5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
77 #ifndef PERL_IN_XSUB_RE
82 #ifdef PERL_IN_XSUB_RE
84 EXTERN_C const struct regexp_engine my_reg_engine;
89 #include "dquote_inline.h"
90 #include "invlist_inline.h"
91 #include "unicode_constants.h"
93 #define HAS_NONLATIN1_FOLD_CLOSURE(i) \
94 _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
95 #define HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(i) \
96 _HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
97 #define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
98 #define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
101 #define STATIC static
104 /* this is a chain of data about sub patterns we are processing that
105 need to be handled separately/specially in study_chunk. Its so
106 we can simulate recursion without losing state. */
108 typedef struct scan_frame {
109 regnode *last_regnode; /* last node to process in this frame */
110 regnode *next_regnode; /* next node to process when last is reached */
111 U32 prev_recursed_depth;
112 I32 stopparen; /* what stopparen do we use */
113 U32 is_top_frame; /* what flags do we use? */
115 struct scan_frame *this_prev_frame; /* this previous frame */
116 struct scan_frame *prev_frame; /* previous frame */
117 struct scan_frame *next_frame; /* next frame */
120 /* Certain characters are output as a sequence with the first being a
122 #define isBACKSLASHED_PUNCT(c) \
123 ((c) == '-' || (c) == ']' || (c) == '\\' || (c) == '^')
126 struct RExC_state_t {
127 U32 flags; /* RXf_* are we folding, multilining? */
128 U32 pm_flags; /* PMf_* stuff from the calling PMOP */
129 char *precomp; /* uncompiled string. */
130 char *precomp_end; /* pointer to end of uncompiled string. */
131 REGEXP *rx_sv; /* The SV that is the regexp. */
132 regexp *rx; /* perl core regexp structure */
133 regexp_internal *rxi; /* internal data for regexp object
135 char *start; /* Start of input for compile */
136 char *end; /* End of input for compile */
137 char *parse; /* Input-scan pointer. */
138 char *adjusted_start; /* 'start', adjusted. See code use */
139 STRLEN precomp_adj; /* an offset beyond precomp. See code use */
140 SSize_t whilem_seen; /* number of WHILEM in this expr */
141 regnode *emit_start; /* Start of emitted-code area */
142 regnode *emit_bound; /* First regnode outside of the
144 regnode *emit; /* Code-emit pointer; if = &emit_dummy,
145 implies compiling, so don't emit */
146 regnode_ssc emit_dummy; /* placeholder for emit to point to;
147 large enough for the largest
148 non-EXACTish node, so can use it as
150 I32 naughty; /* How bad is this pattern? */
151 I32 sawback; /* Did we see \1, ...? */
153 SSize_t size; /* Code size. */
154 I32 npar; /* Capture buffer count, (OPEN) plus
155 one. ("par" 0 is the whole
157 I32 nestroot; /* root parens we are in - used by
161 regnode **open_parens; /* pointers to open parens */
162 regnode **close_parens; /* pointers to close parens */
163 regnode *end_op; /* END node in program */
164 I32 utf8; /* whether the pattern is utf8 or not */
165 I32 orig_utf8; /* whether the pattern was originally in utf8 */
166 /* XXX use this for future optimisation of case
167 * where pattern must be upgraded to utf8. */
168 I32 uni_semantics; /* If a d charset modifier should use unicode
169 rules, even if the pattern is not in
171 HV *paren_names; /* Paren names */
173 regnode **recurse; /* Recurse regops */
174 I32 recurse_count; /* Number of recurse regops we have generated */
175 U8 *study_chunk_recursed; /* bitmap of which subs we have moved
177 U32 study_chunk_recursed_bytes; /* bytes in bitmap */
180 I32 override_recoding;
182 I32 recode_x_to_native;
184 I32 in_multi_char_class;
185 struct reg_code_block *code_blocks; /* positions of literal (?{})
187 int num_code_blocks; /* size of code_blocks[] */
188 int code_index; /* next code_blocks[] slot */
189 SSize_t maxlen; /* mininum possible number of chars in string to match */
190 scan_frame *frame_head;
191 scan_frame *frame_last;
194 #ifdef ADD_TO_REGEXEC
195 char *starttry; /* -Dr: where regtry was called. */
196 #define RExC_starttry (pRExC_state->starttry)
198 SV *runtime_code_qr; /* qr with the runtime code blocks */
200 const char *lastparse;
202 AV *paren_name_list; /* idx -> name */
203 U32 study_chunk_recursed_count;
206 #define RExC_lastparse (pRExC_state->lastparse)
207 #define RExC_lastnum (pRExC_state->lastnum)
208 #define RExC_paren_name_list (pRExC_state->paren_name_list)
209 #define RExC_study_chunk_recursed_count (pRExC_state->study_chunk_recursed_count)
210 #define RExC_mysv (pRExC_state->mysv1)
211 #define RExC_mysv1 (pRExC_state->mysv1)
212 #define RExC_mysv2 (pRExC_state->mysv2)
215 bool seen_unfolded_sharp_s;
220 #define RExC_flags (pRExC_state->flags)
221 #define RExC_pm_flags (pRExC_state->pm_flags)
222 #define RExC_precomp (pRExC_state->precomp)
223 #define RExC_precomp_adj (pRExC_state->precomp_adj)
224 #define RExC_adjusted_start (pRExC_state->adjusted_start)
225 #define RExC_precomp_end (pRExC_state->precomp_end)
226 #define RExC_rx_sv (pRExC_state->rx_sv)
227 #define RExC_rx (pRExC_state->rx)
228 #define RExC_rxi (pRExC_state->rxi)
229 #define RExC_start (pRExC_state->start)
230 #define RExC_end (pRExC_state->end)
231 #define RExC_parse (pRExC_state->parse)
232 #define RExC_whilem_seen (pRExC_state->whilem_seen)
234 /* Set during the sizing pass when there is a LATIN SMALL LETTER SHARP S in any
235 * EXACTF node, hence was parsed under /di rules. If later in the parse,
236 * something forces the pattern into using /ui rules, the sharp s should be
237 * folded into the sequence 'ss', which takes up more space than previously
238 * calculated. This means that the sizing pass needs to be restarted. (The
239 * node also becomes an EXACTFU_SS.) For all other characters, an EXACTF node
240 * that gets converted to /ui (and EXACTFU) occupies the same amount of space,
241 * so there is no need to resize [perl #125990]. */
242 #define RExC_seen_unfolded_sharp_s (pRExC_state->seen_unfolded_sharp_s)
244 #ifdef RE_TRACK_PATTERN_OFFSETS
245 #define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the
248 #define RExC_emit (pRExC_state->emit)
249 #define RExC_emit_dummy (pRExC_state->emit_dummy)
250 #define RExC_emit_start (pRExC_state->emit_start)
251 #define RExC_emit_bound (pRExC_state->emit_bound)
252 #define RExC_sawback (pRExC_state->sawback)
253 #define RExC_seen (pRExC_state->seen)
254 #define RExC_size (pRExC_state->size)
255 #define RExC_maxlen (pRExC_state->maxlen)
256 #define RExC_npar (pRExC_state->npar)
257 #define RExC_nestroot (pRExC_state->nestroot)
258 #define RExC_extralen (pRExC_state->extralen)
259 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
260 #define RExC_utf8 (pRExC_state->utf8)
261 #define RExC_uni_semantics (pRExC_state->uni_semantics)
262 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
263 #define RExC_open_parens (pRExC_state->open_parens)
264 #define RExC_close_parens (pRExC_state->close_parens)
265 #define RExC_end_op (pRExC_state->end_op)
266 #define RExC_paren_names (pRExC_state->paren_names)
267 #define RExC_recurse (pRExC_state->recurse)
268 #define RExC_recurse_count (pRExC_state->recurse_count)
269 #define RExC_study_chunk_recursed (pRExC_state->study_chunk_recursed)
270 #define RExC_study_chunk_recursed_bytes \
271 (pRExC_state->study_chunk_recursed_bytes)
272 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
273 #define RExC_contains_locale (pRExC_state->contains_locale)
274 #define RExC_override_recoding (pRExC_state->override_recoding)
276 # define RExC_recode_x_to_native (pRExC_state->recode_x_to_native)
278 #define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
279 #define RExC_frame_head (pRExC_state->frame_head)
280 #define RExC_frame_last (pRExC_state->frame_last)
281 #define RExC_frame_count (pRExC_state->frame_count)
282 #define RExC_strict (pRExC_state->strict)
283 #define RExC_study_started (pRExC_state->study_started)
284 #define RExC_warn_text (pRExC_state->warn_text)
286 /* Heuristic check on the complexity of the pattern: if TOO_NAUGHTY, we set
287 * a flag to disable back-off on the fixed/floating substrings - if it's
288 * a high complexity pattern we assume the benefit of avoiding a full match
289 * is worth the cost of checking for the substrings even if they rarely help.
291 #define RExC_naughty (pRExC_state->naughty)
292 #define TOO_NAUGHTY (10)
293 #define MARK_NAUGHTY(add) \
294 if (RExC_naughty < TOO_NAUGHTY) \
295 RExC_naughty += (add)
296 #define MARK_NAUGHTY_EXP(exp, add) \
297 if (RExC_naughty < TOO_NAUGHTY) \
298 RExC_naughty += RExC_naughty / (exp) + (add)
300 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
301 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
302 ((*s) == '{' && regcurly(s)))
305 * Flags to be passed up and down.
307 #define WORST 0 /* Worst case. */
308 #define HASWIDTH 0x01 /* Known to match non-null strings. */
310 /* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
311 * character. (There needs to be a case: in the switch statement in regexec.c
312 * for any node marked SIMPLE.) Note that this is not the same thing as
315 #define SPSTART 0x04 /* Starts with * or + */
316 #define POSTPONED 0x08 /* (?1),(?&name), (??{...}) or similar */
317 #define TRYAGAIN 0x10 /* Weeded out a declaration. */
318 #define RESTART_PASS1 0x20 /* Need to restart sizing pass */
319 #define NEED_UTF8 0x40 /* In conjunction with RESTART_PASS1, need to
320 calcuate sizes as UTF-8 */
322 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
324 /* whether trie related optimizations are enabled */
325 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
326 #define TRIE_STUDY_OPT
327 #define FULL_TRIE_STUDY
333 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
334 #define PBITVAL(paren) (1 << ((paren) & 7))
335 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
336 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
337 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
339 #define REQUIRE_UTF8(flagp) STMT_START { \
342 *flagp = RESTART_PASS1|NEED_UTF8; \
347 /* Change from /d into /u rules, and restart the parse if we've already seen
348 * something whose size would increase as a result, by setting *flagp and
349 * returning 'restart_retval'. RExC_uni_semantics is a flag that indicates
350 * we've change to /u during the parse. */
351 #define REQUIRE_UNI_RULES(flagp, restart_retval) \
353 if (DEPENDS_SEMANTICS) { \
355 set_regex_charset(&RExC_flags, REGEX_UNICODE_CHARSET); \
356 RExC_uni_semantics = 1; \
357 if (RExC_seen_unfolded_sharp_s) { \
358 *flagp |= RESTART_PASS1; \
359 return restart_retval; \
364 /* This converts the named class defined in regcomp.h to its equivalent class
365 * number defined in handy.h. */
366 #define namedclass_to_classnum(class) ((int) ((class) / 2))
367 #define classnum_to_namedclass(classnum) ((classnum) * 2)
369 #define _invlist_union_complement_2nd(a, b, output) \
370 _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
371 #define _invlist_intersection_complement_2nd(a, b, output) \
372 _invlist_intersection_maybe_complement_2nd(a, b, TRUE, output)
374 /* About scan_data_t.
376 During optimisation we recurse through the regexp program performing
377 various inplace (keyhole style) optimisations. In addition study_chunk
378 and scan_commit populate this data structure with information about
379 what strings MUST appear in the pattern. We look for the longest
380 string that must appear at a fixed location, and we look for the
381 longest string that may appear at a floating location. So for instance
386 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
387 strings (because they follow a .* construct). study_chunk will identify
388 both FOO and BAR as being the longest fixed and floating strings respectively.
390 The strings can be composites, for instance
394 will result in a composite fixed substring 'foo'.
396 For each string some basic information is maintained:
398 - offset or min_offset
399 This is the position the string must appear at, or not before.
400 It also implicitly (when combined with minlenp) tells us how many
401 characters must match before the string we are searching for.
402 Likewise when combined with minlenp and the length of the string it
403 tells us how many characters must appear after the string we have
407 Only used for floating strings. This is the rightmost point that
408 the string can appear at. If set to SSize_t_MAX it indicates that the
409 string can occur infinitely far to the right.
412 A pointer to the minimum number of characters of the pattern that the
413 string was found inside. This is important as in the case of positive
414 lookahead or positive lookbehind we can have multiple patterns
419 The minimum length of the pattern overall is 3, the minimum length
420 of the lookahead part is 3, but the minimum length of the part that
421 will actually match is 1. So 'FOO's minimum length is 3, but the
422 minimum length for the F is 1. This is important as the minimum length
423 is used to determine offsets in front of and behind the string being
424 looked for. Since strings can be composites this is the length of the
425 pattern at the time it was committed with a scan_commit. Note that
426 the length is calculated by study_chunk, so that the minimum lengths
427 are not known until the full pattern has been compiled, thus the
428 pointer to the value.
432 In the case of lookbehind the string being searched for can be
433 offset past the start point of the final matching string.
434 If this value was just blithely removed from the min_offset it would
435 invalidate some of the calculations for how many chars must match
436 before or after (as they are derived from min_offset and minlen and
437 the length of the string being searched for).
438 When the final pattern is compiled and the data is moved from the
439 scan_data_t structure into the regexp structure the information
440 about lookbehind is factored in, with the information that would
441 have been lost precalculated in the end_shift field for the
444 The fields pos_min and pos_delta are used to store the minimum offset
445 and the delta to the maximum offset at the current point in the pattern.
449 typedef struct scan_data_t {
450 /*I32 len_min; unused */
451 /*I32 len_delta; unused */
455 SSize_t last_end; /* min value, <0 unless valid. */
456 SSize_t last_start_min;
457 SSize_t last_start_max;
458 SV **longest; /* Either &l_fixed, or &l_float. */
459 SV *longest_fixed; /* longest fixed string found in pattern */
460 SSize_t offset_fixed; /* offset where it starts */
461 SSize_t *minlen_fixed; /* pointer to the minlen relevant to the string */
462 I32 lookbehind_fixed; /* is the position of the string modfied by LB */
463 SV *longest_float; /* longest floating string found in pattern */
464 SSize_t offset_float_min; /* earliest point in string it can appear */
465 SSize_t offset_float_max; /* latest point in string it can appear */
466 SSize_t *minlen_float; /* pointer to the minlen relevant to the string */
467 SSize_t lookbehind_float; /* is the pos of the string modified by LB */
470 SSize_t *last_closep;
471 regnode_ssc *start_class;
475 * Forward declarations for pregcomp()'s friends.
