2845 Copy(strbeg + min, prog->subbeg, sublen, char);
2846 prog->subbeg[sublen] = '\0';
2847 prog->suboffset = min;
2848 prog->sublen = sublen;
2849 RX_MATCH_COPIED_on(rx);
2851 prog->subcoffset = prog->suboffset;
2852 if (prog->suboffset && utf8_target) {
2853 /* Convert byte offset to chars.
2854 * XXX ideally should only compute this if @-/@+
2855 * has been seen, a la PL_sawampersand ??? */
2857 /* If there's a direct correspondence between the
2858 * string which we're matching and the original SV,
2859 * then we can use the utf8 len cache associated with
2860 * the SV. In particular, it means that under //g,
2861 * sv_pos_b2u() will use the previously cached
2862 * position to speed up working out the new length of
2863 * subcoffset, rather than counting from the start of
2864 * the string each time. This stops
2865 * $x = "\x{100}" x 1E6; 1 while $x =~ /(.)/g;
2866 * from going quadratic */
2867 if (SvPOKp(sv) && SvPVX(sv) == strbeg)
2868 prog->subcoffset = sv_pos_b2u_flags(sv, prog->subcoffset,
2869 SV_GMAGIC|SV_CONST_RETURN);
2871 prog->subcoffset = utf8_length((U8*)strbeg,
2872 (U8*)(strbeg+prog->suboffset));
2876 RX_MATCH_COPY_FREE(rx);
2877 prog->subbeg = strbeg;
2878 prog->suboffset = 0;
2879 prog->subcoffset = 0;
2880 prog->sublen = strend - strbeg;
2888 - regexec_flags - match a regexp against a string
2891 Perl_regexec_flags(pTHX_ REGEXP * const rx, char *stringarg, char *strend,
2892 char *strbeg, SSize_t minend, SV *sv, void *data, U32 flags)
2893 /* stringarg: the point in the string at which to begin matching */
2894 /* strend: pointer to null at end of string */
2895 /* strbeg: real beginning of string */
2896 /* minend: end of match must be >= minend bytes after stringarg. */
2897 /* sv: SV being matched: only used for utf8 flag, pos() etc; string
2898 * itself is accessed via the pointers above */
2899 /* data: May be used for some additional optimizations.
2900 Currently unused. */
2901 /* flags: For optimizations. See REXEC_* in regexp.h */
2904 struct regexp *const prog = ReANY(rx);
2908 SSize_t minlen; /* must match at least this many chars */
2909 SSize_t dontbother = 0; /* how many characters not to try at end */
2910 const bool utf8_target = cBOOL(DO_UTF8(sv));
2912 RXi_GET_DECL(prog,progi);
2913 regmatch_info reginfo_buf; /* create some info to pass to regtry etc */
2914 regmatch_info *const reginfo = ®info_buf;
2915 regexp_paren_pair *swap = NULL;
2917 GET_RE_DEBUG_FLAGS_DECL;
2919 PERL_ARGS_ASSERT_REGEXEC_FLAGS;
2920 PERL_UNUSED_ARG(data);
2922 /* Be paranoid... */
2924 Perl_croak(aTHX_ "NULL regexp parameter");
2928 debug_start_match(rx, utf8_target, stringarg, strend,
2932 startpos = stringarg;
2934 /* set these early as they may be used by the HOP macros below */
2935 reginfo->strbeg = strbeg;
2936 reginfo->strend = strend;
2937 reginfo->is_utf8_target = cBOOL(utf8_target);
2939 if (prog->intflags & PREGf_GPOS_SEEN) {
2942 /* set reginfo->ganch, the position where \G can match */
2945 (flags & REXEC_IGNOREPOS)
2946 ? stringarg /* use start pos rather than pos() */
2947 : ((mg = mg_find_mglob(sv)) && mg->mg_len >= 0)
2948 /* Defined pos(): */
2949 ? strbeg + MgBYTEPOS(mg, sv, strbeg, strend-strbeg)
2950 : strbeg; /* pos() not defined; use start of string */
2952 DEBUG_GPOS_r(Perl_re_printf( aTHX_
2953 "GPOS ganch set to strbeg[%" IVdf "]\n", (IV)(reginfo->ganch - strbeg)));
2955 /* in the presence of \G, we may need to start looking earlier in
