3 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 * by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
12 * 'What a fix!' said Sam. 'That's the one place in all the lands we've ever
13 * heard of that we don't want to see any closer; and that's the one place
14 * we're trying to get to! And that's just where we can't get, nohow.'
16 * [p.603 of _The Lord of the Rings_, IV/I: "The Taming of Sméagol"]
18 * 'Well do I understand your speech,' he answered in the same language;
19 * 'yet few strangers do so. Why then do you not speak in the Common Tongue,
20 * as is the custom in the West, if you wish to be answered?'
21 * --Gandalf, addressing Théoden's door wardens
23 * [p.508 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"]
25 * ...the travellers perceived that the floor was paved with stones of many
26 * hues; branching runes and strange devices intertwined beneath their feet.
28 * [p.512 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"]
32 #define PERL_IN_UTF8_C
34 #include "invlist_inline.h"
36 static const char unees[] =
37 "Malformed UTF-8 character (unexpected end of string)";
38 static const char cp_above_legal_max[] =
39 "Use of code point 0x%"UVXf" is deprecated; the permissible max is 0x%"UVXf"";
41 #define MAX_NON_DEPRECATED_CP ((UV) (IV_MAX))
44 =head1 Unicode Support
45 These are various utility functions for manipulating UTF8-encoded
46 strings. For the uninitiated, this is a method of representing arbitrary
47 Unicode characters as a variable number of bytes, in such a way that
48 characters in the ASCII range are unmodified, and a zero byte never appears
49 within non-zero characters.
55 =for apidoc uvoffuni_to_utf8_flags
57 THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
58 Instead, B<Almost all code should use L</uvchr_to_utf8> or
59 L</uvchr_to_utf8_flags>>.
61 This function is like them, but the input is a strict Unicode
62 (as opposed to native) code point. Only in very rare circumstances should code
63 not be using the native code point.
65 For details, see the description for L</uvchr_to_utf8_flags>.
70 #define HANDLE_UNICODE_SURROGATE(uv, flags) \
72 if (flags & UNICODE_WARN_SURROGATE) { \
73 Perl_ck_warner_d(aTHX_ packWARN(WARN_SURROGATE), \
74 "UTF-16 surrogate U+%04"UVXf, uv); \
76 if (flags & UNICODE_DISALLOW_SURROGATE) { \
81 #define HANDLE_UNICODE_NONCHAR(uv, flags) \
83 if (flags & UNICODE_WARN_NONCHAR) { \
84 Perl_ck_warner_d(aTHX_ packWARN(WARN_NONCHAR), \
85 "Unicode non-character U+%04"UVXf" is not " \
86 "recommended for open interchange", uv); \
88 if (flags & UNICODE_DISALLOW_NONCHAR) { \
93 /* Use shorter names internally in this file */
94 #define SHIFT UTF_ACCUMULATION_SHIFT
96 #define MARK UTF_CONTINUATION_MARK
97 #define MASK UTF_CONTINUATION_MASK
100 Perl_uvoffuni_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags)
102 PERL_ARGS_ASSERT_UVOFFUNI_TO_UTF8_FLAGS;
104 if (OFFUNI_IS_INVARIANT(uv)) {
105 *d++ = LATIN1_TO_NATIVE(uv);
109 if (uv <= MAX_UTF8_TWO_BYTE) {
110 *d++ = I8_TO_NATIVE_UTF8(( uv >> SHIFT) | UTF_START_MARK(2));
111 *d++ = I8_TO_NATIVE_UTF8(( uv & MASK) | MARK);
115 /* Not 2-byte; test for and handle 3-byte result. In the test immediately
116 * below, the 16 is for start bytes E0-EF (which are all the possible ones
117 * for 3 byte characters). The 2 is for 2 continuation bytes; these each
118 * contribute SHIFT bits. This yields 0x4000 on EBCDIC platforms, 0x1_0000
119 * on ASCII; so 3 bytes covers the range 0x400-0x3FFF on EBCDIC;
120 * 0x800-0xFFFF on ASCII */
121 if (uv < (16 * (1U << (2 * SHIFT)))) {
122 *d++ = I8_TO_NATIVE_UTF8(( uv >> ((3 - 1) * SHIFT)) | UTF_START_MARK(3));
123 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((2 - 1) * SHIFT)) & MASK) | MARK);
124 *d++ = I8_TO_NATIVE_UTF8(( uv /* (1 - 1) */ & MASK) | MARK);
126 #ifndef EBCDIC /* These problematic code points are 4 bytes on EBCDIC, so
127 aren't tested here */
128 /* The most likely code points in this range are below the surrogates.
129 * Do an extra test to quickly exclude those. */
130 if (UNLIKELY(uv >= UNICODE_SURROGATE_FIRST)) {
131 if (UNLIKELY( UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv)
132 || UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv)))
134 HANDLE_UNICODE_NONCHAR(uv, flags);
136 else if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
137 HANDLE_UNICODE_SURROGATE(uv, flags);
144 /* Not 3-byte; that means the code point is at least 0x1_0000 on ASCII
145 * platforms, and 0x4000 on EBCDIC. There are problematic cases that can
146 * happen starting with 4-byte characters on ASCII platforms. We unify the
147 * code for these with EBCDIC, even though some of them require 5-bytes on
148 * those, because khw believes the code saving is worth the very slight
149 * performance hit on these high EBCDIC code points. */
151 if (UNLIKELY(UNICODE_IS_SUPER(uv))) {
152 if ( UNLIKELY(uv > MAX_NON_DEPRECATED_CP)
153 && ckWARN_d(WARN_DEPRECATED))
155 Perl_warner(aTHX_ packWARN(WARN_DEPRECATED),
156 cp_above_legal_max, uv, MAX_NON_DEPRECATED_CP);
158 if ( (flags & UNICODE_WARN_SUPER)
159 || ( UNICODE_IS_ABOVE_31_BIT(uv)
160 && (flags & UNICODE_WARN_ABOVE_31_BIT)))
162 Perl_ck_warner_d(aTHX_ packWARN(WARN_NON_UNICODE),
164 /* Choose the more dire applicable warning */
165 (UNICODE_IS_ABOVE_31_BIT(uv))
166 ? "Code point 0x%"UVXf" is not Unicode, and not portable"
167 : "Code point 0x%"UVXf" is not Unicode, may not be portable",
170 if (flags & UNICODE_DISALLOW_SUPER
171 || ( UNICODE_IS_ABOVE_31_BIT(uv)
172 && (flags & UNICODE_DISALLOW_ABOVE_31_BIT)))
177 else if (UNLIKELY(UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv))) {
178 HANDLE_UNICODE_NONCHAR(uv, flags);
181 /* Test for and handle 4-byte result. In the test immediately below, the
182 * 8 is for start bytes F0-F7 (which are all the possible ones for 4 byte
183 * characters). The 3 is for 3 continuation bytes; these each contribute
184 * SHIFT bits. This yields 0x4_0000 on EBCDIC platforms, 0x20_0000 on
185 * ASCII, so 4 bytes covers the range 0x4000-0x3_FFFF on EBCDIC;
186 * 0x1_0000-0x1F_FFFF on ASCII */
187 if (uv < (8 * (1U << (3 * SHIFT)))) {
188 *d++ = I8_TO_NATIVE_UTF8(( uv >> ((4 - 1) * SHIFT)) | UTF_START_MARK(4));
189 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((3 - 1) * SHIFT)) & MASK) | MARK);
190 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((2 - 1) * SHIFT)) & MASK) | MARK);
191 *d++ = I8_TO_NATIVE_UTF8(( uv /* (1 - 1) */ & MASK) | MARK);
193 #ifdef EBCDIC /* These were handled on ASCII platforms in the code for 3-byte
194 characters. The end-plane non-characters for EBCDIC were
195 handled just above */
196 if (UNLIKELY(UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv))) {
197 HANDLE_UNICODE_NONCHAR(uv, flags);
199 else if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
200 HANDLE_UNICODE_SURROGATE(uv, flags);
207 /* Not 4-byte; that means the code point is at least 0x20_0000 on ASCII
208 * platforms, and 0x4000 on EBCDIC. At this point we switch to a loop
209 * format. The unrolled version above turns out to not save all that much
210 * time, and at these high code points (well above the legal Unicode range
211 * on ASCII platforms, and well above anything in common use in EBCDIC),
212 * khw believes that less code outweighs slight performance gains. */
215 STRLEN len = OFFUNISKIP(uv);
218 *p-- = I8_TO_NATIVE_UTF8((uv & UTF_CONTINUATION_MASK) | UTF_CONTINUATION_MARK);
219 uv >>= UTF_ACCUMULATION_SHIFT;
221 *p = I8_TO_NATIVE_UTF8((uv & UTF_START_MASK(len)) | UTF_START_MARK(len));
227 =for apidoc uvchr_to_utf8
229 Adds the UTF-8 representation of the native code point C<uv> to the end
230 of the string C<d>; C<d> should have at least C<UVCHR_SKIP(uv)+1> (up to
231 C<UTF8_MAXBYTES+1>) free bytes available. The return value is the pointer to
232 the byte after the end of the new character. In other words,
234 d = uvchr_to_utf8(d, uv);
236 is the recommended wide native character-aware way of saying
240 This function accepts any UV as input, but very high code points (above
241 C<IV_MAX> on the platform) will raise a deprecation warning. This is
242 typically 0x7FFF_FFFF in a 32-bit word.
244 It is possible to forbid or warn on non-Unicode code points, or those that may
245 be problematic by using L</uvchr_to_utf8_flags>.
250 /* This is also a macro */
251 PERL_CALLCONV U8* Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv);
254 Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv)
256 return uvchr_to_utf8(d, uv);
260 =for apidoc uvchr_to_utf8_flags
262 Adds the UTF-8 representation of the native code point C<uv> to the end
263 of the string C<d>; C<d> should have at least C<UVCHR_SKIP(uv)+1> (up to
264 C<UTF8_MAXBYTES+1>) free bytes available. The return value is the pointer to
265 the byte after the end of the new character. In other words,
267 d = uvchr_to_utf8_flags(d, uv, flags);
271 d = uvchr_to_utf8_flags(d, uv, 0);
273 This is the Unicode-aware way of saying
277 If C<flags> is 0, this function accepts any UV as input, but very high code
278 points (above C<IV_MAX> for the platform) will raise a deprecation warning.
279 This is typically 0x7FFF_FFFF in a 32-bit word.
281 Specifying C<flags> can further restrict what is allowed and not warned on, as
284 If C<uv> is a Unicode surrogate code point and C<UNICODE_WARN_SURROGATE> is set,
285 the function will raise a warning, provided UTF8 warnings are enabled. If
286 instead C<UNICODE_DISALLOW_SURROGATE> is set, the function will fail and return
287 NULL. If both flags are set, the function will both warn and return NULL.
289 Similarly, the C<UNICODE_WARN_NONCHAR> and C<UNICODE_DISALLOW_NONCHAR> flags
290 affect how the function handles a Unicode non-character.
292 And likewise, the C<UNICODE_WARN_SUPER> and C<UNICODE_DISALLOW_SUPER> flags
293 affect the handling of code points that are above the Unicode maximum of
294 0x10FFFF. Languages other than Perl may not be able to accept files that
297 The flag C<UNICODE_WARN_ILLEGAL_INTERCHANGE> selects all three of
298 the above WARN flags; and C<UNICODE_DISALLOW_ILLEGAL_INTERCHANGE> selects all
299 three DISALLOW flags. C<UNICODE_DISALLOW_ILLEGAL_INTERCHANGE> restricts the
300 allowed inputs to the strict UTF-8 traditionally defined by Unicode.
301 Similarly, C<UNICODE_WARN_ILLEGAL_C9_INTERCHANGE> and
302 C<UNICODE_DISALLOW_ILLEGAL_C9_INTERCHANGE> are shortcuts to select the
303 above-Unicode and surrogate flags, but not the non-character ones, as
305 L<Unicode Corrigendum #9|http://www.unicode.org/versions/corrigendum9.html>.
306 See L<perlunicode/Noncharacter code points>.
308 Code points above 0x7FFF_FFFF (2**31 - 1) were never specified in any standard,
309 so using them is more problematic than other above-Unicode code points. Perl
310 invented an extension to UTF-8 to represent the ones above 2**36-1, so it is
311 likely that non-Perl languages will not be able to read files that contain
312 these that written by the perl interpreter; nor would Perl understand files
313 written by something that uses a different extension. For these reasons, there
314 is a separate set of flags that can warn and/or disallow these extremely high
315 code points, even if other above-Unicode ones are accepted. These are the
316 C<UNICODE_WARN_ABOVE_31_BIT> and C<UNICODE_DISALLOW_ABOVE_31_BIT> flags. These
317 are entirely independent from the deprecation warning for code points above
318 C<IV_MAX>. On 32-bit machines, it will eventually be forbidden to have any
319 code point that needs more than 31 bits to represent. When that happens,
320 effectively the C<UNICODE_DISALLOW_ABOVE_31_BIT> flag will always be set on
321 32-bit machines. (Of course C<UNICODE_DISALLOW_SUPER> will treat all
322 above-Unicode code points, including these, as malformations; and
323 C<UNICODE_WARN_SUPER> warns on these.)
325 On EBCDIC platforms starting in Perl v5.24, the Perl extension for representing
326 extremely high code points kicks in at 0x3FFF_FFFF (2**30 -1), which is lower
327 than on ASCII. Prior to that, code points 2**31 and higher were simply
328 unrepresentable, and a different, incompatible method was used to represent
329 code points between 2**30 and 2**31 - 1. The flags C<UNICODE_WARN_ABOVE_31_BIT>
330 and C<UNICODE_DISALLOW_ABOVE_31_BIT> have the same function as on ASCII
331 platforms, warning and disallowing 2**31 and higher.
336 /* This is also a macro */
337 PERL_CALLCONV U8* Perl_uvchr_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags);
340 Perl_uvchr_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags)
342 return uvchr_to_utf8_flags(d, uv, flags);
345 PERL_STATIC_INLINE bool
346 S_is_utf8_cp_above_31_bits(const U8 * const s, const U8 * const e)
348 /* Returns TRUE if the first code point represented by the Perl-extended-
349 * UTF-8-encoded string starting at 's', and looking no further than 'e -
350 * 1' doesn't fit into 31 bytes. That is, that if it is >= 2**31.
352 * The function handles the case where the input bytes do not include all
353 * the ones necessary to represent a full character. That is, they may be
354 * the intial bytes of the representation of a code point, but possibly
355 * the final ones necessary for the complete representation may be beyond
358 * The function assumes that the sequence is well-formed UTF-8 as far as it
359 * goes, and is for a UTF-8 variant code point. If the sequence is
360 * incomplete, the function returns FALSE if there is any well-formed
361 * UTF-8 byte sequence that can complete it in such a way that a code point
362 * < 2**31 is produced; otherwise it returns TRUE.
364 * Getting this exactly right is slightly tricky, and has to be done in
365 * several places in this file, so is centralized here. It is based on the
368 * U+7FFFFFFF (2 ** 31 - 1)
369 * ASCII: \xFD\xBF\xBF\xBF\xBF\xBF
370 * IBM-1047: \xFE\x41\x41\x41\x41\x41\x41\x42\x73\x73\x73\x73\x73\x73
371 * IBM-037: \xFE\x41\x41\x41\x41\x41\x41\x42\x72\x72\x72\x72\x72\x72
372 * POSIX-BC: \xFE\x41\x41\x41\x41\x41\x41\x42\x75\x75\x75\x75\x75\x75
373 * I8: \xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA1\xBF\xBF\xBF\xBF\xBF\xBF
374 * U+80000000 (2 ** 31):
375 * ASCII: \xFE\x82\x80\x80\x80\x80\x80
376 * [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 10 11 12 13
377 * IBM-1047: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
378 * IBM-037: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
379 * POSIX-BC: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
380 * I8: \xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA2\xA0\xA0\xA0\xA0\xA0\xA0
385 # define MIN(a,b) ((a) < (b) ? (a) : (b))
388 /* [0] is start byte [1] [2] [3] [4] [5] [6] [7] */
389 const U8 * const prefix = "\x41\x41\x41\x41\x41\x41\x42";
390 const STRLEN prefix_len = sizeof(prefix) - 1;
391 const STRLEN len = e - s;
392 const cmp_len = MIN(prefix_len, len - 1);
400 PERL_ARGS_ASSERT_IS_UTF8_CP_ABOVE_31_BITS;
402 assert(! UTF8_IS_INVARIANT(*s));
406 /* Technically, a start byte of FE can be for a code point that fits into
407 * 31 bytes, but not for well-formed UTF-8: doing that requires an overlong
413 /* On the EBCDIC code pages we handle, only 0xFE can mean a 32-bit or
414 * larger code point (0xFF is an invariant). For 0xFE, we need at least 2
415 * bytes, and maybe up through 8 bytes, to be sure if the value is above 31
417 if (*s != 0xFE || len == 1) {
421 /* Note that in UTF-EBCDIC, the two lowest possible continuation bytes are
423 return cBOOL(memGT(s + 1, prefix, cmp_len));
430 Perl__is_utf8_char_helper(const U8 * const s, const U8 * e, const U32 flags)
435 /* A helper function that should not be called directly.
437 * This function returns non-zero if the string beginning at 's' and
438 * looking no further than 'e - 1' is well-formed Perl-extended-UTF-8 for a
439 * code point; otherwise it returns 0. The examination stops after the
440 * first code point in 's' is validated, not looking at the rest of the
441 * input. If 'e' is such that there are not enough bytes to represent a
442 * complete code point, this function will return non-zero anyway, if the
443 * bytes it does have are well-formed UTF-8 as far as they go, and aren't
444 * excluded by 'flags'.
446 * A non-zero return gives the number of bytes required to represent the
447 * code point. Be aware that if the input is for a partial character, the
448 * return will be larger than 'e - s'.
450 * This function assumes that the code point represented is UTF-8 variant.
451 * The caller should have excluded this possibility before calling this
454 * 'flags' can be 0, or any combination of the UTF8_DISALLOW_foo flags
455 * accepted by L</utf8n_to_uvchr>. If non-zero, this function will return
456 * 0 if the code point represented is well-formed Perl-extended-UTF-8, but
457 * disallowed by the flags. If the input is only for a partial character,
458 * the function will return non-zero if there is any sequence of
459 * well-formed UTF-8 that, when appended to the input sequence, could
460 * result in an allowed code point; otherwise it returns 0. Non characters
461 * cannot be determined based on partial character input. But many of the
462 * other excluded types can be determined with just the first one or two
467 PERL_ARGS_ASSERT__IS_UTF8_CHAR_HELPER;
469 assert(0 == (flags & ~(UTF8_DISALLOW_ILLEGAL_INTERCHANGE
470 |UTF8_DISALLOW_ABOVE_31_BIT)));
471 assert(! UTF8_IS_INVARIANT(*s));
473 /* A variant char must begin with a start byte */
474 if (UNLIKELY(! UTF8_IS_START(*s))) {
478 /* Examine a maximum of a single whole code point */
479 if (e - s > UTF8SKIP(s)) {
485 if (flags && isUTF8_POSSIBLY_PROBLEMATIC(*s)) {
486 const U8 s0 = NATIVE_UTF8_TO_I8(s[0]);
488 /* The code below is derived from this table. Keep in mind that legal
489 * continuation bytes range between \x80..\xBF for UTF-8, and
490 * \xA0..\xBF for I8. Anything above those aren't continuation bytes.