478 static const scan_data_t zero_scan_data =
479 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
481 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
482 #define SF_BEFORE_SEOL 0x0001
483 #define SF_BEFORE_MEOL 0x0002
484 #define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
485 #define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
487 #define SF_FIX_SHIFT_EOL (+2)
488 #define SF_FL_SHIFT_EOL (+4)
490 #define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
491 #define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
493 #define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
494 #define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
495 #define SF_IS_INF 0x0040
496 #define SF_HAS_PAR 0x0080
497 #define SF_IN_PAR 0x0100
498 #define SF_HAS_EVAL 0x0200
501 /* SCF_DO_SUBSTR is the flag that tells the regexp analyzer to track the
502 * longest substring in the pattern. When it is not set the optimiser keeps
503 * track of position, but does not keep track of the actual strings seen,
505 * So for instance /foo/ will be parsed with SCF_DO_SUBSTR being true, but
508 * Similarly, /foo.*(blah|erm|huh).*fnorble/ will have "foo" and "fnorble"
509 * parsed with SCF_DO_SUBSTR on, but while processing the (...) it will be
510 * turned off because of the alternation (BRANCH). */
511 #define SCF_DO_SUBSTR 0x0400
513 #define SCF_DO_STCLASS_AND 0x0800
514 #define SCF_DO_STCLASS_OR 0x1000
515 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
516 #define SCF_WHILEM_VISITED_POS 0x2000
518 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
519 #define SCF_SEEN_ACCEPT 0x8000
520 #define SCF_TRIE_DOING_RESTUDY 0x10000
521 #define SCF_IN_DEFINE 0x20000
526 #define UTF cBOOL(RExC_utf8)
528 /* The enums for all these are ordered so things work out correctly */
529 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
530 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) \
531 == REGEX_DEPENDS_CHARSET)
532 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
533 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) \
534 >= REGEX_UNICODE_CHARSET)
535 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
536 == REGEX_ASCII_RESTRICTED_CHARSET)
537 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
538 >= REGEX_ASCII_RESTRICTED_CHARSET)
539 #define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) \
540 == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
542 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
544 /* For programs that want to be strictly Unicode compatible by dying if any
545 * attempt is made to match a non-Unicode code point against a Unicode
547 #define ALWAYS_WARN_SUPER ckDEAD(packWARN(WARN_NON_UNICODE))
549 #define OOB_NAMEDCLASS -1
551 /* There is no code point that is out-of-bounds, so this is problematic. But
552 * its only current use is to initialize a variable that is always set before
554 #define OOB_UNICODE 0xDEADBEEF
556 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
559 /* length of regex to show in messages that don't mark a position within */
560 #define RegexLengthToShowInErrorMessages 127
563 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
564 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
565 * op/pragma/warn/regcomp.
567 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
568 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
570 #define REPORT_LOCATION " in regex; marked by " MARKER1 \
571 " in m/%" UTF8f MARKER2 "%" UTF8f "/"
573 /* The code in this file in places uses one level of recursion with parsing
574 * rebased to an alternate string constructed by us in memory. This can take
575 * the form of something that is completely different from the input, or
576 * something that uses the input as part of the alternate. In the first case,
577 * there should be no possibility of an error, as we are in complete control of
578 * the alternate string. But in the second case we don't control the input
579 * portion, so there may be errors in that. Here's an example:
581 * is handled specially because \x{df} folds to a sequence of more than one
582 * character, 'ss'. What is done is to create and parse an alternate string,
583 * which looks like this:
584 * /(?:\x{DF}|[abc\x{DF}def])/ui
585 * where it uses the input unchanged in the middle of something it constructs,
586 * which is a branch for the DF outside the character class, and clustering
587 * parens around the whole thing. (It knows enough to skip the DF inside the
588 * class while in this substitute parse.) 'abc' and 'def' may have errors that
589 * need to be reported. The general situation looks like this:
592 * Input: ----------------------------------------------------
593 * Constructed: ---------------------------------------------------
596 * The input string sI..eI is the input pattern. The string sC..EC is the
597 * constructed substitute parse string. The portions sC..tC and eC..EC are
598 * constructed by us. The portion tC..eC is an exact duplicate of the input
599 * pattern tI..eI. In the diagram, these are vertically aligned. Suppose that
600 * while parsing, we find an error at xC. We want to display a message showing
601 * the real input string. Thus we need to find the point xI in it which
602 * corresponds to xC. xC >= tC, since the portion of the string sC..tC has
603 * been constructed by us, and so shouldn't have errors. We get:
605 * xI = sI + (tI - sI) + (xC - tC)
607 * and, the offset into sI is:
609 * (xI - sI) = (tI - sI) + (xC - tC)
611 * When the substitute is constructed, we save (tI -sI) as RExC_precomp_adj,
612 * and we save tC as RExC_adjusted_start.
614 * During normal processing of the input pattern, everything points to that,
615 * with RExC_precomp_adj set to 0, and RExC_adjusted_start set to sI.
618 #define tI_sI RExC_precomp_adj
619 #define tC RExC_adjusted_start
620 #define sC RExC_precomp
621 #define xI_offset(xC) ((IV) (tI_sI + (xC - tC)))
622 #define xI(xC) (sC + xI_offset(xC))
623 #define eC RExC_precomp_end
625 #define REPORT_LOCATION_ARGS(xC) \
627 (xI(xC) > eC) /* Don't run off end */ \
628 ? eC - sC /* Length before the <--HERE */ \
630 sC), /* The input pattern printed up to the <--HERE */ \
632 (xI(xC) > eC) ? 0 : eC - xI(xC), /* Length after <--HERE */ \
633 (xI(xC) > eC) ? eC : xI(xC)) /* pattern after <--HERE */
635 /* Used to point after bad bytes for an error message, but avoid skipping
636 * past a nul byte. */
637 #define SKIP_IF_CHAR(s) (!*(s) ? 0 : UTF ? UTF8SKIP(s) : 1)
640 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
641 * arg. Show regex, up to a maximum length. If it's too long, chop and add
644 #define _FAIL(code) STMT_START { \
645 const char *ellipses = ""; \
646 IV len = RExC_precomp_end - RExC_precomp; \
649 SAVEFREESV(RExC_rx_sv); \
650 if (len > RegexLengthToShowInErrorMessages) { \
651 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
652 len = RegexLengthToShowInErrorMessages - 10; \
658 #define FAIL(msg) _FAIL( \
659 Perl_croak(aTHX_ "%s in regex m/%" UTF8f "%s/", \
660 msg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
662 #define FAIL2(msg,arg) _FAIL( \
663 Perl_croak(aTHX_ msg " in regex m/%" UTF8f "%s/", \
664 arg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
667 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
669 #define Simple_vFAIL(m) STMT_START { \
670 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
671 m, REPORT_LOCATION_ARGS(RExC_parse)); \
675 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
677 #define vFAIL(m) STMT_START { \
679 SAVEFREESV(RExC_rx_sv); \
684 * Like Simple_vFAIL(), but accepts two arguments.
686 #define Simple_vFAIL2(m,a1) STMT_START { \
687 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
688 REPORT_LOCATION_ARGS(RExC_parse)); \
692 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
694 #define vFAIL2(m,a1) STMT_START { \
696 SAVEFREESV(RExC_rx_sv); \
697 Simple_vFAIL2(m, a1); \
702 * Like Simple_vFAIL(), but accepts three arguments.
704 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
705 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
706 REPORT_LOCATION_ARGS(RExC_parse)); \
710 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
712 #define vFAIL3(m,a1,a2) STMT_START { \
714 SAVEFREESV(RExC_rx_sv); \
715 Simple_vFAIL3(m, a1, a2); \
719 * Like Simple_vFAIL(), but accepts four arguments.
721 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
722 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, a3, \
723 REPORT_LOCATION_ARGS(RExC_parse)); \
726 #define vFAIL4(m,a1,a2,a3) STMT_START { \
728 SAVEFREESV(RExC_rx_sv); \
729 Simple_vFAIL4(m, a1, a2, a3); \
732 /* A specialized version of vFAIL2 that works with UTF8f */
733 #define vFAIL2utf8f(m, a1) STMT_START { \
735 SAVEFREESV(RExC_rx_sv); \
736 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
737 REPORT_LOCATION_ARGS(RExC_parse)); \
740 #define vFAIL3utf8f(m, a1, a2) STMT_START { \
742 SAVEFREESV(RExC_rx_sv); \
743 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
744 REPORT_LOCATION_ARGS(RExC_parse)); \
747 /* These have asserts in them because of [perl #122671] Many warnings in
748 * regcomp.c can occur twice. If they get output in pass1 and later in that
749 * pass, the pattern has to be converted to UTF-8 and the pass restarted, they
750 * would get output again. So they should be output in pass2, and these
751 * asserts make sure new warnings follow that paradigm. */
753 /* m is not necessarily a "literal string", in this macro */
754 #define reg_warn_non_literal_string(loc, m) STMT_START { \
755 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
756 "%s" REPORT_LOCATION, \
757 m, REPORT_LOCATION_ARGS(loc)); \
760 #define ckWARNreg(loc,m) STMT_START { \
761 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
763 REPORT_LOCATION_ARGS(loc)); \
766 #define vWARN(loc, m) STMT_START { \
767 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
769 REPORT_LOCATION_ARGS(loc)); \
772 #define vWARN_dep(loc, m) STMT_START { \
773 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), \
775 REPORT_LOCATION_ARGS(loc)); \
778 #define ckWARNdep(loc,m) STMT_START { \
779 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
781 REPORT_LOCATION_ARGS(loc)); \
784 #define ckWARNregdep(loc,m) STMT_START { \
785 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, \
788 REPORT_LOCATION_ARGS(loc)); \
791 #define ckWARN2reg_d(loc,m, a1) STMT_START { \
792 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_REGEXP), \
794 a1, REPORT_LOCATION_ARGS(loc)); \
797 #define ckWARN2reg(loc, m, a1) STMT_START { \
798 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
800 a1, REPORT_LOCATION_ARGS(loc)); \
803 #define vWARN3(loc, m, a1, a2) STMT_START { \
804 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
806 a1, a2, REPORT_LOCATION_ARGS(loc)); \
809 #define ckWARN3reg(loc, m, a1, a2) STMT_START { \
810 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
813 REPORT_LOCATION_ARGS(loc)); \
816 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \
817 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
820 REPORT_LOCATION_ARGS(loc)); \
823 #define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
824 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
827 REPORT_LOCATION_ARGS(loc)); \
830 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
831 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
834 REPORT_LOCATION_ARGS(loc)); \
837 /* Macros for recording node offsets. 20001227 mjd@plover.com
838 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
839 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
840 * Element 0 holds the number n.
841 * Position is 1 indexed.
843 #ifndef RE_TRACK_PATTERN_OFFSETS
844 #define Set_Node_Offset_To_R(node,byte)
845 #define Set_Node_Offset(node,byte)
846 #define Set_Cur_Node_Offset
847 #define Set_Node_Length_To_R(node,len)
848 #define Set_Node_Length(node,len)
849 #define Set_Node_Cur_Length(node,start)
850 #define Node_Offset(n)
851 #define Node_Length(n)
852 #define Set_Node_Offset_Length(node,offset,len)
853 #define ProgLen(ri) ri->u.proglen
854 #define SetProgLen(ri,x) ri->u.proglen = x
856 #define ProgLen(ri) ri->u.offsets[0]
857 #define SetProgLen(ri,x) ri->u.offsets[0] = x
858 #define Set_Node_Offset_To_R(node,byte) STMT_START { \
860 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
861 __LINE__, (int)(node), (int)(byte))); \
863 Perl_croak(aTHX_ "value of node is %d in Offset macro", \
866 RExC_offsets[2*(node)-1] = (byte); \
871 #define Set_Node_Offset(node,byte) \
872 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
873 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
875 #define Set_Node_Length_To_R(node,len) STMT_START { \
877 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
878 __LINE__, (int)(node), (int)(len))); \
880 Perl_croak(aTHX_ "value of node is %d in Length macro", \
883 RExC_offsets[2*(node)] = (len); \
888 #define Set_Node_Length(node,len) \
889 Set_Node_Length_To_R((node)-RExC_emit_start, len)
890 #define Set_Node_Cur_Length(node, start) \
891 Set_Node_Length(node, RExC_parse - start)
893 /* Get offsets and lengths */
894 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
895 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
897 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
898 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
899 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
903 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
904 #define EXPERIMENTAL_INPLACESCAN
905 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
909 Perl_re_printf(pTHX_ const char *fmt, ...)
913 PerlIO *f= Perl_debug_log;
914 PERL_ARGS_ASSERT_RE_PRINTF;
916 result = PerlIO_vprintf(f, fmt, ap);
922 Perl_re_indentf(pTHX_ const char *fmt, U32 depth, ...)
926 PerlIO *f= Perl_debug_log;
927 PERL_ARGS_ASSERT_RE_INDENTF;
929 PerlIO_printf(f, "%*s", ( (int)depth % 20 ) * 2, "");
930 result = PerlIO_vprintf(f, fmt, ap);
934 #endif /* DEBUGGING */
936 #define DEBUG_RExC_seen() \
937 DEBUG_OPTIMISE_MORE_r({ \
938 Perl_re_printf( aTHX_ "RExC_seen: "); \
940 if (RExC_seen & REG_ZERO_LEN_SEEN) \
941 Perl_re_printf( aTHX_ "REG_ZERO_LEN_SEEN "); \
943 if (RExC_seen & REG_LOOKBEHIND_SEEN) \
944 Perl_re_printf( aTHX_ "REG_LOOKBEHIND_SEEN "); \
946 if (RExC_seen & REG_GPOS_SEEN) \
947 Perl_re_printf( aTHX_ "REG_GPOS_SEEN "); \
949 if (RExC_seen & REG_RECURSE_SEEN) \
950 Perl_re_printf( aTHX_ "REG_RECURSE_SEEN "); \
952 if (RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN) \
953 Perl_re_printf( aTHX_ "REG_TOP_LEVEL_BRANCHES_SEEN "); \
955 if (RExC_seen & REG_VERBARG_SEEN) \
956 Perl_re_printf( aTHX_ "REG_VERBARG_SEEN "); \
958 if (RExC_seen & REG_CUTGROUP_SEEN) \
959 Perl_re_printf( aTHX_ "REG_CUTGROUP_SEEN "); \
961 if (RExC_seen & REG_RUN_ON_COMMENT_SEEN) \
962 Perl_re_printf( aTHX_ "REG_RUN_ON_COMMENT_SEEN "); \
964 if (RExC_seen & REG_UNFOLDED_MULTI_SEEN) \
965 Perl_re_printf( aTHX_ "REG_UNFOLDED_MULTI_SEEN "); \
967 if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) \
968 Perl_re_printf( aTHX_ "REG_UNBOUNDED_QUANTIFIER_SEEN "); \
970 Perl_re_printf( aTHX_ "\n"); \
973 #define DEBUG_SHOW_STUDY_FLAG(flags,flag) \
974 if ((flags) & flag) Perl_re_printf( aTHX_ "%s ", #flag)
976 #define DEBUG_SHOW_STUDY_FLAGS(flags,open_str,close_str) \
978 Perl_re_printf( aTHX_ "%s", open_str); \
979 DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_SEOL); \
980 DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_MEOL); \
981 DEBUG_SHOW_STUDY_FLAG(flags,SF_IS_INF); \
982 DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_PAR); \
983 DEBUG_SHOW_STUDY_FLAG(flags,SF_IN_PAR); \
984 DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_EVAL); \
985 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_SUBSTR); \
986 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_AND); \
987 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_OR); \
988 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS); \
989 DEBUG_SHOW_STUDY_FLAG(flags,SCF_WHILEM_VISITED_POS); \
990 DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_RESTUDY); \
991 DEBUG_SHOW_STUDY_FLAG(flags,SCF_SEEN_ACCEPT); \
992 DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_DOING_RESTUDY); \
993 DEBUG_SHOW_STUDY_FLAG(flags,SCF_IN_DEFINE); \
994 Perl_re_printf( aTHX_ "%s", close_str); \
998 #define DEBUG_STUDYDATA(str,data,depth) \
999 DEBUG_OPTIMISE_MORE_r(if(data){ \
1000 Perl_re_indentf( aTHX_ "" str "Pos:%" IVdf "/%" IVdf \
1001 " Flags: 0x%" UVXf, \
1003 (IV)((data)->pos_min), \
1004 (IV)((data)->pos_delta), \
1005 (UV)((data)->flags) \
1007 DEBUG_SHOW_STUDY_FLAGS((data)->flags," [ ","]"); \
1008 Perl_re_printf( aTHX_ \
1009 " Whilem_c: %" IVdf " Lcp: %" IVdf " %s", \
1010 (IV)((data)->whilem_c), \
1011 (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
1012 is_inf ? "INF " : "" \
1014 if ((data)->last_found) \
1015 Perl_re_printf( aTHX_ \
1016 "Last:'%s' %" IVdf ":%" IVdf "/%" IVdf \
1017 " %sFixed:'%s' @ %" IVdf \
1018 " %sFloat: '%s' @ %" IVdf "/%" IVdf, \
1019 SvPVX_const((data)->last_found), \
1020 (IV)((data)->last_end), \
1021 (IV)((data)->last_start_min), \
1022 (IV)((data)->last_start_max), \
1023 ((data)->longest && \
1024 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
1025 SvPVX_const((data)->longest_fixed), \
1026 (IV)((data)->offset_fixed), \
1027 ((data)->longest && \
1028 (data)->longest==&((data)->longest_float)) ? "*" : "", \
1029 SvPVX_const((data)->longest_float), \
1030 (IV)((data)->offset_float_min), \
1031 (IV)((data)->offset_float_max) \
1033 Perl_re_printf( aTHX_ "\n"); \
1037 /* =========================================================
1038 * BEGIN edit_distance stuff.