2956 * the string than the suggested start point of stringarg:
2957 * if prog->gofs is set, then that's a known, fixed minimum
2960 * /ab|c\G/: gofs = 1
2961 * or if the minimum offset isn't known, then we have to go back
2962 * to the start of the string, e.g. /w+\G/
2965 if (prog->intflags & PREGf_ANCH_GPOS) {
2967 startpos = HOPBACKc(reginfo->ganch, prog->gofs);
2969 ((flags & REXEC_FAIL_ON_UNDERFLOW) && startpos < stringarg))
2971 DEBUG_r(Perl_re_printf( aTHX_
2972 "fail: ganch-gofs before earliest possible start\n"));
2977 startpos = reginfo->ganch;
2979 else if (prog->gofs) {
2980 startpos = HOPBACKc(startpos, prog->gofs);
2984 else if (prog->intflags & PREGf_GPOS_FLOAT)
2988 minlen = prog->minlen;
2989 if ((startpos + minlen) > strend || startpos < strbeg) {
2990 DEBUG_r(Perl_re_printf( aTHX_
2991 "Regex match can't succeed, so not even tried\n"));
2995 /* at the end of this function, we'll do a LEAVE_SCOPE(oldsave),
2996 * which will call destuctors to reset PL_regmatch_state, free higher
2997 * PL_regmatch_slabs, and clean up regmatch_info_aux and
2998 * regmatch_info_aux_eval */
3000 oldsave = PL_savestack_ix;
3004 if ((prog->extflags & RXf_USE_INTUIT)
3005 && !(flags & REXEC_CHECKED))
3007 s = re_intuit_start(rx, sv, strbeg, startpos, strend,
3012 if (prog->extflags & RXf_CHECK_ALL) {
3013 /* we can match based purely on the result of INTUIT.
3014 * Set up captures etc just for $& and $-[0]
3015 * (an intuit-only match wont have $1,$2,..) */
3016 assert(!prog->nparens);
3018 /* s/// doesn't like it if $& is earlier than where we asked it to
3019 * start searching (which can happen on something like /.\G/) */
3020 if ( (flags & REXEC_FAIL_ON_UNDERFLOW)
3023 /* this should only be possible under \G */
3024 assert(prog->intflags & PREGf_GPOS_SEEN);
3025 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
3026 "matched, but failing for REXEC_FAIL_ON_UNDERFLOW\n"));
3030 /* match via INTUIT shouldn't have any captures.
3031 * Let @-, @+, $^N know */
3032 prog->lastparen = prog->lastcloseparen = 0;
3033 RX_MATCH_UTF8_set(rx, utf8_target);
3034 prog->offs[0].start = s - strbeg;
3035 prog->offs[0].end = utf8_target
3036 ? (char*)utf8_hop((U8*)s, prog->minlenret) - strbeg
3037 : s - strbeg + prog->minlenret;
3038 if ( !(flags & REXEC_NOT_FIRST) )
3039 S_reg_set_capture_string(aTHX_ rx,
3041 sv, flags, utf8_target);
3047 multiline = prog->extflags & RXf_PMf_MULTILINE;
3049 if (strend - s < (minlen+(prog->check_offset_min<0?prog->check_offset_min:0))) {
3050 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
3051 "String too short [regexec_flags]...\n"));
3055 /* Check validity of program. */
3056 if (UCHARAT(progi->program) != REG_MAGIC) {
3057 Perl_croak(aTHX_ "corrupted regexp program");
3060 RX_MATCH_TAINTED_off(rx);
3061 RX_MATCH_UTF8_set(rx, utf8_target);
3063 reginfo->prog = rx; /* Yes, sorry that this is confusing. */
3064 reginfo->intuit = 0;
3065 reginfo->is_utf8_pat = cBOOL(RX_UTF8(rx));
3066 reginfo->warned = FALSE;
3068 reginfo->poscache_maxiter = 0; /* not yet started a countdown */
3069 /* see how far we have to get to not match where we matched before */
3070 reginfo->till = stringarg + minend;
3072 if (prog->extflags & RXf_EVAL_SEEN && SvPADTMP(sv)) {
3073 /* SAVEFREESV, not sv_mortalcopy, as this SV must last until after
3074 S_cleanup_regmatch_info_aux has executed (registered by
3075 SAVEDESTRUCTOR_X below). S_cleanup_regmatch_info_aux modifies
3076 magic belonging to this SV.
