This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
bump $ExtUtils::ParseXS::VERSION to 3.29
[perl5.git] / malloc.c
1 /*    malloc.c
2  *
3  */
4
5 /*
6  * 'The Chamber of Records,' said Gimli.  'I guess that is where we now stand.'
7  *
8  *     [p.321 of _The Lord of the Rings_, II/v: "The Bridge of Khazad-Dûm"]
9  */
10
11 /* This file contains Perl's own implementation of the malloc library.
12  * It is used if Configure decides that, on your platform, Perl's
13  * version is better than the OS's, or if you give Configure the
14  * -Dusemymalloc command-line option.
15  */
16
17 /*
18   Here are some notes on configuring Perl's malloc.
19
20   There are two macros which serve as bulk disablers of advanced
21   features of this malloc: NO_FANCY_MALLOC, PLAIN_MALLOC (undef by
22   default).  Look in the list of default values below to understand
23   their exact effect.  Defining NO_FANCY_MALLOC returns malloc.c to the
24   state of the malloc in Perl 5.004.  Additionally defining PLAIN_MALLOC
25   returns it to the state as of Perl 5.000.
26
27   Note that some of the settings below may be ignored in the code based
28   on values of other macros.  The PERL_CORE symbol is only defined when
29   perl itself is being compiled (so malloc can make some assumptions
30   about perl's facilities being available to it).
31
32   Each config option has a short description, followed by its name,
33   default value, and a comment about the default (if applicable).  Some
34   options take a precise value, while the others are just boolean.
35   The boolean ones are listed first.
36
37     # Read configuration settings from malloc_cfg.h
38     HAVE_MALLOC_CFG_H           undef
39
40     # Enable code for an emergency memory pool in $^M.  See perlvar.pod
41     # for a description of $^M.
42     PERL_EMERGENCY_SBRK         !PLAIN_MALLOC
43
44     # Enable code for printing memory statistics.
45     DEBUGGING_MSTATS            !PLAIN_MALLOC
46
47     # Move allocation info for small buckets into separate areas.
48     # Memory optimization (especially for small allocations, of the
49     # less than 64 bytes).  Since perl usually makes a large number
50     # of small allocations, this is usually a win.
51     PACK_MALLOC                 (!PLAIN_MALLOC && !RCHECK)
52
53     # Add one page to big powers of two when calculating bucket size.
54     # This is targeted at big allocations, as are common in image
55     # processing.
56     TWO_POT_OPTIMIZE            !PLAIN_MALLOC
57  
58     # Use intermediate bucket sizes between powers-of-two.  This is
59     # generally a memory optimization, and a (small) speed pessimization.
60     BUCKETS_ROOT2               !NO_FANCY_MALLOC
61
62     # Do not check small deallocations for bad free().  Memory
63     # and speed optimization, error reporting pessimization.
64     IGNORE_SMALL_BAD_FREE       (!NO_FANCY_MALLOC && !RCHECK)
65
66     # Use table lookup to decide in which bucket a given allocation will go.
67     SMALL_BUCKET_VIA_TABLE      !NO_FANCY_MALLOC
68
69     # Use a perl-defined sbrk() instead of the (presumably broken or
70     # missing) system-supplied sbrk().
71     USE_PERL_SBRK               undef
72
73     # Use system malloc() (or calloc() etc.) to emulate sbrk(). Normally
74     # only used with broken sbrk()s.
75     PERL_SBRK_VIA_MALLOC        undef
76
77     # Which allocator to use if PERL_SBRK_VIA_MALLOC
78     SYSTEM_ALLOC(a)             malloc(a)
79
80     # Minimal alignment (in bytes, should be a power of 2) of SYSTEM_ALLOC
81     SYSTEM_ALLOC_ALIGNMENT      MEM_ALIGNBYTES
82
83     # Disable memory overwrite checking with DEBUGGING.  Memory and speed
84     # optimization, error reporting pessimization.
