3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by Larry Wall
7 * You may distribute under the terms of either the GNU General Public
8 * License or the Artistic License, as specified in the README file.
13 * 'I wonder what the Entish is for "yes" and "no",' he thought.
16 * [p.480 of _The Lord of the Rings_, III/iv: "Treebeard"]
22 * This file contains the code that creates, manipulates and destroys
23 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
24 * structure of an SV, so their creation and destruction is handled
25 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
26 * level functions (eg. substr, split, join) for each of the types are
36 # if __STDC_VERSION__ >= 199901L && !defined(VMS)
47 /* Missing proto on LynxOS */
48 char *gconvert(double, int, int, char *);
51 #ifdef PERL_UTF8_CACHE_ASSERT
52 /* if adding more checks watch out for the following tests:
53 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
54 * lib/utf8.t lib/Unicode/Collate/t/index.t
57 # define ASSERT_UTF8_CACHE(cache) \
58 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
59 assert((cache)[2] <= (cache)[3]); \
60 assert((cache)[3] <= (cache)[1]);} \
63 # define ASSERT_UTF8_CACHE(cache) NOOP
66 #ifdef PERL_OLD_COPY_ON_WRITE
67 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
68 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
69 /* This is a pessimistic view. Scalar must be purely a read-write PV to copy-
73 /* ============================================================================
75 =head1 Allocation and deallocation of SVs.
77 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
78 sv, av, hv...) contains type and reference count information, and for
79 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
80 contains fields specific to each type. Some types store all they need
81 in the head, so don't have a body.
83 In all but the most memory-paranoid configurations (ex: PURIFY), heads
84 and bodies are allocated out of arenas, which by default are
85 approximately 4K chunks of memory parcelled up into N heads or bodies.
86 Sv-bodies are allocated by their sv-type, guaranteeing size
87 consistency needed to allocate safely from arrays.
89 For SV-heads, the first slot in each arena is reserved, and holds a
90 link to the next arena, some flags, and a note of the number of slots.
91 Snaked through each arena chain is a linked list of free items; when
92 this becomes empty, an extra arena is allocated and divided up into N
93 items which are threaded into the free list.
95 SV-bodies are similar, but they use arena-sets by default, which
96 separate the link and info from the arena itself, and reclaim the 1st
97 slot in the arena. SV-bodies are further described later.
99 The following global variables are associated with arenas:
101 PL_sv_arenaroot pointer to list of SV arenas
102 PL_sv_root pointer to list of free SV structures
104 PL_body_arenas head of linked-list of body arenas
105 PL_body_roots[] array of pointers to list of free bodies of svtype
106 arrays are indexed by the svtype needed
108 A few special SV heads are not allocated from an arena, but are
109 instead directly created in the interpreter structure, eg PL_sv_undef.
110 The size of arenas can be changed from the default by setting
111 PERL_ARENA_SIZE appropriately at compile time.
113 The SV arena serves the secondary purpose of allowing still-live SVs
114 to be located and destroyed during final cleanup.
116 At the lowest level, the macros new_SV() and del_SV() grab and free
117 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
118 to return the SV to the free list with error checking.) new_SV() calls
119 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
120 SVs in the free list have their SvTYPE field set to all ones.
122 At the time of very final cleanup, sv_free_arenas() is called from
123 perl_destruct() to physically free all the arenas allocated since the
124 start of the interpreter.
126 The function visit() scans the SV arenas list, and calls a specified
127 function for each SV it finds which is still live - ie which has an SvTYPE
128 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
129 following functions (specified as [function that calls visit()] / [function
130 called by visit() for each SV]):
132 sv_report_used() / do_report_used()
133 dump all remaining SVs (debugging aid)
135 sv_clean_objs() / do_clean_objs(),do_clean_named_objs(),
136 do_clean_named_io_objs()
137 Attempt to free all objects pointed to by RVs,
138 and try to do the same for all objects indirectly
139 referenced by typeglobs too. Called once from
140 perl_destruct(), prior to calling sv_clean_all()
143 sv_clean_all() / do_clean_all()
144 SvREFCNT_dec(sv) each remaining SV, possibly
145 triggering an sv_free(). It also sets the
146 SVf_BREAK flag on the SV to indicate that the
147 refcnt has been artificially lowered, and thus
148 stopping sv_free() from giving spurious warnings
149 about SVs which unexpectedly have a refcnt
150 of zero. called repeatedly from perl_destruct()
151 until there are no SVs left.
153 =head2 Arena allocator API Summary
155 Private API to rest of sv.c
159 new_XPVNV(), del_XPVGV(),
164 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
168 * ========================================================================= */
171 * "A time to plant, and a time to uproot what was planted..."
175 # define MEM_LOG_NEW_SV(sv, file, line, func) \
176 Perl_mem_log_new_sv(sv, file, line, func)
177 # define MEM_LOG_DEL_SV(sv, file, line, func) \
178 Perl_mem_log_del_sv(sv, file, line, func)
180 # define MEM_LOG_NEW_SV(sv, file, line, func) NOOP
181 # define MEM_LOG_DEL_SV(sv, file, line, func) NOOP
184 #ifdef DEBUG_LEAKING_SCALARS
185 # define FREE_SV_DEBUG_FILE(sv) Safefree((sv)->sv_debug_file)
186 # define DEBUG_SV_SERIAL(sv) \
187 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) del_SV\n", \
188 PTR2UV(sv), (long)(sv)->sv_debug_serial))
190 # define FREE_SV_DEBUG_FILE(sv)
191 # define DEBUG_SV_SERIAL(sv) NOOP
195 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
196 # define SvARENA_CHAIN_SET(sv,val) (sv)->sv_u.svu_rv = MUTABLE_SV((val))
197 /* Whilst I'd love to do this, it seems that things like to check on
199 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
201 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
202 PoisonNew(&SvREFCNT(sv), 1, U32)
204 # define SvARENA_CHAIN(sv) SvANY(sv)
205 # define SvARENA_CHAIN_SET(sv,val) SvANY(sv) = (void *)(val)
206 # define POSION_SV_HEAD(sv)
209 /* Mark an SV head as unused, and add to free list.
211 * If SVf_BREAK is set, skip adding it to the free list, as this SV had
212 * its refcount artificially decremented during global destruction, so
213 * there may be dangling pointers to it. The last thing we want in that
214 * case is for it to be reused. */
216 #define plant_SV(p) \
218 const U32 old_flags = SvFLAGS(p); \
219 MEM_LOG_DEL_SV(p, __FILE__, __LINE__, FUNCTION__); \
220 DEBUG_SV_SERIAL(p); \
221 FREE_SV_DEBUG_FILE(p); \
223 SvFLAGS(p) = SVTYPEMASK; \
224 if (!(old_flags & SVf_BREAK)) { \
225 SvARENA_CHAIN_SET(p, PL_sv_root); \
231 #define uproot_SV(p) \
234 PL_sv_root = MUTABLE_SV(SvARENA_CHAIN(p)); \
239 /* make some more SVs by adding another arena */
246 char *chunk; /* must use New here to match call to */
247 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
248 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
253 /* new_SV(): return a new, empty SV head */
255 #ifdef DEBUG_LEAKING_SCALARS
256 /* provide a real function for a debugger to play with */
258 S_new_SV(pTHX_ const char *file, int line, const char *func)
265 sv = S_more_sv(aTHX);
269 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
270 sv->sv_debug_line = (U16) (PL_parser && PL_parser->copline != NOLINE
276 sv->sv_debug_inpad = 0;
277 sv->sv_debug_parent = NULL;
278 sv->sv_debug_file = PL_curcop ? savepv(CopFILE(PL_curcop)): NULL;
280 sv->sv_debug_serial = PL_sv_serial++;
282 MEM_LOG_NEW_SV(sv, file, line, func);
283 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) new_SV (from %s:%d [%s])\n",
284 PTR2UV(sv), (long)sv->sv_debug_serial, file, line, func));
288 # define new_SV(p) (p)=S_new_SV(aTHX_ __FILE__, __LINE__, FUNCTION__)
296 (p) = S_more_sv(aTHX); \
300 MEM_LOG_NEW_SV(p, __FILE__, __LINE__, FUNCTION__); \
305 /* del_SV(): return an empty SV head to the free list */
318 S_del_sv(pTHX_ SV *p)
322 PERL_ARGS_ASSERT_DEL_SV;
327 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
328 const SV * const sv = sva + 1;
329 const SV * const svend = &sva[SvREFCNT(sva)];
330 if (p >= sv && p < svend) {
336 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
337 "Attempt to free non-arena SV: 0x%"UVxf
338 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
345 #else /* ! DEBUGGING */
347 #define del_SV(p) plant_SV(p)
349 #endif /* DEBUGGING */
353 =head1 SV Manipulation Functions
355 =for apidoc sv_add_arena
357 Given a chunk of memory, link it to the head of the list of arenas,
358 and split it into a list of free SVs.
364 S_sv_add_arena(pTHX_ char *const ptr, const U32 size, const U32 flags)
367 SV *const sva = MUTABLE_SV(ptr);
371 PERL_ARGS_ASSERT_SV_ADD_ARENA;
373 /* The first SV in an arena isn't an SV. */
374 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
375 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
376 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
378 PL_sv_arenaroot = sva;
379 PL_sv_root = sva + 1;
381 svend = &sva[SvREFCNT(sva) - 1];
384 SvARENA_CHAIN_SET(sv, (sv + 1));
388 /* Must always set typemask because it's always checked in on cleanup
389 when the arenas are walked looking for objects. */
390 SvFLAGS(sv) = SVTYPEMASK;
393 SvARENA_CHAIN_SET(sv, 0);
397 SvFLAGS(sv) = SVTYPEMASK;
400 /* visit(): call the named function for each non-free SV in the arenas
401 * whose flags field matches the flags/mask args. */
404 S_visit(pTHX_ SVFUNC_t f, const U32 flags, const U32 mask)
410 PERL_ARGS_ASSERT_VISIT;
412 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
413 const SV * const svend = &sva[SvREFCNT(sva)];
415 for (sv = sva + 1; sv < svend; ++sv) {
416 if (SvTYPE(sv) != (svtype)SVTYPEMASK
417 && (sv->sv_flags & mask) == flags
430 /* called by sv_report_used() for each live SV */
433 do_report_used(pTHX_ SV *const sv)
435 if (SvTYPE(sv) != (svtype)SVTYPEMASK) {
436 PerlIO_printf(Perl_debug_log, "****\n");
443 =for apidoc sv_report_used
445 Dump the contents of all SVs not yet freed (debugging aid).
451 Perl_sv_report_used(pTHX)
454 visit(do_report_used, 0, 0);
460 /* called by sv_clean_objs() for each live SV */
463 do_clean_objs(pTHX_ SV *const ref)
468 SV * const target = SvRV(ref);
469 if (SvOBJECT(target)) {
470 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
471 if (SvWEAKREF(ref)) {
472 sv_del_backref(target, ref);
478 SvREFCNT_dec(target);
483 /* XXX Might want to check arrays, etc. */
487 /* clear any slots in a GV which hold objects - except IO;
488 * called by sv_clean_objs() for each live GV */
491 do_clean_named_objs(pTHX_ SV *const sv)
495 assert(SvTYPE(sv) == SVt_PVGV);
496 assert(isGV_with_GP(sv));
500 /* freeing GP entries may indirectly free the current GV;
501 * hold onto it while we mess with the GP slots */
504 if ( ((obj = GvSV(sv) )) && SvOBJECT(obj)) {
505 DEBUG_D((PerlIO_printf(Perl_debug_log,
506 "Cleaning named glob SV object:\n "), sv_dump(obj)));
510 if ( ((obj = MUTABLE_SV(GvAV(sv)) )) && SvOBJECT(obj)) {
511 DEBUG_D((PerlIO_printf(Perl_debug_log,
512 "Cleaning named glob AV object:\n "), sv_dump(obj)));
516 if ( ((obj = MUTABLE_SV(GvHV(sv)) )) && SvOBJECT(obj)) {
517 DEBUG_D((PerlIO_printf(Perl_debug_log,
518 "Cleaning named glob HV object:\n "), sv_dump(obj)));
522 if ( ((obj = MUTABLE_SV(GvCV(sv)) )) && SvOBJECT(obj)) {
523 DEBUG_D((PerlIO_printf(Perl_debug_log,
524 "Cleaning named glob CV object:\n "), sv_dump(obj)));
528 SvREFCNT_dec(sv); /* undo the inc above */
531 /* clear any IO slots in a GV which hold objects (except stderr, defout);
532 * called by sv_clean_objs() for each live GV */
535 do_clean_named_io_objs(pTHX_ SV *const sv)
539 assert(SvTYPE(sv) == SVt_PVGV);
540 assert(isGV_with_GP(sv));
541 if (!GvGP(sv) || sv == (SV*)PL_stderrgv || sv == (SV*)PL_defoutgv)
545 if ( ((obj = MUTABLE_SV(GvIO(sv)) )) && SvOBJECT(obj)) {
546 DEBUG_D((PerlIO_printf(Perl_debug_log,
547 "Cleaning named glob IO object:\n "), sv_dump(obj)));
551 SvREFCNT_dec(sv); /* undo the inc above */
554 /* Void wrapper to pass to visit() */
556 do_curse(pTHX_ SV * const sv) {
557 if ((PL_stderrgv && GvGP(PL_stderrgv) && (SV*)GvIO(PL_stderrgv) == sv)
558 || (PL_defoutgv && GvGP(PL_defoutgv) && (SV*)GvIO(PL_defoutgv) == sv))
564 =for apidoc sv_clean_objs
566 Attempt to destroy all objects not yet freed.
572 Perl_sv_clean_objs(pTHX)
576 PL_in_clean_objs = TRUE;
577 visit(do_clean_objs, SVf_ROK, SVf_ROK);
578 /* Some barnacles may yet remain, clinging to typeglobs.
579 * Run the non-IO destructors first: they may want to output
580 * error messages, close files etc */
581 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
582 visit(do_clean_named_io_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
583 /* And if there are some very tenacious barnacles clinging to arrays,
584 closures, or what have you.... */
585 visit(do_curse, SVs_OBJECT, SVs_OBJECT);
586 olddef = PL_defoutgv;
587 PL_defoutgv = NULL; /* disable skip of PL_defoutgv */
588 if (olddef && isGV_with_GP(olddef))
589 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olddef));
590 olderr = PL_stderrgv;
591 PL_stderrgv = NULL; /* disable skip of PL_stderrgv */
592 if (olderr && isGV_with_GP(olderr))
593 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olderr));
594 SvREFCNT_dec(olddef);
595 PL_in_clean_objs = FALSE;
598 /* called by sv_clean_all() for each live SV */
601 do_clean_all(pTHX_ SV *const sv)
604 if (sv == (const SV *) PL_fdpid || sv == (const SV *)PL_strtab) {
605 /* don't clean pid table and strtab */
608 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
609 SvFLAGS(sv) |= SVf_BREAK;
614 =for apidoc sv_clean_all
616 Decrement the refcnt of each remaining SV, possibly triggering a
617 cleanup. This function may have to be called multiple times to free
618 SVs which are in complex self-referential hierarchies.
624 Perl_sv_clean_all(pTHX)
628 PL_in_clean_all = TRUE;
629 cleaned = visit(do_clean_all, 0,0);
634 ARENASETS: a meta-arena implementation which separates arena-info
635 into struct arena_set, which contains an array of struct
636 arena_descs, each holding info for a single arena. By separating
637 the meta-info from the arena, we recover the 1st slot, formerly
638 borrowed for list management. The arena_set is about the size of an
639 arena, avoiding the needless malloc overhead of a naive linked-list.