1040 * This calculates how many single character changes of any type are needed to
1041 * transform a string into another one. It is taken from version 3.1 of
1043 * https://metacpan.org/pod/Text::Levenshtein::Damerau::XS
1046 /* Our unsorted dictionary linked list. */
1047 /* Note we use UVs, not chars. */
1052 struct dictionary* next;
1054 typedef struct dictionary item;
1057 PERL_STATIC_INLINE item*
1058 push(UV key,item* curr)
1061 Newxz(head, 1, item);
1069 PERL_STATIC_INLINE item*
1070 find(item* head, UV key)
1072 item* iterator = head;
1074 if (iterator->key == key){
1077 iterator = iterator->next;
1083 PERL_STATIC_INLINE item*
1084 uniquePush(item* head,UV key)
1086 item* iterator = head;
1089 if (iterator->key == key) {
1092 iterator = iterator->next;
1095 return push(key,head);
1098 PERL_STATIC_INLINE void
1099 dict_free(item* head)
1101 item* iterator = head;
1104 item* temp = iterator;
1105 iterator = iterator->next;
1112 /* End of Dictionary Stuff */
1114 /* All calculations/work are done here */
1116 S_edit_distance(const UV* src,
1118 const STRLEN x, /* length of src[] */
1119 const STRLEN y, /* length of tgt[] */
1120 const SSize_t maxDistance
1124 UV swapCount,swapScore,targetCharCount,i,j;
1126 UV score_ceil = x + y;
1128 PERL_ARGS_ASSERT_EDIT_DISTANCE;
1130 /* intialize matrix start values */
1131 Newxz(scores, ( (x + 2) * (y + 2)), UV);
1132 scores[0] = score_ceil;
1133 scores[1 * (y + 2) + 0] = score_ceil;
1134 scores[0 * (y + 2) + 1] = score_ceil;
1135 scores[1 * (y + 2) + 1] = 0;
1136 head = uniquePush(uniquePush(head,src[0]),tgt[0]);
1141 for (i=1;i<=x;i++) {
1143 head = uniquePush(head,src[i]);
1144 scores[(i+1) * (y + 2) + 1] = i;
1145 scores[(i+1) * (y + 2) + 0] = score_ceil;
1148 for (j=1;j<=y;j++) {
1151 head = uniquePush(head,tgt[j]);
1152 scores[1 * (y + 2) + (j + 1)] = j;
1153 scores[0 * (y + 2) + (j + 1)] = score_ceil;
1156 targetCharCount = find(head,tgt[j-1])->value;
1157 swapScore = scores[targetCharCount * (y + 2) + swapCount] + i - targetCharCount - 1 + j - swapCount;
1159 if (src[i-1] != tgt[j-1]){
1160 scores[(i+1) * (y + 2) + (j + 1)] = MIN(swapScore,(MIN(scores[i * (y + 2) + j], MIN(scores[(i+1) * (y + 2) + j], scores[i * (y + 2) + (j + 1)])) + 1));
1164 scores[(i+1) * (y + 2) + (j + 1)] = MIN(scores[i * (y + 2) + j], swapScore);
1168 find(head,src[i-1])->value = i;
1172 IV score = scores[(x+1) * (y + 2) + (y + 1)];
1175 return (maxDistance != 0 && maxDistance < score)?(-1):score;
1179 /* END of edit_distance() stuff
1180 * ========================================================= */
1182 /* is c a control character for which we have a mnemonic? */
1183 #define isMNEMONIC_CNTRL(c) _IS_MNEMONIC_CNTRL_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
1186 S_cntrl_to_mnemonic(const U8 c)
1188 /* Returns the mnemonic string that represents character 'c', if one
1189 * exists; NULL otherwise. The only ones that exist for the purposes of
1190 * this routine are a few control characters */
1193 case '\a': return "\\a";
1194 case '\b': return "\\b";
1195 case ESC_NATIVE: return "\\e";
1196 case '\f': return "\\f";
1197 case '\n': return "\\n";
1198 case '\r': return "\\r";
1199 case '\t': return "\\t";
1205 /* Mark that we cannot extend a found fixed substring at this point.
1206 Update the longest found anchored substring and the longest found
1207 floating substrings if needed. */
1210 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data,
1211 SSize_t *minlenp, int is_inf)
1213 const STRLEN l = CHR_SVLEN(data->last_found);
1214 const STRLEN old_l = CHR_SVLEN(*data->longest);
1215 GET_RE_DEBUG_FLAGS_DECL;
1217 PERL_ARGS_ASSERT_SCAN_COMMIT;
1219 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
1220 SvSetMagicSV(*data->longest, data->last_found);
1221 if (*data->longest == data->longest_fixed) {
1222 data->offset_fixed = l ? data->last_start_min : data->pos_min;
1223 if (data->flags & SF_BEFORE_EOL)
1225 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
1227 data->flags &= ~SF_FIX_BEFORE_EOL;
1228 data->minlen_fixed=minlenp;
1229 data->lookbehind_fixed=0;
1231 else { /* *data->longest == data->longest_float */
1232 data->offset_float_min = l ? data->last_start_min : data->pos_min;
1233 data->offset_float_max = (l
1234 ? data->last_start_max
1235 : (data->pos_delta > SSize_t_MAX - data->pos_min
1237 : data->pos_min + data->pos_delta));
1239 || (STRLEN)data->offset_float_max > (STRLEN)SSize_t_MAX)
1240 data->offset_float_max = SSize_t_MAX;
1241 if (data->flags & SF_BEFORE_EOL)
1243 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
1245 data->flags &= ~SF_FL_BEFORE_EOL;
1246 data->minlen_float=minlenp;
1247 data->lookbehind_float=0;
1250 SvCUR_set(data->last_found, 0);
1252 SV * const sv = data->last_found;
1253 if (SvUTF8(sv) && SvMAGICAL(sv)) {
1254 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
1259 data->last_end = -1;
1260 data->flags &= ~SF_BEFORE_EOL;
1261 DEBUG_STUDYDATA("commit: ",data,0);
1264 /* An SSC is just a regnode_charclass_posix with an extra field: the inversion
1265 * list that describes which code points it matches */
1268 S_ssc_anything(pTHX_ regnode_ssc *ssc)
1270 /* Set the SSC 'ssc' to match an empty string or any code point */
1272 PERL_ARGS_ASSERT_SSC_ANYTHING;
1274 assert(is_ANYOF_SYNTHETIC(ssc));
1276 /* mortalize so won't leak */
1277 ssc->invlist = sv_2mortal(_add_range_to_invlist(NULL, 0, UV_MAX));
1278 ANYOF_FLAGS(ssc) |= SSC_MATCHES_EMPTY_STRING; /* Plus matches empty */
1282 S_ssc_is_anything(const regnode_ssc *ssc)
1284 /* Returns TRUE if the SSC 'ssc' can match the empty string and any code
1285 * point; FALSE otherwise. Thus, this is used to see if using 'ssc' buys
1286 * us anything: if the function returns TRUE, 'ssc' hasn't been restricted
1287 * in any way, so there's no point in using it */
1292 PERL_ARGS_ASSERT_SSC_IS_ANYTHING;
1294 assert(is_ANYOF_SYNTHETIC(ssc));
1296 if (! (ANYOF_FLAGS(ssc) & SSC_MATCHES_EMPTY_STRING)) {
1300 /* See if the list consists solely of the range 0 - Infinity */
1301 invlist_iterinit(ssc->invlist);
1302 ret = invlist_iternext(ssc->invlist, &start, &end)
1306 invlist_iterfinish(ssc->invlist);
1312 /* If e.g., both \w and \W are set, matches everything */
1313 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1315 for (i = 0; i < ANYOF_POSIXL_MAX; i += 2) {
1316 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i+1)) {
1326 S_ssc_init(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc)
1328 /* Initializes the SSC 'ssc'. This includes setting it to match an empty
1329 * string, any code point, or any posix class under locale */
1331 PERL_ARGS_ASSERT_SSC_INIT;
1333 Zero(ssc, 1, regnode_ssc);
1334 set_ANYOF_SYNTHETIC(ssc);
1335 ARG_SET(ssc, ANYOF_ONLY_HAS_BITMAP);
1338 /* If any portion of the regex is to operate under locale rules that aren't
1339 * fully known at compile time, initialization includes it. The reason
1340 * this isn't done for all regexes is that the optimizer was written under
1341 * the assumption that locale was all-or-nothing. Given the complexity and
1342 * lack of documentation in the optimizer, and that there are inadequate
1343 * test cases for locale, many parts of it may not work properly, it is
1344 * safest to avoid locale unless necessary. */
1345 if (RExC_contains_locale) {
1346 ANYOF_POSIXL_SETALL(ssc);
1349 ANYOF_POSIXL_ZERO(ssc);
1354 S_ssc_is_cp_posixl_init(const RExC_state_t *pRExC_state,
1355 const regnode_ssc *ssc)
1357 /* Returns TRUE if the SSC 'ssc' is in its initial state with regard only
1358 * to the list of code points matched, and locale posix classes; hence does
1359 * not check its flags) */
1364 PERL_ARGS_ASSERT_SSC_IS_CP_POSIXL_INIT;
1366 assert(is_ANYOF_SYNTHETIC(ssc));
1368 invlist_iterinit(ssc->invlist);
1369 ret = invlist_iternext(ssc->invlist, &start, &end)
1373 invlist_iterfinish(ssc->invlist);
1379 if (RExC_contains_locale && ! ANYOF_POSIXL_SSC_TEST_ALL_SET(ssc)) {
1387 S_get_ANYOF_cp_list_for_ssc(pTHX_ const RExC_state_t *pRExC_state,
1388 const regnode_charclass* const node)
1390 /* Returns a mortal inversion list defining which code points are matched
1391 * by 'node', which is of type ANYOF. Handles complementing the result if
1392 * appropriate. If some code points aren't knowable at this time, the
1393 * returned list must, and will, contain every code point that is a
1397 SV* only_utf8_locale_invlist = NULL;
1399 const U32 n = ARG(node);
1400 bool new_node_has_latin1 = FALSE;
1402 PERL_ARGS_ASSERT_GET_ANYOF_CP_LIST_FOR_SSC;
1404 /* Look at the data structure created by S_set_ANYOF_arg() */
1405 if (n != ANYOF_ONLY_HAS_BITMAP) {
1406 SV * const rv = MUTABLE_SV(RExC_rxi->data->data[n]);
1407 AV * const av = MUTABLE_AV(SvRV(rv));
1408 SV **const ary = AvARRAY(av);
1409 assert(RExC_rxi->data->what[n] == 's');
1411 if (ary[1] && ary[1] != &PL_sv_undef) { /* Has compile-time swash */
1412 invlist = sv_2mortal(invlist_clone(_get_swash_invlist(ary[1])));
1414 else if (ary[0] && ary[0] != &PL_sv_undef) {
1416 /* Here, no compile-time swash, and there are things that won't be
1417 * known until runtime -- we have to assume it could be anything */
1418 invlist = sv_2mortal(_new_invlist(1));
1419 return _add_range_to_invlist(invlist, 0, UV_MAX);
1421 else if (ary[3] && ary[3] != &PL_sv_undef) {
1423 /* Here no compile-time swash, and no run-time only data. Use the
1424 * node's inversion list */
1425 invlist = sv_2mortal(invlist_clone(ary[3]));
1428 /* Get the code points valid only under UTF-8 locales */
1429 if ((ANYOF_FLAGS(node) & ANYOFL_FOLD)
1430 && ary[2] && ary[2] != &PL_sv_undef)
1432 only_utf8_locale_invlist = ary[2];
1437 invlist = sv_2mortal(_new_invlist(0));
1440 /* An ANYOF node contains a bitmap for the first NUM_ANYOF_CODE_POINTS
1441 * code points, and an inversion list for the others, but if there are code
1442 * points that should match only conditionally on the target string being
1443 * UTF-8, those are placed in the inversion list, and not the bitmap.
