3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
12 * 'It all comes from here, the stench and the peril.' --Frodo
14 * [p.719 of _The Lord of the Rings_, IV/ix: "Shelob's Lair"]
18 * This file is the lexer for Perl. It's closely linked to the
21 * The main routine is yylex(), which returns the next token.
25 =head1 Lexer interface
26 This is the lower layer of the Perl parser, managing characters and tokens.
28 =for apidoc AmU|yy_parser *|PL_parser
30 Pointer to a structure encapsulating the state of the parsing operation
31 currently in progress. The pointer can be locally changed to perform
32 a nested parse without interfering with the state of an outer parse.
33 Individual members of C<PL_parser> have their own documentation.
39 #define PERL_IN_TOKE_C
41 #include "dquote_inline.h"
43 #define new_constant(a,b,c,d,e,f,g) \
44 S_new_constant(aTHX_ a,b,STR_WITH_LEN(c),d,e,f, g)
46 #define pl_yylval (PL_parser->yylval)
48 /* XXX temporary backwards compatibility */
49 #define PL_lex_brackets (PL_parser->lex_brackets)
50 #define PL_lex_allbrackets (PL_parser->lex_allbrackets)
51 #define PL_lex_fakeeof (PL_parser->lex_fakeeof)
52 #define PL_lex_brackstack (PL_parser->lex_brackstack)
53 #define PL_lex_casemods (PL_parser->lex_casemods)
54 #define PL_lex_casestack (PL_parser->lex_casestack)
55 #define PL_lex_dojoin (PL_parser->lex_dojoin)
56 #define PL_lex_formbrack (PL_parser->lex_formbrack)
57 #define PL_lex_inpat (PL_parser->lex_inpat)
58 #define PL_lex_inwhat (PL_parser->lex_inwhat)
59 #define PL_lex_op (PL_parser->lex_op)
60 #define PL_lex_repl (PL_parser->lex_repl)
61 #define PL_lex_starts (PL_parser->lex_starts)
62 #define PL_lex_stuff (PL_parser->lex_stuff)
63 #define PL_multi_start (PL_parser->multi_start)
64 #define PL_multi_open (PL_parser->multi_open)
65 #define PL_multi_close (PL_parser->multi_close)
66 #define PL_preambled (PL_parser->preambled)
67 #define PL_linestr (PL_parser->linestr)
68 #define PL_expect (PL_parser->expect)
69 #define PL_copline (PL_parser->copline)
70 #define PL_bufptr (PL_parser->bufptr)
71 #define PL_oldbufptr (PL_parser->oldbufptr)
72 #define PL_oldoldbufptr (PL_parser->oldoldbufptr)
73 #define PL_linestart (PL_parser->linestart)
74 #define PL_bufend (PL_parser->bufend)
75 #define PL_last_uni (PL_parser->last_uni)
76 #define PL_last_lop (PL_parser->last_lop)
77 #define PL_last_lop_op (PL_parser->last_lop_op)
78 #define PL_lex_state (PL_parser->lex_state)
79 #define PL_rsfp (PL_parser->rsfp)
80 #define PL_rsfp_filters (PL_parser->rsfp_filters)
81 #define PL_in_my (PL_parser->in_my)
82 #define PL_in_my_stash (PL_parser->in_my_stash)
83 #define PL_tokenbuf (PL_parser->tokenbuf)
84 #define PL_multi_end (PL_parser->multi_end)
85 #define PL_error_count (PL_parser->error_count)
87 # define PL_nexttoke (PL_parser->nexttoke)
88 # define PL_nexttype (PL_parser->nexttype)
89 # define PL_nextval (PL_parser->nextval)
92 #define SvEVALED(sv) \
93 (SvTYPE(sv) >= SVt_PVNV \
94 && ((XPVIV*)SvANY(sv))->xiv_u.xivu_eval_seen)
96 static const char* const ident_too_long = "Identifier too long";
98 # define NEXTVAL_NEXTTOKE PL_nextval[PL_nexttoke]
100 #define XENUMMASK 0x3f
101 #define XFAKEEOF 0x40
102 #define XFAKEBRACK 0x80
104 #ifdef USE_UTF8_SCRIPTS
105 # define UTF cBOOL(!IN_BYTES)
107 # define UTF cBOOL((PL_linestr && DO_UTF8(PL_linestr)) || ( !(PL_parser->lex_flags & LEX_IGNORE_UTF8_HINTS) && (PL_hints & HINT_UTF8)))
110 /* The maximum number of characters preceding the unrecognized one to display */
111 #define UNRECOGNIZED_PRECEDE_COUNT 10
113 /* In variables named $^X, these are the legal values for X.
114 * 1999-02-27 mjd-perl-patch@plover.com */
115 #define isCONTROLVAR(x) (isUPPER(x) || strchr("[\\]^_?", (x)))
117 #define SPACE_OR_TAB(c) isBLANK_A(c)
119 #define HEXFP_PEEK(s) \
121 (isXDIGIT(s[1]) || isALPHA_FOLD_EQ(s[1], 'p'))) || \
122 isALPHA_FOLD_EQ(s[0], 'p'))
124 /* LEX_* are values for PL_lex_state, the state of the lexer.
125 * They are arranged oddly so that the guard on the switch statement
126 * can get by with a single comparison (if the compiler is smart enough).
128 * These values refer to the various states within a sublex parse,
129 * i.e. within a double quotish string
132 /* #define LEX_NOTPARSING 11 is done in perl.h. */
134 #define LEX_NORMAL 10 /* normal code (ie not within "...") */
135 #define LEX_INTERPNORMAL 9 /* code within a string, eg "$foo[$x+1]" */
136 #define LEX_INTERPCASEMOD 8 /* expecting a \U, \Q or \E etc */
137 #define LEX_INTERPPUSH 7 /* starting a new sublex parse level */
138 #define LEX_INTERPSTART 6 /* expecting the start of a $var */
140 /* at end of code, eg "$x" followed by: */
141 #define LEX_INTERPEND 5 /* ... eg not one of [, { or -> */
142 #define LEX_INTERPENDMAYBE 4 /* ... eg one of [, { or -> */
144 #define LEX_INTERPCONCAT 3 /* expecting anything, eg at start of
145 string or after \E, $foo, etc */
146 #define LEX_INTERPCONST 2 /* NOT USED */
147 #define LEX_FORMLINE 1 /* expecting a format line */
151 static const char* const lex_state_names[] = {
166 #include "keywords.h"
168 /* CLINE is a macro that ensures PL_copline has a sane value */
170 #define CLINE (PL_copline = (CopLINE(PL_curcop) < PL_copline ? CopLINE(PL_curcop) : PL_copline))
173 * Convenience functions to return different tokens and prime the
174 * lexer for the next token. They all take an argument.
176 * TOKEN : generic token (used for '(', DOLSHARP, etc)
177 * OPERATOR : generic operator
178 * AOPERATOR : assignment operator
179 * PREBLOCK : beginning the block after an if, while, foreach, ...
180 * PRETERMBLOCK : beginning a non-code-defining {} block (eg, hash ref)
181 * PREREF : *EXPR where EXPR is not a simple identifier
182 * TERM : expression term
183 * POSTDEREF : postfix dereference (->$* ->@[...] etc.)
184 * LOOPX : loop exiting command (goto, last, dump, etc)
185 * FTST : file test operator
186 * FUN0 : zero-argument function
187 * FUN0OP : zero-argument function, with its op created in this file
188 * FUN1 : not used, except for not, which isn't a UNIOP
189 * BOop : bitwise or or xor
191 * BCop : bitwise complement
192 * SHop : shift operator
193 * PWop : power operator
194 * PMop : pattern-matching operator
195 * Aop : addition-level operator
196 * AopNOASSIGN : addition-level operator that is never part of .=
197 * Mop : multiplication-level operator
198 * Eop : equality-testing operator
199 * Rop : relational operator <= != gt
201 * Also see LOP and lop() below.
204 #ifdef DEBUGGING /* Serve -DT. */
205 # define REPORT(retval) tokereport((I32)retval, &pl_yylval)
207 # define REPORT(retval) (retval)
210 #define TOKEN(retval) return ( PL_bufptr = s, REPORT(retval))
211 #define OPERATOR(retval) return (PL_expect = XTERM, PL_bufptr = s, REPORT(retval))
212 #define AOPERATOR(retval) return ao((PL_expect = XTERM, PL_bufptr = s, retval))
213 #define PREBLOCK(retval) return (PL_expect = XBLOCK,PL_bufptr = s, REPORT(retval))
214 #define PRETERMBLOCK(retval) return (PL_expect = XTERMBLOCK,PL_bufptr = s, REPORT(retval))
215 #define PREREF(retval) return (PL_expect = XREF,PL_bufptr = s, REPORT(retval))
216 #define TERM(retval) return (CLINE, PL_expect = XOPERATOR, PL_bufptr = s, REPORT(retval))
217 #define POSTDEREF(f) return (PL_bufptr = s, S_postderef(aTHX_ REPORT(f),s[1]))
218 #define LOOPX(f) return (PL_bufptr = force_word(s,BAREWORD,TRUE,FALSE), \
220 PL_expect = PL_nexttoke ? XOPERATOR : XTERM, \
222 #define FTST(f) return (pl_yylval.ival=f, PL_expect=XTERMORDORDOR, PL_bufptr=s, REPORT((int)UNIOP))
223 #define FUN0(f) return (pl_yylval.ival=f, PL_expect=XOPERATOR, PL_bufptr=s, REPORT((int)FUNC0))
224 #define FUN0OP(f) return (pl_yylval.opval=f, CLINE, PL_expect=XOPERATOR, PL_bufptr=s, REPORT((int)FUNC0OP))
225 #define FUN1(f) return (pl_yylval.ival=f, PL_expect=XOPERATOR, PL_bufptr=s, REPORT((int)FUNC1))
226 #define BOop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)BITOROP))
227 #define BAop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)BITANDOP))
228 #define BCop(f) return pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr = s, \
230 #define SHop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)SHIFTOP))
231 #define PWop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)POWOP))
232 #define PMop(f) return(pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, REPORT((int)MATCHOP))
233 #define Aop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)ADDOP))
234 #define AopNOASSIGN(f) return (pl_yylval.ival=f, PL_bufptr=s, REPORT((int)ADDOP))
235 #define Mop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)MULOP))
236 #define Eop(f) return (pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, REPORT((int)EQOP))
237 #define Rop(f) return (pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, REPORT((int)RELOP))
239 /* This bit of chicanery makes a unary function followed by
240 * a parenthesis into a function with one argument, highest precedence.
241 * The UNIDOR macro is for unary functions that can be followed by the //
242 * operator (such as C<shift // 0>).
244 #define UNI3(f,x,have_x) { \
245 pl_yylval.ival = f; \
246 if (have_x) PL_expect = x; \
248 PL_last_uni = PL_oldbufptr; \
249 PL_last_lop_op = (f) < 0 ? -(f) : (f); \
251 return REPORT( (int)FUNC1 ); \
253 return REPORT( *s=='(' ? (int)FUNC1 : (int)UNIOP ); \
255 #define UNI(f) UNI3(f,XTERM,1)
256 #define UNIDOR(f) UNI3(f,XTERMORDORDOR,1)
257 #define UNIPROTO(f,optional) { \
258 if (optional) PL_last_uni = PL_oldbufptr; \
262 #define UNIBRACK(f) UNI3(f,0,0)
264 /* grandfather return to old style */
267 if (!PL_lex_allbrackets && PL_lex_fakeeof > LEX_FAKEEOF_LOWLOGIC) \
268 PL_lex_fakeeof = LEX_FAKEEOF_LOWLOGIC; \
269 pl_yylval.ival = (f); \
275 #define COPLINE_INC_WITH_HERELINES \
277 CopLINE_inc(PL_curcop); \
278 if (PL_parser->herelines) \
279 CopLINE(PL_curcop) += PL_parser->herelines, \
280 PL_parser->herelines = 0; \
282 /* Called after scan_str to update CopLINE(PL_curcop), but only when there
283 * is no sublex_push to follow. */
284 #define COPLINE_SET_FROM_MULTI_END \
286 CopLINE_set(PL_curcop, PL_multi_end); \
287 if (PL_multi_end != PL_multi_start) \
288 PL_parser->herelines = 0; \
294 /* how to interpret the pl_yylval associated with the token */
298 TOKENTYPE_OPNUM, /* pl_yylval.ival contains an opcode number */
303 static struct debug_tokens {
305 enum token_type type;
307 } const debug_tokens[] =
309 { ADDOP, TOKENTYPE_OPNUM, "ADDOP" },
310 { ANDAND, TOKENTYPE_NONE, "ANDAND" },
311 { ANDOP, TOKENTYPE_NONE, "ANDOP" },
312 { ANONSUB, TOKENTYPE_IVAL, "ANONSUB" },
313 { ARROW, TOKENTYPE_NONE, "ARROW" },
314 { ASSIGNOP, TOKENTYPE_OPNUM, "ASSIGNOP" },
315 { BITANDOP, TOKENTYPE_OPNUM, "BITANDOP" },
316 { BITOROP, TOKENTYPE_OPNUM, "BITOROP" },
317 { COLONATTR, TOKENTYPE_NONE, "COLONATTR" },
318 { CONTINUE, TOKENTYPE_NONE, "CONTINUE" },
319 { DEFAULT, TOKENTYPE_NONE, "DEFAULT" },
320 { DO, TOKENTYPE_NONE, "DO" },
321 { DOLSHARP, TOKENTYPE_NONE, "DOLSHARP" },
322 { DORDOR, TOKENTYPE_NONE, "DORDOR" },
323 { DOROP, TOKENTYPE_OPNUM, "DOROP" },
324 { DOTDOT, TOKENTYPE_IVAL, "DOTDOT" },
325 { ELSE, TOKENTYPE_NONE, "ELSE" },
326 { ELSIF, TOKENTYPE_IVAL, "ELSIF" },
327 { EQOP, TOKENTYPE_OPNUM, "EQOP" },
328 { FOR, TOKENTYPE_IVAL, "FOR" },
329 { FORMAT, TOKENTYPE_NONE, "FORMAT" },
330 { FORMLBRACK, TOKENTYPE_NONE, "FORMLBRACK" },
331 { FORMRBRACK, TOKENTYPE_NONE, "FORMRBRACK" },
332 { FUNC, TOKENTYPE_OPNUM, "FUNC" },
333 { FUNC0, TOKENTYPE_OPNUM, "FUNC0" },
334 { FUNC0OP, TOKENTYPE_OPVAL, "FUNC0OP" },
335 { FUNC0SUB, TOKENTYPE_OPVAL, "FUNC0SUB" },
336 { FUNC1, TOKENTYPE_OPNUM, "FUNC1" },
337 { FUNCMETH, TOKENTYPE_OPVAL, "FUNCMETH" },
338 { GIVEN, TOKENTYPE_IVAL, "GIVEN" },
339 { HASHBRACK, TOKENTYPE_NONE, "HASHBRACK" },
340 { IF, TOKENTYPE_IVAL, "IF" },
341 { LABEL, TOKENTYPE_PVAL, "LABEL" },
342 { LOCAL, TOKENTYPE_IVAL, "LOCAL" },
343 { LOOPEX, TOKENTYPE_OPNUM, "LOOPEX" },
344 { LSTOP, TOKENTYPE_OPNUM, "LSTOP" },
345 { LSTOPSUB, TOKENTYPE_OPVAL, "LSTOPSUB" },
346 { MATCHOP, TOKENTYPE_OPNUM, "MATCHOP" },
347 { METHOD, TOKENTYPE_OPVAL, "METHOD" },
348 { MULOP, TOKENTYPE_OPNUM, "MULOP" },
349 { MY, TOKENTYPE_IVAL, "MY" },
350 { NOAMP, TOKENTYPE_NONE, "NOAMP" },
351 { NOTOP, TOKENTYPE_NONE, "NOTOP" },
352 { OROP, TOKENTYPE_IVAL, "OROP" },
353 { OROR, TOKENTYPE_NONE, "OROR" },
354 { PACKAGE, TOKENTYPE_NONE, "PACKAGE" },
355 { PLUGEXPR, TOKENTYPE_OPVAL, "PLUGEXPR" },
356 { PLUGSTMT, TOKENTYPE_OPVAL, "PLUGSTMT" },
357 { PMFUNC, TOKENTYPE_OPVAL, "PMFUNC" },
358 { POSTJOIN, TOKENTYPE_NONE, "POSTJOIN" },
359 { POSTDEC, TOKENTYPE_NONE, "POSTDEC" },
360 { POSTINC, TOKENTYPE_NONE, "POSTINC" },
361 { POWOP, TOKENTYPE_OPNUM, "POWOP" },
362 { PREDEC, TOKENTYPE_NONE, "PREDEC" },
363 { PREINC, TOKENTYPE_NONE, "PREINC" },
364 { PRIVATEREF, TOKENTYPE_OPVAL, "PRIVATEREF" },
365 { QWLIST, TOKENTYPE_OPVAL, "QWLIST" },
366 { REFGEN, TOKENTYPE_NONE, "REFGEN" },
367 { RELOP, TOKENTYPE_OPNUM, "RELOP" },
368 { REQUIRE, TOKENTYPE_NONE, "REQUIRE" },
369 { SHIFTOP, TOKENTYPE_OPNUM, "SHIFTOP" },
370 { SUB, TOKENTYPE_NONE, "SUB" },
371 { THING, TOKENTYPE_OPVAL, "THING" },
372 { UMINUS, TOKENTYPE_NONE, "UMINUS" },
373 { UNIOP, TOKENTYPE_OPNUM, "UNIOP" },
374 { UNIOPSUB, TOKENTYPE_OPVAL, "UNIOPSUB" },
375 { UNLESS, TOKENTYPE_IVAL, "UNLESS" },
376 { UNTIL, TOKENTYPE_IVAL, "UNTIL" },
377 { USE, TOKENTYPE_IVAL, "USE" },
378 { WHEN, TOKENTYPE_IVAL, "WHEN" },
379 { WHILE, TOKENTYPE_IVAL, "WHILE" },
380 { BAREWORD, TOKENTYPE_OPVAL, "BAREWORD" },
381 { YADAYADA, TOKENTYPE_IVAL, "YADAYADA" },
382 { 0, TOKENTYPE_NONE, NULL }
385 /* dump the returned token in rv, plus any optional arg in pl_yylval */
388 S_tokereport(pTHX_ I32 rv, const YYSTYPE* lvalp)
390 PERL_ARGS_ASSERT_TOKEREPORT;
393 const char *name = NULL;
394 enum token_type type = TOKENTYPE_NONE;
395 const struct debug_tokens *p;
396 SV* const report = newSVpvs("<== ");
398 for (p = debug_tokens; p->token; p++) {
399 if (p->token == (int)rv) {
406 Perl_sv_catpv(aTHX_ report, name);
407 else if (isGRAPH(rv))
409 Perl_sv_catpvf(aTHX_ report, "'%c'", (char)rv);
411 sv_catpvs(report, " (pending identifier)");
414 sv_catpvs(report, "EOF");
416 Perl_sv_catpvf(aTHX_ report, "?? %" IVdf, (IV)rv);
421 Perl_sv_catpvf(aTHX_ report, "(ival=%" IVdf ")", (IV)lvalp->ival);
423 case TOKENTYPE_OPNUM:
424 Perl_sv_catpvf(aTHX_ report, "(ival=op_%s)",
425 PL_op_name[lvalp->ival]);
428 Perl_sv_catpvf(aTHX_ report, "(pval=\"%s\")", lvalp->pval);
430 case TOKENTYPE_OPVAL:
432 Perl_sv_catpvf(aTHX_ report, "(opval=op_%s)",
433 PL_op_name[lvalp->opval->op_type]);
434 if (lvalp->opval->op_type == OP_CONST) {
435 Perl_sv_catpvf(aTHX_ report, " %s",
436 SvPEEK(cSVOPx_sv(lvalp->opval)));
441 sv_catpvs(report, "(opval=null)");
444 PerlIO_printf(Perl_debug_log, "### %s\n\n", SvPV_nolen_const(report));
450 /* print the buffer with suitable escapes */
453 S_printbuf(pTHX_ const char *const fmt, const char *const s)
455 SV* const tmp = newSVpvs("");
457 PERL_ARGS_ASSERT_PRINTBUF;
459 GCC_DIAG_IGNORE(-Wformat-nonliteral); /* fmt checked by caller */
460 PerlIO_printf(Perl_debug_log, fmt, pv_display(tmp, s, strlen(s), 0, 60));
470 * This subroutine looks for an '=' next to the operator that has just been
471 * parsed and turns it into an ASSIGNOP if it finds one.
