3 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 * by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
12 * 'What a fix!' said Sam. 'That's the one place in all the lands we've ever
13 * heard of that we don't want to see any closer; and that's the one place
14 * we're trying to get to! And that's just where we can't get, nohow.'
16 * [p.603 of _The Lord of the Rings_, IV/I: "The Taming of Sméagol"]
18 * 'Well do I understand your speech,' he answered in the same language;
19 * 'yet few strangers do so. Why then do you not speak in the Common Tongue,
20 * as is the custom in the West, if you wish to be answered?'
21 * --Gandalf, addressing Théoden's door wardens
23 * [p.508 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"]
25 * ...the travellers perceived that the floor was paved with stones of many
26 * hues; branching runes and strange devices intertwined beneath their feet.
28 * [p.512 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"]
32 #define PERL_IN_UTF8_C
34 #include "invlist_inline.h"
36 static const char malformed_text[] = "Malformed UTF-8 character";
37 static const char unees[] =
38 "Malformed UTF-8 character (unexpected end of string)";
39 static const char cp_above_legal_max[] =
40 "Use of code point 0x%" UVXf " is deprecated; the permissible max is 0x%" UVXf;
42 #define MAX_NON_DEPRECATED_CP ((UV) (IV_MAX))
45 =head1 Unicode Support
46 These are various utility functions for manipulating UTF8-encoded
47 strings. For the uninitiated, this is a method of representing arbitrary
48 Unicode characters as a variable number of bytes, in such a way that
49 characters in the ASCII range are unmodified, and a zero byte never appears
50 within non-zero characters.
56 Perl__force_out_malformed_utf8_message(pTHX_
57 const U8 *const p, /* First byte in UTF-8 sequence */
58 const U8 * const e, /* Final byte in sequence (may include
60 const U32 flags, /* Flags to pass to utf8n_to_uvchr(),
61 usually 0, or some DISALLOW flags */
62 const bool die_here) /* If TRUE, this function does not return */
64 /* This core-only function is to be called when a malformed UTF-8 character
65 * is found, in order to output the detailed information about the
66 * malformation before dieing. The reason it exists is for the occasions
67 * when such a malformation is fatal, but warnings might be turned off, so
68 * that normally they would not be actually output. This ensures that they
69 * do get output. Because a sequence may be malformed in more than one
70 * way, multiple messages may be generated, so we can't make them fatal, as
71 * that would cause the first one to die.
73 * Instead we pretend -W was passed to perl, then die afterwards. The
74 * flexibility is here to return to the caller so they can finish up and
78 PERL_ARGS_ASSERT__FORCE_OUT_MALFORMED_UTF8_MESSAGE;
84 PL_dowarn = G_WARN_ALL_ON|G_WARN_ON;
86 PL_curcop->cop_warnings = pWARN_ALL;
89 (void) utf8n_to_uvchr_error(p, e - p, NULL, flags & ~UTF8_CHECK_ONLY, &errors);
94 Perl_croak(aTHX_ "panic: _force_out_malformed_utf8_message should"
95 " be called only when there are errors found");
99 Perl_croak(aTHX_ "Malformed UTF-8 character (fatal)");
104 =for apidoc uvoffuni_to_utf8_flags
106 THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
107 Instead, B<Almost all code should use L</uvchr_to_utf8> or
108 L</uvchr_to_utf8_flags>>.
110 This function is like them, but the input is a strict Unicode
111 (as opposed to native) code point. Only in very rare circumstances should code
112 not be using the native code point.
114 For details, see the description for L</uvchr_to_utf8_flags>.
119 #define HANDLE_UNICODE_SURROGATE(uv, flags) \
121 if (flags & UNICODE_WARN_SURROGATE) { \
122 Perl_ck_warner_d(aTHX_ packWARN(WARN_SURROGATE), \
123 "UTF-16 surrogate U+%04" UVXf, uv); \
125 if (flags & UNICODE_DISALLOW_SURROGATE) { \
130 #define HANDLE_UNICODE_NONCHAR(uv, flags) \
132 if (flags & UNICODE_WARN_NONCHAR) { \
133 Perl_ck_warner_d(aTHX_ packWARN(WARN_NONCHAR), \
134 "Unicode non-character U+%04" UVXf " is not " \
135 "recommended for open interchange", uv); \
137 if (flags & UNICODE_DISALLOW_NONCHAR) { \
142 /* Use shorter names internally in this file */
143 #define SHIFT UTF_ACCUMULATION_SHIFT
145 #define MARK UTF_CONTINUATION_MARK
146 #define MASK UTF_CONTINUATION_MASK
149 Perl_uvoffuni_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags)
151 PERL_ARGS_ASSERT_UVOFFUNI_TO_UTF8_FLAGS;
153 if (OFFUNI_IS_INVARIANT(uv)) {
154 *d++ = LATIN1_TO_NATIVE(uv);
158 if (uv <= MAX_UTF8_TWO_BYTE) {
159 *d++ = I8_TO_NATIVE_UTF8(( uv >> SHIFT) | UTF_START_MARK(2));
160 *d++ = I8_TO_NATIVE_UTF8(( uv & MASK) | MARK);
164 /* Not 2-byte; test for and handle 3-byte result. In the test immediately
165 * below, the 16 is for start bytes E0-EF (which are all the possible ones
166 * for 3 byte characters). The 2 is for 2 continuation bytes; these each
167 * contribute SHIFT bits. This yields 0x4000 on EBCDIC platforms, 0x1_0000
168 * on ASCII; so 3 bytes covers the range 0x400-0x3FFF on EBCDIC;
169 * 0x800-0xFFFF on ASCII */
170 if (uv < (16 * (1U << (2 * SHIFT)))) {
171 *d++ = I8_TO_NATIVE_UTF8(( uv >> ((3 - 1) * SHIFT)) | UTF_START_MARK(3));
172 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((2 - 1) * SHIFT)) & MASK) | MARK);
173 *d++ = I8_TO_NATIVE_UTF8(( uv /* (1 - 1) */ & MASK) | MARK);
175 #ifndef EBCDIC /* These problematic code points are 4 bytes on EBCDIC, so
176 aren't tested here */
177 /* The most likely code points in this range are below the surrogates.
178 * Do an extra test to quickly exclude those. */
179 if (UNLIKELY(uv >= UNICODE_SURROGATE_FIRST)) {
180 if (UNLIKELY( UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv)
181 || UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv)))
183 HANDLE_UNICODE_NONCHAR(uv, flags);
185 else if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
186 HANDLE_UNICODE_SURROGATE(uv, flags);
193 /* Not 3-byte; that means the code point is at least 0x1_0000 on ASCII
194 * platforms, and 0x4000 on EBCDIC. There are problematic cases that can
195 * happen starting with 4-byte characters on ASCII platforms. We unify the
196 * code for these with EBCDIC, even though some of them require 5-bytes on
197 * those, because khw believes the code saving is worth the very slight
198 * performance hit on these high EBCDIC code points. */
200 if (UNLIKELY(UNICODE_IS_SUPER(uv))) {
201 if ( UNLIKELY(uv > MAX_NON_DEPRECATED_CP)
202 && ckWARN_d(WARN_DEPRECATED))
204 Perl_warner(aTHX_ packWARN(WARN_DEPRECATED),
205 cp_above_legal_max, uv, MAX_NON_DEPRECATED_CP);
207 if ( (flags & UNICODE_WARN_SUPER)
208 || ( UNICODE_IS_ABOVE_31_BIT(uv)
209 && (flags & UNICODE_WARN_ABOVE_31_BIT)))
211 Perl_ck_warner_d(aTHX_ packWARN(WARN_NON_UNICODE),
213 /* Choose the more dire applicable warning */
214 (UNICODE_IS_ABOVE_31_BIT(uv))
215 ? "Code point 0x%" UVXf " is not Unicode, and not portable"
216 : "Code point 0x%" UVXf " is not Unicode, may not be portable",
219 if (flags & UNICODE_DISALLOW_SUPER
220 || ( UNICODE_IS_ABOVE_31_BIT(uv)
221 && (flags & UNICODE_DISALLOW_ABOVE_31_BIT)))
226 else if (UNLIKELY(UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv))) {
227 HANDLE_UNICODE_NONCHAR(uv, flags);
230 /* Test for and handle 4-byte result. In the test immediately below, the
231 * 8 is for start bytes F0-F7 (which are all the possible ones for 4 byte
232 * characters). The 3 is for 3 continuation bytes; these each contribute
233 * SHIFT bits. This yields 0x4_0000 on EBCDIC platforms, 0x20_0000 on
234 * ASCII, so 4 bytes covers the range 0x4000-0x3_FFFF on EBCDIC;
235 * 0x1_0000-0x1F_FFFF on ASCII */
236 if (uv < (8 * (1U << (3 * SHIFT)))) {
237 *d++ = I8_TO_NATIVE_UTF8(( uv >> ((4 - 1) * SHIFT)) | UTF_START_MARK(4));
238 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((3 - 1) * SHIFT)) & MASK) | MARK);
239 *d++ = I8_TO_NATIVE_UTF8(((uv >> ((2 - 1) * SHIFT)) & MASK) | MARK);
240 *d++ = I8_TO_NATIVE_UTF8(( uv /* (1 - 1) */ & MASK) | MARK);
242 #ifdef EBCDIC /* These were handled on ASCII platforms in the code for 3-byte
243 characters. The end-plane non-characters for EBCDIC were
244 handled just above */
245 if (UNLIKELY(UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv))) {
246 HANDLE_UNICODE_NONCHAR(uv, flags);
248 else if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
249 HANDLE_UNICODE_SURROGATE(uv, flags);
256 /* Not 4-byte; that means the code point is at least 0x20_0000 on ASCII
257 * platforms, and 0x4000 on EBCDIC. At this point we switch to a loop
258 * format. The unrolled version above turns out to not save all that much
259 * time, and at these high code points (well above the legal Unicode range
260 * on ASCII platforms, and well above anything in common use in EBCDIC),
261 * khw believes that less code outweighs slight performance gains. */
264 STRLEN len = OFFUNISKIP(uv);
267 *p-- = I8_TO_NATIVE_UTF8((uv & UTF_CONTINUATION_MASK) | UTF_CONTINUATION_MARK);
268 uv >>= UTF_ACCUMULATION_SHIFT;
270 *p = I8_TO_NATIVE_UTF8((uv & UTF_START_MASK(len)) | UTF_START_MARK(len));
276 =for apidoc uvchr_to_utf8
278 Adds the UTF-8 representation of the native code point C<uv> to the end
279 of the string C<d>; C<d> should have at least C<UVCHR_SKIP(uv)+1> (up to
280 C<UTF8_MAXBYTES+1>) free bytes available. The return value is the pointer to
281 the byte after the end of the new character. In other words,
283 d = uvchr_to_utf8(d, uv);
285 is the recommended wide native character-aware way of saying
289 This function accepts any UV as input, but very high code points (above
290 C<IV_MAX> on the platform) will raise a deprecation warning. This is
291 typically 0x7FFF_FFFF in a 32-bit word.
293 It is possible to forbid or warn on non-Unicode code points, or those that may
294 be problematic by using L</uvchr_to_utf8_flags>.
299 /* This is also a macro */
300 PERL_CALLCONV U8* Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv);
303 Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv)
305 return uvchr_to_utf8(d, uv);
309 =for apidoc uvchr_to_utf8_flags
311 Adds the UTF-8 representation of the native code point C<uv> to the end
312 of the string C<d>; C<d> should have at least C<UVCHR_SKIP(uv)+1> (up to
313 C<UTF8_MAXBYTES+1>) free bytes available. The return value is the pointer to
314 the byte after the end of the new character. In other words,
316 d = uvchr_to_utf8_flags(d, uv, flags);
320 d = uvchr_to_utf8_flags(d, uv, 0);
322 This is the Unicode-aware way of saying
326 If C<flags> is 0, this function accepts any UV as input, but very high code
327 points (above C<IV_MAX> for the platform) will raise a deprecation warning.
328 This is typically 0x7FFF_FFFF in a 32-bit word.
330 Specifying C<flags> can further restrict what is allowed and not warned on, as
333 If C<uv> is a Unicode surrogate code point and C<UNICODE_WARN_SURROGATE> is set,
334 the function will raise a warning, provided UTF8 warnings are enabled. If
335 instead C<UNICODE_DISALLOW_SURROGATE> is set, the function will fail and return
336 NULL. If both flags are set, the function will both warn and return NULL.
338 Similarly, the C<UNICODE_WARN_NONCHAR> and C<UNICODE_DISALLOW_NONCHAR> flags
339 affect how the function handles a Unicode non-character.
341 And likewise, the C<UNICODE_WARN_SUPER> and C<UNICODE_DISALLOW_SUPER> flags
342 affect the handling of code points that are above the Unicode maximum of
343 0x10FFFF. Languages other than Perl may not be able to accept files that
346 The flag C<UNICODE_WARN_ILLEGAL_INTERCHANGE> selects all three of
347 the above WARN flags; and C<UNICODE_DISALLOW_ILLEGAL_INTERCHANGE> selects all
348 three DISALLOW flags. C<UNICODE_DISALLOW_ILLEGAL_INTERCHANGE> restricts the
349 allowed inputs to the strict UTF-8 traditionally defined by Unicode.
350 Similarly, C<UNICODE_WARN_ILLEGAL_C9_INTERCHANGE> and
351 C<UNICODE_DISALLOW_ILLEGAL_C9_INTERCHANGE> are shortcuts to select the
352 above-Unicode and surrogate flags, but not the non-character ones, as
354 L<Unicode Corrigendum #9|http://www.unicode.org/versions/corrigendum9.html>.
355 See L<perlunicode/Noncharacter code points>.
357 Code points above 0x7FFF_FFFF (2**31 - 1) were never specified in any standard,
358 so using them is more problematic than other above-Unicode code points. Perl
359 invented an extension to UTF-8 to represent the ones above 2**36-1, so it is
360 likely that non-Perl languages will not be able to read files that contain
361 these that written by the perl interpreter; nor would Perl understand files
362 written by something that uses a different extension. For these reasons, there
363 is a separate set of flags that can warn and/or disallow these extremely high
364 code points, even if other above-Unicode ones are accepted. These are the
365 C<UNICODE_WARN_ABOVE_31_BIT> and C<UNICODE_DISALLOW_ABOVE_31_BIT> flags. These
366 are entirely independent from the deprecation warning for code points above
367 C<IV_MAX>. On 32-bit machines, it will eventually be forbidden to have any
368 code point that needs more than 31 bits to represent. When that happens,
369 effectively the C<UNICODE_DISALLOW_ABOVE_31_BIT> flag will always be set on
370 32-bit machines. (Of course C<UNICODE_DISALLOW_SUPER> will treat all
371 above-Unicode code points, including these, as malformations; and
372 C<UNICODE_WARN_SUPER> warns on these.)
374 On EBCDIC platforms starting in Perl v5.24, the Perl extension for representing
375 extremely high code points kicks in at 0x3FFF_FFFF (2**30 -1), which is lower
376 than on ASCII. Prior to that, code points 2**31 and higher were simply
377 unrepresentable, and a different, incompatible method was used to represent
378 code points between 2**30 and 2**31 - 1. The flags C<UNICODE_WARN_ABOVE_31_BIT>
379 and C<UNICODE_DISALLOW_ABOVE_31_BIT> have the same function as on ASCII
380 platforms, warning and disallowing 2**31 and higher.
385 /* This is also a macro */
386 PERL_CALLCONV U8* Perl_uvchr_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags);
389 Perl_uvchr_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags)
391 return uvchr_to_utf8_flags(d, uv, flags);
394 PERL_STATIC_INLINE bool
395 S_is_utf8_cp_above_31_bits(const U8 * const s, const U8 * const e)
397 /* Returns TRUE if the first code point represented by the Perl-extended-
398 * UTF-8-encoded string starting at 's', and looking no further than 'e -
399 * 1' doesn't fit into 31 bytes. That is, that if it is >= 2**31.
401 * The function handles the case where the input bytes do not include all
402 * the ones necessary to represent a full character. That is, they may be
403 * the intial bytes of the representation of a code point, but possibly
404 * the final ones necessary for the complete representation may be beyond
407 * The function assumes that the sequence is well-formed UTF-8 as far as it
408 * goes, and is for a UTF-8 variant code point. If the sequence is
409 * incomplete, the function returns FALSE if there is any well-formed
410 * UTF-8 byte sequence that can complete it in such a way that a code point
411 * < 2**31 is produced; otherwise it returns TRUE.
413 * Getting this exactly right is slightly tricky, and has to be done in
414 * several places in this file, so is centralized here. It is based on the
417 * U+7FFFFFFF (2 ** 31 - 1)
418 * ASCII: \xFD\xBF\xBF\xBF\xBF\xBF
419 * IBM-1047: \xFE\x41\x41\x41\x41\x41\x41\x42\x73\x73\x73\x73\x73\x73
420 * IBM-037: \xFE\x41\x41\x41\x41\x41\x41\x42\x72\x72\x72\x72\x72\x72
421 * POSIX-BC: \xFE\x41\x41\x41\x41\x41\x41\x42\x75\x75\x75\x75\x75\x75
422 * I8: \xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA1\xBF\xBF\xBF\xBF\xBF\xBF
423 * U+80000000 (2 ** 31):
424 * ASCII: \xFE\x82\x80\x80\x80\x80\x80
425 * [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 10 11 12 13
426 * IBM-1047: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
427 * IBM-037: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
428 * POSIX-BC: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
429 * I8: \xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA2\xA0\xA0\xA0\xA0\xA0\xA0
434 /* [0] is start byte [1] [2] [3] [4] [5] [6] [7] */
435 const U8 prefix[] = "\x41\x41\x41\x41\x41\x41\x42";
436 const STRLEN prefix_len = sizeof(prefix) - 1;
437 const STRLEN len = e - s;
438 const STRLEN cmp_len = MIN(prefix_len, len - 1);
446 PERL_ARGS_ASSERT_IS_UTF8_CP_ABOVE_31_BITS;
448 assert(! UTF8_IS_INVARIANT(*s));
452 /* Technically, a start byte of FE can be for a code point that fits into
453 * 31 bytes, but not for well-formed UTF-8: doing that requires an overlong
459 /* On the EBCDIC code pages we handle, only 0xFE can mean a 32-bit or
460 * larger code point (0xFF is an invariant). For 0xFE, we need at least 2
461 * bytes, and maybe up through 8 bytes, to be sure if the value is above 31
463 if (*s != 0xFE || len == 1) {
467 /* Note that in UTF-EBCDIC, the two lowest possible continuation bytes are
469 return cBOOL(memGT(s + 1, prefix, cmp_len));
475 PERL_STATIC_INLINE bool
476 S_does_utf8_overflow(const U8 * const s, const U8 * e)
479 const U8 * y = (const U8 *) HIGHEST_REPRESENTABLE_UTF8;
481 #if ! defined(UV_IS_QUAD) && ! defined(EBCDIC)
483 const STRLEN len = e - s;
487 /* Returns a boolean as to if this UTF-8 string would overflow a UV on this
488 * platform, that is if it represents a code point larger than the highest
489 * representable code point. (For ASCII platforms, we could use memcmp()
490 * because we don't have to convert each byte to I8, but it's very rare
491 * input indeed that would approach overflow, so the loop below will likely
492 * only get executed once.
