5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
77 #ifndef PERL_IN_XSUB_RE
82 #ifdef PERL_IN_XSUB_RE
84 EXTERN_C const struct regexp_engine my_reg_engine;
89 #include "dquote_inline.h"
90 #include "invlist_inline.h"
91 #include "unicode_constants.h"
93 #define HAS_NONLATIN1_FOLD_CLOSURE(i) \
94 _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
95 #define HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(i) \
96 _HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
97 #define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
98 #define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
101 #define STATIC static
104 /* this is a chain of data about sub patterns we are processing that
105 need to be handled separately/specially in study_chunk. Its so
106 we can simulate recursion without losing state. */
108 typedef struct scan_frame {
109 regnode *last_regnode; /* last node to process in this frame */
110 regnode *next_regnode; /* next node to process when last is reached */
111 U32 prev_recursed_depth;
112 I32 stopparen; /* what stopparen do we use */
113 U32 is_top_frame; /* what flags do we use? */
115 struct scan_frame *this_prev_frame; /* this previous frame */
116 struct scan_frame *prev_frame; /* previous frame */
117 struct scan_frame *next_frame; /* next frame */
120 /* Certain characters are output as a sequence with the first being a
122 #define isBACKSLASHED_PUNCT(c) strchr("-[]\\^", c)
125 struct RExC_state_t {
126 U32 flags; /* RXf_* are we folding, multilining? */
127 U32 pm_flags; /* PMf_* stuff from the calling PMOP */
128 char *precomp; /* uncompiled string. */
129 char *precomp_end; /* pointer to end of uncompiled string. */
130 REGEXP *rx_sv; /* The SV that is the regexp. */
131 regexp *rx; /* perl core regexp structure */
132 regexp_internal *rxi; /* internal data for regexp object
134 char *start; /* Start of input for compile */
135 char *end; /* End of input for compile */
136 char *parse; /* Input-scan pointer. */
137 char *adjusted_start; /* 'start', adjusted. See code use */
138 STRLEN precomp_adj; /* an offset beyond precomp. See code use */
139 SSize_t whilem_seen; /* number of WHILEM in this expr */
140 regnode *emit_start; /* Start of emitted-code area */
141 regnode *emit_bound; /* First regnode outside of the
143 regnode *emit; /* Code-emit pointer; if = &emit_dummy,
144 implies compiling, so don't emit */
145 regnode_ssc emit_dummy; /* placeholder for emit to point to;
146 large enough for the largest
147 non-EXACTish node, so can use it as
149 I32 naughty; /* How bad is this pattern? */
150 I32 sawback; /* Did we see \1, ...? */
152 SSize_t size; /* Code size. */
153 I32 npar; /* Capture buffer count, (OPEN) plus
154 one. ("par" 0 is the whole
156 I32 nestroot; /* root parens we are in - used by
160 regnode **open_parens; /* pointers to open parens */
161 regnode **close_parens; /* pointers to close parens */
162 regnode *end_op; /* END node in program */
163 I32 utf8; /* whether the pattern is utf8 or not */
164 I32 orig_utf8; /* whether the pattern was originally in utf8 */
165 /* XXX use this for future optimisation of case
166 * where pattern must be upgraded to utf8. */
167 I32 uni_semantics; /* If a d charset modifier should use unicode
168 rules, even if the pattern is not in
170 HV *paren_names; /* Paren names */
172 regnode **recurse; /* Recurse regops */
173 I32 recurse_count; /* Number of recurse regops we have generated */
174 U8 *study_chunk_recursed; /* bitmap of which subs we have moved
176 U32 study_chunk_recursed_bytes; /* bytes in bitmap */
179 I32 override_recoding;
181 I32 recode_x_to_native;
183 I32 in_multi_char_class;
184 struct reg_code_blocks *code_blocks;/* positions of literal (?{})
186 int code_index; /* next code_blocks[] slot */
187 SSize_t maxlen; /* mininum possible number of chars in string to match */
188 scan_frame *frame_head;
189 scan_frame *frame_last;
192 #ifdef ADD_TO_REGEXEC
193 char *starttry; /* -Dr: where regtry was called. */
194 #define RExC_starttry (pRExC_state->starttry)
196 SV *runtime_code_qr; /* qr with the runtime code blocks */
