3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 * 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
9 * "I wonder what the Entish is for 'yes' and 'no'," he thought.
12 * This file contains the code that creates, manipulates and destroys
13 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
14 * structure of an SV, so their creation and destruction is handled
15 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
16 * level functions (eg. substr, split, join) for each of the types are
28 /* Missing proto on LynxOS */
29 char *gconvert(double, int, int, char *);
32 #ifdef PERL_UTF8_CACHE_ASSERT
33 /* if adding more checks watch out for the following tests:
34 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
35 * lib/utf8.t lib/Unicode/Collate/t/index.t
38 # define ASSERT_UTF8_CACHE(cache) \
39 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
40 assert((cache)[2] <= (cache)[3]); \
41 assert((cache)[3] <= (cache)[1]);} \
44 # define ASSERT_UTF8_CACHE(cache) NOOP
47 #ifdef PERL_OLD_COPY_ON_WRITE
48 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
49 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
50 /* This is a pessimistic view. Scalar must be purely a read-write PV to copy-
54 /* ============================================================================
56 =head1 Allocation and deallocation of SVs.
58 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
59 sv, av, hv...) contains type and reference count information, and for
60 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
61 contains fields specific to each type. Some types store all they need
62 in the head, so don't have a body.
64 In all but the most memory-paranoid configuations (ex: PURIFY), heads
65 and bodies are allocated out of arenas, which by default are
66 approximately 4K chunks of memory parcelled up into N heads or bodies.
67 Sv-bodies are allocated by their sv-type, guaranteeing size
68 consistency needed to allocate safely from arrays.
70 For SV-heads, the first slot in each arena is reserved, and holds a
71 link to the next arena, some flags, and a note of the number of slots.
72 Snaked through each arena chain is a linked list of free items; when
73 this becomes empty, an extra arena is allocated and divided up into N
74 items which are threaded into the free list.
76 SV-bodies are similar, but they use arena-sets by default, which
77 separate the link and info from the arena itself, and reclaim the 1st
78 slot in the arena. SV-bodies are further described later.
80 The following global variables are associated with arenas:
82 PL_sv_arenaroot pointer to list of SV arenas
83 PL_sv_root pointer to list of free SV structures
85 PL_body_arenas head of linked-list of body arenas
86 PL_body_roots[] array of pointers to list of free bodies of svtype
87 arrays are indexed by the svtype needed
89 A few special SV heads are not allocated from an arena, but are
90 instead directly created in the interpreter structure, eg PL_sv_undef.
91 The size of arenas can be changed from the default by setting
92 PERL_ARENA_SIZE appropriately at compile time.
94 The SV arena serves the secondary purpose of allowing still-live SVs
95 to be located and destroyed during final cleanup.
97 At the lowest level, the macros new_SV() and del_SV() grab and free
98 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
99 to return the SV to the free list with error checking.) new_SV() calls
100 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
101 SVs in the free list have their SvTYPE field set to all ones.
103 At the time of very final cleanup, sv_free_arenas() is called from
104 perl_destruct() to physically free all the arenas allocated since the
105 start of the interpreter.
107 Manipulation of any of the PL_*root pointers is protected by enclosing
108 LOCK_SV_MUTEX; ... UNLOCK_SV_MUTEX calls which should Do the Right Thing
109 if threads are enabled.
111 The function visit() scans the SV arenas list, and calls a specified
112 function for each SV it finds which is still live - ie which has an SvTYPE
113 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
114 following functions (specified as [function that calls visit()] / [function
115 called by visit() for each SV]):
117 sv_report_used() / do_report_used()
118 dump all remaining SVs (debugging aid)
120 sv_clean_objs() / do_clean_objs(),do_clean_named_objs()
121 Attempt to free all objects pointed to by RVs,
122 and, unless DISABLE_DESTRUCTOR_KLUDGE is defined,
123 try to do the same for all objects indirectly
124 referenced by typeglobs too. Called once from
125 perl_destruct(), prior to calling sv_clean_all()
128 sv_clean_all() / do_clean_all()
129 SvREFCNT_dec(sv) each remaining SV, possibly
130 triggering an sv_free(). It also sets the
131 SVf_BREAK flag on the SV to indicate that the
132 refcnt has been artificially lowered, and thus
133 stopping sv_free() from giving spurious warnings
134 about SVs which unexpectedly have a refcnt
135 of zero. called repeatedly from perl_destruct()
136 until there are no SVs left.
138 =head2 Arena allocator API Summary
140 Private API to rest of sv.c
144 new_XIV(), del_XIV(),
145 new_XNV(), del_XNV(),
150 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
154 ============================================================================ */
157 * "A time to plant, and a time to uproot what was planted..."
161 * nice_chunk and nice_chunk size need to be set
162 * and queried under the protection of sv_mutex
165 Perl_offer_nice_chunk(pTHX_ void *chunk, U32 chunk_size)
171 new_chunk = (void *)(chunk);
172 new_chunk_size = (chunk_size);
173 if (new_chunk_size > PL_nice_chunk_size) {
174 Safefree(PL_nice_chunk);
175 PL_nice_chunk = (char *) new_chunk;
176 PL_nice_chunk_size = new_chunk_size;
183 #ifdef DEBUG_LEAKING_SCALARS
184 # define FREE_SV_DEBUG_FILE(sv) Safefree((sv)->sv_debug_file)
186 # define FREE_SV_DEBUG_FILE(sv)
190 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
191 /* Whilst I'd love to do this, it seems that things like to check on
193 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
195 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
196 PoisonNew(&SvREFCNT(sv), 1, U32)
198 # define SvARENA_CHAIN(sv) SvANY(sv)
199 # define POSION_SV_HEAD(sv)
202 #define plant_SV(p) \
204 FREE_SV_DEBUG_FILE(p); \
206 SvARENA_CHAIN(p) = (void *)PL_sv_root; \
207 SvFLAGS(p) = SVTYPEMASK; \
212 /* sv_mutex must be held while calling uproot_SV() */
213 #define uproot_SV(p) \
216 PL_sv_root = (SV*)SvARENA_CHAIN(p); \
221 /* make some more SVs by adding another arena */
223 /* sv_mutex must be held while calling more_sv() */
231 sv_add_arena(PL_nice_chunk, PL_nice_chunk_size, 0);
232 PL_nice_chunk = NULL;
233 PL_nice_chunk_size = 0;
236 char *chunk; /* must use New here to match call to */
237 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
238 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
244 /* new_SV(): return a new, empty SV head */
246 #ifdef DEBUG_LEAKING_SCALARS
247 /* provide a real function for a debugger to play with */
257 sv = S_more_sv(aTHX);
262 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
263 sv->sv_debug_line = (U16) ((PL_copline == NOLINE) ?
264 (PL_curcop ? CopLINE(PL_curcop) : 0) : PL_copline);
265 sv->sv_debug_inpad = 0;
266 sv->sv_debug_cloned = 0;
267 sv->sv_debug_file = PL_curcop ? savepv(CopFILE(PL_curcop)): NULL;
271 # define new_SV(p) (p)=S_new_SV(aTHX)
280 (p) = S_more_sv(aTHX); \
289 /* del_SV(): return an empty SV head to the free list */
304 S_del_sv(pTHX_ SV *p)
310 for (sva = PL_sv_arenaroot; sva; sva = (SV *) SvANY(sva)) {
311 const SV * const sv = sva + 1;
312 const SV * const svend = &sva[SvREFCNT(sva)];
313 if (p >= sv && p < svend) {
319 if (ckWARN_d(WARN_INTERNAL))
320 Perl_warner(aTHX_ packWARN(WARN_INTERNAL),
321 "Attempt to free non-arena SV: 0x%"UVxf
322 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
329 #else /* ! DEBUGGING */
331 #define del_SV(p) plant_SV(p)
333 #endif /* DEBUGGING */
337 =head1 SV Manipulation Functions
339 =for apidoc sv_add_arena
341 Given a chunk of memory, link it to the head of the list of arenas,
342 and split it into a list of free SVs.
348 Perl_sv_add_arena(pTHX_ char *ptr, U32 size, U32 flags)
351 SV* const sva = (SV*)ptr;
355 /* The first SV in an arena isn't an SV. */
356 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
357 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
358 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
360 PL_sv_arenaroot = sva;
361 PL_sv_root = sva + 1;
363 svend = &sva[SvREFCNT(sva) - 1];
366 SvARENA_CHAIN(sv) = (void *)(SV*)(sv + 1);
370 /* Must always set typemask because it's awlays checked in on cleanup
371 when the arenas are walked looking for objects. */
372 SvFLAGS(sv) = SVTYPEMASK;
375 SvARENA_CHAIN(sv) = 0;
379 SvFLAGS(sv) = SVTYPEMASK;
382 /* visit(): call the named function for each non-free SV in the arenas
383 * whose flags field matches the flags/mask args. */
386 S_visit(pTHX_ SVFUNC_t f, U32 flags, U32 mask)
392 for (sva = PL_sv_arenaroot; sva; sva = (SV*)SvANY(sva)) {
393 register const SV * const svend = &sva[SvREFCNT(sva)];
395 for (sv = sva + 1; sv < svend; ++sv) {
396 if (SvTYPE(sv) != SVTYPEMASK
397 && (sv->sv_flags & mask) == flags
410 /* called by sv_report_used() for each live SV */
413 do_report_used(pTHX_ SV *sv)
415 if (SvTYPE(sv) != SVTYPEMASK) {
416 PerlIO_printf(Perl_debug_log, "****\n");
423 =for apidoc sv_report_used
425 Dump the contents of all SVs not yet freed. (Debugging aid).
431 Perl_sv_report_used(pTHX)
434 visit(do_report_used, 0, 0);
440 /* called by sv_clean_objs() for each live SV */
443 do_clean_objs(pTHX_ SV *ref)
447 SV * const target = SvRV(ref);
448 if (SvOBJECT(target)) {
449 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
450 if (SvWEAKREF(ref)) {
451 sv_del_backref(target, ref);
457 SvREFCNT_dec(target);
462 /* XXX Might want to check arrays, etc. */
465 /* called by sv_clean_objs() for each live SV */
467 #ifndef DISABLE_DESTRUCTOR_KLUDGE
469 do_clean_named_objs(pTHX_ SV *sv)
472 if (SvTYPE(sv) == SVt_PVGV && isGV_with_GP(sv) && GvGP(sv)) {
474 #ifdef PERL_DONT_CREATE_GVSV
477 SvOBJECT(GvSV(sv))) ||
478 (GvAV(sv) && SvOBJECT(GvAV(sv))) ||
479 (GvHV(sv) && SvOBJECT(GvHV(sv))) ||
480 (GvIO(sv) && SvOBJECT(GvIO(sv))) ||
481 (GvCV(sv) && SvOBJECT(GvCV(sv))) )
483 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning named glob object:\n "), sv_dump(sv)));
484 SvFLAGS(sv) |= SVf_BREAK;
492 =for apidoc sv_clean_objs
494 Attempt to destroy all objects not yet freed
500 Perl_sv_clean_objs(pTHX)
503 PL_in_clean_objs = TRUE;
504 visit(do_clean_objs, SVf_ROK, SVf_ROK);
505 #ifndef DISABLE_DESTRUCTOR_KLUDGE
506 /* some barnacles may yet remain, clinging to typeglobs */
507 visit(do_clean_named_objs, SVt_PVGV, SVTYPEMASK);
509 PL_in_clean_objs = FALSE;
512 /* called by sv_clean_all() for each live SV */
515 do_clean_all(pTHX_ SV *sv)
518 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
519 SvFLAGS(sv) |= SVf_BREAK;
520 if (PL_comppad == (AV*)sv) {
528 =for apidoc sv_clean_all
530 Decrement the refcnt of each remaining SV, possibly triggering a
531 cleanup. This function may have to be called multiple times to free
532 SVs which are in complex self-referential hierarchies.
538 Perl_sv_clean_all(pTHX)
542 PL_in_clean_all = TRUE;
543 cleaned = visit(do_clean_all, 0,0);
544 PL_in_clean_all = FALSE;
549 ARENASETS: a meta-arena implementation which separates arena-info
550 into struct arena_set, which contains an array of struct
551 arena_descs, each holding info for a single arena. By separating
552 the meta-info from the arena, we recover the 1st slot, formerly
553 borrowed for list management. The arena_set is about the size of an
554 arena, avoiding the needless malloc overhead of a naive linked-list
556 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
557 memory in the last arena-set (1/2 on average). In trade, we get
558 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
559 smaller types). The recovery of the wasted space allows use of
560 small arenas for large, rare body types,
563 char *arena; /* the raw storage, allocated aligned */
564 size_t size; /* its size ~4k typ */
565 int unit_type; /* useful for arena audits */
566 /* info for sv-heads (eventually)
573 /* Get the maximum number of elements in set[] such that struct arena_set
574 will fit within PERL_ARENA_SIZE, which is probabably just under 4K, and
575 therefore likely to be 1 aligned memory page. */
577 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
578 - 2 * sizeof(int)) / sizeof (struct arena_desc))
581 struct arena_set* next;
582 int set_size; /* ie ARENAS_PER_SET */
583 int curr; /* index of next available arena-desc */
584 struct arena_desc set[ARENAS_PER_SET];
588 =for apidoc sv_free_arenas
590 Deallocate the memory used by all arenas. Note that all the individual SV
591 heads and bodies within the arenas must already have been freed.
596 Perl_sv_free_arenas(pTHX)
603 /* Free arenas here, but be careful about fake ones. (We assume
604 contiguity of the fake ones with the corresponding real ones.) */
606 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
607 svanext = (SV*) SvANY(sva);
608 while (svanext && SvFAKE(svanext))
609 svanext = (SV*) SvANY(svanext);
616 struct arena_set *next, *aroot = (struct arena_set*) PL_body_arenas;
618 for (; aroot; aroot = next) {
619 const int max = aroot->curr;
620 for (i=0; i<max; i++) {
621 assert(aroot->set[i].arena);
622 Safefree(aroot->set[i].arena);
630 for (i=0; i<PERL_ARENA_ROOTS_SIZE; i++)
631 PL_body_roots[i] = 0;
633 Safefree(PL_nice_chunk);
634 PL_nice_chunk = NULL;
635 PL_nice_chunk_size = 0;
641 Here are mid-level routines that manage the allocation of bodies out
642 of the various arenas. There are 5 kinds of arenas:
644 1. SV-head arenas, which are discussed and handled above
645 2. regular body arenas
646 3. arenas for reduced-size bodies
648 5. pte arenas (thread related)
650 Arena types 2 & 3 are chained by body-type off an array of
651 arena-root pointers, which is indexed by svtype. Some of the
652 larger/less used body types are malloced singly, since a large
653 unused block of them is wasteful. Also, several svtypes dont have
654 bodies; the data fits into the sv-head itself. The arena-root
655 pointer thus has a few unused root-pointers (which may be hijacked
656 later for arena types 4,5)
658 3 differs from 2 as an optimization; some body types have several
659 unused fields in the front of the structure (which are kept in-place
660 for consistency). These bodies can be allocated in smaller chunks,
661 because the leading fields arent accessed. Pointers to such bodies
662 are decremented to point at the unused 'ghost' memory, knowing that
663 the pointers are used with offsets to the real memory.
665 HE, HEK arenas are managed separately, with separate code, but may
666 be merge-able later..