494 * 'e' must not be beyond a full character. If it is less than a full
495 * character, the function returns FALSE if there is any input beyond 'e'
496 * that could result in a non-overflowing code point */
498 PERL_ARGS_ASSERT_DOES_UTF8_OVERFLOW;
499 assert(s <= e && s + UTF8SKIP(s) >= e);
501 #if ! defined(UV_IS_QUAD) && ! defined(EBCDIC)
503 /* On 32 bit ASCII machines, many overlongs that start with FF don't
506 if (isFF_OVERLONG(s, len)) {
507 const U8 max_32_bit_overlong[] = "\xFF\x80\x80\x80\x80\x80\x80\x84";
508 return memGE(s, max_32_bit_overlong,
509 MIN(len, sizeof(max_32_bit_overlong) - 1));
514 for (x = s; x < e; x++, y++) {
516 /* If this byte is larger than the corresponding highest UTF-8 byte, it
518 if (UNLIKELY(NATIVE_UTF8_TO_I8(*x) > *y)) {
522 /* If not the same as this byte, it must be smaller, doesn't overflow */
523 if (LIKELY(NATIVE_UTF8_TO_I8(*x) != *y)) {
528 /* Got to the end and all bytes are the same. If the input is a whole
529 * character, it doesn't overflow. And if it is a partial character,
530 * there's not enough information to tell, so assume doesn't overflow */
534 PERL_STATIC_INLINE bool
535 S_is_utf8_overlong_given_start_byte_ok(const U8 * const s, const STRLEN len)
537 /* Overlongs can occur whenever the number of continuation bytes
538 * changes. That means whenever the number of leading 1 bits in a start
539 * byte increases from the next lower start byte. That happens for start
540 * bytes C0, E0, F0, F8, FC, FE, and FF. On modern perls, the following
541 * illegal start bytes have already been excluded, so don't need to be
543 * ASCII platforms: C0, C1
544 * EBCDIC platforms C0, C1, C2, C3, C4, E0
546 * At least a second byte is required to determine if other sequences will
549 const U8 s0 = NATIVE_UTF8_TO_I8(s[0]);
550 const U8 s1 = NATIVE_UTF8_TO_I8(s[1]);
552 PERL_ARGS_ASSERT_IS_UTF8_OVERLONG_GIVEN_START_BYTE_OK;
553 assert(len > 1 && UTF8_IS_START(*s));
555 /* Each platform has overlongs after the start bytes given above (expressed
556 * in I8 for EBCDIC). What constitutes an overlong varies by platform, but
557 * the logic is the same, except the E0 overlong has already been excluded
558 * on EBCDIC platforms. The values below were found by manually
559 * inspecting the UTF-8 patterns. See the tables in utf8.h and
563 # define F0_ABOVE_OVERLONG 0xB0
564 # define F8_ABOVE_OVERLONG 0xA8
565 # define FC_ABOVE_OVERLONG 0xA4
566 # define FE_ABOVE_OVERLONG 0xA2
567 # define FF_OVERLONG_PREFIX "\xfe\x41\x41\x41\x41\x41\x41\x41"
571 if (s0 == 0xE0 && UNLIKELY(s1 < 0xA0)) {
575 # define F0_ABOVE_OVERLONG 0x90
576 # define F8_ABOVE_OVERLONG 0x88
577 # define FC_ABOVE_OVERLONG 0x84
578 # define FE_ABOVE_OVERLONG 0x82
579 # define FF_OVERLONG_PREFIX "\xff\x80\x80\x80\x80\x80\x80"
583 if ( (s0 == 0xF0 && UNLIKELY(s1 < F0_ABOVE_OVERLONG))
584 || (s0 == 0xF8 && UNLIKELY(s1 < F8_ABOVE_OVERLONG))
585 || (s0 == 0xFC && UNLIKELY(s1 < FC_ABOVE_OVERLONG))
586 || (s0 == 0xFE && UNLIKELY(s1 < FE_ABOVE_OVERLONG)))
591 /* Check for the FF overlong */
592 return isFF_OVERLONG(s, len);
595 PERL_STATIC_INLINE bool
596 S_isFF_OVERLONG(const U8 * const s, const STRLEN len)
598 PERL_ARGS_ASSERT_ISFF_OVERLONG;
600 /* Check for the FF overlong. This happens only if all these bytes match;
601 * what comes after them doesn't matter. See tables in utf8.h,
604 return len >= sizeof(FF_OVERLONG_PREFIX) - 1
605 && UNLIKELY(memEQ(s, FF_OVERLONG_PREFIX,
606 sizeof(FF_OVERLONG_PREFIX) - 1));
609 #undef F0_ABOVE_OVERLONG
610 #undef F8_ABOVE_OVERLONG
611 #undef FC_ABOVE_OVERLONG
612 #undef FE_ABOVE_OVERLONG
613 #undef FF_OVERLONG_PREFIX
616 Perl__is_utf8_char_helper(const U8 * const s, const U8 * e, const U32 flags)
621 /* A helper function that should not be called directly.
623 * This function returns non-zero if the string beginning at 's' and
624 * looking no further than 'e - 1' is well-formed Perl-extended-UTF-8 for a
625 * code point; otherwise it returns 0. The examination stops after the
626 * first code point in 's' is validated, not looking at the rest of the
627 * input. If 'e' is such that there are not enough bytes to represent a
628 * complete code point, this function will return non-zero anyway, if the
629 * bytes it does have are well-formed UTF-8 as far as they go, and aren't
630 * excluded by 'flags'.
632 * A non-zero return gives the number of bytes required to represent the
633 * code point. Be aware that if the input is for a partial character, the
634 * return will be larger than 'e - s'.
636 * This function assumes that the code point represented is UTF-8 variant.
637 * The caller should have excluded this possibility before calling this
640 * 'flags' can be 0, or any combination of the UTF8_DISALLOW_foo flags
641 * accepted by L</utf8n_to_uvchr>. If non-zero, this function will return
642 * 0 if the code point represented is well-formed Perl-extended-UTF-8, but
643 * disallowed by the flags. If the input is only for a partial character,
644 * the function will return non-zero if there is any sequence of
645 * well-formed UTF-8 that, when appended to the input sequence, could
646 * result in an allowed code point; otherwise it returns 0. Non characters
647 * cannot be determined based on partial character input. But many of the
648 * other excluded types can be determined with just the first one or two
653 PERL_ARGS_ASSERT__IS_UTF8_CHAR_HELPER;
655 assert(0 == (flags & ~(UTF8_DISALLOW_ILLEGAL_INTERCHANGE
656 |UTF8_DISALLOW_ABOVE_31_BIT)));
657 assert(! UTF8_IS_INVARIANT(*s));
659 /* A variant char must begin with a start byte */
660 if (UNLIKELY(! UTF8_IS_START(*s))) {
664 /* Examine a maximum of a single whole code point */
665 if (e - s > UTF8SKIP(s)) {
671 if (flags && isUTF8_POSSIBLY_PROBLEMATIC(*s)) {
672 const U8 s0 = NATIVE_UTF8_TO_I8(s[0]);
674 /* The code below is derived from this table. Keep in mind that legal
675 * continuation bytes range between \x80..\xBF for UTF-8, and
676 * \xA0..\xBF for I8. Anything above those aren't continuation bytes.
677 * Hence, we don't have to test the upper edge because if any of those
678 * are encountered, the sequence is malformed, and will fail elsewhere
680 * UTF-8 UTF-EBCDIC I8
681 * U+D800: \xED\xA0\x80 \xF1\xB6\xA0\xA0 First surrogate
682 * U+DFFF: \xED\xBF\xBF \xF1\xB7\xBF\xBF Final surrogate
683 * U+110000: \xF4\x90\x80\x80 \xF9\xA2\xA0\xA0\xA0 First above Unicode
687 #ifdef EBCDIC /* On EBCDIC, these are actually I8 bytes */
688 # define FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER 0xFA
689 # define IS_UTF8_2_BYTE_SUPER(s0, s1) ((s0) == 0xF9 && (s1) >= 0xA2)
691 # define IS_UTF8_2_BYTE_SURROGATE(s0, s1) ((s0) == 0xF1 \
693 && ((s1) & 0xFE ) == 0xB6)
695 # define FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER 0xF5
696 # define IS_UTF8_2_BYTE_SUPER(s0, s1) ((s0) == 0xF4 && (s1) >= 0x90)
697 # define IS_UTF8_2_BYTE_SURROGATE(s0, s1) ((s0) == 0xED && (s1) >= 0xA0)
700 if ( (flags & UTF8_DISALLOW_SUPER)
701 && UNLIKELY(s0 >= FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER))
703 return 0; /* Above Unicode */
706 if ( (flags & UTF8_DISALLOW_ABOVE_31_BIT)
707 && UNLIKELY(is_utf8_cp_above_31_bits(s, e)))
709 return 0; /* Above 31 bits */
713 const U8 s1 = NATIVE_UTF8_TO_I8(s[1]);
715 if ( (flags & UTF8_DISALLOW_SUPER)
716 && UNLIKELY(IS_UTF8_2_BYTE_SUPER(s0, s1)))
718 return 0; /* Above Unicode */
721 if ( (flags & UTF8_DISALLOW_SURROGATE)
722 && UNLIKELY(IS_UTF8_2_BYTE_SURROGATE(s0, s1)))
724 return 0; /* Surrogate */
727 if ( (flags & UTF8_DISALLOW_NONCHAR)
728 && UNLIKELY(UTF8_IS_NONCHAR(s, e)))
730 return 0; /* Noncharacter code point */
735 /* Make sure that all that follows are continuation bytes */
736 for (x = s + 1; x < e; x++) {
737 if (UNLIKELY(! UTF8_IS_CONTINUATION(*x))) {
742 /* Here is syntactically valid. Next, make sure this isn't the start of an
744 if (len > 1 && is_utf8_overlong_given_start_byte_ok(s, len)) {
748 /* And finally, that the code point represented fits in a word on this
750 if (does_utf8_overflow(s, e)) {
758 S__byte_dump_string(pTHX_ const U8 * s, const STRLEN len)
760 /* Returns a mortalized C string that is a displayable copy of the 'len'
761 * bytes starting at 's', each in a \xXY format. */
763 const STRLEN output_len = 4 * len + 1; /* 4 bytes per each input, plus a
765 const U8 * const e = s + len;
769 PERL_ARGS_ASSERT__BYTE_DUMP_STRING;
771 Newx(output, output_len, char);
776 const unsigned high_nibble = (*s & 0xF0) >> 4;
777 const unsigned low_nibble = (*s & 0x0F);
782 if (high_nibble < 10) {
783 *d++ = high_nibble + '0';
786 *d++ = high_nibble - 10 + 'a';
789 if (low_nibble < 10) {
790 *d++ = low_nibble + '0';
793 *d++ = low_nibble - 10 + 'a';
801 PERL_STATIC_INLINE char *
802 S_unexpected_non_continuation_text(pTHX_ const U8 * const s,
804 /* How many bytes to print */
807 /* Which one is the non-continuation */
808 const STRLEN non_cont_byte_pos,
810 /* How many bytes should there be? */
811 const STRLEN expect_len)
813 /* Return the malformation warning text for an unexpected continuation
816 const char * const where = (non_cont_byte_pos == 1)
818 : Perl_form(aTHX_ "%d bytes",
819 (int) non_cont_byte_pos);
821 PERL_ARGS_ASSERT_UNEXPECTED_NON_CONTINUATION_TEXT;
823 /* We don't need to pass this parameter, but since it has already been
824 * calculated, it's likely faster to pass it; verify under DEBUGGING */
825 assert(expect_len == UTF8SKIP(s));
827 return Perl_form(aTHX_ "%s: %s (unexpected non-continuation byte 0x%02x,"
828 " %s after start byte 0x%02x; need %d bytes, got %d)",
830 _byte_dump_string(s, print_len),
831 *(s + non_cont_byte_pos),
835 (int) non_cont_byte_pos);
840 =for apidoc utf8n_to_uvchr
842 THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
843 Most code should use L</utf8_to_uvchr_buf>() rather than call this directly.
845 Bottom level UTF-8 decode routine.
846 Returns the native code point value of the first character in the string C<s>,
847 which is assumed to be in UTF-8 (or UTF-EBCDIC) encoding, and no longer than
848 C<curlen> bytes; C<*retlen> (if C<retlen> isn't NULL) will be set to
849 the length, in bytes, of that character.
851 The value of C<flags> determines the behavior when C<s> does not point to a
852 well-formed UTF-8 character. If C<flags> is 0, encountering a malformation
853 causes zero to be returned and C<*retlen> is set so that (S<C<s> + C<*retlen>>)
854 is the next possible position in C<s> that could begin a non-malformed
855 character. Also, if UTF-8 warnings haven't been lexically disabled, a warning
856 is raised. Some UTF-8 input sequences may contain multiple malformations.
857 This function tries to find every possible one in each call, so multiple
858 warnings can be raised for each sequence.
860 Various ALLOW flags can be set in C<flags> to allow (and not warn on)
861 individual types of malformations, such as the sequence being overlong (that
862 is, when there is a shorter sequence that can express the same code point;
863 overlong sequences are expressly forbidden in the UTF-8 standard due to
864 potential security issues). Another malformation example is the first byte of
865 a character not being a legal first byte. See F<utf8.h> for the list of such
866 flags. Even if allowed, this function generally returns the Unicode
867 REPLACEMENT CHARACTER when it encounters a malformation. There are flags in
868 F<utf8.h> to override this behavior for the overlong malformations, but don't
869 do that except for very specialized purposes.
871 The C<UTF8_CHECK_ONLY> flag overrides the behavior when a non-allowed (by other
872 flags) malformation is found. If this flag is set, the routine assumes that
873 the caller will raise a warning, and this function will silently just set
874 C<retlen> to C<-1> (cast to C<STRLEN>) and return zero.
876 Note that this API requires disambiguation between successful decoding a C<NUL>
877 character, and an error return (unless the C<UTF8_CHECK_ONLY> flag is set), as
878 in both cases, 0 is returned, and, depending on the malformation, C<retlen> may
879 be set to 1. To disambiguate, upon a zero return, see if the first byte of
880 C<s> is 0 as well. If so, the input was a C<NUL>; if not, the input had an
881 error. Or you can use C<L</utf8n_to_uvchr_error>>.
883 Certain code points are considered problematic. These are Unicode surrogates,
884 Unicode non-characters, and code points above the Unicode maximum of 0x10FFFF.
885 By default these are considered regular code points, but certain situations
886 warrant special handling for them, which can be specified using the C<flags>
887 parameter. If C<flags> contains C<UTF8_DISALLOW_ILLEGAL_INTERCHANGE>, all
888 three classes are treated as malformations and handled as such. The flags
889 C<UTF8_DISALLOW_SURROGATE>, C<UTF8_DISALLOW_NONCHAR>, and
890 C<UTF8_DISALLOW_SUPER> (meaning above the legal Unicode maximum) can be set to
891 disallow these categories individually. C<UTF8_DISALLOW_ILLEGAL_INTERCHANGE>
892 restricts the allowed inputs to the strict UTF-8 traditionally defined by
893 Unicode. Use C<UTF8_DISALLOW_ILLEGAL_C9_INTERCHANGE> to use the strictness
895 L<Unicode Corrigendum #9|http://www.unicode.org/versions/corrigendum9.html>.
896 The difference between traditional strictness and C9 strictness is that the
897 latter does not forbid non-character code points. (They are still discouraged,
898 however.) For more discussion see L<perlunicode/Noncharacter code points>.
900 The flags C<UTF8_WARN_ILLEGAL_INTERCHANGE>,
901 C<UTF8_WARN_ILLEGAL_C9_INTERCHANGE>, C<UTF8_WARN_SURROGATE>,
902 C<UTF8_WARN_NONCHAR>, and C<UTF8_WARN_SUPER> will cause warning messages to be
903 raised for their respective categories, but otherwise the code points are
904 considered valid (not malformations). To get a category to both be treated as
905 a malformation and raise a warning, specify both the WARN and DISALLOW flags.
906 (But note that warnings are not raised if lexically disabled nor if
907 C<UTF8_CHECK_ONLY> is also specified.)
909 It is now deprecated to have very high code points (above C<IV_MAX> on the
910 platforms) and this function will raise a deprecation warning for these (unless
911 such warnings are turned off). This value is typically 0x7FFF_FFFF (2**31 -1)
914 Code points above 0x7FFF_FFFF (2**31 - 1) were never specified in any standard,
915 so using them is more problematic than other above-Unicode code points. Perl
916 invented an extension to UTF-8 to represent the ones above 2**36-1, so it is
917 likely that non-Perl languages will not be able to read files that contain
918 these; nor would Perl understand files
919 written by something that uses a different extension. For these reasons, there
920 is a separate set of flags that can warn and/or disallow these extremely high
921 code points, even if other above-Unicode ones are accepted. These are the
922 C<UTF8_WARN_ABOVE_31_BIT> and C<UTF8_DISALLOW_ABOVE_31_BIT> flags. These
923 are entirely independent from the deprecation warning for code points above
924 C<IV_MAX>. On 32-bit machines, it will eventually be forbidden to have any
925 code point that needs more than 31 bits to represent. When that happens,
926 effectively the C<UTF8_DISALLOW_ABOVE_31_BIT> flag will always be set on
927 32-bit machines. (Of course C<UTF8_DISALLOW_SUPER> will treat all
928 above-Unicode code points, including these, as malformations; and
929 C<UTF8_WARN_SUPER> warns on these.)
931 On EBCDIC platforms starting in Perl v5.24, the Perl extension for representing
932 extremely high code points kicks in at 0x3FFF_FFFF (2**30 -1), which is lower
933 than on ASCII. Prior to that, code points 2**31 and higher were simply
934 unrepresentable, and a different, incompatible method was used to represent
935 code points between 2**30 and 2**31 - 1. The flags C<UTF8_WARN_ABOVE_31_BIT>
936 and C<UTF8_DISALLOW_ABOVE_31_BIT> have the same function as on ASCII
937 platforms, warning and disallowing 2**31 and higher.
939 All other code points corresponding to Unicode characters, including private
940 use and those yet to be assigned, are never considered malformed and never
945 Also implemented as a macro in utf8.h
949 Perl_utf8n_to_uvchr(pTHX_ const U8 *s,
954 PERL_ARGS_ASSERT_UTF8N_TO_UVCHR;
956 return utf8n_to_uvchr_error(s, curlen, retlen, flags, NULL);
961 =for apidoc utf8n_to_uvchr_error
963 THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
964 Most code should use L</utf8_to_uvchr_buf>() rather than call this directly.
966 This function is for code that needs to know what the precise malformation(s)
967 are when an error is found.