1444 * Since there are circumstances under which they could match, they are
1445 * included in the SSC. But if the ANYOF node is to be inverted, we have
1446 * to exclude them here, so that when we invert below, the end result
1447 * actually does include them. (Think about "\xe0" =~ /[^\xc0]/di;). We
1448 * have to do this here before we add the unconditionally matched code
1450 if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
1451 _invlist_intersection_complement_2nd(invlist,
1456 /* Add in the points from the bit map */
1457 for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
1458 if (ANYOF_BITMAP_TEST(node, i)) {
1459 unsigned int start = i++;
1461 for (; i < NUM_ANYOF_CODE_POINTS && ANYOF_BITMAP_TEST(node, i); ++i) {
1464 invlist = _add_range_to_invlist(invlist, start, i-1);
1465 new_node_has_latin1 = TRUE;
1469 /* If this can match all upper Latin1 code points, have to add them
1470 * as well. But don't add them if inverting, as when that gets done below,
1471 * it would exclude all these characters, including the ones it shouldn't
1472 * that were added just above */
1473 if (! (ANYOF_FLAGS(node) & ANYOF_INVERT) && OP(node) == ANYOFD
1474 && (ANYOF_FLAGS(node) & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER))
1476 _invlist_union(invlist, PL_UpperLatin1, &invlist);
1479 /* Similarly for these */
1480 if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
1481 _invlist_union_complement_2nd(invlist, PL_InBitmap, &invlist);
1484 if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
1485 _invlist_invert(invlist);
1487 else if (new_node_has_latin1 && ANYOF_FLAGS(node) & ANYOFL_FOLD) {
1489 /* Under /li, any 0-255 could fold to any other 0-255, depending on the
1490 * locale. We can skip this if there are no 0-255 at all. */
1491 _invlist_union(invlist, PL_Latin1, &invlist);
1494 /* Similarly add the UTF-8 locale possible matches. These have to be
1495 * deferred until after the non-UTF-8 locale ones are taken care of just
1496 * above, or it leads to wrong results under ANYOF_INVERT */
1497 if (only_utf8_locale_invlist) {
1498 _invlist_union_maybe_complement_2nd(invlist,
1499 only_utf8_locale_invlist,
1500 ANYOF_FLAGS(node) & ANYOF_INVERT,
1507 /* These two functions currently do the exact same thing */
1508 #define ssc_init_zero ssc_init
1510 #define ssc_add_cp(ssc, cp) ssc_add_range((ssc), (cp), (cp))
1511 #define ssc_match_all_cp(ssc) ssc_add_range(ssc, 0, UV_MAX)
1513 /* 'AND' a given class with another one. Can create false positives. 'ssc'
1514 * should not be inverted. 'and_with->flags & ANYOF_MATCHES_POSIXL' should be
1515 * 0 if 'and_with' is a regnode_charclass instead of a regnode_ssc. */
1518 S_ssc_and(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1519 const regnode_charclass *and_with)
1521 /* Accumulate into SSC 'ssc' its 'AND' with 'and_with', which is either
1522 * another SSC or a regular ANYOF class. Can create false positives. */
1527 PERL_ARGS_ASSERT_SSC_AND;
1529 assert(is_ANYOF_SYNTHETIC(ssc));
1531 /* 'and_with' is used as-is if it too is an SSC; otherwise have to extract
1532 * the code point inversion list and just the relevant flags */
1533 if (is_ANYOF_SYNTHETIC(and_with)) {
1534 anded_cp_list = ((regnode_ssc *)and_with)->invlist;
1535 anded_flags = ANYOF_FLAGS(and_with);
1537 /* XXX This is a kludge around what appears to be deficiencies in the
1538 * optimizer. If we make S_ssc_anything() add in the WARN_SUPER flag,
1539 * there are paths through the optimizer where it doesn't get weeded
1540 * out when it should. And if we don't make some extra provision for
1541 * it like the code just below, it doesn't get added when it should.
1542 * This solution is to add it only when AND'ing, which is here, and
1543 * only when what is being AND'ed is the pristine, original node
1544 * matching anything. Thus it is like adding it to ssc_anything() but
1545 * only when the result is to be AND'ed. Probably the same solution
1546 * could be adopted for the same problem we have with /l matching,
1547 * which is solved differently in S_ssc_init(), and that would lead to
1548 * fewer false positives than that solution has. But if this solution
1549 * creates bugs, the consequences are only that a warning isn't raised
1550 * that should be; while the consequences for having /l bugs is
1551 * incorrect matches */
1552 if (ssc_is_anything((regnode_ssc *)and_with)) {
1553 anded_flags |= ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER;
1557 anded_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, and_with);
1558 if (OP(and_with) == ANYOFD) {
1559 anded_flags = ANYOF_FLAGS(and_with) & ANYOF_COMMON_FLAGS;
1562 anded_flags = ANYOF_FLAGS(and_with)
1563 &( ANYOF_COMMON_FLAGS
1564 |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1565 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
1566 if (ANYOFL_UTF8_LOCALE_REQD(ANYOF_FLAGS(and_with))) {
1568 ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
1573 ANYOF_FLAGS(ssc) &= anded_flags;
1575 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1576 * C2 is the list of code points in 'and-with'; P2, its posix classes.
1577 * 'and_with' may be inverted. When not inverted, we have the situation of
1579 * (C1 | P1) & (C2 | P2)
1580 * = (C1 & (C2 | P2)) | (P1 & (C2 | P2))
1581 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1582 * <= ((C1 & C2) | P2)) | ( P1 | (P1 & P2))
1583 * <= ((C1 & C2) | P1 | P2)
1584 * Alternatively, the last few steps could be:
1585 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1586 * <= ((C1 & C2) | C1 ) | ( C2 | (P1 & P2))
1587 * <= (C1 | C2 | (P1 & P2))
1588 * We favor the second approach if either P1 or P2 is non-empty. This is
1589 * because these components are a barrier to doing optimizations, as what
1590 * they match cannot be known until the moment of matching as they are
1591 * dependent on the current locale, 'AND"ing them likely will reduce or
1593 * But we can do better if we know that C1,P1 are in their initial state (a
1594 * frequent occurrence), each matching everything:
1595 * (<everything>) & (C2 | P2) = C2 | P2
1596 * Similarly, if C2,P2 are in their initial state (again a frequent
1597 * occurrence), the result is a no-op
1598 * (C1 | P1) & (<everything>) = C1 | P1
1601 * (C1 | P1) & ~(C2 | P2) = (C1 | P1) & (~C2 & ~P2)
1602 * = (C1 & (~C2 & ~P2)) | (P1 & (~C2 & ~P2))
1603 * <= (C1 & ~C2) | (P1 & ~P2)
1606 if ((ANYOF_FLAGS(and_with) & ANYOF_INVERT)
1607 && ! is_ANYOF_SYNTHETIC(and_with))
1611 ssc_intersection(ssc,
1613 FALSE /* Has already been inverted */
1616 /* If either P1 or P2 is empty, the intersection will be also; can skip
1618 if (! (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL)) {
1619 ANYOF_POSIXL_ZERO(ssc);
1621 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1623 /* Note that the Posix class component P from 'and_with' actually
1625 * P = Pa | Pb | ... | Pn
1626 * where each component is one posix class, such as in [\w\s].
1628 * ~P = ~(Pa | Pb | ... | Pn)
1629 * = ~Pa & ~Pb & ... & ~Pn
1630 * <= ~Pa | ~Pb | ... | ~Pn
1631 * The last is something we can easily calculate, but unfortunately
1632 * is likely to have many false positives. We could do better
1633 * in some (but certainly not all) instances if two classes in
1634 * P have known relationships. For example
1635 * :lower: <= :alpha: <= :alnum: <= \w <= :graph: <= :print:
1637 * :lower: & :print: = :lower:
1638 * And similarly for classes that must be disjoint. For example,
1639 * since \s and \w can have no elements in common based on rules in
1640 * the POSIX standard,
1641 * \w & ^\S = nothing
1642 * Unfortunately, some vendor locales do not meet the Posix
1643 * standard, in particular almost everything by Microsoft.
1644 * The loop below just changes e.g., \w into \W and vice versa */
1646 regnode_charclass_posixl temp;
1647 int add = 1; /* To calculate the index of the complement */
1649 ANYOF_POSIXL_ZERO(&temp);
1650 for (i = 0; i < ANYOF_MAX; i++) {
1652 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)
1653 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i + 1));
1655 if (ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)) {
1656 ANYOF_POSIXL_SET(&temp, i + add);
1658 add = 0 - add; /* 1 goes to -1; -1 goes to 1 */
1660 ANYOF_POSIXL_AND(&temp, ssc);
1662 } /* else ssc already has no posixes */
1663 } /* else: Not inverted. This routine is a no-op if 'and_with' is an SSC
1664 in its initial state */
1665 else if (! is_ANYOF_SYNTHETIC(and_with)
1666 || ! ssc_is_cp_posixl_init(pRExC_state, (regnode_ssc *)and_with))
1668 /* But if 'ssc' is in its initial state, the result is just 'and_with';
1669 * copy it over 'ssc' */
1670 if (ssc_is_cp_posixl_init(pRExC_state, ssc)) {
1671 if (is_ANYOF_SYNTHETIC(and_with)) {
1672 StructCopy(and_with, ssc, regnode_ssc);
1675 ssc->invlist = anded_cp_list;
1676 ANYOF_POSIXL_ZERO(ssc);
1677 if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
1678 ANYOF_POSIXL_OR((regnode_charclass_posixl*) and_with, ssc);
1682 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)
1683 || (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL))
1685 /* One or the other of P1, P2 is non-empty. */
1686 if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
1687 ANYOF_POSIXL_AND((regnode_charclass_posixl*) and_with, ssc);
1689 ssc_union(ssc, anded_cp_list, FALSE);
1691 else { /* P1 = P2 = empty */
1692 ssc_intersection(ssc, anded_cp_list, FALSE);
1698 S_ssc_or(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1699 const regnode_charclass *or_with)
1701 /* Accumulate into SSC 'ssc' its 'OR' with 'or_with', which is either
1702 * another SSC or a regular ANYOF class. Can create false positives if
1703 * 'or_with' is to be inverted. */
1708 PERL_ARGS_ASSERT_SSC_OR;
1710 assert(is_ANYOF_SYNTHETIC(ssc));
1712 /* 'or_with' is used as-is if it too is an SSC; otherwise have to extract
1713 * the code point inversion list and just the relevant flags */
1714 if (is_ANYOF_SYNTHETIC(or_with)) {
1715 ored_cp_list = ((regnode_ssc*) or_with)->invlist;
1716 ored_flags = ANYOF_FLAGS(or_with);
1719 ored_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, or_with);
1720 ored_flags = ANYOF_FLAGS(or_with) & ANYOF_COMMON_FLAGS;
1721 if (OP(or_with) != ANYOFD) {
1723 |= ANYOF_FLAGS(or_with)
1724 & ( ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1725 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
1726 if (ANYOFL_UTF8_LOCALE_REQD(ANYOF_FLAGS(or_with))) {
1728 ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
1733 ANYOF_FLAGS(ssc) |= ored_flags;
1735 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1736 * C2 is the list of code points in 'or-with'; P2, its posix classes.
1737 * 'or_with' may be inverted. When not inverted, we have the simple
1738 * situation of computing:
1739 * (C1 | P1) | (C2 | P2) = (C1 | C2) | (P1 | P2)
1740 * If P1|P2 yields a situation with both a class and its complement are
1741 * set, like having both \w and \W, this matches all code points, and we
1742 * can delete these from the P component of the ssc going forward. XXX We
1743 * might be able to delete all the P components, but I (khw) am not certain
1744 * about this, and it is better to be safe.
1747 * (C1 | P1) | ~(C2 | P2) = (C1 | P1) | (~C2 & ~P2)
1748 * <= (C1 | P1) | ~C2
1749 * <= (C1 | ~C2) | P1
1750 * (which results in actually simpler code than the non-inverted case)
1753 if ((ANYOF_FLAGS(or_with) & ANYOF_INVERT)
1754 && ! is_ANYOF_SYNTHETIC(or_with))
1756 /* We ignore P2, leaving P1 going forward */
1757 } /* else Not inverted */
1758 else if (ANYOF_FLAGS(or_with) & ANYOF_MATCHES_POSIXL) {
1759 ANYOF_POSIXL_OR((regnode_charclass_posixl*)or_with, ssc);
1760 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1762 for (i = 0; i < ANYOF_MAX; i += 2) {
1763 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i + 1))
1765 ssc_match_all_cp(ssc);
1766 ANYOF_POSIXL_CLEAR(ssc, i);
1767 ANYOF_POSIXL_CLEAR(ssc, i+1);
1775 FALSE /* Already has been inverted */
1779 PERL_STATIC_INLINE void
1780 S_ssc_union(pTHX_ regnode_ssc *ssc, SV* const invlist, const bool invert2nd)
1782 PERL_ARGS_ASSERT_SSC_UNION;
1784 assert(is_ANYOF_SYNTHETIC(ssc));
1786 _invlist_union_maybe_complement_2nd(ssc->invlist,
1792 PERL_STATIC_INLINE void
1793 S_ssc_intersection(pTHX_ regnode_ssc *ssc,
1795 const bool invert2nd)
1797 PERL_ARGS_ASSERT_SSC_INTERSECTION;
1799 assert(is_ANYOF_SYNTHETIC(ssc));
1801 _invlist_intersection_maybe_complement_2nd(ssc->invlist,
1807 PERL_STATIC_INLINE void
1808 S_ssc_add_range(pTHX_ regnode_ssc *ssc, const UV start, const UV end)
1810 PERL_ARGS_ASSERT_SSC_ADD_RANGE;
1812 assert(is_ANYOF_SYNTHETIC(ssc));
1814 ssc->invlist = _add_range_to_invlist(ssc->invlist, start, end);
1817 PERL_STATIC_INLINE void
1818 S_ssc_cp_and(pTHX_ regnode_ssc *ssc, const UV cp)
1820 /* AND just the single code point 'cp' into the SSC 'ssc' */
1822 SV* cp_list = _new_invlist(2);
1824 PERL_ARGS_ASSERT_SSC_CP_AND;
1826 assert(is_ANYOF_SYNTHETIC(ssc));
1828 cp_list = add_cp_to_invlist(cp_list, cp);
1829 ssc_intersection(ssc, cp_list,
1830 FALSE /* Not inverted */
1832 SvREFCNT_dec_NN(cp_list);
1835 PERL_STATIC_INLINE void
1836 S_ssc_clear_locale(regnode_ssc *ssc)
1838 /* Set the SSC 'ssc' to not match any locale things */
1839 PERL_ARGS_ASSERT_SSC_CLEAR_LOCALE;
1841 assert(is_ANYOF_SYNTHETIC(ssc));
1843 ANYOF_POSIXL_ZERO(ssc);
1844 ANYOF_FLAGS(ssc) &= ~ANYOF_LOCALE_FLAGS;
1847 #define NON_OTHER_COUNT NON_OTHER_COUNT_FOR_USE_ONLY_BY_REGCOMP_DOT_C
1850 S_is_ssc_worth_it(const RExC_state_t * pRExC_state, const regnode_ssc * ssc)
1852 /* The synthetic start class is used to hopefully quickly winnow down
1853 * places where a pattern could start a match in the target string. If it
1854 * doesn't really narrow things down that much, there isn't much point to
1855 * having the overhead of using it. This function uses some very crude
1856 * heuristics to decide if to use the ssc or not.