491 * Hence, we don't have to test the upper edge because if any of those
492 * are encountered, the sequence is malformed, and will fail elsewhere
494 * UTF-8 UTF-EBCDIC I8
495 * U+D800: \xED\xA0\x80 \xF1\xB6\xA0\xA0 First surrogate
496 * U+DFFF: \xED\xBF\xBF \xF1\xB7\xBF\xBF Final surrogate
497 * U+110000: \xF4\x90\x80\x80 \xF9\xA2\xA0\xA0\xA0 First above Unicode
501 #ifdef EBCDIC /* On EBCDIC, these are actually I8 bytes */
502 # define FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER 0xFA
503 # define IS_SUPER_2_BYTE(s0, s1) ((s0) == 0xF9 && (s1) >= 0xA2)
506 # define IS_SURROGATE(s0, s1) ((s0) == 0xF1 && ((s1) & 0xFE ) == 0xB6)
508 # define FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER 0xF5
509 # define IS_SUPER_2_BYTE(s0, s1) ((s0) == 0xF4 && (s1) >= 0x90)
510 # define IS_SURROGATE(s0, s1) ((s0) == 0xED && (s1) >= 0xA0)
513 if ( (flags & UTF8_DISALLOW_SUPER)
514 && UNLIKELY(s0 >= FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER)) {
515 return 0; /* Above Unicode */
518 if ( (flags & UTF8_DISALLOW_ABOVE_31_BIT)
519 && UNLIKELY(is_utf8_cp_above_31_bits(s, e)))
521 return 0; /* Above 31 bits */
525 const U8 s1 = NATIVE_UTF8_TO_I8(s[1]);
527 if ( (flags & UTF8_DISALLOW_SUPER)
528 && UNLIKELY(IS_SUPER_2_BYTE(s0, s1)))
530 return 0; /* Above Unicode */
533 if ( (flags & UTF8_DISALLOW_SURROGATE)
534 && UNLIKELY(IS_SURROGATE(s0, s1)))
536 return 0; /* Surrogate */
539 if ( (flags & UTF8_DISALLOW_NONCHAR)
540 && UNLIKELY(UTF8_IS_NONCHAR(s, e)))
542 return 0; /* Noncharacter code point */
547 /* Make sure that all that follows are continuation bytes */
548 for (x = s + 1; x < e; x++) {
549 if (UNLIKELY(! UTF8_IS_CONTINUATION(*x))) {
554 /* Here is syntactically valid. Next, make sure this isn't the start of an
555 * overlong. Overlongs can occur whenever the number of continuation bytes
556 * changes. That means whenever the number of leading 1 bits in a start
557 * byte increases from the next lower start byte. That happens for start
558 * bytes C0, E0, F0, F8, FC, FE, and FF. On modern perls, the following
559 * illegal start bytes have already been excluded, so don't need to be
561 * ASCII platforms: C0, C1
562 * EBCDIC platforms C0, C1, C2, C3, C4, E0
564 * At least a second byte is required to determine if other sequences will
568 const U8 s0 = NATIVE_UTF8_TO_I8(s[0]);
569 const U8 s1 = NATIVE_UTF8_TO_I8(s[1]);
571 /* Each platform has overlongs after the start bytes given above
572 * (expressed in I8 for EBCDIC). What constitutes an overlong varies
573 * by platform, but the logic is the same, except the E0 overlong has
574 * already been excluded on EBCDIC platforms. The values below were
575 * found by manually inspecting the UTF-8 patterns. See the tables in
576 * utf8.h and utfebcdic.h */
579 # define F0_ABOVE_OVERLONG 0xB0
580 # define F8_ABOVE_OVERLONG 0xA8
581 # define FC_ABOVE_OVERLONG 0xA4
582 # define FE_ABOVE_OVERLONG 0xA2
583 # define FF_OVERLONG_PREFIX "\xfe\x41\x41\x41\x41\x41\x41\x41"
587 if (s0 == 0xE0 && UNLIKELY(s1 < 0xA0)) {
588 return 0; /* Overlong */
591 # define F0_ABOVE_OVERLONG 0x90
592 # define F8_ABOVE_OVERLONG 0x88
593 # define FC_ABOVE_OVERLONG 0x84
594 # define FE_ABOVE_OVERLONG 0x82
595 # define FF_OVERLONG_PREFIX "\xff\x80\x80\x80\x80\x80\x80"
599 if ( (s0 == 0xF0 && UNLIKELY(s1 < F0_ABOVE_OVERLONG))
600 || (s0 == 0xF8 && UNLIKELY(s1 < F8_ABOVE_OVERLONG))
601 || (s0 == 0xFC && UNLIKELY(s1 < FC_ABOVE_OVERLONG))
602 || (s0 == 0xFE && UNLIKELY(s1 < FE_ABOVE_OVERLONG)))
604 return 0; /* Overlong */
607 # if defined(UV_IS_QUAD) || defined(EBCDIC)
609 /* Check for the FF overlong. This happens only if all these bytes
610 * match; what comes after them doesn't matter. See tables in utf8.h,
611 * utfebcdic.h. (Can't happen on ASCII 32-bit platforms, as overflows
614 if ( len >= sizeof(FF_OVERLONG_PREFIX) - 1
615 && UNLIKELY(memEQ(s, FF_OVERLONG_PREFIX,
616 sizeof(FF_OVERLONG_PREFIX) - 1)))
618 return 0; /* Overlong */
625 /* Finally, see if this would overflow a UV on this platform. See if the
626 * UTF8 for this code point is larger than that for the highest
627 * representable code point. (For ASCII platforms, we could use memcmp()
628 * because we don't have to convert each byte to I8, but it's very rare
629 * input indeed that would approach overflow, so the loop below will likely
630 * only get executed once */
631 y = (const U8 *) HIGHEST_REPRESENTABLE_UTF8;
633 for (x = s; x < e; x++, y++) {
635 /* If the same as this byte, go on to the next */
636 if (UNLIKELY(NATIVE_UTF8_TO_I8(*x) == *y)) {
640 /* If this is larger, it overflows */
641 if (UNLIKELY(NATIVE_UTF8_TO_I8(*x) > *y)) {
645 /* But if smaller, it won't */
652 #undef FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER
653 #undef IS_SUPER_2_BYTE
655 #undef F0_ABOVE_OVERLONG
656 #undef F8_ABOVE_OVERLONG
657 #undef FC_ABOVE_OVERLONG
658 #undef FE_ABOVE_OVERLONG
659 #undef FF_OVERLONG_PREFIX
663 =for apidoc utf8n_to_uvchr
665 THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
666 Most code should use L</utf8_to_uvchr_buf>() rather than call this directly.
668 Bottom level UTF-8 decode routine.
669 Returns the native code point value of the first character in the string C<s>,
670 which is assumed to be in UTF-8 (or UTF-EBCDIC) encoding, and no longer than
671 C<curlen> bytes; C<*retlen> (if C<retlen> isn't NULL) will be set to
672 the length, in bytes, of that character.
674 The value of C<flags> determines the behavior when C<s> does not point to a
675 well-formed UTF-8 character. If C<flags> is 0, when a malformation is found,
676 zero is returned and C<*retlen> is set so that (S<C<s> + C<*retlen>>) is the
677 next possible position in C<s> that could begin a non-malformed character.
678 Also, if UTF-8 warnings haven't been lexically disabled, a warning is raised.
680 Various ALLOW flags can be set in C<flags> to allow (and not warn on)
681 individual types of malformations, such as the sequence being overlong (that
682 is, when there is a shorter sequence that can express the same code point;
683 overlong sequences are expressly forbidden in the UTF-8 standard due to
684 potential security issues). Another malformation example is the first byte of
685 a character not being a legal first byte. See F<utf8.h> for the list of such
686 flags. For allowed 0 length strings, this function returns 0; for allowed
687 overlong sequences, the computed code point is returned; for all other allowed
688 malformations, the Unicode REPLACEMENT CHARACTER is returned, as these have no
689 determinable reasonable value.
691 The C<UTF8_CHECK_ONLY> flag overrides the behavior when a non-allowed (by other
692 flags) malformation is found. If this flag is set, the routine assumes that
693 the caller will raise a warning, and this function will silently just set
694 C<retlen> to C<-1> (cast to C<STRLEN>) and return zero.
696 Note that this API requires disambiguation between successful decoding a C<NUL>
697 character, and an error return (unless the C<UTF8_CHECK_ONLY> flag is set), as
698 in both cases, 0 is returned, and, depending on the malformation, C<retlen> may
699 be set to 1. To disambiguate, upon a zero return, see if the first byte of
700 C<s> is 0 as well. If so, the input was a C<NUL>; if not, the input had an
703 Certain code points are considered problematic. These are Unicode surrogates,
704 Unicode non-characters, and code points above the Unicode maximum of 0x10FFFF.
705 By default these are considered regular code points, but certain situations
706 warrant special handling for them, which can be specified using the C<flags>
707 parameter. If C<flags> contains C<UTF8_DISALLOW_ILLEGAL_INTERCHANGE>, all
708 three classes are treated as malformations and handled as such. The flags
709 C<UTF8_DISALLOW_SURROGATE>, C<UTF8_DISALLOW_NONCHAR>, and
710 C<UTF8_DISALLOW_SUPER> (meaning above the legal Unicode maximum) can be set to
711 disallow these categories individually. C<UTF8_DISALLOW_ILLEGAL_INTERCHANGE>
712 restricts the allowed inputs to the strict UTF-8 traditionally defined by
713 Unicode. Use C<UTF8_DISALLOW_ILLEGAL_C9_INTERCHANGE> to use the strictness
715 L<Unicode Corrigendum #9|http://www.unicode.org/versions/corrigendum9.html>.
716 The difference between traditional strictness and C9 strictness is that the
717 latter does not forbid non-character code points. (They are still discouraged,
718 however.) For more discussion see L<perlunicode/Noncharacter code points>.
720 The flags C<UTF8_WARN_ILLEGAL_INTERCHANGE>,
721 C<UTF8_WARN_ILLEGAL_C9_INTERCHANGE>, C<UTF8_WARN_SURROGATE>,
722 C<UTF8_WARN_NONCHAR>, and C<UTF8_WARN_SUPER> will cause warning messages to be
723 raised for their respective categories, but otherwise the code points are
724 considered valid (not malformations). To get a category to both be treated as
725 a malformation and raise a warning, specify both the WARN and DISALLOW flags.
726 (But note that warnings are not raised if lexically disabled nor if
727 C<UTF8_CHECK_ONLY> is also specified.)
729 It is now deprecated to have very high code points (above C<IV_MAX> on the
730 platforms) and this function will raise a deprecation warning for these (unless
731 such warnings are turned off). This value, is typically 0x7FFF_FFFF (2**31 -1)
734 Code points above 0x7FFF_FFFF (2**31 - 1) were never specified in any standard,
735 so using them is more problematic than other above-Unicode code points. Perl
736 invented an extension to UTF-8 to represent the ones above 2**36-1, so it is
737 likely that non-Perl languages will not be able to read files that contain
738 these that written by the perl interpreter; nor would Perl understand files
739 written by something that uses a different extension. For these reasons, there
740 is a separate set of flags that can warn and/or disallow these extremely high
741 code points, even if other above-Unicode ones are accepted. These are the
742 C<UTF8_WARN_ABOVE_31_BIT> and C<UTF8_DISALLOW_ABOVE_31_BIT> flags. These
743 are entirely independent from the deprecation warning for code points above
744 C<IV_MAX>. On 32-bit machines, it will eventually be forbidden to have any
745 code point that needs more than 31 bits to represent. When that happens,
746 effectively the C<UTF8_DISALLOW_ABOVE_31_BIT> flag will always be set on
747 32-bit machines. (Of course C<UTF8_DISALLOW_SUPER> will treat all
748 above-Unicode code points, including these, as malformations; and
749 C<UTF8_WARN_SUPER> warns on these.)
751 On EBCDIC platforms starting in Perl v5.24, the Perl extension for representing
752 extremely high code points kicks in at 0x3FFF_FFFF (2**30 -1), which is lower
753 than on ASCII. Prior to that, code points 2**31 and higher were simply
754 unrepresentable, and a different, incompatible method was used to represent
755 code points between 2**30 and 2**31 - 1. The flags C<UTF8_WARN_ABOVE_31_BIT>
756 and C<UTF8_DISALLOW_ABOVE_31_BIT> have the same function as on ASCII
757 platforms, warning and disallowing 2**31 and higher.
759 All other code points corresponding to Unicode characters, including private
760 use and those yet to be assigned, are never considered malformed and never
767 Perl_utf8n_to_uvchr(pTHX_ const U8 *s, STRLEN curlen, STRLEN *retlen, U32 flags)
769 const U8 * const s0 = s;
770 U8 overflow_byte = '\0'; /* Save byte in case of overflow */
775 UV outlier_ret = 0; /* return value when input is in error or problematic
777 UV pack_warn = 0; /* Save result of packWARN() for later */
778 bool unexpected_non_continuation = FALSE;
779 bool overflowed = FALSE;
780 bool do_overlong_test = TRUE; /* May have to skip this test */
782 const char* const malformed_text = "Malformed UTF-8 character";
784 PERL_ARGS_ASSERT_UTF8N_TO_UVCHR;
786 /* The order of malformation tests here is important. We should consume as
787 * few bytes as possible in order to not skip any valid character. This is
788 * required by the Unicode Standard (section 3.9 of Unicode 6.0); see also
789 * http://unicode.org/reports/tr36 for more discussion as to why. For
790 * example, once we've done a UTF8SKIP, we can tell the expected number of
791 * bytes, and could fail right off the bat if the input parameters indicate
792 * that there are too few available. But it could be that just that first
793 * byte is garbled, and the intended character occupies fewer bytes. If we
794 * blindly assumed that the first byte is correct, and skipped based on
795 * that number, we could skip over a valid input character. So instead, we
796 * always examine the sequence byte-by-byte.
798 * We also should not consume too few bytes, otherwise someone could inject
799 * things. For example, an input could be deliberately designed to
800 * overflow, and if this code bailed out immediately upon discovering that,
801 * returning to the caller C<*retlen> pointing to the very next byte (one
802 * which is actually part of of the overflowing sequence), that could look
803 * legitimate to the caller, which could discard the initial partial
804 * sequence and process the rest, inappropriately */
806 /* Zero length strings, if allowed, of necessity are zero */
807 if (UNLIKELY(curlen == 0)) {
812 if (flags & UTF8_ALLOW_EMPTY) {
815 if (! (flags & UTF8_CHECK_ONLY)) {
816 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (empty string)", malformed_text));
821 expectlen = UTF8SKIP(s);
823 /* A well-formed UTF-8 character, as the vast majority of calls to this
824 * function will be for, has this expected length. For efficiency, set
825 * things up here to return it. It will be overriden only in those rare
826 * cases where a malformation is found */
831 /* An invariant is trivially well-formed */
832 if (UTF8_IS_INVARIANT(uv)) {
836 /* A continuation character can't start a valid sequence */
837 if (UNLIKELY(UTF8_IS_CONTINUATION(uv))) {
838 if (flags & UTF8_ALLOW_CONTINUATION) {
842 return UNICODE_REPLACEMENT;
845 if (! (flags & UTF8_CHECK_ONLY)) {
846 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (unexpected continuation byte 0x%02x, with no preceding start byte)", malformed_text, *s0));
852 /* Here is not a continuation byte, nor an invariant. The only thing left
853 * is a start byte (possibly for an overlong) */
855 /* Convert to I8 on EBCDIC (no-op on ASCII), then remove the leading bits
856 * that indicate the number of bytes in the character's whole UTF-8
857 * sequence, leaving just the bits that are part of the value. */
858 uv = NATIVE_UTF8_TO_I8(uv) & UTF_START_MASK(expectlen);
860 /* Now, loop through the remaining bytes in the character's sequence,
861 * accumulating each into the working value as we go. Be sure to not look
862 * past the end of the input string */
863 send = (U8*) s0 + ((expectlen <= curlen) ? expectlen : curlen);
865 for (s = s0 + 1; s < send; s++) {
866 if (LIKELY(UTF8_IS_CONTINUATION(*s))) {
867 if (uv & UTF_ACCUMULATION_OVERFLOW_MASK) {
869 /* The original implementors viewed this malformation as more
870 * serious than the others (though I, khw, don't understand
871 * why, since other malformations also give very very wrong
872 * results), so there is no way to turn off checking for it.
873 * Set a flag, but keep going in the loop, so that we absorb
874 * the rest of the bytes that comprise the character. */
876 overflow_byte = *s; /* Save for warning message's use */
878 uv = UTF8_ACCUMULATE(uv, *s);
881 /* Here, found a non-continuation before processing all expected
882 * bytes. This byte begins a new character, so quit, even if
883 * allowing this malformation. */
884 unexpected_non_continuation = TRUE;
887 } /* End of loop through the character's bytes */
889 /* Save how many bytes were actually in the character */
892 /* The loop above finds two types of malformations: non-continuation and/or
893 * overflow. The non-continuation malformation is really a too-short
894 * malformation, as it means that the current character ended before it was
895 * expected to (being terminated prematurely by the beginning of the next
896 * character, whereas in the too-short malformation there just are too few
897 * bytes available to hold the character. In both cases, the check below
898 * that we have found the expected number of bytes would fail if executed.)
899 * Thus the non-continuation malformation is really unnecessary, being a
900 * subset of the too-short malformation. But there may be existing
901 * applications that are expecting the non-continuation type, so we retain
902 * it, and return it in preference to the too-short malformation. (If this
903 * code were being written from scratch, the two types might be collapsed
904 * into one.) I, khw, am also giving priority to returning the
905 * non-continuation and too-short malformations over overflow when multiple
906 * ones are present. I don't know of any real reason to prefer one over
907 * the other, except that it seems to me that multiple-byte errors trumps
908 * errors from a single byte */
909 if (UNLIKELY(unexpected_non_continuation)) {
910 if (!(flags & UTF8_ALLOW_NON_CONTINUATION)) {
911 if (! (flags & UTF8_CHECK_ONLY)) {
913 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (unexpected non-continuation byte 0x%02x, immediately after start byte 0x%02x)", malformed_text, *s, *s0));
916 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (unexpected non-continuation byte 0x%02x, %d bytes after start byte 0x%02x, expected %d bytes)", malformed_text, *s, (int) curlen, *s0, (int)expectlen));
921 uv = UNICODE_REPLACEMENT;
923 /* Skip testing for overlongs, as the REPLACEMENT may not be the same
924 * as what the original expectations were. */
925 do_overlong_test = FALSE;
930 else if (UNLIKELY(curlen < expectlen)) {
931 if (! (flags & UTF8_ALLOW_SHORT)) {
932 if (! (flags & UTF8_CHECK_ONLY)) {
933 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (%d byte%s, need %d, after start byte 0x%02x)", malformed_text, (int)curlen, curlen == 1 ? "" : "s", (int)expectlen, *s0));
937 uv = UNICODE_REPLACEMENT;
938 do_overlong_test = FALSE;
944 if (UNLIKELY(overflowed)) {
945 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (overflow at byte 0x%02x, after start byte 0x%02x)", malformed_text, overflow_byte, *s0));
950 && expectlen > (STRLEN) OFFUNISKIP(uv)
951 && ! (flags & UTF8_ALLOW_LONG))
953 /* The overlong malformation has lower precedence than the others.