969 It is like C<L</utf8n_to_uvchr>> but it takes an extra parameter placed after
970 all the others, C<errors>. If this parameter is 0, this function behaves
971 identically to C<L</utf8n_to_uvchr>>. Otherwise, C<errors> should be a pointer
972 to a C<U32> variable, which this function sets to indicate any errors found.
973 Upon return, if C<*errors> is 0, there were no errors found. Otherwise,
974 C<*errors> is the bit-wise C<OR> of the bits described in the list below. Some
975 of these bits will be set if a malformation is found, even if the input
976 C<flags> parameter indicates that the given malformation is allowed; those
977 exceptions are noted:
981 =item C<UTF8_GOT_ABOVE_31_BIT>
983 The code point represented by the input UTF-8 sequence occupies more than 31
985 This bit is set only if the input C<flags> parameter contains either the
986 C<UTF8_DISALLOW_ABOVE_31_BIT> or the C<UTF8_WARN_ABOVE_31_BIT> flags.
988 =item C<UTF8_GOT_CONTINUATION>
990 The input sequence was malformed in that the first byte was a a UTF-8
993 =item C<UTF8_GOT_EMPTY>
995 The input C<curlen> parameter was 0.
997 =item C<UTF8_GOT_LONG>
999 The input sequence was malformed in that there is some other sequence that
1000 evaluates to the same code point, but that sequence is shorter than this one.
1002 =item C<UTF8_GOT_NONCHAR>
1004 The code point represented by the input UTF-8 sequence is for a Unicode
1005 non-character code point.
1006 This bit is set only if the input C<flags> parameter contains either the
1007 C<UTF8_DISALLOW_NONCHAR> or the C<UTF8_WARN_NONCHAR> flags.
1009 =item C<UTF8_GOT_NON_CONTINUATION>
1011 The input sequence was malformed in that a non-continuation type byte was found
1012 in a position where only a continuation type one should be.
1014 =item C<UTF8_GOT_OVERFLOW>
1016 The input sequence was malformed in that it is for a code point that is not
1017 representable in the number of bits available in a UV on the current platform.
1019 =item C<UTF8_GOT_SHORT>
1021 The input sequence was malformed in that C<curlen> is smaller than required for
1022 a complete sequence. In other words, the input is for a partial character
1025 =item C<UTF8_GOT_SUPER>
1027 The input sequence was malformed in that it is for a non-Unicode code point;
1028 that is, one above the legal Unicode maximum.
1029 This bit is set only if the input C<flags> parameter contains either the
1030 C<UTF8_DISALLOW_SUPER> or the C<UTF8_WARN_SUPER> flags.
1032 =item C<UTF8_GOT_SURROGATE>
1034 The input sequence was malformed in that it is for a -Unicode UTF-16 surrogate
1036 This bit is set only if the input C<flags> parameter contains either the
1037 C<UTF8_DISALLOW_SURROGATE> or the C<UTF8_WARN_SURROGATE> flags.
1041 To do your own error handling, call this function with the C<UTF8_CHECK_ONLY>
1042 flag to suppress any warnings, and then examine the C<*errors> return.
1048 Perl_utf8n_to_uvchr_error(pTHX_ const U8 *s,
1054 const U8 * const s0 = s;
1055 U8 * send = NULL; /* (initialized to silence compilers' wrong
1057 U32 possible_problems = 0; /* A bit is set here for each potential problem
1058 found as we go along */
1060 STRLEN expectlen = 0; /* How long should this sequence be?
1061 (initialized to silence compilers' wrong
1063 STRLEN avail_len = 0; /* When input is too short, gives what that is */
1064 U32 discard_errors = 0; /* Used to save branches when 'errors' is NULL;
1065 this gets set and discarded */
1067 /* The below are used only if there is both an overlong malformation and a
1068 * too short one. Otherwise the first two are set to 's0' and 'send', and
1069 * the third not used at all */
1070 U8 * adjusted_s0 = (U8 *) s0;
1071 U8 * adjusted_send = NULL; /* (Initialized to silence compilers' wrong
1073 UV uv_so_far = 0; /* (Initialized to silence compilers' wrong warning) */
1075 PERL_ARGS_ASSERT_UTF8N_TO_UVCHR_ERROR;
1081 errors = &discard_errors;
1084 /* The order of malformation tests here is important. We should consume as
1085 * few bytes as possible in order to not skip any valid character. This is
1086 * required by the Unicode Standard (section 3.9 of Unicode 6.0); see also
1087 * http://unicode.org/reports/tr36 for more discussion as to why. For
1088 * example, once we've done a UTF8SKIP, we can tell the expected number of
1089 * bytes, and could fail right off the bat if the input parameters indicate
1090 * that there are too few available. But it could be that just that first
1091 * byte is garbled, and the intended character occupies fewer bytes. If we
1092 * blindly assumed that the first byte is correct, and skipped based on
1093 * that number, we could skip over a valid input character. So instead, we
1094 * always examine the sequence byte-by-byte.
1096 * We also should not consume too few bytes, otherwise someone could inject
1097 * things. For example, an input could be deliberately designed to
1098 * overflow, and if this code bailed out immediately upon discovering that,
1099 * returning to the caller C<*retlen> pointing to the very next byte (one
1100 * which is actually part of of the overflowing sequence), that could look
1101 * legitimate to the caller, which could discard the initial partial
1102 * sequence and process the rest, inappropriately.
1104 * Some possible input sequences are malformed in more than one way. This
1105 * function goes to lengths to try to find all of them. This is necessary
1106 * for correctness, as the inputs may allow one malformation but not
1107 * another, and if we abandon searching for others after finding the
1108 * allowed one, we could allow in something that shouldn't have been.
1111 if (UNLIKELY(curlen == 0)) {
1112 possible_problems |= UTF8_GOT_EMPTY;
1114 uv = UNICODE_REPLACEMENT;
1115 goto ready_to_handle_errors;
1118 expectlen = UTF8SKIP(s);
1120 /* A well-formed UTF-8 character, as the vast majority of calls to this
1121 * function will be for, has this expected length. For efficiency, set
1122 * things up here to return it. It will be overriden only in those rare
1123 * cases where a malformation is found */
1125 *retlen = expectlen;
1128 /* An invariant is trivially well-formed */
1129 if (UTF8_IS_INVARIANT(uv)) {
1133 /* A continuation character can't start a valid sequence */
1134 if (UNLIKELY(UTF8_IS_CONTINUATION(uv))) {
1135 possible_problems |= UTF8_GOT_CONTINUATION;
1137 uv = UNICODE_REPLACEMENT;
1138 goto ready_to_handle_errors;
1141 /* Here is not a continuation byte, nor an invariant. The only thing left
1142 * is a start byte (possibly for an overlong). (We can't use UTF8_IS_START
1143 * because it excludes start bytes like \xC0 that always lead to
1146 /* Convert to I8 on EBCDIC (no-op on ASCII), then remove the leading bits
1147 * that indicate the number of bytes in the character's whole UTF-8
1148 * sequence, leaving just the bits that are part of the value. */
1149 uv = NATIVE_UTF8_TO_I8(uv) & UTF_START_MASK(expectlen);
1151 /* Setup the loop end point, making sure to not look past the end of the
1152 * input string, and flag it as too short if the size isn't big enough. */
1154 if (UNLIKELY(curlen < expectlen)) {
1155 possible_problems |= UTF8_GOT_SHORT;
1162 adjusted_send = send;
1164 /* Now, loop through the remaining bytes in the character's sequence,
1165 * accumulating each into the working value as we go. */
1166 for (s = s0 + 1; s < send; s++) {
1167 if (LIKELY(UTF8_IS_CONTINUATION(*s))) {
1168 uv = UTF8_ACCUMULATE(uv, *s);
1172 /* Here, found a non-continuation before processing all expected bytes.
1173 * This byte indicates the beginning of a new character, so quit, even
1174 * if allowing this malformation. */
1175 possible_problems |= UTF8_GOT_NON_CONTINUATION;
1177 } /* End of loop through the character's bytes */
1179 /* Save how many bytes were actually in the character */
1182 /* A convenience macro that matches either of the too-short conditions. */
1183 # define UTF8_GOT_TOO_SHORT (UTF8_GOT_SHORT|UTF8_GOT_NON_CONTINUATION)
1185 if (UNLIKELY(possible_problems & UTF8_GOT_TOO_SHORT)) {
1187 uv = UNICODE_REPLACEMENT;
1190 /* Note that there are two types of too-short malformation. One is when
1191 * there is actual wrong data before the normal termination of the
1192 * sequence. The other is that the sequence wasn't complete before the end
1193 * of the data we are allowed to look at, based on the input 'curlen'.
1194 * This means that we were passed data for a partial character, but it is
1195 * valid as far as we saw. The other is definitely invalid. This
1196 * distinction could be important to a caller, so the two types are kept
1199 /* Check for overflow */
1200 if (UNLIKELY(does_utf8_overflow(s0, send))) {
1201 possible_problems |= UTF8_GOT_OVERFLOW;
1202 uv = UNICODE_REPLACEMENT;
1205 /* Check for overlong. If no problems so far, 'uv' is the correct code
1206 * point value. Simply see if it is expressible in fewer bytes. Otherwise
1207 * we must look at the UTF-8 byte sequence itself to see if it is for an
1209 if ( ( LIKELY(! possible_problems)
1210 && UNLIKELY(expectlen > (STRLEN) OFFUNISKIP(uv)))
1211 || ( UNLIKELY( possible_problems)
1212 && ( UNLIKELY(! UTF8_IS_START(*s0))
1214 && UNLIKELY(is_utf8_overlong_given_start_byte_ok(s0,
1217 possible_problems |= UTF8_GOT_LONG;
1219 if (UNLIKELY(possible_problems & UTF8_GOT_TOO_SHORT)) {
1220 UV min_uv = uv_so_far;
1223 /* Here, the input is both overlong and is missing some trailing
1224 * bytes. There is no single code point it could be for, but there
1225 * may be enough information present to determine if what we have
1226 * so far is for an unallowed code point, such as for a surrogate.
1227 * The code below has the intelligence to determine this, but just
1228 * for non-overlong UTF-8 sequences. What we do here is calculate
1229 * the smallest code point the input could represent if there were
1230 * no too short malformation. Then we compute and save the UTF-8
1231 * for that, which is what the code below looks at instead of the
1232 * raw input. It turns out that the smallest such code point is
1234 for (i = curlen; i < expectlen; i++) {
1235 min_uv = UTF8_ACCUMULATE(min_uv,
1236 I8_TO_NATIVE_UTF8(UTF_CONTINUATION_MARK));
1239 Newx(adjusted_s0, OFFUNISKIP(min_uv) + 1, U8);
1240 SAVEFREEPV((U8 *) adjusted_s0); /* Needed because we may not get
1241 to free it ourselves if
1242 warnings are made fatal */
1243 adjusted_send = uvoffuni_to_utf8_flags(adjusted_s0, min_uv, 0);
1247 /* Now check that the input isn't for a problematic code point not allowed
1248 * by the input parameters. */
1249 /* isn't problematic if < this */
1250 if ( ( ( LIKELY(! possible_problems) && uv >= UNICODE_SURROGATE_FIRST)
1251 || ( UNLIKELY(possible_problems)
1253 /* if overflow, we know without looking further
1254 * precisely which of the problematic types it is,
1255 * and we deal with those in the overflow handling
1257 && LIKELY(! (possible_problems & UTF8_GOT_OVERFLOW))
1258 && isUTF8_POSSIBLY_PROBLEMATIC(*adjusted_s0)))
1259 && ((flags & ( UTF8_DISALLOW_NONCHAR
1260 |UTF8_DISALLOW_SURROGATE
1261 |UTF8_DISALLOW_SUPER
1262 |UTF8_DISALLOW_ABOVE_31_BIT
1264 |UTF8_WARN_SURROGATE
1266 |UTF8_WARN_ABOVE_31_BIT))
1267 /* In case of a malformation, 'uv' is not valid, and has
1268 * been changed to something in the Unicode range.
1269 * Currently we don't output a deprecation message if there
1270 * is already a malformation, so we don't have to special
1271 * case the test immediately below */
1272 || ( UNLIKELY(uv > MAX_NON_DEPRECATED_CP)
1273 && ckWARN_d(WARN_DEPRECATED))))
1275 /* If there were no malformations, or the only malformation is an
1276 * overlong, 'uv' is valid */
1277 if (LIKELY(! (possible_problems & ~UTF8_GOT_LONG))) {
1278 if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
1279 possible_problems |= UTF8_GOT_SURROGATE;
1281 else if (UNLIKELY(uv > PERL_UNICODE_MAX)) {
1282 possible_problems |= UTF8_GOT_SUPER;
1284 else if (UNLIKELY(UNICODE_IS_NONCHAR(uv))) {
1285 possible_problems |= UTF8_GOT_NONCHAR;
1288 else { /* Otherwise, need to look at the source UTF-8, possibly
1289 adjusted to be non-overlong */
1291 if (UNLIKELY(NATIVE_UTF8_TO_I8(*adjusted_s0)
1292 >= FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER))
1294 possible_problems |= UTF8_GOT_SUPER;
1296 else if (curlen > 1) {
1297 if (UNLIKELY(IS_UTF8_2_BYTE_SUPER(
1298 NATIVE_UTF8_TO_I8(*adjusted_s0),
1299 NATIVE_UTF8_TO_I8(*(adjusted_s0 + 1)))))
1301 possible_problems |= UTF8_GOT_SUPER;
1303 else if (UNLIKELY(IS_UTF8_2_BYTE_SURROGATE(
1304 NATIVE_UTF8_TO_I8(*adjusted_s0),
1305 NATIVE_UTF8_TO_I8(*(adjusted_s0 + 1)))))
1307 possible_problems |= UTF8_GOT_SURROGATE;
1311 /* We need a complete well-formed UTF-8 character to discern
1312 * non-characters, so can't look for them here */
1316 ready_to_handle_errors:
1319 * curlen contains the number of bytes in the sequence that
1320 * this call should advance the input by.
1321 * avail_len gives the available number of bytes passed in, but
1322 * only if this is less than the expected number of
1323 * bytes, based on the code point's start byte.
1324 * possible_problems' is 0 if there weren't any problems; otherwise a bit
1325 * is set in it for each potential problem found.