1858 * It returns TRUE if 'ssc' rules out more than half what it considers to
1859 * be the "likely" possible matches, but of course it doesn't know what the
1860 * actual things being matched are going to be; these are only guesses
1862 * For /l matches, it assumes that the only likely matches are going to be
1863 * in the 0-255 range, uniformly distributed, so half of that is 127
1864 * For /a and /d matches, it assumes that the likely matches will be just
1865 * the ASCII range, so half of that is 63
1866 * For /u and there isn't anything matching above the Latin1 range, it
1867 * assumes that that is the only range likely to be matched, and uses
1868 * half that as the cut-off: 127. If anything matches above Latin1,
1869 * it assumes that all of Unicode could match (uniformly), except for
1870 * non-Unicode code points and things in the General Category "Other"
1871 * (unassigned, private use, surrogates, controls and formats). This
1872 * is a much large number. */
1874 U32 count = 0; /* Running total of number of code points matched by
1876 UV start, end; /* Start and end points of current range in inversion
1878 const U32 max_code_points = (LOC)
1880 : (( ! UNI_SEMANTICS
1881 || invlist_highest(ssc->invlist) < 256)
1884 const U32 max_match = max_code_points / 2;
1886 PERL_ARGS_ASSERT_IS_SSC_WORTH_IT;
1888 invlist_iterinit(ssc->invlist);
1889 while (invlist_iternext(ssc->invlist, &start, &end)) {
1890 if (start >= max_code_points) {
1893 end = MIN(end, max_code_points - 1);
1894 count += end - start + 1;
1895 if (count >= max_match) {
1896 invlist_iterfinish(ssc->invlist);
1906 S_ssc_finalize(pTHX_ RExC_state_t *pRExC_state, regnode_ssc *ssc)
1908 /* The inversion list in the SSC is marked mortal; now we need a more
1909 * permanent copy, which is stored the same way that is done in a regular
1910 * ANYOF node, with the first NUM_ANYOF_CODE_POINTS code points in a bit
1913 SV* invlist = invlist_clone(ssc->invlist);
1915 PERL_ARGS_ASSERT_SSC_FINALIZE;
1917 assert(is_ANYOF_SYNTHETIC(ssc));
1919 /* The code in this file assumes that all but these flags aren't relevant
1920 * to the SSC, except SSC_MATCHES_EMPTY_STRING, which should be cleared
1921 * by the time we reach here */
1922 assert(! (ANYOF_FLAGS(ssc)
1923 & ~( ANYOF_COMMON_FLAGS
1924 |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1925 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP)));
1927 populate_ANYOF_from_invlist( (regnode *) ssc, &invlist);
1929 set_ANYOF_arg(pRExC_state, (regnode *) ssc, invlist,
1930 NULL, NULL, NULL, FALSE);
1932 /* Make sure is clone-safe */
1933 ssc->invlist = NULL;
1935 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1936 ANYOF_FLAGS(ssc) |= ANYOF_MATCHES_POSIXL;
1939 if (RExC_contains_locale) {
1943 assert(! (ANYOF_FLAGS(ssc) & ANYOF_LOCALE_FLAGS) || RExC_contains_locale);
1946 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
1947 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
1948 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
1949 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list \
1950 ? (TRIE_LIST_CUR( idx ) - 1) \
1956 dump_trie(trie,widecharmap,revcharmap)
1957 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
1958 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
1960 These routines dump out a trie in a somewhat readable format.
1961 The _interim_ variants are used for debugging the interim
1962 tables that are used to generate the final compressed
1963 representation which is what dump_trie expects.
1965 Part of the reason for their existence is to provide a form
1966 of documentation as to how the different representations function.
1971 Dumps the final compressed table form of the trie to Perl_debug_log.
1972 Used for debugging make_trie().
1976 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
1977 AV *revcharmap, U32 depth)
1980 SV *sv=sv_newmortal();
1981 int colwidth= widecharmap ? 6 : 4;
1983 GET_RE_DEBUG_FLAGS_DECL;
1985 PERL_ARGS_ASSERT_DUMP_TRIE;
1987 Perl_re_indentf( aTHX_ "Char : %-6s%-6s%-4s ",
1988 depth+1, "Match","Base","Ofs" );
1990 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
1991 SV ** const tmp = av_fetch( revcharmap, state, 0);
1993 Perl_re_printf( aTHX_ "%*s",
1995 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1996 PL_colors[0], PL_colors[1],
1997 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1998 PERL_PV_ESCAPE_FIRSTCHAR
2003 Perl_re_printf( aTHX_ "\n");
2004 Perl_re_indentf( aTHX_ "State|-----------------------", depth+1);
2006 for( state = 0 ; state < trie->uniquecharcount ; state++ )
2007 Perl_re_printf( aTHX_ "%.*s", colwidth, "--------");
2008 Perl_re_printf( aTHX_ "\n");
2010 for( state = 1 ; state < trie->statecount ; state++ ) {
2011 const U32 base = trie->states[ state ].trans.base;
2013 Perl_re_indentf( aTHX_ "#%4" UVXf "|", depth+1, (UV)state);
2015 if ( trie->states[ state ].wordnum ) {
2016 Perl_re_printf( aTHX_ " W%4X", trie->states[ state ].wordnum );
2018 Perl_re_printf( aTHX_ "%6s", "" );
2021 Perl_re_printf( aTHX_ " @%4" UVXf " ", (UV)base );
2026 while( ( base + ofs < trie->uniquecharcount ) ||
2027 ( base + ofs - trie->uniquecharcount < trie->lasttrans
2028 && trie->trans[ base + ofs - trie->uniquecharcount ].check
2032 Perl_re_printf( aTHX_ "+%2" UVXf "[ ", (UV)ofs);
2034 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2035 if ( ( base + ofs >= trie->uniquecharcount )
2036 && ( base + ofs - trie->uniquecharcount
2038 && trie->trans[ base + ofs
2039 - trie->uniquecharcount ].check == state )
2041 Perl_re_printf( aTHX_ "%*" UVXf, colwidth,
2042 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next
2045 Perl_re_printf( aTHX_ "%*s",colwidth," ." );
2049 Perl_re_printf( aTHX_ "]");
2052 Perl_re_printf( aTHX_ "\n" );
2054 Perl_re_indentf( aTHX_ "word_info N:(prev,len)=",
2056 for (word=1; word <= trie->wordcount; word++) {
2057 Perl_re_printf( aTHX_ " %d:(%d,%d)",
2058 (int)word, (int)(trie->wordinfo[word].prev),
2059 (int)(trie->wordinfo[word].len));
2061 Perl_re_printf( aTHX_ "\n" );
2064 Dumps a fully constructed but uncompressed trie in list form.
2065 List tries normally only are used for construction when the number of
2066 possible chars (trie->uniquecharcount) is very high.
2067 Used for debugging make_trie().
2070 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
2071 HV *widecharmap, AV *revcharmap, U32 next_alloc,
2075 SV *sv=sv_newmortal();
2076 int colwidth= widecharmap ? 6 : 4;
2077 GET_RE_DEBUG_FLAGS_DECL;
2079 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
2081 /* print out the table precompression. */
2082 Perl_re_indentf( aTHX_ "State :Word | Transition Data\n",
2084 Perl_re_indentf( aTHX_ "%s",
2085 depth+1, "------:-----+-----------------\n" );
2087 for( state=1 ; state < next_alloc ; state ++ ) {
2090 Perl_re_indentf( aTHX_ " %4" UVXf " :",
2091 depth+1, (UV)state );
2092 if ( ! trie->states[ state ].wordnum ) {
2093 Perl_re_printf( aTHX_ "%5s| ","");
2095 Perl_re_printf( aTHX_ "W%4x| ",
2096 trie->states[ state ].wordnum
2099 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
2100 SV ** const tmp = av_fetch( revcharmap,
2101 TRIE_LIST_ITEM(state,charid).forid, 0);
2103 Perl_re_printf( aTHX_ "%*s:%3X=%4" UVXf " | ",
2105 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp),
2107 PL_colors[0], PL_colors[1],
2108 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
2109 | PERL_PV_ESCAPE_FIRSTCHAR
2111 TRIE_LIST_ITEM(state,charid).forid,
2112 (UV)TRIE_LIST_ITEM(state,charid).newstate
2115 Perl_re_printf( aTHX_ "\n%*s| ",
2116 (int)((depth * 2) + 14), "");
2119 Perl_re_printf( aTHX_ "\n");
2124 Dumps a fully constructed but uncompressed trie in table form.
2125 This is the normal DFA style state transition table, with a few
2126 twists to facilitate compression later.
2127 Used for debugging make_trie().
2130 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
2131 HV *widecharmap, AV *revcharmap, U32 next_alloc,
2136 SV *sv=sv_newmortal();
2137 int colwidth= widecharmap ? 6 : 4;
2138 GET_RE_DEBUG_FLAGS_DECL;
2140 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
2143 print out the table precompression so that we can do a visual check
2144 that they are identical.
2147 Perl_re_indentf( aTHX_ "Char : ", depth+1 );
2149 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
2150 SV ** const tmp = av_fetch( revcharmap, charid, 0);
2152 Perl_re_printf( aTHX_ "%*s",
2154 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
2155 PL_colors[0], PL_colors[1],
2156 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2157 PERL_PV_ESCAPE_FIRSTCHAR
2163 Perl_re_printf( aTHX_ "\n");
2164 Perl_re_indentf( aTHX_ "State+-", depth+1 );
2166 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
2167 Perl_re_printf( aTHX_ "%.*s", colwidth,"--------");
2170 Perl_re_printf( aTHX_ "\n" );
2172 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
2174 Perl_re_indentf( aTHX_ "%4" UVXf " : ",
2176 (UV)TRIE_NODENUM( state ) );
2178 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
2179 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
2181 Perl_re_printf( aTHX_ "%*" UVXf, colwidth, v );
2183 Perl_re_printf( aTHX_ "%*s", colwidth, "." );
2185 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
2186 Perl_re_printf( aTHX_ " (%4" UVXf ")\n",
2187 (UV)trie->trans[ state ].check );
2189 Perl_re_printf( aTHX_ " (%4" UVXf ") W%4X\n",
2190 (UV)trie->trans[ state ].check,
2191 trie->states[ TRIE_NODENUM( state ) ].wordnum );
2199 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
2200 startbranch: the first branch in the whole branch sequence
2201 first : start branch of sequence of branch-exact nodes.
2202 May be the same as startbranch
2203 last : Thing following the last branch.
2204 May be the same as tail.
2205 tail : item following the branch sequence
2206 count : words in the sequence
2207 flags : currently the OP() type we will be building one of /EXACT(|F|FA|FU|FU_SS|L|FLU8)/
2208 depth : indent depth
2210 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
2212 A trie is an N'ary tree where the branches are determined by digital
2213 decomposition of the key. IE, at the root node you look up the 1st character and
2214 follow that branch repeat until you find the end of the branches. Nodes can be
2215 marked as "accepting" meaning they represent a complete word. Eg:
2219 would convert into the following structure. Numbers represent states, letters
2220 following numbers represent valid transitions on the letter from that state, if
2221 the number is in square brackets it represents an accepting state, otherwise it
2222 will be in parenthesis.
2224 +-h->+-e->[3]-+-r->(8)-+-s->[9]
2228 (1) +-i->(6)-+-s->[7]
2230 +-s->(3)-+-h->(4)-+-e->[5]
2232 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
2234 This shows that when matching against the string 'hers' we will begin at state 1
2235 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
2236 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
2237 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
2238 single traverse. We store a mapping from accepting to state to which word was
2239 matched, and then when we have multiple possibilities we try to complete the
2240 rest of the regex in the order in which they occurred in the alternation.
2242 The only prior NFA like behaviour that would be changed by the TRIE support is
2243 the silent ignoring of duplicate alternations which are of the form:
2245 / (DUPE|DUPE) X? (?{ ... }) Y /x
2247 Thus EVAL blocks following a trie may be called a different number of times with
2248 and without the optimisation. With the optimisations dupes will be silently
2249 ignored. This inconsistent behaviour of EVAL type nodes is well established as
2250 the following demonstrates:
2252 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
2254 which prints out 'word' three times, but
2256 'words'=~/(word|word|word)(?{ print $1 })S/
2258 which doesnt print it out at all. This is due to other optimisations kicking in.
2260 Example of what happens on a structural level:
2262 The regexp /(ac|ad|ab)+/ will produce the following debug output:
2264 1: CURLYM[1] {1,32767}(18)
2275 This would be optimizable with startbranch=5, first=5, last=16, tail=16
2276 and should turn into:
2278 1: CURLYM[1] {1,32767}(18)
2280 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
2288 Cases where tail != last would be like /(?foo|bar)baz/:
2298 which would be optimizable with startbranch=1, first=1, last=7, tail=8
2299 and would end up looking like:
2302 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
2309 d = uvchr_to_utf8_flags(d, uv, 0);
2311 is the recommended Unicode-aware way of saying
2316 #define TRIE_STORE_REVCHAR(val) \
2319 SV *zlopp = newSV(UTF8_MAXBYTES); \
2320 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
2321 unsigned const char *const kapow = uvchr_to_utf8(flrbbbbb, val); \
2322 SvCUR_set(zlopp, kapow - flrbbbbb); \
2325 av_push(revcharmap, zlopp); \
2327 char ooooff = (char)val; \
2328 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
2332 /* This gets the next character from the input, folding it if not already
2334 #define TRIE_READ_CHAR STMT_START { \
2337 /* if it is UTF then it is either already folded, or does not need \
2339 uvc = valid_utf8_to_uvchr( (const U8*) uc, &len); \
2341 else if (folder == PL_fold_latin1) { \
2342 /* This folder implies Unicode rules, which in the range expressible \
2343 * by not UTF is the lower case, with the two exceptions, one of \
2344 * which should have been taken care of before calling this */ \
2345 assert(*uc != LATIN_SMALL_LETTER_SHARP_S); \
2346 uvc = toLOWER_L1(*uc); \
2347 if (UNLIKELY(uvc == MICRO_SIGN)) uvc = GREEK_SMALL_LETTER_MU; \
2350 /* raw data, will be folded later if needed */ \
2358 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
2359 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
2360 U32 ging = TRIE_LIST_LEN( state ) *= 2; \
2361 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
2363 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
2364 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
2365 TRIE_LIST_CUR( state )++; \
2368 #define TRIE_LIST_NEW(state) STMT_START { \
2369 Newxz( trie->states[ state ].trans.list, \
2370 4, reg_trie_trans_le ); \
2371 TRIE_LIST_CUR( state ) = 1; \
2372 TRIE_LIST_LEN( state ) = 4; \
2375 #define TRIE_HANDLE_WORD(state) STMT_START { \
2376 U16 dupe= trie->states[ state ].wordnum; \
2377 regnode * const noper_next = regnext( noper ); \
2380 /* store the word for dumping */ \
2382 if (OP(noper) != NOTHING) \
2383 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
2385 tmp = newSVpvn_utf8( "", 0, UTF ); \
2386 av_push( trie_words, tmp ); \
2390 trie->wordinfo[curword].prev = 0; \
2391 trie->wordinfo[curword].len = wordlen; \
2392 trie->wordinfo[curword].accept = state; \
2394 if ( noper_next < tail ) { \
2396 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, \
2398 trie->jump[curword] = (U16)(noper_next - convert); \
2400 jumper = noper_next; \
2402 nextbranch= regnext(cur); \
2406 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
2407 /* chain, so that when the bits of chain are later */\
2408 /* linked together, the dups appear in the chain */\
2409 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
2410 trie->wordinfo[dupe].prev = curword; \
2412 /* we haven't inserted this word yet. */ \
2413 trie->states[ state ].wordnum = curword; \
2418 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
2419 ( ( base + charid >= ucharcount \
2420 && base + charid < ubound \
2421 && state == trie->trans[ base - ucharcount + charid ].check \
2422 && trie->trans[ base - ucharcount + charid ].next ) \
2423 ? trie->trans[ base - ucharcount + charid ].next \
2424 : ( state==1 ? special : 0 ) \
2427 #define TRIE_BITMAP_SET_FOLDED(trie, uvc, folder) \
2429 TRIE_BITMAP_SET(trie, uvc); \
2430 /* store the folded codepoint */ \
2432 TRIE_BITMAP_SET(trie, folder[(U8) uvc ]); \
2435 /* store first byte of utf8 representation of */ \
2436 /* variant codepoints */ \
2437 if (! UVCHR_IS_INVARIANT(uvc)) { \
2438 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc)); \
2443 #define MADE_JUMP_TRIE 2
2444 #define MADE_EXACT_TRIE 4
2447 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch,
2448 regnode *first, regnode *last, regnode *tail,
2449 U32 word_count, U32 flags, U32 depth)
2451 /* first pass, loop through and scan words */
2452 reg_trie_data *trie;
2453 HV *widecharmap = NULL;
2454 AV *revcharmap = newAV();
2460 regnode *jumper = NULL;
2461 regnode *nextbranch = NULL;
2462 regnode *convert = NULL;
2463 U32 *prev_states; /* temp array mapping each state to previous one */
2464 /* we just use folder as a flag in utf8 */
2465 const U8 * folder = NULL;
2468 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tuuu"));
2469 AV *trie_words = NULL;
2470 /* along with revcharmap, this only used during construction but both are
2471 * useful during debugging so we store them in the struct when debugging.