475 S_ao(pTHX_ int toketype)
477 if (*PL_bufptr == '=') {
479 if (toketype == ANDAND)
480 pl_yylval.ival = OP_ANDASSIGN;
481 else if (toketype == OROR)
482 pl_yylval.ival = OP_ORASSIGN;
483 else if (toketype == DORDOR)
484 pl_yylval.ival = OP_DORASSIGN;
487 return REPORT(toketype);
492 * When Perl expects an operator and finds something else, no_op
493 * prints the warning. It always prints "<something> found where
494 * operator expected. It prints "Missing semicolon on previous line?"
495 * if the surprise occurs at the start of the line. "do you need to
496 * predeclare ..." is printed out for code like "sub bar; foo bar $x"
497 * where the compiler doesn't know if foo is a method call or a function.
498 * It prints "Missing operator before end of line" if there's nothing
499 * after the missing operator, or "... before <...>" if there is something
500 * after the missing operator.
502 * PL_bufptr is expected to point to the start of the thing that was found,
503 * and s after the next token or partial token.
507 S_no_op(pTHX_ const char *const what, char *s)
509 char * const oldbp = PL_bufptr;
510 const bool is_first = (PL_oldbufptr == PL_linestart);
512 PERL_ARGS_ASSERT_NO_OP;
518 yywarn(Perl_form(aTHX_ "%s found where operator expected", what), UTF ? SVf_UTF8 : 0);
519 if (ckWARN_d(WARN_SYNTAX)) {
521 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
522 "\t(Missing semicolon on previous line?)\n");
523 else if (PL_oldoldbufptr && isIDFIRST_lazy_if_safe(PL_oldoldbufptr,
528 for (t = PL_oldoldbufptr;
529 (isWORDCHAR_lazy_if_safe(t, PL_bufend, UTF) || *t == ':');
530 t += UTF ? UTF8SKIP(t) : 1)
534 if (t < PL_bufptr && isSPACE(*t))
535 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
536 "\t(Do you need to predeclare %" UTF8f "?)\n",
537 UTF8fARG(UTF, t - PL_oldoldbufptr, PL_oldoldbufptr));
541 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
542 "\t(Missing operator before %" UTF8f "?)\n",
543 UTF8fARG(UTF, s - oldbp, oldbp));
551 * Complain about missing quote/regexp/heredoc terminator.
552 * If it's called with NULL then it cauterizes the line buffer.
553 * If we're in a delimited string and the delimiter is a control
554 * character, it's reformatted into a two-char sequence like ^C.
559 S_missingterm(pTHX_ char *s, STRLEN len)
561 char tmpbuf[UTF8_MAXBYTES + 1];
566 char * const nl = (char *) my_memrchr(s, '\n', len);
573 else if (PL_multi_close < 32) {
575 tmpbuf[1] = (char)toCTRL(PL_multi_close);
581 if (LIKELY(PL_multi_close < 256)) {
582 *tmpbuf = (char)PL_multi_close;
587 char *end = (char *)uvchr_to_utf8((U8 *)tmpbuf, PL_multi_close);
594 q = memchr(s, '"', len) ? '\'' : '"';
595 sv = sv_2mortal(newSVpvn(s, len));
598 Perl_croak(aTHX_ "Can't find string terminator %c%" SVf "%c"
599 " anywhere before EOF", q, SVfARG(sv), q);
605 * Check whether the named feature is enabled.
608 Perl_feature_is_enabled(pTHX_ const char *const name, STRLEN namelen)
610 char he_name[8 + MAX_FEATURE_LEN] = "feature_";
612 PERL_ARGS_ASSERT_FEATURE_IS_ENABLED;
614 assert(CURRENT_FEATURE_BUNDLE == FEATURE_BUNDLE_CUSTOM);
616 if (namelen > MAX_FEATURE_LEN)
618 memcpy(&he_name[8], name, namelen);
620 return cBOOL(cop_hints_fetch_pvn(PL_curcop, he_name, 8 + namelen, 0,
621 REFCOUNTED_HE_EXISTS));
625 * experimental text filters for win32 carriage-returns, utf16-to-utf8 and
626 * utf16-to-utf8-reversed.
629 #ifdef PERL_CR_FILTER
633 const char *s = SvPVX_const(sv);
634 const char * const e = s + SvCUR(sv);
636 PERL_ARGS_ASSERT_STRIP_RETURN;
638 /* outer loop optimized to do nothing if there are no CR-LFs */
640 if (*s++ == '\r' && *s == '\n') {
641 /* hit a CR-LF, need to copy the rest */
645 if (*s == '\r' && s[1] == '\n')
656 S_cr_textfilter(pTHX_ int idx, SV *sv, int maxlen)
658 const I32 count = FILTER_READ(idx+1, sv, maxlen);
659 if (count > 0 && !maxlen)
666 =for apidoc Amx|void|lex_start|SV *line|PerlIO *rsfp|U32 flags
668 Creates and initialises a new lexer/parser state object, supplying
669 a context in which to lex and parse from a new source of Perl code.
670 A pointer to the new state object is placed in L</PL_parser>. An entry
671 is made on the save stack so that upon unwinding, the new state object
672 will be destroyed and the former value of L</PL_parser> will be restored.
673 Nothing else need be done to clean up the parsing context.
675 The code to be parsed comes from C<line> and C<rsfp>. C<line>, if
676 non-null, provides a string (in SV form) containing code to be parsed.
677 A copy of the string is made, so subsequent modification of C<line>
678 does not affect parsing. C<rsfp>, if non-null, provides an input stream
679 from which code will be read to be parsed. If both are non-null, the
680 code in C<line> comes first and must consist of complete lines of input,
681 and C<rsfp> supplies the remainder of the source.
683 The C<flags> parameter is reserved for future use. Currently it is only
684 used by perl internally, so extensions should always pass zero.
689 /* LEX_START_SAME_FILTER indicates that this is not a new file, so it
690 can share filters with the current parser.
691 LEX_START_DONT_CLOSE indicates that the file handle wasn't opened by the
692 caller, hence isn't owned by the parser, so shouldn't be closed on parser
693 destruction. This is used to handle the case of defaulting to reading the
694 script from the standard input because no filename was given on the command
695 line (without getting confused by situation where STDIN has been closed, so
696 the script handle is opened on fd 0) */
699 Perl_lex_start(pTHX_ SV *line, PerlIO *rsfp, U32 flags)
701 const char *s = NULL;
702 yy_parser *parser, *oparser;
704 if (flags && flags & ~LEX_START_FLAGS)
705 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_start");
707 /* create and initialise a parser */
709 Newxz(parser, 1, yy_parser);
710 parser->old_parser = oparser = PL_parser;
713 parser->stack = NULL;
714 parser->stack_max1 = NULL;
717 /* on scope exit, free this parser and restore any outer one */
719 parser->saved_curcop = PL_curcop;
721 /* initialise lexer state */
723 parser->nexttoke = 0;
724 parser->error_count = oparser ? oparser->error_count : 0;
725 parser->copline = parser->preambling = NOLINE;
726 parser->lex_state = LEX_NORMAL;
727 parser->expect = XSTATE;
729 parser->recheck_utf8_validity = FALSE;
730 parser->rsfp_filters =
731 !(flags & LEX_START_SAME_FILTER) || !oparser
733 : MUTABLE_AV(SvREFCNT_inc(
734 oparser->rsfp_filters
735 ? oparser->rsfp_filters
736 : (oparser->rsfp_filters = newAV())
739 Newx(parser->lex_brackstack, 120, char);
740 Newx(parser->lex_casestack, 12, char);
741 *parser->lex_casestack = '\0';
742 Newxz(parser->lex_shared, 1, LEXSHARED);
746 const U8* first_bad_char_loc;
748 s = SvPV_const(line, len);
751 && UNLIKELY(! is_utf8_string_loc((U8 *) s,
753 &first_bad_char_loc)))
755 _force_out_malformed_utf8_message(first_bad_char_loc,
756 (U8 *) s + SvCUR(line),
758 1 /* 1 means die */ );
759 NOT_REACHED; /* NOTREACHED */
762 parser->linestr = flags & LEX_START_COPIED
763 ? SvREFCNT_inc_simple_NN(line)
764 : newSVpvn_flags(s, len, SvUTF8(line));
766 sv_catpvs(parser->linestr, "\n;");
768 parser->linestr = newSVpvn("\n;", rsfp ? 1 : 2);
771 parser->oldoldbufptr =
774 parser->linestart = SvPVX(parser->linestr);
775 parser->bufend = parser->bufptr + SvCUR(parser->linestr);
776 parser->last_lop = parser->last_uni = NULL;
778 STATIC_ASSERT_STMT(FITS_IN_8_BITS(LEX_IGNORE_UTF8_HINTS|LEX_EVALBYTES
779 |LEX_DONT_CLOSE_RSFP));
780 parser->lex_flags = (U8) (flags & (LEX_IGNORE_UTF8_HINTS|LEX_EVALBYTES
781 |LEX_DONT_CLOSE_RSFP));
783 parser->in_pod = parser->filtered = 0;
787 /* delete a parser object */
790 Perl_parser_free(pTHX_ const yy_parser *parser)
792 PERL_ARGS_ASSERT_PARSER_FREE;
794 PL_curcop = parser->saved_curcop;
795 SvREFCNT_dec(parser->linestr);
797 if (PL_parser->lex_flags & LEX_DONT_CLOSE_RSFP)
798 PerlIO_clearerr(parser->rsfp);
799 else if (parser->rsfp && (!parser->old_parser
800 || (parser->old_parser && parser->rsfp != parser->old_parser->rsfp)))
801 PerlIO_close(parser->rsfp);
802 SvREFCNT_dec(parser->rsfp_filters);
803 SvREFCNT_dec(parser->lex_stuff);
804 SvREFCNT_dec(parser->lex_sub_repl);
806 Safefree(parser->lex_brackstack);
807 Safefree(parser->lex_casestack);
808 Safefree(parser->lex_shared);
809 PL_parser = parser->old_parser;
814 Perl_parser_free_nexttoke_ops(pTHX_ yy_parser *parser, OPSLAB *slab)
816 I32 nexttoke = parser->nexttoke;
817 PERL_ARGS_ASSERT_PARSER_FREE_NEXTTOKE_OPS;
819 if (S_is_opval_token(parser->nexttype[nexttoke] & 0xffff)
820 && parser->nextval[nexttoke].opval
821 && parser->nextval[nexttoke].opval->op_slabbed
822 && OpSLAB(parser->nextval[nexttoke].opval) == slab) {
823 op_free(parser->nextval[nexttoke].opval);
824 parser->nextval[nexttoke].opval = NULL;
831 =for apidoc AmxU|SV *|PL_parser-E<gt>linestr
833 Buffer scalar containing the chunk currently under consideration of the
834 text currently being lexed. This is always a plain string scalar (for
835 which C<SvPOK> is true). It is not intended to be used as a scalar by
836 normal scalar means; instead refer to the buffer directly by the pointer
837 variables described below.
839 The lexer maintains various C<char*> pointers to things in the
840 C<PL_parser-E<gt>linestr> buffer. If C<PL_parser-E<gt>linestr> is ever
841 reallocated, all of these pointers must be updated. Don't attempt to
842 do this manually, but rather use L</lex_grow_linestr> if you need to
843 reallocate the buffer.
845 The content of the text chunk in the buffer is commonly exactly one
846 complete line of input, up to and including a newline terminator,
847 but there are situations where it is otherwise. The octets of the
848 buffer may be intended to be interpreted as either UTF-8 or Latin-1.
849 The function L</lex_bufutf8> tells you which. Do not use the C<SvUTF8>
850 flag on this scalar, which may disagree with it.
852 For direct examination of the buffer, the variable
853 L</PL_parser-E<gt>bufend> points to the end of the buffer. The current
854 lexing position is pointed to by L</PL_parser-E<gt>bufptr>. Direct use
855 of these pointers is usually preferable to examination of the scalar
856 through normal scalar means.
858 =for apidoc AmxU|char *|PL_parser-E<gt>bufend
860 Direct pointer to the end of the chunk of text currently being lexed, the
861 end of the lexer buffer. This is equal to C<SvPVX(PL_parser-E<gt>linestr)
862 + SvCUR(PL_parser-E<gt>linestr)>. A C<NUL> character (zero octet) is
863 always located at the end of the buffer, and does not count as part of
864 the buffer's contents.
866 =for apidoc AmxU|char *|PL_parser-E<gt>bufptr
868 Points to the current position of lexing inside the lexer buffer.
869 Characters around this point may be freely examined, within
870 the range delimited by C<SvPVX(L</PL_parser-E<gt>linestr>)> and
871 L</PL_parser-E<gt>bufend>. The octets of the buffer may be intended to be
872 interpreted as either UTF-8 or Latin-1, as indicated by L</lex_bufutf8>.
874 Lexing code (whether in the Perl core or not) moves this pointer past
875 the characters that it consumes. It is also expected to perform some
876 bookkeeping whenever a newline character is consumed. This movement
877 can be more conveniently performed by the function L</lex_read_to>,
878 which handles newlines appropriately.
880 Interpretation of the buffer's octets can be abstracted out by
881 using the slightly higher-level functions L</lex_peek_unichar> and
882 L</lex_read_unichar>.
884 =for apidoc AmxU|char *|PL_parser-E<gt>linestart
886 Points to the start of the current line inside the lexer buffer.
887 This is useful for indicating at which column an error occurred, and
888 not much else. This must be updated by any lexing code that consumes
889 a newline; the function L</lex_read_to> handles this detail.
895 =for apidoc Amx|bool|lex_bufutf8
897 Indicates whether the octets in the lexer buffer
898 (L</PL_parser-E<gt>linestr>) should be interpreted as the UTF-8 encoding
899 of Unicode characters. If not, they should be interpreted as Latin-1
900 characters. This is analogous to the C<SvUTF8> flag for scalars.