641 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
642 memory in the last arena-set (1/2 on average). In trade, we get
643 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
644 smaller types). The recovery of the wasted space allows use of
645 small arenas for large, rare body types, by changing array* fields
646 in body_details_by_type[] below.
649 char *arena; /* the raw storage, allocated aligned */
650 size_t size; /* its size ~4k typ */
651 svtype utype; /* bodytype stored in arena */
656 /* Get the maximum number of elements in set[] such that struct arena_set
657 will fit within PERL_ARENA_SIZE, which is probably just under 4K, and
658 therefore likely to be 1 aligned memory page. */
660 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
661 - 2 * sizeof(int)) / sizeof (struct arena_desc))
664 struct arena_set* next;
665 unsigned int set_size; /* ie ARENAS_PER_SET */
666 unsigned int curr; /* index of next available arena-desc */
667 struct arena_desc set[ARENAS_PER_SET];
671 =for apidoc sv_free_arenas
673 Deallocate the memory used by all arenas. Note that all the individual SV
674 heads and bodies within the arenas must already have been freed.
679 Perl_sv_free_arenas(pTHX)
686 /* Free arenas here, but be careful about fake ones. (We assume
687 contiguity of the fake ones with the corresponding real ones.) */
689 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
690 svanext = MUTABLE_SV(SvANY(sva));
691 while (svanext && SvFAKE(svanext))
692 svanext = MUTABLE_SV(SvANY(svanext));
699 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
702 struct arena_set *current = aroot;
705 assert(aroot->set[i].arena);
706 Safefree(aroot->set[i].arena);
714 i = PERL_ARENA_ROOTS_SIZE;
716 PL_body_roots[i] = 0;
723 Here are mid-level routines that manage the allocation of bodies out
724 of the various arenas. There are 5 kinds of arenas:
726 1. SV-head arenas, which are discussed and handled above
727 2. regular body arenas
728 3. arenas for reduced-size bodies
731 Arena types 2 & 3 are chained by body-type off an array of
732 arena-root pointers, which is indexed by svtype. Some of the
733 larger/less used body types are malloced singly, since a large
734 unused block of them is wasteful. Also, several svtypes dont have
735 bodies; the data fits into the sv-head itself. The arena-root
736 pointer thus has a few unused root-pointers (which may be hijacked
737 later for arena types 4,5)
739 3 differs from 2 as an optimization; some body types have several
740 unused fields in the front of the structure (which are kept in-place
741 for consistency). These bodies can be allocated in smaller chunks,
742 because the leading fields arent accessed. Pointers to such bodies
743 are decremented to point at the unused 'ghost' memory, knowing that
744 the pointers are used with offsets to the real memory.
747 =head1 SV-Body Allocation
749 Allocation of SV-bodies is similar to SV-heads, differing as follows;
750 the allocation mechanism is used for many body types, so is somewhat
751 more complicated, it uses arena-sets, and has no need for still-live
754 At the outermost level, (new|del)_X*V macros return bodies of the
755 appropriate type. These macros call either (new|del)_body_type or
756 (new|del)_body_allocated macro pairs, depending on specifics of the
757 type. Most body types use the former pair, the latter pair is used to
758 allocate body types with "ghost fields".
760 "ghost fields" are fields that are unused in certain types, and
761 consequently don't need to actually exist. They are declared because
762 they're part of a "base type", which allows use of functions as
763 methods. The simplest examples are AVs and HVs, 2 aggregate types
764 which don't use the fields which support SCALAR semantics.
766 For these types, the arenas are carved up into appropriately sized
767 chunks, we thus avoid wasted memory for those unaccessed members.
768 When bodies are allocated, we adjust the pointer back in memory by the
769 size of the part not allocated, so it's as if we allocated the full
770 structure. (But things will all go boom if you write to the part that
771 is "not there", because you'll be overwriting the last members of the
772 preceding structure in memory.)
774 We calculate the correction using the STRUCT_OFFSET macro on the first
775 member present. If the allocated structure is smaller (no initial NV
776 actually allocated) then the net effect is to subtract the size of the NV
777 from the pointer, to return a new pointer as if an initial NV were actually
778 allocated. (We were using structures named *_allocated for this, but
779 this turned out to be a subtle bug, because a structure without an NV
780 could have a lower alignment constraint, but the compiler is allowed to
781 optimised accesses based on the alignment constraint of the actual pointer
782 to the full structure, for example, using a single 64 bit load instruction
783 because it "knows" that two adjacent 32 bit members will be 8-byte aligned.)
785 This is the same trick as was used for NV and IV bodies. Ironically it
786 doesn't need to be used for NV bodies any more, because NV is now at
787 the start of the structure. IV bodies don't need it either, because
788 they are no longer allocated.
790 In turn, the new_body_* allocators call S_new_body(), which invokes
791 new_body_inline macro, which takes a lock, and takes a body off the
792 linked list at PL_body_roots[sv_type], calling Perl_more_bodies() if
793 necessary to refresh an empty list. Then the lock is released, and
794 the body is returned.
796 Perl_more_bodies allocates a new arena, and carves it up into an array of N
797 bodies, which it strings into a linked list. It looks up arena-size
798 and body-size from the body_details table described below, thus
799 supporting the multiple body-types.
801 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
802 the (new|del)_X*V macros are mapped directly to malloc/free.
804 For each sv-type, struct body_details bodies_by_type[] carries
805 parameters which control these aspects of SV handling:
807 Arena_size determines whether arenas are used for this body type, and if
808 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
809 zero, forcing individual mallocs and frees.
811 Body_size determines how big a body is, and therefore how many fit into
812 each arena. Offset carries the body-pointer adjustment needed for
813 "ghost fields", and is used in *_allocated macros.
815 But its main purpose is to parameterize info needed in
816 Perl_sv_upgrade(). The info here dramatically simplifies the function
817 vs the implementation in 5.8.8, making it table-driven. All fields
818 are used for this, except for arena_size.
820 For the sv-types that have no bodies, arenas are not used, so those
821 PL_body_roots[sv_type] are unused, and can be overloaded. In
822 something of a special case, SVt_NULL is borrowed for HE arenas;
823 PL_body_roots[HE_SVSLOT=SVt_NULL] is filled by S_more_he, but the
824 bodies_by_type[SVt_NULL] slot is not used, as the table is not
829 struct body_details {
830 U8 body_size; /* Size to allocate */
831 U8 copy; /* Size of structure to copy (may be shorter) */
833 unsigned int type : 4; /* We have space for a sanity check. */
834 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
835 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
836 unsigned int arena : 1; /* Allocated from an arena */
837 size_t arena_size; /* Size of arena to allocate */
845 /* With -DPURFIY we allocate everything directly, and don't use arenas.
846 This seems a rather elegant way to simplify some of the code below. */
847 #define HASARENA FALSE
849 #define HASARENA TRUE
851 #define NOARENA FALSE
853 /* Size the arenas to exactly fit a given number of bodies. A count
854 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
855 simplifying the default. If count > 0, the arena is sized to fit
856 only that many bodies, allowing arenas to be used for large, rare
857 bodies (XPVFM, XPVIO) without undue waste. The arena size is
858 limited by PERL_ARENA_SIZE, so we can safely oversize the
861 #define FIT_ARENA0(body_size) \
862 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
863 #define FIT_ARENAn(count,body_size) \
864 ( count * body_size <= PERL_ARENA_SIZE) \
865 ? count * body_size \
866 : FIT_ARENA0 (body_size)
867 #define FIT_ARENA(count,body_size) \
869 ? FIT_ARENAn (count, body_size) \
870 : FIT_ARENA0 (body_size)
872 /* Calculate the length to copy. Specifically work out the length less any
873 final padding the compiler needed to add. See the comment in sv_upgrade
874 for why copying the padding proved to be a bug. */
876 #define copy_length(type, last_member) \
877 STRUCT_OFFSET(type, last_member) \
878 + sizeof (((type*)SvANY((const SV *)0))->last_member)
880 static const struct body_details bodies_by_type[] = {
881 /* HEs use this offset for their arena. */
882 { 0, 0, 0, SVt_NULL, FALSE, NONV, NOARENA, 0 },
884 /* The bind placeholder pretends to be an RV for now.
885 Also it's marked as "can't upgrade" to stop anyone using it before it's
887 { 0, 0, 0, SVt_BIND, TRUE, NONV, NOARENA, 0 },
889 /* IVs are in the head, so the allocation size is 0. */
891 sizeof(IV), /* This is used to copy out the IV body. */
892 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
893 NOARENA /* IVS don't need an arena */, 0
896 { sizeof(NV), sizeof(NV),
897 STRUCT_OFFSET(XPVNV, xnv_u),
898 SVt_NV, FALSE, HADNV, HASARENA, FIT_ARENA(0, sizeof(NV)) },
900 { sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur),
901 copy_length(XPV, xpv_len) - STRUCT_OFFSET(XPV, xpv_cur),
902 + STRUCT_OFFSET(XPV, xpv_cur),
903 SVt_PV, FALSE, NONV, HASARENA,
904 FIT_ARENA(0, sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur)) },
906 { sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur),
907 copy_length(XPVIV, xiv_u) - STRUCT_OFFSET(XPV, xpv_cur),
908 + STRUCT_OFFSET(XPV, xpv_cur),
909 SVt_PVIV, FALSE, NONV, HASARENA,
910 FIT_ARENA(0, sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur)) },
912 { sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur),
913 copy_length(XPVNV, xnv_u) - STRUCT_OFFSET(XPV, xpv_cur),
914 + STRUCT_OFFSET(XPV, xpv_cur),
915 SVt_PVNV, FALSE, HADNV, HASARENA,
916 FIT_ARENA(0, sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur)) },
918 { sizeof(XPVMG), copy_length(XPVMG, xnv_u), 0, SVt_PVMG, FALSE, HADNV,
919 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
924 SVt_REGEXP, FALSE, NONV, HASARENA,
925 FIT_ARENA(0, sizeof(regexp))
928 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
929 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
931 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
932 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
935 copy_length(XPVAV, xav_alloc),
937 SVt_PVAV, TRUE, NONV, HASARENA,
938 FIT_ARENA(0, sizeof(XPVAV)) },
941 copy_length(XPVHV, xhv_max),
943 SVt_PVHV, TRUE, NONV, HASARENA,
944 FIT_ARENA(0, sizeof(XPVHV)) },
949 SVt_PVCV, TRUE, NONV, HASARENA,
950 FIT_ARENA(0, sizeof(XPVCV)) },
955 SVt_PVFM, TRUE, NONV, NOARENA,
956 FIT_ARENA(20, sizeof(XPVFM)) },
961 SVt_PVIO, TRUE, NONV, HASARENA,
962 FIT_ARENA(24, sizeof(XPVIO)) },
965 #define new_body_allocated(sv_type) \
966 (void *)((char *)S_new_body(aTHX_ sv_type) \
967 - bodies_by_type[sv_type].offset)
969 /* return a thing to the free list */
971 #define del_body(thing, root) \
973 void ** const thing_copy = (void **)thing; \
974 *thing_copy = *root; \
975 *root = (void*)thing_copy; \
980 #define new_XNV() safemalloc(sizeof(XPVNV))
981 #define new_XPVNV() safemalloc(sizeof(XPVNV))
982 #define new_XPVMG() safemalloc(sizeof(XPVMG))
984 #define del_XPVGV(p) safefree(p)
988 #define new_XNV() new_body_allocated(SVt_NV)
989 #define new_XPVNV() new_body_allocated(SVt_PVNV)
990 #define new_XPVMG() new_body_allocated(SVt_PVMG)
992 #define del_XPVGV(p) del_body(p + bodies_by_type[SVt_PVGV].offset, \
993 &PL_body_roots[SVt_PVGV])
997 /* no arena for you! */
999 #define new_NOARENA(details) \
1000 safemalloc((details)->body_size + (details)->offset)
1001 #define new_NOARENAZ(details) \
1002 safecalloc((details)->body_size + (details)->offset, 1)
1005 Perl_more_bodies (pTHX_ const svtype sv_type, const size_t body_size,
1006 const size_t arena_size)
1009 void ** const root = &PL_body_roots[sv_type];
1010 struct arena_desc *adesc;
1011 struct arena_set *aroot = (struct arena_set *) PL_body_arenas;
1015 const size_t good_arena_size = Perl_malloc_good_size(arena_size);
1016 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1017 static bool done_sanity_check;
1019 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1020 * variables like done_sanity_check. */
1021 if (!done_sanity_check) {
1022 unsigned int i = SVt_LAST;
1024 done_sanity_check = TRUE;
1027 assert (bodies_by_type[i].type == i);
1033 /* may need new arena-set to hold new arena */
1034 if (!aroot || aroot->curr >= aroot->set_size) {
1035 struct arena_set *newroot;
1036 Newxz(newroot, 1, struct arena_set);
1037 newroot->set_size = ARENAS_PER_SET;
1038 newroot->next = aroot;
1040 PL_body_arenas = (void *) newroot;
1041 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
1044 /* ok, now have arena-set with at least 1 empty/available arena-desc */
1045 curr = aroot->curr++;
1046 adesc = &(aroot->set[curr]);
1047 assert(!adesc->arena);
1049 Newx(adesc->arena, good_arena_size, char);
1050 adesc->size = good_arena_size;
1051 adesc->utype = sv_type;
1052 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %"UVuf"\n",
1053 curr, (void*)adesc->arena, (UV)good_arena_size));
1055 start = (char *) adesc->arena;
1057 /* Get the address of the byte after the end of the last body we can fit.
1058 Remember, this is integer division: */
1059 end = start + good_arena_size / body_size * body_size;
1061 /* computed count doesn't reflect the 1st slot reservation */
1062 #if defined(MYMALLOC) || defined(HAS_MALLOC_GOOD_SIZE)
1063 DEBUG_m(PerlIO_printf(Perl_debug_log,
1064 "arena %p end %p arena-size %d (from %d) type %d "
1066 (void*)start, (void*)end, (int)good_arena_size,
1067 (int)arena_size, sv_type, (int)body_size,
1068 (int)good_arena_size / (int)body_size));
1070 DEBUG_m(PerlIO_printf(Perl_debug_log,
1071 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1072 (void*)start, (void*)end,
1073 (int)arena_size, sv_type, (int)body_size,
1074 (int)good_arena_size / (int)body_size));
1076 *root = (void *)start;
1079 /* Where the next body would start: */
1080 char * const next = start + body_size;
1083 /* This is the last body: */
1084 assert(next == end);
1086 *(void **)start = 0;
1090 *(void**) start = (void *)next;
1095 /* grab a new thing from the free list, allocating more if necessary.
1096 The inline version is used for speed in hot routines, and the
1097 function using it serves the rest (unless PURIFY).