2474 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tu"));
2475 STRLEN trie_charcount=0;
2477 SV *re_trie_maxbuff;
2478 GET_RE_DEBUG_FLAGS_DECL;
2480 PERL_ARGS_ASSERT_MAKE_TRIE;
2482 PERL_UNUSED_ARG(depth);
2486 case EXACT: case EXACTL: break;
2490 case EXACTFLU8: folder = PL_fold_latin1; break;
2491 case EXACTF: folder = PL_fold; break;
2492 default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
2495 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
2497 trie->startstate = 1;
2498 trie->wordcount = word_count;
2499 RExC_rxi->data->data[ data_slot ] = (void*)trie;
2500 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
2501 if (flags == EXACT || flags == EXACTL)
2502 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
2503 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
2504 trie->wordcount+1, sizeof(reg_trie_wordinfo));
2507 trie_words = newAV();
2510 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
2511 assert(re_trie_maxbuff);
2512 if (!SvIOK(re_trie_maxbuff)) {
2513 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
2515 DEBUG_TRIE_COMPILE_r({
2516 Perl_re_indentf( aTHX_
2517 "make_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
2519 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
2520 REG_NODE_NUM(last), REG_NODE_NUM(tail), (int)depth);
2523 /* Find the node we are going to overwrite */
2524 if ( first == startbranch && OP( last ) != BRANCH ) {
2525 /* whole branch chain */
2528 /* branch sub-chain */
2529 convert = NEXTOPER( first );
2532 /* -- First loop and Setup --
2534 We first traverse the branches and scan each word to determine if it
2535 contains widechars, and how many unique chars there are, this is
2536 important as we have to build a table with at least as many columns as we
2539 We use an array of integers to represent the character codes 0..255
2540 (trie->charmap) and we use a an HV* to store Unicode characters. We use
2541 the native representation of the character value as the key and IV's for
2544 *TODO* If we keep track of how many times each character is used we can
2545 remap the columns so that the table compression later on is more
2546 efficient in terms of memory by ensuring the most common value is in the
2547 middle and the least common are on the outside. IMO this would be better
2548 than a most to least common mapping as theres a decent chance the most
2549 common letter will share a node with the least common, meaning the node
2550 will not be compressible. With a middle is most common approach the worst
2551 case is when we have the least common nodes twice.
2555 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2556 regnode *noper = NEXTOPER( cur );
2560 U32 wordlen = 0; /* required init */
2561 STRLEN minchars = 0;
2562 STRLEN maxchars = 0;
2563 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the
2566 if (OP(noper) == NOTHING) {
2567 /* skip past a NOTHING at the start of an alternation
2568 * eg, /(?:)a|(?:b)/ should be the same as /a|b/
2570 regnode *noper_next= regnext(noper);
2571 if (noper_next < tail)
2575 if ( noper < tail &&
2577 OP(noper) == flags ||
2580 OP(noper) == EXACTFU_SS
2584 uc= (U8*)STRING(noper);
2585 e= uc + STR_LEN(noper);
2592 if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
2593 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
2594 regardless of encoding */
2595 if (OP( noper ) == EXACTFU_SS) {
2596 /* false positives are ok, so just set this */
2597 TRIE_BITMAP_SET(trie, LATIN_SMALL_LETTER_SHARP_S);
2601 for ( ; uc < e ; uc += len ) { /* Look at each char in the current
2603 TRIE_CHARCOUNT(trie)++;
2606 /* TRIE_READ_CHAR returns the current character, or its fold if /i
2607 * is in effect. Under /i, this character can match itself, or
2608 * anything that folds to it. If not under /i, it can match just
2609 * itself. Most folds are 1-1, for example k, K, and KELVIN SIGN
2610 * all fold to k, and all are single characters. But some folds
2611 * expand to more than one character, so for example LATIN SMALL
2612 * LIGATURE FFI folds to the three character sequence 'ffi'. If
2613 * the string beginning at 'uc' is 'ffi', it could be matched by
2614 * three characters, or just by the one ligature character. (It
2615 * could also be matched by two characters: LATIN SMALL LIGATURE FF
2616 * followed by 'i', or by 'f' followed by LATIN SMALL LIGATURE FI).
2617 * (Of course 'I' and/or 'F' instead of 'i' and 'f' can also
2618 * match.) The trie needs to know the minimum and maximum number
2619 * of characters that could match so that it can use size alone to
2620 * quickly reject many match attempts. The max is simple: it is
2621 * the number of folded characters in this branch (since a fold is
2622 * never shorter than what folds to it. */
2626 /* And the min is equal to the max if not under /i (indicated by
2627 * 'folder' being NULL), or there are no multi-character folds. If
2628 * there is a multi-character fold, the min is incremented just
2629 * once, for the character that folds to the sequence. Each
2630 * character in the sequence needs to be added to the list below of
2631 * characters in the trie, but we count only the first towards the
2632 * min number of characters needed. This is done through the
2633 * variable 'foldlen', which is returned by the macros that look
2634 * for these sequences as the number of bytes the sequence
2635 * occupies. Each time through the loop, we decrement 'foldlen' by
2636 * how many bytes the current char occupies. Only when it reaches
2637 * 0 do we increment 'minchars' or look for another multi-character
2639 if (folder == NULL) {
2642 else if (foldlen > 0) {
2643 foldlen -= (UTF) ? UTF8SKIP(uc) : 1;
2648 /* See if *uc is the beginning of a multi-character fold. If
2649 * so, we decrement the length remaining to look at, to account
2650 * for the current character this iteration. (We can use 'uc'
2651 * instead of the fold returned by TRIE_READ_CHAR because for
2652 * non-UTF, the latin1_safe macro is smart enough to account
2653 * for all the unfolded characters, and because for UTF, the
2654 * string will already have been folded earlier in the
2655 * compilation process */
2657 if ((foldlen = is_MULTI_CHAR_FOLD_utf8_safe(uc, e))) {
2658 foldlen -= UTF8SKIP(uc);
2661 else if ((foldlen = is_MULTI_CHAR_FOLD_latin1_safe(uc, e))) {
2666 /* The current character (and any potential folds) should be added
2667 * to the possible matching characters for this position in this
2671 U8 folded= folder[ (U8) uvc ];
2672 if ( !trie->charmap[ folded ] ) {
2673 trie->charmap[ folded ]=( ++trie->uniquecharcount );
2674 TRIE_STORE_REVCHAR( folded );
2677 if ( !trie->charmap[ uvc ] ) {
2678 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
2679 TRIE_STORE_REVCHAR( uvc );
2682 /* store the codepoint in the bitmap, and its folded
2684 TRIE_BITMAP_SET_FOLDED(trie, uvc, folder);
2685 set_bit = 0; /* We've done our bit :-) */
2689 /* XXX We could come up with the list of code points that fold
2690 * to this using PL_utf8_foldclosures, except not for
2691 * multi-char folds, as there may be multiple combinations
2692 * there that could work, which needs to wait until runtime to
2693 * resolve (The comment about LIGATURE FFI above is such an
2698 widecharmap = newHV();
2700 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
2703 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%" UVXf, uvc );
2705 if ( !SvTRUE( *svpp ) ) {
2706 sv_setiv( *svpp, ++trie->uniquecharcount );
2707 TRIE_STORE_REVCHAR(uvc);
2710 } /* end loop through characters in this branch of the trie */
2712 /* We take the min and max for this branch and combine to find the min
2713 * and max for all branches processed so far */
2714 if( cur == first ) {
2715 trie->minlen = minchars;
2716 trie->maxlen = maxchars;
2717 } else if (minchars < trie->minlen) {
2718 trie->minlen = minchars;
2719 } else if (maxchars > trie->maxlen) {
2720 trie->maxlen = maxchars;
2722 } /* end first pass */
2723 DEBUG_TRIE_COMPILE_r(
2724 Perl_re_indentf( aTHX_
2725 "TRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
2727 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
2728 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
2729 (int)trie->minlen, (int)trie->maxlen )
2733 We now know what we are dealing with in terms of unique chars and
2734 string sizes so we can calculate how much memory a naive
2735 representation using a flat table will take. If it's over a reasonable
2736 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
2737 conservative but potentially much slower representation using an array
2740 At the end we convert both representations into the same compressed
2741 form that will be used in regexec.c for matching with. The latter
2742 is a form that cannot be used to construct with but has memory
2743 properties similar to the list form and access properties similar
2744 to the table form making it both suitable for fast searches and
2745 small enough that its feasable to store for the duration of a program.
2747 See the comment in the code where the compressed table is produced
2748 inplace from the flat tabe representation for an explanation of how
2749 the compression works.
2754 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
2757 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1)
2758 > SvIV(re_trie_maxbuff) )
2761 Second Pass -- Array Of Lists Representation
2763 Each state will be represented by a list of charid:state records
2764 (reg_trie_trans_le) the first such element holds the CUR and LEN
2765 points of the allocated array. (See defines above).
2767 We build the initial structure using the lists, and then convert
2768 it into the compressed table form which allows faster lookups
2769 (but cant be modified once converted).
2772 STRLEN transcount = 1;
2774 DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_ "Compiling trie using list compiler\n",
2777 trie->states = (reg_trie_state *)
2778 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2779 sizeof(reg_trie_state) );
2783 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2785 regnode *noper = NEXTOPER( cur );
2786 U32 state = 1; /* required init */
2787 U16 charid = 0; /* sanity init */
2788 U32 wordlen = 0; /* required init */
2790 if (OP(noper) == NOTHING) {
2791 regnode *noper_next= regnext(noper);
2792 if (noper_next < tail)
2796 if ( noper < tail && ( OP(noper) == flags || ( flags == EXACTFU && OP(noper) == EXACTFU_SS ) ) ) {
2797 const U8 *uc= (U8*)STRING(noper);
2798 const U8 *e= uc + STR_LEN(noper);
2800 for ( ; uc < e ; uc += len ) {
2805 charid = trie->charmap[ uvc ];
2807 SV** const svpp = hv_fetch( widecharmap,
2814 charid=(U16)SvIV( *svpp );
2817 /* charid is now 0 if we dont know the char read, or
2818 * nonzero if we do */
2825 if ( !trie->states[ state ].trans.list ) {
2826 TRIE_LIST_NEW( state );
2829 check <= TRIE_LIST_USED( state );
2832 if ( TRIE_LIST_ITEM( state, check ).forid
2835 newstate = TRIE_LIST_ITEM( state, check ).newstate;
2840 newstate = next_alloc++;
2841 prev_states[newstate] = state;
2842 TRIE_LIST_PUSH( state, charid, newstate );
2847 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %" IVdf, uvc );
2851 TRIE_HANDLE_WORD(state);
2853 } /* end second pass */
2855 /* next alloc is the NEXT state to be allocated */
2856 trie->statecount = next_alloc;
2857 trie->states = (reg_trie_state *)
2858 PerlMemShared_realloc( trie->states,
2860 * sizeof(reg_trie_state) );
2862 /* and now dump it out before we compress it */
2863 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
2864 revcharmap, next_alloc,
2868 trie->trans = (reg_trie_trans *)
2869 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
2876 for( state=1 ; state < next_alloc ; state ++ ) {
2880 DEBUG_TRIE_COMPILE_MORE_r(
2881 Perl_re_printf( aTHX_ "tp: %d zp: %d ",tp,zp)
2885 if (trie->states[state].trans.list) {
2886 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
2890 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
2891 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
2892 if ( forid < minid ) {
2894 } else if ( forid > maxid ) {
2898 if ( transcount < tp + maxid - minid + 1) {
2900 trie->trans = (reg_trie_trans *)
2901 PerlMemShared_realloc( trie->trans,
2903 * sizeof(reg_trie_trans) );
2904 Zero( trie->trans + (transcount / 2),
2908 base = trie->uniquecharcount + tp - minid;
2909 if ( maxid == minid ) {
2911 for ( ; zp < tp ; zp++ ) {
2912 if ( ! trie->trans[ zp ].next ) {
2913 base = trie->uniquecharcount + zp - minid;
2914 trie->trans[ zp ].next = TRIE_LIST_ITEM( state,
2916 trie->trans[ zp ].check = state;
2922 trie->trans[ tp ].next = TRIE_LIST_ITEM( state,
2924 trie->trans[ tp ].check = state;
2929 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
2930 const U32 tid = base
2931 - trie->uniquecharcount
2932 + TRIE_LIST_ITEM( state, idx ).forid;
2933 trie->trans[ tid ].next = TRIE_LIST_ITEM( state,
2935 trie->trans[ tid ].check = state;
2937 tp += ( maxid - minid + 1 );
2939 Safefree(trie->states[ state ].trans.list);
2942 DEBUG_TRIE_COMPILE_MORE_r(
2943 Perl_re_printf( aTHX_ " base: %d\n",base);
2946 trie->states[ state ].trans.base=base;
2948 trie->lasttrans = tp + 1;
2952 Second Pass -- Flat Table Representation.
2954 we dont use the 0 slot of either trans[] or states[] so we add 1 to
2955 each. We know that we will need Charcount+1 trans at most to store
2956 the data (one row per char at worst case) So we preallocate both
2957 structures assuming worst case.
2959 We then construct the trie using only the .next slots of the entry
2962 We use the .check field of the first entry of the node temporarily
2963 to make compression both faster and easier by keeping track of how
2964 many non zero fields are in the node.
2966 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
2969 There are two terms at use here: state as a TRIE_NODEIDX() which is
2970 a number representing the first entry of the node, and state as a
2971 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1)
2972 and TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3)
2973 if there are 2 entrys per node. eg:
2981 The table is internally in the right hand, idx form. However as we
2982 also have to deal with the states array which is indexed by nodenum
2983 we have to use TRIE_NODENUM() to convert.
2986 DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_ "Compiling trie using table compiler\n",
2989 trie->trans = (reg_trie_trans *)
2990 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
2991 * trie->uniquecharcount + 1,
2992 sizeof(reg_trie_trans) );
2993 trie->states = (reg_trie_state *)
2994 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2995 sizeof(reg_trie_state) );
2996 next_alloc = trie->uniquecharcount + 1;
2999 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
3001 regnode *noper = NEXTOPER( cur );
3003 U32 state = 1; /* required init */
3005 U16 charid = 0; /* sanity init */
3006 U32 accept_state = 0; /* sanity init */
3008 U32 wordlen = 0; /* required init */
3010 if (OP(noper) == NOTHING) {
3011 regnode *noper_next= regnext(noper);
3012 if (noper_next < tail)
3016 if ( noper < tail && ( OP(noper) == flags || ( flags == EXACTFU && OP(noper) == EXACTFU_SS ) ) ) {
3017 const U8 *uc= (U8*)STRING(noper);
3018 const U8 *e= uc + STR_LEN(noper);
3020 for ( ; uc < e ; uc += len ) {
3025 charid = trie->charmap[ uvc ];
3027 SV* const * const svpp = hv_fetch( widecharmap,
3031 charid = svpp ? (U16)SvIV(*svpp) : 0;
3035 if ( !trie->trans[ state + charid ].next ) {
3036 trie->trans[ state + charid ].next = next_alloc;
3037 trie->trans[ state ].check++;
3038 prev_states[TRIE_NODENUM(next_alloc)]
3039 = TRIE_NODENUM(state);
3040 next_alloc += trie->uniquecharcount;
3042 state = trie->trans[ state + charid ].next;
3044 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %" IVdf, uvc );
3046 /* charid is now 0 if we dont know the char read, or
3047 * nonzero if we do */
3050 accept_state = TRIE_NODENUM( state );
3051 TRIE_HANDLE_WORD(accept_state);
3053 } /* end second pass */
3055 /* and now dump it out before we compress it */
3056 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
3058 next_alloc, depth+1));
3062 * Inplace compress the table.*
3064 For sparse data sets the table constructed by the trie algorithm will
3065 be mostly 0/FAIL transitions or to put it another way mostly empty.