198 const char *lastparse;
200 AV *paren_name_list; /* idx -> name */
201 U32 study_chunk_recursed_count;
204 #define RExC_lastparse (pRExC_state->lastparse)
205 #define RExC_lastnum (pRExC_state->lastnum)
206 #define RExC_paren_name_list (pRExC_state->paren_name_list)
207 #define RExC_study_chunk_recursed_count (pRExC_state->study_chunk_recursed_count)
208 #define RExC_mysv (pRExC_state->mysv1)
209 #define RExC_mysv1 (pRExC_state->mysv1)
210 #define RExC_mysv2 (pRExC_state->mysv2)
213 bool seen_unfolded_sharp_s;
218 #define RExC_flags (pRExC_state->flags)
219 #define RExC_pm_flags (pRExC_state->pm_flags)
220 #define RExC_precomp (pRExC_state->precomp)
221 #define RExC_precomp_adj (pRExC_state->precomp_adj)
222 #define RExC_adjusted_start (pRExC_state->adjusted_start)
223 #define RExC_precomp_end (pRExC_state->precomp_end)
224 #define RExC_rx_sv (pRExC_state->rx_sv)
225 #define RExC_rx (pRExC_state->rx)
226 #define RExC_rxi (pRExC_state->rxi)
227 #define RExC_start (pRExC_state->start)
228 #define RExC_end (pRExC_state->end)
229 #define RExC_parse (pRExC_state->parse)
230 #define RExC_whilem_seen (pRExC_state->whilem_seen)
232 /* Set during the sizing pass when there is a LATIN SMALL LETTER SHARP S in any
233 * EXACTF node, hence was parsed under /di rules. If later in the parse,
234 * something forces the pattern into using /ui rules, the sharp s should be
235 * folded into the sequence 'ss', which takes up more space than previously
236 * calculated. This means that the sizing pass needs to be restarted. (The
237 * node also becomes an EXACTFU_SS.) For all other characters, an EXACTF node
238 * that gets converted to /ui (and EXACTFU) occupies the same amount of space,
239 * so there is no need to resize [perl #125990]. */
240 #define RExC_seen_unfolded_sharp_s (pRExC_state->seen_unfolded_sharp_s)
242 #ifdef RE_TRACK_PATTERN_OFFSETS
243 #define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the
246 #define RExC_emit (pRExC_state->emit)
247 #define RExC_emit_dummy (pRExC_state->emit_dummy)
248 #define RExC_emit_start (pRExC_state->emit_start)
249 #define RExC_emit_bound (pRExC_state->emit_bound)
250 #define RExC_sawback (pRExC_state->sawback)
251 #define RExC_seen (pRExC_state->seen)
252 #define RExC_size (pRExC_state->size)
253 #define RExC_maxlen (pRExC_state->maxlen)
254 #define RExC_npar (pRExC_state->npar)
255 #define RExC_nestroot (pRExC_state->nestroot)
256 #define RExC_extralen (pRExC_state->extralen)
257 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
258 #define RExC_utf8 (pRExC_state->utf8)
259 #define RExC_uni_semantics (pRExC_state->uni_semantics)
260 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
261 #define RExC_open_parens (pRExC_state->open_parens)
262 #define RExC_close_parens (pRExC_state->close_parens)
263 #define RExC_end_op (pRExC_state->end_op)
264 #define RExC_paren_names (pRExC_state->paren_names)
265 #define RExC_recurse (pRExC_state->recurse)
266 #define RExC_recurse_count (pRExC_state->recurse_count)
267 #define RExC_study_chunk_recursed (pRExC_state->study_chunk_recursed)
268 #define RExC_study_chunk_recursed_bytes \
269 (pRExC_state->study_chunk_recursed_bytes)
270 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
271 #define RExC_contains_locale (pRExC_state->contains_locale)
273 # define RExC_recode_x_to_native (pRExC_state->recode_x_to_native)
275 #define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
276 #define RExC_frame_head (pRExC_state->frame_head)
277 #define RExC_frame_last (pRExC_state->frame_last)
278 #define RExC_frame_count (pRExC_state->frame_count)
279 #define RExC_strict (pRExC_state->strict)
280 #define RExC_study_started (pRExC_state->study_started)
281 #define RExC_warn_text (pRExC_state->warn_text)
283 /* Heuristic check on the complexity of the pattern: if TOO_NAUGHTY, we set
284 * a flag to disable back-off on the fixed/floating substrings - if it's
285 * a high complexity pattern we assume the benefit of avoiding a full match
286 * is worth the cost of checking for the substrings even if they rarely help.