3077 Not newSVsv, either, as it does not COW.
3079 reginfo->sv = newSV(0);
3080 SvSetSV_nosteal(reginfo->sv, sv);
3081 SAVEFREESV(reginfo->sv);
3084 /* reserve next 2 or 3 slots in PL_regmatch_state:
3085 * slot N+0: may currently be in use: skip it
3086 * slot N+1: use for regmatch_info_aux struct
3087 * slot N+2: use for regmatch_info_aux_eval struct if we have (?{})'s
3088 * slot N+3: ready for use by regmatch()
3092 regmatch_state *old_regmatch_state;
3093 regmatch_slab *old_regmatch_slab;
3094 int i, max = (prog->extflags & RXf_EVAL_SEEN) ? 2 : 1;
3096 /* on first ever match, allocate first slab */
3097 if (!PL_regmatch_slab) {
3098 Newx(PL_regmatch_slab, 1, regmatch_slab);
3099 PL_regmatch_slab->prev = NULL;
3100 PL_regmatch_slab->next = NULL;
3101 PL_regmatch_state = SLAB_FIRST(PL_regmatch_slab);
3104 old_regmatch_state = PL_regmatch_state;
3105 old_regmatch_slab = PL_regmatch_slab;
3107 for (i=0; i <= max; i++) {
3109 reginfo->info_aux = &(PL_regmatch_state->u.info_aux);
3111 reginfo->info_aux_eval =
3112 reginfo->info_aux->info_aux_eval =
3113 &(PL_regmatch_state->u.info_aux_eval);
3115 if (++PL_regmatch_state > SLAB_LAST(PL_regmatch_slab))
3116 PL_regmatch_state = S_push_slab(aTHX);
3119 /* note initial PL_regmatch_state position; at end of match we'll
3120 * pop back to there and free any higher slabs */
3122 reginfo->info_aux->old_regmatch_state = old_regmatch_state;
3123 reginfo->info_aux->old_regmatch_slab = old_regmatch_slab;
3124 reginfo->info_aux->poscache = NULL;
3126 SAVEDESTRUCTOR_X(S_cleanup_regmatch_info_aux, reginfo->info_aux);
3128 if ((prog->extflags & RXf_EVAL_SEEN))
3129 S_setup_eval_state(aTHX_ reginfo);
3131 reginfo->info_aux_eval = reginfo->info_aux->info_aux_eval = NULL;
3134 /* If there is a "must appear" string, look for it. */
3136 if (PL_curpm && (PM_GETRE(PL_curpm) == rx)) {
3137 /* We have to be careful. If the previous successful match
3138 was from this regex we don't want a subsequent partially
3139 successful match to clobber the old results.
3140 So when we detect this possibility we add a swap buffer
3141 to the re, and switch the buffer each match. If we fail,
3142 we switch it back; otherwise we leave it swapped.
3145 /* do we need a save destructor here for eval dies? */
3146 Newxz(prog->offs, (prog->nparens + 1), regexp_paren_pair);
3147 DEBUG_BUFFERS_r(Perl_re_exec_indentf( aTHX_
3148 "rex=0x%" UVxf " saving offs: orig=0x%" UVxf " new=0x%" UVxf "\n",
3156 if (prog->recurse_locinput)
3157 Zero(prog->recurse_locinput,prog->nparens + 1, char *);
3159 /* Simplest case: anchored match need be tried only once, or with
3160 * MBOL, only at the beginning of each line.