902 In UTF-8 mode, it is not guaranteed that the lexer buffer actually
903 contains valid UTF-8. Lexing code must be robust in the face of invalid
906 The actual C<SvUTF8> flag of the L</PL_parser-E<gt>linestr> scalar
907 is significant, but not the whole story regarding the input character
908 encoding. Normally, when a file is being read, the scalar contains octets
909 and its C<SvUTF8> flag is off, but the octets should be interpreted as
910 UTF-8 if the C<use utf8> pragma is in effect. During a string eval,
911 however, the scalar may have the C<SvUTF8> flag on, and in this case its
912 octets should be interpreted as UTF-8 unless the C<use bytes> pragma
913 is in effect. This logic may change in the future; use this function
914 instead of implementing the logic yourself.
920 Perl_lex_bufutf8(pTHX)
926 =for apidoc Amx|char *|lex_grow_linestr|STRLEN len
928 Reallocates the lexer buffer (L</PL_parser-E<gt>linestr>) to accommodate
929 at least C<len> octets (including terminating C<NUL>). Returns a
930 pointer to the reallocated buffer. This is necessary before making
931 any direct modification of the buffer that would increase its length.
932 L</lex_stuff_pvn> provides a more convenient way to insert text into
935 Do not use C<SvGROW> or C<sv_grow> directly on C<PL_parser-E<gt>linestr>;
936 this function updates all of the lexer's variables that point directly
943 Perl_lex_grow_linestr(pTHX_ STRLEN len)
947 STRLEN bufend_pos, bufptr_pos, oldbufptr_pos, oldoldbufptr_pos;
948 STRLEN linestart_pos, last_uni_pos, last_lop_pos, re_eval_start_pos;
951 linestr = PL_parser->linestr;
952 buf = SvPVX(linestr);
953 if (len <= SvLEN(linestr))
956 /* Is the lex_shared linestr SV the same as the current linestr SV?
957 * Only in this case does re_eval_start need adjusting, since it
958 * points within lex_shared->ls_linestr's buffer */
959 current = ( !PL_parser->lex_shared->ls_linestr
960 || linestr == PL_parser->lex_shared->ls_linestr);
962 bufend_pos = PL_parser->bufend - buf;
963 bufptr_pos = PL_parser->bufptr - buf;
964 oldbufptr_pos = PL_parser->oldbufptr - buf;
965 oldoldbufptr_pos = PL_parser->oldoldbufptr - buf;
966 linestart_pos = PL_parser->linestart - buf;
967 last_uni_pos = PL_parser->last_uni ? PL_parser->last_uni - buf : 0;
968 last_lop_pos = PL_parser->last_lop ? PL_parser->last_lop - buf : 0;
969 re_eval_start_pos = (current && PL_parser->lex_shared->re_eval_start) ?
970 PL_parser->lex_shared->re_eval_start - buf : 0;
972 buf = sv_grow(linestr, len);
974 PL_parser->bufend = buf + bufend_pos;
975 PL_parser->bufptr = buf + bufptr_pos;
976 PL_parser->oldbufptr = buf + oldbufptr_pos;
977 PL_parser->oldoldbufptr = buf + oldoldbufptr_pos;
978 PL_parser->linestart = buf + linestart_pos;
979 if (PL_parser->last_uni)
980 PL_parser->last_uni = buf + last_uni_pos;
981 if (PL_parser->last_lop)
982 PL_parser->last_lop = buf + last_lop_pos;
983 if (current && PL_parser->lex_shared->re_eval_start)
984 PL_parser->lex_shared->re_eval_start = buf + re_eval_start_pos;
989 =for apidoc Amx|void|lex_stuff_pvn|const char *pv|STRLEN len|U32 flags
991 Insert characters into the lexer buffer (L</PL_parser-E<gt>linestr>),
992 immediately after the current lexing point (L</PL_parser-E<gt>bufptr>),
993 reallocating the buffer if necessary. This means that lexing code that
994 runs later will see the characters as if they had appeared in the input.
995 It is not recommended to do this as part of normal parsing, and most
996 uses of this facility run the risk of the inserted characters being
997 interpreted in an unintended manner.
999 The string to be inserted is represented by C<len> octets starting
1000 at C<pv>. These octets are interpreted as either UTF-8 or Latin-1,
1001 according to whether the C<LEX_STUFF_UTF8> flag is set in C<flags>.
1002 The characters are recoded for the lexer buffer, according to how the
1003 buffer is currently being interpreted (L</lex_bufutf8>). If a string
1004 to be inserted is available as a Perl scalar, the L</lex_stuff_sv>
1005 function is more convenient.
1011 Perl_lex_stuff_pvn(pTHX_ const char *pv, STRLEN len, U32 flags)
1015 PERL_ARGS_ASSERT_LEX_STUFF_PVN;
1016 if (flags & ~(LEX_STUFF_UTF8))
1017 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_stuff_pvn");
1019 if (flags & LEX_STUFF_UTF8) {
1022 STRLEN highhalf = 0; /* Count of variants */
1023 const char *p, *e = pv+len;
1024 for (p = pv; p != e; p++) {
1025 if (! UTF8_IS_INVARIANT(*p)) {
1031 lex_grow_linestr(SvCUR(PL_parser->linestr)+1+len+highhalf);
1032 bufptr = PL_parser->bufptr;
1033 Move(bufptr, bufptr+len+highhalf, PL_parser->bufend+1-bufptr, char);
1034 SvCUR_set(PL_parser->linestr,
1035 SvCUR(PL_parser->linestr) + len+highhalf);
1036 PL_parser->bufend += len+highhalf;
1037 for (p = pv; p != e; p++) {
1038 append_utf8_from_native_byte(*p, (U8 **) &bufptr);
1042 if (flags & LEX_STUFF_UTF8) {
1043 STRLEN highhalf = 0;
1044 const char *p, *e = pv+len;
1045 for (p = pv; p != e; p++) {
1047 if (UTF8_IS_ABOVE_LATIN1(c)) {
1048 Perl_croak(aTHX_ "Lexing code attempted to stuff "
1049 "non-Latin-1 character into Latin-1 input");
1050 } else if (UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(p, e)) {
1053 } else assert(UTF8_IS_INVARIANT(c));
1057 lex_grow_linestr(SvCUR(PL_parser->linestr)+1+len-highhalf);
1058 bufptr = PL_parser->bufptr;
1059 Move(bufptr, bufptr+len-highhalf, PL_parser->bufend+1-bufptr, char);
1060 SvCUR_set(PL_parser->linestr,
1061 SvCUR(PL_parser->linestr) + len-highhalf);
1062 PL_parser->bufend += len-highhalf;
1065 if (UTF8_IS_INVARIANT(*p)) {
1071 *bufptr++ = EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1));
1077 lex_grow_linestr(SvCUR(PL_parser->linestr)+1+len);
1078 bufptr = PL_parser->bufptr;
1079 Move(bufptr, bufptr+len, PL_parser->bufend+1-bufptr, char);
1080 SvCUR_set(PL_parser->linestr, SvCUR(PL_parser->linestr) + len);
1081 PL_parser->bufend += len;
1082 Copy(pv, bufptr, len, char);
1088 =for apidoc Amx|void|lex_stuff_pv|const char *pv|U32 flags
1090 Insert characters into the lexer buffer (L</PL_parser-E<gt>linestr>),
1091 immediately after the current lexing point (L</PL_parser-E<gt>bufptr>),
1092 reallocating the buffer if necessary. This means that lexing code that
1093 runs later will see the characters as if they had appeared in the input.
1094 It is not recommended to do this as part of normal parsing, and most
1095 uses of this facility run the risk of the inserted characters being
1096 interpreted in an unintended manner.
1098 The string to be inserted is represented by octets starting at C<pv>
1099 and continuing to the first nul. These octets are interpreted as either
1100 UTF-8 or Latin-1, according to whether the C<LEX_STUFF_UTF8> flag is set
1101 in C<flags>. The characters are recoded for the lexer buffer, according
1102 to how the buffer is currently being interpreted (L</lex_bufutf8>).
1103 If it is not convenient to nul-terminate a string to be inserted, the
1104 L</lex_stuff_pvn> function is more appropriate.
1110 Perl_lex_stuff_pv(pTHX_ const char *pv, U32 flags)
1112 PERL_ARGS_ASSERT_LEX_STUFF_PV;
1113 lex_stuff_pvn(pv, strlen(pv), flags);
1117 =for apidoc Amx|void|lex_stuff_sv|SV *sv|U32 flags
1119 Insert characters into the lexer buffer (L</PL_parser-E<gt>linestr>),
1120 immediately after the current lexing point (L</PL_parser-E<gt>bufptr>),
1121 reallocating the buffer if necessary. This means that lexing code that
1122 runs later will see the characters as if they had appeared in the input.
1123 It is not recommended to do this as part of normal parsing, and most
1124 uses of this facility run the risk of the inserted characters being
1125 interpreted in an unintended manner.
1127 The string to be inserted is the string value of C<sv>. The characters
1128 are recoded for the lexer buffer, according to how the buffer is currently
1129 being interpreted (L</lex_bufutf8>). If a string to be inserted is
1130 not already a Perl scalar, the L</lex_stuff_pvn> function avoids the
1131 need to construct a scalar.
1137 Perl_lex_stuff_sv(pTHX_ SV *sv, U32 flags)
1141 PERL_ARGS_ASSERT_LEX_STUFF_SV;
1143 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_stuff_sv");
1145 lex_stuff_pvn(pv, len, flags | (SvUTF8(sv) ? LEX_STUFF_UTF8 : 0));
1149 =for apidoc Amx|void|lex_unstuff|char *ptr
1151 Discards text about to be lexed, from L</PL_parser-E<gt>bufptr> up to
1152 C<ptr>. Text following C<ptr> will be moved, and the buffer shortened.
1153 This hides the discarded text from any lexing code that runs later,
1154 as if the text had never appeared.
1156 This is not the normal way to consume lexed text. For that, use
1163 Perl_lex_unstuff(pTHX_ char *ptr)
1167 PERL_ARGS_ASSERT_LEX_UNSTUFF;
1168 buf = PL_parser->bufptr;
1170 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_unstuff");
1173 bufend = PL_parser->bufend;
1175 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_unstuff");
1176 unstuff_len = ptr - buf;
1177 Move(ptr, buf, bufend+1-ptr, char);
1178 SvCUR_set(PL_parser->linestr, SvCUR(PL_parser->linestr) - unstuff_len);
1179 PL_parser->bufend = bufend - unstuff_len;
1183 =for apidoc Amx|void|lex_read_to|char *ptr
1185 Consume text in the lexer buffer, from L</PL_parser-E<gt>bufptr> up
1186 to C<ptr>. This advances L</PL_parser-E<gt>bufptr> to match C<ptr>,
1187 performing the correct bookkeeping whenever a newline character is passed.
1188 This is the normal way to consume lexed text.
1190 Interpretation of the buffer's octets can be abstracted out by
1191 using the slightly higher-level functions L</lex_peek_unichar> and
1192 L</lex_read_unichar>.
1198 Perl_lex_read_to(pTHX_ char *ptr)
1201 PERL_ARGS_ASSERT_LEX_READ_TO;
1202 s = PL_parser->bufptr;
1203 if (ptr < s || ptr > PL_parser->bufend)
1204 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_read_to");
1205 for (; s != ptr; s++)
1207 COPLINE_INC_WITH_HERELINES;
1208 PL_parser->linestart = s+1;
1210 PL_parser->bufptr = ptr;
1214 =for apidoc Amx|void|lex_discard_to|char *ptr
1216 Discards the first part of the L</PL_parser-E<gt>linestr> buffer,
1217 up to C<ptr>. The remaining content of the buffer will be moved, and
1218 all pointers into the buffer updated appropriately. C<ptr> must not
1219 be later in the buffer than the position of L</PL_parser-E<gt>bufptr>:
1220 it is not permitted to discard text that has yet to be lexed.
1222 Normally it is not necessarily to do this directly, because it suffices to
1223 use the implicit discarding behaviour of L</lex_next_chunk> and things
1224 based on it. However, if a token stretches across multiple lines,
1225 and the lexing code has kept multiple lines of text in the buffer for
1226 that purpose, then after completion of the token it would be wise to
1227 explicitly discard the now-unneeded earlier lines, to avoid future
1228 multi-line tokens growing the buffer without bound.
1234 Perl_lex_discard_to(pTHX_ char *ptr)
1238 PERL_ARGS_ASSERT_LEX_DISCARD_TO;
1239 buf = SvPVX(PL_parser->linestr);
1241 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_discard_to");
1244 if (ptr > PL_parser->bufptr)
1245 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_discard_to");
1246 discard_len = ptr - buf;
1247 if (PL_parser->oldbufptr < ptr)
1248 PL_parser->oldbufptr = ptr;
1249 if (PL_parser->oldoldbufptr < ptr)
1250 PL_parser->oldoldbufptr = ptr;
1251 if (PL_parser->last_uni && PL_parser->last_uni < ptr)
1252 PL_parser->last_uni = NULL;
1253 if (PL_parser->last_lop && PL_parser->last_lop < ptr)
1254 PL_parser->last_lop = NULL;
1255 Move(ptr, buf, PL_parser->bufend+1-ptr, char);
1256 SvCUR_set(PL_parser->linestr, SvCUR(PL_parser->linestr) - discard_len);
1257 PL_parser->bufend -= discard_len;
1258 PL_parser->bufptr -= discard_len;
1259 PL_parser->oldbufptr -= discard_len;
1260 PL_parser->oldoldbufptr -= discard_len;
1261 if (PL_parser->last_uni)
1262 PL_parser->last_uni -= discard_len;
1263 if (PL_parser->last_lop)
1264 PL_parser->last_lop -= discard_len;
1268 Perl_notify_parser_that_changed_to_utf8(pTHX)
1270 /* Called when $^H is changed to indicate that HINT_UTF8 has changed from
1271 * off to on. At compile time, this has the effect of entering a 'use
1272 * utf8' section. This means that any input was not previously checked for
1273 * UTF-8 (because it was off), but now we do need to check it, or our
1274 * assumptions about the input being sane could be wrong, and we could
1275 * segfault. This routine just sets a flag so that the next time we look
1276 * at the input we do the well-formed UTF-8 check. If we aren't in the
1277 * proper phase, there may not be a parser object, but if there is, setting
1278 * the flag is harmless */
1281 PL_parser->recheck_utf8_validity = TRUE;
1286 =for apidoc Amx|bool|lex_next_chunk|U32 flags
1288 Reads in the next chunk of text to be lexed, appending it to
1289 L</PL_parser-E<gt>linestr>. This should be called when lexing code has
1290 looked to the end of the current chunk and wants to know more. It is
1291 usual, but not necessary, for lexing to have consumed the entirety of
1292 the current chunk at this time.
1294 If L</PL_parser-E<gt>bufptr> is pointing to the very end of the current
1295 chunk (i.e., the current chunk has been entirely consumed), normally the
1296 current chunk will be discarded at the same time that the new chunk is
1297 read in. If C<flags> has the C<LEX_KEEP_PREVIOUS> bit set, the current chunk
1298 will not be discarded. If the current chunk has not been entirely
1299 consumed, then it will not be discarded regardless of the flag.
1301 Returns true if some new text was added to the buffer, or false if the
1302 buffer has reached the end of the input text.
1307 #define LEX_FAKE_EOF 0x80000000
1308 #define LEX_NO_TERM 0x40000000 /* here-doc */
1311 Perl_lex_next_chunk(pTHX_ U32 flags)
1315 STRLEN old_bufend_pos, new_bufend_pos;
1316 STRLEN bufptr_pos, oldbufptr_pos, oldoldbufptr_pos;
1317 STRLEN linestart_pos, last_uni_pos, last_lop_pos;
1318 bool got_some_for_debugger = 0;
1321 if (flags & ~(LEX_KEEP_PREVIOUS|LEX_FAKE_EOF|LEX_NO_TERM))
1322 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_next_chunk");
1323 if (!(flags & LEX_NO_TERM) && PL_lex_inwhat)
1325 linestr = PL_parser->linestr;
1326 buf = SvPVX(linestr);
1327 if (!(flags & LEX_KEEP_PREVIOUS)
1328 && PL_parser->bufptr == PL_parser->bufend)
1330 old_bufend_pos = bufptr_pos = oldbufptr_pos = oldoldbufptr_pos = 0;
1332 if (PL_parser->last_uni != PL_parser->bufend)
1333 PL_parser->last_uni = NULL;
1334 if (PL_parser->last_lop != PL_parser->bufend)
1335 PL_parser->last_lop = NULL;
1336 last_uni_pos = last_lop_pos = 0;
1340 old_bufend_pos = PL_parser->bufend - buf;
1341 bufptr_pos = PL_parser->bufptr - buf;
1342 oldbufptr_pos = PL_parser->oldbufptr - buf;
1343 oldoldbufptr_pos = PL_parser->oldoldbufptr - buf;
1344 linestart_pos = PL_parser->linestart - buf;
1345 last_uni_pos = PL_parser->last_uni ? PL_parser->last_uni - buf : 0;
1346 last_lop_pos = PL_parser->last_lop ? PL_parser->last_lop - buf : 0;
1348 if (flags & LEX_FAKE_EOF) {
1350 } else if (!PL_parser->rsfp && !PL_parser->filtered) {
1352 } else if (filter_gets(linestr, old_bufend_pos)) {
1354 got_some_for_debugger = 1;
1355 } else if (flags & LEX_NO_TERM) {
1358 if (!SvPOK(linestr)) /* can get undefined by filter_gets */
1361 /* End of real input. Close filehandle (unless it was STDIN),
1362 * then add implicit termination.