288 #define RExC_naughty (pRExC_state->naughty)
289 #define TOO_NAUGHTY (10)
290 #define MARK_NAUGHTY(add) \
291 if (RExC_naughty < TOO_NAUGHTY) \
292 RExC_naughty += (add)
293 #define MARK_NAUGHTY_EXP(exp, add) \
294 if (RExC_naughty < TOO_NAUGHTY) \
295 RExC_naughty += RExC_naughty / (exp) + (add)
297 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
298 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
299 ((*s) == '{' && regcurly(s)))
302 * Flags to be passed up and down.
304 #define WORST 0 /* Worst case. */
305 #define HASWIDTH 0x01 /* Known to match non-null strings. */
307 /* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
308 * character. (There needs to be a case: in the switch statement in regexec.c
309 * for any node marked SIMPLE.) Note that this is not the same thing as
312 #define SPSTART 0x04 /* Starts with * or + */
313 #define POSTPONED 0x08 /* (?1),(?&name), (??{...}) or similar */
314 #define TRYAGAIN 0x10 /* Weeded out a declaration. */
315 #define RESTART_PASS1 0x20 /* Need to restart sizing pass */
316 #define NEED_UTF8 0x40 /* In conjunction with RESTART_PASS1, need to
317 calcuate sizes as UTF-8 */
319 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
321 /* whether trie related optimizations are enabled */
322 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
323 #define TRIE_STUDY_OPT
324 #define FULL_TRIE_STUDY
330 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
331 #define PBITVAL(paren) (1 << ((paren) & 7))
332 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
333 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
334 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
336 #define REQUIRE_UTF8(flagp) STMT_START { \
339 *flagp = RESTART_PASS1|NEED_UTF8; \
344 /* Change from /d into /u rules, and restart the parse if we've already seen
345 * something whose size would increase as a result, by setting *flagp and
346 * returning 'restart_retval'. RExC_uni_semantics is a flag that indicates
347 * we've change to /u during the parse. */
348 #define REQUIRE_UNI_RULES(flagp, restart_retval) \
350 if (DEPENDS_SEMANTICS) { \
352 set_regex_charset(&RExC_flags, REGEX_UNICODE_CHARSET); \
353 RExC_uni_semantics = 1; \
354 if (RExC_seen_unfolded_sharp_s) { \
355 *flagp |= RESTART_PASS1; \
356 return restart_retval; \
361 /* This converts the named class defined in regcomp.h to its equivalent class
362 * number defined in handy.h. */
363 #define namedclass_to_classnum(class) ((int) ((class) / 2))
364 #define classnum_to_namedclass(classnum) ((classnum) * 2)
366 #define _invlist_union_complement_2nd(a, b, output) \
367 _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
368 #define _invlist_intersection_complement_2nd(a, b, output) \
369 _invlist_intersection_maybe_complement_2nd(a, b, TRUE, output)
371 /* About scan_data_t.