3162 * Note that /.*.../ sets PREGf_IMPLICIT|MBOL, while /.*.../s sets
3163 * PREGf_IMPLICIT|SBOL. The idea is that with /.*.../s, if it doesn't
3164 * match at the start of the string then it won't match anywhere else
3165 * either; while with /.*.../, if it doesn't match at the beginning,
3166 * the earliest it could match is at the start of the next line */
3168 if (prog->intflags & (PREGf_ANCH & ~PREGf_ANCH_GPOS)) {
3171 if (regtry(reginfo, &s))
3174 if (!(prog->intflags & PREGf_ANCH_MBOL))
3177 /* didn't match at start, try at other newline positions */
3180 dontbother = minlen - 1;
3181 end = HOP3c(strend, -dontbother, strbeg) - 1;
3183 /* skip to next newline */
3185 while (s <= end) { /* note it could be possible to match at the end of the string */
3186 /* NB: newlines are the same in unicode as they are in latin */
3189 if (prog->check_substr || prog->check_utf8) {
3190 /* note that with PREGf_IMPLICIT, intuit can only fail
3191 * or return the start position, so it's of limited utility.
3192 * Nevertheless, I made the decision that the potential for
3193 * quick fail was still worth it - DAPM */
3194 s = re_intuit_start(rx, sv, strbeg, s, strend, flags, NULL);
3198 if (regtry(reginfo, &s))
3202 } /* end anchored search */
3204 if (prog->intflags & PREGf_ANCH_GPOS)
3206 /* PREGf_ANCH_GPOS should never be true if PREGf_GPOS_SEEN is not true */
3207 assert(prog->intflags & PREGf_GPOS_SEEN);
3208 /* For anchored \G, the only position it can match from is
3209 * (ganch-gofs); we already set startpos to this above; if intuit
3210 * moved us on from there, we can't possibly succeed */
3211 assert(startpos == HOPBACKc(reginfo->ganch, prog->gofs));
3212 if (s == startpos && regtry(reginfo, &s))
3217 /* Messy cases: unanchored match. */
3218 if ((prog->anchored_substr || prog->anchored_utf8) && prog->intflags & PREGf_SKIP) {
3219 /* we have /x+whatever/ */
3220 /* it must be a one character string (XXXX Except is_utf8_pat?) */
3226 if (! prog->anchored_utf8) {
3227 to_utf8_substr(prog);
3229 ch = SvPVX_const(prog->anchored_utf8)[0];
3232 DEBUG_EXECUTE_r( did_match = 1 );
3233 if (regtry(reginfo, &s)) goto got_it;
3235 while (s < strend && *s == ch)
3242 if (! prog->anchored_substr) {
3243 if (! to_byte_substr(prog)) {
3244 NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
3247 ch = SvPVX_const(prog->anchored_substr)[0];
3250 DEBUG_EXECUTE_r( did_match = 1 );
3251 if (regtry(reginfo, &s)) goto got_it;
3253 while (s < strend && *s == ch)
3258 DEBUG_EXECUTE_r(if (!did_match)
3259 Perl_re_printf( aTHX_
3260 "Did not find anchored character...\n")
3263 else if (prog->anchored_substr != NULL
3264 || prog->anchored_utf8 != NULL
3265 || ((prog->float_substr != NULL || prog->float_utf8 != NULL)
3266 && prog->float_max_offset < strend - s)) {
3271 char *last1; /* Last position checked before */
3275 if (prog->anchored_substr || prog->anchored_utf8) {
3277 if (! prog->anchored_utf8) {
3278 to_utf8_substr(prog);
3280 must = prog->anchored_utf8;
3283 if (! prog->anchored_substr) {
3284 if (! to_byte_substr(prog)) {
3285 NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
3288 must = prog->anchored_substr;
3290 back_max = back_min = prog->anchored_offset;
3293 if (! prog->float_utf8) {
3294 to_utf8_substr(prog);
3296 must = prog->float_utf8;
3299 if (! prog->float_substr) {
3300 if (! to_byte_substr(prog)) {
3301 NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
3304 must = prog->float_substr;
3306 back_max = prog->float_max_offset;
3307 back_min = prog->float_min_offset;
3313 last = HOP3c(strend, /* Cannot start after this */
3314 -(SSize_t)(CHR_SVLEN(must)
3315 - (SvTAIL(must) != 0) + back_min), strbeg);
3317 if (s > reginfo->strbeg)