3066 (Note that leaf nodes will not contain any transitions.)
3068 This algorithm compresses the tables by eliminating most such
3069 transitions, at the cost of a modest bit of extra work during lookup:
3071 - Each states[] entry contains a .base field which indicates the
3072 index in the state[] array wheres its transition data is stored.
3074 - If .base is 0 there are no valid transitions from that node.
3076 - If .base is nonzero then charid is added to it to find an entry in
3079 -If trans[states[state].base+charid].check!=state then the
3080 transition is taken to be a 0/Fail transition. Thus if there are fail
3081 transitions at the front of the node then the .base offset will point
3082 somewhere inside the previous nodes data (or maybe even into a node
3083 even earlier), but the .check field determines if the transition is
3087 The following process inplace converts the table to the compressed
3088 table: We first do not compress the root node 1,and mark all its
3089 .check pointers as 1 and set its .base pointer as 1 as well. This
3090 allows us to do a DFA construction from the compressed table later,
3091 and ensures that any .base pointers we calculate later are greater
3094 - We set 'pos' to indicate the first entry of the second node.
3096 - We then iterate over the columns of the node, finding the first and
3097 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
3098 and set the .check pointers accordingly, and advance pos
3099 appropriately and repreat for the next node. Note that when we copy
3100 the next pointers we have to convert them from the original
3101 NODEIDX form to NODENUM form as the former is not valid post
3104 - If a node has no transitions used we mark its base as 0 and do not
3105 advance the pos pointer.
3107 - If a node only has one transition we use a second pointer into the
3108 structure to fill in allocated fail transitions from other states.
3109 This pointer is independent of the main pointer and scans forward
3110 looking for null transitions that are allocated to a state. When it
3111 finds one it writes the single transition into the "hole". If the
3112 pointer doesnt find one the single transition is appended as normal.
3114 - Once compressed we can Renew/realloc the structures to release the
3117 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
3118 specifically Fig 3.47 and the associated pseudocode.
3122 const U32 laststate = TRIE_NODENUM( next_alloc );
3125 trie->statecount = laststate;
3127 for ( state = 1 ; state < laststate ; state++ ) {
3129 const U32 stateidx = TRIE_NODEIDX( state );
3130 const U32 o_used = trie->trans[ stateidx ].check;
3131 U32 used = trie->trans[ stateidx ].check;
3132 trie->trans[ stateidx ].check = 0;
3135 used && charid < trie->uniquecharcount;
3138 if ( flag || trie->trans[ stateidx + charid ].next ) {
3139 if ( trie->trans[ stateidx + charid ].next ) {
3141 for ( ; zp < pos ; zp++ ) {
3142 if ( ! trie->trans[ zp ].next ) {
3146 trie->states[ state ].trans.base
3148 + trie->uniquecharcount
3150 trie->trans[ zp ].next
3151 = SAFE_TRIE_NODENUM( trie->trans[ stateidx
3153 trie->trans[ zp ].check = state;
3154 if ( ++zp > pos ) pos = zp;
3161 trie->states[ state ].trans.base
3162 = pos + trie->uniquecharcount - charid ;
3164 trie->trans[ pos ].next
3165 = SAFE_TRIE_NODENUM(
3166 trie->trans[ stateidx + charid ].next );
3167 trie->trans[ pos ].check = state;
3172 trie->lasttrans = pos + 1;
3173 trie->states = (reg_trie_state *)
3174 PerlMemShared_realloc( trie->states, laststate
3175 * sizeof(reg_trie_state) );
3176 DEBUG_TRIE_COMPILE_MORE_r(
3177 Perl_re_indentf( aTHX_ "Alloc: %d Orig: %" IVdf " elements, Final:%" IVdf ". Savings of %%%5.2f\n",
3179 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount
3183 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
3186 } /* end table compress */
3188 DEBUG_TRIE_COMPILE_MORE_r(
3189 Perl_re_indentf( aTHX_ "Statecount:%" UVxf " Lasttrans:%" UVxf "\n",
3191 (UV)trie->statecount,
3192 (UV)trie->lasttrans)
3194 /* resize the trans array to remove unused space */
3195 trie->trans = (reg_trie_trans *)
3196 PerlMemShared_realloc( trie->trans, trie->lasttrans
3197 * sizeof(reg_trie_trans) );
3199 { /* Modify the program and insert the new TRIE node */
3200 U8 nodetype =(U8)(flags & 0xFF);
3204 regnode *optimize = NULL;
3205 #ifdef RE_TRACK_PATTERN_OFFSETS
3208 U32 mjd_nodelen = 0;
3209 #endif /* RE_TRACK_PATTERN_OFFSETS */
3210 #endif /* DEBUGGING */
3212 This means we convert either the first branch or the first Exact,
3213 depending on whether the thing following (in 'last') is a branch
3214 or not and whther first is the startbranch (ie is it a sub part of
3215 the alternation or is it the whole thing.)
3216 Assuming its a sub part we convert the EXACT otherwise we convert
3217 the whole branch sequence, including the first.
3219 /* Find the node we are going to overwrite */
3220 if ( first != startbranch || OP( last ) == BRANCH ) {
3221 /* branch sub-chain */
3222 NEXT_OFF( first ) = (U16)(last - first);
3223 #ifdef RE_TRACK_PATTERN_OFFSETS
3225 mjd_offset= Node_Offset((convert));
3226 mjd_nodelen= Node_Length((convert));
3229 /* whole branch chain */
3231 #ifdef RE_TRACK_PATTERN_OFFSETS
3234 const regnode *nop = NEXTOPER( convert );
3235 mjd_offset= Node_Offset((nop));
3236 mjd_nodelen= Node_Length((nop));
3240 Perl_re_indentf( aTHX_ "MJD offset:%" UVuf " MJD length:%" UVuf "\n",
3242 (UV)mjd_offset, (UV)mjd_nodelen)
3245 /* But first we check to see if there is a common prefix we can
3246 split out as an EXACT and put in front of the TRIE node. */
3247 trie->startstate= 1;
3248 if ( trie->bitmap && !widecharmap && !trie->jump ) {
3249 /* we want to find the first state that has more than
3250 * one transition, if that state is not the first state
3251 * then we have a common prefix which we can remove.
3254 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
3256 I32 first_ofs = -1; /* keeps track of the ofs of the first
3257 transition, -1 means none */
3259 const U32 base = trie->states[ state ].trans.base;
3261 /* does this state terminate an alternation? */
3262 if ( trie->states[state].wordnum )
3265 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
3266 if ( ( base + ofs >= trie->uniquecharcount ) &&
3267 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
3268 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
3270 if ( ++count > 1 ) {
3271 /* we have more than one transition */
3274 /* if this is the first state there is no common prefix
3275 * to extract, so we can exit */
3276 if ( state == 1 ) break;
3277 tmp = av_fetch( revcharmap, ofs, 0);
3278 ch = (U8*)SvPV_nolen_const( *tmp );
3280 /* if we are on count 2 then we need to initialize the
3281 * bitmap, and store the previous char if there was one
3284 /* clear the bitmap */
3285 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
3287 Perl_re_indentf( aTHX_ "New Start State=%" UVuf " Class: [",
3290 if (first_ofs >= 0) {
3291 SV ** const tmp = av_fetch( revcharmap, first_ofs, 0);
3292 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
3294 TRIE_BITMAP_SET_FOLDED(trie,*ch,folder);
3296 Perl_re_printf( aTHX_ "%s", (char*)ch)
3300 /* store the current firstchar in the bitmap */
3301 TRIE_BITMAP_SET_FOLDED(trie,*ch,folder);
3302 DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "%s", ch));
3308 /* This state has only one transition, its transition is part
3309 * of a common prefix - we need to concatenate the char it
3310 * represents to what we have so far. */
3311 SV **tmp = av_fetch( revcharmap, first_ofs, 0);
3313 char *ch = SvPV( *tmp, len );
3315 SV *sv=sv_newmortal();
3316 Perl_re_indentf( aTHX_ "Prefix State: %" UVuf " Ofs:%" UVuf " Char='%s'\n",
3318 (UV)state, (UV)first_ofs,
3319 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
3320 PL_colors[0], PL_colors[1],
3321 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
3322 PERL_PV_ESCAPE_FIRSTCHAR
3327 OP( convert ) = nodetype;
3328 str=STRING(convert);
3331 STR_LEN(convert) += len;
3337 DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "]\n"));
3342 trie->prefixlen = (state-1);
3344 regnode *n = convert+NODE_SZ_STR(convert);
3345 NEXT_OFF(convert) = NODE_SZ_STR(convert);
3346 trie->startstate = state;
3347 trie->minlen -= (state - 1);
3348 trie->maxlen -= (state - 1);
3350 /* At least the UNICOS C compiler choked on this
3351 * being argument to DEBUG_r(), so let's just have
3354 #ifdef PERL_EXT_RE_BUILD
3360 regnode *fix = convert;
3361 U32 word = trie->wordcount;
3363 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
3364 while( ++fix < n ) {
3365 Set_Node_Offset_Length(fix, 0, 0);
3368 SV ** const tmp = av_fetch( trie_words, word, 0 );
3370 if ( STR_LEN(convert) <= SvCUR(*tmp) )
3371 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
3373 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
3381 NEXT_OFF(convert) = (U16)(tail - convert);
3382 DEBUG_r(optimize= n);
3388 if ( trie->maxlen ) {
3389 NEXT_OFF( convert ) = (U16)(tail - convert);
3390 ARG_SET( convert, data_slot );
3391 /* Store the offset to the first unabsorbed branch in
3392 jump[0], which is otherwise unused by the jump logic.
3393 We use this when dumping a trie and during optimisation. */
3395 trie->jump[0] = (U16)(nextbranch - convert);
3397 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
3398 * and there is a bitmap
3399 * and the first "jump target" node we found leaves enough room
3400 * then convert the TRIE node into a TRIEC node, with the bitmap
3401 * embedded inline in the opcode - this is hypothetically faster.
3403 if ( !trie->states[trie->startstate].wordnum
3405 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
3407 OP( convert ) = TRIEC;
3408 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
3409 PerlMemShared_free(trie->bitmap);
3412 OP( convert ) = TRIE;
3414 /* store the type in the flags */
3415 convert->flags = nodetype;
3419 + regarglen[ OP( convert ) ];
3421 /* XXX We really should free up the resource in trie now,
3422 as we won't use them - (which resources?) dmq */
3424 /* needed for dumping*/
3425 DEBUG_r(if (optimize) {
3426 regnode *opt = convert;
3428 while ( ++opt < optimize) {
3429 Set_Node_Offset_Length(opt,0,0);
3432 Try to clean up some of the debris left after the
3435 while( optimize < jumper ) {
3436 mjd_nodelen += Node_Length((optimize));
3437 OP( optimize ) = OPTIMIZED;
3438 Set_Node_Offset_Length(optimize,0,0);
3441 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
3443 } /* end node insert */
3445 /* Finish populating the prev field of the wordinfo array. Walk back
3446 * from each accept state until we find another accept state, and if
3447 * so, point the first word's .prev field at the second word. If the
3448 * second already has a .prev field set, stop now. This will be the
3449 * case either if we've already processed that word's accept state,
3450 * or that state had multiple words, and the overspill words were
3451 * already linked up earlier.
3458 for (word=1; word <= trie->wordcount; word++) {
3460 if (trie->wordinfo[word].prev)
3462 state = trie->wordinfo[word].accept;
3464 state = prev_states[state];
3467 prev = trie->states[state].wordnum;
3471 trie->wordinfo[word].prev = prev;
3473 Safefree(prev_states);
3477 /* and now dump out the compressed format */
3478 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
3480 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
3482 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
3483 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
3485 SvREFCNT_dec_NN(revcharmap);
3489 : trie->startstate>1
3495 S_construct_ahocorasick_from_trie(pTHX_ RExC_state_t *pRExC_state, regnode *source, U32 depth)
3497 /* The Trie is constructed and compressed now so we can build a fail array if
3500 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and
3502 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi,
3506 We find the fail state for each state in the trie, this state is the longest
3507 proper suffix of the current state's 'word' that is also a proper prefix of
3508 another word in our trie. State 1 represents the word '' and is thus the
3509 default fail state. This allows the DFA not to have to restart after its
3510 tried and failed a word at a given point, it simply continues as though it
3511 had been matching the other word in the first place.
3513 'abcdgu'=~/abcdefg|cdgu/
3514 When we get to 'd' we are still matching the first word, we would encounter
3515 'g' which would fail, which would bring us to the state representing 'd' in
3516 the second word where we would try 'g' and succeed, proceeding to match
3519 /* add a fail transition */
3520 const U32 trie_offset = ARG(source);
3521 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
3523 const U32 ucharcount = trie->uniquecharcount;
3524 const U32 numstates = trie->statecount;
3525 const U32 ubound = trie->lasttrans + ucharcount;
3529 U32 base = trie->states[ 1 ].trans.base;
3532 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("T"));
3534 GET_RE_DEBUG_FLAGS_DECL;
3536 PERL_ARGS_ASSERT_CONSTRUCT_AHOCORASICK_FROM_TRIE;
3537 PERL_UNUSED_CONTEXT;
3539 PERL_UNUSED_ARG(depth);
3542 if ( OP(source) == TRIE ) {
3543 struct regnode_1 *op = (struct regnode_1 *)
3544 PerlMemShared_calloc(1, sizeof(struct regnode_1));
3545 StructCopy(source,op,struct regnode_1);
3546 stclass = (regnode *)op;
3548 struct regnode_charclass *op = (struct regnode_charclass *)
3549 PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
3550 StructCopy(source,op,struct regnode_charclass);
3551 stclass = (regnode *)op;
3553 OP(stclass)+=2; /* convert the TRIE type to its AHO-CORASICK equivalent */
3555 ARG_SET( stclass, data_slot );
3556 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
3557 RExC_rxi->data->data[ data_slot ] = (void*)aho;
3558 aho->trie=trie_offset;
3559 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
3560 Copy( trie->states, aho->states, numstates, reg_trie_state );
3561 Newxz( q, numstates, U32);
3562 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
3565 /* initialize fail[0..1] to be 1 so that we always have
3566 a valid final fail state */
3567 fail[ 0 ] = fail[ 1 ] = 1;
3569 for ( charid = 0; charid < ucharcount ; charid++ ) {
3570 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
3572 q[ q_write ] = newstate;
3573 /* set to point at the root */
3574 fail[ q[ q_write++ ] ]=1;
3577 while ( q_read < q_write) {
3578 const U32 cur = q[ q_read++ % numstates ];
3579 base = trie->states[ cur ].trans.base;
3581 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
3582 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
3584 U32 fail_state = cur;
3587 fail_state = fail[ fail_state ];
3588 fail_base = aho->states[ fail_state ].trans.base;
3589 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
3591 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
3592 fail[ ch_state ] = fail_state;
3593 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
3595 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
3597 q[ q_write++ % numstates] = ch_state;
3601 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
3602 when we fail in state 1, this allows us to use the
3603 charclass scan to find a valid start char. This is based on the principle
3604 that theres a good chance the string being searched contains lots of stuff
3605 that cant be a start char.