1326 * uv contains the code point the input sequence
1327 * represents; or if there is a problem that prevents
1328 * a well-defined value from being computed, it is
1329 * some subsitute value, typically the REPLACEMENT
1331 * s0 points to the first byte of the character
1332 * send points to just after where that (potentially
1333 * partial) character ends
1334 * adjusted_s0 normally is the same as s0, but in case of an
1335 * overlong for which the UTF-8 matters below, it is
1336 * the first byte of the shortest form representation
1338 * adjusted_send normally is the same as 'send', but if adjusted_s0
1339 * is set to something other than s0, this points one
1343 if (UNLIKELY(possible_problems)) {
1344 bool disallowed = FALSE;
1345 const U32 orig_problems = possible_problems;
1347 while (possible_problems) { /* Handle each possible problem */
1349 char * message = NULL;
1351 /* Each 'if' clause handles one problem. They are ordered so that
1352 * the first ones' messages will be displayed before the later
1353 * ones; this is kinda in decreasing severity order */
1354 if (possible_problems & UTF8_GOT_OVERFLOW) {
1356 /* Overflow means also got a super and above 31 bits, but we
1357 * handle all three cases here */
1359 &= ~(UTF8_GOT_OVERFLOW|UTF8_GOT_SUPER|UTF8_GOT_ABOVE_31_BIT);
1360 *errors |= UTF8_GOT_OVERFLOW;
1362 /* But the API says we flag all errors found */
1363 if (flags & (UTF8_WARN_SUPER|UTF8_DISALLOW_SUPER)) {
1364 *errors |= UTF8_GOT_SUPER;
1367 & (UTF8_WARN_ABOVE_31_BIT|UTF8_DISALLOW_ABOVE_31_BIT))
1369 *errors |= UTF8_GOT_ABOVE_31_BIT;
1372 /* Disallow if any of the three categories say to */
1373 if ( ! (flags & UTF8_ALLOW_OVERFLOW)
1374 || (flags & ( UTF8_DISALLOW_SUPER
1375 |UTF8_DISALLOW_ABOVE_31_BIT)))
1381 /* Likewise, warn if any say to, plus if deprecation warnings
1382 * are on, because this code point is above IV_MAX */
1383 if ( ckWARN_d(WARN_DEPRECATED)
1384 || ! (flags & UTF8_ALLOW_OVERFLOW)
1385 || (flags & (UTF8_WARN_SUPER|UTF8_WARN_ABOVE_31_BIT)))
1388 /* The warnings code explicitly says it doesn't handle the
1389 * case of packWARN2 and two categories which have
1390 * parent-child relationship. Even if it works now to
1391 * raise the warning if either is enabled, it wouldn't
1392 * necessarily do so in the future. We output (only) the
1393 * most dire warning*/
1394 if (! (flags & UTF8_CHECK_ONLY)) {
1395 if (ckWARN_d(WARN_UTF8)) {
1396 pack_warn = packWARN(WARN_UTF8);
1398 else if (ckWARN_d(WARN_NON_UNICODE)) {
1399 pack_warn = packWARN(WARN_NON_UNICODE);
1402 message = Perl_form(aTHX_ "%s: %s (overflows)",
1404 _byte_dump_string(s0, send - s0));
1409 else if (possible_problems & UTF8_GOT_EMPTY) {
1410 possible_problems &= ~UTF8_GOT_EMPTY;
1411 *errors |= UTF8_GOT_EMPTY;
1413 if (! (flags & UTF8_ALLOW_EMPTY)) {
1415 /* This so-called malformation is now treated as a bug in
1416 * the caller. If you have nothing to decode, skip calling
1421 if (ckWARN_d(WARN_UTF8) && ! (flags & UTF8_CHECK_ONLY)) {
1422 pack_warn = packWARN(WARN_UTF8);
1423 message = Perl_form(aTHX_ "%s (empty string)",
1428 else if (possible_problems & UTF8_GOT_CONTINUATION) {
1429 possible_problems &= ~UTF8_GOT_CONTINUATION;
1430 *errors |= UTF8_GOT_CONTINUATION;
1432 if (! (flags & UTF8_ALLOW_CONTINUATION)) {
1434 if (ckWARN_d(WARN_UTF8) && ! (flags & UTF8_CHECK_ONLY)) {
1435 pack_warn = packWARN(WARN_UTF8);
1436 message = Perl_form(aTHX_
1437 "%s: %s (unexpected continuation byte 0x%02x,"
1438 " with no preceding start byte)",
1440 _byte_dump_string(s0, 1), *s0);
1444 else if (possible_problems & UTF8_GOT_SHORT) {
1445 possible_problems &= ~UTF8_GOT_SHORT;
1446 *errors |= UTF8_GOT_SHORT;
1448 if (! (flags & UTF8_ALLOW_SHORT)) {
1450 if (ckWARN_d(WARN_UTF8) && ! (flags & UTF8_CHECK_ONLY)) {
1451 pack_warn = packWARN(WARN_UTF8);
1452 message = Perl_form(aTHX_
1453 "%s: %s (too short; %d byte%s available, need %d)",
1455 _byte_dump_string(s0, send - s0),
1457 avail_len == 1 ? "" : "s",
1463 else if (possible_problems & UTF8_GOT_NON_CONTINUATION) {
1464 possible_problems &= ~UTF8_GOT_NON_CONTINUATION;
1465 *errors |= UTF8_GOT_NON_CONTINUATION;
1467 if (! (flags & UTF8_ALLOW_NON_CONTINUATION)) {
1469 if (ckWARN_d(WARN_UTF8) && ! (flags & UTF8_CHECK_ONLY)) {
1471 /* If we don't know for sure that the input length is
1472 * valid, avoid as much as possible reading past the
1473 * end of the buffer */
1474 int printlen = (flags & _UTF8_NO_CONFIDENCE_IN_CURLEN)
1477 pack_warn = packWARN(WARN_UTF8);
1478 message = Perl_form(aTHX_ "%s",
1479 unexpected_non_continuation_text(s0,
1486 else if (possible_problems & UTF8_GOT_LONG) {
1487 possible_problems &= ~UTF8_GOT_LONG;
1488 *errors |= UTF8_GOT_LONG;
1490 if (flags & UTF8_ALLOW_LONG) {
1492 /* We don't allow the actual overlong value, unless the
1493 * special extra bit is also set */
1494 if (! (flags & ( UTF8_ALLOW_LONG_AND_ITS_VALUE
1495 & ~UTF8_ALLOW_LONG)))
1497 uv = UNICODE_REPLACEMENT;
1503 if (ckWARN_d(WARN_UTF8) && ! (flags & UTF8_CHECK_ONLY)) {
1504 pack_warn = packWARN(WARN_UTF8);
1506 /* These error types cause 'uv' to be something that
1507 * isn't what was intended, so can't use it in the
1508 * message. The other error types either can't
1509 * generate an overlong, or else the 'uv' is valid */
1511 (UTF8_GOT_TOO_SHORT|UTF8_GOT_OVERFLOW))
1513 message = Perl_form(aTHX_
1514 "%s: %s (any UTF-8 sequence that starts"
1515 " with \"%s\" is overlong which can and"
1516 " should be represented with a"
1517 " different, shorter sequence)",
1519 _byte_dump_string(s0, send - s0),
1520 _byte_dump_string(s0, curlen));
1523 U8 tmpbuf[UTF8_MAXBYTES+1];
1524 const U8 * const e = uvoffuni_to_utf8_flags(tmpbuf,
1526 message = Perl_form(aTHX_
1527 "%s: %s (overlong; instead use %s to represent"
1530 _byte_dump_string(s0, send - s0),
1531 _byte_dump_string(tmpbuf, e - tmpbuf),
1532 ((uv < 256) ? 2 : 4), /* Field width of 2 for
1533 small code points */
1539 else if (possible_problems & UTF8_GOT_SURROGATE) {
1540 possible_problems &= ~UTF8_GOT_SURROGATE;
1542 if (flags & UTF8_WARN_SURROGATE) {
1543 *errors |= UTF8_GOT_SURROGATE;
1545 if ( ! (flags & UTF8_CHECK_ONLY)
1546 && ckWARN_d(WARN_SURROGATE))
1548 pack_warn = packWARN(WARN_SURROGATE);
1550 /* These are the only errors that can occur with a
1551 * surrogate when the 'uv' isn't valid */
1552 if (orig_problems & UTF8_GOT_TOO_SHORT) {
1553 message = Perl_form(aTHX_
1554 "UTF-16 surrogate (any UTF-8 sequence that"
1555 " starts with \"%s\" is for a surrogate)",
1556 _byte_dump_string(s0, curlen));
1559 message = Perl_form(aTHX_
1560 "UTF-16 surrogate U+%04" UVXf, uv);
1565 if (flags & UTF8_DISALLOW_SURROGATE) {
1567 *errors |= UTF8_GOT_SURROGATE;
1570 else if (possible_problems & UTF8_GOT_SUPER) {
1571 possible_problems &= ~UTF8_GOT_SUPER;
1573 if (flags & UTF8_WARN_SUPER) {
1574 *errors |= UTF8_GOT_SUPER;
1576 if ( ! (flags & UTF8_CHECK_ONLY)
1577 && ckWARN_d(WARN_NON_UNICODE))
1579 pack_warn = packWARN(WARN_NON_UNICODE);
1581 if (orig_problems & UTF8_GOT_TOO_SHORT) {
1582 message = Perl_form(aTHX_
1583 "Any UTF-8 sequence that starts with"
1584 " \"%s\" is for a non-Unicode code point,"
1585 " may not be portable",
1586 _byte_dump_string(s0, curlen));
1589 message = Perl_form(aTHX_
1590 "Code point 0x%04" UVXf " is not"
1591 " Unicode, may not be portable",
1597 /* The maximum code point ever specified by a standard was
1598 * 2**31 - 1. Anything larger than that is a Perl extension
1599 * that very well may not be understood by other applications
1600 * (including earlier perl versions on EBCDIC platforms). We
1601 * test for these after the regular SUPER ones, and before
1602 * possibly bailing out, so that the slightly more dire warning
1603 * will override the regular one. */
1604 if ( (flags & (UTF8_WARN_ABOVE_31_BIT
1606 |UTF8_DISALLOW_ABOVE_31_BIT))
1607 && ( ( UNLIKELY(orig_problems & UTF8_GOT_TOO_SHORT)
1608 && UNLIKELY(is_utf8_cp_above_31_bits(
1611 || ( LIKELY(! (orig_problems & UTF8_GOT_TOO_SHORT))
1612 && UNLIKELY(UNICODE_IS_ABOVE_31_BIT(uv)))))
1614 if ( ! (flags & UTF8_CHECK_ONLY)
1615 && (flags & (UTF8_WARN_ABOVE_31_BIT|UTF8_WARN_SUPER))
1616 && ckWARN_d(WARN_UTF8))
1618 pack_warn = packWARN(WARN_UTF8);
1620 if (orig_problems & UTF8_GOT_TOO_SHORT) {
1621 message = Perl_form(aTHX_
1622 "Any UTF-8 sequence that starts with"
1623 " \"%s\" is for a non-Unicode code"
1624 " point, and is not portable",
1625 _byte_dump_string(s0, curlen));
1628 message = Perl_form(aTHX_
1629 "Code point 0x%" UVXf " is not Unicode,"
1630 " and not portable",
1635 if (flags & ( UTF8_WARN_ABOVE_31_BIT
1636 |UTF8_DISALLOW_ABOVE_31_BIT))
1638 *errors |= UTF8_GOT_ABOVE_31_BIT;
1640 if (flags & UTF8_DISALLOW_ABOVE_31_BIT) {
1646 if (flags & UTF8_DISALLOW_SUPER) {
1647 *errors |= UTF8_GOT_SUPER;
1651 /* The deprecated warning overrides any non-deprecated one. If
1652 * there are other problems, a deprecation message is not
1653 * really helpful, so don't bother to raise it in that case.
1654 * This also keeps the code from having to handle the case
1655 * where 'uv' is not valid. */
1656 if ( ! (orig_problems
1657 & (UTF8_GOT_TOO_SHORT|UTF8_GOT_OVERFLOW))
1658 && UNLIKELY(uv > MAX_NON_DEPRECATED_CP)
1659 && ckWARN_d(WARN_DEPRECATED))
1661 message = Perl_form(aTHX_ cp_above_legal_max,
1662 uv, MAX_NON_DEPRECATED_CP);
1663 pack_warn = packWARN(WARN_DEPRECATED);
1666 else if (possible_problems & UTF8_GOT_NONCHAR) {
1667 possible_problems &= ~UTF8_GOT_NONCHAR;
1669 if (flags & UTF8_WARN_NONCHAR) {
1670 *errors |= UTF8_GOT_NONCHAR;
1672 if ( ! (flags & UTF8_CHECK_ONLY)
1673 && ckWARN_d(WARN_NONCHAR))
1675 /* The code above should have guaranteed that we don't
1676 * get here with errors other than overlong */
1677 assert (! (orig_problems
1678 & ~(UTF8_GOT_LONG|UTF8_GOT_NONCHAR)));
1680 pack_warn = packWARN(WARN_NONCHAR);
1681 message = Perl_form(aTHX_ "Unicode non-character"
1682 " U+%04" UVXf " is not recommended"
1683 " for open interchange", uv);
1687 if (flags & UTF8_DISALLOW_NONCHAR) {
1689 *errors |= UTF8_GOT_NONCHAR;
1691 } /* End of looking through the possible flags */
1693 /* Display the message (if any) for the problem being handled in
1694 * this iteration of the loop */
1697 Perl_warner(aTHX_ pack_warn, "%s in %s", message,
1700 Perl_warner(aTHX_ pack_warn, "%s", message);
1702 } /* End of 'while (possible_problems)' */
1704 /* Since there was a possible problem, the returned length may need to
1705 * be changed from the one stored at the beginning of this function.
1706 * Instead of trying to figure out if that's needed, just do it. */
1712 if (flags & UTF8_CHECK_ONLY && retlen) {
1713 *retlen = ((STRLEN) -1);
1719 return UNI_TO_NATIVE(uv);
1723 =for apidoc utf8_to_uvchr_buf
1725 Returns the native code point of the first character in the string C<s> which
1726 is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>.
1727 C<*retlen> will be set to the length, in bytes, of that character.
1729 If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are
1730 enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
1731 C<NULL>) to -1. If those warnings are off, the computed value, if well-defined
1732 (or the Unicode REPLACEMENT CHARACTER if not), is silently returned, and
1733 C<*retlen> is set (if C<retlen> isn't C<NULL>) so that (S<C<s> + C<*retlen>>) is
1734 the next possible position in C<s> that could begin a non-malformed character.
1735 See L</utf8n_to_uvchr> for details on when the REPLACEMENT CHARACTER is
1738 Code points above the platform's C<IV_MAX> will raise a deprecation warning,
1739 unless those are turned off.
1743 Also implemented as a macro in utf8.h
1749 Perl_utf8_to_uvchr_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen)
1753 return utf8n_to_uvchr(s, send - s, retlen,
1754 ckWARN_d(WARN_UTF8) ? 0 : UTF8_ALLOW_ANY);
1757 /* This is marked as deprecated
1759 =for apidoc utf8_to_uvuni_buf
1761 Only in very rare circumstances should code need to be dealing in Unicode
1762 (as opposed to native) code points. In those few cases, use
1763 C<L<NATIVE_TO_UNI(utf8_to_uvchr_buf(...))|/utf8_to_uvchr_buf>> instead.
1765 Returns the Unicode (not-native) code point of the first character in the
1767 is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>.
1768 C<retlen> will be set to the length, in bytes, of that character.
1770 If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are
1771 enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
1772 NULL) to -1. If those warnings are off, the computed value if well-defined (or
1773 the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and C<*retlen>
1774 is set (if C<retlen> isn't NULL) so that (S<C<s> + C<*retlen>>) is the
1775 next possible position in C<s> that could begin a non-malformed character.
1776 See L</utf8n_to_uvchr> for details on when the REPLACEMENT CHARACTER is returned.
1778 Code points above the platform's C<IV_MAX> will raise a deprecation warning,
1779 unless those are turned off.
1785 Perl_utf8_to_uvuni_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen)
1787 PERL_ARGS_ASSERT_UTF8_TO_UVUNI_BUF;
1791 /* Call the low level routine, asking for checks */
1792 return NATIVE_TO_UNI(utf8_to_uvchr_buf(s, send, retlen));
1796 =for apidoc utf8_length
1798 Return the length of the UTF-8 char encoded string C<s> in characters.
1799 Stops at C<e> (inclusive). If C<e E<lt> s> or if the scan would end
1800 up past C<e>, croaks.
1806 Perl_utf8_length(pTHX_ const U8 *s, const U8 *e)
1810 PERL_ARGS_ASSERT_UTF8_LENGTH;
1812 /* Note: cannot use UTF8_IS_...() too eagerly here since e.g.
1813 * the bitops (especially ~) can create illegal UTF-8.
1814 * In other words: in Perl UTF-8 is not just for Unicode. */
1817 goto warn_and_return;
1827 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
1828 "%s in %s", unees, OP_DESC(PL_op));
1830 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees);
1837 =for apidoc bytes_cmp_utf8
1839 Compares the sequence of characters (stored as octets) in C<b>, C<blen> with the
1840 sequence of characters (stored as UTF-8)
1841 in C<u>, C<ulen>. Returns 0 if they are
1842 equal, -1 or -2 if the first string is less than the second string, +1 or +2
1843 if the first string is greater than the second string.
1845 -1 or +1 is returned if the shorter string was identical to the start of the
1846 longer string. -2 or +2 is returned if
1847 there was a difference between characters
1854 Perl_bytes_cmp_utf8(pTHX_ const U8 *b, STRLEN blen, const U8 *u, STRLEN ulen)
1856 const U8 *const bend = b + blen;
1857 const U8 *const uend = u + ulen;
1859 PERL_ARGS_ASSERT_BYTES_CMP_UTF8;
1861 while (b < bend && u < uend) {
1863 if (!UTF8_IS_INVARIANT(c)) {
1864 if (UTF8_IS_DOWNGRADEABLE_START(c)) {
1867 if (UTF8_IS_CONTINUATION(c1)) {
1868 c = EIGHT_BIT_UTF8_TO_NATIVE(c, c1);
1870 /* diag_listed_as: Malformed UTF-8 character%s */
1871 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
1873 unexpected_non_continuation_text(u - 1, 2, 1, 2),
1874 PL_op ? " in " : "",
1875 PL_op ? OP_DESC(PL_op) : "");
1880 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
1881 "%s in %s", unees, OP_DESC(PL_op));
1883 Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees);
1884 return -2; /* Really want to return undef :-) */
1891 return *b < c ? -2 : +2;
1896 if (b == bend && u == uend)
1899 return b < bend ? +1 : -1;
1903 =for apidoc utf8_to_bytes
1905 Converts a string C<s> of length C<len> from UTF-8 into native byte encoding.
1906 Unlike L</bytes_to_utf8>, this over-writes the original string, and
1907 updates C<len> to contain the new length.
1908 Returns zero on failure, setting C<len> to -1.
1910 If you need a copy of the string, see L</bytes_from_utf8>.
1916 Perl_utf8_to_bytes(pTHX_ U8 *s, STRLEN *len)
1918 U8 * const save = s;
1919 U8 * const send = s + *len;
1922 PERL_ARGS_ASSERT_UTF8_TO_BYTES;
1923 PERL_UNUSED_CONTEXT;
1925 /* ensure valid UTF-8 and chars < 256 before updating string */
1927 if (! UTF8_IS_INVARIANT(*s)) {
1928 if (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(s, send)) {
1929 *len = ((STRLEN) -1);
1940 if (! UTF8_IS_INVARIANT(c)) {
1941 /* Then it is two-byte encoded */
1942 c = EIGHT_BIT_UTF8_TO_NATIVE(c, *s);
1953 =for apidoc bytes_from_utf8
1955 Converts a string C<s> of length C<len> from UTF-8 into native byte encoding.
1956 Unlike L</utf8_to_bytes> but like L</bytes_to_utf8>, returns a pointer to
1957 the newly-created string, and updates C<len> to contain the new
1958 length. Returns the original string if no conversion occurs, C<len>
1959 is unchanged. Do nothing if C<is_utf8> points to 0. Sets C<is_utf8> to
1960 0 if C<s> is converted or consisted entirely of characters that are invariant
1961 in UTF-8 (i.e., US-ASCII on non-EBCDIC machines).
1967 Perl_bytes_from_utf8(pTHX_ const U8 *s, STRLEN *len, bool *is_utf8)
1970 const U8 *start = s;
1974 PERL_ARGS_ASSERT_BYTES_FROM_UTF8;
1975 PERL_UNUSED_CONTEXT;
1979 /* ensure valid UTF-8 and chars < 256 before converting string */
1980 for (send = s + *len; s < send;) {
1981 if (! UTF8_IS_INVARIANT(*s)) {
1982 if (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(s, send)) {
1993 Newx(d, (*len) - count + 1, U8);
1994 s = start; start = d;
1997 if (! UTF8_IS_INVARIANT(c)) {
1998 /* Then it is two-byte encoded */
1999 c = EIGHT_BIT_UTF8_TO_NATIVE(c, *s);
2010 =for apidoc bytes_to_utf8
2012 Converts a string C<s> of length C<len> bytes from the native encoding into
2014 Returns a pointer to the newly-created string, and sets C<len> to
2015 reflect the new length in bytes.
2017 A C<NUL> character will be written after the end of the string.
2019 If you want to convert to UTF-8 from encodings other than
2020 the native (Latin1 or EBCDIC),
2021 see L</sv_recode_to_utf8>().
2026 /* This logic is duplicated in sv_catpvn_flags, so any bug fixes will
2027 likewise need duplication. */
2030 Perl_bytes_to_utf8(pTHX_ const U8 *s, STRLEN *len)
2032 const U8 * const send = s + (*len);
2036 PERL_ARGS_ASSERT_BYTES_TO_UTF8;
2037 PERL_UNUSED_CONTEXT;
2039 Newx(d, (*len) * 2 + 1, U8);
2043 append_utf8_from_native_byte(*s, &d);
2052 * Convert native (big-endian) or reversed (little-endian) UTF-16 to UTF-8.
2054 * Destination must be pre-extended to 3/2 source. Do not use in-place.