954 * Note that if this malformation is allowed, we return the actual
955 * value, instead of the replacement character. This is because this
956 * value is actually well-defined. */
957 if (! (flags & UTF8_CHECK_ONLY)) {
958 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "%s (%d byte%s, need %d, after start byte 0x%02x)", malformed_text, (int)expectlen, expectlen == 1 ? "": "s", OFFUNISKIP(uv), *s0));
963 /* Here, the input is considered to be well-formed, but it still could be a
964 * problematic code point that is not allowed by the input parameters. */
965 if (uv >= UNICODE_SURROGATE_FIRST /* isn't problematic if < this */
966 && ((flags & ( UTF8_DISALLOW_NONCHAR
967 |UTF8_DISALLOW_SURROGATE
969 |UTF8_DISALLOW_ABOVE_31_BIT
973 |UTF8_WARN_ABOVE_31_BIT))
974 || ( UNLIKELY(uv > MAX_NON_DEPRECATED_CP)
975 && ckWARN_d(WARN_DEPRECATED))))
977 if (UNICODE_IS_SURROGATE(uv)) {
979 /* By adding UTF8_CHECK_ONLY to the test, we avoid unnecessary
980 * generation of the sv, since no warnings are raised under CHECK */
981 if ((flags & (UTF8_WARN_SURROGATE|UTF8_CHECK_ONLY)) == UTF8_WARN_SURROGATE
982 && ckWARN_d(WARN_SURROGATE))
984 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "UTF-16 surrogate U+%04"UVXf"", uv));
985 pack_warn = packWARN(WARN_SURROGATE);
987 if (flags & UTF8_DISALLOW_SURROGATE) {
991 else if ((uv > PERL_UNICODE_MAX)) {
992 if ((flags & (UTF8_WARN_SUPER|UTF8_CHECK_ONLY)) == UTF8_WARN_SUPER
993 && ckWARN_d(WARN_NON_UNICODE))
995 sv = sv_2mortal(Perl_newSVpvf(aTHX_
996 "Code point 0x%04"UVXf" is not Unicode, may not be portable",
998 pack_warn = packWARN(WARN_NON_UNICODE);
1001 /* The maximum code point ever specified by a standard was
1002 * 2**31 - 1. Anything larger than that is a Perl extension that
1003 * very well may not be understood by other applications (including
1004 * earlier perl versions on EBCDIC platforms). We test for these
1005 * after the regular SUPER ones, and before possibly bailing out,
1006 * so that the slightly more dire warning will override the regular
1008 if ( (flags & (UTF8_WARN_ABOVE_31_BIT
1010 |UTF8_DISALLOW_ABOVE_31_BIT))
1011 && UNLIKELY(is_utf8_cp_above_31_bits(s0, send)))
1013 if ( ! (flags & UTF8_CHECK_ONLY)
1014 && (flags & (UTF8_WARN_ABOVE_31_BIT|UTF8_WARN_SUPER))
1015 && ckWARN_d(WARN_UTF8))
1017 sv = sv_2mortal(Perl_newSVpvf(aTHX_
1018 "Code point 0x%"UVXf" is not Unicode, and not portable",
1020 pack_warn = packWARN(WARN_UTF8);
1022 if (flags & UTF8_DISALLOW_ABOVE_31_BIT) {
1027 if (flags & UTF8_DISALLOW_SUPER) {
1031 /* The deprecated warning overrides any non-deprecated one */
1032 if (UNLIKELY(uv > MAX_NON_DEPRECATED_CP) && ckWARN_d(WARN_DEPRECATED))
1034 sv = sv_2mortal(Perl_newSVpvf(aTHX_ cp_above_legal_max,
1035 uv, MAX_NON_DEPRECATED_CP));
1036 pack_warn = packWARN(WARN_DEPRECATED);
1039 else if (UNICODE_IS_NONCHAR(uv)) {
1040 if ((flags & (UTF8_WARN_NONCHAR|UTF8_CHECK_ONLY)) == UTF8_WARN_NONCHAR
1041 && ckWARN_d(WARN_NONCHAR))
1043 sv = sv_2mortal(Perl_newSVpvf(aTHX_ "Unicode non-character U+%04"UVXf" is not recommended for open interchange", uv));
1044 pack_warn = packWARN(WARN_NONCHAR);
1046 if (flags & UTF8_DISALLOW_NONCHAR) {
1052 outlier_ret = uv; /* Note we don't bother to convert to native,
1053 as all the outlier code points are the same
1054 in both ASCII and EBCDIC */
1058 /* Here, this is not considered a malformed character, so drop through
1062 return UNI_TO_NATIVE(uv);
1064 /* There are three cases which get to beyond this point. In all 3 cases:
1065 * <sv> if not null points to a string to print as a warning.
1066 * <curlen> is what <*retlen> should be set to if UTF8_CHECK_ONLY isn't
1068 * <outlier_ret> is what return value to use if UTF8_CHECK_ONLY isn't set.
1069 * This is done by initializing it to 0, and changing it only
1072 * 1) The input is valid but problematic, and to be warned about. The
1073 * return value is the resultant code point; <*retlen> is set to
1074 * <curlen>, the number of bytes that comprise the code point.
1075 * <pack_warn> contains the result of packWARN() for the warning
1076 * types. The entry point for this case is the label <do_warn>;
1077 * 2) The input is a valid code point but disallowed by the parameters to
1078 * this function. The return value is 0. If UTF8_CHECK_ONLY is set,
1079 * <*relen> is -1; otherwise it is <curlen>, the number of bytes that
1080 * comprise the code point. <pack_warn> contains the result of
1081 * packWARN() for the warning types. The entry point for this case is
1082 * the label <disallowed>.
1083 * 3) The input is malformed. The return value is 0. If UTF8_CHECK_ONLY
1084 * is set, <*relen> is -1; otherwise it is <curlen>, the number of
1085 * bytes that comprise the malformation. All such malformations are
1086 * assumed to be warning type <utf8>. The entry point for this case
1087 * is the label <malformed>.
1092 if (sv && ckWARN_d(WARN_UTF8)) {
1093 pack_warn = packWARN(WARN_UTF8);
1098 if (flags & UTF8_CHECK_ONLY) {
1100 *retlen = ((STRLEN) -1);
1106 if (pack_warn) { /* <pack_warn> was initialized to 0, and changed only
1107 if warnings are to be raised. */
1108 const char * const string = SvPVX_const(sv);
1111 Perl_warner(aTHX_ pack_warn, "%s in %s", string, OP_DESC(PL_op));
1113 Perl_warner(aTHX_ pack_warn, "%s", string);
1124 =for apidoc utf8_to_uvchr_buf
1126 Returns the native code point of the first character in the string C<s> which
1127 is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>.
1128 C<*retlen> will be set to the length, in bytes, of that character.
1130 If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are
1131 enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
1132 C<NULL>) to -1. If those warnings are off, the computed value, if well-defined
1133 (or the Unicode REPLACEMENT CHARACTER if not), is silently returned, and
1134 C<*retlen> is set (if C<retlen> isn't C<NULL>) so that (S<C<s> + C<*retlen>>) is
1135 the next possible position in C<s> that could begin a non-malformed character.
1136 See L</utf8n_to_uvchr> for details on when the REPLACEMENT CHARACTER is
1139 Code points above the platform's C<IV_MAX> will raise a deprecation warning,
1140 unless those are turned off.
1144 Also implemented as a macro in utf8.h
1150 Perl_utf8_to_uvchr_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen)
1154 return utf8n_to_uvchr(s, send - s, retlen,
1155 ckWARN_d(WARN_UTF8) ? 0 : UTF8_ALLOW_ANY);
1158 /* This is marked as deprecated
1160 =for apidoc utf8_to_uvuni_buf
1162 Only in very rare circumstances should code need to be dealing in Unicode
1163 (as opposed to native) code points. In those few cases, use
1164 C<L<NATIVE_TO_UNI(utf8_to_uvchr_buf(...))|/utf8_to_uvchr_buf>> instead.
1166 Returns the Unicode (not-native) code point of the first character in the
1168 is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>.
1169 C<retlen> will be set to the length, in bytes, of that character.
1171 If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are
1172 enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
1173 NULL) to -1. If those warnings are off, the computed value if well-defined (or
1174 the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and C<*retlen>
1175 is set (if C<retlen> isn't NULL) so that (S<C<s> + C<*retlen>>) is the
1176 next possible position in C<s> that could begin a non-malformed character.
1177 See L</utf8n_to_uvchr> for details on when the REPLACEMENT CHARACTER is returned.
1179 Code points above the platform's C<IV_MAX> will raise a deprecation warning,
1180 unless those are turned off.
1186 Perl_utf8_to_uvuni_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen)
1188 PERL_ARGS_ASSERT_UTF8_TO_UVUNI_BUF;
1192 /* Call the low level routine, asking for checks */
1193 return NATIVE_TO_UNI(utf8_to_uvchr_buf(s, send, retlen));
1197 =for apidoc utf8_length
1199 Return the length of the UTF-8 char encoded string C<s> in characters.
1200 Stops at C<e> (inclusive). If C<e E<lt> s> or if the scan would end
1201 up past C<e>, croaks.
1207 Perl_utf8_length(pTHX_ const U8 *s, const U8 *e)
1211 PERL_ARGS_ASSERT_UTF8_LENGTH;
1213 /* Note: cannot use UTF8_IS_...() too eagerly here since e.g.
1214 * the bitops (especially ~) can create illegal UTF-8.
1215 * In other words: in Perl UTF-8 is not just for Unicode. */
1218 goto warn_and_return;
1228 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
1229 "%s in %s", unees, OP_DESC(PL_op));
1231 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees);
1238 =for apidoc bytes_cmp_utf8
1240 Compares the sequence of characters (stored as octets) in C<b>, C<blen> with the
1241 sequence of characters (stored as UTF-8)
1242 in C<u>, C<ulen>. Returns 0 if they are
1243 equal, -1 or -2 if the first string is less than the second string, +1 or +2
1244 if the first string is greater than the second string.
1246 -1 or +1 is returned if the shorter string was identical to the start of the
1247 longer string. -2 or +2 is returned if
1248 there was a difference between characters
1255 Perl_bytes_cmp_utf8(pTHX_ const U8 *b, STRLEN blen, const U8 *u, STRLEN ulen)
1257 const U8 *const bend = b + blen;
1258 const U8 *const uend = u + ulen;
1260 PERL_ARGS_ASSERT_BYTES_CMP_UTF8;
1262 while (b < bend && u < uend) {
1264 if (!UTF8_IS_INVARIANT(c)) {
1265 if (UTF8_IS_DOWNGRADEABLE_START(c)) {
1268 if (UTF8_IS_CONTINUATION(c1)) {
1269 c = EIGHT_BIT_UTF8_TO_NATIVE(c, c1);
1271 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
1272 "Malformed UTF-8 character "
1273 "(unexpected non-continuation byte 0x%02x"
1274 ", immediately after start byte 0x%02x)"
1275 /* Dear diag.t, it's in the pod. */
1277 PL_op ? " in " : "",
1278 PL_op ? OP_DESC(PL_op) : "");
1283 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
1284 "%s in %s", unees, OP_DESC(PL_op));
1286 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees);
1287 return -2; /* Really want to return undef :-) */
1294 return *b < c ? -2 : +2;
1299 if (b == bend && u == uend)
1302 return b < bend ? +1 : -1;
1306 =for apidoc utf8_to_bytes
1308 Converts a string C<s> of length C<len> from UTF-8 into native byte encoding.
1309 Unlike L</bytes_to_utf8>, this over-writes the original string, and
1310 updates C<len> to contain the new length.
1311 Returns zero on failure, setting C<len> to -1.
1313 If you need a copy of the string, see L</bytes_from_utf8>.
1319 Perl_utf8_to_bytes(pTHX_ U8 *s, STRLEN *len)
1321 U8 * const save = s;
1322 U8 * const send = s + *len;
1325 PERL_ARGS_ASSERT_UTF8_TO_BYTES;
1326 PERL_UNUSED_CONTEXT;
1328 /* ensure valid UTF-8 and chars < 256 before updating string */
1330 if (! UTF8_IS_INVARIANT(*s)) {
1331 if (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(s, send)) {
1332 *len = ((STRLEN) -1);
1343 if (! UTF8_IS_INVARIANT(c)) {
1344 /* Then it is two-byte encoded */
1345 c = EIGHT_BIT_UTF8_TO_NATIVE(c, *s);
1356 =for apidoc bytes_from_utf8
1358 Converts a string C<s> of length C<len> from UTF-8 into native byte encoding.
1359 Unlike L</utf8_to_bytes> but like L</bytes_to_utf8>, returns a pointer to
1360 the newly-created string, and updates C<len> to contain the new
1361 length. Returns the original string if no conversion occurs, C<len>
1362 is unchanged. Do nothing if C<is_utf8> points to 0. Sets C<is_utf8> to
1363 0 if C<s> is converted or consisted entirely of characters that are invariant
1364 in UTF-8 (i.e., US-ASCII on non-EBCDIC machines).
1370 Perl_bytes_from_utf8(pTHX_ const U8 *s, STRLEN *len, bool *is_utf8)
1373 const U8 *start = s;
1377 PERL_ARGS_ASSERT_BYTES_FROM_UTF8;
1378 PERL_UNUSED_CONTEXT;
1382 /* ensure valid UTF-8 and chars < 256 before converting string */
1383 for (send = s + *len; s < send;) {
1384 if (! UTF8_IS_INVARIANT(*s)) {
1385 if (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(s, send)) {
1396 Newx(d, (*len) - count + 1, U8);
1397 s = start; start = d;
1400 if (! UTF8_IS_INVARIANT(c)) {
1401 /* Then it is two-byte encoded */
1402 c = EIGHT_BIT_UTF8_TO_NATIVE(c, *s);
1413 =for apidoc bytes_to_utf8
1415 Converts a string C<s> of length C<len> bytes from the native encoding into
1417 Returns a pointer to the newly-created string, and sets C<len> to
1418 reflect the new length in bytes.
1420 A C<NUL> character will be written after the end of the string.
1422 If you want to convert to UTF-8 from encodings other than
1423 the native (Latin1 or EBCDIC),
1424 see L</sv_recode_to_utf8>().
1429 /* This logic is duplicated in sv_catpvn_flags, so any bug fixes will
1430 likewise need duplication. */
1433 Perl_bytes_to_utf8(pTHX_ const U8 *s, STRLEN *len)
1435 const U8 * const send = s + (*len);
1439 PERL_ARGS_ASSERT_BYTES_TO_UTF8;
1440 PERL_UNUSED_CONTEXT;
1442 Newx(d, (*len) * 2 + 1, U8);
1446 append_utf8_from_native_byte(*s, &d);
1455 * Convert native (big-endian) or reversed (little-endian) UTF-16 to UTF-8.
1457 * Destination must be pre-extended to 3/2 source. Do not use in-place.
1458 * We optimize for native, for obvious reasons. */
1461 Perl_utf16_to_utf8(pTHX_ U8* p, U8* d, I32 bytelen, I32 *newlen)
1466 PERL_ARGS_ASSERT_UTF16_TO_UTF8;
1469 Perl_croak(aTHX_ "panic: utf16_to_utf8: odd bytelen %"UVuf, (UV)bytelen);
1474 UV uv = (p[0] << 8) + p[1]; /* UTF-16BE */
1476 if (OFFUNI_IS_INVARIANT(uv)) {
1477 *d++ = LATIN1_TO_NATIVE((U8) uv);
1480 if (uv <= MAX_UTF8_TWO_BYTE) {
1481 *d++ = UTF8_TWO_BYTE_HI(UNI_TO_NATIVE(uv));
1482 *d++ = UTF8_TWO_BYTE_LO(UNI_TO_NATIVE(uv));
1485 #define FIRST_HIGH_SURROGATE UNICODE_SURROGATE_FIRST
1486 #define LAST_HIGH_SURROGATE 0xDBFF
1487 #define FIRST_LOW_SURROGATE 0xDC00
1488 #define LAST_LOW_SURROGATE UNICODE_SURROGATE_LAST
1490 /* This assumes that most uses will be in the first Unicode plane, not
1491 * needing surrogates */
1492 if (UNLIKELY(uv >= UNICODE_SURROGATE_FIRST
1493 && uv <= UNICODE_SURROGATE_LAST))
1495 if (UNLIKELY(p >= pend) || UNLIKELY(uv > LAST_HIGH_SURROGATE)) {
1496 Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
1499 UV low = (p[0] << 8) + p[1];
1500 if ( UNLIKELY(low < FIRST_LOW_SURROGATE)
1501 || UNLIKELY(low > LAST_LOW_SURROGATE))
1503 Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
1506 uv = ((uv - FIRST_HIGH_SURROGATE) << 10)
1507 + (low - FIRST_LOW_SURROGATE) + 0x10000;
1511 d = uvoffuni_to_utf8_flags(d, uv, 0);
1514 *d++ = (U8)(( uv >> 12) | 0xe0);
1515 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
1516 *d++ = (U8)(( uv & 0x3f) | 0x80);
1520 *d++ = (U8)(( uv >> 18) | 0xf0);
1521 *d++ = (U8)(((uv >> 12) & 0x3f) | 0x80);
1522 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
1523 *d++ = (U8)(( uv & 0x3f) | 0x80);
1528 *newlen = d - dstart;
1532 /* Note: this one is slightly destructive of the source. */
1535 Perl_utf16_to_utf8_reversed(pTHX_ U8* p, U8* d, I32 bytelen, I32 *newlen)
1538 U8* const send = s + bytelen;
1540 PERL_ARGS_ASSERT_UTF16_TO_UTF8_REVERSED;
1543 Perl_croak(aTHX_ "panic: utf16_to_utf8_reversed: odd bytelen %"UVuf,
1547 const U8 tmp = s[0];
1552 return utf16_to_utf8(p, d, bytelen, newlen);
1556 Perl__is_uni_FOO(pTHX_ const U8 classnum, const UV c)
1558 U8 tmpbuf[UTF8_MAXBYTES+1];
1559 uvchr_to_utf8(tmpbuf, c);
1560 return _is_utf8_FOO(classnum, tmpbuf);
1563 /* Internal function so we can deprecate the external one, and call
1564 this one from other deprecated functions in this file */
1567 Perl__is_utf8_idstart(pTHX_ const U8 *p)
1569 PERL_ARGS_ASSERT__IS_UTF8_IDSTART;
1573 return is_utf8_common(p, &PL_utf8_idstart, "IdStart", NULL);
1577 Perl__is_uni_perl_idcont(pTHX_ UV c)
1579 U8 tmpbuf[UTF8_MAXBYTES+1];
1580 uvchr_to_utf8(tmpbuf, c);
1581 return _is_utf8_perl_idcont(tmpbuf);
1585 Perl__is_uni_perl_idstart(pTHX_ UV c)
1587 U8 tmpbuf[UTF8_MAXBYTES+1];
1588 uvchr_to_utf8(tmpbuf, c);
1589 return _is_utf8_perl_idstart(tmpbuf);
1593 Perl__to_upper_title_latin1(pTHX_ const U8 c, U8* p, STRLEN *lenp, const char S_or_s)
1595 /* We have the latin1-range values compiled into the core, so just use
1596 * those, converting the result to UTF-8. The only difference between upper
1597 * and title case in this range is that LATIN_SMALL_LETTER_SHARP_S is
1598 * either "SS" or "Ss". Which one to use is passed into the routine in
1599 * 'S_or_s' to avoid a test */
1601 UV converted = toUPPER_LATIN1_MOD(c);
1603 PERL_ARGS_ASSERT__TO_UPPER_TITLE_LATIN1;
1605 assert(S_or_s == 'S' || S_or_s == 's');
1607 if (UVCHR_IS_INVARIANT(converted)) { /* No difference between the two for
1608 characters in this range */
1609 *p = (U8) converted;
1614 /* toUPPER_LATIN1_MOD gives the correct results except for three outliers,
1615 * which it maps to one of them, so as to only have to have one check for
1616 * it in the main case */
1617 if (UNLIKELY(converted == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS)) {
1619 case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
1620 converted = LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS;
1623 converted = GREEK_CAPITAL_LETTER_MU;
1625 #if UNICODE_MAJOR_VERSION > 2 \
1626 || (UNICODE_MAJOR_VERSION == 2 && UNICODE_DOT_VERSION >= 1 \
1627 && UNICODE_DOT_DOT_VERSION >= 8)
1628 case LATIN_SMALL_LETTER_SHARP_S:
1635 Perl_croak(aTHX_ "panic: to_upper_title_latin1 did not expect '%c' to map to '%c'", c, LATIN_SMALL_LETTER_Y_WITH_DIAERESIS);
1636 NOT_REACHED; /* NOTREACHED */
1640 *(p)++ = UTF8_TWO_BYTE_HI(converted);
1641 *p = UTF8_TWO_BYTE_LO(converted);
1647 /* Call the function to convert a UTF-8 encoded character to the specified case.