3318 last1 = HOPc(s, -1);
3320 last1 = s - 1; /* bogus */
3322 /* XXXX check_substr already used to find "s", can optimize if
3323 check_substr==must. */
3325 strend = HOPc(strend, -dontbother);
3326 while ( (s <= last) &&
3327 (s = fbm_instr((unsigned char*)HOP4c(s, back_min, strbeg, strend),
3328 (unsigned char*)strend, must,
3329 multiline ? FBMrf_MULTILINE : 0)) ) {
3330 DEBUG_EXECUTE_r( did_match = 1 );
3331 if (HOPc(s, -back_max) > last1) {
3332 last1 = HOPc(s, -back_min);
3333 s = HOPc(s, -back_max);
3336 char * const t = (last1 >= reginfo->strbeg)
3337 ? HOPc(last1, 1) : last1 + 1;
3339 last1 = HOPc(s, -back_min);
3343 while (s <= last1) {
3344 if (regtry(reginfo, &s))
3347 s++; /* to break out of outer loop */
3354 while (s <= last1) {
3355 if (regtry(reginfo, &s))
3361 DEBUG_EXECUTE_r(if (!did_match) {
3362 RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
3363 SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
3364 Perl_re_printf( aTHX_ "Did not find %s substr %s%s...\n",
3365 ((must == prog->anchored_substr || must == prog->anchored_utf8)
3366 ? "anchored" : "floating"),
3367 quoted, RE_SV_TAIL(must));
3371 else if ( (c = progi->regstclass) ) {
3373 const OPCODE op = OP(progi->regstclass);
3374 /* don't bother with what can't match */
3375 if (PL_regkind[op] != EXACT && PL_regkind[op] != TRIE)
3376 strend = HOPc(strend, -(minlen - 1));
3379 SV * const prop = sv_newmortal();
3380 regprop(prog, prop, c, reginfo, NULL);
3382 RE_PV_QUOTED_DECL(quoted,utf8_target,PERL_DEBUG_PAD_ZERO(1),
3384 Perl_re_printf( aTHX_
3385 "Matching stclass %.*s against %s (%d bytes)\n",
3386 (int)SvCUR(prop), SvPVX_const(prop),
3387 quoted, (int)(strend - s));
3390 if (find_byclass(prog, c, s, strend, reginfo))
3392 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ "Contradicts stclass... [regexec_flags]\n"));
3396 if (prog->float_substr != NULL || prog->float_utf8 != NULL) {
3404 if (! prog->float_utf8) {
3405 to_utf8_substr(prog);
3407 float_real = prog->float_utf8;
3410 if (! prog->float_substr) {
3411 if (! to_byte_substr(prog)) {
3412 NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey);
3415 float_real = prog->float_substr;
3418 little = SvPV_const(float_real, len);
3419 if (SvTAIL(float_real)) {
3420 /* This means that float_real contains an artificial \n on
3421 * the end due to the presence of something like this:
3422 * /foo$/ where we can match both "foo" and "foo\n" at the
3423 * end of the string. So we have to compare the end of the
3424 * string first against the float_real without the \n and
3425 * then against the full float_real with the string. We
3426 * have to watch out for cases where the string might be
3427 * smaller than the float_real or the float_real without
3429 char *checkpos= strend - len;
3431 Perl_re_printf( aTHX_
3432 "%sChecking for float_real.%s\n",
3433 PL_colors[4], PL_colors[5]));
3434 if (checkpos + 1 < strbeg) {
3435 /* can't match, even if we remove the trailing \n
3436 * string is too short to match */
3438 Perl_re_printf( aTHX_
3439 "%sString shorter than required trailing substring, cannot match.%s\n",
3440 PL_colors[4], PL_colors[5]));
3442 } else if (memEQ(checkpos + 1, little, len - 1)) {
3443 /* can match, the end of the string matches without the
3445 last = checkpos + 1;
3446 } else if (checkpos < strbeg) {
3447 /* cant match, string is too short when the "\n" is
3450 Perl_re_printf( aTHX_
3451 "%sString does not contain required trailing substring, cannot match.%s\n",
3452 PL_colors[4], PL_colors[5]));
3454 } else if (!multiline) {
3455 /* non multiline match, so compare with the "\n" at the
3456 * end of the string */
3457 if (memEQ(checkpos, little, len)) {