1364 if (PL_parser->lex_flags & LEX_DONT_CLOSE_RSFP)
1365 PerlIO_clearerr(PL_parser->rsfp);
1366 else if (PL_parser->rsfp)
1367 (void)PerlIO_close(PL_parser->rsfp);
1368 PL_parser->rsfp = NULL;
1369 PL_parser->in_pod = PL_parser->filtered = 0;
1370 if (!PL_in_eval && PL_minus_p) {
1372 /*{*/";}continue{print or die qq(-p destination: $!\\n);}");
1373 PL_minus_n = PL_minus_p = 0;
1374 } else if (!PL_in_eval && PL_minus_n) {
1375 sv_catpvs(linestr, /*{*/";}");
1378 sv_catpvs(linestr, ";");
1381 buf = SvPVX(linestr);
1382 new_bufend_pos = SvCUR(linestr);
1383 PL_parser->bufend = buf + new_bufend_pos;
1384 PL_parser->bufptr = buf + bufptr_pos;
1387 const U8* first_bad_char_loc;
1388 if (UNLIKELY(! is_utf8_string_loc(
1389 (U8 *) PL_parser->bufptr,
1390 PL_parser->bufend - PL_parser->bufptr,
1391 &first_bad_char_loc)))
1393 _force_out_malformed_utf8_message(first_bad_char_loc,
1394 (U8 *) PL_parser->bufend,
1396 1 /* 1 means die */ );
1397 NOT_REACHED; /* NOTREACHED */
1401 PL_parser->oldbufptr = buf + oldbufptr_pos;
1402 PL_parser->oldoldbufptr = buf + oldoldbufptr_pos;
1403 PL_parser->linestart = buf + linestart_pos;
1404 if (PL_parser->last_uni)
1405 PL_parser->last_uni = buf + last_uni_pos;
1406 if (PL_parser->last_lop)
1407 PL_parser->last_lop = buf + last_lop_pos;
1408 if (PL_parser->preambling != NOLINE) {
1409 CopLINE_set(PL_curcop, PL_parser->preambling + 1);
1410 PL_parser->preambling = NOLINE;
1412 if ( got_some_for_debugger
1413 && PERLDB_LINE_OR_SAVESRC
1414 && PL_curstash != PL_debstash)
1416 /* debugger active and we're not compiling the debugger code,
1417 * so store the line into the debugger's array of lines
1419 update_debugger_info(NULL, buf+old_bufend_pos,
1420 new_bufend_pos-old_bufend_pos);
1426 =for apidoc Amx|I32|lex_peek_unichar|U32 flags
1428 Looks ahead one (Unicode) character in the text currently being lexed.
1429 Returns the codepoint (unsigned integer value) of the next character,
1430 or -1 if lexing has reached the end of the input text. To consume the
1431 peeked character, use L</lex_read_unichar>.
1433 If the next character is in (or extends into) the next chunk of input
1434 text, the next chunk will be read in. Normally the current chunk will be
1435 discarded at the same time, but if C<flags> has the C<LEX_KEEP_PREVIOUS>
1436 bit set, then the current chunk will not be discarded.
1438 If the input is being interpreted as UTF-8 and a UTF-8 encoding error
1439 is encountered, an exception is generated.
1445 Perl_lex_peek_unichar(pTHX_ U32 flags)
1449 if (flags & ~(LEX_KEEP_PREVIOUS))
1450 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_peek_unichar");
1451 s = PL_parser->bufptr;
1452 bufend = PL_parser->bufend;
1458 if (!lex_next_chunk(flags))
1460 s = PL_parser->bufptr;
1461 bufend = PL_parser->bufend;
1464 if (UTF8_IS_INVARIANT(head))
1466 if (UTF8_IS_START(head)) {
1467 len = UTF8SKIP(&head);
1468 while ((STRLEN)(bufend-s) < len) {
1469 if (!lex_next_chunk(flags | LEX_KEEP_PREVIOUS))
1471 s = PL_parser->bufptr;
1472 bufend = PL_parser->bufend;
1475 unichar = utf8n_to_uvchr((U8*)s, bufend-s, &retlen, UTF8_CHECK_ONLY);
1476 if (retlen == (STRLEN)-1) {
1477 _force_out_malformed_utf8_message((U8 *) s,
1480 1 /* 1 means die */ );
1481 NOT_REACHED; /* NOTREACHED */
1486 if (!lex_next_chunk(flags))
1488 s = PL_parser->bufptr;
1495 =for apidoc Amx|I32|lex_read_unichar|U32 flags
1497 Reads the next (Unicode) character in the text currently being lexed.
1498 Returns the codepoint (unsigned integer value) of the character read,
1499 and moves L</PL_parser-E<gt>bufptr> past the character, or returns -1
1500 if lexing has reached the end of the input text. To non-destructively
1501 examine the next character, use L</lex_peek_unichar> instead.
1503 If the next character is in (or extends into) the next chunk of input
1504 text, the next chunk will be read in. Normally the current chunk will be
1505 discarded at the same time, but if C<flags> has the C<LEX_KEEP_PREVIOUS>
1506 bit set, then the current chunk will not be discarded.
1508 If the input is being interpreted as UTF-8 and a UTF-8 encoding error
1509 is encountered, an exception is generated.
1515 Perl_lex_read_unichar(pTHX_ U32 flags)
1518 if (flags & ~(LEX_KEEP_PREVIOUS))
1519 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_read_unichar");
1520 c = lex_peek_unichar(flags);
1523 COPLINE_INC_WITH_HERELINES;
1525 PL_parser->bufptr += UTF8SKIP(PL_parser->bufptr);
1527 ++(PL_parser->bufptr);
1533 =for apidoc Amx|void|lex_read_space|U32 flags
1535 Reads optional spaces, in Perl style, in the text currently being
1536 lexed. The spaces may include ordinary whitespace characters and
1537 Perl-style comments. C<#line> directives are processed if encountered.
1538 L</PL_parser-E<gt>bufptr> is moved past the spaces, so that it points
1539 at a non-space character (or the end of the input text).
1541 If spaces extend into the next chunk of input text, the next chunk will
1542 be read in. Normally the current chunk will be discarded at the same
1543 time, but if C<flags> has the C<LEX_KEEP_PREVIOUS> bit set, then the current
1544 chunk will not be discarded.
1549 #define LEX_NO_INCLINE 0x40000000
1550 #define LEX_NO_NEXT_CHUNK 0x80000000
1553 Perl_lex_read_space(pTHX_ U32 flags)
1556 const bool can_incline = !(flags & LEX_NO_INCLINE);
1557 bool need_incline = 0;
1558 if (flags & ~(LEX_KEEP_PREVIOUS|LEX_NO_NEXT_CHUNK|LEX_NO_INCLINE))
1559 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_read_space");
1560 s = PL_parser->bufptr;
1561 bufend = PL_parser->bufend;
1567 } while (!(c == '\n' || (c == 0 && s == bufend)));
1568 } else if (c == '\n') {
1571 PL_parser->linestart = s;
1577 } else if (isSPACE(c)) {
1579 } else if (c == 0 && s == bufend) {
1582 if (flags & LEX_NO_NEXT_CHUNK)
1584 PL_parser->bufptr = s;
1585 l = CopLINE(PL_curcop);
1586 CopLINE(PL_curcop) += PL_parser->herelines + 1;
1587 got_more = lex_next_chunk(flags);
1588 CopLINE_set(PL_curcop, l);
1589 s = PL_parser->bufptr;
1590 bufend = PL_parser->bufend;
1593 if (can_incline && need_incline && PL_parser->rsfp) {
1603 PL_parser->bufptr = s;
1608 =for apidoc EXMp|bool|validate_proto|SV *name|SV *proto|bool warn
1610 This function performs syntax checking on a prototype, C<proto>.
1611 If C<warn> is true, any illegal characters or mismatched brackets
1612 will trigger illegalproto warnings, declaring that they were
1613 detected in the prototype for C<name>.
1615 The return value is C<true> if this is a valid prototype, and
1616 C<false> if it is not, regardless of whether C<warn> was C<true> or
1619 Note that C<NULL> is a valid C<proto> and will always return C<true>.
1626 Perl_validate_proto(pTHX_ SV *name, SV *proto, bool warn, bool curstash)
1628 STRLEN len, origlen;
1630 bool bad_proto = FALSE;
1631 bool in_brackets = FALSE;
1632 bool after_slash = FALSE;
1633 char greedy_proto = ' ';
1634 bool proto_after_greedy_proto = FALSE;
1635 bool must_be_last = FALSE;
1636 bool underscore = FALSE;
1637 bool bad_proto_after_underscore = FALSE;
1639 PERL_ARGS_ASSERT_VALIDATE_PROTO;
1644 p = SvPV(proto, len);
1646 for (; len--; p++) {
1649 proto_after_greedy_proto = TRUE;
1651 if (!strchr(";@%", *p))
1652 bad_proto_after_underscore = TRUE;
1655 if (!strchr("$@%*;[]&\\_+", *p) || *p == '\0') {
1662 in_brackets = FALSE;
1663 else if ((*p == '@' || *p == '%')
1667 must_be_last = TRUE;
1676 after_slash = FALSE;
1681 SV *tmpsv = newSVpvs_flags("", SVs_TEMP);
1684 ? sv_uni_display(tmpsv, newSVpvn_flags(p, origlen, SVs_TEMP | SVf_UTF8),
1685 origlen, UNI_DISPLAY_ISPRINT)
1686 : pv_pretty(tmpsv, p, origlen, 60, NULL, NULL, PERL_PV_ESCAPE_NONASCII);
1688 if (curstash && !memchr(SvPVX(name), ':', SvCUR(name))) {
1689 SV *name2 = sv_2mortal(newSVsv(PL_curstname));
1690 sv_catpvs(name2, "::");
1691 sv_catsv(name2, (SV *)name);
1695 if (proto_after_greedy_proto)
1696 Perl_warner(aTHX_ packWARN(WARN_ILLEGALPROTO),
1697 "Prototype after '%c' for %" SVf " : %s",
1698 greedy_proto, SVfARG(name), p);
1700 Perl_warner(aTHX_ packWARN(WARN_ILLEGALPROTO),
1701 "Missing ']' in prototype for %" SVf " : %s",
1704 Perl_warner(aTHX_ packWARN(WARN_ILLEGALPROTO),
1705 "Illegal character in prototype for %" SVf " : %s",
1707 if (bad_proto_after_underscore)
1708 Perl_warner(aTHX_ packWARN(WARN_ILLEGALPROTO),
1709 "Illegal character after '_' in prototype for %" SVf " : %s",
1713 return (! (proto_after_greedy_proto || bad_proto) );
1718 * This subroutine has nothing to do with tilting, whether at windmills
1719 * or pinball tables. Its name is short for "increment line". It
1720 * increments the current line number in CopLINE(PL_curcop) and checks
1721 * to see whether the line starts with a comment of the form
1722 * # line 500 "foo.pm"
1723 * If so, it sets the current line number and file to the values in the comment.
1727 S_incline(pTHX_ const char *s, const char *end)
1735 PERL_ARGS_ASSERT_INCLINE;
1739 COPLINE_INC_WITH_HERELINES;
1740 if (!PL_rsfp && !PL_parser->filtered && PL_lex_state == LEX_NORMAL
1741 && s+1 == PL_bufend && *s == ';') {
1742 /* fake newline in string eval */
1743 CopLINE_dec(PL_curcop);
1748 while (SPACE_OR_TAB(*s))
1750 if (memBEGINs(s, (STRLEN) (end - s), "line"))
1751 s += sizeof("line") - 1;
1754 if (SPACE_OR_TAB(*s))
1758 while (SPACE_OR_TAB(*s))
1766 if (!SPACE_OR_TAB(*s) && *s != '\r' && *s != '\n' && *s != '\0')
1768 while (SPACE_OR_TAB(*s))
1770 if (*s == '"' && (t = (char *) memchr(s+1, '"', end - s))) {
1776 while (*t && !isSPACE(*t))
1780 while (SPACE_OR_TAB(*e) || *e == '\r' || *e == '\f')
1782 if (*e != '\n' && *e != '\0')
1783 return; /* false alarm */
1785 if (!grok_atoUV(n, &uv, &e))
1787 line_num = ((line_t)uv) - 1;
1790 const STRLEN len = t - s;
1792 if (!PL_rsfp && !PL_parser->filtered) {
1793 /* must copy *{"::_<(eval N)[oldfilename:L]"}
1794 * to *{"::_<newfilename"} */
1795 /* However, the long form of evals is only turned on by the
1796 debugger - usually they're "(eval %lu)" */
1797 GV * const cfgv = CopFILEGV(PL_curcop);
1800 STRLEN tmplen2 = len;
1804 if (tmplen2 + 2 <= sizeof smallbuf)
1807 Newx(tmpbuf2, tmplen2 + 2, char);
1812 memcpy(tmpbuf2 + 2, s, tmplen2);
1815 gv2 = *(GV**)hv_fetch(PL_defstash, tmpbuf2, tmplen2, TRUE);
1817 gv_init(gv2, PL_defstash, tmpbuf2, tmplen2, FALSE);
1818 /* adjust ${"::_<newfilename"} to store the new file name */
1819 GvSV(gv2) = newSVpvn(tmpbuf2 + 2, tmplen2 - 2);
1820 /* The line number may differ. If that is the case,
1821 alias the saved lines that are in the array.
1822 Otherwise alias the whole array. */
1823 if (CopLINE(PL_curcop) == line_num) {
1824 GvHV(gv2) = MUTABLE_HV(SvREFCNT_inc(GvHV(cfgv)));
1825 GvAV(gv2) = MUTABLE_AV(SvREFCNT_inc(GvAV(cfgv)));
1827 else if (GvAV(cfgv)) {
1828 AV * const av = GvAV(cfgv);
1829 const I32 start = CopLINE(PL_curcop)+1;
1830 I32 items = AvFILLp(av) - start;
1832 AV * const av2 = GvAVn(gv2);
1833 SV **svp = AvARRAY(av) + start;
1834 I32 l = (I32)line_num+1;
1836 av_store(av2, l++, SvREFCNT_inc(*svp++));
1841 if (tmpbuf2 != smallbuf) Safefree(tmpbuf2);
1844 CopFILE_free(PL_curcop);
1845 CopFILE_setn(PL_curcop, s, len);
1847 CopLINE_set(PL_curcop, line_num);
1851 S_update_debugger_info(pTHX_ SV *orig_sv, const char *const buf, STRLEN len)
1853 AV *av = CopFILEAVx(PL_curcop);
1856 if (PL_parser->preambling == NOLINE) sv = newSV_type(SVt_PVMG);
1858 sv = *av_fetch(av, 0, 1);
1859 SvUPGRADE(sv, SVt_PVMG);
1861 if (!SvPOK(sv)) SvPVCLEAR(sv);
1863 sv_catsv(sv, orig_sv);
1865 sv_catpvn(sv, buf, len);
1870 if (PL_parser->preambling == NOLINE)
1871 av_store(av, CopLINE(PL_curcop), sv);
1877 * Called to gobble the appropriate amount and type of whitespace.
1878 * Skips comments as well.
1879 * Returns the next character after the whitespace that is skipped.
1882 * Same thing, but look ahead without incrementing line numbers or
1883 * adjusting PL_linestart.
1886 #define skipspace(s) skipspace_flags(s, 0)
1887 #define peekspace(s) skipspace_flags(s, LEX_NO_INCLINE)
1890 S_skipspace_flags(pTHX_ char *s, U32 flags)
1892 PERL_ARGS_ASSERT_SKIPSPACE_FLAGS;
1893 if (PL_lex_formbrack && PL_lex_brackets <= PL_lex_formbrack) {
1894 while (s < PL_bufend && (SPACE_OR_TAB(*s) || !*s))
1897 STRLEN bufptr_pos = PL_bufptr - SvPVX(PL_linestr);
1899 lex_read_space(flags | LEX_KEEP_PREVIOUS |
1900 (PL_lex_inwhat || PL_lex_state == LEX_FORMLINE ?
1901 LEX_NO_NEXT_CHUNK : 0));
1903 PL_bufptr = SvPVX(PL_linestr) + bufptr_pos;
1904 if (PL_linestart > PL_bufptr)
1905 PL_bufptr = PL_linestart;
1913 * Check the unary operators to ensure there's no ambiguity in how they're
1914 * used. An ambiguous piece of code would be:
1916 * This doesn't mean rand() + 5. Because rand() is a unary operator,
1917 * the +5 is its argument.
1925 if (PL_oldoldbufptr != PL_last_uni)
1927 while (isSPACE(*PL_last_uni))
1930 while (isWORDCHAR_lazy_if_safe(s, PL_bufend, UTF) || *s == '-')
1931 s += UTF ? UTF8SKIP(s) : 1;
1932 if (s < PL_bufptr && memchr(s, '(', PL_bufptr - s))
1935 Perl_ck_warner_d(aTHX_ packWARN(WARN_AMBIGUOUS),
1936 "Warning: Use of \"%" UTF8f "\" without parentheses is ambiguous",
1937 UTF8fARG(UTF, (int)(s - PL_last_uni), PL_last_uni));
1941 * LOP : macro to build a list operator. Its behaviour has been replaced
1942 * with a subroutine, S_lop() for which LOP is just another name.