1099 #define new_body_inline(xpv, sv_type) \
1101 void ** const r3wt = &PL_body_roots[sv_type]; \
1102 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1103 ? *((void **)(r3wt)) : Perl_more_bodies(aTHX_ sv_type, \
1104 bodies_by_type[sv_type].body_size,\
1105 bodies_by_type[sv_type].arena_size)); \
1106 *(r3wt) = *(void**)(xpv); \
1112 S_new_body(pTHX_ const svtype sv_type)
1116 new_body_inline(xpv, sv_type);
1122 static const struct body_details fake_rv =
1123 { 0, 0, 0, SVt_IV, FALSE, NONV, NOARENA, 0 };
1126 =for apidoc sv_upgrade
1128 Upgrade an SV to a more complex form. Generally adds a new body type to the
1129 SV, then copies across as much information as possible from the old body.
1130 It croaks if the SV is already in a more complex form than requested. You
1131 generally want to use the C<SvUPGRADE> macro wrapper, which checks the type
1132 before calling C<sv_upgrade>, and hence does not croak. See also
1139 Perl_sv_upgrade(pTHX_ register SV *const sv, svtype new_type)
1144 const svtype old_type = SvTYPE(sv);
1145 const struct body_details *new_type_details;
1146 const struct body_details *old_type_details
1147 = bodies_by_type + old_type;
1148 SV *referant = NULL;
1150 PERL_ARGS_ASSERT_SV_UPGRADE;
1152 if (old_type == new_type)
1155 /* This clause was purposefully added ahead of the early return above to
1156 the shared string hackery for (sort {$a <=> $b} keys %hash), with the
1157 inference by Nick I-S that it would fix other troublesome cases. See
1158 changes 7162, 7163 (f130fd4589cf5fbb24149cd4db4137c8326f49c1 and parent)
1160 Given that shared hash key scalars are no longer PVIV, but PV, there is
1161 no longer need to unshare so as to free up the IVX slot for its proper
1162 purpose. So it's safe to move the early return earlier. */
1164 if (new_type != SVt_PV && SvIsCOW(sv)) {
1165 sv_force_normal_flags(sv, 0);
1168 old_body = SvANY(sv);
1170 /* Copying structures onto other structures that have been neatly zeroed
1171 has a subtle gotcha. Consider XPVMG
1173 +------+------+------+------+------+-------+-------+
1174 | NV | CUR | LEN | IV | MAGIC | STASH |
1175 +------+------+------+------+------+-------+-------+
1176 0 4 8 12 16 20 24 28
1178 where NVs are aligned to 8 bytes, so that sizeof that structure is
1179 actually 32 bytes long, with 4 bytes of padding at the end:
1181 +------+------+------+------+------+-------+-------+------+
1182 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1183 +------+------+------+------+------+-------+-------+------+
1184 0 4 8 12 16 20 24 28 32
1186 so what happens if you allocate memory for this structure:
1188 +------+------+------+------+------+-------+-------+------+------+...
1189 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1190 +------+------+------+------+------+-------+-------+------+------+...
1191 0 4 8 12 16 20 24 28 32 36
1193 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1194 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1195 started out as zero once, but it's quite possible that it isn't. So now,
1196 rather than a nicely zeroed GP, you have it pointing somewhere random.
1199 (In fact, GP ends up pointing at a previous GP structure, because the
1200 principle cause of the padding in XPVMG getting garbage is a copy of
1201 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1202 this happens to be moot because XPVGV has been re-ordered, with GP
1203 no longer after STASH)
1205 So we are careful and work out the size of used parts of all the
1213 referant = SvRV(sv);
1214 old_type_details = &fake_rv;
1215 if (new_type == SVt_NV)
1216 new_type = SVt_PVNV;
1218 if (new_type < SVt_PVIV) {
1219 new_type = (new_type == SVt_NV)
1220 ? SVt_PVNV : SVt_PVIV;
1225 if (new_type < SVt_PVNV) {
1226 new_type = SVt_PVNV;
1230 assert(new_type > SVt_PV);
1231 assert(SVt_IV < SVt_PV);
1232 assert(SVt_NV < SVt_PV);
1239 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1240 there's no way that it can be safely upgraded, because perl.c
1241 expects to Safefree(SvANY(PL_mess_sv)) */
1242 assert(sv != PL_mess_sv);
1243 /* This flag bit is used to mean other things in other scalar types.
1244 Given that it only has meaning inside the pad, it shouldn't be set
1245 on anything that can get upgraded. */
1246 assert(!SvPAD_TYPED(sv));
1249 if (old_type_details->cant_upgrade)
1250 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1251 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1254 if (old_type > new_type)
1255 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1256 (int)old_type, (int)new_type);
1258 new_type_details = bodies_by_type + new_type;
1260 SvFLAGS(sv) &= ~SVTYPEMASK;
1261 SvFLAGS(sv) |= new_type;
1263 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1264 the return statements above will have triggered. */
1265 assert (new_type != SVt_NULL);
1268 assert(old_type == SVt_NULL);
1269 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1273 assert(old_type == SVt_NULL);
1274 SvANY(sv) = new_XNV();
1279 assert(new_type_details->body_size);
1282 assert(new_type_details->arena);
1283 assert(new_type_details->arena_size);
1284 /* This points to the start of the allocated area. */
1285 new_body_inline(new_body, new_type);
1286 Zero(new_body, new_type_details->body_size, char);
1287 new_body = ((char *)new_body) - new_type_details->offset;
1289 /* We always allocated the full length item with PURIFY. To do this
1290 we fake things so that arena is false for all 16 types.. */
1291 new_body = new_NOARENAZ(new_type_details);
1293 SvANY(sv) = new_body;
1294 if (new_type == SVt_PVAV) {
1298 if (old_type_details->body_size) {
1301 /* It will have been zeroed when the new body was allocated.
1302 Lets not write to it, in case it confuses a write-back
1308 #ifndef NODEFAULT_SHAREKEYS
1309 HvSHAREKEYS_on(sv); /* key-sharing on by default */
1311 HvMAX(sv) = 7; /* (start with 8 buckets) */
1314 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1315 The target created by newSVrv also is, and it can have magic.
1316 However, it never has SvPVX set.
1318 if (old_type == SVt_IV) {
1320 } else if (old_type >= SVt_PV) {
1321 assert(SvPVX_const(sv) == 0);
1324 if (old_type >= SVt_PVMG) {
1325 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1326 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1328 sv->sv_u.svu_array = NULL; /* or svu_hash */
1334 /* This ensures that SvTHINKFIRST(sv) is true, and hence that
1335 sv_force_normal_flags(sv) is called. */
1338 /* XXX Is this still needed? Was it ever needed? Surely as there is
1339 no route from NV to PVIV, NOK can never be true */
1340 assert(!SvNOKp(sv));
1351 assert(new_type_details->body_size);
1352 /* We always allocated the full length item with PURIFY. To do this
1353 we fake things so that arena is false for all 16 types.. */
1354 if(new_type_details->arena) {
1355 /* This points to the start of the allocated area. */
1356 new_body_inline(new_body, new_type);
1357 Zero(new_body, new_type_details->body_size, char);
1358 new_body = ((char *)new_body) - new_type_details->offset;
1360 new_body = new_NOARENAZ(new_type_details);
1362 SvANY(sv) = new_body;
1364 if (old_type_details->copy) {
1365 /* There is now the potential for an upgrade from something without
1366 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1367 int offset = old_type_details->offset;
1368 int length = old_type_details->copy;
1370 if (new_type_details->offset > old_type_details->offset) {
1371 const int difference
1372 = new_type_details->offset - old_type_details->offset;
1373 offset += difference;
1374 length -= difference;
1376 assert (length >= 0);
1378 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1382 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1383 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1384 * correct 0.0 for us. Otherwise, if the old body didn't have an
1385 * NV slot, but the new one does, then we need to initialise the
1386 * freshly created NV slot with whatever the correct bit pattern is
1388 if (old_type_details->zero_nv && !new_type_details->zero_nv
1389 && !isGV_with_GP(sv))
1393 if (new_type == SVt_PVIO) {
1394 IO * const io = MUTABLE_IO(sv);
1395 GV *iogv = gv_fetchpvs("IO::File::", GV_ADD, SVt_PVHV);
1398 /* Clear the stashcache because a new IO could overrule a package
1400 DEBUG_o(Perl_deb(aTHX_ "sv_upgrade clearing PL_stashcache\n"));
1401 hv_clear(PL_stashcache);
1403 SvSTASH_set(io, MUTABLE_HV(SvREFCNT_inc(GvHV(iogv))));
1404 IoPAGE_LEN(sv) = 60;
1406 if (old_type < SVt_PV) {
1407 /* referant will be NULL unless the old type was SVt_IV emulating
1409 sv->sv_u.svu_rv = referant;
1413 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1414 (unsigned long)new_type);
1417 if (old_type > SVt_IV) {
1421 /* Note that there is an assumption that all bodies of types that
1422 can be upgraded came from arenas. Only the more complex non-
1423 upgradable types are allowed to be directly malloc()ed. */
1424 assert(old_type_details->arena);
1425 del_body((void*)((char*)old_body + old_type_details->offset),
1426 &PL_body_roots[old_type]);
1432 =for apidoc sv_backoff
1434 Remove any string offset. You should normally use the C<SvOOK_off> macro
1441 Perl_sv_backoff(pTHX_ register SV *const sv)
1444 const char * const s = SvPVX_const(sv);
1446 PERL_ARGS_ASSERT_SV_BACKOFF;
1447 PERL_UNUSED_CONTEXT;
1450 assert(SvTYPE(sv) != SVt_PVHV);
1451 assert(SvTYPE(sv) != SVt_PVAV);
1453 SvOOK_offset(sv, delta);
1455 SvLEN_set(sv, SvLEN(sv) + delta);
1456 SvPV_set(sv, SvPVX(sv) - delta);
1457 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1458 SvFLAGS(sv) &= ~SVf_OOK;
1465 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1466 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1467 Use the C<SvGROW> wrapper instead.
1473 Perl_sv_grow(pTHX_ register SV *const sv, register STRLEN newlen)
1477 PERL_ARGS_ASSERT_SV_GROW;
1479 if (PL_madskills && newlen >= 0x100000) {
1480 PerlIO_printf(Perl_debug_log,
1481 "Allocation too large: %"UVxf"\n", (UV)newlen);
1483 #ifdef HAS_64K_LIMIT
1484 if (newlen >= 0x10000) {
1485 PerlIO_printf(Perl_debug_log,
1486 "Allocation too large: %"UVxf"\n", (UV)newlen);
1489 #endif /* HAS_64K_LIMIT */
1492 if (SvTYPE(sv) < SVt_PV) {
1493 sv_upgrade(sv, SVt_PV);
1494 s = SvPVX_mutable(sv);
1496 else if (SvOOK(sv)) { /* pv is offset? */
1498 s = SvPVX_mutable(sv);
1499 if (newlen > SvLEN(sv))
1500 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1501 #ifdef HAS_64K_LIMIT
1502 if (newlen >= 0x10000)
1507 s = SvPVX_mutable(sv);
1509 if (newlen > SvLEN(sv)) { /* need more room? */
1510 STRLEN minlen = SvCUR(sv);
1511 minlen += (minlen >> PERL_STRLEN_EXPAND_SHIFT) + 10;
1512 if (newlen < minlen)
1514 #ifndef Perl_safesysmalloc_size
1515 newlen = PERL_STRLEN_ROUNDUP(newlen);
1517 if (SvLEN(sv) && s) {
1518 s = (char*)saferealloc(s, newlen);
1521 s = (char*)safemalloc(newlen);
1522 if (SvPVX_const(sv) && SvCUR(sv)) {
1523 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1527 #ifdef Perl_safesysmalloc_size
1528 /* Do this here, do it once, do it right, and then we will never get
1529 called back into sv_grow() unless there really is some growing
1531 SvLEN_set(sv, Perl_safesysmalloc_size(s));
1533 SvLEN_set(sv, newlen);
1540 =for apidoc sv_setiv
1542 Copies an integer into the given SV, upgrading first if necessary.
1543 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1549 Perl_sv_setiv(pTHX_ register SV *const sv, const IV i)
1553 PERL_ARGS_ASSERT_SV_SETIV;
1555 SV_CHECK_THINKFIRST_COW_DROP(sv);
1556 switch (SvTYPE(sv)) {
1559 sv_upgrade(sv, SVt_IV);
1562 sv_upgrade(sv, SVt_PVIV);
1566 if (!isGV_with_GP(sv))
1573 /* diag_listed_as: Can't coerce %s to %s in %s */
1574 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1578 (void)SvIOK_only(sv); /* validate number */
1584 =for apidoc sv_setiv_mg
1586 Like C<sv_setiv>, but also handles 'set' magic.
1592 Perl_sv_setiv_mg(pTHX_ register SV *const sv, const IV i)
1594 PERL_ARGS_ASSERT_SV_SETIV_MG;
1601 =for apidoc sv_setuv
1603 Copies an unsigned integer into the given SV, upgrading first if necessary.
1604 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1610 Perl_sv_setuv(pTHX_ register SV *const sv, const UV u)
1612 PERL_ARGS_ASSERT_SV_SETUV;
1614 /* With the if statement to ensure that integers are stored as IVs whenever
1616 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1619 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1621 If you wish to remove the following if statement, so that this routine
1622 (and its callers) always return UVs, please benchmark to see what the
1623 effect is. Modern CPUs may be different. Or may not :-)
1625 if (u <= (UV)IV_MAX) {
1626 sv_setiv(sv, (IV)u);
1635 =for apidoc sv_setuv_mg
1637 Like C<sv_setuv>, but also handles 'set' magic.
1643 Perl_sv_setuv_mg(pTHX_ register SV *const sv, const UV u)
1645 PERL_ARGS_ASSERT_SV_SETUV_MG;
1652 =for apidoc sv_setnv
1654 Copies a double into the given SV, upgrading first if necessary.
1655 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1661 Perl_sv_setnv(pTHX_ register SV *const sv, const NV num)
1665 PERL_ARGS_ASSERT_SV_SETNV;
1667 SV_CHECK_THINKFIRST_COW_DROP(sv);
1668 switch (SvTYPE(sv)) {
1671 sv_upgrade(sv, SVt_NV);
1675 sv_upgrade(sv, SVt_PVNV);
1679 if (!isGV_with_GP(sv))
1686 /* diag_listed_as: Can't coerce %s to %s in %s */
1687 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1692 (void)SvNOK_only(sv); /* validate number */
1697 =for apidoc sv_setnv_mg
1699 Like C<sv_setnv>, but also handles 'set' magic.
1705 Perl_sv_setnv_mg(pTHX_ register SV *const sv, const NV num)
1707 PERL_ARGS_ASSERT_SV_SETNV_MG;
1713 /* Print an "isn't numeric" warning, using a cleaned-up,
1714 * printable version of the offending string
1718 S_not_a_number(pTHX_ SV *const sv)
1725 PERL_ARGS_ASSERT_NOT_A_NUMBER;
1728 dsv = newSVpvs_flags("", SVs_TEMP);
1729 pv = sv_uni_display(dsv, sv, 10, UNI_DISPLAY_ISPRINT);
1732 const char * const limit = tmpbuf + sizeof(tmpbuf) - 8;
1733 /* each *s can expand to 4 chars + "...\0",
1734 i.e. need room for 8 chars */
1736 const char *s = SvPVX_const(sv);
1737 const char * const end = s + SvCUR(sv);
1738 for ( ; s < end && d < limit; s++ ) {
1740 if (ch & 128 && !isPRINT_LC(ch)) {
1749 else if (ch == '\r') {
1753 else if (ch == '\f') {
1757 else if (ch == '\\') {
1761 else if (ch == '\0') {
1765 else if (isPRINT_LC(ch))
1782 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1783 /* diag_listed_as: Argument "%s" isn't numeric%s */
1784 "Argument \"%s\" isn't numeric in %s", pv,
1787 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1788 /* diag_listed_as: Argument "%s" isn't numeric%s */
1789 "Argument \"%s\" isn't numeric", pv);
1793 =for apidoc looks_like_number
1795 Test if the content of an SV looks like a number (or is a number).
1796 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1797 non-numeric warning), even if your atof() doesn't grok them. Get-magic is
1804 Perl_looks_like_number(pTHX_ SV *const sv)
1809 PERL_ARGS_ASSERT_LOOKS_LIKE_NUMBER;
1811 if (SvPOK(sv) || SvPOKp(sv)) {
1812 sbegin = SvPV_nomg_const(sv, len);
1815 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1816 return grok_number(sbegin, len, NULL);
1820 S_glob_2number(pTHX_ GV * const gv)
1822 PERL_ARGS_ASSERT_GLOB_2NUMBER;
1824 /* We know that all GVs stringify to something that is not-a-number,
1825 so no need to test that. */
1826 if (ckWARN(WARN_NUMERIC))
1828 SV *const buffer = sv_newmortal();
1829 gv_efullname3(buffer, gv, "*");
1830 not_a_number(buffer);
1832 /* We just want something true to return, so that S_sv_2iuv_common
1833 can tail call us and return true. */
1837 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1838 until proven guilty, assume that things are not that bad... */
1843 As 64 bit platforms often have an NV that doesn't preserve all bits of
1844 an IV (an assumption perl has been based on to date) it becomes necessary
1845 to remove the assumption that the NV always carries enough precision to
1846 recreate the IV whenever needed, and that the NV is the canonical form.