85     NO_RCHECK                   undef
86
87     # Enable memory overwrite checking with DEBUGGING.  Memory and speed
88     # pessimization, error reporting optimization
89     RCHECK                      (DEBUGGING && !NO_RCHECK)
90
91     # Do not overwrite uninit areas with DEBUGGING.  Speed
92     # optimization, error reporting pessimization
93     NO_MFILL                    undef
94
95     # Overwrite uninit areas with DEBUGGING.  Speed
96     # pessimization, error reporting optimization
97     MALLOC_FILL                 (DEBUGGING && !NO_RCHECK && !NO_MFILL)
98
99     # Do not check overwritten uninit areas with DEBUGGING.  Speed
100     # optimization, error reporting pessimization
101     NO_FILL_CHECK               undef
102
103     # Check overwritten uninit areas with DEBUGGING.  Speed
104     # pessimization, error reporting optimization
105     MALLOC_FILL_CHECK           (DEBUGGING && !NO_RCHECK && !NO_FILL_CHECK)
106
107     # Failed allocations bigger than this size croak (if
108     # PERL_EMERGENCY_SBRK is enabled) without touching $^M.  See
109     # perlvar.pod for a description of $^M.
110     BIG_SIZE                     (1<<16)        # 64K
111
112     # Starting from this power of two, add an extra page to the
113     # size of the bucket. This enables optimized allocations of sizes
114     # close to powers of 2.  Note that the value is indexed at 0.
115     FIRST_BIG_POW2              15              # 32K, 16K is used too often
116
117     # Estimate of minimal memory footprint.  malloc uses this value to
118     # request the most reasonable largest blocks of memory from the system.
119     FIRST_SBRK                  (48*1024)
120
121     # Round up sbrk()s to multiples of this.
122     MIN_SBRK                    2048
123
124     # Round up sbrk()s to multiples of this percent of footprint.
125     MIN_SBRK_FRAC               3
126
127     # Round up sbrk()s to multiples of this multiple of 1/1000 of footprint.
128     MIN_SBRK_FRAC1000           (10 * MIN_SBRK_FRAC)
129
130     # Add this much memory to big powers of two to get the bucket size.
131     PERL_PAGESIZE               4096
132
133     # This many sbrk() discontinuities should be tolerated even
134     # from the start without deciding that sbrk() is usually
135     # discontinuous.
136     SBRK_ALLOW_FAILURES         3
137
138     # This many continuous sbrk()s compensate for one discontinuous one.
139     SBRK_FAILURE_PRICE          50
140
141     # Some configurations may ask for 12-byte-or-so allocations which
142     # require 8-byte alignment (?!).  In such situation one needs to
143     # define this to disable 12-byte bucket (will increase memory footprint)
144     STRICT_ALIGNMENT            undef
145
146     # Do not allow configuration of runtime options at runtime
147     NO_MALLOC_DYNAMIC_CFG       undef
148
149     # Do not allow configuration of runtime options via $ENV{PERL_MALLOC_OPT}
150     NO_PERL_MALLOC_ENV          undef
151
152         [The variable consists of ;-separated parts of the form CODE=VALUE
153          with 1-character codes F, M, f, A, P, G, d, a, c for runtime
154          configuration of FIRST_SBRK, MIN_SBRK, MIN_SBRK_FRAC1000,
155          SBRK_ALLOW_FAILURES, SBRK_FAILURE_PRICE, sbrk_goodness,
156          filldead, fillalive, fillcheck.  The last 3 are for DEBUGGING
157          build, and allow switching the tests for free()ed memory read,
158          uninit memory reads, and free()ed memory write.]
159
160   This implementation assumes that calling PerlIO_printf() does not
161   result in any memory allocation calls (used during a panic).