373 During optimisation we recurse through the regexp program performing
374 various inplace (keyhole style) optimisations. In addition study_chunk
375 and scan_commit populate this data structure with information about
376 what strings MUST appear in the pattern. We look for the longest
377 string that must appear at a fixed location, and we look for the
378 longest string that may appear at a floating location. So for instance
383 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
384 strings (because they follow a .* construct). study_chunk will identify
385 both FOO and BAR as being the longest fixed and floating strings respectively.
387 The strings can be composites, for instance
391 will result in a composite fixed substring 'foo'.
393 For each string some basic information is maintained:
395 - offset or min_offset
396 This is the position the string must appear at, or not before.
397 It also implicitly (when combined with minlenp) tells us how many
398 characters must match before the string we are searching for.
399 Likewise when combined with minlenp and the length of the string it
400 tells us how many characters must appear after the string we have
404 Only used for floating strings. This is the rightmost point that
405 the string can appear at. If set to SSize_t_MAX it indicates that the
406 string can occur infinitely far to the right.
409 A pointer to the minimum number of characters of the pattern that the
410 string was found inside. This is important as in the case of positive
411 lookahead or positive lookbehind we can have multiple patterns
416 The minimum length of the pattern overall is 3, the minimum length
417 of the lookahead part is 3, but the minimum length of the part that
418 will actually match is 1. So 'FOO's minimum length is 3, but the
419 minimum length for the F is 1. This is important as the minimum length
420 is used to determine offsets in front of and behind the string being
421 looked for. Since strings can be composites this is the length of the
422 pattern at the time it was committed with a scan_commit. Note that
423 the length is calculated by study_chunk, so that the minimum lengths
424 are not known until the full pattern has been compiled, thus the
425 pointer to the value.
429 In the case of lookbehind the string being searched for can be
430 offset past the start point of the final matching string.
431 If this value was just blithely removed from the min_offset it would
432 invalidate some of the calculations for how many chars must match
433 before or after (as they are derived from min_offset and minlen and
434 the length of the string being searched for).
435 When the final pattern is compiled and the data is moved from the
436 scan_data_t structure into the regexp structure the information
437 about lookbehind is factored in, with the information that would
438 have been lost precalculated in the end_shift field for the
441 The fields pos_min and pos_delta are used to store the minimum offset
442 and the delta to the maximum offset at the current point in the pattern.
446 typedef struct scan_data_t {
447 /*I32 len_min; unused */
448 /*I32 len_delta; unused */
452 SSize_t last_end; /* min value, <0 unless valid. */
453 SSize_t last_start_min;
454 SSize_t last_start_max;
455 SV **longest; /* Either &l_fixed, or &l_float. */
456 SV *longest_fixed; /* longest fixed string found in pattern */
457 SSize_t offset_fixed; /* offset where it starts */
458 SSize_t *minlen_fixed; /* pointer to the minlen relevant to the string */
459 I32 lookbehind_fixed; /* is the position of the string modfied by LB */
460 SV *longest_float; /* longest floating string found in pattern */
461 SSize_t offset_float_min; /* earliest point in string it can appear */
462 SSize_t offset_float_max; /* latest point in string it can appear */
463 SSize_t *minlen_float; /* pointer to the minlen relevant to the string */
464 SSize_t lookbehind_float; /* is the pos of the string modified by LB */
467 SSize_t *last_closep;
468 regnode_ssc *start_class;
472 * Forward declarations for pregcomp()'s friends.