1945 #define LOP(f,x) return lop(f,x,s)
1949 * Build a list operator (or something that might be one). The rules:
1950 * - if we have a next token, then it's a list operator (no parens) for
1951 * which the next token has already been parsed; e.g.,
1954 * - if the next thing is an opening paren, then it's a function
1955 * - else it's a list operator
1959 S_lop(pTHX_ I32 f, U8 x, char *s)
1961 PERL_ARGS_ASSERT_LOP;
1966 PL_last_lop = PL_oldbufptr;
1967 PL_last_lop_op = (OPCODE)f;
1972 return REPORT(FUNC);
1975 return REPORT(FUNC);
1978 if (!PL_lex_allbrackets && PL_lex_fakeeof > LEX_FAKEEOF_LOWLOGIC)
1979 PL_lex_fakeeof = LEX_FAKEEOF_LOWLOGIC;
1980 return REPORT(LSTOP);
1986 * When the lexer realizes it knows the next token (for instance,
1987 * it is reordering tokens for the parser) then it can call S_force_next
1988 * to know what token to return the next time the lexer is called. Caller
1989 * will need to set PL_nextval[] and possibly PL_expect to ensure
1990 * the lexer handles the token correctly.
1994 S_force_next(pTHX_ I32 type)
1998 PerlIO_printf(Perl_debug_log, "### forced token:\n");
1999 tokereport(type, &NEXTVAL_NEXTTOKE);
2002 assert(PL_nexttoke < C_ARRAY_LENGTH(PL_nexttype));
2003 PL_nexttype[PL_nexttoke] = type;
2010 * This subroutine handles postfix deref syntax after the arrow has already
2011 * been emitted. @* $* etc. are emitted as two separate tokens right here.
2012 * @[ @{ %[ %{ *{ are emitted also as two tokens, but this function emits
2013 * only the first, leaving yylex to find the next.
2017 S_postderef(pTHX_ int const funny, char const next)
2019 assert(funny == DOLSHARP || strchr("$@%&*", funny));
2021 PL_expect = XOPERATOR;
2022 if (PL_lex_state == LEX_INTERPNORMAL && !PL_lex_brackets) {
2023 assert('@' == funny || '$' == funny || DOLSHARP == funny);
2024 PL_lex_state = LEX_INTERPEND;
2026 force_next(POSTJOIN);
2032 if ('@' == funny && PL_lex_state == LEX_INTERPNORMAL
2033 && !PL_lex_brackets)
2035 PL_expect = XOPERATOR;
2044 int yyc = PL_parser->yychar;
2045 if (yyc != YYEMPTY) {
2047 NEXTVAL_NEXTTOKE = PL_parser->yylval;
2048 if (yyc == '{'/*}*/ || yyc == HASHBRACK || yyc == '['/*]*/) {
2049 PL_lex_allbrackets--;
2051 yyc |= (3<<24) | (PL_lex_brackstack[PL_lex_brackets] << 16);
2052 } else if (yyc == '('/*)*/) {
2053 PL_lex_allbrackets--;
2058 PL_parser->yychar = YYEMPTY;
2063 S_newSV_maybe_utf8(pTHX_ const char *const start, STRLEN len)
2065 SV * const sv = newSVpvn_utf8(start, len,
2068 && is_utf8_non_invariant_string((const U8*)start, len));
2074 * When the lexer knows the next thing is a word (for instance, it has
2075 * just seen -> and it knows that the next char is a word char, then
2076 * it calls S_force_word to stick the next word into the PL_nexttoke/val
2080 * char *start : buffer position (must be within PL_linestr)
2081 * int token : PL_next* will be this type of bare word
2082 * (e.g., METHOD,BAREWORD)
2083 * int check_keyword : if true, Perl checks to make sure the word isn't
2084 * a keyword (do this if the word is a label, e.g. goto FOO)
2085 * int allow_pack : if true, : characters will also be allowed (require,
2086 * use, etc. do this)
2090 S_force_word(pTHX_ char *start, int token, int check_keyword, int allow_pack)
2095 PERL_ARGS_ASSERT_FORCE_WORD;
2097 start = skipspace(start);
2099 if ( isIDFIRST_lazy_if_safe(s, PL_bufend, UTF)
2100 || (allow_pack && *s == ':' && s[1] == ':') )
2102 s = scan_word(s, PL_tokenbuf, sizeof PL_tokenbuf, allow_pack, &len);
2103 if (check_keyword) {
2104 char *s2 = PL_tokenbuf;
2106 if (allow_pack && memBEGINPs(s2, len, "CORE::")) {
2107 s2 += sizeof("CORE::") - 1;
2108 len2 -= sizeof("CORE::") - 1;
2110 if (keyword(s2, len2, 0))
2113 if (token == METHOD) {
2118 PL_expect = XOPERATOR;
2121 NEXTVAL_NEXTTOKE.opval
2122 = newSVOP(OP_CONST,0,
2123 S_newSV_maybe_utf8(aTHX_ PL_tokenbuf, len));
2124 NEXTVAL_NEXTTOKE.opval->op_private |= OPpCONST_BARE;
2132 * Called when the lexer wants $foo *foo &foo etc, but the program
2133 * text only contains the "foo" portion. The first argument is a pointer
2134 * to the "foo", and the second argument is the type symbol to prefix.
2135 * Forces the next token to be a "BAREWORD".
2136 * Creates the symbol if it didn't already exist (via gv_fetchpv()).
2140 S_force_ident(pTHX_ const char *s, int kind)
2142 PERL_ARGS_ASSERT_FORCE_IDENT;
2145 const STRLEN len = s[1] ? strlen(s) : 1; /* s = "\"" see yylex */
2146 OP* const o = newSVOP(OP_CONST, 0, newSVpvn_flags(s, len,
2147 UTF ? SVf_UTF8 : 0));
2148 NEXTVAL_NEXTTOKE.opval = o;
2149 force_next(BAREWORD);
2151 o->op_private = OPpCONST_ENTERED;
2152 /* XXX see note in pp_entereval() for why we forgo typo
2153 warnings if the symbol must be introduced in an eval.
2155 gv_fetchpvn_flags(s, len,
2156 (PL_in_eval ? GV_ADDMULTI
2157 : GV_ADD) | ( UTF ? SVf_UTF8 : 0 ),
2158 kind == '$' ? SVt_PV :
2159 kind == '@' ? SVt_PVAV :
2160 kind == '%' ? SVt_PVHV :
2168 S_force_ident_maybe_lex(pTHX_ char pit)
2170 NEXTVAL_NEXTTOKE.ival = pit;
2175 Perl_str_to_version(pTHX_ SV *sv)
2180 const char *start = SvPV_const(sv,len);
2181 const char * const end = start + len;
2182 const bool utf = cBOOL(SvUTF8(sv));
2184 PERL_ARGS_ASSERT_STR_TO_VERSION;
2186 while (start < end) {
2190 n = utf8n_to_uvchr((U8*)start, len, &skip, 0);
2195 retval += ((NV)n)/nshift;
2204 * Forces the next token to be a version number.
2205 * If the next token appears to be an invalid version number, (e.g. "v2b"),
2206 * and if "guessing" is TRUE, then no new token is created (and the caller
2207 * must use an alternative parsing method).
2211 S_force_version(pTHX_ char *s, int guessing)
2216 PERL_ARGS_ASSERT_FORCE_VERSION;
2224 while (isDIGIT(*d) || *d == '_' || *d == '.')
2226 if (*d == ';' || isSPACE(*d) || *d == '{' || *d == '}' || !*d) {
2228 s = scan_num(s, &pl_yylval);
2229 version = pl_yylval.opval;
2230 ver = cSVOPx(version)->op_sv;
2231 if (SvPOK(ver) && !SvNIOK(ver)) {
2232 SvUPGRADE(ver, SVt_PVNV);
2233 SvNV_set(ver, str_to_version(ver));
2234 SvNOK_on(ver); /* hint that it is a version */
2237 else if (guessing) {
2242 /* NOTE: The parser sees the package name and the VERSION swapped */
2243 NEXTVAL_NEXTTOKE.opval = version;
2244 force_next(BAREWORD);
2250 * S_force_strict_version
2251 * Forces the next token to be a version number using strict syntax rules.
2255 S_force_strict_version(pTHX_ char *s)
2258 const char *errstr = NULL;
2260 PERL_ARGS_ASSERT_FORCE_STRICT_VERSION;
2262 while (isSPACE(*s)) /* leading whitespace */
2265 if (is_STRICT_VERSION(s,&errstr)) {
2267 s = (char *)scan_version(s, ver, 0);
2268 version = newSVOP(OP_CONST, 0, ver);
2270 else if ((*s != ';' && *s != '{' && *s != '}' )
2271 && (s = skipspace(s), (*s != ';' && *s != '{' && *s != '}' )))
2275 yyerror(errstr); /* version required */
2279 /* NOTE: The parser sees the package name and the VERSION swapped */
2280 NEXTVAL_NEXTTOKE.opval = version;
2281 force_next(BAREWORD);
2288 * Turns any \\ into \ in a quoted string passed in in 'sv', returning 'sv',
2289 * modified as necessary. However, if HINT_NEW_STRING is on, 'sv' is
2290 * unchanged, and a new SV containing the modified input is returned.
2294 S_tokeq(pTHX_ SV *sv)
2301 PERL_ARGS_ASSERT_TOKEQ;
2305 assert (!SvIsCOW(sv));
2306 if (SvTYPE(sv) >= SVt_PVIV && SvIVX(sv) == -1) /* <<'heredoc' */
2310 /* This is relying on the SV being "well formed" with a trailing '\0' */
2311 while (s < send && !(*s == '\\' && s[1] == '\\'))
2316 if ( PL_hints & HINT_NEW_STRING ) {
2317 pv = newSVpvn_flags(SvPVX_const(pv), SvCUR(sv),
2318 SVs_TEMP | SvUTF8(sv));
2322 if (s + 1 < send && (s[1] == '\\'))
2323 s++; /* all that, just for this */
2328 SvCUR_set(sv, d - SvPVX_const(sv));
2330 if ( PL_hints & HINT_NEW_STRING )
2331 return new_constant(NULL, 0, "q", sv, pv, "q", 1);
2336 * Now come three functions related to double-quote context,
2337 * S_sublex_start, S_sublex_push, and S_sublex_done. They're used when
2338 * converting things like "\u\Lgnat" into ucfirst(lc("gnat")). They
2339 * interact with PL_lex_state, and create fake ( ... ) argument lists
2340 * to handle functions and concatenation.
2344 * stringify ( const[foo] concat lcfirst ( const[bar] ) )
2349 * Assumes that pl_yylval.ival is the op we're creating (e.g. OP_LCFIRST).
2351 * Pattern matching will set PL_lex_op to the pattern-matching op to
2352 * make (we return THING if pl_yylval.ival is OP_NULL, PMFUNC otherwise).
2354 * OP_CONST is easy--just make the new op and return.
2356 * Everything else becomes a FUNC.
2358 * Sets PL_lex_state to LEX_INTERPPUSH unless ival was OP_NULL or we
2359 * had an OP_CONST. This just sets us up for a
2360 * call to S_sublex_push().
2364 S_sublex_start(pTHX)
2366 const I32 op_type = pl_yylval.ival;
2368 if (op_type == OP_NULL) {
2369 pl_yylval.opval = PL_lex_op;
2373 if (op_type == OP_CONST) {
2374 SV *sv = PL_lex_stuff;
2375 PL_lex_stuff = NULL;
2378 if (SvTYPE(sv) == SVt_PVIV) {
2379 /* Overloaded constants, nothing fancy: Convert to SVt_PV: */
2381 const char * const p = SvPV_const(sv, len);
2382 SV * const nsv = newSVpvn_flags(p, len, SvUTF8(sv));
2386 pl_yylval.opval = newSVOP(op_type, 0, sv);
2390 PL_parser->lex_super_state = PL_lex_state;
2391 PL_parser->lex_sub_inwhat = (U16)op_type;
2392 PL_parser->lex_sub_op = PL_lex_op;
2393 PL_lex_state = LEX_INTERPPUSH;
2397 pl_yylval.opval = PL_lex_op;
2407 * Create a new scope to save the lexing state. The scope will be
2408 * ended in S_sublex_done. Returns a '(', starting the function arguments
2409 * to the uc, lc, etc. found before.
2410 * Sets PL_lex_state to LEX_INTERPCONCAT.
2417 const bool is_heredoc = PL_multi_close == '<';
2420 PL_lex_state = PL_parser->lex_super_state;
2421 SAVEI8(PL_lex_dojoin);
2422 SAVEI32(PL_lex_brackets);
2423 SAVEI32(PL_lex_allbrackets);
2424 SAVEI32(PL_lex_formbrack);
2425 SAVEI8(PL_lex_fakeeof);
2426 SAVEI32(PL_lex_casemods);
2427 SAVEI32(PL_lex_starts);
2428 SAVEI8(PL_lex_state);
2429 SAVESPTR(PL_lex_repl);
2430 SAVEVPTR(PL_lex_inpat);
2431 SAVEI16(PL_lex_inwhat);
2434 SAVECOPLINE(PL_curcop);
2435 SAVEI32(PL_multi_end);
2436 SAVEI32(PL_parser->herelines);
2437 PL_parser->herelines = 0;
2439 SAVEIV(PL_multi_close);
2440 SAVEPPTR(PL_bufptr);
2441 SAVEPPTR(PL_bufend);
2442 SAVEPPTR(PL_oldbufptr);
2443 SAVEPPTR(PL_oldoldbufptr);
2444 SAVEPPTR(PL_last_lop);
2445 SAVEPPTR(PL_last_uni);
2446 SAVEPPTR(PL_linestart);
2447 SAVESPTR(PL_linestr);
2448 SAVEGENERICPV(PL_lex_brackstack);
2449 SAVEGENERICPV(PL_lex_casestack);
2450 SAVEGENERICPV(PL_parser->lex_shared);
2451 SAVEBOOL(PL_parser->lex_re_reparsing);
2452 SAVEI32(PL_copline);
2454 /* The here-doc parser needs to be able to peek into outer lexing
2455 scopes to find the body of the here-doc. So we put PL_linestr and
2456 PL_bufptr into lex_shared, to ‘share’ those values.
2458 PL_parser->lex_shared->ls_linestr = PL_linestr;
2459 PL_parser->lex_shared->ls_bufptr = PL_bufptr;
2461 PL_linestr = PL_lex_stuff;
2462 PL_lex_repl = PL_parser->lex_sub_repl;
2463 PL_lex_stuff = NULL;
2464 PL_parser->lex_sub_repl = NULL;
2466 /* Arrange for PL_lex_stuff to be freed on scope exit, in case it gets
2467 set for an inner quote-like operator and then an error causes scope-
2468 popping. We must not have a PL_lex_stuff value left dangling, as
2469 that breaks assumptions elsewhere. See bug #123617. */
2470 SAVEGENERICSV(PL_lex_stuff);
2471 SAVEGENERICSV(PL_parser->lex_sub_repl);
2473 PL_bufend = PL_bufptr = PL_oldbufptr = PL_oldoldbufptr = PL_linestart
2474 = SvPVX(PL_linestr);
2475 PL_bufend += SvCUR(PL_linestr);
2476 PL_last_lop = PL_last_uni = NULL;
2477 SAVEFREESV(PL_linestr);
2478 if (PL_lex_repl) SAVEFREESV(PL_lex_repl);
2480 PL_lex_dojoin = FALSE;
2481 PL_lex_brackets = PL_lex_formbrack = 0;
2482 PL_lex_allbrackets = 0;
2483 PL_lex_fakeeof = LEX_FAKEEOF_NEVER;
2484 Newx(PL_lex_brackstack, 120, char);
2485 Newx(PL_lex_casestack, 12, char);
2486 PL_lex_casemods = 0;
2487 *PL_lex_casestack = '\0';
2489 PL_lex_state = LEX_INTERPCONCAT;
2491 CopLINE_set(PL_curcop, (line_t)PL_multi_start);
2492 PL_copline = NOLINE;
2494 Newxz(shared, 1, LEXSHARED);
2495 shared->ls_prev = PL_parser->lex_shared;
2496 PL_parser->lex_shared = shared;
2498 PL_lex_inwhat = PL_parser->lex_sub_inwhat;
2499 if (PL_lex_inwhat == OP_TRANSR) PL_lex_inwhat = OP_TRANS;
2500 if (PL_lex_inwhat == OP_MATCH || PL_lex_inwhat == OP_QR || PL_lex_inwhat == OP_SUBST)
2501 PL_lex_inpat = PL_parser->lex_sub_op;
2503 PL_lex_inpat = NULL;
2505 PL_parser->lex_re_reparsing = cBOOL(PL_in_eval & EVAL_RE_REPARSING);
2506 PL_in_eval &= ~EVAL_RE_REPARSING;
2513 * Restores lexer state after a S_sublex_push.