1648 * Note that there may be more than one character in the result.
1649 * INP is a pointer to the first byte of the input character
1650 * OUTP will be set to the first byte of the string of changed characters. It
1651 * needs to have space for UTF8_MAXBYTES_CASE+1 bytes
1652 * LENP will be set to the length in bytes of the string of changed characters
1654 * The functions return the ordinal of the first character in the string of OUTP */
1655 #define CALL_UPPER_CASE(uv, s, d, lenp) _to_utf8_case(uv, s, d, lenp, &PL_utf8_toupper, "ToUc", "")
1656 #define CALL_TITLE_CASE(uv, s, d, lenp) _to_utf8_case(uv, s, d, lenp, &PL_utf8_totitle, "ToTc", "")
1657 #define CALL_LOWER_CASE(uv, s, d, lenp) _to_utf8_case(uv, s, d, lenp, &PL_utf8_tolower, "ToLc", "")
1659 /* This additionally has the input parameter 'specials', which if non-zero will
1660 * cause this to use the specials hash for folding (meaning get full case
1661 * folding); otherwise, when zero, this implies a simple case fold */
1662 #define CALL_FOLD_CASE(uv, s, d, lenp, specials) _to_utf8_case(uv, s, d, lenp, &PL_utf8_tofold, "ToCf", (specials) ? "" : NULL)
1665 Perl_to_uni_upper(pTHX_ UV c, U8* p, STRLEN *lenp)
1667 /* Convert the Unicode character whose ordinal is <c> to its uppercase
1668 * version and store that in UTF-8 in <p> and its length in bytes in <lenp>.
1669 * Note that the <p> needs to be at least UTF8_MAXBYTES_CASE+1 bytes since
1670 * the changed version may be longer than the original character.
1672 * The ordinal of the first character of the changed version is returned
1673 * (but note, as explained above, that there may be more.) */
1675 PERL_ARGS_ASSERT_TO_UNI_UPPER;
1678 return _to_upper_title_latin1((U8) c, p, lenp, 'S');
1681 uvchr_to_utf8(p, c);
1682 return CALL_UPPER_CASE(c, p, p, lenp);
1686 Perl_to_uni_title(pTHX_ UV c, U8* p, STRLEN *lenp)
1688 PERL_ARGS_ASSERT_TO_UNI_TITLE;
1691 return _to_upper_title_latin1((U8) c, p, lenp, 's');
1694 uvchr_to_utf8(p, c);
1695 return CALL_TITLE_CASE(c, p, p, lenp);
1699 S_to_lower_latin1(const U8 c, U8* p, STRLEN *lenp)
1701 /* We have the latin1-range values compiled into the core, so just use
1702 * those, converting the result to UTF-8. Since the result is always just
1703 * one character, we allow <p> to be NULL */
1705 U8 converted = toLOWER_LATIN1(c);
1708 if (NATIVE_BYTE_IS_INVARIANT(converted)) {
1713 /* Result is known to always be < 256, so can use the EIGHT_BIT
1715 *p = UTF8_EIGHT_BIT_HI(converted);
1716 *(p+1) = UTF8_EIGHT_BIT_LO(converted);
1724 Perl_to_uni_lower(pTHX_ UV c, U8* p, STRLEN *lenp)
1726 PERL_ARGS_ASSERT_TO_UNI_LOWER;
1729 return to_lower_latin1((U8) c, p, lenp);
1732 uvchr_to_utf8(p, c);
1733 return CALL_LOWER_CASE(c, p, p, lenp);
1737 Perl__to_fold_latin1(pTHX_ const U8 c, U8* p, STRLEN *lenp, const unsigned int flags)
1739 /* Corresponds to to_lower_latin1(); <flags> bits meanings:
1740 * FOLD_FLAGS_NOMIX_ASCII iff non-ASCII to ASCII folds are prohibited
1741 * FOLD_FLAGS_FULL iff full folding is to be used;
1743 * Not to be used for locale folds
1748 PERL_ARGS_ASSERT__TO_FOLD_LATIN1;
1749 PERL_UNUSED_CONTEXT;
1751 assert (! (flags & FOLD_FLAGS_LOCALE));
1753 if (UNLIKELY(c == MICRO_SIGN)) {
1754 converted = GREEK_SMALL_LETTER_MU;
1756 #if UNICODE_MAJOR_VERSION > 3 /* no multifolds in early Unicode */ \
1757 || (UNICODE_MAJOR_VERSION == 3 && ( UNICODE_DOT_VERSION > 0) \
1758 || UNICODE_DOT_DOT_VERSION > 0)
1759 else if ( (flags & FOLD_FLAGS_FULL)
1760 && UNLIKELY(c == LATIN_SMALL_LETTER_SHARP_S))
1762 /* If can't cross 127/128 boundary, can't return "ss"; instead return
1763 * two U+017F characters, as fc("\df") should eq fc("\x{17f}\x{17f}")
1764 * under those circumstances. */
1765 if (flags & FOLD_FLAGS_NOMIX_ASCII) {
1766 *lenp = 2 * sizeof(LATIN_SMALL_LETTER_LONG_S_UTF8) - 2;
1767 Copy(LATIN_SMALL_LETTER_LONG_S_UTF8 LATIN_SMALL_LETTER_LONG_S_UTF8,
1769 return LATIN_SMALL_LETTER_LONG_S;
1779 else { /* In this range the fold of all other characters is their lower
1781 converted = toLOWER_LATIN1(c);
1784 if (UVCHR_IS_INVARIANT(converted)) {
1785 *p = (U8) converted;
1789 *(p)++ = UTF8_TWO_BYTE_HI(converted);
1790 *p = UTF8_TWO_BYTE_LO(converted);
1798 Perl__to_uni_fold_flags(pTHX_ UV c, U8* p, STRLEN *lenp, U8 flags)
1801 /* Not currently externally documented, and subject to change
1802 * <flags> bits meanings:
1803 * FOLD_FLAGS_FULL iff full folding is to be used;
1804 * FOLD_FLAGS_LOCALE is set iff the rules from the current underlying
1805 * locale are to be used.
1806 * FOLD_FLAGS_NOMIX_ASCII iff non-ASCII to ASCII folds are prohibited
1809 PERL_ARGS_ASSERT__TO_UNI_FOLD_FLAGS;
1811 if (flags & FOLD_FLAGS_LOCALE) {
1812 /* Treat a UTF-8 locale as not being in locale at all */
1813 if (IN_UTF8_CTYPE_LOCALE) {
1814 flags &= ~FOLD_FLAGS_LOCALE;
1817 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
1818 goto needs_full_generality;
1823 return _to_fold_latin1((U8) c, p, lenp,
1824 flags & (FOLD_FLAGS_FULL | FOLD_FLAGS_NOMIX_ASCII));
1827 /* Here, above 255. If no special needs, just use the macro */
1828 if ( ! (flags & (FOLD_FLAGS_LOCALE|FOLD_FLAGS_NOMIX_ASCII))) {
1829 uvchr_to_utf8(p, c);
1830 return CALL_FOLD_CASE(c, p, p, lenp, flags & FOLD_FLAGS_FULL);
1832 else { /* Otherwise, _to_utf8_fold_flags has the intelligence to deal with
1833 the special flags. */
1834 U8 utf8_c[UTF8_MAXBYTES + 1];
1836 needs_full_generality:
1837 uvchr_to_utf8(utf8_c, c);
1838 return _to_utf8_fold_flags(utf8_c, p, lenp, flags);
1842 PERL_STATIC_INLINE bool
1843 S_is_utf8_common(pTHX_ const U8 *const p, SV **swash,
1844 const char *const swashname, SV* const invlist)
1846 /* returns a boolean giving whether or not the UTF8-encoded character that
1847 * starts at <p> is in the swash indicated by <swashname>. <swash>
1848 * contains a pointer to where the swash indicated by <swashname>
1849 * is to be stored; which this routine will do, so that future calls will
1850 * look at <*swash> and only generate a swash if it is not null. <invlist>
1851 * is NULL or an inversion list that defines the swash. If not null, it
1852 * saves time during initialization of the swash.
1854 * Note that it is assumed that the buffer length of <p> is enough to
1855 * contain all the bytes that comprise the character. Thus, <*p> should
1856 * have been checked before this call for mal-formedness enough to assure
1859 PERL_ARGS_ASSERT_IS_UTF8_COMMON;
1861 /* The API should have included a length for the UTF-8 character in <p>,
1862 * but it doesn't. We therefore assume that p has been validated at least
1863 * as far as there being enough bytes available in it to accommodate the
1864 * character without reading beyond the end, and pass that number on to the
1865 * validating routine */
1866 if (! isUTF8_CHAR(p, p + UTF8SKIP(p))) {
1867 if (ckWARN_d(WARN_UTF8)) {
1868 Perl_warner(aTHX_ packWARN2(WARN_DEPRECATED,WARN_UTF8),
1869 "Passing malformed UTF-8 to \"%s\" is deprecated", swashname);
1870 if (ckWARN(WARN_UTF8)) { /* This will output details as to the
1871 what the malformation is */
1872 utf8_to_uvchr_buf(p, p + UTF8SKIP(p), NULL);
1878 U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
1879 *swash = _core_swash_init("utf8",
1881 /* Only use the name if there is no inversion
1882 * list; otherwise will go out to disk */
1883 (invlist) ? "" : swashname,
1885 &PL_sv_undef, 1, 0, invlist, &flags);
1888 return swash_fetch(*swash, p, TRUE) != 0;
1892 Perl__is_utf8_FOO(pTHX_ const U8 classnum, const U8 *p)
1894 PERL_ARGS_ASSERT__IS_UTF8_FOO;
1896 assert(classnum < _FIRST_NON_SWASH_CC);
1898 return is_utf8_common(p,
1899 &PL_utf8_swash_ptrs[classnum],
1900 swash_property_names[classnum],
1901 PL_XPosix_ptrs[classnum]);
1905 Perl__is_utf8_perl_idstart(pTHX_ const U8 *p)
1909 PERL_ARGS_ASSERT__IS_UTF8_PERL_IDSTART;
1911 if (! PL_utf8_perl_idstart) {
1912 invlist = _new_invlist_C_array(_Perl_IDStart_invlist);
1914 return is_utf8_common(p, &PL_utf8_perl_idstart, "_Perl_IDStart", invlist);
1918 Perl__is_utf8_xidstart(pTHX_ const U8 *p)
1920 PERL_ARGS_ASSERT__IS_UTF8_XIDSTART;
1924 return is_utf8_common(p, &PL_utf8_xidstart, "XIdStart", NULL);
1928 Perl__is_utf8_perl_idcont(pTHX_ const U8 *p)
1932 PERL_ARGS_ASSERT__IS_UTF8_PERL_IDCONT;
1934 if (! PL_utf8_perl_idcont) {
1935 invlist = _new_invlist_C_array(_Perl_IDCont_invlist);
1937 return is_utf8_common(p, &PL_utf8_perl_idcont, "_Perl_IDCont", invlist);
1941 Perl__is_utf8_idcont(pTHX_ const U8 *p)
1943 PERL_ARGS_ASSERT__IS_UTF8_IDCONT;
1945 return is_utf8_common(p, &PL_utf8_idcont, "IdContinue", NULL);
1949 Perl__is_utf8_xidcont(pTHX_ const U8 *p)
1951 PERL_ARGS_ASSERT__IS_UTF8_XIDCONT;
1953 return is_utf8_common(p, &PL_utf8_idcont, "XIdContinue", NULL);
1957 Perl__is_utf8_mark(pTHX_ const U8 *p)
1959 PERL_ARGS_ASSERT__IS_UTF8_MARK;
1961 return is_utf8_common(p, &PL_utf8_mark, "IsM", NULL);
1965 =for apidoc to_utf8_case
1967 Instead use the appropriate one of L</toUPPER_utf8>,
1972 C<p> contains the pointer to the UTF-8 string encoding
1973 the character that is being converted. This routine assumes that the character
1974 at C<p> is well-formed.
1976 C<ustrp> is a pointer to the character buffer to put the
1977 conversion result to. C<lenp> is a pointer to the length
1980 C<swashp> is a pointer to the swash to use.
1982 Both the special and normal mappings are stored in F<lib/unicore/To/Foo.pl>,
1983 and loaded by C<SWASHNEW>, using F<lib/utf8_heavy.pl>. C<special> (usually,
1984 but not always, a multicharacter mapping), is tried first.
1986 C<special> is a string, normally C<NULL> or C<"">. C<NULL> means to not use
1987 any special mappings; C<""> means to use the special mappings. Values other
1988 than these two are treated as the name of the hash containing the special
1989 mappings, like C<"utf8::ToSpecLower">.
1991 C<normal> is a string like C<"ToLower"> which means the swash
1994 Code points above the platform's C<IV_MAX> will raise a deprecation warning,
1995 unless those are turned off.
2000 Perl_to_utf8_case(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp,
2001 SV **swashp, const char *normal, const char *special)
2003 PERL_ARGS_ASSERT_TO_UTF8_CASE;
2005 return _to_utf8_case(valid_utf8_to_uvchr(p, NULL), p, ustrp, lenp, swashp, normal, special);
2008 /* change namve uv1 to 'from' */
2010 S__to_utf8_case(pTHX_ const UV uv1, const U8 *p, U8* ustrp, STRLEN *lenp,
2011 SV **swashp, const char *normal, const char *special)
2015 PERL_ARGS_ASSERT__TO_UTF8_CASE;
2017 /* For code points that don't change case, we already know that the output
2018 * of this function is the unchanged input, so we can skip doing look-ups
2019 * for them. Unfortunately the case-changing code points are scattered
2020 * around. But there are some long consecutive ranges where there are no
2021 * case changing code points. By adding tests, we can eliminate the lookup
2022 * for all the ones in such ranges. This is currently done here only for
2023 * just a few cases where the scripts are in common use in modern commerce
2024 * (and scripts adjacent to those which can be included without additional
2027 if (uv1 >= 0x0590) {
2028 /* This keeps from needing further processing the code points most
2029 * likely to be used in the following non-cased scripts: Hebrew,
2030 * Arabic, Syriac, Thaana, NKo, Samaritan, Mandaic, Devanagari,
2031 * Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu, Kannada,
2032 * Malayalam, Sinhala, Thai, Lao, Tibetan, Myanmar */
2037 /* The following largish code point ranges also don't have case
2038 * changes, but khw didn't think they warranted extra tests to speed
2039 * them up (which would slightly slow down everything else above them):
2040 * 1100..139F Hangul Jamo, Ethiopic
2041 * 1400..1CFF Unified Canadian Aboriginal Syllabics, Ogham, Runic,
2042 * Tagalog, Hanunoo, Buhid, Tagbanwa, Khmer, Mongolian,
2043 * Limbu, Tai Le, New Tai Lue, Buginese, Tai Tham,
2044 * Combining Diacritical Marks Extended, Balinese,
2045 * Sundanese, Batak, Lepcha, Ol Chiki
2046 * 2000..206F General Punctuation
2049 if (uv1 >= 0x2D30) {
2051 /* This keeps the from needing further processing the code points
2052 * most likely to be used in the following non-cased major scripts:
2053 * CJK, Katakana, Hiragana, plus some less-likely scripts.