162
163  */
164
165
166 #ifdef HAVE_MALLOC_CFG_H
167 #  include "malloc_cfg.h"
168 #endif
169
170 #ifndef NO_FANCY_MALLOC
171 #  ifndef SMALL_BUCKET_VIA_TABLE
172 #    define SMALL_BUCKET_VIA_TABLE
173 #  endif 
174 #  ifndef BUCKETS_ROOT2
175 #    define BUCKETS_ROOT2
176 #  endif 
177 #  ifndef IGNORE_SMALL_BAD_FREE
178 #    define IGNORE_SMALL_BAD_FREE
179 #  endif 
180 #endif 
181
182 #ifndef PLAIN_MALLOC                    /* Bulk enable features */
183 #  ifndef PACK_MALLOC
184 #      define PACK_MALLOC
185 #  endif 
186 #  ifndef TWO_POT_OPTIMIZE
187 #    define TWO_POT_OPTIMIZE
188 #  endif 
189 #  ifndef PERL_EMERGENCY_SBRK
190 #    define PERL_EMERGENCY_SBRK
191 #  endif 
192 #  ifndef DEBUGGING_MSTATS
193 #    define DEBUGGING_MSTATS
194 #  endif 
195 #endif
196
197 #define MIN_BUC_POW2 (sizeof(void*) > 4 ? 3 : 2) /* Allow for 4-byte arena. */
198 #define MIN_BUCKET (MIN_BUC_POW2 * BUCKETS_PER_POW2)
199
200 #define LOG_OF_MIN_ARENA 11
201
202 #if defined(DEBUGGING) && !defined(NO_RCHECK)
203 #  define RCHECK
204 #endif
205 #if defined(DEBUGGING) && !defined(NO_RCHECK) && !defined(NO_MFILL) && !defined(MALLOC_FILL)
206 #  define MALLOC_FILL
207 #endif
208 #if defined(DEBUGGING) && !defined(NO_RCHECK) && !defined(NO_FILL_CHECK) && !defined(MALLOC_FILL_CHECK)
209 #  define MALLOC_FILL_CHECK
210 #endif
211 #if defined(RCHECK) && defined(IGNORE_SMALL_BAD_FREE)
212 #  undef IGNORE_SMALL_BAD_FREE
213 #endif 
214 /*
215  * malloc.c (Caltech) 2/21/82
216  * Chris Kingsley, kingsley@cit-20.
217  *
218  * This is a very fast storage allocator.  It allocates blocks of a small 
219  * number of different sizes, and keeps free lists of each size.  Blocks that
220  * don't exactly fit are passed up to the next larger size.  In this 
221  * implementation, the available sizes are 2^n-4 (or 2^n-12) bytes long.
222  * If PACK_MALLOC is defined, small blocks are 2^n bytes long.
223  * This is designed for use in a program that uses vast quantities of memory,
224  * but bombs when it runs out.
225  * 
226  * Modifications Copyright Ilya Zakharevich 1996-99.
227  * 
228  * Still very quick, but much more thrifty.  (Std config is 10% slower
229  * than it was, and takes 67% of old heap size for typical usage.)
230  *
231  * Allocations of small blocks are now table-driven to many different
232  * buckets.  Sizes of really big buckets are increased to accommodate
233  * common size=power-of-2 blocks.  Running-out-of-memory is made into
234  * an exception.  Deeply configurable and thread-safe.
235  * 
236  */
237
238 #include "EXTERN.h"
239 #define PERL_IN_MALLOC_C
240 #include "perl.h"
241 #if defined(PERL_IMPLICIT_CONTEXT)
242 #    define croak       Perl_croak_nocontext
243 #    define croak2      Perl_croak_nocontext
244 #    define warn        Perl_warn_nocontext
245 #    define warn2       Perl_warn_nocontext
246 #else
247 #    define croak2      croak
248 #    define warn2       warn
249 #endif
250 #ifdef USE_ITHREADS
251 #     define PERL_MAYBE_ALIVE   PL_thr_key
252 #else
253 #     define PERL_MAYBE_ALIVE   1
254 #endif
255
256 #ifndef MUTEX_LOCK
257 #  define MUTEX_LOCK(l)
258 #endif 
259
260 #ifndef MUTEX_UNLOCK
261 #  define MUTEX_UNLOCK(l)
262 #endif 
263
264 #ifndef MALLOC_LOCK
265 #  define MALLOC_LOCK           MUTEX_LOCK(&PL_malloc_mutex)
266 #endif 
267
268 #ifndef MALLOC_UNLOCK
269 #  define MALLOC_UNLOCK         MUTEX_UNLOCK(&PL_malloc_mutex)
270 #endif 
271
272 #  ifndef fatalcroak                            /* make depend */
273 #    define fatalcroak(mess)    (write(2, (mess), strlen(mess)), exit(2))
274 #  endif 
275
276 #ifdef DEBUGGING
277 #  undef DEBUG_m
278 #  define DEBUG_m(a)                                                    \
279     STMT_START {                                                        \
280         if (PERL_MAYBE_ALIVE && PERL_GET_THX) {                                         \
281             dTHX;                                                       \
282             if (DEBUG_m_TEST) {                                         \
283                 PL_debug &= ~DEBUG_m_FLAG;                              \
284                 a;                                                      \
285                 PL_debug |= DEBUG_m_FLAG;                               \
286             }                                                           \
287         }                                                               \
288     } STMT_END
289 #endif
290
291 #ifdef PERL_IMPLICIT_CONTEXT
292 #  define PERL_IS_ALIVE         aTHX
293 #else
294 #  define PERL_IS_ALIVE         TRUE
295 #endif
296     
297
298 /*
299  * Layout of memory:
300  * ~~~~~~~~~~~~~~~~
301  * The memory is broken into "blocks" which occupy multiples of 2K (and
302  * generally speaking, have size "close" to a power of 2).  The addresses
303  * of such *unused* blocks are kept in nextf[i] with big enough i.  (nextf
304  * is an array of linked lists.)  (Addresses of used blocks are not known.)