668 PTE arenas are not sv-bodies, but they share these mid-level
669 mechanics, so are considered here. The new mid-level mechanics rely
670 on the sv_type of the body being allocated, so we just reserve one
671 of the unused body-slots for PTEs, then use it in those (2) PTE
672 contexts below (line ~10k)
675 /* get_arena(size): this creates custom-sized arenas
676 TBD: export properly for hv.c: S_more_he().
679 Perl_get_arena(pTHX_ int arena_size)
682 struct arena_desc* adesc;
683 struct arena_set *newroot, **aroot = (struct arena_set**) &PL_body_arenas;
686 /* shouldnt need this
687 if (!arena_size) arena_size = PERL_ARENA_SIZE;
690 /* may need new arena-set to hold new arena */
691 if (!*aroot || (*aroot)->curr >= (*aroot)->set_size) {
692 Newxz(newroot, 1, struct arena_set);
693 newroot->set_size = ARENAS_PER_SET;
694 newroot->next = *aroot;
696 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)*aroot));
699 /* ok, now have arena-set with at least 1 empty/available arena-desc */
700 curr = (*aroot)->curr++;
701 adesc = &((*aroot)->set[curr]);
702 assert(!adesc->arena);
704 Newxz(adesc->arena, arena_size, char);
705 adesc->size = arena_size;
706 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %d\n",
707 curr, adesc->arena, arena_size));
713 /* return a thing to the free list */
715 #define del_body(thing, root) \
717 void ** const thing_copy = (void **)thing;\
719 *thing_copy = *root; \
720 *root = (void*)thing_copy; \
726 =head1 SV-Body Allocation
728 Allocation of SV-bodies is similar to SV-heads, differing as follows;
729 the allocation mechanism is used for many body types, so is somewhat
730 more complicated, it uses arena-sets, and has no need for still-live
733 At the outermost level, (new|del)_X*V macros return bodies of the
734 appropriate type. These macros call either (new|del)_body_type or
735 (new|del)_body_allocated macro pairs, depending on specifics of the
736 type. Most body types use the former pair, the latter pair is used to
737 allocate body types with "ghost fields".
739 "ghost fields" are fields that are unused in certain types, and
740 consequently dont need to actually exist. They are declared because
741 they're part of a "base type", which allows use of functions as
742 methods. The simplest examples are AVs and HVs, 2 aggregate types
743 which don't use the fields which support SCALAR semantics.
745 For these types, the arenas are carved up into *_allocated size
746 chunks, we thus avoid wasted memory for those unaccessed members.
747 When bodies are allocated, we adjust the pointer back in memory by the
748 size of the bit not allocated, so it's as if we allocated the full
749 structure. (But things will all go boom if you write to the part that
750 is "not there", because you'll be overwriting the last members of the
751 preceding structure in memory.)
753 We calculate the correction using the STRUCT_OFFSET macro. For
754 example, if xpv_allocated is the same structure as XPV then the two
755 OFFSETs sum to zero, and the pointer is unchanged. If the allocated
756 structure is smaller (no initial NV actually allocated) then the net
757 effect is to subtract the size of the NV from the pointer, to return a
758 new pointer as if an initial NV were actually allocated.
760 This is the same trick as was used for NV and IV bodies. Ironically it
761 doesn't need to be used for NV bodies any more, because NV is now at
762 the start of the structure. IV bodies don't need it either, because
763 they are no longer allocated.
765 In turn, the new_body_* allocators call S_new_body(), which invokes
766 new_body_inline macro, which takes a lock, and takes a body off the
767 linked list at PL_body_roots[sv_type], calling S_more_bodies() if
768 necessary to refresh an empty list. Then the lock is released, and
769 the body is returned.
771 S_more_bodies calls get_arena(), and carves it up into an array of N
772 bodies, which it strings into a linked list. It looks up arena-size
773 and body-size from the body_details table described below, thus
774 supporting the multiple body-types.
776 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
777 the (new|del)_X*V macros are mapped directly to malloc/free.
783 For each sv-type, struct body_details bodies_by_type[] carries
784 parameters which control these aspects of SV handling:
786 Arena_size determines whether arenas are used for this body type, and if
787 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
788 zero, forcing individual mallocs and frees.
790 Body_size determines how big a body is, and therefore how many fit into
791 each arena. Offset carries the body-pointer adjustment needed for
792 *_allocated body types, and is used in *_allocated macros.
794 But its main purpose is to parameterize info needed in
795 Perl_sv_upgrade(). The info here dramatically simplifies the function
796 vs the implementation in 5.8.7, making it table-driven. All fields
797 are used for this, except for arena_size.
799 For the sv-types that have no bodies, arenas are not used, so those
800 PL_body_roots[sv_type] are unused, and can be overloaded. In
801 something of a special case, SVt_NULL is borrowed for HE arenas;
802 PL_body_roots[SVt_NULL] is filled by S_more_he, but the
803 bodies_by_type[SVt_NULL] slot is not used, as the table is not
806 PTEs also use arenas, but are never seen in Perl_sv_upgrade.
807 Nonetheless, they get their own slot in bodies_by_type[SVt_NULL], so
808 they can just use the same allocation semantics. At first, PTEs were
809 also overloaded to a non-body sv-type, but this yielded hard-to-find
810 malloc bugs, so was simplified by claiming a new slot. This choice
811 has no consequence at this time.
815 struct body_details {
816 U8 body_size; /* Size to allocate */
817 U8 copy; /* Size of structure to copy (may be shorter) */
819 unsigned int type : 4; /* We have space for a sanity check. */
820 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
821 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
822 unsigned int arena : 1; /* Allocated from an arena */
823 size_t arena_size; /* Size of arena to allocate */
831 /* With -DPURFIY we allocate everything directly, and don't use arenas.
832 This seems a rather elegant way to simplify some of the code below. */
833 #define HASARENA FALSE
835 #define HASARENA TRUE
837 #define NOARENA FALSE
839 /* Size the arenas to exactly fit a given number of bodies. A count
840 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
841 simplifying the default. If count > 0, the arena is sized to fit
842 only that many bodies, allowing arenas to be used for large, rare
843 bodies (XPVFM, XPVIO) without undue waste. The arena size is
844 limited by PERL_ARENA_SIZE, so we can safely oversize the
847 #define FIT_ARENA0(body_size) \
848 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
849 #define FIT_ARENAn(count,body_size) \
850 ( count * body_size <= PERL_ARENA_SIZE) \
851 ? count * body_size \
852 : FIT_ARENA0 (body_size)
853 #define FIT_ARENA(count,body_size) \
855 ? FIT_ARENAn (count, body_size) \
856 : FIT_ARENA0 (body_size)
858 /* A macro to work out the offset needed to subtract from a pointer to (say)
865 to make its members accessible via a pointer to (say)
875 #define relative_STRUCT_OFFSET(longer, shorter, member) \
876 (STRUCT_OFFSET(shorter, member) - STRUCT_OFFSET(longer, member))
878 /* Calculate the length to copy. Specifically work out the length less any
879 final padding the compiler needed to add. See the comment in sv_upgrade
880 for why copying the padding proved to be a bug. */
882 #define copy_length(type, last_member) \
883 STRUCT_OFFSET(type, last_member) \
884 + sizeof (((type*)SvANY((SV*)0))->last_member)
886 static const struct body_details bodies_by_type[] = {
887 { sizeof(HE), 0, 0, SVt_NULL,
888 FALSE, NONV, NOARENA, FIT_ARENA(0, sizeof(HE)) },
890 /* The bind placeholder pretends to be an RV for now.
891 Also it's marked as "can't upgrade" top stop anyone using it before it's
893 { 0, 0, 0, SVt_BIND, TRUE, NONV, NOARENA, 0 },
895 /* IVs are in the head, so the allocation size is 0.
896 However, the slot is overloaded for PTEs. */
897 { sizeof(struct ptr_tbl_ent), /* This is used for PTEs. */
898 sizeof(IV), /* This is used to copy out the IV body. */
899 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
900 NOARENA /* IVS don't need an arena */,
901 /* But PTEs need to know the size of their arena */
902 FIT_ARENA(0, sizeof(struct ptr_tbl_ent))
905 /* 8 bytes on most ILP32 with IEEE doubles */
906 { sizeof(NV), sizeof(NV), 0, SVt_NV, FALSE, HADNV, HASARENA,
907 FIT_ARENA(0, sizeof(NV)) },
909 /* RVs are in the head now. */
910 { 0, 0, 0, SVt_RV, FALSE, NONV, NOARENA, 0 },
912 /* 8 bytes on most ILP32 with IEEE doubles */
913 { sizeof(xpv_allocated),
914 copy_length(XPV, xpv_len)
915 - relative_STRUCT_OFFSET(xpv_allocated, XPV, xpv_cur),
916 + relative_STRUCT_OFFSET(xpv_allocated, XPV, xpv_cur),
917 SVt_PV, FALSE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpv_allocated)) },
920 { sizeof(xpviv_allocated),
921 copy_length(XPVIV, xiv_u)
922 - relative_STRUCT_OFFSET(xpviv_allocated, XPVIV, xpv_cur),
923 + relative_STRUCT_OFFSET(xpviv_allocated, XPVIV, xpv_cur),
924 SVt_PVIV, FALSE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpviv_allocated)) },
927 { sizeof(XPVNV), copy_length(XPVNV, xiv_u), 0, SVt_PVNV, FALSE, HADNV,
928 HASARENA, FIT_ARENA(0, sizeof(XPVNV)) },
931 { sizeof(XPVMG), copy_length(XPVMG, xmg_stash), 0, SVt_PVMG, FALSE, HADNV,
932 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
935 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
936 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
939 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
940 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
942 { sizeof(xpvav_allocated),
943 copy_length(XPVAV, xmg_stash)
944 - relative_STRUCT_OFFSET(xpvav_allocated, XPVAV, xav_fill),
945 + relative_STRUCT_OFFSET(xpvav_allocated, XPVAV, xav_fill),
946 SVt_PVAV, TRUE, HADNV, HASARENA, FIT_ARENA(0, sizeof(xpvav_allocated)) },
948 { sizeof(xpvhv_allocated),
949 copy_length(XPVHV, xmg_stash)
950 - relative_STRUCT_OFFSET(xpvhv_allocated, XPVHV, xhv_fill),
951 + relative_STRUCT_OFFSET(xpvhv_allocated, XPVHV, xhv_fill),
952 SVt_PVHV, TRUE, HADNV, HASARENA, FIT_ARENA(0, sizeof(xpvhv_allocated)) },
955 { sizeof(xpvcv_allocated), sizeof(xpvcv_allocated),
956 + relative_STRUCT_OFFSET(xpvcv_allocated, XPVCV, xpv_cur),
957 SVt_PVCV, TRUE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpvcv_allocated)) },
959 { sizeof(xpvfm_allocated), sizeof(xpvfm_allocated),
960 + relative_STRUCT_OFFSET(xpvfm_allocated, XPVFM, xpv_cur),
961 SVt_PVFM, TRUE, NONV, NOARENA, FIT_ARENA(20, sizeof(xpvfm_allocated)) },
963 /* XPVIO is 84 bytes, fits 48x */
964 { sizeof(XPVIO), sizeof(XPVIO), 0, SVt_PVIO, TRUE, HADNV,
965 HASARENA, FIT_ARENA(24, sizeof(XPVIO)) },
968 #define new_body_type(sv_type) \
969 (void *)((char *)S_new_body(aTHX_ sv_type))
971 #define del_body_type(p, sv_type) \
972 del_body(p, &PL_body_roots[sv_type])
975 #define new_body_allocated(sv_type) \
976 (void *)((char *)S_new_body(aTHX_ sv_type) \
977 - bodies_by_type[sv_type].offset)
979 #define del_body_allocated(p, sv_type) \
980 del_body(p + bodies_by_type[sv_type].offset, &PL_body_roots[sv_type])
983 #define my_safemalloc(s) (void*)safemalloc(s)
984 #define my_safecalloc(s) (void*)safecalloc(s, 1)
985 #define my_safefree(p) safefree((char*)p)
989 #define new_XNV() my_safemalloc(sizeof(XPVNV))
990 #define del_XNV(p) my_safefree(p)
992 #define new_XPVNV() my_safemalloc(sizeof(XPVNV))
993 #define del_XPVNV(p) my_safefree(p)
995 #define new_XPVAV() my_safemalloc(sizeof(XPVAV))
996 #define del_XPVAV(p) my_safefree(p)
998 #define new_XPVHV() my_safemalloc(sizeof(XPVHV))
999 #define del_XPVHV(p) my_safefree(p)
1001 #define new_XPVMG() my_safemalloc(sizeof(XPVMG))
1002 #define del_XPVMG(p) my_safefree(p)
1004 #define new_XPVGV() my_safemalloc(sizeof(XPVGV))
1005 #define del_XPVGV(p) my_safefree(p)
1009 #define new_XNV() new_body_type(SVt_NV)
1010 #define del_XNV(p) del_body_type(p, SVt_NV)
1012 #define new_XPVNV() new_body_type(SVt_PVNV)
1013 #define del_XPVNV(p) del_body_type(p, SVt_PVNV)
1015 #define new_XPVAV() new_body_allocated(SVt_PVAV)
1016 #define del_XPVAV(p) del_body_allocated(p, SVt_PVAV)
1018 #define new_XPVHV() new_body_allocated(SVt_PVHV)
1019 #define del_XPVHV(p) del_body_allocated(p, SVt_PVHV)
1021 #define new_XPVMG() new_body_type(SVt_PVMG)
1022 #define del_XPVMG(p) del_body_type(p, SVt_PVMG)
1024 #define new_XPVGV() new_body_type(SVt_PVGV)
1025 #define del_XPVGV(p) del_body_type(p, SVt_PVGV)
1029 /* no arena for you! */
1031 #define new_NOARENA(details) \
1032 my_safemalloc((details)->body_size + (details)->offset)
1033 #define new_NOARENAZ(details) \
1034 my_safecalloc((details)->body_size + (details)->offset)
1036 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1037 static bool done_sanity_check;
1041 S_more_bodies (pTHX_ svtype sv_type)
1044 void ** const root = &PL_body_roots[sv_type];
1045 const struct body_details * const bdp = &bodies_by_type[sv_type];
1046 const size_t body_size = bdp->body_size;
1050 assert(bdp->arena_size);
1052 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1053 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1054 * variables like done_sanity_check. */
1055 if (!done_sanity_check) {
1056 unsigned int i = SVt_LAST;
1058 done_sanity_check = TRUE;
1061 assert (bodies_by_type[i].type == i);
1065 start = (char*) Perl_get_arena(aTHX_ bdp->arena_size);
1067 end = start + bdp->arena_size - body_size;
1069 /* computed count doesnt reflect the 1st slot reservation */
1070 DEBUG_m(PerlIO_printf(Perl_debug_log,
1071 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1073 (int)bdp->arena_size, sv_type, (int)body_size,
1074 (int)bdp->arena_size / (int)body_size));
1076 *root = (void *)start;
1078 while (start < end) {
1079 char * const next = start + body_size;
1080 *(void**) start = (void *)next;
1083 *(void **)start = 0;
1088 /* grab a new thing from the free list, allocating more if necessary.
1089 The inline version is used for speed in hot routines, and the
1090 function using it serves the rest (unless PURIFY).