2519 if (!PL_lex_starts++) {
2520 SV * const sv = newSVpvs("");
2521 if (SvUTF8(PL_linestr))
2523 PL_expect = XOPERATOR;
2524 pl_yylval.opval = newSVOP(OP_CONST, 0, sv);
2528 if (PL_lex_casemods) { /* oops, we've got some unbalanced parens */
2529 PL_lex_state = LEX_INTERPCASEMOD;
2533 /* Is there a right-hand side to take care of? (s//RHS/ or tr//RHS/) */
2534 assert(PL_lex_inwhat != OP_TRANSR);
2536 assert (PL_lex_inwhat == OP_SUBST || PL_lex_inwhat == OP_TRANS);
2537 PL_linestr = PL_lex_repl;
2539 PL_bufend = PL_bufptr = PL_oldbufptr = PL_oldoldbufptr = PL_linestart = SvPVX(PL_linestr);
2540 PL_bufend += SvCUR(PL_linestr);
2541 PL_last_lop = PL_last_uni = NULL;
2542 PL_lex_dojoin = FALSE;
2543 PL_lex_brackets = 0;
2544 PL_lex_allbrackets = 0;
2545 PL_lex_fakeeof = LEX_FAKEEOF_NEVER;
2546 PL_lex_casemods = 0;
2547 *PL_lex_casestack = '\0';
2549 if (SvEVALED(PL_lex_repl)) {
2550 PL_lex_state = LEX_INTERPNORMAL;
2552 /* we don't clear PL_lex_repl here, so that we can check later
2553 whether this is an evalled subst; that means we rely on the
2554 logic to ensure sublex_done() is called again only via the
2555 branch (in yylex()) that clears PL_lex_repl, else we'll loop */
2558 PL_lex_state = LEX_INTERPCONCAT;
2561 if (SvTYPE(PL_linestr) >= SVt_PVNV) {
2562 CopLINE(PL_curcop) +=
2563 ((XPVNV*)SvANY(PL_linestr))->xnv_u.xnv_lines
2564 + PL_parser->herelines;
2565 PL_parser->herelines = 0;
2570 const line_t l = CopLINE(PL_curcop);
2572 if (PL_multi_close == '<')
2573 PL_parser->herelines += l - PL_multi_end;
2574 PL_bufend = SvPVX(PL_linestr);
2575 PL_bufend += SvCUR(PL_linestr);
2576 PL_expect = XOPERATOR;
2582 S_get_and_check_backslash_N_name(pTHX_ const char* s, const char* const e)
2584 /* <s> points to first character of interior of \N{}, <e> to one beyond the
2585 * interior, hence to the "}". Finds what the name resolves to, returning
2586 * an SV* containing it; NULL if no valid one found */
2588 SV* res = newSVpvn_flags(s, e - s, UTF ? SVf_UTF8 : 0);
2595 const char* backslash_ptr = s - 3; /* Points to the <\> of \N{... */
2597 PERL_ARGS_ASSERT_GET_AND_CHECK_BACKSLASH_N_NAME;
2600 SvREFCNT_dec_NN(res);
2601 /* diag_listed_as: Unknown charname '%s' */
2602 yyerror("Unknown charname ''");
2606 res = new_constant( NULL, 0, "charnames", res, NULL, backslash_ptr,
2607 /* include the <}> */
2608 e - backslash_ptr + 1);
2610 SvREFCNT_dec_NN(res);
2614 /* See if the charnames handler is the Perl core's, and if so, we can skip
2615 * the validation needed for a user-supplied one, as Perl's does its own
2617 table = GvHV(PL_hintgv); /* ^H */
2618 cvp = hv_fetchs(table, "charnames", FALSE);
2619 if (cvp && (cv = *cvp) && SvROK(cv) && (rv = SvRV(cv),
2620 SvTYPE(rv) == SVt_PVCV) && ((stash = CvSTASH(rv)) != NULL))
2622 const char * const name = HvNAME(stash);
2623 if (memEQs(name, HvNAMELEN(stash), "_charnames")) {
2628 /* Here, it isn't Perl's charname handler. We can't rely on a
2629 * user-supplied handler to validate the input name. For non-ut8 input,
2630 * look to see that the first character is legal. Then loop through the
2631 * rest checking that each is a continuation */
2633 /* This code makes the reasonable assumption that the only Latin1-range
2634 * characters that begin a character name alias are alphabetic, otherwise
2635 * would have to create a isCHARNAME_BEGIN macro */
2638 if (! isALPHAU(*s)) {
2643 if (! isCHARNAME_CONT(*s)) {
2646 if (*s == ' ' && *(s-1) == ' ') {
2653 /* Similarly for utf8. For invariants can check directly; for other
2654 * Latin1, can calculate their code point and check; otherwise use a
2656 if (UTF8_IS_INVARIANT(*s)) {
2657 if (! isALPHAU(*s)) {
2661 } else if (UTF8_IS_DOWNGRADEABLE_START(*s)) {
2662 if (! isALPHAU(EIGHT_BIT_UTF8_TO_NATIVE(*s, *(s+1)))) {
2668 if (! PL_utf8_charname_begin) {
2669 U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
2670 PL_utf8_charname_begin = _core_swash_init("utf8",
2671 "_Perl_Charname_Begin",
2673 1, 0, NULL, &flags);
2675 if (! swash_fetch(PL_utf8_charname_begin, (U8 *) s, TRUE)) {
2682 if (UTF8_IS_INVARIANT(*s)) {
2683 if (! isCHARNAME_CONT(*s)) {
2686 if (*s == ' ' && *(s-1) == ' ') {
2691 else if (UTF8_IS_DOWNGRADEABLE_START(*s)) {
2692 if (! isCHARNAME_CONT(EIGHT_BIT_UTF8_TO_NATIVE(*s, *(s+1))))
2699 if (! PL_utf8_charname_continue) {
2700 U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
2701 PL_utf8_charname_continue = _core_swash_init("utf8",
2702 "_Perl_Charname_Continue",
2704 1, 0, NULL, &flags);
2706 if (! swash_fetch(PL_utf8_charname_continue, (U8 *) s, TRUE)) {
2713 if (*(s-1) == ' ') {
2714 /* diag_listed_as: charnames alias definitions may not contain
2715 trailing white-space; marked by <-- HERE in %s
2719 "charnames alias definitions may not contain trailing "
2720 "white-space; marked by <-- HERE in %.*s<-- HERE %.*s",
2721 (int)(s - backslash_ptr + 1), backslash_ptr,
2722 (int)(e - s + 1), s + 1
2724 UTF ? SVf_UTF8 : 0);
2728 if (SvUTF8(res)) { /* Don't accept malformed input */
2729 const U8* first_bad_char_loc;
2731 const char* const str = SvPV_const(res, len);
2732 if (UNLIKELY(! is_utf8_string_loc((U8 *) str, len,
2733 &first_bad_char_loc)))
2735 _force_out_malformed_utf8_message(first_bad_char_loc,
2736 (U8 *) PL_parser->bufend,
2738 0 /* 0 means don't die */ );
2739 /* diag_listed_as: Malformed UTF-8 returned by \N{%s}
2740 immediately after '%s' */
2743 "Malformed UTF-8 returned by %.*s immediately after '%.*s'",
2744 (int) (e - backslash_ptr + 1), backslash_ptr,
2745 (int) ((char *) first_bad_char_loc - str), str
2756 /* The final %.*s makes sure that should the trailing NUL be missing
2757 * that this print won't run off the end of the string */
2758 /* diag_listed_as: Invalid character in \N{...}; marked by <-- HERE
2762 "Invalid character in \\N{...}; marked by <-- HERE in %.*s<-- HERE %.*s",
2763 (int)(s - backslash_ptr + 1), backslash_ptr,
2764 (int)(e - s + 1), s + 1
2766 UTF ? SVf_UTF8 : 0);
2771 /* diag_listed_as: charnames alias definitions may not contain a
2772 sequence of multiple spaces; marked by <-- HERE
2776 "charnames alias definitions may not contain a sequence of "
2777 "multiple spaces; marked by <-- HERE in %.*s<-- HERE %.*s",
2778 (int)(s - backslash_ptr + 1), backslash_ptr,
2779 (int)(e - s + 1), s + 1
2781 UTF ? SVf_UTF8 : 0);
2788 Extracts the next constant part of a pattern, double-quoted string,
2789 or transliteration. This is terrifying code.
2791 For example, in parsing the double-quoted string "ab\x63$d", it would
2792 stop at the '$' and return an OP_CONST containing 'abc'.
2794 It looks at PL_lex_inwhat and PL_lex_inpat to find out whether it's
2795 processing a pattern (PL_lex_inpat is true), a transliteration
2796 (PL_lex_inwhat == OP_TRANS is true), or a double-quoted string.
2798 Returns a pointer to the character scanned up to. If this is
2799 advanced from the start pointer supplied (i.e. if anything was
2800 successfully parsed), will leave an OP_CONST for the substring scanned
2801 in pl_yylval. Caller must intuit reason for not parsing further
2802 by looking at the next characters herself.
2806 \N{FOO} => \N{U+hex_for_character_FOO}
2807 (if FOO expands to multiple characters, expands to \N{U+xx.XX.yy ...})
2810 all other \-char, including \N and \N{ apart from \N{ABC}
2813 @ and $ where it appears to be a var, but not for $ as tail anchor
2817 In transliterations:
2818 characters are VERY literal, except for - not at the start or end
2819 of the string, which indicates a range. However some backslash sequences
2820 are recognized: \r, \n, and the like
2821 \007 \o{}, \x{}, \N{}
2822 If all elements in the transliteration are below 256,
2823 scan_const expands the range to the full set of intermediate
2824 characters. If the range is in utf8, the hyphen is replaced with
2825 a certain range mark which will be handled by pmtrans() in op.c.
2827 In double-quoted strings:
2829 all those recognized in transliterations
2830 deprecated backrefs: \1 (in substitution replacements)
2831 case and quoting: \U \Q \E
2834 scan_const does *not* construct ops to handle interpolated strings.
2835 It stops processing as soon as it finds an embedded $ or @ variable
2836 and leaves it to the caller to work out what's going on.
2838 embedded arrays (whether in pattern or not) could be:
2839 @foo, @::foo, @'foo, @{foo}, @$foo, @+, @-.
2841 $ in double-quoted strings must be the symbol of an embedded scalar.
2843 $ in pattern could be $foo or could be tail anchor. Assumption:
2844 it's a tail anchor if $ is the last thing in the string, or if it's
2845 followed by one of "()| \r\n\t"
2847 \1 (backreferences) are turned into $1 in substitutions
2849 The structure of the code is
2850 while (there's a character to process) {
2851 handle transliteration ranges
2852 skip regexp comments /(?#comment)/ and codes /(?{code})/
2853 skip #-initiated comments in //x patterns
2854 check for embedded arrays
2855 check for embedded scalars
2857 deprecate \1 in substitution replacements
2858 handle string-changing backslashes \l \U \Q \E, etc.
2859 switch (what was escaped) {
2860 handle \- in a transliteration (becomes a literal -)
2861 if a pattern and not \N{, go treat as regular character
2862 handle \132 (octal characters)
2863 handle \x15 and \x{1234} (hex characters)
2864 handle \N{name} (named characters, also \N{3,5} in a pattern)
2865 handle \cV (control characters)
2866 handle printf-style backslashes (\f, \r, \n, etc)
2869 } (end if backslash)
2870 handle regular character
2871 } (end while character to read)
2876 S_scan_const(pTHX_ char *start)
2878 char *send = PL_bufend; /* end of the constant */
2879 SV *sv = newSV(send - start); /* sv for the constant. See note below
2881 char *s = start; /* start of the constant */
2882 char *d = SvPVX(sv); /* destination for copies */
2883 bool dorange = FALSE; /* are we in a translit range? */
2884 bool didrange = FALSE; /* did we just finish a range? */
2885 bool in_charclass = FALSE; /* within /[...]/ */
2886 bool has_utf8 = FALSE; /* Output constant is UTF8 */
2887 bool this_utf8 = cBOOL(UTF); /* Is the source string assumed to be
2888 UTF8? But, this can show as true
2889 when the source isn't utf8, as for
2890 example when it is entirely composed
2892 STRLEN utf8_variant_count = 0; /* When not in UTF-8, this counts the
2893 number of characters found so far
2894 that will expand (into 2 bytes)
2895 should we have to convert to
2897 SV *res; /* result from charnames */
2898 STRLEN offset_to_max = 0; /* The offset in the output to where the range
2899 high-end character is temporarily placed */
2901 /* Does something require special handling in tr/// ? This avoids extra
2902 * work in a less likely case. As such, khw didn't feel it was worth
2903 * adding any branches to the more mainline code to handle this, which
2904 * means that this doesn't get set in some circumstances when things like
2905 * \x{100} get expanded out. As a result there needs to be extra testing
2906 * done in the tr code */
2907 bool has_above_latin1 = FALSE;
2909 /* Note on sizing: The scanned constant is placed into sv, which is
2910 * initialized by newSV() assuming one byte of output for every byte of
2911 * input. This routine expects newSV() to allocate an extra byte for a
2912 * trailing NUL, which this routine will append if it gets to the end of
2913 * the input. There may be more bytes of input than output (eg., \N{LATIN
2914 * CAPITAL LETTER A}), or more output than input if the constant ends up
2915 * recoded to utf8, but each time a construct is found that might increase
2916 * the needed size, SvGROW() is called. Its size parameter each time is
2917 * based on the best guess estimate at the time, namely the length used so
2918 * far, plus the length the current construct will occupy, plus room for
2919 * the trailing NUL, plus one byte for every input byte still unscanned */
2921 UV uv = UV_MAX; /* Initialize to weird value to try to catch any uses
2924 int backslash_N = 0; /* ? was the character from \N{} */
2925 int non_portable_endpoint = 0; /* ? In a range is an endpoint
2926 platform-specific like \x65 */
2929 PERL_ARGS_ASSERT_SCAN_CONST;
2931 assert(PL_lex_inwhat != OP_TRANSR);
2932 if (PL_lex_inwhat == OP_TRANS && PL_parser->lex_sub_op) {
2933 /* If we are doing a trans and we know we want UTF8 set expectation */
2934 has_utf8 = PL_parser->lex_sub_op->op_private & (OPpTRANS_FROM_UTF|OPpTRANS_TO_UTF);
2935 this_utf8 = PL_parser->lex_sub_op->op_private & (PL_lex_repl ? OPpTRANS_FROM_UTF : OPpTRANS_TO_UTF);
2938 /* Protect sv from errors and fatal warnings. */
2939 ENTER_with_name("scan_const");
2943 || dorange /* Handle tr/// range at right edge of input */
2946 /* get transliterations out of the way (they're most literal) */
2947 if (PL_lex_inwhat == OP_TRANS) {
2949 /* But there isn't any special handling necessary unless there is a
2950 * range, so for most cases we just drop down and handle the value
2951 * as any other. There are two exceptions.
2953 * 1. A hyphen indicates that we are actually going to have a
2954 * range. In this case, skip the '-', set a flag, then drop
2955 * down to handle what should be the end range value.
2956 * 2. After we've handled that value, the next time through, that
2957 * flag is set and we fix up the range.
2959 * Ranges entirely within Latin1 are expanded out entirely, in
2960 * order to make the transliteration a simple table look-up.
2961 * Ranges that extend above Latin1 have to be done differently, so
2962 * there is no advantage to expanding them here, so they are
2963 * stored here as Min, ILLEGAL_UTF8_BYTE, Max. The illegal byte
2964 * signifies a hyphen without any possible ambiguity. On EBCDIC
2965 * machines, if the range is expressed as Unicode, the Latin1
2966 * portion is expanded out even if the range extends above
2967 * Latin1. This is because each code point in it has to be
2968 * processed here individually to get its native translation */
2972 /* Here, we don't think we're in a range. If the new character
2973 * is not a hyphen; or if it is a hyphen, but it's too close to
2974 * either edge to indicate a range, or if we haven't output any
2975 * characters yet then it's a regular character. */
2976 if (*s != '-' || s >= send - 1 || s == start || d == SvPVX(sv)) {
2978 /* A regular character. Process like any other, but first
2979 * clear any flags */
2983 non_portable_endpoint = 0;
2986 /* The tests here for being above Latin1 and similar ones
2987 * in the following 'else' suffice to find all such
2988 * occurences in the constant, except those added by a
2989 * backslash escape sequence, like \x{100}. Mostly, those
2990 * set 'has_above_latin1' as appropriate */
2991 if (this_utf8 && UTF8_IS_ABOVE_LATIN1(*s)) {
2992 has_above_latin1 = TRUE;
2995 /* Drops down to generic code to process current byte */
2997 else { /* Is a '-' in the context where it means a range */
2998 if (didrange) { /* Something like y/A-C-Z// */
2999 Perl_croak(aTHX_ "Ambiguous range in transliteration"
3005 s++; /* Skip past the hyphen */
3007 /* d now points to where the end-range character will be
3008 * placed. Save it so won't have to go finding it later,
3009 * and drop down to get that character. (Actually we
3010 * instead save the offset, to handle the case where a
3011 * realloc in the meantime could change the actual
3012 * pointer). We'll finish processing the range the next
3013 * time through the loop */
3014 offset_to_max = d - SvPVX_const(sv);
3016 if (this_utf8 && UTF8_IS_ABOVE_LATIN1(*s)) {
3017 has_above_latin1 = TRUE;
3020 /* Drops down to generic code to process current byte */
3022 } /* End of not a range */
3024 /* Here we have parsed a range. Now must handle it. At this
3026 * 'sv' is a SV* that contains the output string we are
3027 * constructing. The final two characters in that string
3028 * are the range start and range end, in order.