2055 * We optimize for native, for obvious reasons. */
2058 Perl_utf16_to_utf8(pTHX_ U8* p, U8* d, I32 bytelen, I32 *newlen)
2063 PERL_ARGS_ASSERT_UTF16_TO_UTF8;
2066 Perl_croak(aTHX_ "panic: utf16_to_utf8: odd bytelen %" UVuf, (UV)bytelen);
2071 UV uv = (p[0] << 8) + p[1]; /* UTF-16BE */
2073 if (OFFUNI_IS_INVARIANT(uv)) {
2074 *d++ = LATIN1_TO_NATIVE((U8) uv);
2077 if (uv <= MAX_UTF8_TWO_BYTE) {
2078 *d++ = UTF8_TWO_BYTE_HI(UNI_TO_NATIVE(uv));
2079 *d++ = UTF8_TWO_BYTE_LO(UNI_TO_NATIVE(uv));
2082 #define FIRST_HIGH_SURROGATE UNICODE_SURROGATE_FIRST
2083 #define LAST_HIGH_SURROGATE 0xDBFF
2084 #define FIRST_LOW_SURROGATE 0xDC00
2085 #define LAST_LOW_SURROGATE UNICODE_SURROGATE_LAST
2087 /* This assumes that most uses will be in the first Unicode plane, not
2088 * needing surrogates */
2089 if (UNLIKELY(uv >= UNICODE_SURROGATE_FIRST
2090 && uv <= UNICODE_SURROGATE_LAST))
2092 if (UNLIKELY(p >= pend) || UNLIKELY(uv > LAST_HIGH_SURROGATE)) {
2093 Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
2096 UV low = (p[0] << 8) + p[1];
2097 if ( UNLIKELY(low < FIRST_LOW_SURROGATE)
2098 || UNLIKELY(low > LAST_LOW_SURROGATE))
2100 Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
2103 uv = ((uv - FIRST_HIGH_SURROGATE) << 10)
2104 + (low - FIRST_LOW_SURROGATE) + 0x10000;
2108 d = uvoffuni_to_utf8_flags(d, uv, 0);
2111 *d++ = (U8)(( uv >> 12) | 0xe0);
2112 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
2113 *d++ = (U8)(( uv & 0x3f) | 0x80);
2117 *d++ = (U8)(( uv >> 18) | 0xf0);
2118 *d++ = (U8)(((uv >> 12) & 0x3f) | 0x80);
2119 *d++ = (U8)(((uv >> 6) & 0x3f) | 0x80);
2120 *d++ = (U8)(( uv & 0x3f) | 0x80);
2125 *newlen = d - dstart;
2129 /* Note: this one is slightly destructive of the source. */
2132 Perl_utf16_to_utf8_reversed(pTHX_ U8* p, U8* d, I32 bytelen, I32 *newlen)
2135 U8* const send = s + bytelen;
2137 PERL_ARGS_ASSERT_UTF16_TO_UTF8_REVERSED;
2140 Perl_croak(aTHX_ "panic: utf16_to_utf8_reversed: odd bytelen %" UVuf,
2144 const U8 tmp = s[0];
2149 return utf16_to_utf8(p, d, bytelen, newlen);
2153 Perl__is_uni_FOO(pTHX_ const U8 classnum, const UV c)
2155 U8 tmpbuf[UTF8_MAXBYTES+1];
2156 uvchr_to_utf8(tmpbuf, c);
2157 return _is_utf8_FOO_with_len(classnum, tmpbuf, tmpbuf + sizeof(tmpbuf));
2160 /* Internal function so we can deprecate the external one, and call
2161 this one from other deprecated functions in this file */
2164 Perl__is_utf8_idstart(pTHX_ const U8 *p)
2166 PERL_ARGS_ASSERT__IS_UTF8_IDSTART;
2170 return is_utf8_common(p, &PL_utf8_idstart, "IdStart", NULL);
2174 Perl__is_uni_perl_idcont(pTHX_ UV c)
2176 U8 tmpbuf[UTF8_MAXBYTES+1];
2177 uvchr_to_utf8(tmpbuf, c);
2178 return _is_utf8_perl_idcont_with_len(tmpbuf, tmpbuf + sizeof(tmpbuf));
2182 Perl__is_uni_perl_idstart(pTHX_ UV c)
2184 U8 tmpbuf[UTF8_MAXBYTES+1];
2185 uvchr_to_utf8(tmpbuf, c);
2186 return _is_utf8_perl_idstart_with_len(tmpbuf, tmpbuf + sizeof(tmpbuf));
2190 Perl__to_upper_title_latin1(pTHX_ const U8 c, U8* p, STRLEN *lenp, const char S_or_s)
2192 /* We have the latin1-range values compiled into the core, so just use
2193 * those, converting the result to UTF-8. The only difference between upper
2194 * and title case in this range is that LATIN_SMALL_LETTER_SHARP_S is
2195 * either "SS" or "Ss". Which one to use is passed into the routine in
2196 * 'S_or_s' to avoid a test */
2198 UV converted = toUPPER_LATIN1_MOD(c);
2200 PERL_ARGS_ASSERT__TO_UPPER_TITLE_LATIN1;
2202 assert(S_or_s == 'S' || S_or_s == 's');
2204 if (UVCHR_IS_INVARIANT(converted)) { /* No difference between the two for
2205 characters in this range */
2206 *p = (U8) converted;
2211 /* toUPPER_LATIN1_MOD gives the correct results except for three outliers,
2212 * which it maps to one of them, so as to only have to have one check for
2213 * it in the main case */
2214 if (UNLIKELY(converted == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS)) {
2216 case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
2217 converted = LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS;
2220 converted = GREEK_CAPITAL_LETTER_MU;
2222 #if UNICODE_MAJOR_VERSION > 2 \
2223 || (UNICODE_MAJOR_VERSION == 2 && UNICODE_DOT_VERSION >= 1 \
2224 && UNICODE_DOT_DOT_VERSION >= 8)
2225 case LATIN_SMALL_LETTER_SHARP_S:
2232 Perl_croak(aTHX_ "panic: to_upper_title_latin1 did not expect '%c' to map to '%c'", c, LATIN_SMALL_LETTER_Y_WITH_DIAERESIS);
2233 NOT_REACHED; /* NOTREACHED */
2237 *(p)++ = UTF8_TWO_BYTE_HI(converted);
2238 *p = UTF8_TWO_BYTE_LO(converted);
2244 /* Call the function to convert a UTF-8 encoded character to the specified case.
2245 * Note that there may be more than one character in the result.
2246 * INP is a pointer to the first byte of the input character
2247 * OUTP will be set to the first byte of the string of changed characters. It
2248 * needs to have space for UTF8_MAXBYTES_CASE+1 bytes
2249 * LENP will be set to the length in bytes of the string of changed characters
2251 * The functions return the ordinal of the first character in the string of OUTP */
2252 #define CALL_UPPER_CASE(uv, s, d, lenp) _to_utf8_case(uv, s, d, lenp, &PL_utf8_toupper, "ToUc", "")
2253 #define CALL_TITLE_CASE(uv, s, d, lenp) _to_utf8_case(uv, s, d, lenp, &PL_utf8_totitle, "ToTc", "")
2254 #define CALL_LOWER_CASE(uv, s, d, lenp) _to_utf8_case(uv, s, d, lenp, &PL_utf8_tolower, "ToLc", "")
2256 /* This additionally has the input parameter 'specials', which if non-zero will
2257 * cause this to use the specials hash for folding (meaning get full case
2258 * folding); otherwise, when zero, this implies a simple case fold */
2259 #define CALL_FOLD_CASE(uv, s, d, lenp, specials) _to_utf8_case(uv, s, d, lenp, &PL_utf8_tofold, "ToCf", (specials) ? "" : NULL)
2262 Perl_to_uni_upper(pTHX_ UV c, U8* p, STRLEN *lenp)
2264 /* Convert the Unicode character whose ordinal is <c> to its uppercase
2265 * version and store that in UTF-8 in <p> and its length in bytes in <lenp>.
2266 * Note that the <p> needs to be at least UTF8_MAXBYTES_CASE+1 bytes since
2267 * the changed version may be longer than the original character.
2269 * The ordinal of the first character of the changed version is returned
2270 * (but note, as explained above, that there may be more.) */
2272 PERL_ARGS_ASSERT_TO_UNI_UPPER;
2275 return _to_upper_title_latin1((U8) c, p, lenp, 'S');
2278 uvchr_to_utf8(p, c);
2279 return CALL_UPPER_CASE(c, p, p, lenp);
2283 Perl_to_uni_title(pTHX_ UV c, U8* p, STRLEN *lenp)
2285 PERL_ARGS_ASSERT_TO_UNI_TITLE;
2288 return _to_upper_title_latin1((U8) c, p, lenp, 's');
2291 uvchr_to_utf8(p, c);
2292 return CALL_TITLE_CASE(c, p, p, lenp);
2296 S_to_lower_latin1(const U8 c, U8* p, STRLEN *lenp, const char dummy)
2298 /* We have the latin1-range values compiled into the core, so just use
2299 * those, converting the result to UTF-8. Since the result is always just
2300 * one character, we allow <p> to be NULL */
2302 U8 converted = toLOWER_LATIN1(c);
2304 PERL_UNUSED_ARG(dummy);
2307 if (NATIVE_BYTE_IS_INVARIANT(converted)) {
2312 /* Result is known to always be < 256, so can use the EIGHT_BIT
2314 *p = UTF8_EIGHT_BIT_HI(converted);
2315 *(p+1) = UTF8_EIGHT_BIT_LO(converted);
2323 Perl_to_uni_lower(pTHX_ UV c, U8* p, STRLEN *lenp)
2325 PERL_ARGS_ASSERT_TO_UNI_LOWER;
2328 return to_lower_latin1((U8) c, p, lenp, 0 /* 0 is a dummy arg */ );
2331 uvchr_to_utf8(p, c);
2332 return CALL_LOWER_CASE(c, p, p, lenp);
2336 Perl__to_fold_latin1(pTHX_ const U8 c, U8* p, STRLEN *lenp, const unsigned int flags)
2338 /* Corresponds to to_lower_latin1(); <flags> bits meanings:
2339 * FOLD_FLAGS_NOMIX_ASCII iff non-ASCII to ASCII folds are prohibited
2340 * FOLD_FLAGS_FULL iff full folding is to be used;
2342 * Not to be used for locale folds
2347 PERL_ARGS_ASSERT__TO_FOLD_LATIN1;
2348 PERL_UNUSED_CONTEXT;
2350 assert (! (flags & FOLD_FLAGS_LOCALE));
2352 if (UNLIKELY(c == MICRO_SIGN)) {
2353 converted = GREEK_SMALL_LETTER_MU;
2355 #if UNICODE_MAJOR_VERSION > 3 /* no multifolds in early Unicode */ \
2356 || (UNICODE_MAJOR_VERSION == 3 && ( UNICODE_DOT_VERSION > 0) \
2357 || UNICODE_DOT_DOT_VERSION > 0)
2358 else if ( (flags & FOLD_FLAGS_FULL)
2359 && UNLIKELY(c == LATIN_SMALL_LETTER_SHARP_S))
2361 /* If can't cross 127/128 boundary, can't return "ss"; instead return
2362 * two U+017F characters, as fc("\df") should eq fc("\x{17f}\x{17f}")
2363 * under those circumstances. */
2364 if (flags & FOLD_FLAGS_NOMIX_ASCII) {
2365 *lenp = 2 * sizeof(LATIN_SMALL_LETTER_LONG_S_UTF8) - 2;
2366 Copy(LATIN_SMALL_LETTER_LONG_S_UTF8 LATIN_SMALL_LETTER_LONG_S_UTF8,
2368 return LATIN_SMALL_LETTER_LONG_S;
2378 else { /* In this range the fold of all other characters is their lower
2380 converted = toLOWER_LATIN1(c);
2383 if (UVCHR_IS_INVARIANT(converted)) {
2384 *p = (U8) converted;
2388 *(p)++ = UTF8_TWO_BYTE_HI(converted);
2389 *p = UTF8_TWO_BYTE_LO(converted);
2397 Perl__to_uni_fold_flags(pTHX_ UV c, U8* p, STRLEN *lenp, U8 flags)
2400 /* Not currently externally documented, and subject to change
2401 * <flags> bits meanings:
2402 * FOLD_FLAGS_FULL iff full folding is to be used;
2403 * FOLD_FLAGS_LOCALE is set iff the rules from the current underlying
2404 * locale are to be used.
2405 * FOLD_FLAGS_NOMIX_ASCII iff non-ASCII to ASCII folds are prohibited
2408 PERL_ARGS_ASSERT__TO_UNI_FOLD_FLAGS;
2410 if (flags & FOLD_FLAGS_LOCALE) {
2411 /* Treat a UTF-8 locale as not being in locale at all */
2412 if (IN_UTF8_CTYPE_LOCALE) {
2413 flags &= ~FOLD_FLAGS_LOCALE;
2416 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2417 goto needs_full_generality;
2422 return _to_fold_latin1((U8) c, p, lenp,
2423 flags & (FOLD_FLAGS_FULL | FOLD_FLAGS_NOMIX_ASCII));
2426 /* Here, above 255. If no special needs, just use the macro */
2427 if ( ! (flags & (FOLD_FLAGS_LOCALE|FOLD_FLAGS_NOMIX_ASCII))) {
2428 uvchr_to_utf8(p, c);
2429 return CALL_FOLD_CASE(c, p, p, lenp, flags & FOLD_FLAGS_FULL);
2431 else { /* Otherwise, _to_utf8_fold_flags has the intelligence to deal with
2432 the special flags. */
2433 U8 utf8_c[UTF8_MAXBYTES + 1];
2435 needs_full_generality:
2436 uvchr_to_utf8(utf8_c, c);
2437 return _to_utf8_fold_flags(utf8_c, p, lenp, flags);
2441 PERL_STATIC_INLINE bool
2442 S_is_utf8_common(pTHX_ const U8 *const p, SV **swash,
2443 const char *const swashname, SV* const invlist)
2445 /* returns a boolean giving whether or not the UTF8-encoded character that
2446 * starts at <p> is in the swash indicated by <swashname>. <swash>
2447 * contains a pointer to where the swash indicated by <swashname>
2448 * is to be stored; which this routine will do, so that future calls will
2449 * look at <*swash> and only generate a swash if it is not null. <invlist>
2450 * is NULL or an inversion list that defines the swash. If not null, it
2451 * saves time during initialization of the swash.
2453 * Note that it is assumed that the buffer length of <p> is enough to
2454 * contain all the bytes that comprise the character. Thus, <*p> should
2455 * have been checked before this call for mal-formedness enough to assure
2458 PERL_ARGS_ASSERT_IS_UTF8_COMMON;
2460 /* The API should have included a length for the UTF-8 character in <p>,
2461 * but it doesn't. We therefore assume that p has been validated at least
2462 * as far as there being enough bytes available in it to accommodate the
2463 * character without reading beyond the end, and pass that number on to the
2464 * validating routine */
2465 if (! isUTF8_CHAR(p, p + UTF8SKIP(p))) {
2466 _force_out_malformed_utf8_message(p, p + UTF8SKIP(p),
2467 _UTF8_NO_CONFIDENCE_IN_CURLEN,
2469 NOT_REACHED; /* NOTREACHED */
2473 U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
2474 *swash = _core_swash_init("utf8",
2476 /* Only use the name if there is no inversion
2477 * list; otherwise will go out to disk */
2478 (invlist) ? "" : swashname,
2480 &PL_sv_undef, 1, 0, invlist, &flags);
2483 return swash_fetch(*swash, p, TRUE) != 0;
2486 PERL_STATIC_INLINE bool
2487 S_is_utf8_common_with_len(pTHX_ const U8 *const p, const U8 * const e, SV **swash,
2488 const char *const swashname, SV* const invlist)
2490 /* returns a boolean giving whether or not the UTF8-encoded character that
2491 * starts at <p>, and extending no further than <e - 1> is in the swash
2492 * indicated by <swashname>. <swash> contains a pointer to where the swash
2493 * indicated by <swashname> is to be stored; which this routine will do, so
2494 * that future calls will look at <*swash> and only generate a swash if it
2495 * is not null. <invlist> is NULL or an inversion list that defines the
2496 * swash. If not null, it saves time during initialization of the swash.
2499 PERL_ARGS_ASSERT_IS_UTF8_COMMON_WITH_LEN;
2501 if (! isUTF8_CHAR(p, e)) {
2502 _force_out_malformed_utf8_message(p, e, 0, 1);
2503 NOT_REACHED; /* NOTREACHED */
2507 U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
2508 *swash = _core_swash_init("utf8",
2510 /* Only use the name if there is no inversion
2511 * list; otherwise will go out to disk */
2512 (invlist) ? "" : swashname,
2514 &PL_sv_undef, 1, 0, invlist, &flags);
2517 return swash_fetch(*swash, p, TRUE) != 0;
2521 S_warn_on_first_deprecated_use(pTHX_ const char * const name,
2522 const char * const alternative,
2523 const bool use_locale,
2524 const char * const file,
2525 const unsigned line)
2529 PERL_ARGS_ASSERT_WARN_ON_FIRST_DEPRECATED_USE;
2531 if (ckWARN_d(WARN_DEPRECATED)) {
2533 key = Perl_form(aTHX_ "%s;%d;%s;%d", name, use_locale, file, line);
2534 if (! hv_fetch(PL_seen_deprecated_macro, key, strlen(key), 0)) {
2535 if (! PL_seen_deprecated_macro) {
2536 PL_seen_deprecated_macro = newHV();
2538 if (! hv_store(PL_seen_deprecated_macro, key,
2539 strlen(key), &PL_sv_undef, 0))
2541 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
2544 Perl_warner(aTHX_ WARN_DEPRECATED,
2545 "In %s, line %d, starting in Perl v5.30, %s() will"
2546 " require an additional parameter. Avoid this"
2547 " message by converting to use %s().\n",
2548 file, line, name, alternative);
2554 Perl__is_utf8_FOO(pTHX_ U8 classnum,
2556 const char * const name,
2557 const char * const alternative,
2558 const bool use_utf8,
2559 const bool use_locale,
2560 const char * const file,
2561 const unsigned line)
2563 PERL_ARGS_ASSERT__IS_UTF8_FOO;
2565 warn_on_first_deprecated_use(name, alternative, use_locale, file, line);
2567 if (use_utf8 && UTF8_IS_ABOVE_LATIN1(*p)) {
2578 case _CC_ALPHANUMERIC:
2582 return is_utf8_common(p,
2583 &PL_utf8_swash_ptrs[classnum],
2584 swash_property_names[classnum],
2585 PL_XPosix_ptrs[classnum]);
2588 return is_XPERLSPACE_high(p);
2590 return is_HORIZWS_high(p);
2592 return is_XDIGIT_high(p);
2598 return is_VERTWS_high(p);
2600 if (! PL_utf8_perl_idstart) {
2601 invlist = _new_invlist_C_array(_Perl_IDStart_invlist);
2603 return is_utf8_common(p, &PL_utf8_perl_idstart, "_Perl_IDStart", invlist);
2605 if (! PL_utf8_perl_idcont) {
2606 invlist = _new_invlist_C_array(_Perl_IDCont_invlist);
2608 return is_utf8_common(p, &PL_utf8_perl_idcont, "_Perl_IDCont", invlist);
2612 /* idcont is the same as wordchar below 256 */
2613 if (classnum == _CC_IDCONT) {
2614 classnum = _CC_WORDCHAR;
2616 else if (classnum == _CC_IDFIRST) {
2620 classnum = _CC_ALPHA;
2624 if (! use_utf8 || UTF8_IS_INVARIANT(*p)) {
2625 return _generic_isCC(*p, classnum);
2628 return _generic_isCC(EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p + 1 )), classnum);
2631 if (! use_utf8 || UTF8_IS_INVARIANT(*p)) {
2632 return isFOO_lc(classnum, *p);
2635 return isFOO_lc(classnum, EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p + 1 )));
2638 NOT_REACHED; /* NOTREACHED */
2642 Perl__is_utf8_FOO_with_len(pTHX_ const U8 classnum, const U8 *p,
2645 PERL_ARGS_ASSERT__IS_UTF8_FOO_WITH_LEN;
2647 assert(classnum < _FIRST_NON_SWASH_CC);
2649 return is_utf8_common_with_len(p,
2651 &PL_utf8_swash_ptrs[classnum],
2652 swash_property_names[classnum],
2653 PL_XPosix_ptrs[classnum]);
2657 Perl__is_utf8_perl_idstart_with_len(pTHX_ const U8 *p, const U8 * const e)
2661 PERL_ARGS_ASSERT__IS_UTF8_PERL_IDSTART_WITH_LEN;
2663 if (! PL_utf8_perl_idstart) {
2664 invlist = _new_invlist_C_array(_Perl_IDStart_invlist);
2666 return is_utf8_common_with_len(p, e, &PL_utf8_perl_idstart,
2667 "_Perl_IDStart", invlist);
2671 Perl__is_utf8_xidstart(pTHX_ const U8 *p)
2673 PERL_ARGS_ASSERT__IS_UTF8_XIDSTART;
2677 return is_utf8_common(p, &PL_utf8_xidstart, "XIdStart", NULL);
2681 Perl__is_utf8_perl_idcont_with_len(pTHX_ const U8 *p, const U8 * const e)
2685 PERL_ARGS_ASSERT__IS_UTF8_PERL_IDCONT_WITH_LEN;
2687 if (! PL_utf8_perl_idcont) {
2688 invlist = _new_invlist_C_array(_Perl_IDCont_invlist);
2690 return is_utf8_common_with_len(p, e, &PL_utf8_perl_idcont,
2691 "_Perl_IDCont", invlist);
2695 Perl__is_utf8_idcont(pTHX_ const U8 *p)
2697 PERL_ARGS_ASSERT__IS_UTF8_IDCONT;
2699 return is_utf8_common(p, &PL_utf8_idcont, "IdContinue", NULL);
2703 Perl__is_utf8_xidcont(pTHX_ const U8 *p)
2705 PERL_ARGS_ASSERT__IS_UTF8_XIDCONT;
2707 return is_utf8_common(p, &PL_utf8_idcont, "XIdContinue", NULL);
2711 Perl__is_utf8_mark(pTHX_ const U8 *p)
2713 PERL_ARGS_ASSERT__IS_UTF8_MARK;
2715 return is_utf8_common(p, &PL_utf8_mark, "IsM", NULL);
2719 =for apidoc to_utf8_case
2721 Instead use the appropriate one of L</toUPPER_utf8>,
2726 C<p> contains the pointer to the UTF-8 string encoding
2727 the character that is being converted. This routine assumes that the character
2728 at C<p> is well-formed.