1092 #define new_body_inline(xpv, sv_type) \
1094 void ** const r3wt = &PL_body_roots[sv_type]; \
1096 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1097 ? *((void **)(r3wt)) : more_bodies(sv_type)); \
1098 *(r3wt) = *(void**)(xpv); \
1105 S_new_body(pTHX_ svtype sv_type)
1109 new_body_inline(xpv, sv_type);
1116 =for apidoc sv_upgrade
1118 Upgrade an SV to a more complex form. Generally adds a new body type to the
1119 SV, then copies across as much information as possible from the old body.
1120 You generally want to use the C<SvUPGRADE> macro wrapper. See also C<svtype>.
1126 Perl_sv_upgrade(pTHX_ register SV *sv, svtype new_type)
1131 const svtype old_type = SvTYPE(sv);
1132 const struct body_details *new_type_details;
1133 const struct body_details *const old_type_details
1134 = bodies_by_type + old_type;
1136 if (new_type != SVt_PV && SvIsCOW(sv)) {
1137 sv_force_normal_flags(sv, 0);
1140 if (old_type == new_type)
1143 if (old_type > new_type)
1144 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1145 (int)old_type, (int)new_type);
1148 old_body = SvANY(sv);
1150 /* Copying structures onto other structures that have been neatly zeroed
1151 has a subtle gotcha. Consider XPVMG
1153 +------+------+------+------+------+-------+-------+
1154 | NV | CUR | LEN | IV | MAGIC | STASH |
1155 +------+------+------+------+------+-------+-------+
1156 0 4 8 12 16 20 24 28
1158 where NVs are aligned to 8 bytes, so that sizeof that structure is
1159 actually 32 bytes long, with 4 bytes of padding at the end:
1161 +------+------+------+------+------+-------+-------+------+
1162 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1163 +------+------+------+------+------+-------+-------+------+
1164 0 4 8 12 16 20 24 28 32
1166 so what happens if you allocate memory for this structure:
1168 +------+------+------+------+------+-------+-------+------+------+...
1169 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1170 +------+------+------+------+------+-------+-------+------+------+...
1171 0 4 8 12 16 20 24 28 32 36
1173 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1174 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1175 started out as zero once, but it's quite possible that it isn't. So now,
1176 rather than a nicely zeroed GP, you have it pointing somewhere random.
1179 (In fact, GP ends up pointing at a previous GP structure, because the
1180 principle cause of the padding in XPVMG getting garbage is a copy of
1181 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1182 this happens to be moot because XPVGV has been re-ordered, with GP
1183 no longer after STASH)
1185 So we are careful and work out the size of used parts of all the
1192 if (new_type < SVt_PVIV) {
1193 new_type = (new_type == SVt_NV)
1194 ? SVt_PVNV : SVt_PVIV;
1198 if (new_type < SVt_PVNV) {
1199 new_type = SVt_PVNV;
1205 assert(new_type > SVt_PV);
1206 assert(SVt_IV < SVt_PV);
1207 assert(SVt_NV < SVt_PV);
1214 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1215 there's no way that it can be safely upgraded, because perl.c
1216 expects to Safefree(SvANY(PL_mess_sv)) */
1217 assert(sv != PL_mess_sv);
1218 /* This flag bit is used to mean other things in other scalar types.
1219 Given that it only has meaning inside the pad, it shouldn't be set
1220 on anything that can get upgraded. */
1221 assert(!SvPAD_TYPED(sv));
1224 if (old_type_details->cant_upgrade)
1225 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1226 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1228 new_type_details = bodies_by_type + new_type;
1230 SvFLAGS(sv) &= ~SVTYPEMASK;
1231 SvFLAGS(sv) |= new_type;
1233 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1234 the return statements above will have triggered. */
1235 assert (new_type != SVt_NULL);
1238 assert(old_type == SVt_NULL);
1239 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1243 assert(old_type == SVt_NULL);
1244 SvANY(sv) = new_XNV();
1248 assert(old_type == SVt_NULL);
1249 SvANY(sv) = &sv->sv_u.svu_rv;
1254 assert(new_type_details->body_size);
1257 assert(new_type_details->arena);
1258 assert(new_type_details->arena_size);
1259 /* This points to the start of the allocated area. */
1260 new_body_inline(new_body, new_type);
1261 Zero(new_body, new_type_details->body_size, char);
1262 new_body = ((char *)new_body) - new_type_details->offset;
1264 /* We always allocated the full length item with PURIFY. To do this
1265 we fake things so that arena is false for all 16 types.. */
1266 new_body = new_NOARENAZ(new_type_details);
1268 SvANY(sv) = new_body;
1269 if (new_type == SVt_PVAV) {
1275 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1276 The target created by newSVrv also is, and it can have magic.
1277 However, it never has SvPVX set.
1279 if (old_type >= SVt_RV) {
1280 assert(SvPVX_const(sv) == 0);
1283 if (old_type >= SVt_PVMG) {
1284 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1285 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1287 sv->sv_u.svu_array = NULL; /* or svu_hash */
1293 /* XXX Is this still needed? Was it ever needed? Surely as there is
1294 no route from NV to PVIV, NOK can never be true */
1295 assert(!SvNOKp(sv));
1306 assert(new_type_details->body_size);
1307 /* We always allocated the full length item with PURIFY. To do this
1308 we fake things so that arena is false for all 16 types.. */
1309 if(new_type_details->arena) {
1310 /* This points to the start of the allocated area. */
1311 new_body_inline(new_body, new_type);
1312 Zero(new_body, new_type_details->body_size, char);
1313 new_body = ((char *)new_body) - new_type_details->offset;
1315 new_body = new_NOARENAZ(new_type_details);
1317 SvANY(sv) = new_body;
1319 if (old_type_details->copy) {
1320 /* There is now the potential for an upgrade from something without
1321 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1322 int offset = old_type_details->offset;
1323 int length = old_type_details->copy;
1325 if (new_type_details->offset > old_type_details->offset) {
1326 const int difference
1327 = new_type_details->offset - old_type_details->offset;
1328 offset += difference;
1329 length -= difference;
1331 assert (length >= 0);
1333 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1337 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1338 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1339 * correct 0.0 for us. Otherwise, if the old body didn't have an
1340 * NV slot, but the new one does, then we need to initialise the
1341 * freshly created NV slot with whatever the correct bit pattern is
1343 if (old_type_details->zero_nv && !new_type_details->zero_nv)
1347 if (new_type == SVt_PVIO)
1348 IoPAGE_LEN(sv) = 60;
1349 if (old_type < SVt_RV)
1353 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1354 (unsigned long)new_type);
1357 if (old_type_details->arena) {
1358 /* If there was an old body, then we need to free it.
1359 Note that there is an assumption that all bodies of types that
1360 can be upgraded came from arenas. Only the more complex non-
1361 upgradable types are allowed to be directly malloc()ed. */
1363 my_safefree(old_body);
1365 del_body((void*)((char*)old_body + old_type_details->offset),
1366 &PL_body_roots[old_type]);
1372 =for apidoc sv_backoff
1374 Remove any string offset. You should normally use the C<SvOOK_off> macro
1381 Perl_sv_backoff(pTHX_ register SV *sv)
1383 PERL_UNUSED_CONTEXT;
1385 assert(SvTYPE(sv) != SVt_PVHV);
1386 assert(SvTYPE(sv) != SVt_PVAV);
1388 const char * const s = SvPVX_const(sv);
1389 SvLEN_set(sv, SvLEN(sv) + SvIVX(sv));
1390 SvPV_set(sv, SvPVX(sv) - SvIVX(sv));
1392 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1394 SvFLAGS(sv) &= ~SVf_OOK;
1401 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1402 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1403 Use the C<SvGROW> wrapper instead.
1409 Perl_sv_grow(pTHX_ register SV *sv, register STRLEN newlen)
1413 if (PL_madskills && newlen >= 0x100000) {
1414 PerlIO_printf(Perl_debug_log,
1415 "Allocation too large: %"UVxf"\n", (UV)newlen);
1417 #ifdef HAS_64K_LIMIT
1418 if (newlen >= 0x10000) {
1419 PerlIO_printf(Perl_debug_log,
1420 "Allocation too large: %"UVxf"\n", (UV)newlen);
1423 #endif /* HAS_64K_LIMIT */
1426 if (SvTYPE(sv) < SVt_PV) {
1427 sv_upgrade(sv, SVt_PV);
1428 s = SvPVX_mutable(sv);
1430 else if (SvOOK(sv)) { /* pv is offset? */
1432 s = SvPVX_mutable(sv);
1433 if (newlen > SvLEN(sv))
1434 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1435 #ifdef HAS_64K_LIMIT
1436 if (newlen >= 0x10000)
1441 s = SvPVX_mutable(sv);
1443 if (newlen > SvLEN(sv)) { /* need more room? */
1444 newlen = PERL_STRLEN_ROUNDUP(newlen);
1445 if (SvLEN(sv) && s) {
1447 const STRLEN l = malloced_size((void*)SvPVX_const(sv));
1453 s = (char*)saferealloc(s, newlen);
1456 s = (char*)safemalloc(newlen);
1457 if (SvPVX_const(sv) && SvCUR(sv)) {
1458 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1462 SvLEN_set(sv, newlen);
1468 =for apidoc sv_setiv
1470 Copies an integer into the given SV, upgrading first if necessary.
1471 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1477 Perl_sv_setiv(pTHX_ register SV *sv, IV i)
1480 SV_CHECK_THINKFIRST_COW_DROP(sv);
1481 switch (SvTYPE(sv)) {
1483 sv_upgrade(sv, SVt_IV);
1486 sv_upgrade(sv, SVt_PVNV);
1490 sv_upgrade(sv, SVt_PVIV);
1499 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1503 (void)SvIOK_only(sv); /* validate number */
1509 =for apidoc sv_setiv_mg
1511 Like C<sv_setiv>, but also handles 'set' magic.
1517 Perl_sv_setiv_mg(pTHX_ register SV *sv, IV i)
1524 =for apidoc sv_setuv
1526 Copies an unsigned integer into the given SV, upgrading first if necessary.
1527 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1533 Perl_sv_setuv(pTHX_ register SV *sv, UV u)
1535 /* With these two if statements:
1536 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1539 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1541 If you wish to remove them, please benchmark to see what the effect is
1543 if (u <= (UV)IV_MAX) {
1544 sv_setiv(sv, (IV)u);
1553 =for apidoc sv_setuv_mg
1555 Like C<sv_setuv>, but also handles 'set' magic.
1561 Perl_sv_setuv_mg(pTHX_ register SV *sv, UV u)
1568 =for apidoc sv_setnv
1570 Copies a double into the given SV, upgrading first if necessary.
1571 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1577 Perl_sv_setnv(pTHX_ register SV *sv, NV num)
1580 SV_CHECK_THINKFIRST_COW_DROP(sv);
1581 switch (SvTYPE(sv)) {
1584 sv_upgrade(sv, SVt_NV);
1589 sv_upgrade(sv, SVt_PVNV);
1598 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1603 (void)SvNOK_only(sv); /* validate number */
1608 =for apidoc sv_setnv_mg
1610 Like C<sv_setnv>, but also handles 'set' magic.
1616 Perl_sv_setnv_mg(pTHX_ register SV *sv, NV num)
1622 /* Print an "isn't numeric" warning, using a cleaned-up,
1623 * printable version of the offending string
1627 S_not_a_number(pTHX_ SV *sv)
1635 dsv = sv_2mortal(newSVpvs(""));
1636 pv = sv_uni_display(dsv, sv, 10, 0);
1639 const char * const limit = tmpbuf + sizeof(tmpbuf) - 8;
1640 /* each *s can expand to 4 chars + "...\0",
1641 i.e. need room for 8 chars */
1643 const char *s = SvPVX_const(sv);
1644 const char * const end = s + SvCUR(sv);
1645 for ( ; s < end && d < limit; s++ ) {
1647 if (ch & 128 && !isPRINT_LC(ch)) {
1656 else if (ch == '\r') {
1660 else if (ch == '\f') {
1664 else if (ch == '\\') {
1668 else if (ch == '\0') {
1672 else if (isPRINT_LC(ch))
1689 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1690 "Argument \"%s\" isn't numeric in %s", pv,
1693 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1694 "Argument \"%s\" isn't numeric", pv);
1698 =for apidoc looks_like_number
1700 Test if the content of an SV looks like a number (or is a number).
1701 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1702 non-numeric warning), even if your atof() doesn't grok them.
1708 Perl_looks_like_number(pTHX_ SV *sv)
1710 register const char *sbegin;
1714 sbegin = SvPVX_const(sv);
1717 else if (SvPOKp(sv))
1718 sbegin = SvPV_const(sv, len);
1720 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1721 return grok_number(sbegin, len, NULL);
1725 S_glob_2number(pTHX_ GV * const gv)
1727 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1728 SV *const buffer = sv_newmortal();
1730 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1733 gv_efullname3(buffer, gv, "*");
1734 SvFLAGS(gv) |= wasfake;
1736 /* We know that all GVs stringify to something that is not-a-number,
1737 so no need to test that. */
1738 if (ckWARN(WARN_NUMERIC))
1739 not_a_number(buffer);
1740 /* We just want something true to return, so that S_sv_2iuv_common
1741 can tail call us and return true. */
1746 S_glob_2pv(pTHX_ GV * const gv, STRLEN * const len)
1748 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1749 SV *const buffer = sv_newmortal();
1751 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1754 gv_efullname3(buffer, gv, "*");
1755 SvFLAGS(gv) |= wasfake;
1757 assert(SvPOK(buffer));
1759 *len = SvCUR(buffer);
1761 return SvPVX(buffer);
1764 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1765 until proven guilty, assume that things are not that bad... */
1770 As 64 bit platforms often have an NV that doesn't preserve all bits of
1771 an IV (an assumption perl has been based on to date) it becomes necessary
1772 to remove the assumption that the NV always carries enough precision to
1773 recreate the IV whenever needed, and that the NV is the canonical form.
1774 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1775 precision as a side effect of conversion (which would lead to insanity
1776 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1777 1) to distinguish between IV/UV/NV slots that have cached a valid
1778 conversion where precision was lost and IV/UV/NV slots that have a
1779 valid conversion which has lost no precision
1780 2) to ensure that if a numeric conversion to one form is requested that
1781 would lose precision, the precise conversion (or differently
1782 imprecise conversion) is also performed and cached, to prevent
1783 requests for different numeric formats on the same SV causing
1784 lossy conversion chains. (lossless conversion chains are perfectly
1789 SvIOKp is true if the IV slot contains a valid value
1790 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1791 SvNOKp is true if the NV slot contains a valid value
1792 SvNOK is true only if the NV value is accurate
1795 while converting from PV to NV, check to see if converting that NV to an
1796 IV(or UV) would lose accuracy over a direct conversion from PV to
1797 IV(or UV). If it would, cache both conversions, return NV, but mark
1798 SV as IOK NOKp (ie not NOK).
1800 While converting from PV to IV, check to see if converting that IV to an
1801 NV would lose accuracy over a direct conversion from PV to NV. If it
1802 would, cache both conversions, flag similarly.
1804 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1805 correctly because if IV & NV were set NV *always* overruled.
1806 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1807 changes - now IV and NV together means that the two are interchangeable:
1808 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1810 The benefit of this is that operations such as pp_add know that if
1811 SvIOK is true for both left and right operands, then integer addition
1812 can be used instead of floating point (for cases where the result won't
1813 overflow). Before, floating point was always used, which could lead to
1814 loss of precision compared with integer addition.
1816 * making IV and NV equal status should make maths accurate on 64 bit
1818 * may speed up maths somewhat if pp_add and friends start to use
1819 integers when possible instead of fp. (Hopefully the overhead in
1820 looking for SvIOK and checking for overflow will not outweigh the
1821 fp to integer speedup)
1822 * will slow down integer operations (callers of SvIV) on "inaccurate"
1823 values, as the change from SvIOK to SvIOKp will cause a call into
1824 sv_2iv each time rather than a macro access direct to the IV slot
1825 * should speed up number->string conversion on integers as IV is
1826 favoured when IV and NV are equally accurate
1828 ####################################################################
1829 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1830 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1831 On the other hand, SvUOK is true iff UV.