1847 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1848 precision as a side effect of conversion (which would lead to insanity
1849 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1850 1) to distinguish between IV/UV/NV slots that have cached a valid
1851 conversion where precision was lost and IV/UV/NV slots that have a
1852 valid conversion which has lost no precision
1853 2) to ensure that if a numeric conversion to one form is requested that
1854 would lose precision, the precise conversion (or differently
1855 imprecise conversion) is also performed and cached, to prevent
1856 requests for different numeric formats on the same SV causing
1857 lossy conversion chains. (lossless conversion chains are perfectly
1862 SvIOKp is true if the IV slot contains a valid value
1863 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1864 SvNOKp is true if the NV slot contains a valid value
1865 SvNOK is true only if the NV value is accurate
1868 while converting from PV to NV, check to see if converting that NV to an
1869 IV(or UV) would lose accuracy over a direct conversion from PV to
1870 IV(or UV). If it would, cache both conversions, return NV, but mark
1871 SV as IOK NOKp (ie not NOK).
1873 While converting from PV to IV, check to see if converting that IV to an
1874 NV would lose accuracy over a direct conversion from PV to NV. If it
1875 would, cache both conversions, flag similarly.
1877 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1878 correctly because if IV & NV were set NV *always* overruled.
1879 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1880 changes - now IV and NV together means that the two are interchangeable:
1881 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1883 The benefit of this is that operations such as pp_add know that if
1884 SvIOK is true for both left and right operands, then integer addition
1885 can be used instead of floating point (for cases where the result won't
1886 overflow). Before, floating point was always used, which could lead to
1887 loss of precision compared with integer addition.
1889 * making IV and NV equal status should make maths accurate on 64 bit
1891 * may speed up maths somewhat if pp_add and friends start to use
1892 integers when possible instead of fp. (Hopefully the overhead in
1893 looking for SvIOK and checking for overflow will not outweigh the
1894 fp to integer speedup)
1895 * will slow down integer operations (callers of SvIV) on "inaccurate"
1896 values, as the change from SvIOK to SvIOKp will cause a call into
1897 sv_2iv each time rather than a macro access direct to the IV slot
1898 * should speed up number->string conversion on integers as IV is
1899 favoured when IV and NV are equally accurate
1901 ####################################################################
1902 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1903 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1904 On the other hand, SvUOK is true iff UV.
1905 ####################################################################
1907 Your mileage will vary depending your CPU's relative fp to integer
1911 #ifndef NV_PRESERVES_UV
1912 # define IS_NUMBER_UNDERFLOW_IV 1
1913 # define IS_NUMBER_UNDERFLOW_UV 2
1914 # define IS_NUMBER_IV_AND_UV 2
1915 # define IS_NUMBER_OVERFLOW_IV 4
1916 # define IS_NUMBER_OVERFLOW_UV 5
1918 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1920 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1922 S_sv_2iuv_non_preserve(pTHX_ register SV *const sv
1930 PERL_ARGS_ASSERT_SV_2IUV_NON_PRESERVE;
1932 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1933 if (SvNVX(sv) < (NV)IV_MIN) {
1934 (void)SvIOKp_on(sv);
1936 SvIV_set(sv, IV_MIN);
1937 return IS_NUMBER_UNDERFLOW_IV;
1939 if (SvNVX(sv) > (NV)UV_MAX) {
1940 (void)SvIOKp_on(sv);
1943 SvUV_set(sv, UV_MAX);
1944 return IS_NUMBER_OVERFLOW_UV;
1946 (void)SvIOKp_on(sv);
1948 /* Can't use strtol etc to convert this string. (See truth table in
1950 if (SvNVX(sv) <= (UV)IV_MAX) {
1951 SvIV_set(sv, I_V(SvNVX(sv)));
1952 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1953 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1955 /* Integer is imprecise. NOK, IOKp */
1957 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
1960 SvUV_set(sv, U_V(SvNVX(sv)));
1961 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
1962 if (SvUVX(sv) == UV_MAX) {
1963 /* As we know that NVs don't preserve UVs, UV_MAX cannot
1964 possibly be preserved by NV. Hence, it must be overflow.
1966 return IS_NUMBER_OVERFLOW_UV;
1968 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
1970 /* Integer is imprecise. NOK, IOKp */
1972 return IS_NUMBER_OVERFLOW_IV;
1974 #endif /* !NV_PRESERVES_UV*/
1977 S_sv_2iuv_common(pTHX_ SV *const sv)
1981 PERL_ARGS_ASSERT_SV_2IUV_COMMON;
1984 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
1985 * without also getting a cached IV/UV from it at the same time
1986 * (ie PV->NV conversion should detect loss of accuracy and cache
1987 * IV or UV at same time to avoid this. */
1988 /* IV-over-UV optimisation - choose to cache IV if possible */
1990 if (SvTYPE(sv) == SVt_NV)
1991 sv_upgrade(sv, SVt_PVNV);
1993 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
1994 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
1995 certainly cast into the IV range at IV_MAX, whereas the correct
1996 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
1998 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
1999 if (Perl_isnan(SvNVX(sv))) {
2005 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2006 SvIV_set(sv, I_V(SvNVX(sv)));
2007 if (SvNVX(sv) == (NV) SvIVX(sv)
2008 #ifndef NV_PRESERVES_UV
2009 && (((UV)1 << NV_PRESERVES_UV_BITS) >
2010 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
2011 /* Don't flag it as "accurately an integer" if the number
2012 came from a (by definition imprecise) NV operation, and
2013 we're outside the range of NV integer precision */
2017 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
2019 /* scalar has trailing garbage, eg "42a" */
2021 DEBUG_c(PerlIO_printf(Perl_debug_log,
2022 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
2028 /* IV not precise. No need to convert from PV, as NV
2029 conversion would already have cached IV if it detected
2030 that PV->IV would be better than PV->NV->IV
2031 flags already correct - don't set public IOK. */
2032 DEBUG_c(PerlIO_printf(Perl_debug_log,
2033 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
2038 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
2039 but the cast (NV)IV_MIN rounds to a the value less (more
2040 negative) than IV_MIN which happens to be equal to SvNVX ??
2041 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
2042 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
2043 (NV)UVX == NVX are both true, but the values differ. :-(
2044 Hopefully for 2s complement IV_MIN is something like
2045 0x8000000000000000 which will be exact. NWC */
2048 SvUV_set(sv, U_V(SvNVX(sv)));
2050 (SvNVX(sv) == (NV) SvUVX(sv))
2051 #ifndef NV_PRESERVES_UV
2052 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
2053 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
2054 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
2055 /* Don't flag it as "accurately an integer" if the number
2056 came from a (by definition imprecise) NV operation, and
2057 we're outside the range of NV integer precision */
2063 DEBUG_c(PerlIO_printf(Perl_debug_log,
2064 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
2070 else if (SvPOKp(sv) && SvLEN(sv)) {
2072 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2073 /* We want to avoid a possible problem when we cache an IV/ a UV which
2074 may be later translated to an NV, and the resulting NV is not
2075 the same as the direct translation of the initial string
2076 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
2077 be careful to ensure that the value with the .456 is around if the
2078 NV value is requested in the future).
2080 This means that if we cache such an IV/a UV, we need to cache the
2081 NV as well. Moreover, we trade speed for space, and do not
2082 cache the NV if we are sure it's not needed.
2085 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
2086 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2087 == IS_NUMBER_IN_UV) {
2088 /* It's definitely an integer, only upgrade to PVIV */
2089 if (SvTYPE(sv) < SVt_PVIV)
2090 sv_upgrade(sv, SVt_PVIV);
2092 } else if (SvTYPE(sv) < SVt_PVNV)
2093 sv_upgrade(sv, SVt_PVNV);
2095 /* If NVs preserve UVs then we only use the UV value if we know that
2096 we aren't going to call atof() below. If NVs don't preserve UVs
2097 then the value returned may have more precision than atof() will
2098 return, even though value isn't perfectly accurate. */
2099 if ((numtype & (IS_NUMBER_IN_UV
2100 #ifdef NV_PRESERVES_UV
2103 )) == IS_NUMBER_IN_UV) {
2104 /* This won't turn off the public IOK flag if it was set above */
2105 (void)SvIOKp_on(sv);
2107 if (!(numtype & IS_NUMBER_NEG)) {
2109 if (value <= (UV)IV_MAX) {
2110 SvIV_set(sv, (IV)value);
2112 /* it didn't overflow, and it was positive. */
2113 SvUV_set(sv, value);
2117 /* 2s complement assumption */
2118 if (value <= (UV)IV_MIN) {
2119 SvIV_set(sv, -(IV)value);
2121 /* Too negative for an IV. This is a double upgrade, but
2122 I'm assuming it will be rare. */
2123 if (SvTYPE(sv) < SVt_PVNV)
2124 sv_upgrade(sv, SVt_PVNV);
2128 SvNV_set(sv, -(NV)value);
2129 SvIV_set(sv, IV_MIN);
2133 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2134 will be in the previous block to set the IV slot, and the next
2135 block to set the NV slot. So no else here. */
2137 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2138 != IS_NUMBER_IN_UV) {
2139 /* It wasn't an (integer that doesn't overflow the UV). */
2140 SvNV_set(sv, Atof(SvPVX_const(sv)));
2142 if (! numtype && ckWARN(WARN_NUMERIC))
2145 #if defined(USE_LONG_DOUBLE)
2146 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2147 PTR2UV(sv), SvNVX(sv)));
2149 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2150 PTR2UV(sv), SvNVX(sv)));
2153 #ifdef NV_PRESERVES_UV
2154 (void)SvIOKp_on(sv);
2156 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2157 SvIV_set(sv, I_V(SvNVX(sv)));
2158 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2161 NOOP; /* Integer is imprecise. NOK, IOKp */
2163 /* UV will not work better than IV */
2165 if (SvNVX(sv) > (NV)UV_MAX) {
2167 /* Integer is inaccurate. NOK, IOKp, is UV */
2168 SvUV_set(sv, UV_MAX);
2170 SvUV_set(sv, U_V(SvNVX(sv)));
2171 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2172 NV preservse UV so can do correct comparison. */
2173 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2176 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2181 #else /* NV_PRESERVES_UV */
2182 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2183 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2184 /* The IV/UV slot will have been set from value returned by
2185 grok_number above. The NV slot has just been set using
2188 assert (SvIOKp(sv));
2190 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2191 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2192 /* Small enough to preserve all bits. */
2193 (void)SvIOKp_on(sv);
2195 SvIV_set(sv, I_V(SvNVX(sv)));
2196 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2198 /* Assumption: first non-preserved integer is < IV_MAX,
2199 this NV is in the preserved range, therefore: */
2200 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2202 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2206 0 0 already failed to read UV.
2207 0 1 already failed to read UV.
2208 1 0 you won't get here in this case. IV/UV
2209 slot set, public IOK, Atof() unneeded.
2210 1 1 already read UV.
2211 so there's no point in sv_2iuv_non_preserve() attempting
2212 to use atol, strtol, strtoul etc. */
2214 sv_2iuv_non_preserve (sv, numtype);
2216 sv_2iuv_non_preserve (sv);
2220 #endif /* NV_PRESERVES_UV */
2221 /* It might be more code efficient to go through the entire logic above
2222 and conditionally set with SvIOKp_on() rather than SvIOK(), but it
2223 gets complex and potentially buggy, so more programmer efficient
2224 to do it this way, by turning off the public flags: */
2226 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2230 if (isGV_with_GP(sv))
2231 return glob_2number(MUTABLE_GV(sv));
2233 if (!SvPADTMP(sv)) {
2234 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2237 if (SvTYPE(sv) < SVt_IV)
2238 /* Typically the caller expects that sv_any is not NULL now. */
2239 sv_upgrade(sv, SVt_IV);
2240 /* Return 0 from the caller. */
2247 =for apidoc sv_2iv_flags
2249 Return the integer value of an SV, doing any necessary string
2250 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2251 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2257 Perl_sv_2iv_flags(pTHX_ register SV *const sv, const I32 flags)
2264 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2270 if (flags & SV_SKIP_OVERLOAD)
2272 tmpstr = AMG_CALLunary(sv, numer_amg);
2273 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2274 return SvIV(tmpstr);
2277 return PTR2IV(SvRV(sv));
2281 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2282 the same flag bit as SVf_IVisUV, so must not let them cache IVs.
2283 In practice they are extremely unlikely to actually get anywhere
2284 accessible by user Perl code - the only way that I'm aware of is when
2285 a constant subroutine which is used as the second argument to index.
2290 return I_V(SvNVX(sv));
2291 if (SvPOKp(sv) && SvLEN(sv)) {
2294 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2296 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2297 == IS_NUMBER_IN_UV) {
2298 /* It's definitely an integer */
2299 if (numtype & IS_NUMBER_NEG) {
2300 if (value < (UV)IV_MIN)
2303 if (value < (UV)IV_MAX)
2308 if (ckWARN(WARN_NUMERIC))
2311 return I_V(Atof(SvPVX_const(sv)));
2313 if (ckWARN(WARN_UNINITIALIZED))
2318 if (SvTHINKFIRST(sv)) {
2320 sv_force_normal_flags(sv, 0);
2322 if (SvREADONLY(sv) && !SvOK(sv)) {
2323 if (ckWARN(WARN_UNINITIALIZED))
2330 if (S_sv_2iuv_common(aTHX_ sv))
2334 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2335 PTR2UV(sv),SvIVX(sv)));
2336 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2340 =for apidoc sv_2uv_flags
2342 Return the unsigned integer value of an SV, doing any necessary string
2343 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2344 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2350 Perl_sv_2uv_flags(pTHX_ register SV *const sv, const I32 flags)
2357 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2363 if (flags & SV_SKIP_OVERLOAD)
2365 tmpstr = AMG_CALLunary(sv, numer_amg);
2366 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2367 return SvUV(tmpstr);
2370 return PTR2UV(SvRV(sv));
2374 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2375 the same flag bit as SVf_IVisUV, so must not let them cache IVs. */
2379 return U_V(SvNVX(sv));
2380 if (SvPOKp(sv) && SvLEN(sv)) {
2383 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2385 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2386 == IS_NUMBER_IN_UV) {
2387 /* It's definitely an integer */
2388 if (!(numtype & IS_NUMBER_NEG))
2392 if (ckWARN(WARN_NUMERIC))
2395 return U_V(Atof(SvPVX_const(sv)));
2397 if (ckWARN(WARN_UNINITIALIZED))
2402 if (SvTHINKFIRST(sv)) {
2404 sv_force_normal_flags(sv, 0);
2406 if (SvREADONLY(sv) && !SvOK(sv)) {
2407 if (ckWARN(WARN_UNINITIALIZED))
2414 if (S_sv_2iuv_common(aTHX_ sv))
2418 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2419 PTR2UV(sv),SvUVX(sv)));
2420 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2424 =for apidoc sv_2nv_flags
2426 Return the num value of an SV, doing any necessary string or integer
2427 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2428 Normally used via the C<SvNV(sv)> and C<SvNVx(sv)> macros.