2730 C<ustrp> is a pointer to the character buffer to put the
2731 conversion result to. C<lenp> is a pointer to the length
2734 C<swashp> is a pointer to the swash to use.
2736 Both the special and normal mappings are stored in F<lib/unicore/To/Foo.pl>,
2737 and loaded by C<SWASHNEW>, using F<lib/utf8_heavy.pl>. C<special> (usually,
2738 but not always, a multicharacter mapping), is tried first.
2740 C<special> is a string, normally C<NULL> or C<"">. C<NULL> means to not use
2741 any special mappings; C<""> means to use the special mappings. Values other
2742 than these two are treated as the name of the hash containing the special
2743 mappings, like C<"utf8::ToSpecLower">.
2745 C<normal> is a string like C<"ToLower"> which means the swash
2748 Code points above the platform's C<IV_MAX> will raise a deprecation warning,
2749 unless those are turned off.
2754 Perl_to_utf8_case(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp,
2755 SV **swashp, const char *normal, const char *special)
2757 PERL_ARGS_ASSERT_TO_UTF8_CASE;
2759 return _to_utf8_case(valid_utf8_to_uvchr(p, NULL), p, ustrp, lenp, swashp, normal, special);
2762 /* change namve uv1 to 'from' */
2764 S__to_utf8_case(pTHX_ const UV uv1, const U8 *p, U8* ustrp, STRLEN *lenp,
2765 SV **swashp, const char *normal, const char *special)
2769 PERL_ARGS_ASSERT__TO_UTF8_CASE;
2771 /* For code points that don't change case, we already know that the output
2772 * of this function is the unchanged input, so we can skip doing look-ups
2773 * for them. Unfortunately the case-changing code points are scattered
2774 * around. But there are some long consecutive ranges where there are no
2775 * case changing code points. By adding tests, we can eliminate the lookup
2776 * for all the ones in such ranges. This is currently done here only for
2777 * just a few cases where the scripts are in common use in modern commerce
2778 * (and scripts adjacent to those which can be included without additional
2781 if (uv1 >= 0x0590) {
2782 /* This keeps from needing further processing the code points most
2783 * likely to be used in the following non-cased scripts: Hebrew,
2784 * Arabic, Syriac, Thaana, NKo, Samaritan, Mandaic, Devanagari,
2785 * Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu, Kannada,
2786 * Malayalam, Sinhala, Thai, Lao, Tibetan, Myanmar */
2791 /* The following largish code point ranges also don't have case
2792 * changes, but khw didn't think they warranted extra tests to speed
2793 * them up (which would slightly slow down everything else above them):
2794 * 1100..139F Hangul Jamo, Ethiopic
2795 * 1400..1CFF Unified Canadian Aboriginal Syllabics, Ogham, Runic,
2796 * Tagalog, Hanunoo, Buhid, Tagbanwa, Khmer, Mongolian,
2797 * Limbu, Tai Le, New Tai Lue, Buginese, Tai Tham,
2798 * Combining Diacritical Marks Extended, Balinese,
2799 * Sundanese, Batak, Lepcha, Ol Chiki
2800 * 2000..206F General Punctuation
2803 if (uv1 >= 0x2D30) {
2805 /* This keeps the from needing further processing the code points
2806 * most likely to be used in the following non-cased major scripts:
2807 * CJK, Katakana, Hiragana, plus some less-likely scripts.
2809 * (0x2D30 above might have to be changed to 2F00 in the unlikely
2810 * event that Unicode eventually allocates the unused block as of
2811 * v8.0 2FE0..2FEF to code points that are cased. khw has verified
2812 * that the test suite will start having failures to alert you
2813 * should that happen) */
2818 if (uv1 >= 0xAC00) {
2819 if (UNLIKELY(UNICODE_IS_SURROGATE(uv1))) {
2820 if (ckWARN_d(WARN_SURROGATE)) {
2821 const char* desc = (PL_op) ? OP_DESC(PL_op) : normal;
2822 Perl_warner(aTHX_ packWARN(WARN_SURROGATE),
2823 "Operation \"%s\" returns its argument for UTF-16 surrogate U+%04" UVXf, desc, uv1);
2828 /* AC00..FAFF Catches Hangul syllables and private use, plus
2835 if (UNLIKELY(UNICODE_IS_SUPER(uv1))) {
2836 if ( UNLIKELY(uv1 > MAX_NON_DEPRECATED_CP)
2837 && ckWARN_d(WARN_DEPRECATED))
2839 Perl_warner(aTHX_ packWARN(WARN_DEPRECATED),
2840 cp_above_legal_max, uv1, MAX_NON_DEPRECATED_CP);
2842 if (ckWARN_d(WARN_NON_UNICODE)) {
2843 const char* desc = (PL_op) ? OP_DESC(PL_op) : normal;
2844 Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE),
2845 "Operation \"%s\" returns its argument for non-Unicode code point 0x%04" UVXf, desc, uv1);
2849 #ifdef HIGHEST_CASE_CHANGING_CP_FOR_USE_ONLY_BY_UTF8_DOT_C
2851 > HIGHEST_CASE_CHANGING_CP_FOR_USE_ONLY_BY_UTF8_DOT_C))
2854 /* As of this writing, this means we avoid swash creation
2855 * for anything beyond low Plane 1 */
2862 /* Note that non-characters are perfectly legal, so no warning should
2863 * be given. There are so few of them, that it isn't worth the extra
2864 * tests to avoid swash creation */
2867 if (!*swashp) /* load on-demand */
2868 *swashp = _core_swash_init("utf8", normal, &PL_sv_undef, 4, 0, NULL, NULL);
2871 /* It might be "special" (sometimes, but not always,
2872 * a multicharacter mapping) */
2876 /* If passed in the specials name, use that; otherwise use any
2877 * given in the swash */
2878 if (*special != '\0') {
2879 hv = get_hv(special, 0);
2882 svp = hv_fetchs(MUTABLE_HV(SvRV(*swashp)), "SPECIALS", 0);
2884 hv = MUTABLE_HV(SvRV(*svp));
2889 && (svp = hv_fetch(hv, (const char*)p, UVCHR_SKIP(uv1), FALSE))
2894 s = SvPV_const(*svp, len);
2897 len = uvchr_to_utf8(ustrp, *(U8*)s) - ustrp;
2899 Copy(s, ustrp, len, U8);
2904 if (!len && *swashp) {
2905 const UV uv2 = swash_fetch(*swashp, p, TRUE /* => is UTF-8 */);
2908 /* It was "normal" (a single character mapping). */
2909 len = uvchr_to_utf8(ustrp, uv2) - ustrp;
2917 return valid_utf8_to_uvchr(ustrp, 0);
2920 /* Here, there was no mapping defined, which means that the code point maps
2921 * to itself. Return the inputs */
2924 if (p != ustrp) { /* Don't copy onto itself */
2925 Copy(p, ustrp, len, U8);
2936 S_check_locale_boundary_crossing(pTHX_ const U8* const p, const UV result, U8* const ustrp, STRLEN *lenp)
2938 /* This is called when changing the case of a UTF-8-encoded character above
2939 * the Latin1 range, and the operation is in a non-UTF-8 locale. If the
2940 * result contains a character that crosses the 255/256 boundary, disallow
2941 * the change, and return the original code point. See L<perlfunc/lc> for
2944 * p points to the original string whose case was changed; assumed
2945 * by this routine to be well-formed
2946 * result the code point of the first character in the changed-case string
2947 * ustrp points to the changed-case string (<result> represents its first char)
2948 * lenp points to the length of <ustrp> */
2950 UV original; /* To store the first code point of <p> */
2952 PERL_ARGS_ASSERT_CHECK_LOCALE_BOUNDARY_CROSSING;
2954 assert(UTF8_IS_ABOVE_LATIN1(*p));
2956 /* We know immediately if the first character in the string crosses the
2957 * boundary, so can skip */
2960 /* Look at every character in the result; if any cross the
2961 * boundary, the whole thing is disallowed */
2962 U8* s = ustrp + UTF8SKIP(ustrp);
2963 U8* e = ustrp + *lenp;
2965 if (! UTF8_IS_ABOVE_LATIN1(*s)) {
2971 /* Here, no characters crossed, result is ok as-is, but we warn. */
2972 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(p, p + UTF8SKIP(p));
2978 /* Failed, have to return the original */
2979 original = valid_utf8_to_uvchr(p, lenp);
2981 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
2982 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
2983 "Can't do %s(\"\\x{%" UVXf "}\") on non-UTF-8 locale; "
2984 "resolved to \"\\x{%" UVXf "}\".",
2988 Copy(p, ustrp, *lenp, char);
2992 /* The process for changing the case is essentially the same for the four case
2993 * change types, except there are complications for folding. Otherwise the
2994 * difference is only which case to change to. To make sure that they all do
2995 * the same thing, the bodies of the functions are extracted out into the
2996 * following two macros. The functions are written with the same variable
2997 * names, and these are known and used inside these macros. It would be
2998 * better, of course, to have inline functions to do it, but since different
2999 * macros are called, depending on which case is being changed to, this is not
3000 * feasible in C (to khw's knowledge). Two macros are created so that the fold
3001 * function can start with the common start macro, then finish with its special
3002 * handling; while the other three cases can just use the common end macro.
3004 * The algorithm is to use the proper (passed in) macro or function to change
3005 * the case for code points that are below 256. The macro is used if using
3006 * locale rules for the case change; the function if not. If the code point is
3007 * above 255, it is computed from the input UTF-8, and another macro is called
3008 * to do the conversion. If necessary, the output is converted to UTF-8. If
3009 * using a locale, we have to check that the change did not cross the 255/256
3010 * boundary, see check_locale_boundary_crossing() for further details.
3012 * The macros are split with the correct case change for the below-256 case
3013 * stored into 'result', and in the middle of an else clause for the above-255
3014 * case. At that point in the 'else', 'result' is not the final result, but is
3015 * the input code point calculated from the UTF-8. The fold code needs to
3016 * realize all this and take it from there.
3018 * If you read the two macros as sequential, it's easier to understand what's
3020 #define CASE_CHANGE_BODY_START(locale_flags, LC_L1_change_macro, L1_func, \
3021 L1_func_extra_param) \
3022 if (flags & (locale_flags)) { \
3023 /* Treat a UTF-8 locale as not being in locale at all */ \
3024 if (IN_UTF8_CTYPE_LOCALE) { \
3025 flags &= ~(locale_flags); \
3028 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; \
3032 if (UTF8_IS_INVARIANT(*p)) { \
3033 if (flags & (locale_flags)) { \
3034 result = LC_L1_change_macro(*p); \
3037 return L1_func(*p, ustrp, lenp, L1_func_extra_param); \
3040 else if UTF8_IS_DOWNGRADEABLE_START(*p) { \
3041 if (flags & (locale_flags)) { \
3042 result = LC_L1_change_macro(EIGHT_BIT_UTF8_TO_NATIVE(*p, \
3046 return L1_func(EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1)), \
3047 ustrp, lenp, L1_func_extra_param); \
3050 else { /* malformed UTF-8 */ \
3051 result = valid_utf8_to_uvchr(p, NULL); \
3053 #define CASE_CHANGE_BODY_END(locale_flags, change_macro) \
3054 result = change_macro(result, p, ustrp, lenp); \
3056 if (flags & (locale_flags)) { \
3057 result = check_locale_boundary_crossing(p, result, ustrp, lenp); \
3062 /* Here, used locale rules. Convert back to UTF-8 */ \
3063 if (UTF8_IS_INVARIANT(result)) { \
3064 *ustrp = (U8) result; \
3068 *ustrp = UTF8_EIGHT_BIT_HI((U8) result); \
3069 *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result); \
3076 =for apidoc to_utf8_upper
3078 Instead use L</toUPPER_utf8>.
3082 /* Not currently externally documented, and subject to change:
3083 * <flags> is set iff iff the rules from the current underlying locale are to
3087 Perl__to_utf8_upper_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, bool flags)
3091 PERL_ARGS_ASSERT__TO_UTF8_UPPER_FLAGS;
3093 /* ~0 makes anything non-zero in 'flags' mean we are using locale rules */
3094 /* 2nd char of uc(U+DF) is 'S' */
3095 CASE_CHANGE_BODY_START(~0, toUPPER_LC, _to_upper_title_latin1, 'S');
3096 CASE_CHANGE_BODY_END (~0, CALL_UPPER_CASE);
3100 =for apidoc to_utf8_title
3102 Instead use L</toTITLE_utf8>.
3106 /* Not currently externally documented, and subject to change:
3107 * <flags> is set iff the rules from the current underlying locale are to be
3108 * used. Since titlecase is not defined in POSIX, for other than a
3109 * UTF-8 locale, uppercase is used instead for code points < 256.
3113 Perl__to_utf8_title_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, bool flags)
3117 PERL_ARGS_ASSERT__TO_UTF8_TITLE_FLAGS;
3119 /* 2nd char of ucfirst(U+DF) is 's' */
3120 CASE_CHANGE_BODY_START(~0, toUPPER_LC, _to_upper_title_latin1, 's');
3121 CASE_CHANGE_BODY_END (~0, CALL_TITLE_CASE);
3125 =for apidoc to_utf8_lower
3127 Instead use L</toLOWER_utf8>.
3131 /* Not currently externally documented, and subject to change:
3132 * <flags> is set iff iff the rules from the current underlying locale are to
3137 Perl__to_utf8_lower_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, bool flags)
3141 PERL_ARGS_ASSERT__TO_UTF8_LOWER_FLAGS;
3143 CASE_CHANGE_BODY_START(~0, toLOWER_LC, to_lower_latin1, 0 /* 0 is dummy */)
3144 CASE_CHANGE_BODY_END (~0, CALL_LOWER_CASE)
3148 =for apidoc to_utf8_fold
3150 Instead use L</toFOLD_utf8>.
3154 /* Not currently externally documented, and subject to change,
3156 * bit FOLD_FLAGS_LOCALE is set iff the rules from the current underlying
3157 * locale are to be used.