1832 ####################################################################
1834 Your mileage will vary depending your CPU's relative fp to integer
1838 #ifndef NV_PRESERVES_UV
1839 # define IS_NUMBER_UNDERFLOW_IV 1
1840 # define IS_NUMBER_UNDERFLOW_UV 2
1841 # define IS_NUMBER_IV_AND_UV 2
1842 # define IS_NUMBER_OVERFLOW_IV 4
1843 # define IS_NUMBER_OVERFLOW_UV 5
1845 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1847 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1849 S_sv_2iuv_non_preserve(pTHX_ register SV *sv, I32 numtype)
1852 PERL_UNUSED_ARG(numtype); /* Used only under DEBUGGING? */
1853 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1854 if (SvNVX(sv) < (NV)IV_MIN) {
1855 (void)SvIOKp_on(sv);
1857 SvIV_set(sv, IV_MIN);
1858 return IS_NUMBER_UNDERFLOW_IV;
1860 if (SvNVX(sv) > (NV)UV_MAX) {
1861 (void)SvIOKp_on(sv);
1864 SvUV_set(sv, UV_MAX);
1865 return IS_NUMBER_OVERFLOW_UV;
1867 (void)SvIOKp_on(sv);
1869 /* Can't use strtol etc to convert this string. (See truth table in
1871 if (SvNVX(sv) <= (UV)IV_MAX) {
1872 SvIV_set(sv, I_V(SvNVX(sv)));
1873 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1874 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1876 /* Integer is imprecise. NOK, IOKp */
1878 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
1881 SvUV_set(sv, U_V(SvNVX(sv)));
1882 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
1883 if (SvUVX(sv) == UV_MAX) {
1884 /* As we know that NVs don't preserve UVs, UV_MAX cannot
1885 possibly be preserved by NV. Hence, it must be overflow.
1887 return IS_NUMBER_OVERFLOW_UV;
1889 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
1891 /* Integer is imprecise. NOK, IOKp */
1893 return IS_NUMBER_OVERFLOW_IV;
1895 #endif /* !NV_PRESERVES_UV*/
1898 S_sv_2iuv_common(pTHX_ SV *sv) {
1901 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
1902 * without also getting a cached IV/UV from it at the same time
1903 * (ie PV->NV conversion should detect loss of accuracy and cache
1904 * IV or UV at same time to avoid this. */
1905 /* IV-over-UV optimisation - choose to cache IV if possible */
1907 if (SvTYPE(sv) == SVt_NV)
1908 sv_upgrade(sv, SVt_PVNV);
1910 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
1911 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
1912 certainly cast into the IV range at IV_MAX, whereas the correct
1913 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
1915 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
1916 if (Perl_isnan(SvNVX(sv))) {
1922 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
1923 SvIV_set(sv, I_V(SvNVX(sv)));
1924 if (SvNVX(sv) == (NV) SvIVX(sv)
1925 #ifndef NV_PRESERVES_UV
1926 && (((UV)1 << NV_PRESERVES_UV_BITS) >
1927 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
1928 /* Don't flag it as "accurately an integer" if the number
1929 came from a (by definition imprecise) NV operation, and
1930 we're outside the range of NV integer precision */
1933 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
1934 DEBUG_c(PerlIO_printf(Perl_debug_log,
1935 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
1941 /* IV not precise. No need to convert from PV, as NV
1942 conversion would already have cached IV if it detected
1943 that PV->IV would be better than PV->NV->IV
1944 flags already correct - don't set public IOK. */
1945 DEBUG_c(PerlIO_printf(Perl_debug_log,
1946 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
1951 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
1952 but the cast (NV)IV_MIN rounds to a the value less (more
1953 negative) than IV_MIN which happens to be equal to SvNVX ??
1954 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
1955 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
1956 (NV)UVX == NVX are both true, but the values differ. :-(
1957 Hopefully for 2s complement IV_MIN is something like
1958 0x8000000000000000 which will be exact. NWC */
1961 SvUV_set(sv, U_V(SvNVX(sv)));
1963 (SvNVX(sv) == (NV) SvUVX(sv))
1964 #ifndef NV_PRESERVES_UV
1965 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
1966 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
1967 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
1968 /* Don't flag it as "accurately an integer" if the number
1969 came from a (by definition imprecise) NV operation, and
1970 we're outside the range of NV integer precision */
1975 DEBUG_c(PerlIO_printf(Perl_debug_log,
1976 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
1982 else if (SvPOKp(sv) && SvLEN(sv)) {
1984 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
1985 /* We want to avoid a possible problem when we cache an IV/ a UV which
1986 may be later translated to an NV, and the resulting NV is not
1987 the same as the direct translation of the initial string
1988 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
1989 be careful to ensure that the value with the .456 is around if the
1990 NV value is requested in the future).
1992 This means that if we cache such an IV/a UV, we need to cache the
1993 NV as well. Moreover, we trade speed for space, and do not
1994 cache the NV if we are sure it's not needed.
1997 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
1998 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
1999 == IS_NUMBER_IN_UV) {
2000 /* It's definitely an integer, only upgrade to PVIV */
2001 if (SvTYPE(sv) < SVt_PVIV)
2002 sv_upgrade(sv, SVt_PVIV);
2004 } else if (SvTYPE(sv) < SVt_PVNV)
2005 sv_upgrade(sv, SVt_PVNV);
2007 /* If NVs preserve UVs then we only use the UV value if we know that
2008 we aren't going to call atof() below. If NVs don't preserve UVs
2009 then the value returned may have more precision than atof() will
2010 return, even though value isn't perfectly accurate. */
2011 if ((numtype & (IS_NUMBER_IN_UV
2012 #ifdef NV_PRESERVES_UV
2015 )) == IS_NUMBER_IN_UV) {
2016 /* This won't turn off the public IOK flag if it was set above */
2017 (void)SvIOKp_on(sv);
2019 if (!(numtype & IS_NUMBER_NEG)) {
2021 if (value <= (UV)IV_MAX) {
2022 SvIV_set(sv, (IV)value);
2024 /* it didn't overflow, and it was positive. */
2025 SvUV_set(sv, value);
2029 /* 2s complement assumption */
2030 if (value <= (UV)IV_MIN) {
2031 SvIV_set(sv, -(IV)value);
2033 /* Too negative for an IV. This is a double upgrade, but
2034 I'm assuming it will be rare. */
2035 if (SvTYPE(sv) < SVt_PVNV)
2036 sv_upgrade(sv, SVt_PVNV);
2040 SvNV_set(sv, -(NV)value);
2041 SvIV_set(sv, IV_MIN);
2045 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2046 will be in the previous block to set the IV slot, and the next
2047 block to set the NV slot. So no else here. */
2049 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2050 != IS_NUMBER_IN_UV) {
2051 /* It wasn't an (integer that doesn't overflow the UV). */
2052 SvNV_set(sv, Atof(SvPVX_const(sv)));
2054 if (! numtype && ckWARN(WARN_NUMERIC))
2057 #if defined(USE_LONG_DOUBLE)
2058 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2059 PTR2UV(sv), SvNVX(sv)));
2061 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2062 PTR2UV(sv), SvNVX(sv)));
2065 #ifdef NV_PRESERVES_UV
2066 (void)SvIOKp_on(sv);
2068 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2069 SvIV_set(sv, I_V(SvNVX(sv)));
2070 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2073 NOOP; /* Integer is imprecise. NOK, IOKp */
2075 /* UV will not work better than IV */
2077 if (SvNVX(sv) > (NV)UV_MAX) {
2079 /* Integer is inaccurate. NOK, IOKp, is UV */
2080 SvUV_set(sv, UV_MAX);
2082 SvUV_set(sv, U_V(SvNVX(sv)));
2083 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2084 NV preservse UV so can do correct comparison. */
2085 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2088 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2093 #else /* NV_PRESERVES_UV */
2094 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2095 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2096 /* The IV/UV slot will have been set from value returned by
2097 grok_number above. The NV slot has just been set using
2100 assert (SvIOKp(sv));
2102 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2103 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2104 /* Small enough to preserve all bits. */
2105 (void)SvIOKp_on(sv);
2107 SvIV_set(sv, I_V(SvNVX(sv)));
2108 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2110 /* Assumption: first non-preserved integer is < IV_MAX,
2111 this NV is in the preserved range, therefore: */
2112 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2114 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2118 0 0 already failed to read UV.
2119 0 1 already failed to read UV.
2120 1 0 you won't get here in this case. IV/UV
2121 slot set, public IOK, Atof() unneeded.
2122 1 1 already read UV.
2123 so there's no point in sv_2iuv_non_preserve() attempting
2124 to use atol, strtol, strtoul etc. */
2125 sv_2iuv_non_preserve (sv, numtype);
2128 #endif /* NV_PRESERVES_UV */
2132 if (isGV_with_GP(sv))
2133 return glob_2number((GV *)sv);
2135 if (!(SvFLAGS(sv) & SVs_PADTMP)) {
2136 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2139 if (SvTYPE(sv) < SVt_IV)
2140 /* Typically the caller expects that sv_any is not NULL now. */
2141 sv_upgrade(sv, SVt_IV);
2142 /* Return 0 from the caller. */
2149 =for apidoc sv_2iv_flags
2151 Return the integer value of an SV, doing any necessary string
2152 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2153 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2159 Perl_sv_2iv_flags(pTHX_ register SV *sv, I32 flags)
2164 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2165 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2166 cache IVs just in case. In practice it seems that they never
2167 actually anywhere accessible by user Perl code, let alone get used
2168 in anything other than a string context. */
2169 if (flags & SV_GMAGIC)
2174 return I_V(SvNVX(sv));
2176 if (SvPOKp(sv) && SvLEN(sv)) {
2179 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2181 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2182 == IS_NUMBER_IN_UV) {
2183 /* It's definitely an integer */
2184 if (numtype & IS_NUMBER_NEG) {
2185 if (value < (UV)IV_MIN)
2188 if (value < (UV)IV_MAX)
2193 if (ckWARN(WARN_NUMERIC))
2196 return I_V(Atof(SvPVX_const(sv)));
2201 assert(SvTYPE(sv) >= SVt_PVMG);
2202 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2203 } else if (SvTHINKFIRST(sv)) {
2207 SV * const tmpstr=AMG_CALLun(sv,numer);
2208 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2209 return SvIV(tmpstr);
2212 return PTR2IV(SvRV(sv));
2215 sv_force_normal_flags(sv, 0);
2217 if (SvREADONLY(sv) && !SvOK(sv)) {
2218 if (ckWARN(WARN_UNINITIALIZED))
2224 if (S_sv_2iuv_common(aTHX_ sv))
2227 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2228 PTR2UV(sv),SvIVX(sv)));
2229 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2233 =for apidoc sv_2uv_flags
2235 Return the unsigned integer value of an SV, doing any necessary string
2236 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2237 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2243 Perl_sv_2uv_flags(pTHX_ register SV *sv, I32 flags)
2248 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2249 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2250 cache IVs just in case. */
2251 if (flags & SV_GMAGIC)
2256 return U_V(SvNVX(sv));
2257 if (SvPOKp(sv) && SvLEN(sv)) {
2260 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2262 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2263 == IS_NUMBER_IN_UV) {
2264 /* It's definitely an integer */
2265 if (!(numtype & IS_NUMBER_NEG))
2269 if (ckWARN(WARN_NUMERIC))
2272 return U_V(Atof(SvPVX_const(sv)));
2277 assert(SvTYPE(sv) >= SVt_PVMG);
2278 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2279 } else if (SvTHINKFIRST(sv)) {
2283 SV *const tmpstr = AMG_CALLun(sv,numer);
2284 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2285 return SvUV(tmpstr);
2288 return PTR2UV(SvRV(sv));
2291 sv_force_normal_flags(sv, 0);
2293 if (SvREADONLY(sv) && !SvOK(sv)) {
2294 if (ckWARN(WARN_UNINITIALIZED))
2300 if (S_sv_2iuv_common(aTHX_ sv))
2304 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2305 PTR2UV(sv),SvUVX(sv)));
2306 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2312 Return the num value of an SV, doing any necessary string or integer
2313 conversion, magic etc. Normally used via the C<SvNV(sv)> and C<SvNVx(sv)>
2320 Perl_sv_2nv(pTHX_ register SV *sv)
2325 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2326 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2327 cache IVs just in case. */
2331 if ((SvPOKp(sv) && SvLEN(sv)) && !SvIOKp(sv)) {
2332 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2333 !grok_number(SvPVX_const(sv), SvCUR(sv), NULL))
2335 return Atof(SvPVX_const(sv));
2339 return (NV)SvUVX(sv);
2341 return (NV)SvIVX(sv);
2346 assert(SvTYPE(sv) >= SVt_PVMG);
2347 /* This falls through to the report_uninit near the end of the
2349 } else if (SvTHINKFIRST(sv)) {
2353 SV *const tmpstr = AMG_CALLun(sv,numer);
2354 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2355 return SvNV(tmpstr);
2358 return PTR2NV(SvRV(sv));
2361 sv_force_normal_flags(sv, 0);
2363 if (SvREADONLY(sv) && !SvOK(sv)) {
2364 if (ckWARN(WARN_UNINITIALIZED))
2369 if (SvTYPE(sv) < SVt_NV) {
2370 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2371 sv_upgrade(sv, SVt_NV);
2372 #ifdef USE_LONG_DOUBLE
2374 STORE_NUMERIC_LOCAL_SET_STANDARD();
2375 PerlIO_printf(Perl_debug_log,
2376 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2377 PTR2UV(sv), SvNVX(sv));
2378 RESTORE_NUMERIC_LOCAL();
2382 STORE_NUMERIC_LOCAL_SET_STANDARD();
2383 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2384 PTR2UV(sv), SvNVX(sv));
2385 RESTORE_NUMERIC_LOCAL();
2389 else if (SvTYPE(sv) < SVt_PVNV)
2390 sv_upgrade(sv, SVt_PVNV);
2395 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2396 #ifdef NV_PRESERVES_UV
2399 /* Only set the public NV OK flag if this NV preserves the IV */
2400 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2401 if (SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2402 : (SvIVX(sv) == I_V(SvNVX(sv))))
2408 else if (SvPOKp(sv) && SvLEN(sv)) {
2410 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2411 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2413 #ifdef NV_PRESERVES_UV
2414 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2415 == IS_NUMBER_IN_UV) {
2416 /* It's definitely an integer */
2417 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2419 SvNV_set(sv, Atof(SvPVX_const(sv)));
2422 SvNV_set(sv, Atof(SvPVX_const(sv)));
2423 /* Only set the public NV OK flag if this NV preserves the value in
2424 the PV at least as well as an IV/UV would.
2425 Not sure how to do this 100% reliably. */
2426 /* if that shift count is out of range then Configure's test is
2427 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2429 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2430 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2431 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2432 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2433 /* Can't use strtol etc to convert this string, so don't try.
2434 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2437 /* value has been set. It may not be precise. */
2438 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2439 /* 2s complement assumption for (UV)IV_MIN */
2440 SvNOK_on(sv); /* Integer is too negative. */
2445 if (numtype & IS_NUMBER_NEG) {
2446 SvIV_set(sv, -(IV)value);
2447 } else if (value <= (UV)IV_MAX) {
2448 SvIV_set(sv, (IV)value);
2450 SvUV_set(sv, value);
2454 if (numtype & IS_NUMBER_NOT_INT) {
2455 /* I believe that even if the original PV had decimals,
2456 they are lost beyond the limit of the FP precision.