2434 Perl_sv_2nv_flags(pTHX_ register SV *const sv, const I32 flags)
2439 if (SvGMAGICAL(sv) || SvVALID(sv)) {
2440 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2441 the same flag bit as SVf_IVisUV, so must not let them cache NVs. */
2442 if (flags & SV_GMAGIC)
2446 if ((SvPOKp(sv) && SvLEN(sv)) && !SvIOKp(sv)) {
2447 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2448 !grok_number(SvPVX_const(sv), SvCUR(sv), NULL))
2450 return Atof(SvPVX_const(sv));
2454 return (NV)SvUVX(sv);
2456 return (NV)SvIVX(sv);
2461 assert(SvTYPE(sv) >= SVt_PVMG);
2462 /* This falls through to the report_uninit near the end of the
2464 } else if (SvTHINKFIRST(sv)) {
2469 if (flags & SV_SKIP_OVERLOAD)
2471 tmpstr = AMG_CALLunary(sv, numer_amg);
2472 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2473 return SvNV(tmpstr);
2476 return PTR2NV(SvRV(sv));
2479 sv_force_normal_flags(sv, 0);
2481 if (SvREADONLY(sv) && !SvOK(sv)) {
2482 if (ckWARN(WARN_UNINITIALIZED))
2487 if (SvTYPE(sv) < SVt_NV) {
2488 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2489 sv_upgrade(sv, SVt_NV);
2490 #ifdef USE_LONG_DOUBLE
2492 STORE_NUMERIC_LOCAL_SET_STANDARD();
2493 PerlIO_printf(Perl_debug_log,
2494 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2495 PTR2UV(sv), SvNVX(sv));
2496 RESTORE_NUMERIC_LOCAL();
2500 STORE_NUMERIC_LOCAL_SET_STANDARD();
2501 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2502 PTR2UV(sv), SvNVX(sv));
2503 RESTORE_NUMERIC_LOCAL();
2507 else if (SvTYPE(sv) < SVt_PVNV)
2508 sv_upgrade(sv, SVt_PVNV);
2513 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2514 #ifdef NV_PRESERVES_UV
2520 /* Only set the public NV OK flag if this NV preserves the IV */
2521 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2523 SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2524 : (SvIVX(sv) == I_V(SvNVX(sv))))
2530 else if (SvPOKp(sv) && SvLEN(sv)) {
2532 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2533 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2535 #ifdef NV_PRESERVES_UV
2536 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2537 == IS_NUMBER_IN_UV) {
2538 /* It's definitely an integer */
2539 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2541 SvNV_set(sv, Atof(SvPVX_const(sv)));
2547 SvNV_set(sv, Atof(SvPVX_const(sv)));
2548 /* Only set the public NV OK flag if this NV preserves the value in
2549 the PV at least as well as an IV/UV would.
2550 Not sure how to do this 100% reliably. */
2551 /* if that shift count is out of range then Configure's test is
2552 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2554 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2555 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2556 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2557 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2558 /* Can't use strtol etc to convert this string, so don't try.
2559 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2562 /* value has been set. It may not be precise. */
2563 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2564 /* 2s complement assumption for (UV)IV_MIN */
2565 SvNOK_on(sv); /* Integer is too negative. */
2570 if (numtype & IS_NUMBER_NEG) {
2571 SvIV_set(sv, -(IV)value);
2572 } else if (value <= (UV)IV_MAX) {
2573 SvIV_set(sv, (IV)value);
2575 SvUV_set(sv, value);
2579 if (numtype & IS_NUMBER_NOT_INT) {
2580 /* I believe that even if the original PV had decimals,
2581 they are lost beyond the limit of the FP precision.
2582 However, neither is canonical, so both only get p
2583 flags. NWC, 2000/11/25 */
2584 /* Both already have p flags, so do nothing */
2586 const NV nv = SvNVX(sv);
2587 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2588 if (SvIVX(sv) == I_V(nv)) {
2591 /* It had no "." so it must be integer. */
2595 /* between IV_MAX and NV(UV_MAX).
2596 Could be slightly > UV_MAX */
2598 if (numtype & IS_NUMBER_NOT_INT) {
2599 /* UV and NV both imprecise. */
2601 const UV nv_as_uv = U_V(nv);
2603 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2612 /* It might be more code efficient to go through the entire logic above
2613 and conditionally set with SvNOKp_on() rather than SvNOK(), but it
2614 gets complex and potentially buggy, so more programmer efficient
2615 to do it this way, by turning off the public flags: */
2617 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2618 #endif /* NV_PRESERVES_UV */
2621 if (isGV_with_GP(sv)) {
2622 glob_2number(MUTABLE_GV(sv));
2626 if (!PL_localizing && !SvPADTMP(sv) && ckWARN(WARN_UNINITIALIZED))
2628 assert (SvTYPE(sv) >= SVt_NV);
2629 /* Typically the caller expects that sv_any is not NULL now. */
2630 /* XXX Ilya implies that this is a bug in callers that assume this
2631 and ideally should be fixed. */
2634 #if defined(USE_LONG_DOUBLE)
2636 STORE_NUMERIC_LOCAL_SET_STANDARD();
2637 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2638 PTR2UV(sv), SvNVX(sv));
2639 RESTORE_NUMERIC_LOCAL();
2643 STORE_NUMERIC_LOCAL_SET_STANDARD();
2644 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2645 PTR2UV(sv), SvNVX(sv));
2646 RESTORE_NUMERIC_LOCAL();
2655 Return an SV with the numeric value of the source SV, doing any necessary
2656 reference or overload conversion. You must use the C<SvNUM(sv)> macro to
2657 access this function.
2663 Perl_sv_2num(pTHX_ register SV *const sv)
2665 PERL_ARGS_ASSERT_SV_2NUM;
2670 SV * const tmpsv = AMG_CALLunary(sv, numer_amg);
2671 TAINT_IF(tmpsv && SvTAINTED(tmpsv));
2672 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2673 return sv_2num(tmpsv);
2675 return sv_2mortal(newSVuv(PTR2UV(SvRV(sv))));
2678 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2679 * UV as a string towards the end of buf, and return pointers to start and
2682 * We assume that buf is at least TYPE_CHARS(UV) long.
2686 S_uiv_2buf(char *const buf, const IV iv, UV uv, const int is_uv, char **const peob)
2688 char *ptr = buf + TYPE_CHARS(UV);
2689 char * const ebuf = ptr;
2692 PERL_ARGS_ASSERT_UIV_2BUF;
2704 *--ptr = '0' + (char)(uv % 10);
2713 =for apidoc sv_2pv_flags
2715 Returns a pointer to the string value of an SV, and sets *lp to its length.
2716 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a
2717 string if necessary. Normally invoked via the C<SvPV_flags> macro.
2718 C<sv_2pv()> and C<sv_2pv_nomg> usually end up here too.
2724 Perl_sv_2pv_flags(pTHX_ register SV *const sv, STRLEN *const lp, const I32 flags)
2734 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2739 if (flags & SV_SKIP_OVERLOAD)
2741 tmpstr = AMG_CALLunary(sv, string_amg);
2742 TAINT_IF(tmpstr && SvTAINTED(tmpstr));
2743 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2745 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2749 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2750 if (flags & SV_CONST_RETURN) {
2751 pv = (char *) SvPVX_const(tmpstr);
2753 pv = (flags & SV_MUTABLE_RETURN)
2754 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2757 *lp = SvCUR(tmpstr);
2759 pv = sv_2pv_flags(tmpstr, lp, flags);
2772 SV *const referent = SvRV(sv);
2776 retval = buffer = savepvn("NULLREF", len);
2777 } else if (SvTYPE(referent) == SVt_REGEXP &&
2778 (!(PL_curcop->cop_hints & HINT_NO_AMAGIC) ||
2779 amagic_is_enabled(string_amg))) {
2780 REGEXP * const re = (REGEXP *)MUTABLE_PTR(referent);
2784 /* If the regex is UTF-8 we want the containing scalar to
2785 have an UTF-8 flag too */
2792 *lp = RX_WRAPLEN(re);
2794 return RX_WRAPPED(re);
2796 const char *const typestr = sv_reftype(referent, 0);
2797 const STRLEN typelen = strlen(typestr);
2798 UV addr = PTR2UV(referent);
2799 const char *stashname = NULL;
2800 STRLEN stashnamelen = 0; /* hush, gcc */
2801 const char *buffer_end;
2803 if (SvOBJECT(referent)) {
2804 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2807 stashname = HEK_KEY(name);
2808 stashnamelen = HEK_LEN(name);
2810 if (HEK_UTF8(name)) {
2816 stashname = "__ANON__";
2819 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2820 + 2 * sizeof(UV) + 2 /* )\0 */;
2822 len = typelen + 3 /* (0x */
2823 + 2 * sizeof(UV) + 2 /* )\0 */;
2826 Newx(buffer, len, char);
2827 buffer_end = retval = buffer + len;
2829 /* Working backwards */
2833 *--retval = PL_hexdigit[addr & 15];
2834 } while (addr >>= 4);
2840 memcpy(retval, typestr, typelen);
2844 retval -= stashnamelen;
2845 memcpy(retval, stashname, stashnamelen);
2847 /* retval may not necessarily have reached the start of the
2849 assert (retval >= buffer);
2851 len = buffer_end - retval - 1; /* -1 for that \0 */
2863 if (flags & SV_MUTABLE_RETURN)
2864 return SvPVX_mutable(sv);
2865 if (flags & SV_CONST_RETURN)
2866 return (char *)SvPVX_const(sv);
2871 /* I'm assuming that if both IV and NV are equally valid then
2872 converting the IV is going to be more efficient */
2873 const U32 isUIOK = SvIsUV(sv);
2874 char buf[TYPE_CHARS(UV)];
2878 if (SvTYPE(sv) < SVt_PVIV)
2879 sv_upgrade(sv, SVt_PVIV);
2880 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2882 /* inlined from sv_setpvn */
2883 s = SvGROW_mutable(sv, len + 1);
2884 Move(ptr, s, len, char);
2888 else if (SvNOK(sv)) {
2889 if (SvTYPE(sv) < SVt_PVNV)
2890 sv_upgrade(sv, SVt_PVNV);
2891 if (SvNVX(sv) == 0.0) {
2892 s = SvGROW_mutable(sv, 2);
2897 /* The +20 is pure guesswork. Configure test needed. --jhi */
2898 s = SvGROW_mutable(sv, NV_DIG + 20);
2899 /* some Xenix systems wipe out errno here */
2900 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2909 else if (isGV_with_GP(sv)) {
2910 GV *const gv = MUTABLE_GV(sv);
2911 SV *const buffer = sv_newmortal();
2913 gv_efullname3(buffer, gv, "*");
2915 assert(SvPOK(buffer));
2919 *lp = SvCUR(buffer);
2920 return SvPVX(buffer);
2925 if (flags & SV_UNDEF_RETURNS_NULL)
2927 if (!PL_localizing && !SvPADTMP(sv) && ckWARN(WARN_UNINITIALIZED))
2929 /* Typically the caller expects that sv_any is not NULL now. */
2930 if (!SvREADONLY(sv) && SvTYPE(sv) < SVt_PV)
2931 sv_upgrade(sv, SVt_PV);
2936 const STRLEN len = s - SvPVX_const(sv);
2942 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
2943 PTR2UV(sv),SvPVX_const(sv)));
2944 if (flags & SV_CONST_RETURN)
2945 return (char *)SvPVX_const(sv);
2946 if (flags & SV_MUTABLE_RETURN)
2947 return SvPVX_mutable(sv);
2952 =for apidoc sv_copypv
2954 Copies a stringified representation of the source SV into the
2955 destination SV. Automatically performs any necessary mg_get and
2956 coercion of numeric values into strings. Guaranteed to preserve
2957 UTF8 flag even from overloaded objects. Similar in nature to
2958 sv_2pv[_flags] but operates directly on an SV instead of just the
2959 string. Mostly uses sv_2pv_flags to do its work, except when that
2960 would lose the UTF-8'ness of the PV.
2962 =for apidoc sv_copypv_nomg
2964 Like sv_copypv, but doesn't invoke get magic first.
2966 =for apidoc sv_copypv_flags
2968 Implementation of sv_copypv and sv_copypv_nomg. Calls get magic iff flags
2975 Perl_sv_copypv(pTHX_ SV *const dsv, register SV *const ssv)
2977 PERL_ARGS_ASSERT_SV_COPYPV;
2979 sv_copypv_flags(dsv, ssv, 0);
2983 Perl_sv_copypv_flags(pTHX_ SV *const dsv, register SV *const ssv, const I32 flags)
2988 PERL_ARGS_ASSERT_SV_COPYPV_FLAGS;
2990 if ((flags & SV_GMAGIC) && SvGMAGICAL(ssv))
2992 s = SvPV_nomg_const(ssv,len);
2993 sv_setpvn(dsv,s,len);
3001 =for apidoc sv_2pvbyte
3003 Return a pointer to the byte-encoded representation of the SV, and set *lp
3004 to its length. May cause the SV to be downgraded from UTF-8 as a
3007 Usually accessed via the C<SvPVbyte> macro.
3013 Perl_sv_2pvbyte(pTHX_ register SV *sv, STRLEN *const lp)
3015 PERL_ARGS_ASSERT_SV_2PVBYTE;
3017 if (((SvREADONLY(sv) || SvFAKE(sv)) && !SvIsCOW(sv))
3018 || isGV_with_GP(sv) || SvROK(sv)) {
3019 SV *sv2 = sv_newmortal();
3023 else SvGETMAGIC(sv);
3024 sv_utf8_downgrade(sv,0);
3025 return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv);
3029 =for apidoc sv_2pvutf8
3031 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
3032 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
3034 Usually accessed via the C<SvPVutf8> macro.
3040 Perl_sv_2pvutf8(pTHX_ register SV *sv, STRLEN *const lp)
3042 PERL_ARGS_ASSERT_SV_2PVUTF8;
3044 if (((SvREADONLY(sv) || SvFAKE(sv)) && !SvIsCOW(sv))
3045 || isGV_with_GP(sv) || SvROK(sv))
3046 sv = sv_mortalcopy(sv);
3049 sv_utf8_upgrade_nomg(sv);
3050 return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv);
3055 =for apidoc sv_2bool
3057 This macro is only used by sv_true() or its macro equivalent, and only if
3058 the latter's argument is neither SvPOK, SvIOK nor SvNOK.
3059 It calls sv_2bool_flags with the SV_GMAGIC flag.
3061 =for apidoc sv_2bool_flags
3063 This function is only used by sv_true() and friends, and only if
3064 the latter's argument is neither SvPOK, SvIOK nor SvNOK. If the flags
3065 contain SV_GMAGIC, then it does an mg_get() first.