3158 * bit FOLD_FLAGS_FULL is set iff full case folds are to be used;
3159 * otherwise simple folds
3160 * bit FOLD_FLAGS_NOMIX_ASCII is set iff folds of non-ASCII to ASCII are
3165 Perl__to_utf8_fold_flags(pTHX_ const U8 *p, U8* ustrp, STRLEN *lenp, U8 flags)
3169 PERL_ARGS_ASSERT__TO_UTF8_FOLD_FLAGS;
3171 /* These are mutually exclusive */
3172 assert (! ((flags & FOLD_FLAGS_LOCALE) && (flags & FOLD_FLAGS_NOMIX_ASCII)));
3174 assert(p != ustrp); /* Otherwise overwrites */
3176 CASE_CHANGE_BODY_START(FOLD_FLAGS_LOCALE, toFOLD_LC, _to_fold_latin1,
3177 ((flags) & (FOLD_FLAGS_FULL | FOLD_FLAGS_NOMIX_ASCII)));
3179 result = CALL_FOLD_CASE(result, p, ustrp, lenp, flags & FOLD_FLAGS_FULL);
3181 if (flags & FOLD_FLAGS_LOCALE) {
3183 # define LONG_S_T LATIN_SMALL_LIGATURE_LONG_S_T_UTF8
3184 const unsigned int long_s_t_len = sizeof(LONG_S_T) - 1;
3186 # ifdef LATIN_CAPITAL_LETTER_SHARP_S_UTF8
3187 # define CAP_SHARP_S LATIN_CAPITAL_LETTER_SHARP_S_UTF8
3189 const unsigned int cap_sharp_s_len = sizeof(CAP_SHARP_S) - 1;
3191 /* Special case these two characters, as what normally gets
3192 * returned under locale doesn't work */
3193 if (UTF8SKIP(p) == cap_sharp_s_len
3194 && memEQ((char *) p, CAP_SHARP_S, cap_sharp_s_len))
3196 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3197 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3198 "Can't do fc(\"\\x{1E9E}\") on non-UTF-8 locale; "
3199 "resolved to \"\\x{17F}\\x{17F}\".");
3204 if (UTF8SKIP(p) == long_s_t_len
3205 && memEQ((char *) p, LONG_S_T, long_s_t_len))
3207 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3208 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3209 "Can't do fc(\"\\x{FB05}\") on non-UTF-8 locale; "
3210 "resolved to \"\\x{FB06}\".");
3211 goto return_ligature_st;
3214 #if UNICODE_MAJOR_VERSION == 3 \
3215 && UNICODE_DOT_VERSION == 0 \
3216 && UNICODE_DOT_DOT_VERSION == 1
3217 # define DOTTED_I LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE_UTF8
3219 /* And special case this on this Unicode version only, for the same
3220 * reaons the other two are special cased. They would cross the
3221 * 255/256 boundary which is forbidden under /l, and so the code
3222 * wouldn't catch that they are equivalent (which they are only in
3224 else if (UTF8SKIP(p) == sizeof(DOTTED_I) - 1
3225 && memEQ((char *) p, DOTTED_I, sizeof(DOTTED_I) - 1))
3227 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3228 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3229 "Can't do fc(\"\\x{0130}\") on non-UTF-8 locale; "
3230 "resolved to \"\\x{0131}\".");
3231 goto return_dotless_i;
3235 return check_locale_boundary_crossing(p, result, ustrp, lenp);
3237 else if (! (flags & FOLD_FLAGS_NOMIX_ASCII)) {
3241 /* This is called when changing the case of a UTF-8-encoded
3242 * character above the ASCII range, and the result should not
3243 * contain an ASCII character. */
3245 UV original; /* To store the first code point of <p> */
3247 /* Look at every character in the result; if any cross the
3248 * boundary, the whole thing is disallowed */
3250 U8* e = ustrp + *lenp;
3253 /* Crossed, have to return the original */
3254 original = valid_utf8_to_uvchr(p, lenp);
3256 /* But in these instances, there is an alternative we can
3257 * return that is valid */
3258 if (original == LATIN_SMALL_LETTER_SHARP_S
3259 #ifdef LATIN_CAPITAL_LETTER_SHARP_S /* not defined in early Unicode releases */
3260 || original == LATIN_CAPITAL_LETTER_SHARP_S
3265 else if (original == LATIN_SMALL_LIGATURE_LONG_S_T) {
3266 goto return_ligature_st;
3268 #if UNICODE_MAJOR_VERSION == 3 \
3269 && UNICODE_DOT_VERSION == 0 \
3270 && UNICODE_DOT_DOT_VERSION == 1
3272 else if (original == LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE) {
3273 goto return_dotless_i;
3276 Copy(p, ustrp, *lenp, char);
3282 /* Here, no characters crossed, result is ok as-is */
3287 /* Here, used locale rules. Convert back to UTF-8 */
3288 if (UTF8_IS_INVARIANT(result)) {
3289 *ustrp = (U8) result;
3293 *ustrp = UTF8_EIGHT_BIT_HI((U8) result);
3294 *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result);
3301 /* Certain folds to 'ss' are prohibited by the options, but they do allow
3302 * folds to a string of two of these characters. By returning this
3303 * instead, then, e.g.,
3304 * fc("\x{1E9E}") eq fc("\x{17F}\x{17F}")
3307 *lenp = 2 * sizeof(LATIN_SMALL_LETTER_LONG_S_UTF8) - 2;
3308 Copy(LATIN_SMALL_LETTER_LONG_S_UTF8 LATIN_SMALL_LETTER_LONG_S_UTF8,
3310 return LATIN_SMALL_LETTER_LONG_S;
3313 /* Two folds to 'st' are prohibited by the options; instead we pick one and
3314 * have the other one fold to it */
3316 *lenp = sizeof(LATIN_SMALL_LIGATURE_ST_UTF8) - 1;
3317 Copy(LATIN_SMALL_LIGATURE_ST_UTF8, ustrp, *lenp, U8);
3318 return LATIN_SMALL_LIGATURE_ST;
3320 #if UNICODE_MAJOR_VERSION == 3 \
3321 && UNICODE_DOT_VERSION == 0 \
3322 && UNICODE_DOT_DOT_VERSION == 1
3325 *lenp = sizeof(LATIN_SMALL_LETTER_DOTLESS_I_UTF8) - 1;
3326 Copy(LATIN_SMALL_LETTER_DOTLESS_I_UTF8, ustrp, *lenp, U8);
3327 return LATIN_SMALL_LETTER_DOTLESS_I;
3334 * Returns a "swash" which is a hash described in utf8.c:Perl_swash_fetch().
3335 * C<pkg> is a pointer to a package name for SWASHNEW, should be "utf8".
3336 * For other parameters, see utf8::SWASHNEW in lib/utf8_heavy.pl.
3340 Perl_swash_init(pTHX_ const char* pkg, const char* name, SV *listsv, I32 minbits, I32 none)
3342 PERL_ARGS_ASSERT_SWASH_INIT;
3344 /* Returns a copy of a swash initiated by the called function. This is the
3345 * public interface, and returning a copy prevents others from doing
3346 * mischief on the original */
3348 return newSVsv(_core_swash_init(pkg, name, listsv, minbits, none, NULL, NULL));
3352 Perl__core_swash_init(pTHX_ const char* pkg, const char* name, SV *listsv, I32 minbits, I32 none, SV* invlist, U8* const flags_p)
3355 /*NOTE NOTE NOTE - If you want to use "return" in this routine you MUST
3356 * use the following define */
3358 #define CORE_SWASH_INIT_RETURN(x) \
3359 PL_curpm= old_PL_curpm; \
3362 /* Initialize and return a swash, creating it if necessary. It does this
3363 * by calling utf8_heavy.pl in the general case. The returned value may be
3364 * the swash's inversion list instead if the input parameters allow it.
3365 * Which is returned should be immaterial to callers, as the only
3366 * operations permitted on a swash, swash_fetch(), _get_swash_invlist(),
3367 * and swash_to_invlist() handle both these transparently.
3369 * This interface should only be used by functions that won't destroy or
3370 * adversely change the swash, as doing so affects all other uses of the
3371 * swash in the program; the general public should use 'Perl_swash_init'
3374 * pkg is the name of the package that <name> should be in.
3375 * name is the name of the swash to find. Typically it is a Unicode
3376 * property name, including user-defined ones
3377 * listsv is a string to initialize the swash with. It must be of the form
3378 * documented as the subroutine return value in
3379 * L<perlunicode/User-Defined Character Properties>
3380 * minbits is the number of bits required to represent each data element.
3381 * It is '1' for binary properties.
3382 * none I (khw) do not understand this one, but it is used only in tr///.
3383 * invlist is an inversion list to initialize the swash with (or NULL)
3384 * flags_p if non-NULL is the address of various input and output flag bits
3385 * to the routine, as follows: ('I' means is input to the routine;
3386 * 'O' means output from the routine. Only flags marked O are
3387 * meaningful on return.)
3388 * _CORE_SWASH_INIT_USER_DEFINED_PROPERTY indicates if the swash
3389 * came from a user-defined property. (I O)
3390 * _CORE_SWASH_INIT_RETURN_IF_UNDEF indicates that instead of croaking
3391 * when the swash cannot be located, to simply return NULL. (I)
3392 * _CORE_SWASH_INIT_ACCEPT_INVLIST indicates that the caller will accept a
3393 * return of an inversion list instead of a swash hash if this routine
3394 * thinks that would result in faster execution of swash_fetch() later
3397 * Thus there are three possible inputs to find the swash: <name>,
3398 * <listsv>, and <invlist>. At least one must be specified. The result
3399 * will be the union of the specified ones, although <listsv>'s various
3400 * actions can intersect, etc. what <name> gives. To avoid going out to
3401 * disk at all, <invlist> should specify completely what the swash should
3402 * have, and <listsv> should be &PL_sv_undef and <name> should be "".
3404 * <invlist> is only valid for binary properties */
3406 PMOP *old_PL_curpm= PL_curpm; /* save away the old PL_curpm */
3408 SV* retval = &PL_sv_undef;
3409 HV* swash_hv = NULL;
3410 const int invlist_swash_boundary =
3411 (flags_p && *flags_p & _CORE_SWASH_INIT_ACCEPT_INVLIST)
3412 ? 512 /* Based on some benchmarking, but not extensive, see commit
3414 : -1; /* Never return just an inversion list */
3416 assert(listsv != &PL_sv_undef || strNE(name, "") || invlist);
3417 assert(! invlist || minbits == 1);
3419 PL_curpm= NULL; /* reset PL_curpm so that we dont get confused between the regex
3420 that triggered the swash init and the swash init perl logic itself.
3423 /* If data was passed in to go out to utf8_heavy to find the swash of, do
3425 if (listsv != &PL_sv_undef || strNE(name, "")) {
3427 const size_t pkg_len = strlen(pkg);
3428 const size_t name_len = strlen(name);
3429 HV * const stash = gv_stashpvn(pkg, pkg_len, 0);
3433 PERL_ARGS_ASSERT__CORE_SWASH_INIT;
3435 PUSHSTACKi(PERLSI_MAGIC);
3439 /* We might get here via a subroutine signature which uses a utf8
3440 * parameter name, at which point PL_subname will have been set
3441 * but not yet used. */
3442 save_item(PL_subname);
3443 if (PL_parser && PL_parser->error_count)
3444 SAVEI8(PL_parser->error_count), PL_parser->error_count = 0;
3445 method = gv_fetchmeth(stash, "SWASHNEW", 8, -1);
3446 if (!method) { /* demand load UTF-8 */
3448 if ((errsv_save = GvSV(PL_errgv))) SAVEFREESV(errsv_save);
3449 GvSV(PL_errgv) = NULL;
3450 #ifndef NO_TAINT_SUPPORT
3451 /* It is assumed that callers of this routine are not passing in
3452 * any user derived data. */
3453 /* Need to do this after save_re_context() as it will set
3454 * PL_tainted to 1 while saving $1 etc (see the code after getrx:
3455 * in Perl_magic_get). Even line to create errsv_save can turn on
3457 SAVEBOOL(TAINT_get);
3460 Perl_load_module(aTHX_ PERL_LOADMOD_NOIMPORT, newSVpvn(pkg,pkg_len),
3463 /* Not ERRSV, as there is no need to vivify a scalar we are
3464 about to discard. */
3465 SV * const errsv = GvSV(PL_errgv);
3466 if (!SvTRUE(errsv)) {
3467 GvSV(PL_errgv) = SvREFCNT_inc_simple(errsv_save);
3468 SvREFCNT_dec(errsv);
3476 mPUSHp(pkg, pkg_len);
3477 mPUSHp(name, name_len);
3482 if ((errsv_save = GvSV(PL_errgv))) SAVEFREESV(errsv_save);
3483 GvSV(PL_errgv) = NULL;
3484 /* If we already have a pointer to the method, no need to use
3485 * call_method() to repeat the lookup. */
3487 ? call_sv(MUTABLE_SV(method), G_SCALAR)
3488 : call_sv(newSVpvs_flags("SWASHNEW", SVs_TEMP), G_SCALAR | G_METHOD))
3490 retval = *PL_stack_sp--;
3491 SvREFCNT_inc(retval);
3494 /* Not ERRSV. See above. */
3495 SV * const errsv = GvSV(PL_errgv);
3496 if (!SvTRUE(errsv)) {
3497 GvSV(PL_errgv) = SvREFCNT_inc_simple(errsv_save);
3498 SvREFCNT_dec(errsv);
3503 if (IN_PERL_COMPILETIME) {
3504 CopHINTS_set(PL_curcop, PL_hints);
3506 if (!SvROK(retval) || SvTYPE(SvRV(retval)) != SVt_PVHV) {
3507 if (SvPOK(retval)) {
3509 /* If caller wants to handle missing properties, let them */
3510 if (flags_p && *flags_p & _CORE_SWASH_INIT_RETURN_IF_UNDEF) {
3511 CORE_SWASH_INIT_RETURN(NULL);
3514 "Can't find Unicode property definition \"%" SVf "\"",
3516 NOT_REACHED; /* NOTREACHED */
3519 } /* End of calling the module to find the swash */
3521 /* If this operation fetched a swash, and we will need it later, get it */
3522 if (retval != &PL_sv_undef
3523 && (minbits == 1 || (flags_p
3525 & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY))))
3527 swash_hv = MUTABLE_HV(SvRV(retval));
3529 /* If we don't already know that there is a user-defined component to
3530 * this swash, and the user has indicated they wish to know if there is
3531 * one (by passing <flags_p>), find out */
3532 if (flags_p && ! (*flags_p & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY)) {
3533 SV** user_defined = hv_fetchs(swash_hv, "USER_DEFINED", FALSE);
3534 if (user_defined && SvUV(*user_defined)) {
3535 *flags_p |= _CORE_SWASH_INIT_USER_DEFINED_PROPERTY;
3540 /* Make sure there is an inversion list for binary properties */
3542 SV** swash_invlistsvp = NULL;
3543 SV* swash_invlist = NULL;
3544 bool invlist_in_swash_is_valid = FALSE;
3545 bool swash_invlist_unclaimed = FALSE; /* whether swash_invlist has
3546 an unclaimed reference count */
3548 /* If this operation fetched a swash, get its already existing
3549 * inversion list, or create one for it */
3552 swash_invlistsvp = hv_fetchs(swash_hv, "V", FALSE);
3553 if (swash_invlistsvp) {
3554 swash_invlist = *swash_invlistsvp;
3555 invlist_in_swash_is_valid = TRUE;
3558 swash_invlist = _swash_to_invlist(retval);
3559 swash_invlist_unclaimed = TRUE;
3563 /* If an inversion list was passed in, have to include it */
3566 /* Any fetched swash will by now have an inversion list in it;
3567 * otherwise <swash_invlist> will be NULL, indicating that we
3568 * didn't fetch a swash */
3569 if (swash_invlist) {
3571 /* Add the passed-in inversion list, which invalidates the one
3572 * already stored in the swash */
3573 invlist_in_swash_is_valid = FALSE;
3574 SvREADONLY_off(swash_invlist); /* Turned on again below */
3575 _invlist_union(invlist, swash_invlist, &swash_invlist);
3579 /* Here, there is no swash already. Set up a minimal one, if
3580 * we are going to return a swash */
3581 if ((int) _invlist_len(invlist) > invlist_swash_boundary) {
3583 retval = newRV_noinc(MUTABLE_SV(swash_hv));
3585 swash_invlist = invlist;
3589 /* Here, we have computed the union of all the passed-in data. It may
3590 * be that there was an inversion list in the swash which didn't get
3591 * touched; otherwise save the computed one */
3592 if (! invlist_in_swash_is_valid
3593 && (int) _invlist_len(swash_invlist) > invlist_swash_boundary)
3595 if (! hv_stores(MUTABLE_HV(SvRV(retval)), "V", swash_invlist))
3597 Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
3599 /* We just stole a reference count. */
3600 if (swash_invlist_unclaimed) swash_invlist_unclaimed = FALSE;
3601 else SvREFCNT_inc_simple_void_NN(swash_invlist);
3604 /* The result is immutable. Forbid attempts to change it. */
3605 SvREADONLY_on(swash_invlist);
3607 /* Use the inversion list stand-alone if small enough */
3608 if ((int) _invlist_len(swash_invlist) <= invlist_swash_boundary) {
3609 SvREFCNT_dec(retval);
3610 if (!swash_invlist_unclaimed)
3611 SvREFCNT_inc_simple_void_NN(swash_invlist);
3612 retval = newRV_noinc(swash_invlist);
3616 CORE_SWASH_INIT_RETURN(retval);
3617 #undef CORE_SWASH_INIT_RETURN
3621 /* This API is wrong for special case conversions since we may need to
3622 * return several Unicode characters for a single Unicode character
3623 * (see lib/unicore/SpecCase.txt) The SWASHGET in lib/utf8_heavy.pl is
3624 * the lower-level routine, and it is similarly broken for returning
3625 * multiple values. --jhi
3626 * For those, you should use S__to_utf8_case() instead */
3627 /* Now SWASHGET is recasted into S_swatch_get in this file. */
3630 * Returns the value of property/mapping C<swash> for the first character
3631 * of the string C<ptr>. If C<do_utf8> is true, the string C<ptr> is
3632 * assumed to be in well-formed UTF-8. If C<do_utf8> is false, the string C<ptr>
3633 * is assumed to be in native 8-bit encoding. Caches the swatch in C<swash>.
3635 * A "swash" is a hash which contains initially the keys/values set up by
3636 * SWASHNEW. The purpose is to be able to completely represent a Unicode
3637 * property for all possible code points. Things are stored in a compact form
3638 * (see utf8_heavy.pl) so that calculation is required to find the actual
3639 * property value for a given code point. As code points are looked up, new
3640 * key/value pairs are added to the hash, so that the calculation doesn't have
3641 * to ever be re-done. Further, each calculation is done, not just for the
3642 * desired one, but for a whole block of code points adjacent to that one.
3643 * For binary properties on ASCII machines, the block is usually for 64 code
3644 * points, starting with a code point evenly divisible by 64. Thus if the
3645 * property value for code point 257 is requested, the code goes out and
3646 * calculates the property values for all 64 code points between 256 and 319,
3647 * and stores these as a single 64-bit long bit vector, called a "swatch",
3648 * under the key for code point 256. The key is the UTF-8 encoding for code
3649 * point 256, minus the final byte. Thus, if the length of the UTF-8 encoding
3650 * for a code point is 13 bytes, the key will be 12 bytes long. If the value
3651 * for code point 258 is then requested, this code realizes that it would be
3652 * stored under the key for 256, and would find that value and extract the
3653 * relevant bit, offset from 256.
3655 * Non-binary properties are stored in as many bits as necessary to represent
3656 * their values (32 currently, though the code is more general than that), not
3657 * as single bits, but the principle is the same: the value for each key is a
3658 * vector that encompasses the property values for all code points whose UTF-8
3659 * representations are represented by the key. That is, for all code points
3660 * whose UTF-8 representations are length N bytes, and the key is the first N-1
3664 Perl_swash_fetch(pTHX_ SV *swash, const U8 *ptr, bool do_utf8)
3666 HV *const hv = MUTABLE_HV(SvRV(swash));
3671 const U8 *tmps = NULL;
3675 PERL_ARGS_ASSERT_SWASH_FETCH;
3677 /* If it really isn't a hash, it isn't really swash; must be an inversion
3679 if (SvTYPE(hv) != SVt_PVHV) {
3680 return _invlist_contains_cp((SV*)hv,
3682 ? valid_utf8_to_uvchr(ptr, NULL)
3686 /* We store the values in a "swatch" which is a vec() value in a swash
3687 * hash. Code points 0-255 are a single vec() stored with key length
3688 * (klen) 0. All other code points have a UTF-8 representation
3689 * 0xAA..0xYY,0xZZ. A vec() is constructed containing all of them which
3690 * share 0xAA..0xYY, which is the key in the hash to that vec. So the key
3691 * length for them is the length of the encoded char - 1. ptr[klen] is the
3692 * final byte in the sequence representing the character */
3693 if (!do_utf8 || UTF8_IS_INVARIANT(c)) {
3698 else if (UTF8_IS_DOWNGRADEABLE_START(c)) {
3701 off = EIGHT_BIT_UTF8_TO_NATIVE(c, *(ptr + 1));
3704 klen = UTF8SKIP(ptr) - 1;
3706 /* Each vec() stores 2**UTF_ACCUMULATION_SHIFT values. The offset into
3707 * the vec is the final byte in the sequence. (In EBCDIC this is
3708 * converted to I8 to get consecutive values.) To help you visualize
3710 * Straight 1047 After final byte
3711 * UTF-8 UTF-EBCDIC I8 transform
3712 * U+0400: \xD0\x80 \xB8\x41\x41 \xB8\x41\xA0
3713 * U+0401: \xD0\x81 \xB8\x41\x42 \xB8\x41\xA1
3715 * U+0409: \xD0\x89 \xB8\x41\x4A \xB8\x41\xA9
3716 * U+040A: \xD0\x8A \xB8\x41\x51 \xB8\x41\xAA
3718 * U+0412: \xD0\x92 \xB8\x41\x59 \xB8\x41\xB2
3719 * U+0413: \xD0\x93 \xB8\x41\x62 \xB8\x41\xB3
3721 * U+041B: \xD0\x9B \xB8\x41\x6A \xB8\x41\xBB
3722 * U+041C: \xD0\x9C \xB8\x41\x70 \xB8\x41\xBC
3724 * U+041F: \xD0\x9F \xB8\x41\x73 \xB8\x41\xBF
3725 * U+0420: \xD0\xA0 \xB8\x42\x41 \xB8\x42\x41
3727 * (There are no discontinuities in the elided (...) entries.)