2457 However, neither is canonical, so both only get p
2458 flags. NWC, 2000/11/25 */
2459 /* Both already have p flags, so do nothing */
2461 const NV nv = SvNVX(sv);
2462 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2463 if (SvIVX(sv) == I_V(nv)) {
2466 /* It had no "." so it must be integer. */
2470 /* between IV_MAX and NV(UV_MAX).
2471 Could be slightly > UV_MAX */
2473 if (numtype & IS_NUMBER_NOT_INT) {
2474 /* UV and NV both imprecise. */
2476 const UV nv_as_uv = U_V(nv);
2478 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2487 #endif /* NV_PRESERVES_UV */
2490 if (isGV_with_GP(sv)) {
2491 glob_2number((GV *)sv);
2495 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2497 assert (SvTYPE(sv) >= SVt_NV);
2498 /* Typically the caller expects that sv_any is not NULL now. */
2499 /* XXX Ilya implies that this is a bug in callers that assume this
2500 and ideally should be fixed. */
2503 #if defined(USE_LONG_DOUBLE)
2505 STORE_NUMERIC_LOCAL_SET_STANDARD();
2506 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2507 PTR2UV(sv), SvNVX(sv));
2508 RESTORE_NUMERIC_LOCAL();
2512 STORE_NUMERIC_LOCAL_SET_STANDARD();
2513 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2514 PTR2UV(sv), SvNVX(sv));
2515 RESTORE_NUMERIC_LOCAL();
2521 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2522 * UV as a string towards the end of buf, and return pointers to start and
2525 * We assume that buf is at least TYPE_CHARS(UV) long.
2529 S_uiv_2buf(char *buf, IV iv, UV uv, int is_uv, char **peob)
2531 char *ptr = buf + TYPE_CHARS(UV);
2532 char * const ebuf = ptr;
2545 *--ptr = '0' + (char)(uv % 10);
2554 =for apidoc sv_2pv_flags
2556 Returns a pointer to the string value of an SV, and sets *lp to its length.
2557 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a string
2559 Normally invoked via the C<SvPV_flags> macro. C<sv_2pv()> and C<sv_2pv_nomg>
2560 usually end up here too.
2566 Perl_sv_2pv_flags(pTHX_ register SV *sv, STRLEN *lp, I32 flags)
2576 if (SvGMAGICAL(sv)) {
2577 if (flags & SV_GMAGIC)
2582 if (flags & SV_MUTABLE_RETURN)
2583 return SvPVX_mutable(sv);
2584 if (flags & SV_CONST_RETURN)
2585 return (char *)SvPVX_const(sv);
2588 if (SvIOKp(sv) || SvNOKp(sv)) {
2589 char tbuf[64]; /* Must fit sprintf/Gconvert of longest IV/NV */
2594 ? my_snprintf(tbuf, sizeof(tbuf), "%"UVuf, (UV)SvUVX(sv))
2595 : my_snprintf(tbuf, sizeof(tbuf), "%"IVdf, (IV)SvIVX(sv));
2597 Gconvert(SvNVX(sv), NV_DIG, 0, tbuf);
2604 #ifdef FIXNEGATIVEZERO
2605 if (len == 2 && tbuf[0] == '-' && tbuf[1] == '0') {
2611 SvUPGRADE(sv, SVt_PV);
2614 s = SvGROW_mutable(sv, len + 1);
2617 return (char*)memcpy(s, tbuf, len + 1);
2623 assert(SvTYPE(sv) >= SVt_PVMG);
2624 /* This falls through to the report_uninit near the end of the
2626 } else if (SvTHINKFIRST(sv)) {
2630 SV *const tmpstr = AMG_CALLun(sv,string);
2631 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2633 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2637 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2638 if (flags & SV_CONST_RETURN) {
2639 pv = (char *) SvPVX_const(tmpstr);
2641 pv = (flags & SV_MUTABLE_RETURN)
2642 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2645 *lp = SvCUR(tmpstr);
2647 pv = sv_2pv_flags(tmpstr, lp, flags);
2661 const SV *const referent = (SV*)SvRV(sv);
2665 retval = buffer = savepvn("NULLREF", len);
2666 } else if (SvTYPE(referent) == SVt_PVMG
2667 && ((SvFLAGS(referent) &
2668 (SVs_OBJECT|SVf_OK|SVs_GMG|SVs_SMG|SVs_RMG))
2669 == (SVs_OBJECT|SVs_SMG))
2670 && (mg = mg_find(referent, PERL_MAGIC_qr)))
2675 (str) = CALLREG_AS_STR(mg,lp,&flags,&haseval);
2680 PL_reginterp_cnt += haseval;
2683 const char *const typestr = sv_reftype(referent, 0);
2684 const STRLEN typelen = strlen(typestr);
2685 UV addr = PTR2UV(referent);
2686 const char *stashname = NULL;
2687 STRLEN stashnamelen = 0; /* hush, gcc */
2688 const char *buffer_end;
2690 if (SvOBJECT(referent)) {
2691 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2694 stashname = HEK_KEY(name);
2695 stashnamelen = HEK_LEN(name);
2697 if (HEK_UTF8(name)) {
2703 stashname = "__ANON__";
2706 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2707 + 2 * sizeof(UV) + 2 /* )\0 */;
2709 len = typelen + 3 /* (0x */
2710 + 2 * sizeof(UV) + 2 /* )\0 */;
2713 Newx(buffer, len, char);
2714 buffer_end = retval = buffer + len;
2716 /* Working backwards */
2720 *--retval = PL_hexdigit[addr & 15];
2721 } while (addr >>= 4);
2727 memcpy(retval, typestr, typelen);
2731 retval -= stashnamelen;
2732 memcpy(retval, stashname, stashnamelen);
2734 /* retval may not neccesarily have reached the start of the
2736 assert (retval >= buffer);
2738 len = buffer_end - retval - 1; /* -1 for that \0 */
2746 if (SvREADONLY(sv) && !SvOK(sv)) {
2747 if (ckWARN(WARN_UNINITIALIZED))
2754 if (SvIOK(sv) || ((SvIOKp(sv) && !SvNOKp(sv)))) {
2755 /* I'm assuming that if both IV and NV are equally valid then
2756 converting the IV is going to be more efficient */
2757 const U32 isUIOK = SvIsUV(sv);
2758 char buf[TYPE_CHARS(UV)];
2761 if (SvTYPE(sv) < SVt_PVIV)
2762 sv_upgrade(sv, SVt_PVIV);
2763 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2764 /* inlined from sv_setpvn */
2765 SvGROW_mutable(sv, (STRLEN)(ebuf - ptr + 1));
2766 Move(ptr,SvPVX_mutable(sv),ebuf - ptr,char);
2767 SvCUR_set(sv, ebuf - ptr);
2771 else if (SvNOKp(sv)) {
2772 const int olderrno = errno;
2773 if (SvTYPE(sv) < SVt_PVNV)
2774 sv_upgrade(sv, SVt_PVNV);
2775 /* The +20 is pure guesswork. Configure test needed. --jhi */
2776 s = SvGROW_mutable(sv, NV_DIG + 20);
2777 /* some Xenix systems wipe out errno here */
2779 if (SvNVX(sv) == 0.0)
2780 my_strlcpy(s, "0", SvLEN(sv));
2784 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2787 #ifdef FIXNEGATIVEZERO
2788 if (*s == '-' && s[1] == '0' && !s[2])
2789 my_strlcpy(s, "0", SvLEN(s));
2798 if (isGV_with_GP(sv))
2799 return glob_2pv((GV *)sv, lp);
2801 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2805 if (SvTYPE(sv) < SVt_PV)
2806 /* Typically the caller expects that sv_any is not NULL now. */
2807 sv_upgrade(sv, SVt_PV);
2811 const STRLEN len = s - SvPVX_const(sv);
2817 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
2818 PTR2UV(sv),SvPVX_const(sv)));
2819 if (flags & SV_CONST_RETURN)
2820 return (char *)SvPVX_const(sv);
2821 if (flags & SV_MUTABLE_RETURN)
2822 return SvPVX_mutable(sv);
2827 =for apidoc sv_copypv
2829 Copies a stringified representation of the source SV into the
2830 destination SV. Automatically performs any necessary mg_get and
2831 coercion of numeric values into strings. Guaranteed to preserve
2832 UTF-8 flag even from overloaded objects. Similar in nature to
2833 sv_2pv[_flags] but operates directly on an SV instead of just the
2834 string. Mostly uses sv_2pv_flags to do its work, except when that
2835 would lose the UTF-8'ness of the PV.
2841 Perl_sv_copypv(pTHX_ SV *dsv, register SV *ssv)
2844 const char * const s = SvPV_const(ssv,len);
2845 sv_setpvn(dsv,s,len);
2853 =for apidoc sv_2pvbyte
2855 Return a pointer to the byte-encoded representation of the SV, and set *lp
2856 to its length. May cause the SV to be downgraded from UTF-8 as a
2859 Usually accessed via the C<SvPVbyte> macro.
2865 Perl_sv_2pvbyte(pTHX_ register SV *sv, STRLEN *lp)
2867 sv_utf8_downgrade(sv,0);
2868 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
2872 =for apidoc sv_2pvutf8
2874 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
2875 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
2877 Usually accessed via the C<SvPVutf8> macro.
2883 Perl_sv_2pvutf8(pTHX_ register SV *sv, STRLEN *lp)
2885 sv_utf8_upgrade(sv);
2886 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
2891 =for apidoc sv_2bool
2893 This function is only called on magical items, and is only used by
2894 sv_true() or its macro equivalent.
2900 Perl_sv_2bool(pTHX_ register SV *sv)
2909 SV * const tmpsv = AMG_CALLun(sv,bool_);
2910 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2911 return (bool)SvTRUE(tmpsv);
2913 return SvRV(sv) != 0;
2916 register XPV* const Xpvtmp = (XPV*)SvANY(sv);
2918 (*sv->sv_u.svu_pv > '0' ||
2919 Xpvtmp->xpv_cur > 1 ||
2920 (Xpvtmp->xpv_cur && *sv->sv_u.svu_pv != '0')))
2927 return SvIVX(sv) != 0;
2930 return SvNVX(sv) != 0.0;
2932 if (isGV_with_GP(sv))
2942 =for apidoc sv_utf8_upgrade
2944 Converts the PV of an SV to its UTF-8-encoded form.
2945 Forces the SV to string form if it is not already.
2946 Always sets the SvUTF8 flag to avoid future validity checks even
2947 if all the bytes have hibit clear.
2949 This is not as a general purpose byte encoding to Unicode interface:
2950 use the Encode extension for that.
2952 =for apidoc sv_utf8_upgrade_flags
2954 Converts the PV of an SV to its UTF-8-encoded form.
2955 Forces the SV to string form if it is not already.
2956 Always sets the SvUTF8 flag to avoid future validity checks even
2957 if all the bytes have hibit clear. If C<flags> has C<SV_GMAGIC> bit set,
2958 will C<mg_get> on C<sv> if appropriate, else not. C<sv_utf8_upgrade> and
2959 C<sv_utf8_upgrade_nomg> are implemented in terms of this function.
2961 This is not as a general purpose byte encoding to Unicode interface:
2962 use the Encode extension for that.
2968 Perl_sv_utf8_upgrade_flags(pTHX_ register SV *sv, I32 flags)
2971 if (sv == &PL_sv_undef)
2975 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
2976 (void) sv_2pv_flags(sv,&len, flags);
2980 (void) SvPV_force(sv,len);
2989 sv_force_normal_flags(sv, 0);
2992 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING))
2993 sv_recode_to_utf8(sv, PL_encoding);
2994 else { /* Assume Latin-1/EBCDIC */
2995 /* This function could be much more efficient if we
2996 * had a FLAG in SVs to signal if there are any hibit
2997 * chars in the PV. Given that there isn't such a flag
2998 * make the loop as fast as possible. */
2999 const U8 * const s = (U8 *) SvPVX_const(sv);
3000 const U8 * const e = (U8 *) SvEND(sv);
3005 /* Check for hi bit */
3006 if (!NATIVE_IS_INVARIANT(ch)) {
3007 STRLEN len = SvCUR(sv) + 1; /* Plus the \0 */
3008 U8 * const recoded = bytes_to_utf8((U8*)s, &len);
3010 SvPV_free(sv); /* No longer using what was there before. */
3011 SvPV_set(sv, (char*)recoded);
3012 SvCUR_set(sv, len - 1);
3013 SvLEN_set(sv, len); /* No longer know the real size. */
3017 /* Mark as UTF-8 even if no hibit - saves scanning loop */
3024 =for apidoc sv_utf8_downgrade
3026 Attempts to convert the PV of an SV from characters to bytes.
3027 If the PV contains a character beyond byte, this conversion will fail;
3028 in this case, either returns false or, if C<fail_ok> is not
3031 This is not as a general purpose Unicode to byte encoding interface:
3032 use the Encode extension for that.
3038 Perl_sv_utf8_downgrade(pTHX_ register SV* sv, bool fail_ok)
3041 if (SvPOKp(sv) && SvUTF8(sv)) {
3047 sv_force_normal_flags(sv, 0);
3049 s = (U8 *) SvPV(sv, len);
3050 if (!utf8_to_bytes(s, &len)) {
3055 Perl_croak(aTHX_ "Wide character in %s",
3058 Perl_croak(aTHX_ "Wide character");
3069 =for apidoc sv_utf8_encode
3071 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3072 flag off so that it looks like octets again.
3078 Perl_sv_utf8_encode(pTHX_ register SV *sv)
3081 sv_force_normal_flags(sv, 0);
3083 if (SvREADONLY(sv)) {
3084 Perl_croak(aTHX_ PL_no_modify);
3086 (void) sv_utf8_upgrade(sv);
3091 =for apidoc sv_utf8_decode
3093 If the PV of the SV is an octet sequence in UTF-8
3094 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3095 so that it looks like a character. If the PV contains only single-byte
3096 characters, the C<SvUTF8> flag stays being off.
3097 Scans PV for validity and returns false if the PV is invalid UTF-8.
3103 Perl_sv_utf8_decode(pTHX_ register SV *sv)
3109 /* The octets may have got themselves encoded - get them back as
3112 if (!sv_utf8_downgrade(sv, TRUE))
3115 /* it is actually just a matter of turning the utf8 flag on, but
3116 * we want to make sure everything inside is valid utf8 first.
3118 c = (const U8 *) SvPVX_const(sv);
3119 if (!is_utf8_string(c, SvCUR(sv)+1))
3121 e = (const U8 *) SvEND(sv);
3124 if (!UTF8_IS_INVARIANT(ch)) {
3134 =for apidoc sv_setsv
3136 Copies the contents of the source SV C<ssv> into the destination SV
3137 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3138 function if the source SV needs to be reused. Does not handle 'set' magic.
3139 Loosely speaking, it performs a copy-by-value, obliterating any previous
3140 content of the destination.
3142 You probably want to use one of the assortment of wrappers, such as
3143 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3144 C<SvSetMagicSV_nosteal>.
3146 =for apidoc sv_setsv_flags
3148 Copies the contents of the source SV C<ssv> into the destination SV
3149 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3150 function if the source SV needs to be reused. Does not handle 'set' magic.
3151 Loosely speaking, it performs a copy-by-value, obliterating any previous
3152 content of the destination.