3072 Perl_sv_2bool_flags(pTHX_ register SV *const sv, const I32 flags)
3076 PERL_ARGS_ASSERT_SV_2BOOL_FLAGS;
3078 if(flags & SV_GMAGIC) SvGETMAGIC(sv);
3084 SV * const tmpsv = AMG_CALLunary(sv, bool__amg);
3085 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
3086 return cBOOL(SvTRUE(tmpsv));
3088 return SvRV(sv) != 0;
3090 return SvTRUE_common(sv, isGV_with_GP(sv) ? 1 : 0);
3094 =for apidoc sv_utf8_upgrade
3096 Converts the PV of an SV to its UTF-8-encoded form.
3097 Forces the SV to string form if it is not already.
3098 Will C<mg_get> on C<sv> if appropriate.
3099 Always sets the SvUTF8 flag to avoid future validity checks even
3100 if the whole string is the same in UTF-8 as not.
3101 Returns the number of bytes in the converted string
3103 This is not as a general purpose byte encoding to Unicode interface:
3104 use the Encode extension for that.
3106 =for apidoc sv_utf8_upgrade_nomg
3108 Like sv_utf8_upgrade, but doesn't do magic on C<sv>.
3110 =for apidoc sv_utf8_upgrade_flags
3112 Converts the PV of an SV to its UTF-8-encoded form.
3113 Forces the SV to string form if it is not already.
3114 Always sets the SvUTF8 flag to avoid future validity checks even
3115 if all the bytes are invariant in UTF-8.
3116 If C<flags> has C<SV_GMAGIC> bit set,
3117 will C<mg_get> on C<sv> if appropriate, else not.
3118 Returns the number of bytes in the converted string
3119 C<sv_utf8_upgrade> and
3120 C<sv_utf8_upgrade_nomg> are implemented in terms of this function.
3122 This is not as a general purpose byte encoding to Unicode interface:
3123 use the Encode extension for that.
3127 The grow version is currently not externally documented. It adds a parameter,
3128 extra, which is the number of unused bytes the string of 'sv' is guaranteed to
3129 have free after it upon return. This allows the caller to reserve extra space
3130 that it intends to fill, to avoid extra grows.
3132 Also externally undocumented for the moment is the flag SV_FORCE_UTF8_UPGRADE,
3133 which can be used to tell this function to not first check to see if there are
3134 any characters that are different in UTF-8 (variant characters) which would
3135 force it to allocate a new string to sv, but to assume there are. Typically
3136 this flag is used by a routine that has already parsed the string to find that
3137 there are such characters, and passes this information on so that the work
3138 doesn't have to be repeated.
3140 (One might think that the calling routine could pass in the position of the
3141 first such variant, so it wouldn't have to be found again. But that is not the
3142 case, because typically when the caller is likely to use this flag, it won't be
3143 calling this routine unless it finds something that won't fit into a byte.
3144 Otherwise it tries to not upgrade and just use bytes. But some things that
3145 do fit into a byte are variants in utf8, and the caller may not have been
3146 keeping track of these.)
3148 If the routine itself changes the string, it adds a trailing NUL. Such a NUL
3149 isn't guaranteed due to having other routines do the work in some input cases,
3150 or if the input is already flagged as being in utf8.
3152 The speed of this could perhaps be improved for many cases if someone wanted to
3153 write a fast function that counts the number of variant characters in a string,
3154 especially if it could return the position of the first one.
3159 Perl_sv_utf8_upgrade_flags_grow(pTHX_ register SV *const sv, const I32 flags, STRLEN extra)
3163 PERL_ARGS_ASSERT_SV_UTF8_UPGRADE_FLAGS_GROW;
3165 if (sv == &PL_sv_undef)
3169 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
3170 (void) sv_2pv_flags(sv,&len, flags);
3172 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3176 (void) SvPV_force_flags(sv,len,flags & SV_GMAGIC);
3181 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3186 sv_force_normal_flags(sv, 0);
3189 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING)) {
3190 sv_recode_to_utf8(sv, PL_encoding);
3191 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3195 if (SvCUR(sv) == 0) {
3196 if (extra) SvGROW(sv, extra);
3197 } else { /* Assume Latin-1/EBCDIC */
3198 /* This function could be much more efficient if we
3199 * had a FLAG in SVs to signal if there are any variant
3200 * chars in the PV. Given that there isn't such a flag
3201 * make the loop as fast as possible (although there are certainly ways
3202 * to speed this up, eg. through vectorization) */
3203 U8 * s = (U8 *) SvPVX_const(sv);
3204 U8 * e = (U8 *) SvEND(sv);
3206 STRLEN two_byte_count = 0;
3208 if (flags & SV_FORCE_UTF8_UPGRADE) goto must_be_utf8;
3210 /* See if really will need to convert to utf8. We mustn't rely on our
3211 * incoming SV being well formed and having a trailing '\0', as certain
3212 * code in pp_formline can send us partially built SVs. */
3216 if (NATIVE_IS_INVARIANT(ch)) continue;
3218 t--; /* t already incremented; re-point to first variant */
3223 /* utf8 conversion not needed because all are invariants. Mark as
3224 * UTF-8 even if no variant - saves scanning loop */
3226 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3231 /* Here, the string should be converted to utf8, either because of an
3232 * input flag (two_byte_count = 0), or because a character that
3233 * requires 2 bytes was found (two_byte_count = 1). t points either to
3234 * the beginning of the string (if we didn't examine anything), or to
3235 * the first variant. In either case, everything from s to t - 1 will
3236 * occupy only 1 byte each on output.
3238 * There are two main ways to convert. One is to create a new string
3239 * and go through the input starting from the beginning, appending each
3240 * converted value onto the new string as we go along. It's probably
3241 * best to allocate enough space in the string for the worst possible
3242 * case rather than possibly running out of space and having to
3243 * reallocate and then copy what we've done so far. Since everything
3244 * from s to t - 1 is invariant, the destination can be initialized
3245 * with these using a fast memory copy
3247 * The other way is to figure out exactly how big the string should be
3248 * by parsing the entire input. Then you don't have to make it big
3249 * enough to handle the worst possible case, and more importantly, if
3250 * the string you already have is large enough, you don't have to
3251 * allocate a new string, you can copy the last character in the input
3252 * string to the final position(s) that will be occupied by the
3253 * converted string and go backwards, stopping at t, since everything
3254 * before that is invariant.
3256 * There are advantages and disadvantages to each method.
3258 * In the first method, we can allocate a new string, do the memory
3259 * copy from the s to t - 1, and then proceed through the rest of the
3260 * string byte-by-byte.
3262 * In the second method, we proceed through the rest of the input
3263 * string just calculating how big the converted string will be. Then
3264 * there are two cases:
3265 * 1) if the string has enough extra space to handle the converted
3266 * value. We go backwards through the string, converting until we
3267 * get to the position we are at now, and then stop. If this
3268 * position is far enough along in the string, this method is
3269 * faster than the other method. If the memory copy were the same
3270 * speed as the byte-by-byte loop, that position would be about
3271 * half-way, as at the half-way mark, parsing to the end and back
3272 * is one complete string's parse, the same amount as starting
3273 * over and going all the way through. Actually, it would be
3274 * somewhat less than half-way, as it's faster to just count bytes
3275 * than to also copy, and we don't have the overhead of allocating
3276 * a new string, changing the scalar to use it, and freeing the
3277 * existing one. But if the memory copy is fast, the break-even
3278 * point is somewhere after half way. The counting loop could be
3279 * sped up by vectorization, etc, to move the break-even point
3280 * further towards the beginning.
3281 * 2) if the string doesn't have enough space to handle the converted
3282 * value. A new string will have to be allocated, and one might
3283 * as well, given that, start from the beginning doing the first
3284 * method. We've spent extra time parsing the string and in
3285 * exchange all we've gotten is that we know precisely how big to
3286 * make the new one. Perl is more optimized for time than space,
3287 * so this case is a loser.
3288 * So what I've decided to do is not use the 2nd method unless it is
3289 * guaranteed that a new string won't have to be allocated, assuming
3290 * the worst case. I also decided not to put any more conditions on it
3291 * than this, for now. It seems likely that, since the worst case is
3292 * twice as big as the unknown portion of the string (plus 1), we won't
3293 * be guaranteed enough space, causing us to go to the first method,
3294 * unless the string is short, or the first variant character is near
3295 * the end of it. In either of these cases, it seems best to use the
3296 * 2nd method. The only circumstance I can think of where this would
3297 * be really slower is if the string had once had much more data in it
3298 * than it does now, but there is still a substantial amount in it */
3301 STRLEN invariant_head = t - s;
3302 STRLEN size = invariant_head + (e - t) * 2 + 1 + extra;
3303 if (SvLEN(sv) < size) {
3305 /* Here, have decided to allocate a new string */
3310 Newx(dst, size, U8);
3312 /* If no known invariants at the beginning of the input string,
3313 * set so starts from there. Otherwise, can use memory copy to
3314 * get up to where we are now, and then start from here */
3316 if (invariant_head <= 0) {
3319 Copy(s, dst, invariant_head, char);
3320 d = dst + invariant_head;
3324 const UV uv = NATIVE8_TO_UNI(*t++);
3325 if (UNI_IS_INVARIANT(uv))
3326 *d++ = (U8)UNI_TO_NATIVE(uv);
3328 *d++ = (U8)UTF8_EIGHT_BIT_HI(uv);
3329 *d++ = (U8)UTF8_EIGHT_BIT_LO(uv);
3333 SvPV_free(sv); /* No longer using pre-existing string */
3334 SvPV_set(sv, (char*)dst);
3335 SvCUR_set(sv, d - dst);
3336 SvLEN_set(sv, size);
3339 /* Here, have decided to get the exact size of the string.
3340 * Currently this happens only when we know that there is
3341 * guaranteed enough space to fit the converted string, so
3342 * don't have to worry about growing. If two_byte_count is 0,
3343 * then t points to the first byte of the string which hasn't
3344 * been examined yet. Otherwise two_byte_count is 1, and t
3345 * points to the first byte in the string that will expand to
3346 * two. Depending on this, start examining at t or 1 after t.
3349 U8 *d = t + two_byte_count;
3352 /* Count up the remaining bytes that expand to two */
3355 const U8 chr = *d++;
3356 if (! NATIVE_IS_INVARIANT(chr)) two_byte_count++;
3359 /* The string will expand by just the number of bytes that
3360 * occupy two positions. But we are one afterwards because of
3361 * the increment just above. This is the place to put the
3362 * trailing NUL, and to set the length before we decrement */
3364 d += two_byte_count;
3365 SvCUR_set(sv, d - s);
3369 /* Having decremented d, it points to the position to put the
3370 * very last byte of the expanded string. Go backwards through
3371 * the string, copying and expanding as we go, stopping when we
3372 * get to the part that is invariant the rest of the way down */
3376 const U8 ch = NATIVE8_TO_UNI(*e--);
3377 if (UNI_IS_INVARIANT(ch)) {
3378 *d-- = UNI_TO_NATIVE(ch);
3380 *d-- = (U8)UTF8_EIGHT_BIT_LO(ch);
3381 *d-- = (U8)UTF8_EIGHT_BIT_HI(ch);
3386 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3387 /* Update pos. We do it at the end rather than during
3388 * the upgrade, to avoid slowing down the common case
3389 * (upgrade without pos) */
3390 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3392 I32 pos = mg->mg_len;
3393 if (pos > 0 && (U32)pos > invariant_head) {
3394 U8 *d = (U8*) SvPVX(sv) + invariant_head;
3395 STRLEN n = (U32)pos - invariant_head;
3397 if (UTF8_IS_START(*d))
3402 mg->mg_len = d - (U8*)SvPVX(sv);
3405 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3406 magic_setutf8(sv,mg); /* clear UTF8 cache */
3411 /* Mark as UTF-8 even if no variant - saves scanning loop */
3417 =for apidoc sv_utf8_downgrade
3419 Attempts to convert the PV of an SV from characters to bytes.
3420 If the PV contains a character that cannot fit
3421 in a byte, this conversion will fail;
3422 in this case, either returns false or, if C<fail_ok> is not
3425 This is not as a general purpose Unicode to byte encoding interface:
3426 use the Encode extension for that.
3432 Perl_sv_utf8_downgrade(pTHX_ register SV *const sv, const bool fail_ok)
3436 PERL_ARGS_ASSERT_SV_UTF8_DOWNGRADE;
3438 if (SvPOKp(sv) && SvUTF8(sv)) {
3442 int mg_flags = SV_GMAGIC;
3445 sv_force_normal_flags(sv, 0);
3447 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3449 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3451 I32 pos = mg->mg_len;
3453 sv_pos_b2u(sv, &pos);
3454 mg_flags = 0; /* sv_pos_b2u does get magic */
3458 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3459 magic_setutf8(sv,mg); /* clear UTF8 cache */
3462 s = (U8 *) SvPV_flags(sv, len, mg_flags);
3464 if (!utf8_to_bytes(s, &len)) {
3469 Perl_croak(aTHX_ "Wide character in %s",
3472 Perl_croak(aTHX_ "Wide character");
3483 =for apidoc sv_utf8_encode
3485 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3486 flag off so that it looks like octets again.
3492 Perl_sv_utf8_encode(pTHX_ register SV *const sv)
3494 PERL_ARGS_ASSERT_SV_UTF8_ENCODE;
3496 if (SvREADONLY(sv)) {
3497 sv_force_normal_flags(sv, 0);
3499 (void) sv_utf8_upgrade(sv);
3504 =for apidoc sv_utf8_decode
3506 If the PV of the SV is an octet sequence in UTF-8
3507 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3508 so that it looks like a character. If the PV contains only single-byte
3509 characters, the C<SvUTF8> flag stays off.
3510 Scans PV for validity and returns false if the PV is invalid UTF-8.
3516 Perl_sv_utf8_decode(pTHX_ register SV *const sv)
3518 PERL_ARGS_ASSERT_SV_UTF8_DECODE;
3521 const U8 *start, *c;
3524 /* The octets may have got themselves encoded - get them back as
3527 if (!sv_utf8_downgrade(sv, TRUE))
3530 /* it is actually just a matter of turning the utf8 flag on, but
3531 * we want to make sure everything inside is valid utf8 first.
3533 c = start = (const U8 *) SvPVX_const(sv);
3534 if (!is_utf8_string(c, SvCUR(sv)))
3536 e = (const U8 *) SvEND(sv);
3539 if (!UTF8_IS_INVARIANT(ch)) {
3544 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3545 /* adjust pos to the start of a UTF8 char sequence */
3546 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3548 I32 pos = mg->mg_len;
3550 for (c = start + pos; c > start; c--) {
3551 if (UTF8_IS_START(*c))
3554 mg->mg_len = c - start;
3557 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3558 magic_setutf8(sv,mg); /* clear UTF8 cache */
3565 =for apidoc sv_setsv
3567 Copies the contents of the source SV C<ssv> into the destination SV
3568 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3569 function if the source SV needs to be reused. Does not handle 'set' magic.
3570 Loosely speaking, it performs a copy-by-value, obliterating any previous
3571 content of the destination.
3573 You probably want to use one of the assortment of wrappers, such as
3574 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3575 C<SvSetMagicSV_nosteal>.
3577 =for apidoc sv_setsv_flags
3579 Copies the contents of the source SV C<ssv> into the destination SV
3580 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3581 function if the source SV needs to be reused. Does not handle 'set' magic.
3582 Loosely speaking, it performs a copy-by-value, obliterating any previous
3583 content of the destination.
3584 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3585 C<ssv> if appropriate, else not. If the C<flags>
3586 parameter has the C<NOSTEAL> bit set then the
3587 buffers of temps will not be stolen. <sv_setsv>
3588 and C<sv_setsv_nomg> are implemented in terms of this function.
3590 You probably want to use one of the assortment of wrappers, such as
3591 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3592 C<SvSetMagicSV_nosteal>.