2055 * (0x2D30 above might have to be changed to 2F00 in the unlikely
2056 * event that Unicode eventually allocates the unused block as of
2057 * v8.0 2FE0..2FEF to code points that are cased. khw has verified
2058 * that the test suite will start having failures to alert you
2059 * should that happen) */
2064 if (uv1 >= 0xAC00) {
2065 if (UNLIKELY(UNICODE_IS_SURROGATE(uv1))) {
2066 if (ckWARN_d(WARN_SURROGATE)) {
2067 const char* desc = (PL_op) ? OP_DESC(PL_op) : normal;
2068 Perl_warner(aTHX_ packWARN(WARN_SURROGATE),
2069 "Operation \"%s\" returns its argument for UTF-16 surrogate U+%04"UVXf"", desc, uv1);
2074 /* AC00..FAFF Catches Hangul syllables and private use, plus
2081 if (UNLIKELY(UNICODE_IS_SUPER(uv1))) {
2082 if ( UNLIKELY(uv1 > MAX_NON_DEPRECATED_CP)
2083 && ckWARN_d(WARN_DEPRECATED))
2085 Perl_warner(aTHX_ packWARN(WARN_DEPRECATED),
2086 cp_above_legal_max, uv1, MAX_NON_DEPRECATED_CP);
2088 if (ckWARN_d(WARN_NON_UNICODE)) {
2089 const char* desc = (PL_op) ? OP_DESC(PL_op) : normal;
2090 Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE),
2091 "Operation \"%s\" returns its argument for non-Unicode code point 0x%04"UVXf"", desc, uv1);
2095 #ifdef HIGHEST_CASE_CHANGING_CP_FOR_USE_ONLY_BY_UTF8_DOT_C
2097 > HIGHEST_CASE_CHANGING_CP_FOR_USE_ONLY_BY_UTF8_DOT_C))
2100 /* As of this writing, this means we avoid swash creation
2101 * for anything beyond low Plane 1 */
2108 /* Note that non-characters are perfectly legal, so no warning should
2109 * be given. There are so few of them, that it isn't worth the extra
2110 * tests to avoid swash creation */
2113 if (!*swashp) /* load on-demand */
2114 *swashp = _core_swash_init("utf8", normal, &PL_sv_undef, 4, 0, NULL, NULL);
2117 /* It might be "special" (sometimes, but not always,
2118 * a multicharacter mapping) */
2122 /* If passed in the specials name, use that; otherwise use any
2123 * given in the swash */
2124 if (*special != '\0') {
2125 hv = get_hv(special, 0);
2128 svp = hv_fetchs(MUTABLE_HV(SvRV(*swashp)), "SPECIALS", 0);
2130 hv = MUTABLE_HV(SvRV(*svp));
2135 && (svp = hv_fetch(hv, (const char*)p, UVCHR_SKIP(uv1), FALSE))
2140 s = SvPV_const(*svp, len);
2143 len = uvchr_to_utf8(ustrp, *(U8*)s) - ustrp;
2145 Copy(s, ustrp, len, U8);
2150 if (!len && *swashp) {
2151 const UV uv2 = swash_fetch(*swashp, p, TRUE /* => is UTF-8 */);
2154 /* It was "normal" (a single character mapping). */
2155 len = uvchr_to_utf8(ustrp, uv2) - ustrp;
2163 return valid_utf8_to_uvchr(ustrp, 0);
2166 /* Here, there was no mapping defined, which means that the code point maps
2167 * to itself. Return the inputs */
2170 if (p != ustrp) { /* Don't copy onto itself */
2171 Copy(p, ustrp, len, U8);
2182 S_check_locale_boundary_crossing(pTHX_ const U8* const p, const UV result, U8* const ustrp, STRLEN *lenp)
2184 /* This is called when changing the case of a UTF-8-encoded character above
2185 * the Latin1 range, and the operation is in a non-UTF-8 locale. If the
2186 * result contains a character that crosses the 255/256 boundary, disallow
2187 * the change, and return the original code point. See L<perlfunc/lc> for
2190 * p points to the original string whose case was changed; assumed
2191 * by this routine to be well-formed
2192 * result the code point of the first character in the changed-case string
2193 * ustrp points to the changed-case string (<result> represents its first char)
2194 * lenp points to the length of <ustrp> */
2196 UV original; /* To store the first code point of <p> */
2198 PERL_ARGS_ASSERT_CHECK_LOCALE_BOUNDARY_CROSSING;
2200 assert(UTF8_IS_ABOVE_LATIN1(*p));
2202 /* We know immediately if the first character in the string crosses the
2203 * boundary, so can skip */
2206 /* Look at every character in the result; if any cross the
2207 * boundary, the whole thing is disallowed */
2208 U8* s = ustrp + UTF8SKIP(ustrp);
2209 U8* e = ustrp + *lenp;
2211 if (! UTF8_IS_ABOVE_LATIN1(*s)) {
2217 /* Here, no characters crossed, result is ok as-is, but we warn. */
2218 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(p, p + UTF8SKIP(p));
2224 /* Failed, have to return the original */
2225 original = valid_utf8_to_uvchr(p, lenp);
2227 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
2228 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
2229 "Can't do %s(\"\\x{%"UVXf"}\") on non-UTF-8 locale; "
2230 "resolved to \"\\x{%"UVXf"}\".",
2234 Copy(p, ustrp, *lenp, char);
2239 =for apidoc to_utf8_upper
2241 Instead use L</toUPPER_utf8>.
2245 /* Not currently externally documented, and subject to change:
2246 * <flags> is set iff iff the rules from the current underlying locale are to
2250 Perl__to_utf8_upper_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, bool flags)
2254 PERL_ARGS_ASSERT__TO_UTF8_UPPER_FLAGS;
2257 /* Treat a UTF-8 locale as not being in locale at all */
2258 if (IN_UTF8_CTYPE_LOCALE) {
2262 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2266 if (UTF8_IS_INVARIANT(*p)) {
2268 result = toUPPER_LC(*p);
2271 return _to_upper_title_latin1(*p, ustrp, lenp, 'S');
2274 else if UTF8_IS_DOWNGRADEABLE_START(*p) {
2276 U8 c = EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1));
2277 result = toUPPER_LC(c);
2280 return _to_upper_title_latin1(EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1)),
2284 else { /* UTF-8, ord above 255 */
2285 result = CALL_UPPER_CASE(valid_utf8_to_uvchr(p, NULL), p, ustrp, lenp);
2288 result = check_locale_boundary_crossing(p, result, ustrp, lenp);
2293 /* Here, used locale rules. Convert back to UTF-8 */
2294 if (UTF8_IS_INVARIANT(result)) {
2295 *ustrp = (U8) result;
2299 *ustrp = UTF8_EIGHT_BIT_HI((U8) result);
2300 *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result);
2308 =for apidoc to_utf8_title
2310 Instead use L</toTITLE_utf8>.
2314 /* Not currently externally documented, and subject to change:
2315 * <flags> is set iff the rules from the current underlying locale are to be
2316 * used. Since titlecase is not defined in POSIX, for other than a
2317 * UTF-8 locale, uppercase is used instead for code points < 256.
2321 Perl__to_utf8_title_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, bool flags)
2325 PERL_ARGS_ASSERT__TO_UTF8_TITLE_FLAGS;
2328 /* Treat a UTF-8 locale as not being in locale at all */
2329 if (IN_UTF8_CTYPE_LOCALE) {
2333 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2337 if (UTF8_IS_INVARIANT(*p)) {
2339 result = toUPPER_LC(*p);
2342 return _to_upper_title_latin1(*p, ustrp, lenp, 's');
2345 else if UTF8_IS_DOWNGRADEABLE_START(*p) {
2347 U8 c = EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1));
2348 result = toUPPER_LC(c);
2351 return _to_upper_title_latin1(EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1)),
2355 else { /* UTF-8, ord above 255 */
2356 result = CALL_TITLE_CASE(valid_utf8_to_uvchr(p, NULL), p, ustrp, lenp);
2359 result = check_locale_boundary_crossing(p, result, ustrp, lenp);
2364 /* Here, used locale rules. Convert back to UTF-8 */
2365 if (UTF8_IS_INVARIANT(result)) {
2366 *ustrp = (U8) result;
2370 *ustrp = UTF8_EIGHT_BIT_HI((U8) result);
2371 *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result);
2379 =for apidoc to_utf8_lower
2381 Instead use L</toLOWER_utf8>.
2385 /* Not currently externally documented, and subject to change:
2386 * <flags> is set iff iff the rules from the current underlying locale are to
2391 Perl__to_utf8_lower_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, bool flags)
2395 PERL_ARGS_ASSERT__TO_UTF8_LOWER_FLAGS;
2398 /* Treat a UTF-8 locale as not being in locale at all */
2399 if (IN_UTF8_CTYPE_LOCALE) {
2403 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2407 if (UTF8_IS_INVARIANT(*p)) {
2409 result = toLOWER_LC(*p);
2412 return to_lower_latin1(*p, ustrp, lenp);
2415 else if UTF8_IS_DOWNGRADEABLE_START(*p) {
2417 U8 c = EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1));
2418 result = toLOWER_LC(c);
2421 return to_lower_latin1(EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1)),
2425 else { /* UTF-8, ord above 255 */
2426 result = CALL_LOWER_CASE(valid_utf8_to_uvchr(p, NULL), p, ustrp, lenp);
2429 result = check_locale_boundary_crossing(p, result, ustrp, lenp);
2435 /* Here, used locale rules. Convert back to UTF-8 */
2436 if (UTF8_IS_INVARIANT(result)) {
2437 *ustrp = (U8) result;
2441 *ustrp = UTF8_EIGHT_BIT_HI((U8) result);
2442 *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result);
2450 =for apidoc to_utf8_fold
2452 Instead use L</toFOLD_utf8>.
2456 /* Not currently externally documented, and subject to change,
2458 * bit FOLD_FLAGS_LOCALE is set iff the rules from the current underlying
2459 * locale are to be used.
2460 * bit FOLD_FLAGS_FULL is set iff full case folds are to be used;
2461 * otherwise simple folds
2462 * bit FOLD_FLAGS_NOMIX_ASCII is set iff folds of non-ASCII to ASCII are
2467 Perl__to_utf8_fold_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, U8 flags)
2471 PERL_ARGS_ASSERT__TO_UTF8_FOLD_FLAGS;
2473 /* These are mutually exclusive */
2474 assert (! ((flags & FOLD_FLAGS_LOCALE) && (flags & FOLD_FLAGS_NOMIX_ASCII)));
2476 assert(p != ustrp); /* Otherwise overwrites */
2478 if (flags & FOLD_FLAGS_LOCALE) {
2479 /* Treat a UTF-8 locale as not being in locale at all */
2480 if (IN_UTF8_CTYPE_LOCALE) {
2481 flags &= ~FOLD_FLAGS_LOCALE;
2484 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2488 if (UTF8_IS_INVARIANT(*p)) {
2489 if (flags & FOLD_FLAGS_LOCALE) {
2490 result = toFOLD_LC(*p);
2493 return _to_fold_latin1(*p, ustrp, lenp,
2494 flags & (FOLD_FLAGS_FULL | FOLD_FLAGS_NOMIX_ASCII));
2497 else if UTF8_IS_DOWNGRADEABLE_START(*p) {
2498 if (flags & FOLD_FLAGS_LOCALE) {
2499 U8 c = EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1));
2500 result = toFOLD_LC(c);
2503 return _to_fold_latin1(EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1)),
2505 flags & (FOLD_FLAGS_FULL | FOLD_FLAGS_NOMIX_ASCII));
2508 else { /* UTF-8, ord above 255 */
2509 result = CALL_FOLD_CASE(valid_utf8_to_uvchr(p, NULL), p, ustrp, lenp, flags & FOLD_FLAGS_FULL);
2511 if (flags & FOLD_FLAGS_LOCALE) {
2513 # define LONG_S_T LATIN_SMALL_LIGATURE_LONG_S_T_UTF8
2514 const unsigned int long_s_t_len = sizeof(LONG_S_T) - 1;
2516 # ifdef LATIN_CAPITAL_LETTER_SHARP_S_UTF8
2517 # define CAP_SHARP_S LATIN_CAPITAL_LETTER_SHARP_S_UTF8
2519 const unsigned int cap_sharp_s_len = sizeof(CAP_SHARP_S) - 1;
2521 /* Special case these two characters, as what normally gets
2522 * returned under locale doesn't work */
2523 if (UTF8SKIP(p) == cap_sharp_s_len
2524 && memEQ((char *) p, CAP_SHARP_S, cap_sharp_s_len))
2526 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
2527 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
2528 "Can't do fc(\"\\x{1E9E}\") on non-UTF-8 locale; "
2529 "resolved to \"\\x{17F}\\x{17F}\".");
2534 if (UTF8SKIP(p) == long_s_t_len
2535 && memEQ((char *) p, LONG_S_T, long_s_t_len))
2537 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
2538 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
2539 "Can't do fc(\"\\x{FB05}\") on non-UTF-8 locale; "
2540 "resolved to \"\\x{FB06}\".");
2541 goto return_ligature_st;
2544 #if UNICODE_MAJOR_VERSION == 3 \
2545 && UNICODE_DOT_VERSION == 0 \
2546 && UNICODE_DOT_DOT_VERSION == 1
2547 # define DOTTED_I LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE_UTF8
2549 /* And special case this on this Unicode version only, for the same
2550 * reaons the other two are special cased. They would cross the
2551 * 255/256 boundary which is forbidden under /l, and so the code
2552 * wouldn't catch that they are equivalent (which they are only in
2554 else if (UTF8SKIP(p) == sizeof(DOTTED_I) - 1
2555 && memEQ((char *) p, DOTTED_I, sizeof(DOTTED_I) - 1))
2557 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
2558 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
2559 "Can't do fc(\"\\x{0130}\") on non-UTF-8 locale; "
2560 "resolved to \"\\x{0131}\".");
2561 goto return_dotless_i;
2565 return check_locale_boundary_crossing(p, result, ustrp, lenp);
2567 else if (! (flags & FOLD_FLAGS_NOMIX_ASCII)) {
2571 /* This is called when changing the case of a UTF-8-encoded
2572 * character above the ASCII range, and the result should not
2573 * contain an ASCII character. */
2575 UV original; /* To store the first code point of <p> */
2577 /* Look at every character in the result; if any cross the
2578 * boundary, the whole thing is disallowed */
2580 U8* e = ustrp + *lenp;
2583 /* Crossed, have to return the original */
2584 original = valid_utf8_to_uvchr(p, lenp);
2586 /* But in these instances, there is an alternative we can
2587 * return that is valid */
2588 if (original == LATIN_SMALL_LETTER_SHARP_S
2589 #ifdef LATIN_CAPITAL_LETTER_SHARP_S /* not defined in early Unicode releases */
2590 || original == LATIN_CAPITAL_LETTER_SHARP_S
2595 else if (original == LATIN_SMALL_LIGATURE_LONG_S_T) {
2596 goto return_ligature_st;
2598 #if UNICODE_MAJOR_VERSION == 3 \
2599 && UNICODE_DOT_VERSION == 0 \
2600 && UNICODE_DOT_DOT_VERSION == 1
2602 else if (original == LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE) {
2603 goto return_dotless_i;
2606 Copy(p, ustrp, *lenp, char);
2612 /* Here, no characters crossed, result is ok as-is */
2617 /* Here, used locale rules. Convert back to UTF-8 */
2618 if (UTF8_IS_INVARIANT(result)) {
2619 *ustrp = (U8) result;
2623 *ustrp = UTF8_EIGHT_BIT_HI((U8) result);
2624 *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result);
2631 /* Certain folds to 'ss' are prohibited by the options, but they do allow
2632 * folds to a string of two of these characters. By returning this
2633 * instead, then, e.g.,
2634 * fc("\x{1E9E}") eq fc("\x{17F}\x{17F}")
2637 *lenp = 2 * sizeof(LATIN_SMALL_LETTER_LONG_S_UTF8) - 2;
2638 Copy(LATIN_SMALL_LETTER_LONG_S_UTF8 LATIN_SMALL_LETTER_LONG_S_UTF8,
2640 return LATIN_SMALL_LETTER_LONG_S;
2643 /* Two folds to 'st' are prohibited by the options; instead we pick one and
2644 * have the other one fold to it */
2646 *lenp = sizeof(LATIN_SMALL_LIGATURE_ST_UTF8) - 1;
2647 Copy(LATIN_SMALL_LIGATURE_ST_UTF8, ustrp, *lenp, U8);
2648 return LATIN_SMALL_LIGATURE_ST;
2650 #if UNICODE_MAJOR_VERSION == 3 \
2651 && UNICODE_DOT_VERSION == 0 \
2652 && UNICODE_DOT_DOT_VERSION == 1
2655 *lenp = sizeof(LATIN_SMALL_LETTER_DOTLESS_I_UTF8) - 1;
2656 Copy(LATIN_SMALL_LETTER_DOTLESS_I_UTF8, ustrp, *lenp, U8);
2657 return LATIN_SMALL_LETTER_DOTLESS_I;
2664 * Returns a "swash" which is a hash described in utf8.c:Perl_swash_fetch().
2665 * C<pkg> is a pointer to a package name for SWASHNEW, should be "utf8".
2666 * For other parameters, see utf8::SWASHNEW in lib/utf8_heavy.pl.
2670 Perl_swash_init(pTHX_ const char* pkg, const char* name, SV *listsv, I32 minbits, I32 none)
2672 PERL_ARGS_ASSERT_SWASH_INIT;
2674 /* Returns a copy of a swash initiated by the called function. This is the
2675 * public interface, and returning a copy prevents others from doing
2676 * mischief on the original */
2678 return newSVsv(_core_swash_init(pkg, name, listsv, minbits, none, NULL, NULL));
2682 Perl__core_swash_init(pTHX_ const char* pkg, const char* name, SV *listsv, I32 minbits, I32 none, SV* invlist, U8* const flags_p)
2685 /*NOTE NOTE NOTE - If you want to use "return" in this routine you MUST
2686 * use the following define */
2688 #define CORE_SWASH_INIT_RETURN(x) \
2689 PL_curpm= old_PL_curpm; \
2692 /* Initialize and return a swash, creating it if necessary. It does this
2693 * by calling utf8_heavy.pl in the general case. The returned value may be
2694 * the swash's inversion list instead if the input parameters allow it.
2695 * Which is returned should be immaterial to callers, as the only
2696 * operations permitted on a swash, swash_fetch(), _get_swash_invlist(),
2697 * and swash_to_invlist() handle both these transparently.
2699 * This interface should only be used by functions that won't destroy or
2700 * adversely change the swash, as doing so affects all other uses of the
2701 * swash in the program; the general public should use 'Perl_swash_init'
2704 * pkg is the name of the package that <name> should be in.
2705 * name is the name of the swash to find. Typically it is a Unicode
2706 * property name, including user-defined ones
2707 * listsv is a string to initialize the swash with. It must be of the form
2708 * documented as the subroutine return value in
2709 * L<perlunicode/User-Defined Character Properties>
2710 * minbits is the number of bits required to represent each data element.
2711 * It is '1' for binary properties.
2712 * none I (khw) do not understand this one, but it is used only in tr///.
2713 * invlist is an inversion list to initialize the swash with (or NULL)
2714 * flags_p if non-NULL is the address of various input and output flag bits
2715 * to the routine, as follows: ('I' means is input to the routine;
2716 * 'O' means output from the routine. Only flags marked O are
2717 * meaningful on return.)
2718 * _CORE_SWASH_INIT_USER_DEFINED_PROPERTY indicates if the swash
2719 * came from a user-defined property. (I O)
2720 * _CORE_SWASH_INIT_RETURN_IF_UNDEF indicates that instead of croaking
2721 * when the swash cannot be located, to simply return NULL. (I)
2722 * _CORE_SWASH_INIT_ACCEPT_INVLIST indicates that the caller will accept a
2723 * return of an inversion list instead of a swash hash if this routine
2724 * thinks that would result in faster execution of swash_fetch() later
2727 * Thus there are three possible inputs to find the swash: <name>,
2728 * <listsv>, and <invlist>. At least one must be specified. The result
2729 * will be the union of the specified ones, although <listsv>'s various
2730 * actions can intersect, etc. what <name> gives. To avoid going out to
2731 * disk at all, <invlist> should specify completely what the swash should
2732 * have, and <listsv> should be &PL_sv_undef and <name> should be "".
2734 * <invlist> is only valid for binary properties */
2736 PMOP *old_PL_curpm= PL_curpm; /* save away the old PL_curpm */
2738 SV* retval = &PL_sv_undef;
2739 HV* swash_hv = NULL;
2740 const int invlist_swash_boundary =
2741 (flags_p && *flags_p & _CORE_SWASH_INIT_ACCEPT_INVLIST)
2742 ? 512 /* Based on some benchmarking, but not extensive, see commit
2744 : -1; /* Never return just an inversion list */
2746 assert(listsv != &PL_sv_undef || strNE(name, "") || invlist);
2747 assert(! invlist || minbits == 1);
2749 PL_curpm= NULL; /* reset PL_curpm so that we dont get confused between the regex
2750 that triggered the swash init and the swash init perl logic itself.