305  * 
306  * Moreover, since the algorithm may try to "bite" smaller blocks out
307  * of unused bigger ones, there are also regions of "irregular" size,
308  * managed separately, by a linked list chunk_chain.
309  * 
310  * The third type of storage is the sbrk()ed-but-not-yet-used space, its
311  * end and size are kept in last_sbrk_top and sbrked_remains.
312  * 
313  * Growing blocks "in place":
314  * ~~~~~~~~~~~~~~~~~~~~~~~~~
315  * The address of the block with the greatest address is kept in last_op
316  * (if not known, last_op is 0).  If it is known that the memory above
317  * last_op is not continuous, or contains a chunk from chunk_chain,
318  * last_op is set to 0.
319  * 
320  * The chunk with address last_op may be grown by expanding into
321  * sbrk()ed-but-not-yet-used space, or trying to sbrk() more continuous
322  * memory.
323  * 
324  * Management of last_op:
325  * ~~~~~~~~~~~~~~~~~~~~~
326  * 
327  * free() never changes the boundaries of blocks, so is not relevant.
328  * 
329  * The only way realloc() may change the boundaries of blocks is if it
330  * grows a block "in place".  However, in the case of success such a
331  * chunk is automatically last_op, and it remains last_op.  In the case
332  * of failure getpages_adjacent() clears last_op.
333  * 
334  * malloc() may change blocks by calling morecore() only.
335  * 
336  * morecore() may create new blocks by:
337  *   a) biting pieces from chunk_chain (cannot create one above last_op);
338  *   b) biting a piece from an unused block (if block was last_op, this
339  *      may create a chunk from chain above last_op, thus last_op is
340  *      invalidated in such a case).
341  *   c) biting of sbrk()ed-but-not-yet-used space.  This creates 
342  *      a block which is last_op.
343  *   d) Allocating new pages by calling getpages();
344  * 
345  * getpages() creates a new block.  It marks last_op at the bottom of
346  * the chunk of memory it returns.
347  * 
348  * Active pages footprint:
349  * ~~~~~~~~~~~~~~~~~~~~~~
350  * Note that we do not need to traverse the lists in nextf[i], just take
351  * the first element of this list.  However, we *need* to traverse the
352  * list in chunk_chain, but most the time it should be a very short one,
353  * so we do not step on a lot of pages we are not going to use.
354  * 
355  * Flaws:
356  * ~~~~~
357  * get_from_bigger_buckets(): forget to increment price => Quite
358  * aggressive.
359  */
360
361 /* I don't much care whether these are defined in sys/types.h--LAW */
362
363 #define u_char unsigned char
364 #define u_int unsigned int
365 /* 
366  * I removed the definition of u_bigint which appeared to be u_bigint = UV
367  * u_bigint was only used in TWOK_MASKED and TWOK_SHIFT 
368  * where I have used PTR2UV.  RMB
369  */
370 #define u_short unsigned short
371
372 #if defined(RCHECK) && defined(PACK_MALLOC)
373 #  undef PACK_MALLOC
374 #endif 
375
376 /*
377  * The description below is applicable if PACK_MALLOC is not defined.
378  *
379  * The overhead on a block is at least 4 bytes.  When free, this space
380  * contains a pointer to the next free block, and the bottom two bits must
381  * be zero.  When in use, the first byte is set to MAGIC, and the second
382  * byte is the size index.  The remaining bytes are for alignment.
383  * If range checking is enabled and the size of the block fits
384  * in two bytes, then the top two bytes hold the size of the requested block
385  * plus the range checking words, and the header word MINUS ONE.