3594 This is the primary function for copying scalars, and most other
3595 copy-ish functions and macros use this underneath.
3601 S_glob_assign_glob(pTHX_ SV *const dstr, SV *const sstr, const int dtype)
3603 I32 mro_changes = 0; /* 1 = method, 2 = isa, 3 = recursive isa */
3604 HV *old_stash = NULL;
3606 PERL_ARGS_ASSERT_GLOB_ASSIGN_GLOB;
3608 if (dtype != SVt_PVGV && !isGV_with_GP(dstr)) {
3609 const char * const name = GvNAME(sstr);
3610 const STRLEN len = GvNAMELEN(sstr);
3612 if (dtype >= SVt_PV) {
3618 SvUPGRADE(dstr, SVt_PVGV);
3619 (void)SvOK_off(dstr);
3620 /* We have to turn this on here, even though we turn it off
3621 below, as GvSTASH will fail an assertion otherwise. */
3622 isGV_with_GP_on(dstr);
3624 GvSTASH(dstr) = GvSTASH(sstr);
3626 Perl_sv_add_backref(aTHX_ MUTABLE_SV(GvSTASH(dstr)), dstr);
3627 gv_name_set(MUTABLE_GV(dstr), name, len,
3628 GV_ADD | (GvNAMEUTF8(sstr) ? SVf_UTF8 : 0 ));
3629 SvFAKE_on(dstr); /* can coerce to non-glob */
3632 if(GvGP(MUTABLE_GV(sstr))) {
3633 /* If source has method cache entry, clear it */
3635 SvREFCNT_dec(GvCV(sstr));
3636 GvCV_set(sstr, NULL);
3639 /* If source has a real method, then a method is
3642 GvCV((const GV *)sstr) && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3648 /* If dest already had a real method, that's a change as well */
3650 !mro_changes && GvGP(MUTABLE_GV(dstr)) && GvCVu((const GV *)dstr)
3651 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3656 /* We don't need to check the name of the destination if it was not a
3657 glob to begin with. */
3658 if(dtype == SVt_PVGV) {
3659 const char * const name = GvNAME((const GV *)dstr);
3662 /* The stash may have been detached from the symbol table, so
3664 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3668 const STRLEN len = GvNAMELEN(dstr);
3669 if ((len > 1 && name[len-2] == ':' && name[len-1] == ':')
3670 || (len == 1 && name[0] == ':')) {
3673 /* Set aside the old stash, so we can reset isa caches on
3675 if((old_stash = GvHV(dstr)))
3676 /* Make sure we do not lose it early. */
3677 SvREFCNT_inc_simple_void_NN(
3678 sv_2mortal((SV *)old_stash)
3684 gp_free(MUTABLE_GV(dstr));
3685 isGV_with_GP_off(dstr); /* SvOK_off does not like globs. */
3686 (void)SvOK_off(dstr);
3687 isGV_with_GP_on(dstr);
3688 GvINTRO_off(dstr); /* one-shot flag */
3689 GvGP_set(dstr, gp_ref(GvGP(sstr)));
3690 if (SvTAINTED(sstr))
3692 if (GvIMPORTED(dstr) != GVf_IMPORTED
3693 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3695 GvIMPORTED_on(dstr);
3698 if(mro_changes == 2) {
3699 if (GvAV((const GV *)sstr)) {
3701 SV * const sref = (SV *)GvAV((const GV *)dstr);
3702 if (SvSMAGICAL(sref) && (mg = mg_find(sref, PERL_MAGIC_isa))) {
3703 if (SvTYPE(mg->mg_obj) != SVt_PVAV) {
3704 AV * const ary = newAV();
3705 av_push(ary, mg->mg_obj); /* takes the refcount */
3706 mg->mg_obj = (SV *)ary;
3708 av_push((AV *)mg->mg_obj, SvREFCNT_inc_simple_NN(dstr));
3710 else sv_magic(sref, dstr, PERL_MAGIC_isa, NULL, 0);
3712 mro_isa_changed_in(GvSTASH(dstr));
3714 else if(mro_changes == 3) {
3715 HV * const stash = GvHV(dstr);
3716 if(old_stash ? (HV *)HvENAME_get(old_stash) : stash)
3722 else if(mro_changes) mro_method_changed_in(GvSTASH(dstr));
3727 S_glob_assign_ref(pTHX_ SV *const dstr, SV *const sstr)
3729 SV * const sref = SvREFCNT_inc(SvRV(sstr));
3731 const int intro = GvINTRO(dstr);
3734 const U32 stype = SvTYPE(sref);
3736 PERL_ARGS_ASSERT_GLOB_ASSIGN_REF;
3739 GvINTRO_off(dstr); /* one-shot flag */
3740 GvLINE(dstr) = CopLINE(PL_curcop);
3741 GvEGV(dstr) = MUTABLE_GV(dstr);
3746 location = (SV **) &(GvGP(dstr)->gp_cv); /* XXX bypassing GvCV_set */
3747 import_flag = GVf_IMPORTED_CV;
3750 location = (SV **) &GvHV(dstr);
3751 import_flag = GVf_IMPORTED_HV;
3754 location = (SV **) &GvAV(dstr);
3755 import_flag = GVf_IMPORTED_AV;
3758 location = (SV **) &GvIOp(dstr);
3761 location = (SV **) &GvFORM(dstr);
3764 location = &GvSV(dstr);
3765 import_flag = GVf_IMPORTED_SV;
3768 if (stype == SVt_PVCV) {
3769 /*if (GvCVGEN(dstr) && (GvCV(dstr) != (const CV *)sref || GvCVGEN(dstr))) {*/
3770 if (GvCVGEN(dstr)) {
3771 SvREFCNT_dec(GvCV(dstr));
3772 GvCV_set(dstr, NULL);
3773 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3776 SAVEGENERICSV(*location);
3780 if (stype == SVt_PVCV && (*location != sref || GvCVGEN(dstr))) {
3781 CV* const cv = MUTABLE_CV(*location);
3783 if (!GvCVGEN((const GV *)dstr) &&
3784 (CvROOT(cv) || CvXSUB(cv)) &&
3785 /* redundant check that avoids creating the extra SV
3786 most of the time: */
3787 (CvCONST(cv) || ckWARN(WARN_REDEFINE)))
3789 SV * const new_const_sv =
3790 CvCONST((const CV *)sref)
3791 ? cv_const_sv((const CV *)sref)
3793 report_redefined_cv(
3794 sv_2mortal(Perl_newSVpvf(aTHX_
3797 HvNAME_HEK(GvSTASH((const GV *)dstr))
3799 HEKfARG(GvENAME_HEK(MUTABLE_GV(dstr)))
3802 CvCONST((const CV *)sref) ? &new_const_sv : NULL
3806 cv_ckproto_len_flags(cv, (const GV *)dstr,
3807 SvPOK(sref) ? CvPROTO(sref) : NULL,
3808 SvPOK(sref) ? CvPROTOLEN(sref) : 0,
3809 SvPOK(sref) ? SvUTF8(sref) : 0);
3811 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3812 GvASSUMECV_on(dstr);
3813 if(GvSTASH(dstr)) mro_method_changed_in(GvSTASH(dstr)); /* sub foo { 1 } sub bar { 2 } *bar = \&foo */
3816 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3817 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3818 GvFLAGS(dstr) |= import_flag;
3820 if (stype == SVt_PVHV) {
3821 const char * const name = GvNAME((GV*)dstr);
3822 const STRLEN len = GvNAMELEN(dstr);
3825 (len > 1 && name[len-2] == ':' && name[len-1] == ':')
3826 || (len == 1 && name[0] == ':')
3828 && (!dref || HvENAME_get(dref))
3831 (HV *)sref, (HV *)dref,
3837 stype == SVt_PVAV && sref != dref
3838 && strEQ(GvNAME((GV*)dstr), "ISA")
3839 /* The stash may have been detached from the symbol table, so
3840 check its name before doing anything. */
3841 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3844 MAGIC * const omg = dref && SvSMAGICAL(dref)
3845 ? mg_find(dref, PERL_MAGIC_isa)
3847 if (SvSMAGICAL(sref) && (mg = mg_find(sref, PERL_MAGIC_isa))) {
3848 if (SvTYPE(mg->mg_obj) != SVt_PVAV) {
3849 AV * const ary = newAV();
3850 av_push(ary, mg->mg_obj); /* takes the refcount */
3851 mg->mg_obj = (SV *)ary;
3854 if (SvTYPE(omg->mg_obj) == SVt_PVAV) {
3855 SV **svp = AvARRAY((AV *)omg->mg_obj);
3856 I32 items = AvFILLp((AV *)omg->mg_obj) + 1;
3860 SvREFCNT_inc_simple_NN(*svp++)
3866 SvREFCNT_inc_simple_NN(omg->mg_obj)
3870 av_push((AV *)mg->mg_obj,SvREFCNT_inc_simple_NN(dstr));
3875 sref, omg ? omg->mg_obj : dstr, PERL_MAGIC_isa, NULL, 0
3877 mg = mg_find(sref, PERL_MAGIC_isa);
3879 /* Since the *ISA assignment could have affected more than
3880 one stash, don't call mro_isa_changed_in directly, but let
3881 magic_clearisa do it for us, as it already has the logic for
3882 dealing with globs vs arrays of globs. */
3884 Perl_magic_clearisa(aTHX_ NULL, mg);
3886 else if (stype == SVt_PVIO) {
3887 DEBUG_o(Perl_deb(aTHX_ "glob_assign_ref clearing PL_stashcache\n"));
3888 /* It's a cache. It will rebuild itself quite happily.
3889 It's a lot of effort to work out exactly which key (or keys)
3890 might be invalidated by the creation of the this file handle.
3892 hv_clear(PL_stashcache);
3897 if (SvTAINTED(sstr))
3903 Perl_sv_setsv_flags(pTHX_ SV *dstr, register SV* sstr, const I32 flags)
3910 PERL_ARGS_ASSERT_SV_SETSV_FLAGS;
3915 if (SvIS_FREED(dstr)) {
3916 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
3917 " to a freed scalar %p", SVfARG(sstr), (void *)dstr);
3919 SV_CHECK_THINKFIRST_COW_DROP(dstr);
3921 sstr = &PL_sv_undef;
3922 if (SvIS_FREED(sstr)) {
3923 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
3924 (void*)sstr, (void*)dstr);
3926 stype = SvTYPE(sstr);
3927 dtype = SvTYPE(dstr);
3929 /* There's a lot of redundancy below but we're going for speed here */
3934 if (dtype != SVt_PVGV && dtype != SVt_PVLV) {
3935 (void)SvOK_off(dstr);
3943 sv_upgrade(dstr, SVt_IV);
3947 sv_upgrade(dstr, SVt_PVIV);
3951 goto end_of_first_switch;
3953 (void)SvIOK_only(dstr);
3954 SvIV_set(dstr, SvIVX(sstr));
3957 /* SvTAINTED can only be true if the SV has taint magic, which in
3958 turn means that the SV type is PVMG (or greater). This is the
3959 case statement for SVt_IV, so this cannot be true (whatever gcov
3961 assert(!SvTAINTED(sstr));
3966 if (dtype < SVt_PV && dtype != SVt_IV)
3967 sv_upgrade(dstr, SVt_IV);
3975 sv_upgrade(dstr, SVt_NV);
3979 sv_upgrade(dstr, SVt_PVNV);
3983 goto end_of_first_switch;
3985 SvNV_set(dstr, SvNVX(sstr));
3986 (void)SvNOK_only(dstr);
3987 /* SvTAINTED can only be true if the SV has taint magic, which in
3988 turn means that the SV type is PVMG (or greater). This is the
3989 case statement for SVt_NV, so this cannot be true (whatever gcov
3991 assert(!SvTAINTED(sstr));
3998 sv_upgrade(dstr, SVt_PV);
4001 if (dtype < SVt_PVIV)
4002 sv_upgrade(dstr, SVt_PVIV);
4005 if (dtype < SVt_PVNV)
4006 sv_upgrade(dstr, SVt_PVNV);
4010 const char * const type = sv_reftype(sstr,0);
4012 /* diag_listed_as: Bizarre copy of %s */
4013 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_DESC(PL_op));
4015 Perl_croak(aTHX_ "Bizarre copy of %s", type);
4020 if (dtype < SVt_REGEXP)
4021 sv_upgrade(dstr, SVt_REGEXP);
4024 /* case SVt_BIND: */
4028 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
4030 if (SvTYPE(sstr) != stype)
4031 stype = SvTYPE(sstr);
4033 if (isGV_with_GP(sstr) && dtype <= SVt_PVLV) {
4034 glob_assign_glob(dstr, sstr, dtype);
4037 if (stype == SVt_PVLV)
4038 SvUPGRADE(dstr, SVt_PVNV);
4040 SvUPGRADE(dstr, (svtype)stype);
4042 end_of_first_switch:
4044 /* dstr may have been upgraded. */
4045 dtype = SvTYPE(dstr);
4046 sflags = SvFLAGS(sstr);
4048 if (dtype == SVt_PVCV) {
4049 /* Assigning to a subroutine sets the prototype. */
4052 const char *const ptr = SvPV_const(sstr, len);
4054 SvGROW(dstr, len + 1);
4055 Copy(ptr, SvPVX(dstr), len + 1, char);
4056 SvCUR_set(dstr, len);
4058 SvFLAGS(dstr) |= sflags & SVf_UTF8;
4059 CvAUTOLOAD_off(dstr);
4064 else if (dtype == SVt_PVAV || dtype == SVt_PVHV || dtype == SVt_PVFM) {
4065 const char * const type = sv_reftype(dstr,0);
4067 /* diag_listed_as: Cannot copy to %s */
4068 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_DESC(PL_op));
4070 Perl_croak(aTHX_ "Cannot copy to %s", type);
4071 } else if (sflags & SVf_ROK) {
4072 if (isGV_with_GP(dstr)
4073 && SvTYPE(SvRV(sstr)) == SVt_PVGV && isGV_with_GP(SvRV(sstr))) {
4076 if (GvIMPORTED(dstr) != GVf_IMPORTED
4077 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
4079 GvIMPORTED_on(dstr);
4084 glob_assign_glob(dstr, sstr, dtype);
4088 if (dtype >= SVt_PV) {
4089 if (isGV_with_GP(dstr)) {
4090 glob_assign_ref(dstr, sstr);
4093 if (SvPVX_const(dstr)) {
4099 (void)SvOK_off(dstr);
4100 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
4101 SvFLAGS(dstr) |= sflags & SVf_ROK;
4102 assert(!(sflags & SVp_NOK));
4103 assert(!(sflags & SVp_IOK));
4104 assert(!(sflags & SVf_NOK));
4105 assert(!(sflags & SVf_IOK));
4107 else if (isGV_with_GP(dstr)) {
4108 if (!(sflags & SVf_OK)) {
4109 Perl_ck_warner(aTHX_ packWARN(WARN_MISC),
4110 "Undefined value assigned to typeglob");
4113 GV *gv = gv_fetchsv_nomg(sstr, GV_ADD, SVt_PVGV);
4114 if (dstr != (const SV *)gv) {
4115 const char * const name = GvNAME((const GV *)dstr);
4116 const STRLEN len = GvNAMELEN(dstr);
4117 HV *old_stash = NULL;
4118 bool reset_isa = FALSE;
4119 if ((len > 1 && name[len-2] == ':' && name[len-1] == ':')
4120 || (len == 1 && name[0] == ':')) {
4121 /* Set aside the old stash, so we can reset isa caches
4122 on its subclasses. */
4123 if((old_stash = GvHV(dstr))) {
4124 /* Make sure we do not lose it early. */
4125 SvREFCNT_inc_simple_void_NN(
4126 sv_2mortal((SV *)old_stash)
4133 gp_free(MUTABLE_GV(dstr));
4134 GvGP_set(dstr, gp_ref(GvGP(gv)));
4137 HV * const stash = GvHV(dstr);
4139 old_stash ? (HV *)HvENAME_get(old_stash) : stash
4149 else if (dtype == SVt_REGEXP && stype == SVt_REGEXP) {
4150 reg_temp_copy((REGEXP*)dstr, (REGEXP*)sstr);
4152 else if (sflags & SVp_POK) {
4156 * Check to see if we can just swipe the string. If so, it's a
4157 * possible small lose on short strings, but a big win on long ones.