3029 * 'd' points to just beyond the range end in the 'sv' string,
3030 * where we would next place something
3031 * 'offset_to_max' is the offset in 'sv' at which the character
3032 * (the range's maximum end point) before 'd' begins.
3034 char * max_ptr = SvPVX(sv) + offset_to_max;
3037 IV range_max; /* last character in range */
3039 Size_t offset_to_min = 0;
3042 bool convert_unicode;
3043 IV real_range_max = 0;
3045 /* Get the code point values of the range ends. */
3047 /* We know the utf8 is valid, because we just constructed
3048 * it ourselves in previous loop iterations */
3049 min_ptr = (char*) utf8_hop( (U8*) max_ptr, -1);
3050 range_min = valid_utf8_to_uvchr( (U8*) min_ptr, NULL);
3051 range_max = valid_utf8_to_uvchr( (U8*) max_ptr, NULL);
3053 /* This compensates for not all code setting
3054 * 'has_above_latin1', so that we don't skip stuff that
3055 * should be executed */
3056 if (range_max > 255) {
3057 has_above_latin1 = TRUE;
3061 min_ptr = max_ptr - 1;
3062 range_min = * (U8*) min_ptr;
3063 range_max = * (U8*) max_ptr;
3066 /* If the range is just a single code point, like tr/a-a/.../,
3067 * that code point is already in the output, twice. We can
3068 * just back up over the second instance and avoid all the rest
3069 * of the work. But if it is a variant character, it's been
3070 * counted twice, so decrement. (This unlikely scenario is
3071 * special cased, like the one for a range of 2 code points
3072 * below, only because the main-line code below needs a range
3073 * of 3 or more to work without special casing. Might as well
3074 * get it out of the way now.) */
3075 if (UNLIKELY(range_max == range_min)) {
3077 if (! has_utf8 && ! UVCHR_IS_INVARIANT(range_max)) {
3078 utf8_variant_count--;
3084 /* On EBCDIC platforms, we may have to deal with portable
3085 * ranges. These happen if at least one range endpoint is a
3086 * Unicode value (\N{...}), or if the range is a subset of
3087 * [A-Z] or [a-z], and both ends are literal characters,
3088 * like 'A', and not like \x{C1} */
3090 cBOOL(backslash_N) /* \N{} forces Unicode,
3091 hence portable range */
3092 || ( ! non_portable_endpoint
3093 && (( isLOWER_A(range_min) && isLOWER_A(range_max))
3094 || (isUPPER_A(range_min) && isUPPER_A(range_max))));
3095 if (convert_unicode) {
3097 /* Special handling is needed for these portable ranges.
3098 * They are defined to be in Unicode terms, which includes
3099 * all the Unicode code points between the end points.
3100 * Convert to Unicode to get the Unicode range. Later we
3101 * will convert each code point in the range back to
3103 range_min = NATIVE_TO_UNI(range_min);
3104 range_max = NATIVE_TO_UNI(range_max);
3108 if (range_min > range_max) {
3110 if (convert_unicode) {
3111 /* Need to convert back to native for meaningful
3112 * messages for this platform */
3113 range_min = UNI_TO_NATIVE(range_min);
3114 range_max = UNI_TO_NATIVE(range_max);
3117 /* Use the characters themselves for the error message if
3118 * ASCII printables; otherwise some visible representation
3120 if (isPRINT_A(range_min) && isPRINT_A(range_max)) {
3122 "Invalid range \"%c-%c\" in transliteration operator",
3123 (char)range_min, (char)range_max);
3126 else if (convert_unicode) {
3127 /* diag_listed_as: Invalid range "%s" in transliteration operator */
3129 "Invalid range \"\\N{U+%04" UVXf "}-\\N{U+%04"
3130 UVXf "}\" in transliteration operator",
3131 range_min, range_max);
3135 /* diag_listed_as: Invalid range "%s" in transliteration operator */
3137 "Invalid range \"\\x{%04" UVXf "}-\\x{%04" UVXf "}\""
3138 " in transliteration operator",
3139 range_min, range_max);
3143 /* If the range is exactly two code points long, they are
3144 * already both in the output */
3145 if (UNLIKELY(range_min + 1 == range_max)) {
3149 /* Here the range contains at least 3 code points */
3153 /* If everything in the transliteration is below 256, we
3154 * can avoid special handling later. A translation table
3155 * for each of those bytes is created by op.c. So we
3156 * expand out all ranges to their constituent code points.
3157 * But if we've encountered something above 255, the
3158 * expanding won't help, so skip doing that. But if it's
3159 * EBCDIC, we may have to look at each character below 256
3160 * if we have to convert to/from Unicode values */
3161 if ( has_above_latin1
3163 && (range_min > 255 || ! convert_unicode)
3166 /* Move the high character one byte to the right; then
3167 * insert between it and the range begin, an illegal
3168 * byte which serves to indicate this is a range (using
3169 * a '-' would be ambiguous). */
3171 while (e-- > max_ptr) {
3174 *(e + 1) = (char) ILLEGAL_UTF8_BYTE;
3178 /* Here, we're going to expand out the range. For EBCDIC
3179 * the range can extend above 255 (not so in ASCII), so
3180 * for EBCDIC, split it into the parts above and below
3183 if (range_max > 255) {
3184 real_range_max = range_max;
3190 /* Here we need to expand out the string to contain each
3191 * character in the range. Grow the output to handle this.
3192 * For non-UTF8, we need a byte for each code point in the
3193 * range, minus the three that we've already allocated for: the
3194 * hyphen, the min, and the max. For UTF-8, we need this
3195 * plus an extra byte for each code point that occupies two
3196 * bytes (is variant) when in UTF-8 (except we've already
3197 * allocated for the end points, including if they are
3198 * variants). For ASCII platforms and Unicode ranges on EBCDIC
3199 * platforms, it's easy to calculate a precise number. To
3200 * start, we count the variants in the range, which we need
3201 * elsewhere in this function anyway. (For the case where it
3202 * isn't easy to calculate, 'extras' has been initialized to 0,
3203 * and the calculation is done in a loop further down.) */
3205 if (convert_unicode)
3208 /* This is executed unconditionally on ASCII, and for
3209 * Unicode ranges on EBCDIC. Under these conditions, all
3210 * code points above a certain value are variant; and none
3211 * under that value are. We just need to find out how much
3212 * of the range is above that value. We don't count the
3213 * end points here, as they will already have been counted
3214 * as they were parsed. */
3215 if (range_min >= UTF_CONTINUATION_MARK) {
3217 /* The whole range is made up of variants */
3218 extras = (range_max - 1) - (range_min + 1) + 1;
3220 else if (range_max >= UTF_CONTINUATION_MARK) {
3222 /* Only the higher portion of the range is variants */
3223 extras = (range_max - 1) - UTF_CONTINUATION_MARK + 1;
3226 utf8_variant_count += extras;
3229 /* The base growth is the number of code points in the range,
3230 * not including the endpoints, which have already been sized
3231 * for (and output). We don't subtract for the hyphen, as it
3232 * has been parsed but not output, and the SvGROW below is
3233 * based only on what's been output plus what's left to parse.
3235 grow = (range_max - 1) - (range_min + 1) + 1;
3239 /* In some cases in EBCDIC, we haven't yet calculated a
3240 * precise amount needed for the UTF-8 variants. Just
3241 * assume the worst case, that everything will expand by a
3243 if (! convert_unicode) {
3249 /* Otherwise we know exactly how many variants there
3250 * are in the range. */
3255 /* Grow, but position the output to overwrite the range min end
3256 * point, because in some cases we overwrite that */
3257 SvCUR_set(sv, d - SvPVX_const(sv));
3258 offset_to_min = min_ptr - SvPVX_const(sv);
3260 /* See Note on sizing above. */
3261 d = offset_to_min + SvGROW(sv, SvCUR(sv)
3264 + 1 /* Trailing NUL */ );
3266 /* Now, we can expand out the range. */
3268 if (convert_unicode) {
3271 /* Recall that the min and max are now in Unicode terms, so
3272 * we have to convert each character to its native
3275 for (i = range_min; i <= range_max; i++) {
3276 append_utf8_from_native_byte(
3277 LATIN1_TO_NATIVE((U8) i),
3282 for (i = range_min; i <= range_max; i++) {
3283 *d++ = (char)LATIN1_TO_NATIVE((U8) i);
3289 /* Always gets run for ASCII, and sometimes for EBCDIC. */
3291 /* Here, no conversions are necessary, which means that the
3292 * first character in the range is already in 'd' and
3293 * valid, so we can skip overwriting it */
3297 for (i = range_min + 1; i <= range_max; i++) {
3298 append_utf8_from_native_byte((U8) i, (U8 **) &d);
3304 assert(range_min + 1 <= range_max);
3305 for (i = range_min + 1; i < range_max; i++) {
3307 /* In this case on EBCDIC, we haven't calculated
3308 * the variants. Do it here, as we go along */
3309 if (! UVCHR_IS_INVARIANT(i)) {
3310 utf8_variant_count++;
3316 /* The range_max is done outside the loop so as to
3317 * avoid having to special case not incrementing
3318 * 'utf8_variant_count' on EBCDIC (it's already been
3319 * counted when originally parsed) */
3320 *d++ = (char) range_max;
3325 /* If the original range extended above 255, add in that
3327 if (real_range_max) {
3328 *d++ = (char) UTF8_TWO_BYTE_HI(0x100);
3329 *d++ = (char) UTF8_TWO_BYTE_LO(0x100);
3330 if (real_range_max > 0x100) {
3331 if (real_range_max > 0x101) {
3332 *d++ = (char) ILLEGAL_UTF8_BYTE;
3334 d = (char*)uvchr_to_utf8((U8*)d, real_range_max);
3340 /* mark the range as done, and continue */
3344 non_portable_endpoint = 0;
3348 } /* End of is a range */
3349 } /* End of transliteration. Joins main code after these else's */
3350 else if (*s == '[' && PL_lex_inpat && !in_charclass) {
3353 while (s1 >= start && *s1-- == '\\')
3356 in_charclass = TRUE;
3358 else if (*s == ']' && PL_lex_inpat && in_charclass) {
3361 while (s1 >= start && *s1-- == '\\')
3364 in_charclass = FALSE;
3366 /* skip for regexp comments /(?#comment)/, except for the last
3367 * char, which will be done separately. Stop on (?{..}) and
3369 else if (*s == '(' && PL_lex_inpat && s[1] == '?' && !in_charclass) {
3371 while (s+1 < send && *s != ')')
3374 else if (!PL_lex_casemods
3375 && ( s[2] == '{' /* This should match regcomp.c */
3376 || (s[2] == '?' && s[3] == '{')))
3381 /* likewise skip #-initiated comments in //x patterns */
3385 && ((PMOP*)PL_lex_inpat)->op_pmflags & RXf_PMf_EXTENDED)
3387 while (s < send && *s != '\n')
3390 /* no further processing of single-quoted regex */
3391 else if (PL_lex_inpat && SvIVX(PL_linestr) == '\'')
3392 goto default_action;
3394 /* check for embedded arrays
3395 * (@foo, @::foo, @'foo, @{foo}, @$foo, @+, @-)
3397 else if (*s == '@' && s[1]) {
3399 ? isIDFIRST_utf8_safe(s+1, send)
3400 : isWORDCHAR_A(s[1]))
3404 if (strchr(":'{$", s[1]))
3406 if (!PL_lex_inpat && (s[1] == '+' || s[1] == '-'))
3407 break; /* in regexp, neither @+ nor @- are interpolated */
3409 /* check for embedded scalars. only stop if we're sure it's a
3411 else if (*s == '$') {
3412 if (!PL_lex_inpat) /* not a regexp, so $ must be var */
3414 if (s + 1 < send && !strchr("()| \r\n\t", s[1])) {
3416 Perl_ck_warner(aTHX_ packWARN(WARN_AMBIGUOUS),
3417 "Possible unintended interpolation of $\\ in regex");
3419 break; /* in regexp, $ might be tail anchor */
3423 /* End of else if chain - OP_TRANS rejoin rest */
3425 if (UNLIKELY(s >= send)) {
3431 if (*s == '\\' && s+1 < send) {
3432 char* e; /* Can be used for ending '}', etc. */
3436 /* warn on \1 - \9 in substitution replacements, but note that \11
3437 * is an octal; and \19 is \1 followed by '9' */
3438 if (PL_lex_inwhat == OP_SUBST
3444 /* diag_listed_as: \%d better written as $%d */
3445 Perl_ck_warner(aTHX_ packWARN(WARN_SYNTAX), "\\%c better written as $%c", *s, *s);
3450 /* string-change backslash escapes */
3451 if (PL_lex_inwhat != OP_TRANS && *s && strchr("lLuUEQF", *s)) {
3455 /* In a pattern, process \N, but skip any other backslash escapes.
3456 * This is because we don't want to translate an escape sequence
3457 * into a meta symbol and have the regex compiler use the meta
3458 * symbol meaning, e.g. \x{2E} would be confused with a dot. But
3459 * in spite of this, we do have to process \N here while the proper
3460 * charnames handler is in scope. See bugs #56444 and #62056.
3462 * There is a complication because \N in a pattern may also stand
3463 * for 'match a non-nl', and not mean a charname, in which case its
3464 * processing should be deferred to the regex compiler. To be a
3465 * charname it must be followed immediately by a '{', and not look
3466 * like \N followed by a curly quantifier, i.e., not something like
3467 * \N{3,}. regcurly returns a boolean indicating if it is a legal
3469 else if (PL_lex_inpat
3472 || regcurly(s + 1)))
3475 goto default_action;
3481 if ((isALPHANUMERIC(*s)))
3482 Perl_ck_warner(aTHX_ packWARN(WARN_MISC),
3483 "Unrecognized escape \\%c passed through",
3485 /* default action is to copy the quoted character */
3486 goto default_action;
3489 /* eg. \132 indicates the octal constant 0132 */
3490 case '0': case '1': case '2': case '3':
3491 case '4': case '5': case '6': case '7':
3493 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
3495 uv = grok_oct(s, &len, &flags, NULL);
3497 if (len < 3 && s < send && isDIGIT(*s)
3498 && ckWARN(WARN_MISC))
3500 Perl_warner(aTHX_ packWARN(WARN_MISC),
3501 "%s", form_short_octal_warning(s, len));
3504 goto NUM_ESCAPE_INSERT;
3506 /* eg. \o{24} indicates the octal constant \024 */
3511 bool valid = grok_bslash_o(&s, PL_bufend,
3513 TRUE, /* Output warning */
3514 FALSE, /* Not strict */
3515 TRUE, /* Output warnings for
3520 uv = 0; /* drop through to ensure range ends are set */
3522 goto NUM_ESCAPE_INSERT;
3525 /* eg. \x24 indicates the hex constant 0x24 */
3530 bool valid = grok_bslash_x(&s, PL_bufend,
3532 TRUE, /* Output warning */
3533 FALSE, /* Not strict */
3534 TRUE, /* Output warnings for
3539 uv = 0; /* drop through to ensure range ends are set */
3544 /* Insert oct or hex escaped character. */
3546 /* Here uv is the ordinal of the next character being added */
3547 if (UVCHR_IS_INVARIANT(uv)) {
3551 if (!has_utf8 && uv > 255) {
3553 /* Here, 'uv' won't fit unless we convert to UTF-8.
3554 * If we've only seen invariants so far, all we have to
3555 * do is turn on the flag */
3556 if (utf8_variant_count == 0) {
3560 SvCUR_set(sv, d - SvPVX_const(sv));
3564 sv_utf8_upgrade_flags_grow(
3566 SV_GMAGIC|SV_FORCE_UTF8_UPGRADE,
3568 /* Since we're having to grow here,
3569 * make sure we have enough room for
3570 * this escape and a NUL, so the
3571 * code immediately below won't have
3572 * to actually grow again */
3574 + (STRLEN)(send - s) + 1);
3575 d = SvPVX(sv) + SvCUR(sv);
3578 has_above_latin1 = TRUE;
3584 utf8_variant_count++;
3587 /* Usually, there will already be enough room in 'sv'
3588 * since such escapes are likely longer than any UTF-8
3589 * sequence they can end up as. This isn't the case on
3590 * EBCDIC where \x{40000000} contains 12 bytes, and the
3591 * UTF-8 for it contains 14. And, we have to allow for
3592 * a trailing NUL. It probably can't happen on ASCII
3593 * platforms, but be safe. See Note on sizing above. */
3594 const STRLEN needed = d - SvPVX(sv)
3598 if (UNLIKELY(needed > SvLEN(sv))) {
3599 SvCUR_set(sv, d - SvPVX_const(sv));
3600 d = SvCUR(sv) + SvGROW(sv, needed);
3603 d = (char*)uvchr_to_utf8((U8*)d, uv);
3604 if (PL_lex_inwhat == OP_TRANS
3605 && PL_parser->lex_sub_op)
3607 PL_parser->lex_sub_op->op_private |=
3608 (PL_lex_repl ? OPpTRANS_FROM_UTF
3614 non_portable_endpoint++;
3619 /* In a non-pattern \N must be like \N{U+0041}, or it can be a
3620 * named character, like \N{LATIN SMALL LETTER A}, or a named
3621 * sequence, like \N{LATIN CAPITAL LETTER A WITH MACRON AND
3622 * GRAVE} (except y/// can't handle the latter, croaking). For
3623 * convenience all three forms are referred to as "named
3624 * characters" below.