386  */
387 union   overhead {
388         union   overhead *ov_next;      /* when free */
389 #if MEM_ALIGNBYTES > 4
390         double  strut;                  /* alignment problems */
391 #  if MEM_ALIGNBYTES > 8
392         char    sstrut[MEM_ALIGNBYTES]; /* for the sizing */
393 #  endif
394 #endif
395         struct {
396 /*
397  * Keep the ovu_index and ovu_magic in this order, having a char
398  * field first gives alignment indigestion in some systems, such as
399  * MachTen.
400  */
401                 u_char  ovu_index;      /* bucket # */
402                 u_char  ovu_magic;      /* magic number */
403 #ifdef RCHECK
404             /* Subtract one to fit into u_short for an extra bucket */
405                 u_short ovu_size;       /* block size (requested + overhead - 1) */
406                 u_int   ovu_rmagic;     /* range magic number */
407 #endif
408         } ovu;
409 #define ov_magic        ovu.ovu_magic
410 #define ov_index        ovu.ovu_index
411 #define ov_size         ovu.ovu_size
412 #define ov_rmagic       ovu.ovu_rmagic
413 };
414
415 #define MAGIC           0xff            /* magic # on accounting info */
416 #define RMAGIC          0x55555555      /* magic # on range info */
417 #define RMAGIC_C        0x55            /* magic # on range info */
418
419 #ifdef RCHECK
420 #  define       RMAGIC_SZ       sizeof (u_int) /* Overhead at end of bucket */
421 #  ifdef TWO_POT_OPTIMIZE
422 #    define MAX_SHORT_BUCKET (12 * BUCKETS_PER_POW2) /* size-1 fits in short */
423 #  else
424 #    define MAX_SHORT_BUCKET (13 * BUCKETS_PER_POW2)
425 #  endif 
426 #else
427 #  define       RMAGIC_SZ       0
428 #endif
429
430 #if !defined(PACK_MALLOC) && defined(BUCKETS_ROOT2)
431 #  undef BUCKETS_ROOT2
432 #endif 
433
434 #ifdef BUCKETS_ROOT2
435 #  define BUCKET_TABLE_SHIFT 2
436 #  define BUCKET_POW2_SHIFT 1
437 #  define BUCKETS_PER_POW2 2
438 #else
439 #  define BUCKET_TABLE_SHIFT MIN_BUC_POW2
440 #  define BUCKET_POW2_SHIFT 0
441 #  define BUCKETS_PER_POW2 1
442 #endif 
443
444 #if !defined(MEM_ALIGNBYTES) || ((MEM_ALIGNBYTES > 4) && !defined(STRICT_ALIGNMENT))
445 /* Figure out the alignment of void*. */
446 struct aligner {
447   char c;
448   void *p;
449 };
450 #  define ALIGN_SMALL ((IV)((caddr_t)&(((struct aligner*)0)->p)))
451 #else
452 #  define ALIGN_SMALL MEM_ALIGNBYTES
453 #endif
454
455 #define IF_ALIGN_8(yes,no)      ((ALIGN_SMALL>4) ? (yes) : (no))
456
457 #ifdef BUCKETS_ROOT2
458 #  define MAX_BUCKET_BY_TABLE 13
459 static const u_short buck_size[MAX_BUCKET_BY_TABLE + 1] = 
460   { 
461       0, 0, 0, 0, 4, 4, 8, 12, 16, 24, 32, 48, 64, 80,
462   };
463 #  define BUCKET_SIZE_NO_SURPLUS(i) ((i) % 2 ? buck_size[i] : (1 << ((i) >> BUCKET_POW2_SHIFT)))
464 #  define BUCKET_SIZE_REAL(i) ((i) <= MAX_BUCKET_BY_TABLE               \
465                                ? buck_size[i]                           \
466                                : ((1 << ((i) >> BUCKET_POW2_SHIFT))     \
467                                   - MEM_OVERHEAD(i)                     \
468                                   + POW2_OPTIMIZE_SURPLUS(i)))
469 #else
470 #  define BUCKET_SIZE_NO_SURPLUS(i) (1 << ((i) >> BUCKET_POW2_SHIFT))
471 #  define BUCKET_SIZE(i) (BUCKET_SIZE_NO_SURPLUS(i) + POW2_OPTIMIZE_SURPLUS(i))
472 #  define BUCKET_SIZE_REAL(i) (BUCKET_SIZE(i) - MEM_OVERHEAD(i))
473 #endif 
474
475
476 #ifdef PACK_MALLOC
477 /* In this case there are several possible layout of arenas depending
478  * on the size.  Arenas are of sizes multiple to 2K, 2K-aligned, and
479  * have a size close to a power of 2.