2753 /* If data was passed in to go out to utf8_heavy to find the swash of, do
2755 if (listsv != &PL_sv_undef || strNE(name, "")) {
2757 const size_t pkg_len = strlen(pkg);
2758 const size_t name_len = strlen(name);
2759 HV * const stash = gv_stashpvn(pkg, pkg_len, 0);
2763 PERL_ARGS_ASSERT__CORE_SWASH_INIT;
2765 PUSHSTACKi(PERLSI_MAGIC);
2769 /* We might get here via a subroutine signature which uses a utf8
2770 * parameter name, at which point PL_subname will have been set
2771 * but not yet used. */
2772 save_item(PL_subname);
2773 if (PL_parser && PL_parser->error_count)
2774 SAVEI8(PL_parser->error_count), PL_parser->error_count = 0;
2775 method = gv_fetchmeth(stash, "SWASHNEW", 8, -1);
2776 if (!method) { /* demand load UTF-8 */
2778 if ((errsv_save = GvSV(PL_errgv))) SAVEFREESV(errsv_save);
2779 GvSV(PL_errgv) = NULL;
2780 #ifndef NO_TAINT_SUPPORT
2781 /* It is assumed that callers of this routine are not passing in
2782 * any user derived data. */
2783 /* Need to do this after save_re_context() as it will set
2784 * PL_tainted to 1 while saving $1 etc (see the code after getrx:
2785 * in Perl_magic_get). Even line to create errsv_save can turn on
2787 SAVEBOOL(TAINT_get);
2790 Perl_load_module(aTHX_ PERL_LOADMOD_NOIMPORT, newSVpvn(pkg,pkg_len),
2793 /* Not ERRSV, as there is no need to vivify a scalar we are
2794 about to discard. */
2795 SV * const errsv = GvSV(PL_errgv);
2796 if (!SvTRUE(errsv)) {
2797 GvSV(PL_errgv) = SvREFCNT_inc_simple(errsv_save);
2798 SvREFCNT_dec(errsv);
2806 mPUSHp(pkg, pkg_len);
2807 mPUSHp(name, name_len);
2812 if ((errsv_save = GvSV(PL_errgv))) SAVEFREESV(errsv_save);
2813 GvSV(PL_errgv) = NULL;
2814 /* If we already have a pointer to the method, no need to use
2815 * call_method() to repeat the lookup. */
2817 ? call_sv(MUTABLE_SV(method), G_SCALAR)
2818 : call_sv(newSVpvs_flags("SWASHNEW", SVs_TEMP), G_SCALAR | G_METHOD))
2820 retval = *PL_stack_sp--;
2821 SvREFCNT_inc(retval);
2824 /* Not ERRSV. See above. */
2825 SV * const errsv = GvSV(PL_errgv);
2826 if (!SvTRUE(errsv)) {
2827 GvSV(PL_errgv) = SvREFCNT_inc_simple(errsv_save);
2828 SvREFCNT_dec(errsv);
2833 if (IN_PERL_COMPILETIME) {
2834 CopHINTS_set(PL_curcop, PL_hints);
2836 if (!SvROK(retval) || SvTYPE(SvRV(retval)) != SVt_PVHV) {
2837 if (SvPOK(retval)) {
2839 /* If caller wants to handle missing properties, let them */
2840 if (flags_p && *flags_p & _CORE_SWASH_INIT_RETURN_IF_UNDEF) {
2841 CORE_SWASH_INIT_RETURN(NULL);
2844 "Can't find Unicode property definition \"%"SVf"\"",
2846 NOT_REACHED; /* NOTREACHED */
2849 } /* End of calling the module to find the swash */
2851 /* If this operation fetched a swash, and we will need it later, get it */
2852 if (retval != &PL_sv_undef
2853 && (minbits == 1 || (flags_p
2855 & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY))))
2857 swash_hv = MUTABLE_HV(SvRV(retval));
2859 /* If we don't already know that there is a user-defined component to
2860 * this swash, and the user has indicated they wish to know if there is
2861 * one (by passing <flags_p>), find out */
2862 if (flags_p && ! (*flags_p & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY)) {
2863 SV** user_defined = hv_fetchs(swash_hv, "USER_DEFINED", FALSE);
2864 if (user_defined && SvUV(*user_defined)) {
2865 *flags_p |= _CORE_SWASH_INIT_USER_DEFINED_PROPERTY;
2870 /* Make sure there is an inversion list for binary properties */
2872 SV** swash_invlistsvp = NULL;
2873 SV* swash_invlist = NULL;
2874 bool invlist_in_swash_is_valid = FALSE;
2875 bool swash_invlist_unclaimed = FALSE; /* whether swash_invlist has
2876 an unclaimed reference count */
2878 /* If this operation fetched a swash, get its already existing
2879 * inversion list, or create one for it */
2882 swash_invlistsvp = hv_fetchs(swash_hv, "V", FALSE);
2883 if (swash_invlistsvp) {
2884 swash_invlist = *swash_invlistsvp;
2885 invlist_in_swash_is_valid = TRUE;
2888 swash_invlist = _swash_to_invlist(retval);
2889 swash_invlist_unclaimed = TRUE;
2893 /* If an inversion list was passed in, have to include it */
2896 /* Any fetched swash will by now have an inversion list in it;
2897 * otherwise <swash_invlist> will be NULL, indicating that we
2898 * didn't fetch a swash */
2899 if (swash_invlist) {
2901 /* Add the passed-in inversion list, which invalidates the one
2902 * already stored in the swash */
2903 invlist_in_swash_is_valid = FALSE;
2904 _invlist_union(invlist, swash_invlist, &swash_invlist);
2908 /* Here, there is no swash already. Set up a minimal one, if
2909 * we are going to return a swash */
2910 if ((int) _invlist_len(invlist) > invlist_swash_boundary) {
2912 retval = newRV_noinc(MUTABLE_SV(swash_hv));
2914 swash_invlist = invlist;
2918 /* Here, we have computed the union of all the passed-in data. It may
2919 * be that there was an inversion list in the swash which didn't get
2920 * touched; otherwise save the computed one */
2921 if (! invlist_in_swash_is_valid
2922 && (int) _invlist_len(swash_invlist) > invlist_swash_boundary)
2924 if (! hv_stores(MUTABLE_HV(SvRV(retval)), "V", swash_invlist))
2926 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
2928 /* We just stole a reference count. */
2929 if (swash_invlist_unclaimed) swash_invlist_unclaimed = FALSE;
2930 else SvREFCNT_inc_simple_void_NN(swash_invlist);
2933 SvREADONLY_on(swash_invlist);
2935 /* Use the inversion list stand-alone if small enough */
2936 if ((int) _invlist_len(swash_invlist) <= invlist_swash_boundary) {
2937 SvREFCNT_dec(retval);
2938 if (!swash_invlist_unclaimed)
2939 SvREFCNT_inc_simple_void_NN(swash_invlist);
2940 retval = newRV_noinc(swash_invlist);
2944 CORE_SWASH_INIT_RETURN(retval);
2945 #undef CORE_SWASH_INIT_RETURN
2949 /* This API is wrong for special case conversions since we may need to
2950 * return several Unicode characters for a single Unicode character
2951 * (see lib/unicore/SpecCase.txt) The SWASHGET in lib/utf8_heavy.pl is
2952 * the lower-level routine, and it is similarly broken for returning
2953 * multiple values. --jhi
2954 * For those, you should use S__to_utf8_case() instead */
2955 /* Now SWASHGET is recasted into S_swatch_get in this file. */
2958 * Returns the value of property/mapping C<swash> for the first character
2959 * of the string C<ptr>. If C<do_utf8> is true, the string C<ptr> is
2960 * assumed to be in well-formed UTF-8. If C<do_utf8> is false, the string C<ptr>
2961 * is assumed to be in native 8-bit encoding. Caches the swatch in C<swash>.
2963 * A "swash" is a hash which contains initially the keys/values set up by
2964 * SWASHNEW. The purpose is to be able to completely represent a Unicode
2965 * property for all possible code points. Things are stored in a compact form
2966 * (see utf8_heavy.pl) so that calculation is required to find the actual
2967 * property value for a given code point. As code points are looked up, new
2968 * key/value pairs are added to the hash, so that the calculation doesn't have
2969 * to ever be re-done. Further, each calculation is done, not just for the
2970 * desired one, but for a whole block of code points adjacent to that one.
2971 * For binary properties on ASCII machines, the block is usually for 64 code
2972 * points, starting with a code point evenly divisible by 64. Thus if the
2973 * property value for code point 257 is requested, the code goes out and
2974 * calculates the property values for all 64 code points between 256 and 319,
2975 * and stores these as a single 64-bit long bit vector, called a "swatch",
2976 * under the key for code point 256. The key is the UTF-8 encoding for code
2977 * point 256, minus the final byte. Thus, if the length of the UTF-8 encoding
2978 * for a code point is 13 bytes, the key will be 12 bytes long. If the value
2979 * for code point 258 is then requested, this code realizes that it would be
2980 * stored under the key for 256, and would find that value and extract the
2981 * relevant bit, offset from 256.
2983 * Non-binary properties are stored in as many bits as necessary to represent
2984 * their values (32 currently, though the code is more general than that), not
2985 * as single bits, but the principle is the same: the value for each key is a
2986 * vector that encompasses the property values for all code points whose UTF-8
2987 * representations are represented by the key. That is, for all code points
2988 * whose UTF-8 representations are length N bytes, and the key is the first N-1
2992 Perl_swash_fetch(pTHX_ SV *swash, const U8 *ptr, bool do_utf8)
2994 HV *const hv = MUTABLE_HV(SvRV(swash));
2999 const U8 *tmps = NULL;
3003 PERL_ARGS_ASSERT_SWASH_FETCH;
3005 /* If it really isn't a hash, it isn't really swash; must be an inversion
3007 if (SvTYPE(hv) != SVt_PVHV) {
3008 return _invlist_contains_cp((SV*)hv,
3010 ? valid_utf8_to_uvchr(ptr, NULL)
3014 /* We store the values in a "swatch" which is a vec() value in a swash
3015 * hash. Code points 0-255 are a single vec() stored with key length
3016 * (klen) 0. All other code points have a UTF-8 representation
3017 * 0xAA..0xYY,0xZZ. A vec() is constructed containing all of them which
3018 * share 0xAA..0xYY, which is the key in the hash to that vec. So the key
3019 * length for them is the length of the encoded char - 1. ptr[klen] is the
3020 * final byte in the sequence representing the character */
3021 if (!do_utf8 || UTF8_IS_INVARIANT(c)) {
3026 else if (UTF8_IS_DOWNGRADEABLE_START(c)) {
3029 off = EIGHT_BIT_UTF8_TO_NATIVE(c, *(ptr + 1));
3032 klen = UTF8SKIP(ptr) - 1;
3034 /* Each vec() stores 2**UTF_ACCUMULATION_SHIFT values. The offset into
3035 * the vec is the final byte in the sequence. (In EBCDIC this is
3036 * converted to I8 to get consecutive values.) To help you visualize
3038 * Straight 1047 After final byte
3039 * UTF-8 UTF-EBCDIC I8 transform
3040 * U+0400: \xD0\x80 \xB8\x41\x41 \xB8\x41\xA0
3041 * U+0401: \xD0\x81 \xB8\x41\x42 \xB8\x41\xA1
3043 * U+0409: \xD0\x89 \xB8\x41\x4A \xB8\x41\xA9
3044 * U+040A: \xD0\x8A \xB8\x41\x51 \xB8\x41\xAA
3046 * U+0412: \xD0\x92 \xB8\x41\x59 \xB8\x41\xB2
3047 * U+0413: \xD0\x93 \xB8\x41\x62 \xB8\x41\xB3
3049 * U+041B: \xD0\x9B \xB8\x41\x6A \xB8\x41\xBB
3050 * U+041C: \xD0\x9C \xB8\x41\x70 \xB8\x41\xBC
3052 * U+041F: \xD0\x9F \xB8\x41\x73 \xB8\x41\xBF
3053 * U+0420: \xD0\xA0 \xB8\x42\x41 \xB8\x42\x41
3055 * (There are no discontinuities in the elided (...) entries.)
3056 * The UTF-8 key for these 33 code points is '\xD0' (which also is the
3057 * key for the next 31, up through U+043F, whose UTF-8 final byte is
3058 * \xBF). Thus in UTF-8, each key is for a vec() for 64 code points.
3059 * The final UTF-8 byte, which ranges between \x80 and \xBF, is an
3060 * index into the vec() swatch (after subtracting 0x80, which we
3061 * actually do with an '&').
3062 * In UTF-EBCDIC, each key is for a 32 code point vec(). The first 32
3063 * code points above have key '\xB8\x41'. The final UTF-EBCDIC byte has
3064 * dicontinuities which go away by transforming it into I8, and we
3065 * effectively subtract 0xA0 to get the index. */
3066 needents = (1 << UTF_ACCUMULATION_SHIFT);
3067 off = NATIVE_UTF8_TO_I8(ptr[klen]) & UTF_CONTINUATION_MASK;
3071 * This single-entry cache saves about 1/3 of the UTF-8 overhead in test
3072 * suite. (That is, only 7-8% overall over just a hash cache. Still,
3073 * it's nothing to sniff at.) Pity we usually come through at least
3074 * two function calls to get here...
3076 * NB: this code assumes that swatches are never modified, once generated!
3079 if (hv == PL_last_swash_hv &&
3080 klen == PL_last_swash_klen &&
3081 (!klen || memEQ((char *)ptr, (char *)PL_last_swash_key, klen)) )
3083 tmps = PL_last_swash_tmps;
3084 slen = PL_last_swash_slen;
3087 /* Try our second-level swatch cache, kept in a hash. */
3088 SV** svp = hv_fetch(hv, (const char*)ptr, klen, FALSE);
3090 /* If not cached, generate it via swatch_get */
3091 if (!svp || !SvPOK(*svp)
3092 || !(tmps = (const U8*)SvPV_const(*svp, slen)))
3095 const UV code_point = valid_utf8_to_uvchr(ptr, NULL);
3096 swatch = swatch_get(swash,
3097 code_point & ~((UV)needents - 1),
3100 else { /* For the first 256 code points, the swatch has a key of
3102 swatch = swatch_get(swash, 0, needents);
3105 if (IN_PERL_COMPILETIME)
3106 CopHINTS_set(PL_curcop, PL_hints);
3108 svp = hv_store(hv, (const char *)ptr, klen, swatch, 0);
3110 if (!svp || !(tmps = (U8*)SvPV(*svp, slen))
3111 || (slen << 3) < needents)
3112 Perl_croak(aTHX_ "panic: swash_fetch got improper swatch, "
3113 "svp=%p, tmps=%p, slen=%"UVuf", needents=%"UVuf,
3114 svp, tmps, (UV)slen, (UV)needents);
3117 PL_last_swash_hv = hv;
3118 assert(klen <= sizeof(PL_last_swash_key));
3119 PL_last_swash_klen = (U8)klen;
3120 /* FIXME change interpvar.h? */
3121 PL_last_swash_tmps = (U8 *) tmps;
3122 PL_last_swash_slen = slen;
3124 Copy(ptr, PL_last_swash_key, klen, U8);
3127 switch ((int)((slen << 3) / needents)) {
3129 return ((UV) tmps[off >> 3] & (1 << (off & 7))) != 0;
3131 return ((UV) tmps[off]);
3135 ((UV) tmps[off ] << 8) +
3136 ((UV) tmps[off + 1]);
3140 ((UV) tmps[off ] << 24) +
3141 ((UV) tmps[off + 1] << 16) +
3142 ((UV) tmps[off + 2] << 8) +
3143 ((UV) tmps[off + 3]);
3145 Perl_croak(aTHX_ "panic: swash_fetch got swatch of unexpected bit width, "
3146 "slen=%"UVuf", needents=%"UVuf, (UV)slen, (UV)needents);
3147 NORETURN_FUNCTION_END;
3150 /* Read a single line of the main body of the swash input text. These are of
3153 * where each number is hex. The first two numbers form the minimum and
3154 * maximum of a range, and the third is the value associated with the range.
3155 * Not all swashes should have a third number
3157 * On input: l points to the beginning of the line to be examined; it points
3158 * to somewhere in the string of the whole input text, and is
3159 * terminated by a \n or the null string terminator.
3160 * lend points to the null terminator of that string
3161 * wants_value is non-zero if the swash expects a third number
3162 * typestr is the name of the swash's mapping, like 'ToLower'
3163 * On output: *min, *max, and *val are set to the values read from the line.
3164 * returns a pointer just beyond the line examined. If there was no
3165 * valid min number on the line, returns lend+1
3169 S_swash_scan_list_line(pTHX_ U8* l, U8* const lend, UV* min, UV* max, UV* val,
3170 const bool wants_value, const U8* const typestr)
3172 const int typeto = typestr[0] == 'T' && typestr[1] == 'o';
3173 STRLEN numlen; /* Length of the number */
3174 I32 flags = PERL_SCAN_SILENT_ILLDIGIT
3175 | PERL_SCAN_DISALLOW_PREFIX
3176 | PERL_SCAN_SILENT_NON_PORTABLE;
3178 /* nl points to the next \n in the scan */
3179 U8* const nl = (U8*)memchr(l, '\n', lend - l);
3181 PERL_ARGS_ASSERT_SWASH_SCAN_LIST_LINE;
3183 /* Get the first number on the line: the range minimum */
3185 *min = grok_hex((char *)l, &numlen, &flags, NULL);
3186 *max = *min; /* So can never return without setting max */
3187 if (numlen) /* If found a hex number, position past it */
3189 else if (nl) { /* Else, go handle next line, if any */
3190 return nl + 1; /* 1 is length of "\n" */
3192 else { /* Else, no next line */
3193 return lend + 1; /* to LIST's end at which \n is not found */
3196 /* The max range value follows, separated by a BLANK */
3199 flags = PERL_SCAN_SILENT_ILLDIGIT
3200 | PERL_SCAN_DISALLOW_PREFIX
3201 | PERL_SCAN_SILENT_NON_PORTABLE;
3203 *max = grok_hex((char *)l, &numlen, &flags, NULL);
3206 else /* If no value here, it is a single element range */
3209 /* Non-binary tables have a third entry: what the first element of the
3210 * range maps to. The map for those currently read here is in hex */
3214 flags = PERL_SCAN_SILENT_ILLDIGIT
3215 | PERL_SCAN_DISALLOW_PREFIX
3216 | PERL_SCAN_SILENT_NON_PORTABLE;
3218 *val = grok_hex((char *)l, &numlen, &flags, NULL);
3227 /* diag_listed_as: To%s: illegal mapping '%s' */
3228 Perl_croak(aTHX_ "%s: illegal mapping '%s'",
3234 *val = 0; /* bits == 1, then any val should be ignored */
3236 else { /* Nothing following range min, should be single element with no
3241 /* diag_listed_as: To%s: illegal mapping '%s' */
3242 Perl_croak(aTHX_ "%s: illegal mapping '%s'", typestr, l);
3246 *val = 0; /* bits == 1, then val should be ignored */
3249 /* Position to next line if any, or EOF */
3259 * Returns a swatch (a bit vector string) for a code point sequence
3260 * that starts from the value C<start> and comprises the number C<span>.