3461 Perl_re_printf( aTHX_
3462 "%sString does not contain required trailing substring, cannot match.%s\n",
3463 PL_colors[4], PL_colors[5]));
3467 /* multiline match, so we have to search for a place
3468 * where the full string is located */
3474 last = rninstr(s, strend, little, little + len);
3476 last = strend; /* matching "$" */
3479 /* at one point this block contained a comment which was
3480 * probably incorrect, which said that this was a "should not
3481 * happen" case. Even if it was true when it was written I am
3482 * pretty sure it is not anymore, so I have removed the comment
3483 * and replaced it with this one. Yves */
3485 Perl_re_printf( aTHX_
3486 "%sString does not contain required substring, cannot match.%s\n",
3487 PL_colors[4], PL_colors[5]
3491 dontbother = strend - last + prog->float_min_offset;
3493 if (minlen && (dontbother < minlen))
3494 dontbother = minlen - 1;
3495 strend -= dontbother; /* this one's always in bytes! */
3496 /* We don't know much -- general case. */
3499 if (regtry(reginfo, &s))
3508 if (regtry(reginfo, &s))
3510 } while (s++ < strend);
3518 /* s/// doesn't like it if $& is earlier than where we asked it to
3519 * start searching (which can happen on something like /.\G/) */
3520 if ( (flags & REXEC_FAIL_ON_UNDERFLOW)
3521 && (prog->offs[0].start < stringarg - strbeg))
3523 /* this should only be possible under \G */
3524 assert(prog->intflags & PREGf_GPOS_SEEN);
3525 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
3526 "matched, but failing for REXEC_FAIL_ON_UNDERFLOW\n"));
3532 Perl_re_exec_indentf( aTHX_
3533 "rex=0x%" UVxf " freeing offs: 0x%" UVxf "\n",
3541 /* clean up; this will trigger destructors that will free all slabs
3542 * above the current one, and cleanup the regmatch_info_aux
3543 * and regmatch_info_aux_eval sructs */
3545 LEAVE_SCOPE(oldsave);
3547 if (RXp_PAREN_NAMES(prog))
3548 (void)hv_iterinit(RXp_PAREN_NAMES(prog));
3550 /* make sure $`, $&, $', and $digit will work later */
3551 if ( !(flags & REXEC_NOT_FIRST) )
3552 S_reg_set_capture_string(aTHX_ rx,
3553 strbeg, reginfo->strend,
3554 sv, flags, utf8_target);
3559 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ "%sMatch failed%s\n",
3560 PL_colors[4], PL_colors[5]));
3562 /* clean up; this will trigger destructors that will free all slabs
3563 * above the current one, and cleanup the regmatch_info_aux
3564 * and regmatch_info_aux_eval sructs */
3566 LEAVE_SCOPE(oldsave);
3569 /* we failed :-( roll it back */
3570 DEBUG_BUFFERS_r(Perl_re_exec_indentf( aTHX_
3571 "rex=0x%" UVxf " rolling back offs: freeing=0x%" UVxf " restoring=0x%" UVxf "\n",
3577 Safefree(prog->offs);
3584 /* Set which rex is pointed to by PL_reg_curpm, handling ref counting.
3585 * Do inc before dec, in case old and new rex are the same */
3586 #define SET_reg_curpm(Re2) \
3587 if (reginfo->info_aux_eval) { \
3588 (void)ReREFCNT_inc(Re2); \
3589 ReREFCNT_dec(PM_GETRE(PL_reg_curpm)); \
3590 PM_SETRE((PL_reg_curpm), (Re2)); \
3595 - regtry - try match at specific point
3597 STATIC bool /* 0 failure, 1 success */
3598 S_regtry(pTHX_ regmatch_info *reginfo, char **startposp)
3601 REGEXP *const rx = reginfo->prog;
3602 regexp *const prog = ReANY(rx);
3605 U32 depth = 0; /* used by REGCP_SET */
3607 RXi_GET_DECL(prog,progi);
3608 GET_RE_DEBUG_FLAGS_DECL;
3610 PERL_ARGS_ASSERT_REGTRY;
3612 reginfo->cutpoint=NULL;
3614 prog->offs[0].start = *startposp - reginfo->strbeg;
3615 prog->lastparen = 0;
3616 prog->lastcloseparen = 0;
3618 /* XXXX What this code is doing here?!!! There should be no need
3619 to do this again and again, prog->lastparen should take care of
3622 /* Tests pat.t#187 and split.t#{13,14} seem to depend on this code.