3626 * For patterns, \N also can mean to match a non-newline. Code
3627 * before this 'switch' statement should already have handled
3628 * this situation, and hence this code only has to deal with
3629 * the named character cases.
3631 * For non-patterns, the named characters are converted to
3632 * their string equivalents. In patterns, named characters are
3633 * not converted to their ultimate forms for the same reasons
3634 * that other escapes aren't (mainly that the ultimate
3635 * character could be considered a meta-symbol by the regex
3636 * compiler). Instead, they are converted to the \N{U+...}
3637 * form to get the value from the charnames that is in effect
3638 * right now, while preserving the fact that it was a named
3639 * character, so that the regex compiler knows this.
3641 * The structure of this section of code (besides checking for
3642 * errors and upgrading to utf8) is:
3643 * If the named character is of the form \N{U+...}, pass it
3644 * through if a pattern; otherwise convert the code point
3646 * Otherwise must be some \N{NAME}: convert to
3647 * \N{U+c1.c2...} if a pattern; otherwise convert to utf8
3649 * Transliteration is an exception. The conversion to utf8 is
3650 * only done if the code point requires it to be representable.
3652 * Here, 's' points to the 'N'; the test below is guaranteed to
3653 * succeed if we are being called on a pattern, as we already
3654 * know from a test above that the next character is a '{'. A
3655 * non-pattern \N must mean 'named character', which requires
3659 yyerror("Missing braces on \\N{}");
3665 /* If there is no matching '}', it is an error. */
3666 if (! (e = (char *) memchr(s, '}', send - s))) {
3667 if (! PL_lex_inpat) {
3668 yyerror("Missing right brace on \\N{}");
3670 yyerror("Missing right brace on \\N{} or unescaped left brace after \\N");
3672 yyquit(); /* Have exhausted the input. */
3675 /* Here it looks like a named character */
3677 if (*s == 'U' && s[1] == '+') { /* \N{U+...} */
3678 s += 2; /* Skip to next char after the 'U+' */
3681 /* In patterns, we can have \N{U+xxxx.yyyy.zzzz...} */
3682 /* Check the syntax. */
3685 if (!isXDIGIT(*s)) {
3688 "Invalid hexadecimal number in \\N{U+...}"
3697 else if ((*s == '.' || *s == '_')
3703 /* Pass everything through unchanged.
3704 * +1 is for the '}' */
3705 Copy(orig_s, d, e - orig_s + 1, char);
3706 d += e - orig_s + 1;
3708 else { /* Not a pattern: convert the hex to string */
3709 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
3710 | PERL_SCAN_SILENT_ILLDIGIT
3711 | PERL_SCAN_DISALLOW_PREFIX;
3713 uv = grok_hex(s, &len, &flags, NULL);
3714 if (len == 0 || (len != (STRLEN)(e - s)))
3717 /* For non-tr///, if the destination is not in utf8,
3718 * unconditionally recode it to be so. This is
3719 * because \N{} implies Unicode semantics, and scalars
3720 * have to be in utf8 to guarantee those semantics.
3721 * tr/// doesn't care about Unicode rules, so no need
3722 * there to upgrade to UTF-8 for small enough code
3724 if (! has_utf8 && ( uv > 0xFF
3725 || PL_lex_inwhat != OP_TRANS))
3727 /* See Note on sizing above. */
3728 const STRLEN extra = OFFUNISKIP(uv) + (send - e) + 1;
3730 SvCUR_set(sv, d - SvPVX_const(sv));
3734 if (utf8_variant_count == 0) {
3736 d = SvCUR(sv) + SvGROW(sv, SvCUR(sv) + extra);
3739 sv_utf8_upgrade_flags_grow(
3741 SV_GMAGIC|SV_FORCE_UTF8_UPGRADE,
3743 d = SvPVX(sv) + SvCUR(sv);
3747 has_above_latin1 = TRUE;
3750 /* Add the (Unicode) code point to the output. */
3751 if (! has_utf8 || OFFUNI_IS_INVARIANT(uv)) {
3752 *d++ = (char) LATIN1_TO_NATIVE(uv);
3755 d = (char*) uvoffuni_to_utf8_flags((U8*)d, uv, 0);
3759 else /* Here is \N{NAME} but not \N{U+...}. */
3760 if ((res = get_and_check_backslash_N_name(s, e)))
3763 const char *str = SvPV_const(res, len);
3766 if (! len) { /* The name resolved to an empty string */
3767 Copy("\\N{}", d, 4, char);
3771 /* In order to not lose information for the regex
3772 * compiler, pass the result in the specially made
3773 * syntax: \N{U+c1.c2.c3...}, where c1 etc. are
3774 * the code points in hex of each character
3775 * returned by charnames */
3777 const char *str_end = str + len;
3778 const STRLEN off = d - SvPVX_const(sv);
3780 if (! SvUTF8(res)) {
3781 /* For the non-UTF-8 case, we can determine the
3782 * exact length needed without having to parse
3783 * through the string. Each character takes up
3784 * 2 hex digits plus either a trailing dot or
3786 const char initial_text[] = "\\N{U+";
3787 const STRLEN initial_len = sizeof(initial_text)
3789 d = off + SvGROW(sv, off
3792 /* +1 for trailing NUL */
3795 + (STRLEN)(send - e));
3796 Copy(initial_text, d, initial_len, char);
3798 while (str < str_end) {
3801 my_snprintf(hex_string,
3805 /* The regex compiler is
3806 * expecting Unicode, not
3808 NATIVE_TO_LATIN1(*str));
3809 PERL_MY_SNPRINTF_POST_GUARD(len,
3810 sizeof(hex_string));
3811 Copy(hex_string, d, 3, char);
3815 d--; /* Below, we will overwrite the final
3816 dot with a right brace */
3819 STRLEN char_length; /* cur char's byte length */
3821 /* and the number of bytes after this is
3822 * translated into hex digits */
3823 STRLEN output_length;
3825 /* 2 hex per byte; 2 chars for '\N'; 2 chars
3826 * for max('U+', '.'); and 1 for NUL */
3827 char hex_string[2 * UTF8_MAXBYTES + 5];
3829 /* Get the first character of the result. */
3830 U32 uv = utf8n_to_uvchr((U8 *) str,
3834 /* Convert first code point to Unicode hex,
3835 * including the boiler plate before it. */
3837 my_snprintf(hex_string, sizeof(hex_string),
3839 (unsigned int) NATIVE_TO_UNI(uv));
3841 /* Make sure there is enough space to hold it */
3842 d = off + SvGROW(sv, off
3844 + (STRLEN)(send - e)
3845 + 2); /* '}' + NUL */
3847 Copy(hex_string, d, output_length, char);
3850 /* For each subsequent character, append dot and
3851 * its Unicode code point in hex */
3852 while ((str += char_length) < str_end) {
3853 const STRLEN off = d - SvPVX_const(sv);
3854 U32 uv = utf8n_to_uvchr((U8 *) str,
3859 my_snprintf(hex_string,
3862 (unsigned int) NATIVE_TO_UNI(uv));
3864 d = off + SvGROW(sv, off
3866 + (STRLEN)(send - e)
3867 + 2); /* '}' + NUL */
3868 Copy(hex_string, d, output_length, char);
3873 *d++ = '}'; /* Done. Add the trailing brace */
3876 else { /* Here, not in a pattern. Convert the name to a
3879 if (PL_lex_inwhat == OP_TRANS) {
3880 str = SvPV_const(res, len);
3881 if (len > ((SvUTF8(res))
3885 yyerror(Perl_form(aTHX_
3886 "%.*s must not be a named sequence"
3887 " in transliteration operator",
3888 /* +1 to include the "}" */
3889 (int) (e + 1 - start), start));
3891 goto end_backslash_N;
3894 if (SvUTF8(res) && UTF8_IS_ABOVE_LATIN1(*str)) {
3895 has_above_latin1 = TRUE;
3899 else if (! SvUTF8(res)) {
3900 /* Make sure \N{} return is UTF-8. This is because
3901 * \N{} implies Unicode semantics, and scalars have
3902 * to be in utf8 to guarantee those semantics; but
3903 * not needed in tr/// */
3904 sv_utf8_upgrade_flags(res, 0);
3905 str = SvPV_const(res, len);
3908 /* Upgrade destination to be utf8 if this new
3910 if (! has_utf8 && SvUTF8(res)) {
3911 /* See Note on sizing above. */
3912 const STRLEN extra = len + (send - s) + 1;
3914 SvCUR_set(sv, d - SvPVX_const(sv));
3918 if (utf8_variant_count == 0) {
3920 d = SvCUR(sv) + SvGROW(sv, SvCUR(sv) + extra);
3923 sv_utf8_upgrade_flags_grow(sv,
3924 SV_GMAGIC|SV_FORCE_UTF8_UPGRADE,
3926 d = SvPVX(sv) + SvCUR(sv);
3929 } else if (len > (STRLEN)(e - s + 4)) { /* I _guess_ 4 is \N{} --jhi */
3931 /* See Note on sizing above. (NOTE: SvCUR() is not
3932 * set correctly here). */
3933 const STRLEN extra = len + (send - e) + 1;
3934 const STRLEN off = d - SvPVX_const(sv);
3935 d = off + SvGROW(sv, off + extra);
3937 Copy(str, d, len, char);
3943 } /* End \N{NAME} */
3947 backslash_N++; /* \N{} is defined to be Unicode */
3949 s = e + 1; /* Point to just after the '}' */
3952 /* \c is a control character */
3956 *d++ = grok_bslash_c(*s, 1);
3959 yyerror("Missing control char name in \\c");
3960 yyquit(); /* Are at end of input, no sense continuing */
3963 non_portable_endpoint++;
3967 /* printf-style backslashes, formfeeds, newlines, etc */
3993 } /* end if (backslash) */
3996 /* Just copy the input to the output, though we may have to convert
3999 * If the input has the same representation in UTF-8 as not, it will be
4000 * a single byte, and we don't care about UTF8ness; just copy the byte */
4001 if (NATIVE_BYTE_IS_INVARIANT((U8)(*s))) {
4004 else if (! this_utf8 && ! has_utf8) {
4005 /* If neither source nor output is UTF-8, is also a single byte,
4006 * just copy it; but this byte counts should we later have to
4007 * convert to UTF-8 */
4009 utf8_variant_count++;
4011 else if (this_utf8 && has_utf8) { /* Both UTF-8, can just copy */
4012 const STRLEN len = UTF8SKIP(s);
4014 /* We expect the source to have already been checked for
4016 assert(isUTF8_CHAR((U8 *) s, (U8 *) send));
4018 Copy(s, d, len, U8);
4022 else { /* UTF8ness matters and doesn't match, need to convert */
4024 const UV nextuv = (this_utf8)
4025 ? utf8n_to_uvchr((U8*)s, send - s, &len, 0)
4027 STRLEN need = UVCHR_SKIP(nextuv);
4030 SvCUR_set(sv, d - SvPVX_const(sv));
4034 /* See Note on sizing above. */
4035 need += (STRLEN)(send - s) + 1;
4037 if (utf8_variant_count == 0) {
4039 d = SvCUR(sv) + SvGROW(sv, SvCUR(sv) + need);
4042 sv_utf8_upgrade_flags_grow(sv,
4043 SV_GMAGIC|SV_FORCE_UTF8_UPGRADE,
4045 d = SvPVX(sv) + SvCUR(sv);
4048 } else if (need > len) {
4049 /* encoded value larger than old, may need extra space (NOTE:
4050 * SvCUR() is not set correctly here). See Note on sizing
4052 const STRLEN extra = need + (send - s) + 1;
4053 const STRLEN off = d - SvPVX_const(sv);
4054 d = off + SvGROW(sv, off + extra);
4058 d = (char*)uvchr_to_utf8((U8*)d, nextuv);
4060 } /* while loop to process each character */
4062 /* terminate the string and set up the sv */
4064 SvCUR_set(sv, d - SvPVX_const(sv));
4065 if (SvCUR(sv) >= SvLEN(sv))
4066 Perl_croak(aTHX_ "panic: constant overflowed allocated space, %" UVuf
4067 " >= %" UVuf, (UV)SvCUR(sv), (UV)SvLEN(sv));
4072 if (PL_lex_inwhat == OP_TRANS && PL_parser->lex_sub_op) {
4073 PL_parser->lex_sub_op->op_private |=
4074 (PL_lex_repl ? OPpTRANS_FROM_UTF : OPpTRANS_TO_UTF);
4078 /* shrink the sv if we allocated more than we used */
4079 if (SvCUR(sv) + 5 < SvLEN(sv)) {
4080 SvPV_shrink_to_cur(sv);
4083 /* return the substring (via pl_yylval) only if we parsed anything */
4086 for (; s2 < s; s2++) {
4088 COPLINE_INC_WITH_HERELINES;
4090 SvREFCNT_inc_simple_void_NN(sv);
4091 if ( (PL_hints & ( PL_lex_inpat ? HINT_NEW_RE : HINT_NEW_STRING ))
4092 && ! PL_parser->lex_re_reparsing)
4094 const char *const key = PL_lex_inpat ? "qr" : "q";
4095 const STRLEN keylen = PL_lex_inpat ? 2 : 1;
4099 if (PL_lex_inwhat == OP_TRANS) {
4102 } else if (PL_lex_inwhat == OP_SUBST && !PL_lex_inpat) {
4105 } else if (PL_lex_inpat && SvIVX(PL_linestr) == '\'') {
4113 sv = S_new_constant(aTHX_ start, s - start, key, keylen, sv, NULL,
4116 pl_yylval.opval = newSVOP(OP_CONST, 0, sv);
4118 LEAVE_with_name("scan_const");
4123 * Returns TRUE if there's more to the expression (e.g., a subscript),
4126 * It deals with "$foo[3]" and /$foo[3]/ and /$foo[0123456789$]+/
4128 * ->[ and ->{ return TRUE
4129 * ->$* ->$#* ->@* ->@[ ->@{ return TRUE if postderef_qq is enabled
4130 * { and [ outside a pattern are always subscripts, so return TRUE
4131 * if we're outside a pattern and it's not { or [, then return FALSE
4132 * if we're in a pattern and the first char is a {
4133 * {4,5} (any digits around the comma) returns FALSE
4134 * if we're in a pattern and the first char is a [
4136 * [SOMETHING] has a funky algorithm to decide whether it's a
4137 * character class or not. It has to deal with things like
4138 * /$foo[-3]/ and /$foo[$bar]/ as well as /$foo[$\d]+/
4139 * anything else returns TRUE
4142 /* This is the one truly awful dwimmer necessary to conflate C and sed. */
4145 S_intuit_more(pTHX_ char *s, char *e)
4147 PERL_ARGS_ASSERT_INTUIT_MORE;
4149 if (PL_lex_brackets)
4151 if (*s == '-' && s[1] == '>' && (s[2] == '[' || s[2] == '{'))
4153 if (*s == '-' && s[1] == '>'
4154 && FEATURE_POSTDEREF_QQ_IS_ENABLED
4155 && ( (s[2] == '$' && (s[3] == '*' || (s[3] == '#' && s[4] == '*')))
4156 ||(s[2] == '@' && strchr("*[{",s[3])) ))
4158 if (*s != '{' && *s != '[')
4163 /* In a pattern, so maybe we have {n,m}. */
4171 /* On the other hand, maybe we have a character class */
4174 if (*s == ']' || *s == '^')
4177 /* this is terrifying, and it works */
4180 const char * const send = (char *) memchr(s, ']', e - s);
4181 unsigned char un_char, last_un_char;
4182 char tmpbuf[sizeof PL_tokenbuf * 4];
4184 if (!send) /* has to be an expression */
4186 weight = 2; /* let's weigh the evidence */
4190 else if (isDIGIT(*s)) {
4192 if (isDIGIT(s[1]) && s[2] == ']')
4198 Zero(seen,256,char);
4200 for (; s < send; s++) {
4201 last_un_char = un_char;
4202 un_char = (unsigned char)*s;
4207 weight -= seen[un_char] * 10;
4208 if (isWORDCHAR_lazy_if_safe(s+1, PL_bufend, UTF)) {
4210 scan_ident(s, tmpbuf, sizeof tmpbuf, FALSE);
4211 len = (int)strlen(tmpbuf);
4212 if (len > 1 && gv_fetchpvn_flags(tmpbuf, len,
4213 UTF ? SVf_UTF8 : 0, SVt_PV))
4220 && strchr("[#!%*<>()-=",s[1]))
4222 if (/*{*/ strchr("])} =",s[2]))
4231 if (strchr("wds]",s[1]))
4233 else if (seen[(U8)'\''] || seen[(U8)'"'])
4235 else if (strchr("rnftbxcav",s[1]))
4237 else if (isDIGIT(s[1])) {
4239 while (s[1] && isDIGIT(s[1]))
4249 if (strchr("aA01! ",last_un_char))
4251 if (strchr("zZ79~",s[1]))
4253 if (last_un_char == 255 && (isDIGIT(s[1]) || s[1] == '$'))