3153 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3154 C<ssv> if appropriate, else not. If the C<flags> parameter has the
3155 C<NOSTEAL> bit set then the buffers of temps will not be stolen. <sv_setsv>
3156 and C<sv_setsv_nomg> are implemented in terms of this function.
3158 You probably want to use one of the assortment of wrappers, such as
3159 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3160 C<SvSetMagicSV_nosteal>.
3162 This is the primary function for copying scalars, and most other
3163 copy-ish functions and macros use this underneath.
3169 S_glob_assign_glob(pTHX_ SV *dstr, SV *sstr, const int dtype)
3171 if (dtype != SVt_PVGV) {
3172 const char * const name = GvNAME(sstr);
3173 const STRLEN len = GvNAMELEN(sstr);
3174 /* don't upgrade SVt_PVLV: it can hold a glob */
3175 if (dtype != SVt_PVLV) {
3176 if (dtype >= SVt_PV) {
3182 sv_upgrade(dstr, SVt_PVGV);
3183 (void)SvOK_off(dstr);
3184 /* FIXME - why are we doing this, then turning it off and on again
3186 isGV_with_GP_on(dstr);
3188 GvSTASH(dstr) = GvSTASH(sstr);
3190 Perl_sv_add_backref(aTHX_ (SV*)GvSTASH(dstr), dstr);
3191 gv_name_set((GV *)dstr, name, len, GV_ADD);
3192 SvFAKE_on(dstr); /* can coerce to non-glob */
3195 #ifdef GV_UNIQUE_CHECK
3196 if (GvUNIQUE((GV*)dstr)) {
3197 Perl_croak(aTHX_ PL_no_modify);
3202 isGV_with_GP_off(dstr);
3203 (void)SvOK_off(dstr);
3204 isGV_with_GP_on(dstr);
3205 GvINTRO_off(dstr); /* one-shot flag */
3206 GvGP(dstr) = gp_ref(GvGP(sstr));
3207 if (SvTAINTED(sstr))
3209 if (GvIMPORTED(dstr) != GVf_IMPORTED
3210 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3212 GvIMPORTED_on(dstr);
3219 S_glob_assign_ref(pTHX_ SV *dstr, SV *sstr) {
3220 SV * const sref = SvREFCNT_inc(SvRV(sstr));
3222 const int intro = GvINTRO(dstr);
3225 const U32 stype = SvTYPE(sref);
3228 #ifdef GV_UNIQUE_CHECK
3229 if (GvUNIQUE((GV*)dstr)) {
3230 Perl_croak(aTHX_ PL_no_modify);
3235 GvINTRO_off(dstr); /* one-shot flag */
3236 GvLINE(dstr) = CopLINE(PL_curcop);
3237 GvEGV(dstr) = (GV*)dstr;
3242 location = (SV **) &GvCV(dstr);
3243 import_flag = GVf_IMPORTED_CV;
3246 location = (SV **) &GvHV(dstr);
3247 import_flag = GVf_IMPORTED_HV;
3250 location = (SV **) &GvAV(dstr);
3251 import_flag = GVf_IMPORTED_AV;
3254 location = (SV **) &GvIOp(dstr);
3257 location = (SV **) &GvFORM(dstr);
3259 location = &GvSV(dstr);
3260 import_flag = GVf_IMPORTED_SV;
3263 if (stype == SVt_PVCV) {
3264 if (GvCVGEN(dstr) && GvCV(dstr) != (CV*)sref) {
3265 SvREFCNT_dec(GvCV(dstr));
3267 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3268 PL_sub_generation++;
3271 SAVEGENERICSV(*location);
3275 if (stype == SVt_PVCV && *location != sref) {
3276 CV* const cv = (CV*)*location;
3278 if (!GvCVGEN((GV*)dstr) &&
3279 (CvROOT(cv) || CvXSUB(cv)))
3281 /* Redefining a sub - warning is mandatory if
3282 it was a const and its value changed. */
3283 if (CvCONST(cv) && CvCONST((CV*)sref)
3284 && cv_const_sv(cv) == cv_const_sv((CV*)sref)) {
3286 /* They are 2 constant subroutines generated from
3287 the same constant. This probably means that
3288 they are really the "same" proxy subroutine
3289 instantiated in 2 places. Most likely this is
3290 when a constant is exported twice. Don't warn.
3293 else if (ckWARN(WARN_REDEFINE)
3295 && (!CvCONST((CV*)sref)
3296 || sv_cmp(cv_const_sv(cv),
3297 cv_const_sv((CV*)sref))))) {
3298 Perl_warner(aTHX_ packWARN(WARN_REDEFINE),
3301 ? "Constant subroutine %s::%s redefined"
3302 : "Subroutine %s::%s redefined"),
3303 HvNAME_get(GvSTASH((GV*)dstr)),
3304 GvENAME((GV*)dstr));
3308 cv_ckproto_len(cv, (GV*)dstr,
3309 SvPOK(sref) ? SvPVX_const(sref) : NULL,
3310 SvPOK(sref) ? SvCUR(sref) : 0);
3312 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3313 GvASSUMECV_on(dstr);
3314 PL_sub_generation++;
3317 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3318 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3319 GvFLAGS(dstr) |= import_flag;
3324 if (SvTAINTED(sstr))
3330 Perl_sv_setsv_flags(pTHX_ SV *dstr, register SV *sstr, I32 flags)
3333 register U32 sflags;
3335 register svtype stype;
3340 if (SvIS_FREED(dstr)) {
3341 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
3342 " to a freed scalar %p", sstr, dstr);
3344 SV_CHECK_THINKFIRST_COW_DROP(dstr);
3346 sstr = &PL_sv_undef;
3347 if (SvIS_FREED(sstr)) {
3348 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p", sstr,
3351 stype = SvTYPE(sstr);
3352 dtype = SvTYPE(dstr);
3357 /* need to nuke the magic */
3359 SvRMAGICAL_off(dstr);
3362 /* There's a lot of redundancy below but we're going for speed here */
3367 if (dtype != SVt_PVGV) {
3368 (void)SvOK_off(dstr);
3376 sv_upgrade(dstr, SVt_IV);
3381 sv_upgrade(dstr, SVt_PVIV);
3384 goto end_of_first_switch;
3386 (void)SvIOK_only(dstr);
3387 SvIV_set(dstr, SvIVX(sstr));
3390 /* SvTAINTED can only be true if the SV has taint magic, which in
3391 turn means that the SV type is PVMG (or greater). This is the
3392 case statement for SVt_IV, so this cannot be true (whatever gcov
3394 assert(!SvTAINTED(sstr));
3404 sv_upgrade(dstr, SVt_NV);
3409 sv_upgrade(dstr, SVt_PVNV);
3412 goto end_of_first_switch;
3414 SvNV_set(dstr, SvNVX(sstr));
3415 (void)SvNOK_only(dstr);
3416 /* SvTAINTED can only be true if the SV has taint magic, which in
3417 turn means that the SV type is PVMG (or greater). This is the
3418 case statement for SVt_NV, so this cannot be true (whatever gcov
3420 assert(!SvTAINTED(sstr));
3427 sv_upgrade(dstr, SVt_RV);
3430 #ifdef PERL_OLD_COPY_ON_WRITE
3431 if ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS) {
3432 if (dtype < SVt_PVIV)
3433 sv_upgrade(dstr, SVt_PVIV);
3440 sv_upgrade(dstr, SVt_PV);
3443 if (dtype < SVt_PVIV)
3444 sv_upgrade(dstr, SVt_PVIV);
3447 if (dtype < SVt_PVNV)
3448 sv_upgrade(dstr, SVt_PVNV);
3452 const char * const type = sv_reftype(sstr,0);
3454 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_NAME(PL_op));
3456 Perl_croak(aTHX_ "Bizarre copy of %s", type);
3460 /* case SVt_BIND: */
3462 if (isGV_with_GP(sstr) && dtype <= SVt_PVGV) {
3463 glob_assign_glob(dstr, sstr, dtype);
3466 /* SvVALID means that this PVGV is playing at being an FBM. */
3471 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
3473 if (SvTYPE(sstr) != stype) {
3474 stype = SvTYPE(sstr);
3475 if (isGV_with_GP(sstr) && stype == SVt_PVGV && dtype <= SVt_PVGV) {
3476 glob_assign_glob(dstr, sstr, dtype);
3481 if (stype == SVt_PVLV)
3482 SvUPGRADE(dstr, SVt_PVNV);
3484 SvUPGRADE(dstr, (svtype)stype);
3486 end_of_first_switch:
3488 /* dstr may have been upgraded. */
3489 dtype = SvTYPE(dstr);
3490 sflags = SvFLAGS(sstr);
3492 if (dtype == SVt_PVCV || dtype == SVt_PVFM) {
3493 /* Assigning to a subroutine sets the prototype. */
3496 const char *const ptr = SvPV_const(sstr, len);
3498 SvGROW(dstr, len + 1);
3499 Copy(ptr, SvPVX(dstr), len + 1, char);
3500 SvCUR_set(dstr, len);
3502 SvFLAGS(dstr) |= sflags & SVf_UTF8;
3506 } else if (dtype == SVt_PVAV || dtype == SVt_PVHV) {
3507 const char * const type = sv_reftype(dstr,0);
3509 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_NAME(PL_op));
3511 Perl_croak(aTHX_ "Cannot copy to %s", type);
3512 } else if (sflags & SVf_ROK) {
3513 if (isGV_with_GP(dstr) && dtype == SVt_PVGV
3514 && SvTYPE(SvRV(sstr)) == SVt_PVGV) {
3517 if (GvIMPORTED(dstr) != GVf_IMPORTED
3518 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3520 GvIMPORTED_on(dstr);
3525 glob_assign_glob(dstr, sstr, dtype);
3529 if (dtype >= SVt_PV) {
3530 if (dtype == SVt_PVGV) {
3531 glob_assign_ref(dstr, sstr);
3534 if (SvPVX_const(dstr)) {
3540 (void)SvOK_off(dstr);
3541 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
3542 SvFLAGS(dstr) |= sflags & SVf_ROK;
3543 assert(!(sflags & SVp_NOK));
3544 assert(!(sflags & SVp_IOK));
3545 assert(!(sflags & SVf_NOK));
3546 assert(!(sflags & SVf_IOK));
3548 else if (dtype == SVt_PVGV && isGV_with_GP(dstr)) {
3549 if (!(sflags & SVf_OK)) {
3550 if (ckWARN(WARN_MISC))
3551 Perl_warner(aTHX_ packWARN(WARN_MISC),
3552 "Undefined value assigned to typeglob");
3555 GV *gv = gv_fetchsv(sstr, GV_ADD, SVt_PVGV);
3556 if (dstr != (SV*)gv) {
3559 GvGP(dstr) = gp_ref(GvGP(gv));
3563 else if (sflags & SVp_POK) {
3567 * Check to see if we can just swipe the string. If so, it's a
3568 * possible small lose on short strings, but a big win on long ones.
3569 * It might even be a win on short strings if SvPVX_const(dstr)
3570 * has to be allocated and SvPVX_const(sstr) has to be freed.
3571 * Likewise if we can set up COW rather than doing an actual copy, we
3572 * drop to the else clause, as the swipe code and the COW setup code
3573 * have much in common.
3576 /* Whichever path we take through the next code, we want this true,
3577 and doing it now facilitates the COW check. */
3578 (void)SvPOK_only(dstr);
3581 /* If we're already COW then this clause is not true, and if COW
3582 is allowed then we drop down to the else and make dest COW
3583 with us. If caller hasn't said that we're allowed to COW
3584 shared hash keys then we don't do the COW setup, even if the
3585 source scalar is a shared hash key scalar. */
3586 (((flags & SV_COW_SHARED_HASH_KEYS)
3587 ? (sflags & (SVf_FAKE|SVf_READONLY)) != (SVf_FAKE|SVf_READONLY)
3588 : 1 /* If making a COW copy is forbidden then the behaviour we
3589 desire is as if the source SV isn't actually already
3590 COW, even if it is. So we act as if the source flags
3591 are not COW, rather than actually testing them. */
3593 #ifndef PERL_OLD_COPY_ON_WRITE
3594 /* The change that added SV_COW_SHARED_HASH_KEYS makes the logic
3595 when PERL_OLD_COPY_ON_WRITE is defined a little wrong.
3596 Conceptually PERL_OLD_COPY_ON_WRITE being defined should
3597 override SV_COW_SHARED_HASH_KEYS, because it means "always COW"
3598 but in turn, it's somewhat dead code, never expected to go
3599 live, but more kept as a placeholder on how to do it better
3600 in a newer implementation. */
3601 /* If we are COW and dstr is a suitable target then we drop down
3602 into the else and make dest a COW of us. */
3603 || (SvFLAGS(dstr) & CAN_COW_MASK) != CAN_COW_FLAGS
3608 (sflags & SVs_TEMP) && /* slated for free anyway? */
3609 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
3610 (!(flags & SV_NOSTEAL)) &&
3611 /* and we're allowed to steal temps */
3612 SvREFCNT(sstr) == 1 && /* and no other references to it? */
3613 SvLEN(sstr) && /* and really is a string */
3614 /* and won't be needed again, potentially */
3615 !(PL_op && PL_op->op_type == OP_AASSIGN))
3616 #ifdef PERL_OLD_COPY_ON_WRITE
3617 && !((sflags & CAN_COW_MASK) == CAN_COW_FLAGS
3618 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
3619 && SvTYPE(sstr) >= SVt_PVIV)
3622 /* Failed the swipe test, and it's not a shared hash key either.
3623 Have to copy the string. */
3624 STRLEN len = SvCUR(sstr);
3625 SvGROW(dstr, len + 1); /* inlined from sv_setpvn */
3626 Move(SvPVX_const(sstr),SvPVX(dstr),len,char);
3627 SvCUR_set(dstr, len);
3628 *SvEND(dstr) = '\0';
3630 /* If PERL_OLD_COPY_ON_WRITE is not defined, then isSwipe will always
3632 /* Either it's a shared hash key, or it's suitable for
3633 copy-on-write or we can swipe the string. */
3635 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
3639 #ifdef PERL_OLD_COPY_ON_WRITE
3641 /* I believe I should acquire a global SV mutex if
3642 it's a COW sv (not a shared hash key) to stop
3643 it going un copy-on-write.
3644 If the source SV has gone un copy on write between up there
3645 and down here, then (assert() that) it is of the correct
3646 form to make it copy on write again */
3647 if ((sflags & (SVf_FAKE | SVf_READONLY))
3648 != (SVf_FAKE | SVf_READONLY)) {
3649 SvREADONLY_on(sstr);
3651 /* Make the source SV into a loop of 1.