3728 * The UTF-8 key for these 33 code points is '\xD0' (which also is the
3729 * key for the next 31, up through U+043F, whose UTF-8 final byte is
3730 * \xBF). Thus in UTF-8, each key is for a vec() for 64 code points.
3731 * The final UTF-8 byte, which ranges between \x80 and \xBF, is an
3732 * index into the vec() swatch (after subtracting 0x80, which we
3733 * actually do with an '&').
3734 * In UTF-EBCDIC, each key is for a 32 code point vec(). The first 32
3735 * code points above have key '\xB8\x41'. The final UTF-EBCDIC byte has
3736 * dicontinuities which go away by transforming it into I8, and we
3737 * effectively subtract 0xA0 to get the index. */
3738 needents = (1 << UTF_ACCUMULATION_SHIFT);
3739 off = NATIVE_UTF8_TO_I8(ptr[klen]) & UTF_CONTINUATION_MASK;
3743 * This single-entry cache saves about 1/3 of the UTF-8 overhead in test
3744 * suite. (That is, only 7-8% overall over just a hash cache. Still,
3745 * it's nothing to sniff at.) Pity we usually come through at least
3746 * two function calls to get here...
3748 * NB: this code assumes that swatches are never modified, once generated!
3751 if (hv == PL_last_swash_hv &&
3752 klen == PL_last_swash_klen &&
3753 (!klen || memEQ((char *)ptr, (char *)PL_last_swash_key, klen)) )
3755 tmps = PL_last_swash_tmps;
3756 slen = PL_last_swash_slen;
3759 /* Try our second-level swatch cache, kept in a hash. */
3760 SV** svp = hv_fetch(hv, (const char*)ptr, klen, FALSE);
3762 /* If not cached, generate it via swatch_get */
3763 if (!svp || !SvPOK(*svp)
3764 || !(tmps = (const U8*)SvPV_const(*svp, slen)))
3767 const UV code_point = valid_utf8_to_uvchr(ptr, NULL);
3768 swatch = swatch_get(swash,
3769 code_point & ~((UV)needents - 1),
3772 else { /* For the first 256 code points, the swatch has a key of
3774 swatch = swatch_get(swash, 0, needents);
3777 if (IN_PERL_COMPILETIME)
3778 CopHINTS_set(PL_curcop, PL_hints);
3780 svp = hv_store(hv, (const char *)ptr, klen, swatch, 0);
3782 if (!svp || !(tmps = (U8*)SvPV(*svp, slen))
3783 || (slen << 3) < needents)
3784 Perl_croak(aTHX_ "panic: swash_fetch got improper swatch, "
3785 "svp=%p, tmps=%p, slen=%" UVuf ", needents=%" UVuf,
3786 svp, tmps, (UV)slen, (UV)needents);
3789 PL_last_swash_hv = hv;
3790 assert(klen <= sizeof(PL_last_swash_key));
3791 PL_last_swash_klen = (U8)klen;
3792 /* FIXME change interpvar.h? */
3793 PL_last_swash_tmps = (U8 *) tmps;
3794 PL_last_swash_slen = slen;
3796 Copy(ptr, PL_last_swash_key, klen, U8);
3799 switch ((int)((slen << 3) / needents)) {
3801 return ((UV) tmps[off >> 3] & (1 << (off & 7))) != 0;
3803 return ((UV) tmps[off]);
3807 ((UV) tmps[off ] << 8) +
3808 ((UV) tmps[off + 1]);
3812 ((UV) tmps[off ] << 24) +
3813 ((UV) tmps[off + 1] << 16) +
3814 ((UV) tmps[off + 2] << 8) +
3815 ((UV) tmps[off + 3]);
3817 Perl_croak(aTHX_ "panic: swash_fetch got swatch of unexpected bit width, "
3818 "slen=%" UVuf ", needents=%" UVuf, (UV)slen, (UV)needents);
3819 NORETURN_FUNCTION_END;
3822 /* Read a single line of the main body of the swash input text. These are of
3825 * where each number is hex. The first two numbers form the minimum and
3826 * maximum of a range, and the third is the value associated with the range.
3827 * Not all swashes should have a third number
3829 * On input: l points to the beginning of the line to be examined; it points
3830 * to somewhere in the string of the whole input text, and is
3831 * terminated by a \n or the null string terminator.
3832 * lend points to the null terminator of that string
3833 * wants_value is non-zero if the swash expects a third number
3834 * typestr is the name of the swash's mapping, like 'ToLower'
3835 * On output: *min, *max, and *val are set to the values read from the line.
3836 * returns a pointer just beyond the line examined. If there was no
3837 * valid min number on the line, returns lend+1
3841 S_swash_scan_list_line(pTHX_ U8* l, U8* const lend, UV* min, UV* max, UV* val,
3842 const bool wants_value, const U8* const typestr)
3844 const int typeto = typestr[0] == 'T' && typestr[1] == 'o';
3845 STRLEN numlen; /* Length of the number */
3846 I32 flags = PERL_SCAN_SILENT_ILLDIGIT
3847 | PERL_SCAN_DISALLOW_PREFIX
3848 | PERL_SCAN_SILENT_NON_PORTABLE;
3850 /* nl points to the next \n in the scan */
3851 U8* const nl = (U8*)memchr(l, '\n', lend - l);
3853 PERL_ARGS_ASSERT_SWASH_SCAN_LIST_LINE;
3855 /* Get the first number on the line: the range minimum */
3857 *min = grok_hex((char *)l, &numlen, &flags, NULL);
3858 *max = *min; /* So can never return without setting max */
3859 if (numlen) /* If found a hex number, position past it */
3861 else if (nl) { /* Else, go handle next line, if any */
3862 return nl + 1; /* 1 is length of "\n" */
3864 else { /* Else, no next line */
3865 return lend + 1; /* to LIST's end at which \n is not found */
3868 /* The max range value follows, separated by a BLANK */
3871 flags = PERL_SCAN_SILENT_ILLDIGIT
3872 | PERL_SCAN_DISALLOW_PREFIX
3873 | PERL_SCAN_SILENT_NON_PORTABLE;
3875 *max = grok_hex((char *)l, &numlen, &flags, NULL);
3878 else /* If no value here, it is a single element range */
3881 /* Non-binary tables have a third entry: what the first element of the
3882 * range maps to. The map for those currently read here is in hex */
3886 flags = PERL_SCAN_SILENT_ILLDIGIT
3887 | PERL_SCAN_DISALLOW_PREFIX
3888 | PERL_SCAN_SILENT_NON_PORTABLE;
3890 *val = grok_hex((char *)l, &numlen, &flags, NULL);
3899 /* diag_listed_as: To%s: illegal mapping '%s' */
3900 Perl_croak(aTHX_ "%s: illegal mapping '%s'",
3906 *val = 0; /* bits == 1, then any val should be ignored */
3908 else { /* Nothing following range min, should be single element with no
3913 /* diag_listed_as: To%s: illegal mapping '%s' */
3914 Perl_croak(aTHX_ "%s: illegal mapping '%s'", typestr, l);
3918 *val = 0; /* bits == 1, then val should be ignored */
3921 /* Position to next line if any, or EOF */
3931 * Returns a swatch (a bit vector string) for a code point sequence
3932 * that starts from the value C<start> and comprises the number C<span>.
3933 * A C<swash> must be an object created by SWASHNEW (see lib/utf8_heavy.pl).
3934 * Should be used via swash_fetch, which will cache the swatch in C<swash>.
3937 S_swatch_get(pTHX_ SV* swash, UV start, UV span)
3940 U8 *l, *lend, *x, *xend, *s, *send;
3941 STRLEN lcur, xcur, scur;
3942 HV *const hv = MUTABLE_HV(SvRV(swash));
3943 SV** const invlistsvp = hv_fetchs(hv, "V", FALSE);
3945 SV** listsvp = NULL; /* The string containing the main body of the table */
3946 SV** extssvp = NULL;
3947 SV** invert_it_svp = NULL;
3950 STRLEN octets; /* if bits == 1, then octets == 0 */
3952 UV end = start + span;
3954 if (invlistsvp == NULL) {
3955 SV** const bitssvp = hv_fetchs(hv, "BITS", FALSE);
3956 SV** const nonesvp = hv_fetchs(hv, "NONE", FALSE);
3957 SV** const typesvp = hv_fetchs(hv, "TYPE", FALSE);
3958 extssvp = hv_fetchs(hv, "EXTRAS", FALSE);
3959 listsvp = hv_fetchs(hv, "LIST", FALSE);
3960 invert_it_svp = hv_fetchs(hv, "INVERT_IT", FALSE);
3962 bits = SvUV(*bitssvp);
3963 none = SvUV(*nonesvp);
3964 typestr = (U8*)SvPV_nolen(*typesvp);
3970 octets = bits >> 3; /* if bits == 1, then octets == 0 */
3972 PERL_ARGS_ASSERT_SWATCH_GET;
3974 if (bits != 1 && bits != 8 && bits != 16 && bits != 32) {
3975 Perl_croak(aTHX_ "panic: swatch_get doesn't expect bits %" UVuf,
3979 /* If overflowed, use the max possible */
3985 /* create and initialize $swatch */
3986 scur = octets ? (span * octets) : (span + 7) / 8;
3987 swatch = newSV(scur);
3989 s = (U8*)SvPVX(swatch);
3990 if (octets && none) {
3991 const U8* const e = s + scur;
3994 *s++ = (U8)(none & 0xff);
3995 else if (bits == 16) {
3996 *s++ = (U8)((none >> 8) & 0xff);
3997 *s++ = (U8)( none & 0xff);
3999 else if (bits == 32) {
4000 *s++ = (U8)((none >> 24) & 0xff);
4001 *s++ = (U8)((none >> 16) & 0xff);
4002 *s++ = (U8)((none >> 8) & 0xff);
4003 *s++ = (U8)( none & 0xff);
4009 (void)memzero((U8*)s, scur + 1);
4011 SvCUR_set(swatch, scur);
4012 s = (U8*)SvPVX(swatch);
4014 if (invlistsvp) { /* If has an inversion list set up use that */
4015 _invlist_populate_swatch(*invlistsvp, start, end, s);
4019 /* read $swash->{LIST} */
4020 l = (U8*)SvPV(*listsvp, lcur);
4023 UV min, max, val, upper;
4024 l = swash_scan_list_line(l, lend, &min, &max, &val,
4025 cBOOL(octets), typestr);
4030 /* If looking for something beyond this range, go try the next one */
4034 /* <end> is generally 1 beyond where we want to set things, but at the
4035 * platform's infinity, where we can't go any higher, we want to
4036 * include the code point at <end> */
4039 : (max != UV_MAX || end != UV_MAX)
4046 if (!none || val < none) {
4051 for (key = min; key <= upper; key++) {
4053 /* offset must be non-negative (start <= min <= key < end) */
4054 offset = octets * (key - start);
4056 s[offset] = (U8)(val & 0xff);
4057 else if (bits == 16) {
4058 s[offset ] = (U8)((val >> 8) & 0xff);
4059 s[offset + 1] = (U8)( val & 0xff);
4061 else if (bits == 32) {
4062 s[offset ] = (U8)((val >> 24) & 0xff);
4063 s[offset + 1] = (U8)((val >> 16) & 0xff);
4064 s[offset + 2] = (U8)((val >> 8) & 0xff);
4065 s[offset + 3] = (U8)( val & 0xff);
4068 if (!none || val < none)
4072 else { /* bits == 1, then val should be ignored */
4077 for (key = min; key <= upper; key++) {
4078 const STRLEN offset = (STRLEN)(key - start);
4079 s[offset >> 3] |= 1 << (offset & 7);
4084 /* Invert if the data says it should be. Assumes that bits == 1 */
4085 if (invert_it_svp && SvUV(*invert_it_svp)) {
4087 /* Unicode properties should come with all bits above PERL_UNICODE_MAX
4088 * be 0, and their inversion should also be 0, as we don't succeed any
4089 * Unicode property matches for non-Unicode code points */
4090 if (start <= PERL_UNICODE_MAX) {
4092 /* The code below assumes that we never cross the
4093 * Unicode/above-Unicode boundary in a range, as otherwise we would
4094 * have to figure out where to stop flipping the bits. Since this
4095 * boundary is divisible by a large power of 2, and swatches comes
4096 * in small powers of 2, this should be a valid assumption */
4097 assert(start + span - 1 <= PERL_UNICODE_MAX);
4107 /* read $swash->{EXTRAS}
4108 * This code also copied to swash_to_invlist() below */
4109 x = (U8*)SvPV(*extssvp, xcur);
4117 SV **otherbitssvp, *other;
4121 const U8 opc = *x++;
4125 nl = (U8*)memchr(x, '\n', xend - x);
4127 if (opc != '-' && opc != '+' && opc != '!' && opc != '&') {
4129 x = nl + 1; /* 1 is length of "\n" */
4133 x = xend; /* to EXTRAS' end at which \n is not found */
4140 namelen = nl - namestr;
4144 namelen = xend - namestr;
4148 othersvp = hv_fetch(hv, (char *)namestr, namelen, FALSE);
4149 otherhv = MUTABLE_HV(SvRV(*othersvp));
4150 otherbitssvp = hv_fetchs(otherhv, "BITS", FALSE);
4151 otherbits = (STRLEN)SvUV(*otherbitssvp);
4152 if (bits < otherbits)
4153 Perl_croak(aTHX_ "panic: swatch_get found swatch size mismatch, "
4154 "bits=%" UVuf ", otherbits=%" UVuf, (UV)bits, (UV)otherbits);
4156 /* The "other" swatch must be destroyed after. */
4157 other = swatch_get(*othersvp, start, span);
4158 o = (U8*)SvPV(other, olen);
4161 Perl_croak(aTHX_ "panic: swatch_get got improper swatch");
4163 s = (U8*)SvPV(swatch, slen);
4164 if (bits == 1 && otherbits == 1) {
4166 Perl_croak(aTHX_ "panic: swatch_get found swatch length "
4167 "mismatch, slen=%" UVuf ", olen=%" UVuf,
4168 (UV)slen, (UV)olen);
4192 STRLEN otheroctets = otherbits >> 3;
4194 U8* const send = s + slen;
4199 if (otherbits == 1) {
4200 otherval = (o[offset >> 3] >> (offset & 7)) & 1;
4204 STRLEN vlen = otheroctets;
4212 if (opc == '+' && otherval)
4213 NOOP; /* replace with otherval */
4214 else if (opc == '!' && !otherval)
4216 else if (opc == '-' && otherval)
4218 else if (opc == '&' && !otherval)
4221 s += octets; /* no replacement */
4226 *s++ = (U8)( otherval & 0xff);
4227 else if (bits == 16) {
4228 *s++ = (U8)((otherval >> 8) & 0xff);
4229 *s++ = (U8)( otherval & 0xff);
4231 else if (bits == 32) {
4232 *s++ = (U8)((otherval >> 24) & 0xff);
4233 *s++ = (U8)((otherval >> 16) & 0xff);
4234 *s++ = (U8)((otherval >> 8) & 0xff);
4235 *s++ = (U8)( otherval & 0xff);
4239 sv_free(other); /* through with it! */
4245 Perl__swash_inversion_hash(pTHX_ SV* const swash)
4248 /* Subject to change or removal. For use only in regcomp.c and regexec.c
4249 * Can't be used on a property that is subject to user override, as it
4250 * relies on the value of SPECIALS in the swash which would be set by
4251 * utf8_heavy.pl to the hash in the non-overriden file, and hence is not set
4252 * for overridden properties
4254 * Returns a hash which is the inversion and closure of a swash mapping.
4255 * For example, consider the input lines:
4260 * The returned hash would have two keys, the UTF-8 for 006B and the UTF-8 for
4261 * 006C. The value for each key is an array. For 006C, the array would
4262 * have two elements, the UTF-8 for itself, and for 004C. For 006B, there
4263 * would be three elements in its array, the UTF-8 for 006B, 004B and 212A.
4265 * Note that there are no elements in the hash for 004B, 004C, 212A. The
4266 * keys are only code points that are folded-to, so it isn't a full closure.
4268 * Essentially, for any code point, it gives all the code points that map to
4269 * it, or the list of 'froms' for that point.
4271 * Currently it ignores any additions or deletions from other swashes,
4272 * looking at just the main body of the swash, and if there are SPECIALS
4273 * in the swash, at that hash
4275 * The specials hash can be extra code points, and most likely consists of
4276 * maps from single code points to multiple ones (each expressed as a string
4277 * of UTF-8 characters). This function currently returns only 1-1 mappings.
4278 * However consider this possible input in the specials hash:
4279 * "\xEF\xAC\x85" => "\x{0073}\x{0074}", # U+FB05 => 0073 0074
4280 * "\xEF\xAC\x86" => "\x{0073}\x{0074}", # U+FB06 => 0073 0074
4282 * Both FB05 and FB06 map to the same multi-char sequence, which we don't
4283 * currently handle. But it also means that FB05 and FB06 are equivalent in
4284 * a 1-1 mapping which we should handle, and this relationship may not be in
4285 * the main table. Therefore this function examines all the multi-char
4286 * sequences and adds the 1-1 mappings that come out of that.
4288 * XXX This function was originally intended to be multipurpose, but its
4289 * only use is quite likely to remain for constructing the inversion of
4290 * the CaseFolding (//i) property. If it were more general purpose for
4291 * regex patterns, it would have to do the FB05/FB06 game for simple folds,
4292 * because certain folds are prohibited under /iaa and /il. As an example,
4293 * in Unicode 3.0.1 both U+0130 and U+0131 fold to 'i', and hence are both
4294 * equivalent under /i. But under /iaa and /il, the folds to 'i' are
4295 * prohibited, so we would not figure out that they fold to each other.
4296 * Code could be written to automatically figure this out, similar to the
4297 * code that does this for multi-character folds, but this is the only case
4298 * where something like this is ever&nbs