480  *
481  * Arenas of the size >= 4K keep one chunk only.  Arenas of size 2K
482  * may keep one chunk or multiple chunks.  Here are the possible
483  * layouts of arenas:
484  *
485  *      # One chunk only, chunksize 2^k + SOMETHING - ALIGN, k >= 11
486  *
487  * INDEX MAGIC1 UNUSED CHUNK1
488  *
489  *      # Multichunk with sanity checking and chunksize 2^k-ALIGN, k>7
490  *
491  * INDEX MAGIC1 MAGIC2 MAGIC3 UNUSED CHUNK1 CHUNK2 CHUNK3 ...
492  *
493  *      # Multichunk with sanity checking and size 2^k-ALIGN, k=7
494  *
495  * INDEX MAGIC1 MAGIC2 MAGIC3 UNUSED CHUNK1 UNUSED CHUNK2 CHUNK3 ...
496  *
497  *      # Multichunk with sanity checking and size up to 80
498  *
499  * INDEX UNUSED MAGIC1 UNUSED MAGIC2 UNUSED ... CHUNK1 CHUNK2 CHUNK3 ...
500  *
501  *      # No sanity check (usually up to 48=byte-long buckets)
502  * INDEX UNUSED CHUNK1 CHUNK2 ...
503  *
504  * Above INDEX and MAGIC are one-byte-long.  Sizes of UNUSED are
505  * appropriate to keep algorithms simple and memory aligned.  INDEX
506  * encodes the size of the chunk, while MAGICn encodes state (used,
507  * free or non-managed-by-us-so-it-indicates-a-bug) of CHUNKn.  MAGIC
508  * is used for sanity checking purposes only.  SOMETHING is 0 or 4K
509  * (to make size of big CHUNK accommodate allocations for powers of two
510  * better).
511  *
512  * [There is no need to alignment between chunks, since C rules ensure
513  *  that structs which need 2^k alignment have sizeof which is
514  *  divisible by 2^k.  Thus as far as the last chunk is aligned at the
515  *  end of the arena, and 2K-alignment does not contradict things,
516  *  everything is going to be OK for sizes of chunks 2^n and 2^n +
517  *  2^k.  Say, 80-bit buckets will be 16-bit aligned, and as far as we
518  *  put allocations for requests in 65..80 range, all is fine.
519  *
520  *  Note, however, that standard malloc() puts more strict
521  *  requirements than the above C rules.  Moreover, our algorithms of
522  *  realloc() may break this idyll, but we suppose that realloc() does
523  *  need not change alignment.]
524  *
525  * Is very important to make calculation of the offset of MAGICm as
526  * quick as possible, since it is done on each malloc()/free().  In
527  * fact it is so quick that it has quite little effect on the speed of
528  * doing malloc()/free().  [By default] We forego such calculations
529  * for small chunks, but only to save extra 3% of memory, not because
530  * of speed considerations.
531  *
532  * Here is the algorithm [which is the same for all the allocations
533  * schemes above], see OV_MAGIC(block,bucket).  Let OFFSETm be the
534  * offset of the CHUNKm from the start of ARENA.  Then offset of
535  * MAGICm is (OFFSET1 >> SHIFT) + ADDOFFSET.  Here SHIFT and ADDOFFSET
536  * are numbers which depend on the size of the chunks only.
537  *
538  * Let as check some sanity conditions.  Numbers OFFSETm>>SHIFT are
539  * different for all the chunks in the arena if 2^SHIFT is not greater
540  * than size of the chunks in the arena.  MAGIC1 will not overwrite
541  * INDEX provided ADDOFFSET is >0 if OFFSET1 < 2^SHIFT.  MAGIClast
542  * will not overwrite CHUNK1 if OFFSET1 > (OFFSETlast >> SHIFT) +
543  * ADDOFFSET.
544  * 
545  * Make SHIFT the maximal possible (there is no point in making it
546  * smaller).  Since OFFSETlast is 2K - CHUNKSIZE, above restrictions
547  * give restrictions on OFFSET1 and on ADDOFFSET.