3623 * Actually, the code in regcppop() (which Ilya may be meaning by
3624 * prog->lastparen), is not needed at all by the test suite
3625 * (op/regexp, op/pat, op/split), but that code is needed otherwise
3626 * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
3627 * Meanwhile, this code *is* needed for the
3628 * above-mentioned test suite tests to succeed. The common theme
3629 * on those tests seems to be returning null fields from matches.
3630 * --jhi updated by dapm */
3632 /* After encountering a variant of the issue mentioned above I think
3633 * the point Ilya was making is that if we properly unwind whenever
3634 * we set lastparen to a smaller value then we should not need to do
3635 * this every time, only when needed. So if we have tests that fail if
3636 * we remove this, then it suggests somewhere else we are improperly
3637 * unwinding the lastparen/paren buffers. See UNWIND_PARENS() and
3638 * places it is called, and related regcp() routines. - Yves */
3640 if (prog->nparens) {
3641 regexp_paren_pair *pp = prog->offs;
3643 for (i = prog->nparens; i > (I32)prog->lastparen; i--) {
3651 result = regmatch(reginfo, *startposp, progi->program + 1);
3653 prog->offs[0].end = result;
3656 if (reginfo->cutpoint)
3657 *startposp= reginfo->cutpoint;
3658 REGCP_UNWIND(lastcp);
3663 #define sayYES goto yes
3664 #define sayNO goto no
3665 #define sayNO_SILENT goto no_silent
3667 /* we dont use STMT_START/END here because it leads to
3668 "unreachable code" warnings, which are bogus, but distracting. */
3669 #define CACHEsayNO \
3670 if (ST.cache_mask) \
3671 reginfo->info_aux->poscache[ST.cache_offset] |= ST.cache_mask; \
3674 /* this is used to determine how far from the left messages like
3675 'failed...' are printed in regexec.c. It should be set such that
3676 messages are inline with the regop output that created them.
3678 #define REPORT_CODE_OFF 29
3679 #define INDENT_CHARS(depth) ((int)(depth) % 20)
3682 Perl_re_exec_indentf(pTHX_ const char *fmt, U32 depth, ...)
3686 PerlIO *f= Perl_debug_log;
3687 PERL_ARGS_ASSERT_RE_EXEC_INDENTF;
3688 va_start(ap, depth);
3689 PerlIO_printf(f, "%*s|%4" UVuf "| %*s", REPORT_CODE_OFF, "", (UV)depth, INDENT_CHARS(depth), "" );
3690 result = PerlIO_vprintf(f, fmt, ap);
3694 #endif /* DEBUGGING */
3697 #define CHRTEST_UNINIT -1001 /* c1/c2 haven't been calculated yet */
3698 #define CHRTEST_VOID -1000 /* the c1/c2 "next char" test should be skipped */
3699 #define CHRTEST_NOT_A_CP_1 -999
3700 #define CHRTEST_NOT_A_CP_2 -998
3702 /* grab a new slab and return the first slot in it */
3704 STATIC regmatch_state *
3707 regmatch_slab *s = PL_regmatch_slab->next;
3709 Newx(s, 1, regmatch_slab);
3710 s->prev = PL_regmatch_slab;
3712 PL_regmatch_slab->next = s;
3714 PL_regmatch_slab = s;
3715 return SLAB_FIRST(s);
3719 /* push a new state then goto it */
3721 #define PUSH_STATE_GOTO(state, node, input) \
3722 pushinput = input; \
3724 st->resume_state = state; \
3727 /* push a new state with success backtracking, then goto it */
3729 #define PUSH_YES_STATE_GOTO(state, node, input) \
3730 pushinput = input; \
3732 st->resume_state = state; \
3733 goto push_yes_state;
3740 regmatch() - main matching routine
3742 This is basically one big switch statement in a loop. We execute an op,
3743 set 'next' to point the next op, and continue. If we come to a point which
3744 we may need to backtrack to on failure such as (A|B|C), we push a
3745 backtrack state onto the backtrack stack. On failure, we pop the top
3746 state, and re-enter the loop at the state indicated. If there are no more
3747 states to pop, we return failure.