3261 * A C<swash> must be an object created by SWASHNEW (see lib/utf8_heavy.pl).
3262 * Should be used via swash_fetch, which will cache the swatch in C<swash>.
3265 S_swatch_get(pTHX_ SV* swash, UV start, UV span)
3268 U8 *l, *lend, *x, *xend, *s, *send;
3269 STRLEN lcur, xcur, scur;
3270 HV *const hv = MUTABLE_HV(SvRV(swash));
3271 SV** const invlistsvp = hv_fetchs(hv, "V", FALSE);
3273 SV** listsvp = NULL; /* The string containing the main body of the table */
3274 SV** extssvp = NULL;
3275 SV** invert_it_svp = NULL;
3278 STRLEN octets; /* if bits == 1, then octets == 0 */
3280 UV end = start + span;
3282 if (invlistsvp == NULL) {
3283 SV** const bitssvp = hv_fetchs(hv, "BITS", FALSE);
3284 SV** const nonesvp = hv_fetchs(hv, "NONE", FALSE);
3285 SV** const typesvp = hv_fetchs(hv, "TYPE", FALSE);
3286 extssvp = hv_fetchs(hv, "EXTRAS", FALSE);
3287 listsvp = hv_fetchs(hv, "LIST", FALSE);
3288 invert_it_svp = hv_fetchs(hv, "INVERT_IT", FALSE);
3290 bits = SvUV(*bitssvp);
3291 none = SvUV(*nonesvp);
3292 typestr = (U8*)SvPV_nolen(*typesvp);
3298 octets = bits >> 3; /* if bits == 1, then octets == 0 */
3300 PERL_ARGS_ASSERT_SWATCH_GET;
3302 if (bits != 1 && bits != 8 && bits != 16 && bits != 32) {
3303 Perl_croak(aTHX_ "panic: swatch_get doesn't expect bits %"UVuf,
3307 /* If overflowed, use the max possible */
3313 /* create and initialize $swatch */
3314 scur = octets ? (span * octets) : (span + 7) / 8;
3315 swatch = newSV(scur);
3317 s = (U8*)SvPVX(swatch);
3318 if (octets && none) {
3319 const U8* const e = s + scur;
3322 *s++ = (U8)(none & 0xff);
3323 else if (bits == 16) {
3324 *s++ = (U8)((none >> 8) & 0xff);
3325 *s++ = (U8)( none & 0xff);
3327 else if (bits == 32) {
3328 *s++ = (U8)((none >> 24) & 0xff);
3329 *s++ = (U8)((none >> 16) & 0xff);
3330 *s++ = (U8)((none >> 8) & 0xff);
3331 *s++ = (U8)( none & 0xff);
3337 (void)memzero((U8*)s, scur + 1);
3339 SvCUR_set(swatch, scur);
3340 s = (U8*)SvPVX(swatch);
3342 if (invlistsvp) { /* If has an inversion list set up use that */
3343 _invlist_populate_swatch(*invlistsvp, start, end, s);
3347 /* read $swash->{LIST} */
3348 l = (U8*)SvPV(*listsvp, lcur);
3351 UV min, max, val, upper;
3352 l = swash_scan_list_line(l, lend, &min, &max, &val,
3353 cBOOL(octets), typestr);
3358 /* If looking for something beyond this range, go try the next one */
3362 /* <end> is generally 1 beyond where we want to set things, but at the
3363 * platform's infinity, where we can't go any higher, we want to
3364 * include the code point at <end> */
3367 : (max != UV_MAX || end != UV_MAX)
3374 if (!none || val < none) {
3379 for (key = min; key <= upper; key++) {
3381 /* offset must be non-negative (start <= min <= key < end) */
3382 offset = octets * (key - start);
3384 s[offset] = (U8)(val & 0xff);
3385 else if (bits == 16) {
3386 s[offset ] = (U8)((val >> 8) & 0xff);
3387 s[offset + 1] = (U8)( val & 0xff);
3389 else if (bits == 32) {
3390 s[offset ] = (U8)((val >> 24) & 0xff);
3391 s[offset + 1] = (U8)((val >> 16) & 0xff);
3392 s[offset + 2] = (U8)((val >> 8) & 0xff);
3393 s[offset + 3] = (U8)( val & 0xff);
3396 if (!none || val < none)
3400 else { /* bits == 1, then val should be ignored */
3405 for (key = min; key <= upper; key++) {
3406 const STRLEN offset = (STRLEN)(key - start);
3407 s[offset >> 3] |= 1 << (offset & 7);
3412 /* Invert if the data says it should be. Assumes that bits == 1 */
3413 if (invert_it_svp && SvUV(*invert_it_svp)) {
3415 /* Unicode properties should come with all bits above PERL_UNICODE_MAX
3416 * be 0, and their inversion should also be 0, as we don't succeed any
3417 * Unicode property matches for non-Unicode code points */
3418 if (start <= PERL_UNICODE_MAX) {
3420 /* The code below assumes that we never cross the
3421 * Unicode/above-Unicode boundary in a range, as otherwise we would
3422 * have to figure out where to stop flipping the bits. Since this
3423 * boundary is divisible by a large power of 2, and swatches comes
3424 * in small powers of 2, this should be a valid assumption */
3425 assert(start + span - 1 <= PERL_UNICODE_MAX);
3435 /* read $swash->{EXTRAS}
3436 * This code also copied to swash_to_invlist() below */
3437 x = (U8*)SvPV(*extssvp, xcur);
3445 SV **otherbitssvp, *other;
3449 const U8 opc = *x++;
3453 nl = (U8*)memchr(x, '\n', xend - x);
3455 if (opc != '-' && opc != '+' && opc != '!' && opc != '&') {
3457 x = nl + 1; /* 1 is length of "\n" */
3461 x = xend; /* to EXTRAS' end at which \n is not found */
3468 namelen = nl - namestr;
3472 namelen = xend - namestr;
3476 othersvp = hv_fetch(hv, (char *)namestr, namelen, FALSE);
3477 otherhv = MUTABLE_HV(SvRV(*othersvp));
3478 otherbitssvp = hv_fetchs(otherhv, "BITS", FALSE);
3479 otherbits = (STRLEN)SvUV(*otherbitssvp);
3480 if (bits < otherbits)
3481 Perl_croak(aTHX_ "panic: swatch_get found swatch size mismatch, "
3482 "bits=%"UVuf", otherbits=%"UVuf, (UV)bits, (UV)otherbits);
3484 /* The "other" swatch must be destroyed after. */
3485 other = swatch_get(*othersvp, start, span);
3486 o = (U8*)SvPV(other, olen);
3489 Perl_croak(aTHX_ "panic: swatch_get got improper swatch");
3491 s = (U8*)SvPV(swatch, slen);
3492 if (bits == 1 && otherbits == 1) {
3494 Perl_croak(aTHX_ "panic: swatch_get found swatch length "
3495 "mismatch, slen=%"UVuf", olen=%"UVuf,
3496 (UV)slen, (UV)olen);
3520 STRLEN otheroctets = otherbits >> 3;
3522 U8* const send = s + slen;
3527 if (otherbits == 1) {
3528 otherval = (o[offset >> 3] >> (offset & 7)) & 1;
3532 STRLEN vlen = otheroctets;
3540 if (opc == '+' && otherval)
3541 NOOP; /* replace with otherval */
3542 else if (opc == '!' && !otherval)
3544 else if (opc == '-' && otherval)
3546 else if (opc == '&' && !otherval)
3549 s += octets; /* no replacement */
3554 *s++ = (U8)( otherval & 0xff);
3555 else if (bits == 16) {
3556 *s++ = (U8)((otherval >> 8) & 0xff);
3557 *s++ = (U8)( otherval & 0xff);
3559 else if (bits == 32) {
3560 *s++ = (U8)((otherval >> 24) & 0xff);
3561 *s++ = (U8)((otherval >> 16) & 0xff);
3562 *s++ = (U8)((otherval >> 8) & 0xff);
3563 *s++ = (U8)( otherval & 0xff);
3567 sv_free(other); /* through with it! */
3573 Perl__swash_inversion_hash(pTHX_ SV* const swash)
3576 /* Subject to change or removal. For use only in regcomp.c and regexec.c
3577 * Can't be used on a property that is subject to user override, as it
3578 * relies on the value of SPECIALS in the swash which would be set by
3579 * utf8_heavy.pl to the hash in the non-overriden file, and hence is not set
3580 * for overridden properties
3582 * Returns a hash which is the inversion and closure of a swash mapping.
3583 * For example, consider the input lines:
3588 * The returned hash would have two keys, the UTF-8 for 006B and the UTF-8 for
3589 * 006C. The value for each key is an array. For 006C, the array would
3590 * have two elements, the UTF-8 for itself, and for 004C. For 006B, there
3591 * would be three elements in its array, the UTF-8 for 006B, 004B and 212A.
3593 * Note that there are no elements in the hash for 004B, 004C, 212A. The
3594 * keys are only code points that are folded-to, so it isn't a full closure.
3596 * Essentially, for any code point, it gives all the code points that map to
3597 * it, or the list of 'froms' for that point.
3599 * Currently it ignores any additions or deletions from other swashes,
3600 * looking at just the main body of the swash, and if there are SPECIALS
3601 * in the swash, at that hash
3603 * The specials hash can be extra code points, and most likely consists of
3604 * maps from single code points to multiple ones (each expressed as a string
3605 * of UTF-8 characters). This function currently returns only 1-1 mappings.
3606 * However consider this possible input in the specials hash:
3607 * "\xEF\xAC\x85" => "\x{0073}\x{0074}", # U+FB05 => 0073 0074
3608 * "\xEF\xAC\x86" => "\x{0073}\x{0074}", # U+FB06 => 0073 0074
3610 * Both FB05 and FB06 map to the same multi-char sequence, which we don't
3611 * currently handle. But it also means that FB05 and FB06 are equivalent in
3612 * a 1-1 mapping which we should handle, and this relationship may not be in
3613 * the main table. Therefore this function examines all the multi-char
3614 * sequences and adds the 1-1 mappings that come out of that.
3616 * XXX This function was originally intended to be multipurpose, but its
3617 * only use is quite likely to remain for constructing the inversion of
3618 * the CaseFolding (//i) property. If it were more general purpose for
3619 * regex patterns, it would have to do the FB05/FB06 game for simple folds,
3620 * because certain folds are prohibited under /iaa and /il. As an example,
3621 * in Unicode 3.0.1 both U+0130 and U+0131 fold to 'i', and hence are both
3622 * equivalent under /i. But under /iaa and /il, the folds to 'i' are
3623 * prohibited, so we would not figure out that they fold to each other.
3624 * Code could be written to automatically figure this out, similar to the
3625 * code that does this for multi-character folds, but this is the only case
3626 * where something like this is ever likely to happen, as all the single
3627 * char folds to the 0-255 range are now quite settled. Instead there is a
3628 * little special code that is compiled only for this Unicode version. This
3629 * is smaller and didn't require much coding time to do. But this makes
3630 * this routine strongly tied to being used just for CaseFolding. If ever
3631 * it should be generalized, this would have to be fixed */
3635 HV *const hv = MUTABLE_HV(SvRV(swash));
3637 /* The string containing the main body of the table. This will have its
3638 * assertion fail if the swash has been converted to its inversion list */
3639 SV** const listsvp = hv_fetchs(hv, "LIST", FALSE);
3641 SV** const typesvp = hv_fetchs(hv, "TYPE", FALSE);
3642 SV** const bitssvp = hv_fetchs(hv, "BITS", FALSE);
3643 SV** const nonesvp = hv_fetchs(hv, "NONE", FALSE);
3644 /*SV** const extssvp = hv_fetchs(hv, "EXTRAS", FALSE);*/
3645 const U8* const typestr = (U8*)SvPV_nolen(*typesvp);
3646 const STRLEN bits = SvUV(*bitssvp);
3647 const STRLEN octets = bits >> 3; /* if bits == 1, then octets == 0 */
3648 const UV none = SvUV(*nonesvp);
3649 SV **specials_p = hv_fetchs(hv, "SPECIALS", 0);
3653 PERL_ARGS_ASSERT__SWASH_INVERSION_HASH;
3655 /* Must have at least 8 bits to get the mappings */
3656 if (bits != 8 && bits != 16 && bits != 32) {
3657 Perl_croak(aTHX_ "panic: swash_inversion_hash doesn't expect bits %"UVuf,
3661 if (specials_p) { /* It might be "special" (sometimes, but not always, a
3662 mapping to more than one character */
3664 /* Construct an inverse mapping hash for the specials */
3665 HV * const specials_hv = MUTABLE_HV(SvRV(*specials_p));
3666 HV * specials_inverse = newHV();
3667 char *char_from; /* the lhs of the map */
3668 I32 from_len; /* its byte length */
3669 char *char_to; /* the rhs of the map */
3670 I32 to_len; /* its byte length */
3671 SV *sv_to; /* and in a sv */
3672 AV* from_list; /* list of things that map to each 'to' */
3674 hv_iterinit(specials_hv);
3676 /* The keys are the characters (in UTF-8) that map to the corresponding
3677 * UTF-8 string value. Iterate through the list creating the inverse
3679 while ((sv_to = hv_iternextsv(specials_hv, &char_from, &from_len))) {
3681 if (! SvPOK(sv_to)) {
3682 Perl_croak(aTHX_ "panic: value returned from hv_iternextsv() "
3683 "unexpectedly is not a string, flags=%lu",
3684 (unsigned long)SvFLAGS(sv_to));
3686 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "Found mapping from %"UVXf", First char of to is %"UVXf"\n", valid_utf8_to_uvchr((U8*) char_from, 0), valid_utf8_to_uvchr((U8*) SvPVX(sv_to), 0)));*/
3688 /* Each key in the inverse list is a mapped-to value, and the key's
3689 * hash value is a list of the strings (each in UTF-8) that map to
3690 * it. Those strings are all one character long */
3691 if ((listp = hv_fetch(specials_inverse,
3695 from_list = (AV*) *listp;
3697 else { /* No entry yet for it: create one */
3698 from_list = newAV();
3699 if (! hv_store(specials_inverse,
3702 (SV*) from_list, 0))
3704 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
3708 /* Here have the list associated with this 'to' (perhaps newly
3709 * created and empty). Just add to it. Note that we ASSUME that
3710 * the input is guaranteed to not have duplications, so we don't
3711 * check for that. Duplications just slow down execution time. */
3712 av_push(from_list, newSVpvn_utf8(char_from, from_len, TRUE));
3715 /* Here, 'specials_inverse' contains the inverse mapping. Go through
3716 * it looking for cases like the FB05/FB06 examples above. There would
3717 * be an entry in the hash like
3718 * 'st' => [ FB05, FB06 ]
3719 * In this example we will create two lists that get stored in the
3720 * returned hash, 'ret':
3721 * FB05 => [ FB05, FB06 ]
3722 * FB06 => [ FB05, FB06 ]
3724 * Note that there is nothing to do if the array only has one element.
3725 * (In the normal 1-1 case handled below, we don't have to worry about
3726 * two lists, as everything gets tied to the single list that is
3727 * generated for the single character 'to'. But here, we are omitting
3728 * that list, ('st' in the example), so must have multiple lists.) */
3729 while ((from_list = (AV *) hv_iternextsv(specials_inverse,
3730 &char_to, &to_len)))
3732 if (av_tindex_nomg(from_list) > 0) {
3735 /* We iterate over all combinations of i,j to place each code
3736 * point on each list */
3737 for (i = 0; i <= av_tindex_nomg(from_list); i++) {
3739 AV* i_list = newAV();
3740 SV** entryp = av_fetch(from_list, i, FALSE);
3741 if (entryp == NULL) {
3742 Perl_croak(aTHX_ "panic: av_fetch() unexpectedly failed");
3744 if (hv_fetch(ret, SvPVX(*entryp), SvCUR(*entryp), FALSE)) {
3745 Perl_croak(aTHX_ "panic: unexpected entry for %s", SvPVX(*entryp));
3747 if (! hv_store(ret, SvPVX(*entryp), SvCUR(*entryp),
3748 (SV*) i_list, FALSE))
3750 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
3753 /* For DEBUG_U: UV u = valid_utf8_to_uvchr((U8*) SvPVX(*entryp), 0);*/
3754 for (j = 0; j <= av_tindex_nomg(from_list); j++) {
3755 entryp = av_fetch(from_list, j, FALSE);
3756 if (entryp == NULL) {
3757 Perl_croak(aTHX_ "panic: av_fetch() unexpectedly failed");
3760 /* When i==j this adds itself to the list */
3761 av_push(i_list, newSVuv(utf8_to_uvchr_buf(
3762 (U8*) SvPVX(*entryp),
3763 (U8*) SvPVX(*entryp) + SvCUR(*entryp),
3765 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "%s: %d: Adding %"UVXf" to list for %"UVXf"\n", __FILE__, __LINE__, valid_utf8_to_uvchr((U8*) SvPVX(*entryp), 0), u));*/
3770 SvREFCNT_dec(specials_inverse); /* done with it */
3771 } /* End of specials */
3773 /* read $swash->{LIST} */
3775 #if UNICODE_MAJOR_VERSION == 3 \
3776 && UNICODE_DOT_VERSION == 0 \
3777 && UNICODE_DOT_DOT_VERSION == 1
3779 /* For this version only U+130 and U+131 are equivalent under qr//i. Add a
3780 * rule so that things work under /iaa and /il */
3782 SV * mod_listsv = sv_mortalcopy(*listsvp);
3783 sv_catpv(mod_listsv, "130\t130\t131\n");
3784 l = (U8*)SvPV(mod_listsv, lcur);
3788 l = (U8*)SvPV(*listsvp, lcur);
3794 /* Go through each input line */
3798 l = swash_scan_list_line(l, lend, &min, &max, &val,
3799 cBOOL(octets), typestr);
3804 /* Each element in the range is to be inverted */
3805 for (inverse = min; inverse <= max; inverse++) {
3809 bool found_key = FALSE;
3810 bool found_inverse = FALSE;
3812 /* The key is the inverse mapping */
3813 char key[UTF8_MAXBYTES+1];
3814 char* key_end = (char *) uvchr_to_utf8((U8*) key, val);
3815 STRLEN key_len = key_end - key;
3817 /* Get the list for the map */
3818 if ((listp = hv_fetch(ret, key, key_len, FALSE))) {
3819 list = (AV*) *listp;
3821 else { /* No entry yet for it: create one */
3823 if (! hv_store(ret, key, key_len, (SV*) list, FALSE)) {
3824 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
3828 /* Look through list to see if this inverse mapping already is
3829 * listed, or if there is a mapping to itself already */
3830 for (i = 0; i <= av_tindex_nomg(list); i++) {
3831 SV** entryp = av_fetch(list, i, FALSE);
3834 if (entryp == NULL) {
3835 Perl_croak(aTHX_ "panic: av_fetch() unexpectedly failed");
3839 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "list for %"UVXf" contains %"UVXf"\n", val, uv));*/
3843 if (uv == inverse) {
3844 found_inverse = TRUE;
3847 /* No need to continue searching if found everything we are
3849 if (found_key && found_inverse) {
3854 /* Make sure there is a mapping to itself on the list */
3856 av_push(list, newSVuv(val));
3857 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "%s: %d: Adding %"UVXf" to list for %"UVXf"\n", __FILE__, __LINE__, val, val));*/
3861 /* Simply add the value to the list */
3862 if (! found_inverse) {
3863 av_push(list, newSVuv(inverse));
3864 /*DEBUG_U(PerlIO_printf(Perl_debug_log, "%s: %d: Adding %"UVXf" to list for %"UVXf"\n", __FILE__, __LINE__, inverse, val));*/
3867 /* swatch_get() increments the value of val for each element in the
3868 * range. That makes more compact tables possible. You can
3869 * express the capitalization, for example, of all consecutive
3870 * letters with a single line: 0061\t007A\t0041 This maps 0061 to
3871 * 0041, 0062 to 0042, etc. I (khw) have never understood 'none',
3872 * and it's not documented; it appears to be used only in
3873 * implementing tr//; I copied the semantics from swatch_get(), just
3875 if (!none || val < none) {
3885 Perl__swash_to_invlist(pTHX_ SV* const swash)
3888 /* Subject to change or removal. For use only in one place in regcomp.c.