3652 (about to become 2) */
3653 SV_COW_NEXT_SV_SET(sstr, sstr);
3657 /* Initial code is common. */
3658 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
3663 /* making another shared SV. */
3664 STRLEN cur = SvCUR(sstr);
3665 STRLEN len = SvLEN(sstr);
3666 #ifdef PERL_OLD_COPY_ON_WRITE
3668 assert (SvTYPE(dstr) >= SVt_PVIV);
3669 /* SvIsCOW_normal */
3670 /* splice us in between source and next-after-source. */
3671 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
3672 SV_COW_NEXT_SV_SET(sstr, dstr);
3673 SvPV_set(dstr, SvPVX_mutable(sstr));
3677 /* SvIsCOW_shared_hash */
3678 DEBUG_C(PerlIO_printf(Perl_debug_log,
3679 "Copy on write: Sharing hash\n"));
3681 assert (SvTYPE(dstr) >= SVt_PV);
3683 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
3685 SvLEN_set(dstr, len);
3686 SvCUR_set(dstr, cur);
3687 SvREADONLY_on(dstr);
3689 /* Relesase a global SV mutex. */
3692 { /* Passes the swipe test. */
3693 SvPV_set(dstr, SvPVX_mutable(sstr));
3694 SvLEN_set(dstr, SvLEN(sstr));
3695 SvCUR_set(dstr, SvCUR(sstr));
3698 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
3699 SvPV_set(sstr, NULL);
3705 if (sflags & SVp_NOK) {
3706 SvNV_set(dstr, SvNVX(sstr));
3708 if (sflags & SVp_IOK) {
3709 SvRELEASE_IVX(dstr);
3710 SvIV_set(dstr, SvIVX(sstr));
3711 /* Must do this otherwise some other overloaded use of 0x80000000
3712 gets confused. I guess SVpbm_VALID */
3713 if (sflags & SVf_IVisUV)
3716 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8);
3718 const MAGIC * const smg = SvVSTRING_mg(sstr);
3720 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
3721 smg->mg_ptr, smg->mg_len);
3722 SvRMAGICAL_on(dstr);
3726 else if (sflags & (SVp_IOK|SVp_NOK)) {
3727 (void)SvOK_off(dstr);
3728 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK);
3729 if (sflags & SVp_IOK) {
3730 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
3731 SvIV_set(dstr, SvIVX(sstr));
3733 if (sflags & SVp_NOK) {
3734 SvNV_set(dstr, SvNVX(sstr));
3738 if (isGV_with_GP(sstr)) {
3739 /* This stringification rule for globs is spread in 3 places.
3740 This feels bad. FIXME. */
3741 const U32 wasfake = sflags & SVf_FAKE;
3743 /* FAKE globs can get coerced, so need to turn this off
3744 temporarily if it is on. */
3746 gv_efullname3(dstr, (GV *)sstr, "*");
3747 SvFLAGS(sstr) |= wasfake;
3750 (void)SvOK_off(dstr);
3752 if (SvTAINTED(sstr))
3757 =for apidoc sv_setsv_mg
3759 Like C<sv_setsv>, but also handles 'set' magic.
3765 Perl_sv_setsv_mg(pTHX_ SV *dstr, register SV *sstr)
3767 sv_setsv(dstr,sstr);
3771 #ifdef PERL_OLD_COPY_ON_WRITE
3773 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
3775 STRLEN cur = SvCUR(sstr);
3776 STRLEN len = SvLEN(sstr);
3777 register char *new_pv;
3780 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
3788 if (SvTHINKFIRST(dstr))
3789 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
3790 else if (SvPVX_const(dstr))
3791 Safefree(SvPVX_const(dstr));
3795 SvUPGRADE(dstr, SVt_PVIV);
3797 assert (SvPOK(sstr));
3798 assert (SvPOKp(sstr));
3799 assert (!SvIOK(sstr));
3800 assert (!SvIOKp(sstr));
3801 assert (!SvNOK(sstr));
3802 assert (!SvNOKp(sstr));
3804 if (SvIsCOW(sstr)) {
3806 if (SvLEN(sstr) == 0) {
3807 /* source is a COW shared hash key. */
3808 DEBUG_C(PerlIO_printf(Perl_debug_log,
3809 "Fast copy on write: Sharing hash\n"));
3810 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
3813 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
3815 assert ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS);
3816 SvUPGRADE(sstr, SVt_PVIV);
3817 SvREADONLY_on(sstr);
3819 DEBUG_C(PerlIO_printf(Perl_debug_log,
3820 "Fast copy on write: Converting sstr to COW\n"));
3821 SV_COW_NEXT_SV_SET(dstr, sstr);
3823 SV_COW_NEXT_SV_SET(sstr, dstr);
3824 new_pv = SvPVX_mutable(sstr);
3827 SvPV_set(dstr, new_pv);
3828 SvFLAGS(dstr) = (SVt_PVIV|SVf_POK|SVp_POK|SVf_FAKE|SVf_READONLY);
3831 SvLEN_set(dstr, len);
3832 SvCUR_set(dstr, cur);
3841 =for apidoc sv_setpvn
3843 Copies a string into an SV. The C<len> parameter indicates the number of
3844 bytes to be copied. If the C<ptr> argument is NULL the SV will become
3845 undefined. Does not handle 'set' magic. See C<sv_setpvn_mg>.
3851 Perl_sv_setpvn(pTHX_ register SV *sv, register const char *ptr, register STRLEN len)
3854 register char *dptr;
3856 SV_CHECK_THINKFIRST_COW_DROP(sv);
3862 /* len is STRLEN which is unsigned, need to copy to signed */
3865 Perl_croak(aTHX_ "panic: sv_setpvn called with negative strlen");
3867 SvUPGRADE(sv, SVt_PV);
3869 dptr = SvGROW(sv, len + 1);
3870 Move(ptr,dptr,len,char);
3873 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3878 =for apidoc sv_setpvn_mg
3880 Like C<sv_setpvn>, but also handles 'set' magic.
3886 Perl_sv_setpvn_mg(pTHX_ register SV *sv, register const char *ptr, register STRLEN len)
3888 sv_setpvn(sv,ptr,len);
3893 =for apidoc sv_setpv
3895 Copies a string into an SV. The string must be null-terminated. Does not
3896 handle 'set' magic. See C<sv_setpv_mg>.
3902 Perl_sv_setpv(pTHX_ register SV *sv, register const char *ptr)
3905 register STRLEN len;
3907 SV_CHECK_THINKFIRST_COW_DROP(sv);
3913 SvUPGRADE(sv, SVt_PV);
3915 SvGROW(sv, len + 1);
3916 Move(ptr,SvPVX(sv),len+1,char);
3918 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3923 =for apidoc sv_setpv_mg
3925 Like C<sv_setpv>, but also handles 'set' magic.
3931 Perl_sv_setpv_mg(pTHX_ register SV *sv, register const char *ptr)
3938 =for apidoc sv_usepvn_flags
3940 Tells an SV to use C<ptr> to find its string value. Normally the
3941 string is stored inside the SV but sv_usepvn allows the SV to use an
3942 outside string. The C<ptr> should point to memory that was allocated
3943 by C<malloc>. The string length, C<len>, must be supplied. By default
3944 this function will realloc (i.e. move) the memory pointed to by C<ptr>,
3945 so that pointer should not be freed or used by the programmer after
3946 giving it to sv_usepvn, and neither should any pointers from "behind"
3947 that pointer (e.g. ptr + 1) be used.
3949 If C<flags> & SV_SMAGIC is true, will call SvSETMAGIC. If C<flags> &
3950 SV_HAS_TRAILING_NUL is true, then C<ptr[len]> must be NUL, and the realloc
3951 will be skipped. (i.e. the buffer is actually at least 1 byte longer than
3952 C<len>, and already meets the requirements for storing in C<SvPVX>)
3958 Perl_sv_usepvn_flags(pTHX_ SV *sv, char *ptr, STRLEN len, U32 flags)
3962 SV_CHECK_THINKFIRST_COW_DROP(sv);
3963 SvUPGRADE(sv, SVt_PV);
3966 if (flags & SV_SMAGIC)
3970 if (SvPVX_const(sv))
3974 if (flags & SV_HAS_TRAILING_NUL)
3975 assert(ptr[len] == '\0');
3978 allocate = (flags & SV_HAS_TRAILING_NUL)
3979 ? len + 1: PERL_STRLEN_ROUNDUP(len + 1);
3980 if (flags & SV_HAS_TRAILING_NUL) {
3981 /* It's long enough - do nothing.
3982 Specfically Perl_newCONSTSUB is relying on this. */
3985 /* Force a move to shake out bugs in callers. */
3986 char *new_ptr = (char*)safemalloc(allocate);
3987 Copy(ptr, new_ptr, len, char);
3988 PoisonFree(ptr,len,char);
3992 ptr = (char*) saferealloc (ptr, allocate);
3997 SvLEN_set(sv, allocate);
3998 if (!(flags & SV_HAS_TRAILING_NUL)) {
4001 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4003 if (flags & SV_SMAGIC)
4007 #ifdef PERL_OLD_COPY_ON_WRITE
4008 /* Need to do this *after* making the SV normal, as we need the buffer
4009 pointer to remain valid until after we've copied it. If we let go too early,
4010 another thread could invalidate it by unsharing last of the same hash key
4011 (which it can do by means other than releasing copy-on-write Svs)
4012 or by changing the other copy-on-write SVs in the loop. */
4014 S_sv_release_COW(pTHX_ register SV *sv, const char *pvx, STRLEN len, SV *after)
4016 if (len) { /* this SV was SvIsCOW_normal(sv) */
4017 /* we need to find the SV pointing to us. */
4018 SV *current = SV_COW_NEXT_SV(after);
4020 if (current == sv) {
4021 /* The SV we point to points back to us (there were only two of us
4023 Hence other SV is no longer copy on write either. */
4025 SvREADONLY_off(after);
4027 /* We need to follow the pointers around the loop. */
4029 while ((next = SV_COW_NEXT_SV(current)) != sv) {
4032 /* don't loop forever if the structure is bust, and we have
4033 a pointer into a closed loop. */
4034 assert (current != after);
4035 assert (SvPVX_const(current) == pvx);
4037 /* Make the SV before us point to the SV after us. */
4038 SV_COW_NEXT_SV_SET(current, after);
4041 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4046 Perl_sv_release_IVX(pTHX_ register SV *sv)
4049 sv_force_normal_flags(sv, 0);
4055 =for apidoc sv_force_normal_flags
4057 Undo various types of fakery on an SV: if the PV is a shared string, make
4058 a private copy; if we're a ref, stop refing; if we're a glob, downgrade to
4059 an xpvmg; if we're a copy-on-write scalar, this is the on-write time when
4060 we do the copy, and is also used locally. If C<SV_COW_DROP_PV> is set
4061 then a copy-on-write scalar drops its PV buffer (if any) and becomes
4062 SvPOK_off rather than making a copy. (Used where this scalar is about to be
4063 set to some other value.) In addition, the C<flags> parameter gets passed to
4064 C<sv_unref_flags()> when unrefing. C<sv_force_normal> calls this function
4065 with flags set to 0.
4071 Perl_sv_force_normal_flags(pTHX_ register SV *sv, U32 flags)
4074 #ifdef PERL_OLD_COPY_ON_WRITE
4075 if (SvREADONLY(sv)) {
4076 /* At this point I believe I should acquire a global SV mutex. */
4078 const char * const pvx = SvPVX_const(sv);
4079 const STRLEN len = SvLEN(sv);
4080 const STRLEN cur = SvCUR(sv);
4081 SV * const next = SV_COW_NEXT_SV(sv); /* next COW sv in the loop. */
4083 PerlIO_printf(Perl_debug_log,
4084 "Copy on write: Force normal %ld\n",
4090 /* This SV doesn't own the buffer, so need to Newx() a new one: */
4093 if (flags & SV_COW_DROP_PV) {
4094 /* OK, so we don't need to copy our buffer. */
4097 SvGROW(sv, cur + 1);
4098 Move(pvx,SvPVX(sv),cur,char);
4102 sv_release_COW(sv, pvx, len, next);
4107 else if (IN_PERL_RUNTIME)
4108 Perl_croak(aTHX_ PL_no_modify);
4109 /* At this point I believe that I can drop the global SV mutex. */
4112 if (SvREADONLY(sv)) {
4114 const char * const pvx = SvPVX_const(sv);
4115 const STRLEN len = SvCUR(sv);
4120 SvGROW(sv, len + 1);
4121 Move(pvx,SvPVX(sv),len,char);
4123 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4125 else if (IN_PERL_RUNTIME)
4126 Perl_croak(aTHX_ PL_no_modify);
4130 sv_unref_flags(sv, flags);
4131 else if (SvFAKE(sv) && SvTYPE(sv) == SVt_PVGV)
4138 Efficient removal of characters from the beginning of the string buffer.
4139 SvPOK(sv) must be true and the C<ptr> must be a pointer to somewhere inside
4140 the string buffer. The C<ptr> becomes the first character of the adjusted
4141 string. Uses the "OOK hack".
4142 Beware: after this function returns, C<ptr> and SvPVX_const(sv) may no longer
4143 refer to the same chunk of data.
4149 Perl_sv_chop(pTHX_ register SV *sv, register const char *ptr)
4151 register STRLEN delta;
4152 if (!ptr || !SvPOKp(sv))
4154 delta = ptr - SvPVX_const(sv);
4155 SV_CHECK_THINKFIRST(sv);
4156 if (SvTYPE(sv) < SVt_PVIV)
4157 sv_upgrade(sv,SVt_PVIV);
4160 if (!SvLEN(sv)) { /* make copy of shared string */
4161 const char *pvx = SvPVX_const(sv);
4162 const STRLEN len = SvCUR(sv);
4163 SvGROW(sv, len + 1);
4164 Move(pvx,SvPVX(sv),len,char);
4168 /* Same SvOOK_on but SvOOK_on does a SvIOK_off
4169 and we do that anyway inside the SvNIOK_off
4171 SvFLAGS(sv) |= SVf_OOK;
4174 SvLEN_set(sv, SvLEN(sv) - delta);
4175 SvCUR_set(sv, SvCUR(sv) - delta);
4176 SvPV_set(sv, SvPVX(sv) + delta);
4177 SvIV_set(sv, SvIVX(sv) + delta);
4181 =for apidoc sv_catpvn
4183 Concatenates the string onto the end of the string which is in the SV. The
4184 C<len> indicates number of bytes to copy. If the SV has the UTF-8
4185 status set, then the bytes appended should be valid UTF-8.
4186 Handles 'get' magic, but not 'set' magic. See C<sv_catpvn_mg>.
4188 =for apidoc sv_catpvn_flags
4190 Concatenates the string onto the end of the string which is in the SV. The
4191 C<len> indicates number of bytes to copy. If the SV has the UTF-8
4192 status set, then the bytes appended should be valid UTF-8.
4193 If C<flags> has C<SV_GMAGIC> bit set, will C<mg_get> on C<dsv> if
4194 appropriate, else not. C<sv_catpvn> and C<sv_catpvn_nomg> are implemented
4195 in terms of this function.
4201 Perl_sv_catpvn_flags(pTHX_ register SV *dsv, register const char *sstr, register STRLEN slen, I32 flags)
4205 const char * const dstr = SvPV_force_flags(dsv, dlen, flags);
4207 SvGROW(dsv, dlen + slen + 1);
4209 sstr = SvPVX_const(dsv);
4210 Move(sstr, SvPVX(dsv) + dlen, slen, char);
4211 SvCUR_set(dsv, SvCUR(dsv) + slen);
4213 (void)SvPOK_only_UTF8(dsv); /* validate pointer */
4215 if (flags & SV_SMAGIC)
4220 =for apidoc sv_catsv
4222 Concatenates the string from SV C<ssv> onto the end of the string in
4223 SV C<dsv>. Modifies C<dsv> but not C<ssv>. Handles 'get' magic, but
4224 not 'set' magic. See C<sv_catsv_mg>.
4226 =for apidoc sv_catsv_flags
4228 Concatenates the string from SV C<ssv> onto the end of the string in
4229 SV C<dsv>. Modifies C<dsv> but not C<ssv>. If C<flags> has C<SV_GMAGIC>
4230 bit set, will C<mg_get> on the SVs if appropriate, else not. C<sv_catsv>
4231 and C<sv_catsv_nomg> are implemented in terms of this function.