548  * 
549  * In particular, for chunks of size 2^k with k>=6 we can put
550  * ADDOFFSET to be from 0 to 2^k - 2^(11-k), and have
551  * OFFSET1==chunksize.  For chunks of size 80 OFFSET1 of 2K%80=48 is
552  * large enough to have ADDOFFSET between 1 and 16 (similarly for 96,
553  * when ADDOFFSET should be 1).  In particular, keeping MAGICs for
554  * these sizes gives no additional size penalty.
555  * 
556  * However, for chunks of size 2^k with k<=5 this gives OFFSET1 >=
557  * ADDOFSET + 2^(11-k).  Keeping ADDOFFSET 0 allows for 2^(11-k)-2^(11-2k)
558  * chunks per arena.  This is smaller than 2^(11-k) - 1 which are
559  * needed if no MAGIC is kept.  [In fact, having a negative ADDOFFSET
560  * would allow for slightly more buckets per arena for k=2,3.]
561  * 
562  * Similarly, for chunks of size 3/2*2^k with k<=5 MAGICs would span
563  * the area up to 2^(11-k)+ADDOFFSET.  For k=4 this give optimal
564  * ADDOFFSET as -7..0.  For k=3 ADDOFFSET can go up to 4 (with tiny
565  * savings for negative ADDOFFSET).  For k=5 ADDOFFSET can go -1..16
566  * (with no savings for negative values).
567  *
568  * In particular, keeping ADDOFFSET 0 for sizes of chunks up to 2^6
569  * leads to tiny pessimizations in case of sizes 4, 8, 12, 24, and
570  * leads to no contradictions except for size=80 (or 96.)
571  *
572  * However, it also makes sense to keep no magic for sizes 48 or less.
573  * This is what we do.  In this case one needs ADDOFFSET>=1 also for
574  * chunksizes 12, 24, and 48, unless one gets one less chunk per
575  * arena.
576  *  
577  * The algo of OV_MAGIC(block,bucket) keeps ADDOFFSET 0 until
578  * chunksize of 64, then makes it 1. 
579  *
580  * This allows for an additional optimization: the above scheme leads
581  * to giant overheads for sizes 128 or more (one whole chunk needs to
582  * be sacrifised to keep INDEX).  Instead we use chunks not of size
583  * 2^k, but of size 2^k-ALIGN.  If we pack these chunks at the end of
584  * the arena, then the beginnings are still in different 2^k-long
585  * sections of the arena if k>=7 for ALIGN==4, and k>=8 if ALIGN=8.
586  * Thus for k>7 the above algo of calculating the offset of the magic
587  * will still give different answers for different chunks.  And to
588  * avoid the overrun of MAGIC1 into INDEX, one needs ADDOFFSET of >=1.
589  * In the case k=7 we just move the first chunk an extra ALIGN
590  * backward inside the ARENA (this is done once per arena lifetime,
591  * thus is not a big overhead).  */
592 #  define MAX_PACKED_POW2 6
593 #  define MAX_PACKED (MAX_PACKED_POW2 * BUCKETS_PER_POW2 + BUCKET_POW2_SHIFT)
594 #  define MAX_POW2_ALGO ((1<<(MAX_PACKED_POW2 + 1)) - M_OVERHEAD)
595 #  define TWOK_MASK ((1<<LOG_OF_MIN_ARENA) - 1)
596 #  define TWOK_MASKED(x) (PTR2UV(x) & ~TWOK_MASK)
597 #  define TWOK_SHIFT(x) (PTR2UV(x) & TWOK_MASK)
598 #  define OV_INDEXp(block) (INT2PTR(u_char*,TWOK_MASKED(block)))
599 #  define OV_INDEX(block) (*OV_INDEXp(block))
600 #  define OV_MAGIC(block,bucket) (*(OV_INDEXp(block) +                  \
601                                     (TWOK_SHIFT(block)>>                \
602                                      (bucket>>BUCKET_POW2_SHIFT)) +     \
603                                     (bucket >= MIN_NEEDS_SHIFT ? 1 : 0)))
604     /* A bucket can have a shift smaller than it size, we need to
605        shift its magic number so it will not overwrite index: */
606 #  ifdef BUCKETS_ROOT2
607 #    define MIN_NEEDS_SHIFT (7*BUCKETS_PER_POW2 - 1) /* Shift 80 greater than chunk 64. */