3889 * Ownership is given to one reference count in the returned SV* */
3894 HV *const hv = MUTABLE_HV(SvRV(swash));
3895 UV elements = 0; /* Number of elements in the inversion list */
3905 STRLEN octets; /* if bits == 1, then octets == 0 */
3911 PERL_ARGS_ASSERT__SWASH_TO_INVLIST;
3913 /* If not a hash, it must be the swash's inversion list instead */
3914 if (SvTYPE(hv) != SVt_PVHV) {
3915 return SvREFCNT_inc_simple_NN((SV*) hv);
3918 /* The string containing the main body of the table */
3919 listsvp = hv_fetchs(hv, "LIST", FALSE);
3920 typesvp = hv_fetchs(hv, "TYPE", FALSE);
3921 bitssvp = hv_fetchs(hv, "BITS", FALSE);
3922 extssvp = hv_fetchs(hv, "EXTRAS", FALSE);
3923 invert_it_svp = hv_fetchs(hv, "INVERT_IT", FALSE);
3925 typestr = (U8*)SvPV_nolen(*typesvp);
3926 bits = SvUV(*bitssvp);
3927 octets = bits >> 3; /* if bits == 1, then octets == 0 */
3929 /* read $swash->{LIST} */
3930 if (SvPOK(*listsvp)) {
3931 l = (U8*)SvPV(*listsvp, lcur);
3934 /* LIST legitimately doesn't contain a string during compilation phases
3935 * of Perl itself, before the Unicode tables are generated. In this
3936 * case, just fake things up by creating an empty list */
3943 if (*l == 'V') { /* Inversion list format */
3944 const char *after_atou = (char *) lend;
3946 UV* other_elements_ptr;
3948 /* The first number is a count of the rest */
3950 if (!grok_atoUV((const char *)l, &elements, &after_atou)) {
3951 Perl_croak(aTHX_ "panic: Expecting a valid count of elements at start of inversion list");
3953 if (elements == 0) {
3954 invlist = _new_invlist(0);
3957 while (isSPACE(*l)) l++;
3958 l = (U8 *) after_atou;
3960 /* Get the 0th element, which is needed to setup the inversion list */
3961 while (isSPACE(*l)) l++;
3962 if (!grok_atoUV((const char *)l, &element0, &after_atou)) {
3963 Perl_croak(aTHX_ "panic: Expecting a valid 0th element for inversion list");
3965 l = (U8 *) after_atou;
3966 invlist = _setup_canned_invlist(elements, element0, &other_elements_ptr);
3969 /* Then just populate the rest of the input */
3970 while (elements-- > 0) {
3972 Perl_croak(aTHX_ "panic: Expecting %"UVuf" more elements than available", elements);
3974 while (isSPACE(*l)) l++;
3975 if (!grok_atoUV((const char *)l, other_elements_ptr++, &after_atou)) {
3976 Perl_croak(aTHX_ "panic: Expecting a valid element in inversion list");
3978 l = (U8 *) after_atou;
3984 /* Scan the input to count the number of lines to preallocate array
3985 * size based on worst possible case, which is each line in the input
3986 * creates 2 elements in the inversion list: 1) the beginning of a
3987 * range in the list; 2) the beginning of a range not in the list. */
3988 while ((loc = (strchr(loc, '\n'))) != NULL) {
3993 /* If the ending is somehow corrupt and isn't a new line, add another
3994 * element for the final range that isn't in the inversion list */
3995 if (! (*lend == '\n'
3996 || (*lend == '\0' && (lcur == 0 || *(lend - 1) == '\n'))))
4001 invlist = _new_invlist(elements);
4003 /* Now go through the input again, adding each range to the list */
4006 UV val; /* Not used by this function */
4008 l = swash_scan_list_line(l, lend, &start, &end, &val,
4009 cBOOL(octets), typestr);
4015 invlist = _add_range_to_invlist(invlist, start, end);
4019 /* Invert if the data says it should be */
4020 if (invert_it_svp && SvUV(*invert_it_svp)) {
4021 _invlist_invert(invlist);
4024 /* This code is copied from swatch_get()
4025 * read $swash->{EXTRAS} */
4026 x = (U8*)SvPV(*extssvp, xcur);
4034 SV **otherbitssvp, *other;
4037 const U8 opc = *x++;
4041 nl = (U8*)memchr(x, '\n', xend - x);
4043 if (opc != '-' && opc != '+' && opc != '!' && opc != '&') {
4045 x = nl + 1; /* 1 is length of "\n" */
4049 x = xend; /* to EXTRAS' end at which \n is not found */
4056 namelen = nl - namestr;
4060 namelen = xend - namestr;
4064 othersvp = hv_fetch(hv, (char *)namestr, namelen, FALSE);
4065 otherhv = MUTABLE_HV(SvRV(*othersvp));
4066 otherbitssvp = hv_fetchs(otherhv, "BITS", FALSE);
4067 otherbits = (STRLEN)SvUV(*otherbitssvp);
4069 if (bits != otherbits || bits != 1) {
4070 Perl_croak(aTHX_ "panic: _swash_to_invlist only operates on boolean "
4071 "properties, bits=%"UVuf", otherbits=%"UVuf,
4072 (UV)bits, (UV)otherbits);
4075 /* The "other" swatch must be destroyed after. */
4076 other = _swash_to_invlist((SV *)*othersvp);
4078 /* End of code copied from swatch_get() */
4081 _invlist_union(invlist, other, &invlist);
4084 _invlist_union_maybe_complement_2nd(invlist, other, TRUE, &invlist);
4087 _invlist_subtract(invlist, other, &invlist);
4090 _invlist_intersection(invlist, other, &invlist);
4095 sv_free(other); /* through with it! */
4098 SvREADONLY_on(invlist);
4103 Perl__get_swash_invlist(pTHX_ SV* const swash)
4107 PERL_ARGS_ASSERT__GET_SWASH_INVLIST;
4109 if (! SvROK(swash)) {
4113 /* If it really isn't a hash, it isn't really swash; must be an inversion
4115 if (SvTYPE(SvRV(swash)) != SVt_PVHV) {
4119 ptr = hv_fetchs(MUTABLE_HV(SvRV(swash)), "V", FALSE);
4128 Perl_check_utf8_print(pTHX_ const U8* s, const STRLEN len)
4130 /* May change: warns if surrogates, non-character code points, or
4131 * non-Unicode code points are in s which has length len bytes. Returns
4132 * TRUE if none found; FALSE otherwise. The only other validity check is
4133 * to make sure that this won't exceed the string's length.
4135 * Code points above the platform's C<IV_MAX> will raise a deprecation
4136 * warning, unless those are turned off. */
4138 const U8* const e = s + len;
4141 PERL_ARGS_ASSERT_CHECK_UTF8_PRINT;
4144 if (UTF8SKIP(s) > len) {
4145 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
4146 "%s in %s", unees, PL_op ? OP_DESC(PL_op) : "print");
4149 if (UNLIKELY(isUTF8_POSSIBLY_PROBLEMATIC(*s))) {
4151 if (UNLIKELY(UTF8_IS_SUPER(s, e))) {
4152 if ( ckWARN_d(WARN_NON_UNICODE)
4153 || ( ckWARN_d(WARN_DEPRECATED)
4155 && UNLIKELY(is_utf8_cp_above_31_bits(s, e))
4156 #else /* Below is 64-bit words */
4157 /* 2**63 and up meet these conditions provided we have
4161 && NATIVE_UTF8_TO_I8(s[1]) >= 0xA8
4164 /* s[1] being above 0x80 overflows */
4169 /* A side effect of this function will be to warn */
4170 (void) utf8n_to_uvchr(s, e - s, &char_len, UTF8_WARN_SUPER);
4174 else if (UNLIKELY(UTF8_IS_SURROGATE(s, e))) {
4175 if (ckWARN_d(WARN_SURROGATE)) {
4176 /* This has a different warning than the one the called
4177 * function would output, so can't just call it, unlike we
4178 * do for the non-chars and above-unicodes */
4179 UV uv = utf8_to_uvchr_buf(s, e, &char_len);
4180 Perl_warner(aTHX_ packWARN(WARN_SURROGATE),
4181 "Unicode surrogate U+%04"UVXf" is illegal in UTF-8", uv);
4185 else if (UNLIKELY(UTF8_IS_NONCHAR(s, e)) && (ckWARN_d(WARN_NONCHAR))) {
4186 /* A side effect of this function will be to warn */
4187 (void) utf8n_to_uvchr(s, e - s, &char_len, UTF8_WARN_NONCHAR);
4198 =for apidoc pv_uni_display
4200 Build to the scalar C<dsv> a displayable version of the string C<spv>,
4201 length C<len>, the displayable version being at most C<pvlim> bytes long
4202 (if longer, the rest is truncated and C<"..."> will be appended).
4204 The C<flags> argument can have C<UNI_DISPLAY_ISPRINT> set to display
4205 C<isPRINT()>able characters as themselves, C<UNI_DISPLAY_BACKSLASH>
4206 to display the C<\\[nrfta\\]> as the backslashed versions (like C<"\n">)
4207 (C<UNI_DISPLAY_BACKSLASH> is preferred over C<UNI_DISPLAY_ISPRINT> for C<"\\">).
4208 C<UNI_DISPLAY_QQ> (and its alias C<UNI_DISPLAY_REGEX>) have both
4209 C<UNI_DISPLAY_BACKSLASH> and C<UNI_DISPLAY_ISPRINT> turned on.
4211 The pointer to the PV of the C<dsv> is returned.
4213 See also L</sv_uni_display>.
4217 Perl_pv_uni_display(pTHX_ SV *dsv, const U8 *spv, STRLEN len, STRLEN pvlim, UV flags)
4222 PERL_ARGS_ASSERT_PV_UNI_DISPLAY;
4226 for (s = (const char *)spv, e = s + len; s < e; s += UTF8SKIP(s)) {
4228 /* This serves double duty as a flag and a character to print after
4229 a \ when flags & UNI_DISPLAY_BACKSLASH is true.
4233 if (pvlim && SvCUR(dsv) >= pvlim) {
4237 u = utf8_to_uvchr_buf((U8*)s, (U8*)e, 0);
4239 const unsigned char c = (unsigned char)u & 0xFF;
4240 if (flags & UNI_DISPLAY_BACKSLASH) {
4257 const char string = ok;
4258 sv_catpvs(dsv, "\\");
4259 sv_catpvn(dsv, &string, 1);
4262 /* isPRINT() is the locale-blind version. */
4263 if (!ok && (flags & UNI_DISPLAY_ISPRINT) && isPRINT(c)) {
4264 const char string = c;
4265 sv_catpvn(dsv, &string, 1);
4270 Perl_sv_catpvf(aTHX_ dsv, "\\x{%"UVxf"}", u);
4273 sv_catpvs(dsv, "...");
4279 =for apidoc sv_uni_display
4281 Build to the scalar C<dsv> a displayable version of the scalar C<sv>,
4282 the displayable version being at most C<pvlim> bytes long
4283 (if longer, the rest is truncated and "..." will be appended).
4285 The C<flags> argument is as in L</pv_uni_display>().
4287 The pointer to the PV of the C<dsv> is returned.
4292 Perl_sv_uni_display(pTHX_ SV *dsv, SV *ssv, STRLEN pvlim, UV flags)
4294 const char * const ptr =
4295 isREGEXP(ssv) ? RX_WRAPPED((REGEXP*)ssv) : SvPVX_const(ssv);
4297 PERL_ARGS_ASSERT_SV_UNI_DISPLAY;
4299 return Perl_pv_uni_display(aTHX_ dsv, (const U8*)ptr,
4300 SvCUR(ssv), pvlim, flags);
4304 =for apidoc foldEQ_utf8
4306 Returns true if the leading portions of the strings C<s1> and C<s2> (either or both
4307 of which may be in UTF-8) are the same case-insensitively; false otherwise.
4308 How far into the strings to compare is determined by other input parameters.
4310 If C<u1> is true, the string C<s1> is assumed to be in UTF-8-encoded Unicode;
4311 otherwise it is assumed to be in native 8-bit encoding. Correspondingly for C<u2>
4312 with respect to C<s2>.
4314 If the byte length C<l1> is non-zero, it says how far into C<s1> to check for fold
4315 equality. In other words, C<s1>+C<l1> will be used as a goal to reach. The
4316 scan will not be considered to be a match unless the goal is reached, and
4317 scanning won't continue past that goal. Correspondingly for C<l2> with respect to
4320 If C<pe1> is non-C<NULL> and the pointer it points to is not C<NULL>, that pointer is
4321 considered an end pointer to the position 1 byte past the maximum point
4322 in C<s1> beyond which scanning will not continue under any circumstances.
4323 (This routine assumes that UTF-8 encoded input strings are not malformed;
4324 malformed input can cause it to read past C<pe1>).
4325 This means that if both C<l1> and C<pe1> are specified, and C<pe1>
4326 is less than C<s1>+C<l1>, the match will never be successful because it can
4328 get as far as its goal (and in fact is asserted against). Correspondingly for
4329 C<pe2> with respect to C<s2>.
4331 At least one of C<s1> and C<s2> must have a goal (at least one of C<l1> and
4332 C<l2> must be non-zero), and if both do, both have to be
4333 reached for a successful match. Also, if the fold of a character is multiple
4334 characters, all of them must be matched (see tr21 reference below for
4337 Upon a successful match, if C<pe1> is non-C<NULL>,
4338 it will be set to point to the beginning of the I<next> character of C<s1>
4339 beyond what was matched. Correspondingly for C<pe2> and C<s2>.
4341 For case-insensitiveness, the "casefolding" of Unicode is used
4342 instead of upper/lowercasing both the characters, see
4343 L<http://www.unicode.org/unicode/reports/tr21/> (Case Mappings).
4347 /* A flags parameter has been added which may change, and hence isn't
4348 * externally documented. Currently it is:
4349 * 0 for as-documented above
4350 * FOLDEQ_UTF8_NOMIX_ASCII meaning that if a non-ASCII character folds to an
4351 ASCII one, to not match
4352 * FOLDEQ_LOCALE is set iff the rules from the current underlying
4353 * locale are to be used.
4354 * FOLDEQ_S1_ALREADY_FOLDED s1 has already been folded before calling this
4355 * routine. This allows that step to be skipped.
4356 * Currently, this requires s1 to be encoded as UTF-8
4357 * (u1 must be true), which is asserted for.
4358 * FOLDEQ_S1_FOLDS_SANE With either NOMIX_ASCII or LOCALE, no folds may
4359 * cross certain boundaries. Hence, the caller should
4360 * let this function do the folding instead of
4361 * pre-folding. This code contains an assertion to
4362 * that effect. However, if the caller knows what
4363 * it's doing, it can pass this flag to indicate that,
4364 * and the assertion is skipped.
4365 * FOLDEQ_S2_ALREADY_FOLDED Similarly.
4366 * FOLDEQ_S2_FOLDS_SANE
4369 Perl_foldEQ_utf8_flags(pTHX_ const char *s1, char **pe1, UV l1, bool u1, const char *s2, char **pe2, UV l2, bool u2, U32 flags)
4371 const U8 *p1 = (const U8*)s1; /* Point to current char */
4372 const U8 *p2 = (const U8*)s2;
4373 const U8 *g1 = NULL; /* goal for s1 */
4374 const U8 *g2 = NULL;
4375 const U8 *e1 = NULL; /* Don't scan s1 past this */
4376 U8 *f1 = NULL; /* Point to current folded */
4377 const U8 *e2 = NULL;
4379 STRLEN n1 = 0, n2 = 0; /* Number of bytes in current char */
4380 U8 foldbuf1[UTF8_MAXBYTES_CASE+1];
4381 U8 foldbuf2[UTF8_MAXBYTES_CASE+1];
4382 U8 flags_for_folder = FOLD_FLAGS_FULL;
4384 PERL_ARGS_ASSERT_FOLDEQ_UTF8_FLAGS;
4386 assert( ! ((flags & (FOLDEQ_UTF8_NOMIX_ASCII | FOLDEQ_LOCALE))
4387 && (((flags & FOLDEQ_S1_ALREADY_FOLDED)
4388 && !(flags & FOLDEQ_S1_FOLDS_SANE))
4389 || ((flags & FOLDEQ_S2_ALREADY_FOLDED)
4390 && !(flags & FOLDEQ_S2_FOLDS_SANE)))));
4391 /* The algorithm is to trial the folds without regard to the flags on
4392 * the first line of the above assert(), and then see if the result
4393 * violates them. This means that the inputs can't be pre-folded to a
4394 * violating result, hence the assert. This could be changed, with the
4395 * addition of extra tests here for the already-folded case, which would
4396 * slow it down. That cost is more than any possible gain for when these
4397 * flags are specified, as the flags indicate /il or /iaa matching which
4398 * is less common than /iu, and I (khw) also believe that real-world /il
4399 * and /iaa matches are most likely to involve code points 0-255, and this
4400 * function only under rare conditions gets called for 0-255. */
4402 if (flags & FOLDEQ_LOCALE) {
4403 if (IN_UTF8_CTYPE_LOCALE) {
4404 flags &= ~FOLDEQ_LOCALE;
4407 flags_for_folder |= FOLD_FLAGS_LOCALE;
4416 g1 = (const U8*)s1 + l1;
4424 g2 = (const U8*)s2 + l2;
4427 /* Must have at least one goal */
4432 /* Will never match if goal is out-of-bounds */
4433 assert(! e1 || e1 >= g1);
4435 /* Here, there isn't an end pointer, or it is beyond the goal. We
4436 * only go as far as the goal */
4440 assert(e1); /* Must have an end for looking at s1 */
4443 /* Same for goal for s2 */
4445 assert(! e2 || e2 >= g2);
4452 /* If both operands are already folded, we could just do a memEQ on the
4453 * whole strings at once, but it would be better if the caller realized
4454 * this and didn't even call us */
4456 /* Look through both strings, a character at a time */
4457 while (p1 < e1 && p2 < e2) {
4459 /* If at the beginning of a new character in s1, get its fold to use
4460 * and the length of the fold. */
4462 if (flags & FOLDEQ_S1_ALREADY_FOLDED) {