4158 * It might even be a win on short strings if SvPVX_const(dstr)
4159 * has to be allocated and SvPVX_const(sstr) has to be freed.
4160 * Likewise if we can set up COW rather than doing an actual copy, we
4161 * drop to the else clause, as the swipe code and the COW setup code
4162 * have much in common.
4165 /* Whichever path we take through the next code, we want this true,
4166 and doing it now facilitates the COW check. */
4167 (void)SvPOK_only(dstr);
4170 /* If we're already COW then this clause is not true, and if COW
4171 is allowed then we drop down to the else and make dest COW
4172 with us. If caller hasn't said that we're allowed to COW
4173 shared hash keys then we don't do the COW setup, even if the
4174 source scalar is a shared hash key scalar. */
4175 (((flags & SV_COW_SHARED_HASH_KEYS)
4176 ? (sflags & (SVf_FAKE|SVf_READONLY)) != (SVf_FAKE|SVf_READONLY)
4177 : 1 /* If making a COW copy is forbidden then the behaviour we
4178 desire is as if the source SV isn't actually already
4179 COW, even if it is. So we act as if the source flags
4180 are not COW, rather than actually testing them. */
4182 #ifndef PERL_OLD_COPY_ON_WRITE
4183 /* The change that added SV_COW_SHARED_HASH_KEYS makes the logic
4184 when PERL_OLD_COPY_ON_WRITE is defined a little wrong.
4185 Conceptually PERL_OLD_COPY_ON_WRITE being defined should
4186 override SV_COW_SHARED_HASH_KEYS, because it means "always COW"
4187 but in turn, it's somewhat dead code, never expected to go
4188 live, but more kept as a placeholder on how to do it better
4189 in a newer implementation. */
4190 /* If we are COW and dstr is a suitable target then we drop down
4191 into the else and make dest a COW of us. */
4192 || (SvFLAGS(dstr) & CAN_COW_MASK) != CAN_COW_FLAGS
4197 (sflags & SVs_TEMP) && /* slated for free anyway? */
4198 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
4199 (!(flags & SV_NOSTEAL)) &&
4200 /* and we're allowed to steal temps */
4201 SvREFCNT(sstr) == 1 && /* and no other references to it? */
4202 SvLEN(sstr)) /* and really is a string */
4203 #ifdef PERL_OLD_COPY_ON_WRITE
4204 && ((flags & SV_COW_SHARED_HASH_KEYS)
4205 ? (!((sflags & CAN_COW_MASK) == CAN_COW_FLAGS
4206 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
4207 && SvTYPE(sstr) >= SVt_PVIV))
4211 /* Failed the swipe test, and it's not a shared hash key either.
4212 Have to copy the string. */
4213 STRLEN len = SvCUR(sstr);
4214 SvGROW(dstr, len + 1); /* inlined from sv_setpvn */
4215 Move(SvPVX_const(sstr),SvPVX(dstr),len,char);
4216 SvCUR_set(dstr, len);
4217 *SvEND(dstr) = '\0';
4219 /* If PERL_OLD_COPY_ON_WRITE is not defined, then isSwipe will always
4221 /* Either it's a shared hash key, or it's suitable for
4222 copy-on-write or we can swipe the string. */
4224 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
4228 #ifdef PERL_OLD_COPY_ON_WRITE
4230 if ((sflags & (SVf_FAKE | SVf_READONLY))
4231 != (SVf_FAKE | SVf_READONLY)) {
4232 SvREADONLY_on(sstr);
4234 /* Make the source SV into a loop of 1.
4235 (about to become 2) */
4236 SV_COW_NEXT_SV_SET(sstr, sstr);
4240 /* Initial code is common. */
4241 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
4246 /* making another shared SV. */
4247 STRLEN cur = SvCUR(sstr);
4248 STRLEN len = SvLEN(sstr);
4249 #ifdef PERL_OLD_COPY_ON_WRITE
4251 assert (SvTYPE(dstr) >= SVt_PVIV);
4252 /* SvIsCOW_normal */
4253 /* splice us in between source and next-after-source. */
4254 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4255 SV_COW_NEXT_SV_SET(sstr, dstr);
4256 SvPV_set(dstr, SvPVX_mutable(sstr));
4260 /* SvIsCOW_shared_hash */
4261 DEBUG_C(PerlIO_printf(Perl_debug_log,
4262 "Copy on write: Sharing hash\n"));
4264 assert (SvTYPE(dstr) >= SVt_PV);
4266 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
4268 SvLEN_set(dstr, len);
4269 SvCUR_set(dstr, cur);
4270 SvREADONLY_on(dstr);
4274 { /* Passes the swipe test. */
4275 SvPV_set(dstr, SvPVX_mutable(sstr));
4276 SvLEN_set(dstr, SvLEN(sstr));
4277 SvCUR_set(dstr, SvCUR(sstr));
4280 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
4281 SvPV_set(sstr, NULL);
4287 if (sflags & SVp_NOK) {
4288 SvNV_set(dstr, SvNVX(sstr));
4290 if (sflags & SVp_IOK) {
4291 SvIV_set(dstr, SvIVX(sstr));
4292 /* Must do this otherwise some other overloaded use of 0x80000000
4293 gets confused. I guess SVpbm_VALID */
4294 if (sflags & SVf_IVisUV)
4297 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8);
4299 const MAGIC * const smg = SvVSTRING_mg(sstr);
4301 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
4302 smg->mg_ptr, smg->mg_len);
4303 SvRMAGICAL_on(dstr);
4307 else if (sflags & (SVp_IOK|SVp_NOK)) {
4308 (void)SvOK_off(dstr);
4309 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK);
4310 if (sflags & SVp_IOK) {
4311 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
4312 SvIV_set(dstr, SvIVX(sstr));
4314 if (sflags & SVp_NOK) {
4315 SvNV_set(dstr, SvNVX(sstr));
4319 if (isGV_with_GP(sstr)) {
4320 gv_efullname3(dstr, MUTABLE_GV(sstr), "*");
4323 (void)SvOK_off(dstr);
4325 if (SvTAINTED(sstr))
4330 =for apidoc sv_setsv_mg
4332 Like C<sv_setsv>, but also handles 'set' magic.
4338 Perl_sv_setsv_mg(pTHX_ SV *const dstr, register SV *const sstr)
4340 PERL_ARGS_ASSERT_SV_SETSV_MG;
4342 sv_setsv(dstr,sstr);
4346 #ifdef PERL_OLD_COPY_ON_WRITE
4348 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
4350 STRLEN cur = SvCUR(sstr);
4351 STRLEN len = SvLEN(sstr);
4354 PERL_ARGS_ASSERT_SV_SETSV_COW;
4357 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
4358 (void*)sstr, (void*)dstr);
4365 if (SvTHINKFIRST(dstr))
4366 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
4367 else if (SvPVX_const(dstr))
4368 Safefree(SvPVX_mutable(dstr));
4372 SvUPGRADE(dstr, SVt_PVIV);
4374 assert (SvPOK(sstr));
4375 assert (SvPOKp(sstr));
4376 assert (!SvIOK(sstr));
4377 assert (!SvIOKp(sstr));
4378 assert (!SvNOK(sstr));
4379 assert (!SvNOKp(sstr));
4381 if (SvIsCOW(sstr)) {
4383 if (SvLEN(sstr) == 0) {
4384 /* source is a COW shared hash key. */
4385 DEBUG_C(PerlIO_printf(Perl_debug_log,
4386 "Fast copy on write: Sharing hash\n"));
4387 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
4390 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4392 assert ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS);
4393 SvUPGRADE(sstr, SVt_PVIV);
4394 SvREADONLY_on(sstr);
4396 DEBUG_C(PerlIO_printf(Perl_debug_log,
4397 "Fast copy on write: Converting sstr to COW\n"));
4398 SV_COW_NEXT_SV_SET(dstr, sstr);
4400 SV_COW_NEXT_SV_SET(sstr, dstr);
4401 new_pv = SvPVX_mutable(sstr);
4404 SvPV_set(dstr, new_pv);
4405 SvFLAGS(dstr) = (SVt_PVIV|SVf_POK|SVp_POK|SVf_FAKE|SVf_READONLY);
4408 SvLEN_set(dstr, len);
4409 SvCUR_set(dstr, cur);
4418 =for apidoc sv_setpvn
4420 Copies a string into an SV. The C<len> parameter indicates the number of
4421 bytes to be copied. If the C<ptr> argument is NULL the SV will become
4422 undefined. Does not handle 'set' magic. See C<sv_setpvn_mg>.
4428 Perl_sv_setpvn(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4433 PERL_ARGS_ASSERT_SV_SETPVN;
4435 SV_CHECK_THINKFIRST_COW_DROP(sv);
4441 /* len is STRLEN which is unsigned, need to copy to signed */
4444 Perl_croak(aTHX_ "panic: sv_setpvn called with negative strlen %"
4447 SvUPGRADE(sv, SVt_PV);
4449 dptr = SvGROW(sv, len + 1);
4450 Move(ptr,dptr,len,char);
4453 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4455 if (SvTYPE(sv) == SVt_PVCV) CvAUTOLOAD_off(sv);
4459 =for apidoc sv_setpvn_mg
4461 Like C<sv_setpvn>, but also handles 'set' magic.
4467 Perl_sv_setpvn_mg(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4469 PERL_ARGS_ASSERT_SV_SETPVN_MG;
4471 sv_setpvn(sv,ptr,len);
4476 =for apidoc sv_setpv
4478 Copies a string into an SV. The string must be null-terminated. Does not
4479 handle 'set' magic. See C<sv_setpv_mg>.
4485 Perl_sv_setpv(pTHX_ register SV *const sv, register const char *const ptr)
4490 PERL_ARGS_ASSERT_SV_SETPV;
4492 SV_CHECK_THINKFIRST_COW_DROP(sv);
4498 SvUPGRADE(sv, SVt_PV);
4500 SvGROW(sv, len + 1);
4501 Move(ptr,SvPVX(sv),len+1,char);
4503 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4505 if (SvTYPE(sv) == SVt_PVCV) CvAUTOLOAD_off(sv);
4509 =for apidoc sv_setpv_mg
4511 Like C<sv_setpv>, but also handles 'set' magic.
4517 Perl_sv_setpv_mg(pTHX_ register SV *const sv, register const char *const ptr)
4519 PERL_ARGS_ASSERT_SV_SETPV_MG;
4526 Perl_sv_sethek(pTHX_ register SV *const sv, const HEK *const hek)
4530 PERL_ARGS_ASSERT_SV_SETHEK;
4536 if (HEK_LEN(hek) == HEf_SVKEY) {
4537 sv_setsv(sv, *(SV**)HEK_KEY(hek));
4540 const int flags = HEK_FLAGS(hek);
4541 if (flags & HVhek_WASUTF8) {
4542 STRLEN utf8_len = HEK_LEN(hek);
4543 char *as_utf8 = (char *)bytes_to_utf8((U8*)HEK_KEY(hek), &utf8_len);
4544 sv_usepvn_flags(sv, as_utf8, utf8_len, SV_HAS_TRAILING_NUL);
4547 } else if (flags & (HVhek_REHASH|HVhek_UNSHARED)) {
4548 sv_setpvn(sv, HEK_KEY(hek), HEK_LEN(hek));
4551 else SvUTF8_off(sv);
4555 SV_CHECK_THINKFIRST_COW_DROP(sv);
4556 SvUPGRADE(sv, SVt_PV);
4557 Safefree(SvPVX(sv));
4558 SvPV_set(sv,(char *)HEK_KEY(share_hek_hek(hek)));
4559 SvCUR_set(sv, HEK_LEN(hek));
4566 else SvUTF8_off(sv);
4574 =for apidoc sv_usepvn_flags
4576 Tells an SV to use C<ptr> to find its string value. Normally the
4577 string is stored inside the SV but sv_usepvn allows the SV to use an
4578 outside string. The C<ptr> should point to memory that was allocated
4579 by C<malloc>. It must be the start of a mallocked block
4580 of memory, and not a pointer to the middle of it. The
4581 string length, C<len>, must be supplied. By default
4582 this function will realloc (i.e. move) the memory pointed to by C<ptr>,
4583 so that pointer should not be freed or used by the programmer after
4584 giving it to sv_usepvn, and neither should any pointers from "behind"
4585 that pointer (e.g. ptr + 1) be used.
4587 If C<flags> & SV_SMAGIC is true, will call SvSETMAGIC. If C<flags> &
4588 SV_HAS_TRAILING_NUL is true, then C<ptr[len]> must be NUL, and the realloc
4589 will be skipped (i.e. the buffer is actually at least 1 byte longer than
4590 C<len>, and already meets the requirements for storing in C<SvPVX>).
4596 Perl_sv_usepvn_flags(pTHX_ SV *const sv, char *ptr, const STRLEN len, const U32 flags)
4601 PERL_ARGS_ASSERT_SV_USEPVN_FLAGS;
4603 SV_CHECK_THINKFIRST_COW_DROP(sv);
4604 SvUPGRADE(sv, SVt_PV);
4607 if (flags & SV_SMAGIC)
4611 if (SvPVX_const(sv))
4615 if (flags & SV_HAS_TRAILING_NUL)
4616 assert(ptr[len] == '\0');
4619 allocate = (flags & SV_HAS_TRAILING_NUL)
4621 #ifdef Perl_safesysmalloc_size
4624 PERL_STRLEN_ROUNDUP(len + 1);
4626 if (flags & SV_HAS_TRAILING_NUL) {
4627 /* It's long enough - do nothing.
4628 Specifically Perl_newCONSTSUB is relying on this. */
4631 /* Force a move to shake out bugs in callers. */
4632 char *new_ptr = (char*)safemalloc(allocate);
4633 Copy(ptr, new_ptr, len, char);
4634 PoisonFree(ptr,len,char);
4638 ptr = (char*) saferealloc (ptr, allocate);
4641 #ifdef Perl_safesysmalloc_size
4642 SvLEN_set(sv, Perl_safesysmalloc_size(ptr));
4644 SvLEN_set(sv, allocate);
4648 if (!(flags & SV_HAS_TRAILING_NUL)) {
4651 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4653 if (flags & SV_SMAGIC)
4657 #ifdef PERL_OLD_COPY_ON_WRITE
4658 /* Need to do this *after* making the SV normal, as we need the buffer
4659 pointer to remain valid until after we've copied it. If we let go too early,
4660 another thread could invalidate it by unsharing last of the same hash key
4661 (which it can do by means other than releasing copy-on-write Svs)
4662 or by changing the other copy-on-write SVs in the loop. */
4664 S_sv_release_COW(pTHX_ register SV *sv, const char *pvx, SV *after)
4666 PERL_ARGS_ASSERT_SV_RELEASE_COW;
4668 { /* this SV was SvIsCOW_normal(sv