3749 Sometimes we also need to backtrack on success; for example /A+/, where
3750 after successfully matching one A, we need to go back and try to
3751 match another one; similarly for lookahead assertions: if the assertion
3752 completes successfully, we backtrack to the state just before the assertion
3753 and then carry on. In these cases, the pushed state is marked as
3754 'backtrack on success too'. This marking is in fact done by a chain of
3755 pointers, each pointing to the previous 'yes' state. On success, we pop to
3756 the nearest yes state, discarding any intermediate failure-only states.
3757 Sometimes a yes state is pushed just to force some cleanup code to be
3758 called at the end of a successful match or submatch; e.g. (??{$re}) uses
3759 it to free the inner regex.
3761 Note that failure backtracking rewinds the cursor position, while
3762 success backtracking leaves it alone.
3764 A pattern is complete when the END op is executed, while a subpattern
3765 such as (?=foo) is complete when the SUCCESS op is executed. Both of these
3766 ops trigger the "pop to last yes state if any, otherwise return true"
3769 A common convention in this function is to use A and B to refer to the two
3770 subpatterns (or to the first nodes thereof) in patterns like /A*B/: so A is
3771 the subpattern to be matched possibly multiple times, while B is the entire
3772 rest of the pattern. Variable and state names reflect this convention.
3774 The states in the main switch are the union of ops and failure/success of
3775 substates associated with with that op. For example, IFMATCH is the op
3776 that does lookahead assertions /(?=A)B/ and so the IFMATCH state means
3777 'execute IFMATCH'; while IFMATCH_A is a state saying that we have just
3778 successfully matched A and IFMATCH_A_fail is a state saying that we have
3779 just failed to match A. Resume states always come in pairs. The backtrack
3780 state we push is marked as 'IFMATCH_A', but when that is popped, we resume
3781 at IFMATCH_A or IFMATCH_A_fail, depending on whether we are backtracking
3782 on success or failure.
3784 The struct that holds a backtracking state is actually a big union, with
3785 one variant for each major type of op. The variable st points to the
3786 top-most backtrack struct. To make the code clearer, within each
3787 block of code we #define ST to alias the relevant union.
3789 Here's a concrete example of a (vastly oversimplified) IFMATCH
3795 #define ST st->u.ifmatch
3797 case IFMATCH: // we are executing the IFMATCH op, (?=A)B
3798 ST.foo = ...; // some state we wish to save
3800 // push a yes backtrack state with a resume value of
3801 // IFMATCH_A/IFMATCH_A_fail, then continue execution at the
3803 PUSH_YES_STATE_GOTO(IFMATCH_A, A, newinput);
3806 case IFMATCH_A: // we have successfully executed A; now continue with B
3808 bar = ST.foo; // do something with the preserved value
3811 case IFMATCH_A_fail: // A failed, so the assertion failed
3812 ...; // do some housekeeping, then ...
3813 sayNO; // propagate the failure
3820 For any old-timers reading this who are familiar with the old recursive
3821 approach, the code above is equivalent to:
3823 case IFMATCH: // we are executing the IFMATCH op, (?=A)B
3832 ...; // do some housekeeping, then ...
3833 sayNO; // propagate the failure
3836 The topmost backtrack state, pointed to by st, is usually free. If you
3837 want to claim it, populate any ST.foo fields in it with values you wish to
3838 save, then do one of
3840 PUSH_STATE_GOTO(resume_state, node, newinput);
3841 PUSH_YES_STATE_GOTO(resume_state, node, newinput);
3843 which sets that backtrack state's resume value to 'resume_state', pushes a
3844 new free entry to the top of the backtrack stack, then goes to 'node'.
3845 On backtracking, the free slot is popped, and the saved state becomes the
3846 new free state. An ST.foo field in this new top state can be temporarily