4236 Perl_sv_catsv_flags(pTHX_ SV *dsv, register SV *ssv, I32 flags)
4241 const char *spv = SvPV_const(ssv, slen);
4243 /* sutf8 and dutf8 were type bool, but under USE_ITHREADS,
4244 gcc version 2.95.2 20000220 (Debian GNU/Linux) for
4245 Linux xxx 2.2.17 on sparc64 with gcc -O2, we erroneously
4246 get dutf8 = 0x20000000, (i.e. SVf_UTF8) even though
4247 dsv->sv_flags doesn't have that bit set.
4248 Andy Dougherty 12 Oct 2001
4250 const I32 sutf8 = DO_UTF8(ssv);
4253 if (SvGMAGICAL(dsv) && (flags & SV_GMAGIC))
4255 dutf8 = DO_UTF8(dsv);
4257 if (dutf8 != sutf8) {
4259 /* Not modifying source SV, so taking a temporary copy. */
4260 SV* const csv = sv_2mortal(newSVpvn(spv, slen));
4262 sv_utf8_upgrade(csv);
4263 spv = SvPV_const(csv, slen);
4266 sv_utf8_upgrade_nomg(dsv);
4268 sv_catpvn_nomg(dsv, spv, slen);
4271 if (flags & SV_SMAGIC)
4276 =for apidoc sv_catpv
4278 Concatenates the string onto the end of the string which is in the SV.
4279 If the SV has the UTF-8 status set, then the bytes appended should be
4280 valid UTF-8. Handles 'get' magic, but not 'set' magic. See C<sv_catpv_mg>.
4285 Perl_sv_catpv(pTHX_ register SV *sv, register const char *ptr)
4288 register STRLEN len;
4294 junk = SvPV_force(sv, tlen);
4296 SvGROW(sv, tlen + len + 1);
4298 ptr = SvPVX_const(sv);
4299 Move(ptr,SvPVX(sv)+tlen,len+1,char);
4300 SvCUR_set(sv, SvCUR(sv) + len);
4301 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4306 =for apidoc sv_catpv_mg
4308 Like C<sv_catpv>, but also handles 'set' magic.
4314 Perl_sv_catpv_mg(pTHX_ register SV *sv, register const char *ptr)
4323 Creates a new SV. A non-zero C<len> parameter indicates the number of
4324 bytes of preallocated string space the SV should have. An extra byte for a
4325 trailing NUL is also reserved. (SvPOK is not set for the SV even if string
4326 space is allocated.) The reference count for the new SV is set to 1.
4328 In 5.9.3, newSV() replaces the older NEWSV() API, and drops the first
4329 parameter, I<x>, a debug aid which allowed callers to identify themselves.
4330 This aid has been superseded by a new build option, PERL_MEM_LOG (see
4331 L<perlhack/PERL_MEM_LOG>). The older API is still there for use in XS
4332 modules supporting older perls.
4338 Perl_newSV(pTHX_ STRLEN len)
4345 sv_upgrade(sv, SVt_PV);
4346 SvGROW(sv, len + 1);
4351 =for apidoc sv_magicext
4353 Adds magic to an SV, upgrading it if necessary. Applies the
4354 supplied vtable and returns a pointer to the magic added.
4356 Note that C<sv_magicext> will allow things that C<sv_magic> will not.
4357 In particular, you can add magic to SvREADONLY SVs, and add more than
4358 one instance of the same 'how'.
4360 If C<namlen> is greater than zero then a C<savepvn> I<copy> of C<name> is
4361 stored, if C<namlen> is zero then C<name> is stored as-is and - as another
4362 special case - if C<(name && namlen == HEf_SVKEY)> then C<name> is assumed
4363 to contain an C<SV*> and is stored as-is with its REFCNT incremented.
4365 (This is now used as a subroutine by C<sv_magic>.)
4370 Perl_sv_magicext(pTHX_ SV* sv, SV* obj, int how, const MGVTBL *vtable,
4371 const char* name, I32 namlen)
4376 if (SvTYPE(sv) < SVt_PVMG) {
4377 SvUPGRADE(sv, SVt_PVMG);
4379 Newxz(mg, 1, MAGIC);
4380 mg->mg_moremagic = SvMAGIC(sv);
4381 SvMAGIC_set(sv, mg);
4383 /* Sometimes a magic contains a reference loop, where the sv and
4384 object refer to each other. To prevent a reference loop that
4385 would prevent such objects being freed, we look for such loops
4386 and if we find one we avoid incrementing the object refcount.
4388 Note we cannot do this to avoid self-tie loops as intervening RV must
4389 have its REFCNT incremented to keep it in existence.
4392 if (!obj || obj == sv ||
4393 how == PERL_MAGIC_arylen ||
4394 how == PERL_MAGIC_qr ||
4395 how == PERL_MAGIC_symtab ||
4396 (SvTYPE(obj) == SVt_PVGV &&
4397 (GvSV(obj) == sv || GvHV(obj) == (HV*)sv || GvAV(obj) == (AV*)sv ||
4398 GvCV(obj) == (CV*)sv || GvIOp(obj) == (IO*)sv ||
4399 GvFORM(obj) == (CV*)sv)))
4404 mg->mg_obj = SvREFCNT_inc_simple(obj);
4405 mg->mg_flags |= MGf_REFCOUNTED;
4408 /* Normal self-ties simply pass a null object, and instead of
4409 using mg_obj directly, use the SvTIED_obj macro to produce a
4410 new RV as needed. For glob "self-ties", we are tieing the PVIO
4411 with an RV obj pointing to the glob containing the PVIO. In
4412 this case, to avoid a reference loop, we need to weaken the
4416 if (how == PERL_MAGIC_tiedscalar && SvTYPE(sv) == SVt_PVIO &&
4417 obj && SvROK(obj) && GvIO(SvRV(obj)) == (IO*)sv)
4423 mg->mg_len = namlen;
4426 mg->mg_ptr = savepvn(name, namlen);
4427 else if (namlen == HEf_SVKEY)
4428 mg->mg_ptr = (char*)SvREFCNT_inc_simple_NN((SV*)name);
4430 mg->mg_ptr = (char *) name;
4432 mg->mg_virtual = (MGVTBL *) vtable;
4436 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK|SVf_POK);
4441 =for apidoc sv_magic
4443 Adds magic to an SV. First upgrades C<sv> to type C<SVt_PVMG> if necessary,
4444 then adds a new magic item of type C<how> to the head of the magic list.
4446 See C<sv_magicext> (which C<sv_magic> now calls) for a description of the
4447 handling of the C<name> and C<namlen> arguments.
4449 You need to use C<sv_magicext> to add magic to SvREADONLY SVs and also
4450 to add more than one instance of the same 'how'.
4456 Perl_sv_magic(pTHX_ register SV *sv, SV *obj, int how, const char *name, I32 namlen)
4459 const MGVTBL *vtable;
4462 #ifdef PERL_OLD_COPY_ON_WRITE
4464 sv_force_normal_flags(sv, 0);
4466 if (SvREADONLY(sv)) {
4468 /* its okay to attach magic to shared strings; the subsequent
4469 * upgrade to PVMG will unshare the string */
4470 !(SvFAKE(sv) && SvTYPE(sv) < SVt_PVMG)
4473 && how != PERL_MAGIC_regex_global
4474 && how != PERL_MAGIC_bm
4475 && how != PERL_MAGIC_fm
4476 && how != PERL_MAGIC_sv
4477 && how != PERL_MAGIC_backref
4480 Perl_croak(aTHX_ PL_no_modify);
4483 if (SvMAGICAL(sv) || (how == PERL_MAGIC_taint && SvTYPE(sv) >= SVt_PVMG)) {
4484 if (SvMAGIC(sv) && (mg = mg_find(sv, how))) {
4485 /* sv_magic() refuses to add a magic of the same 'how' as an
4488 if (how == PERL_MAGIC_taint) {
4490 /* Any scalar which already had taint magic on which someone
4491 (erroneously?) did SvIOK_on() or similar will now be
4492 incorrectly sporting public "OK" flags. */
4493 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK|SVf_POK);
4501 vtable = &PL_vtbl_sv;
4503 case PERL_MAGIC_overload:
4504 vtable = &PL_vtbl_amagic;
4506 case PERL_MAGIC_overload_elem:
4507 vtable = &PL_vtbl_amagicelem;
4509 case PERL_MAGIC_overload_table:
4510 vtable = &PL_vtbl_ovrld;
4513 vtable = &PL_vtbl_bm;
4515 case PERL_MAGIC_regdata:
4516 vtable = &PL_vtbl_regdata;
4518 case PERL_MAGIC_regdata_names:
4519 vtable = &PL_vtbl_regdata_names;
4521 case PERL_MAGIC_regdatum:
4522 vtable = &PL_vtbl_regdatum;
4524 case PERL_MAGIC_env:
4525 vtable = &PL_vtbl_env;
4528 vtable = &PL_vtbl_fm;
4530 case PERL_MAGIC_envelem:
4531 vtable = &PL_vtbl_envelem;
4533 case PERL_MAGIC_regex_global:
4534 vtable = &PL_vtbl_mglob;
4536 case PERL_MAGIC_isa:
4537 vtable = &PL_vtbl_isa;
4539 case PERL_MAGIC_isaelem:
4540 vtable = &PL_vtbl_isaelem;
4542 case PERL_MAGIC_nkeys:
4543 vtable = &PL_vtbl_nkeys;
4545 case PERL_MAGIC_dbfile:
4548 case PERL_MAGIC_dbline:
4549 vtable = &PL_vtbl_dbline;
4551 #ifdef USE_LOCALE_COLLATE
4552 case PERL_MAGIC_collxfrm:
4553 vtable = &PL_vtbl_collxfrm;
4555 #endif /* USE_LOCALE_COLLATE */
4556 case PERL_MAGIC_tied:
4557 vtable = &PL_vtbl_pack;
4559 case PERL_MAGIC_tiedelem:
4560 case PERL_MAGIC_tiedscalar:
4561 vtable = &PL_vtbl_packelem;
4564 vtable = &PL_vtbl_regexp;
4566 case PERL_MAGIC_hints:
4567 /* As this vtable is all NULL, we can reuse it. */
4568 case PERL_MAGIC_sig:
4569 vtable = &PL_vtbl_sig;
4571 case PERL_MAGIC_sigelem:
4572 vtable = &PL_vtbl_sigelem;
4574 case PERL_MAGIC_taint:
4575 vtable = &PL_vtbl_taint;
4577 case PERL_MAGIC_uvar:
4578 vtable = &PL_vtbl_uvar;
4580 case PERL_MAGIC_vec:
4581 vtable = &PL_vtbl_vec;
4583 case PERL_MAGIC_arylen_p:
4584 case PERL_MAGIC_rhash:
4585 case PERL_MAGIC_symtab:
4586 case PERL_MAGIC_vstring:
4589 case PERL_MAGIC_utf8:
4590 vtable = &PL_vtbl_utf8;
4592 case PERL_MAGIC_substr:
4593 vtable = &PL_vtbl_substr;
4595 case PERL_MAGIC_defelem:
4596 vtable = &PL_vtbl_defelem;
4598 case PERL_MAGIC_arylen:
4599 vtable = &PL_vtbl_arylen;
4601 case PERL_MAGIC_pos:
4602 vtable = &PL_vtbl_pos;
4604 case PERL_MAGIC_backref:
4605 vtable = &PL_vtbl_backref;
4607 case PERL_MAGIC_hintselem:
4608 vtable = &PL_vtbl_hintselem;
4610 case PERL_MAGIC_ext:
4611 /* Reserved for use by extensions not perl internals. */
4612 /* Useful for attaching extension internal data to perl vars. */
4613 /* Note that multiple extensions may clash if magical scalars */
4614 /* etc holding private data from one are passed to another. */
4618 Perl_croak(aTHX_ "Don't know how to handle magic of type \\%o", how);
4621 /* Rest of work is done else where */
4622 mg = sv_magicext(sv,obj,how,vtable,name,namlen);
4625 case PERL_MAGIC_taint:
4628 case PERL_MAGIC_ext:
4629 case PERL_MAGIC_dbfile:
4636 =for apidoc sv_unmagic
4638 Removes all magic of type C<type> from an SV.
4644 Perl_sv_unmagic(pTHX_ SV *sv, int type)
4648 if (SvTYPE(sv) < SVt_PVMG || !SvMAGIC(sv))
4650 mgp = &(((XPVMG*) SvANY(sv))->xmg_u.xmg_magic);
4651 for (mg = *mgp; mg; mg = *mgp) {
4652 if (mg->mg_type == type) {
4653 const MGVTBL* const vtbl = mg->mg_virtual;
4654 *mgp = mg->mg_moremagic;
4655 if (vtbl && vtbl->svt_free)
4656 CALL_FPTR(vtbl->svt_free)(aTHX_ sv, mg);
4657 if (mg->mg_ptr && mg->mg_type != PERL_MAGIC_regex_global) {
4659 Safefree(mg->mg_ptr);
4660 else if (mg->mg_len == HEf_SVKEY)
4661 SvREFCNT_dec((SV*)mg->mg_ptr);
4662 else if (mg->mg_type == PERL_MAGIC_utf8)
4663 Safefree(mg->mg_ptr);
4665 if (mg->mg_flags & MGf_REFCOUNTED)
4666 SvREFCNT_dec(mg->mg_obj);
4670 mgp = &mg->mg_moremagic;
4674 SvFLAGS(sv) |= (SvFLAGS(sv) & (SVp_IOK|SVp_NOK|SVp_POK)) >> PRIVSHIFT;
4675 SvMAGIC_set(sv, NULL);
4682 =for apidoc sv_rvweaken
4684 Weaken a reference: set the C<SvWEAKREF> flag on this RV; give the
4685 referred-to SV C<PERL_MAGIC_backref> magic if it hasn't already; and
4686 push a back-reference to this RV onto the array of backreferences
4687 associated with that magic. If the RV is magical, set magic will be
4688 called after the RV is cleared.
4694 Perl_sv_rvweaken(pTHX_ SV *sv)
4697 if (!SvOK(sv)) /* let undefs pass */
4700 Perl_croak(aTHX_ "Can't weaken a nonreference");
4701 else if (SvWEAKREF(sv)) {
4702 if (ckWARN(WARN_MISC))
4703 Perl_warner(aTHX_ packWARN(WARN_MISC), "Reference is already weak");
4707 Perl_sv_add_backref(aTHX_ tsv, sv);
4713 /* Give tsv backref magic if it hasn't already got it, then push a
4714 * back-reference to sv onto the array associated with the backref magic.
4718 Perl_sv_add_backref(pTHX_ SV *tsv, SV *sv)
4723 if (SvTYPE(tsv) == SVt_PVHV) {
4724 AV **const avp = Perl_hv_backreferences_p(aTHX_ (HV*)tsv);
4728 /* There is no AV in the offical place - try a fixup. */
4729 MAGIC *const mg = mg_find(tsv, PERL_MAGIC_backref);
4732 /* Aha. They've got it stowed in magic. Bring it back. */
4733 av = (AV*)mg->mg_obj;
4734 /* Stop mg_free decreasing the refernce count. */
4736 /* Stop mg_free even calling the destructor, given that
4737 there's no AV to free up. */
4739 sv_unmagic(tsv, PERL_MAGIC_backref);
4743 SvREFCNT_inc_simple_void(av);
4748 const MAGIC *const mg
4749 = SvMAGICAL(tsv) ? mg_find(tsv, PERL_MAGIC_backref) : NU