3607 fail[ 0 ] = fail[ 1 ] = 0;
3608 DEBUG_TRIE_COMPILE_r({
3609 Perl_re_indentf( aTHX_ "Stclass Failtable (%" UVuf " states): 0",
3610 depth, (UV)numstates
3612 for( q_read=1; q_read<numstates; q_read++ ) {
3613 Perl_re_printf( aTHX_ ", %" UVuf, (UV)fail[q_read]);
3615 Perl_re_printf( aTHX_ "\n");
3618 /*RExC_seen |= REG_TRIEDFA_SEEN;*/
3623 #define DEBUG_PEEP(str,scan,depth) \
3624 DEBUG_OPTIMISE_r({if (scan){ \
3625 regnode *Next = regnext(scan); \
3626 regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);\
3627 Perl_re_indentf( aTHX_ "" str ">%3d: %s (%d)", \
3628 depth, REG_NODE_NUM(scan), SvPV_nolen_const(RExC_mysv),\
3629 Next ? (REG_NODE_NUM(Next)) : 0 );\
3630 DEBUG_SHOW_STUDY_FLAGS(flags," [ ","]");\
3631 Perl_re_printf( aTHX_ "\n"); \
3634 /* The below joins as many adjacent EXACTish nodes as possible into a single
3635 * one. The regop may be changed if the node(s) contain certain sequences that
3636 * require special handling. The joining is only done if:
3637 * 1) there is room in the current conglomerated node to entirely contain the
3639 * 2) they are the exact same node type
3641 * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
3642 * these get optimized out
3644 * XXX khw thinks this should be enhanced to fill EXACT (at least) nodes as full
3645 * as possible, even if that means splitting an existing node so that its first
3646 * part is moved to the preceeding node. This would maximise the efficiency of
3647 * memEQ during matching. Elsewhere in this file, khw proposes splitting
3648 * EXACTFish nodes into portions that don't change under folding vs those that
3649 * do. Those portions that don't change may be the only things in the pattern that
3650 * could be used to find fixed and floating strings.
3652 * If a node is to match under /i (folded), the number of characters it matches
3653 * can be different than its character length if it contains a multi-character
3654 * fold. *min_subtract is set to the total delta number of characters of the
3657 * And *unfolded_multi_char is set to indicate whether or not the node contains
3658 * an unfolded multi-char fold. This happens when whether the fold is valid or
3659 * not won't be known until runtime; namely for EXACTF nodes that contain LATIN
3660 * SMALL LETTER SHARP S, as only if the target string being matched against
3661 * turns out to be UTF-8 is that fold valid; and also for EXACTFL nodes whose
3662 * folding rules depend on the locale in force at runtime. (Multi-char folds
3663 * whose components are all above the Latin1 range are not run-time locale
3664 * dependent, and have already been folded by the time this function is
3667 * This is as good a place as any to discuss the design of handling these
3668 * multi-character fold sequences. It's been wrong in Perl for a very long
3669 * time. There are three code points in Unicode whose multi-character folds
3670 * were long ago discovered to mess things up. The previous designs for
3671 * dealing with these involved assigning a special node for them. This
3672 * approach doesn't always work, as evidenced by this example:
3673 * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
3674 * Both sides fold to "sss", but if the pattern is parsed to create a node that
3675 * would match just the \xDF, it won't be able to handle the case where a
3676 * successful match would have to cross the node's boundary. The new approach
3677 * that hopefully generally solves the problem generates an EXACTFU_SS node
3678 * that is "sss" in this case.
3680 * It turns out that there are problems with all multi-character folds, and not
3681 * just these three. Now the code is general, for all such cases. The
3682 * approach taken is:
3683 * 1) This routine examines each EXACTFish node that could contain multi-
3684 * character folded sequences. Since a single character can fold into
3685 * such a sequence, the minimum match length for this node is less than
3686 * the number of characters in the node. This routine returns in
3687 * *min_subtract how many characters to subtract from the the actual
3688 * length of the string to get a real minimum match length; it is 0 if
3689 * there are no multi-char foldeds. This delta is used by the caller to
3690 * adjust the min length of the match, and the delta between min and max,
3691 * so that the optimizer doesn't reject these possibilities based on size
3693 * 2) For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS
3694 * is used for an EXACTFU node that contains at least one "ss" sequence in
3695 * it. For non-UTF-8 patterns and strings, this is the only case where
3696 * there is a possible fold length change. That means that a regular
3697 * EXACTFU node without UTF-8 involvement doesn't have to concern itself
3698 * with length changes, and so can be processed faster. regexec.c takes
3699 * advantage of this. Generally, an EXACTFish node that is in UTF-8 is
3700 * pre-folded by regcomp.c (except EXACTFL, some of whose folds aren't
3701 * known until runtime). This saves effort in regex matching. However,
3702 * the pre-folding isn't done for non-UTF8 patterns because the fold of
3703 * the MICRO SIGN requires UTF-8, and we don't want to slow things down by
3704 * forcing the pattern into UTF8 unless necessary. Also what EXACTF (and,
3705 * again, EXACTFL) nodes fold to isn't known until runtime. The fold
3706 * possibilities for the non-UTF8 patterns are quite simple, except for
3707 * the sharp s. All the ones that don't involve a UTF-8 target string are
3708 * members of a fold-pair, and arrays are set up for all of them so that
3709 * the other member of the pair can be found quickly. Code elsewhere in
3710 * this file makes sure that in EXACTFU nodes, the sharp s gets folded to
3711 * 'ss', even if the pattern isn't UTF-8. This avoids the issues
3712 * described in the next item.
3713 * 3) A problem remains for unfolded multi-char folds. (These occur when the
3714 * validity of the fold won't be known until runtime, and so must remain
3715 * unfolded for now. This happens for the sharp s in EXACTF and EXACTFA
3716 * nodes when the pattern isn't in UTF-8. (Note, BTW, that there cannot
3717 * be an EXACTF node with a UTF-8 pattern.) They also occur for various
3718 * folds in EXACTFL nodes, regardless of the UTF-ness of the pattern.)
3719 * The reason this is a problem is that the optimizer part of regexec.c
3720 * (probably unwittingly, in Perl_regexec_flags()) makes an assumption
3721 * that a character in the pattern corresponds to at most a single
3722 * character in the target string. (And I do mean character, and not byte
3723 * here, unlike other parts of the documentation that have never been
3724 * updated to account for multibyte Unicode.) sharp s in EXACTF and
3725 * EXACTFL nodes can match the two character string 'ss'; in EXACTFA nodes
3726 * it can match "\x{17F}\x{17F}". These, along with other ones in EXACTFL
3727 * nodes, violate the assumption, and they are the only instances where it
3728 * is violated. I'm reluctant to try to change the assumption, as the
3729 * code involved is impenetrable to me (khw), so instead the code here
3730 * punts. This routine examines EXACTFL nodes, and (when the pattern
3731 * isn't UTF-8) EXACTF and EXACTFA for such unfolded folds, and returns a
3732 * boolean indicating whether or not the node contains such a fold. When
3733 * it is true, the caller sets a flag that later causes the optimizer in
3734 * this file to not set values for the floating and fixed string lengths,
3735 * and thus avoids the optimizer code in regexec.c that makes the invalid
3736 * assumption. Thus, there is no optimization based on string lengths for
3737 * EXACTFL nodes that contain these few folds, nor for non-UTF8-pattern
3738 * EXACTF and EXACTFA nodes that contain the sharp s. (The reason the
3739 * assumption is wrong only in these cases is that all other non-UTF-8
3740 * folds are 1-1; and, for UTF-8 patterns, we pre-fold all other folds to
3741 * their expanded versions. (Again, we can't prefold sharp s to 'ss' in
3742 * EXACTF nodes because we don't know at compile time if it actually
3743 * matches 'ss' or not. For EXACTF nodes it will match iff the target
3744 * string is in UTF-8. This is in contrast to EXACTFU nodes, where it
3745 * always matches; and EXACTFA where it never does. In an EXACTFA node in
3746 * a UTF-8 pattern, sharp s is folded to "\x{17F}\x{17F}, avoiding the
3747 * problem; but in a non-UTF8 pattern, folding it to that above-Latin1
3748 * string would require the pattern to be forced into UTF-8, the overhead
3749 * of which we want to avoid. Similarly the unfolded multi-char folds in
3750 * EXACTFL nodes will match iff the locale at the time of match is a UTF-8
3753 * Similarly, the code that generates tries doesn't currently handle
3754 * not-already-folded multi-char folds, and it looks like a pain to change
3755 * that. Therefore, trie generation of EXACTFA nodes with the sharp s
3756 * doesn't work. Instead, such an EXACTFA is turned into a new regnode,
3757 * EXACTFA_NO_TRIE, which the trie code knows not to handle. Most people
3758 * using /iaa matching will be doing so almost entirely with ASCII
3759 * strings, so this should rarely be encountered in practice */
3761 #define JOIN_EXACT(scan,min_subtract,unfolded_multi_char, flags) \
3762 if (PL_regkind[OP(scan)] == EXACT) \
3763 join_exact(pRExC_state,(scan),(min_subtract),unfolded_multi_char, (flags),NULL,depth+1)
3766 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan,
3767 UV *min_subtract, bool *unfolded_multi_char,
3768 U32 flags,regnode *val, U32 depth)
3770 /* Merge several consecutive EXACTish nodes into one. */
3771 regnode *n = regnext(scan);
3773 regnode *next = scan + NODE_SZ_STR(scan);
3777 regnode *stop = scan;
3778 GET_RE_DEBUG_FLAGS_DECL;
3780 PERL_UNUSED_ARG(depth);
3783 PERL_ARGS_ASSERT_JOIN_EXACT;
3784 #ifndef EXPERIMENTAL_INPLACESCAN
3785 PERL_UNUSED_ARG(flags);
3786 PERL_UNUSED_ARG(val);
3788 DEBUG_PEEP("join",scan,depth);
3790 /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
3791 * EXACT ones that are mergeable to the current one. */
3793 && (PL_regkind[OP(n)] == NOTHING
3794 || (stringok && OP(n) == OP(scan)))
3796 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
3799 if (OP(n) == TAIL || n > next)
3801 if (PL_regkind[OP(n)] == NOTHING) {
3802 DEBUG_PEEP("skip:",n,depth);
3803 NEXT_OFF(scan) += NEXT_OFF(n);
3804 next = n + NODE_STEP_REGNODE;
3811 else if (stringok) {
3812 const unsigned int oldl = STR_LEN(scan);
3813 regnode * const nnext = regnext(n);
3815 /* XXX I (khw) kind of doubt that this works on platforms (should
3816 * Perl ever run on one) where U8_MAX is above 255 because of lots
3817 * of other assumptions */
3818 /* Don't join if the sum can't fit into a single node */
3819 if (oldl + STR_LEN(n) > U8_MAX)
3822 DEBUG_PEEP("merg",n,depth);
3825 NEXT_OFF(scan) += NEXT_OFF(n);
3826 STR_LEN(scan) += STR_LEN(n);
3827 next = n + NODE_SZ_STR(n);
3828 /* Now we can overwrite *n : */
3829 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
3837 #ifdef EXPERIMENTAL_INPLACESCAN
3838 if (flags && !NEXT_OFF(n)) {
3839 DEBUG_PEEP("atch", val, depth);
3840 if (reg_off_by_arg[OP(n)]) {
3841 ARG_SET(n, val - n);
3844 NEXT_OFF(n) = val - n;
3852 *unfolded_multi_char = FALSE;
3854 /* Here, all the adjacent mergeable EXACTish nodes have been merged. We
3855 * can now analyze for sequences of problematic code points. (Prior to
3856 * this final joining, sequences could have been split over boundaries, and
3857 * hence missed). The sequences only happen in folding, hence for any
3858 * non-EXACT EXACTish node */
3859 if (OP(scan) != EXACT && OP(scan) != EXACTL) {
3860 U8* s0 = (U8*) STRING(scan);
3862 U8* s_end = s0 + STR_LEN(scan);
3864 int total_count_delta = 0; /* Total delta number of characters that
3865 multi-char folds expand to */
3867 /* One pass is made over the node's string looking for all the
3868 * possibilities. To avoid some tests in the loop, there are two main
3869 * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
3874 if (OP(scan) == EXACTFL) {
3877 /* An EXACTFL node would already have been changed to another
3878 * node type unless there is at least one character in it that
3879 * is problematic; likely a character whose fold definition
3880 * won't be known until runtime, and so has yet to be folded.
3881 * For all but the UTF-8 locale, folds are 1-1 in length, but
3882 * to handle the UTF-8 case, we need to create a temporary
3883 * folded copy using UTF-8 locale rules in order to analyze it.
3884 * This is because our macros that look to see if a sequence is
3885 * a multi-char fold assume everything is folded (otherwise the
3886 * tests in those macros would be too complicated and slow).
3887 * Note that here, the non-problematic folds will have already
3888 * been done, so we can just copy such characters. We actually
3889 * don't completely fold the EXACTFL string. We skip the
3890 * unfolded multi-char folds, as that would just create work
3891 * below to figure out the size they already are */
3893 Newx(folded, UTF8_MAX_FOLD_CHAR_EXPAND * STR_LEN(scan) + 1, U8);
3896 STRLEN s_len = UTF8SKIP(s);
3897 if (! is_PROBLEMATIC_LOCALE_FOLD_utf8(s)) {
3898 Copy(s, d, s_len, U8);
3901 else if (is_FOLDS_TO_MULTI_utf8(s)) {
3902 *unfolded_multi_char = TRUE;
3903 Copy(s, d, s_len, U8);
3906 else if (isASCII(*s)) {
3907 *(d++) = toFOLD(*s);
3911 _toFOLD_utf8_flags(s, s_end, d, &len, FOLD_FLAGS_FULL);
3917 /* Point the remainder of the routine to look at our temporary
3921 } /* End of creating folded copy of EXACTFL string */
3923 /* Examine the string for a multi-character fold sequence. UTF-8
3924 * patterns have all characters pre-folded by the time this code is
3926 while (s < s_end - 1) /* Can stop 1 before the end, as minimum
3927 length sequence we are looking for is 2 */
3929 int count = 0; /* How many characters in a multi-char fold */
3930 int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end);
3931 if (! len) { /* Not a multi-char fold: get next char */
3936 /* Nodes with 'ss' require special handling, except for
3937 * EXACTFA-ish for which there is no multi-char fold to this */
3938 if (len == 2 && *s == 's' && *(s+1) == 's'
3939 && OP(scan) != EXACTFA
3940 && OP(scan) != EXACTFA_NO_TRIE)
3943 if (OP(scan) != EXACTFL) {
3944 OP(scan) = EXACTFU_SS;
3948 else { /* Here is a generic multi-char fold. */
3949 U8* multi_end = s + len;
3951 /* Count how many characters are in it. In the case of
3952 * /aa, no folds which contain ASCII code points are
3953 * allowed, so check for those, and skip if found. */
3954 if (OP(scan) != EXACTFA && OP(scan) != EXACTFA_NO_TRIE) {
3955 count = utf8_length(s, multi_end);
3959 while (s < multi_end) {
3962 goto next_iteration;