475 static const scan_data_t zero_scan_data =
476 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
478 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
479 #define SF_BEFORE_SEOL 0x0001
480 #define SF_BEFORE_MEOL 0x0002
481 #define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
482 #define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
484 #define SF_FIX_SHIFT_EOL (+2)
485 #define SF_FL_SHIFT_EOL (+4)
487 #define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
488 #define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
490 #define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
491 #define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
492 #define SF_IS_INF 0x0040
493 #define SF_HAS_PAR 0x0080
494 #define SF_IN_PAR 0x0100
495 #define SF_HAS_EVAL 0x0200
498 /* SCF_DO_SUBSTR is the flag that tells the regexp analyzer to track the
499 * longest substring in the pattern. When it is not set the optimiser keeps
500 * track of position, but does not keep track of the actual strings seen,
502 * So for instance /foo/ will be parsed with SCF_DO_SUBSTR being true, but
505 * Similarly, /foo.*(blah|erm|huh).*fnorble/ will have "foo" and "fnorble"
506 * parsed with SCF_DO_SUBSTR on, but while processing the (...) it will be
507 * turned off because of the alternation (BRANCH). */
508 #define SCF_DO_SUBSTR 0x0400
510 #define SCF_DO_STCLASS_AND 0x0800
511 #define SCF_DO_STCLASS_OR 0x1000
512 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
513 #define SCF_WHILEM_VISITED_POS 0x2000
515 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
516 #define SCF_SEEN_ACCEPT 0x8000
517 #define SCF_TRIE_DOING_RESTUDY 0x10000
518 #define SCF_IN_DEFINE 0x20000
523 #define UTF cBOOL(RExC_utf8)
525 /* The enums for all these are ordered so things work out correctly */
526 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
527 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) \
528 == REGEX_DEPENDS_CHARSET)
529 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
530 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) \
531 >= REGEX_UNICODE_CHARSET)
532 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
533 == REGEX_ASCII_RESTRICTED_CHARSET)
534 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
535 >= REGEX_ASCII_RESTRICTED_CHARSET)
536 #define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) \
537 == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
539 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
541 /* For programs that want to be strictly Unicode compatible by dying if any
542 * attempt is made to match a non-Unicode code point against a Unicode
544 #define ALWAYS_WARN_SUPER ckDEAD(packWARN(WARN_NON_UNICODE))
546 #define OOB_NAMEDCLASS -1
548 /* There is no code point that is out-of-bounds, so this is problematic. But
549 * its only current use is to initialize a variable that is always set before
551 #define OOB_UNICODE 0xDEADBEEF
553 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
556 /* length of regex to show in messages that don't mark a position within */
557 #define RegexLengthToShowInErrorMessages 127
560 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
561 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
562 * op/pragma/warn/regcomp.
564 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
565 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
567 #define REPORT_LOCATION " in regex; marked by " MARKER1 \
568 " in m/%" UTF8f MARKER2 "%" UTF8f "/"
570 /* The code in this file in places uses one level of recursion with parsing
571 * rebased to an alternate string constructed by us in memory. This can take
572 * the form of something that is completely different from the input, or
573 * something that uses the input as part of the alternate. In the first case,
574 * there should be no possibility of an error, as we are in complete control of
575 * the alternate string. But in the second case we don't control the input
576 * portion, so there may be errors in that. Here's an example:
578 * is handled specially because \x{df} folds to a sequence of more than one
579 * character, 'ss'. What is done is to create and parse an alternate string,
580 * which looks like this:
581 * /(?:\x{DF}|[abc\x{DF}def])/ui
582 * where it uses the input unchanged in the middle of something it constructs,
583 * which is a branch for the DF outside the character class, and clustering
584 * parens around the whole thing. (It knows enough to skip the DF inside the
585 * class while in this substitute parse.) 'abc' and 'def' may have errors that
586 * need to be reported. The general situation looks like this:
589 * Input: ----------------------------------------------------
590 * Constructed: ---------------------------------------------------
593 * The input string sI..eI is the input pattern. The string sC..EC is the
594 * constructed substitute parse string. The portions sC..tC and eC..EC are
595 * constructed by us. The portion tC..eC is an exact duplicate of the input
596 * pattern tI..eI. In the diagram, these are vertically aligned. Suppose that
597 * while parsing, we find an error at xC. We want to display a message showing
598 * the real input string. Thus we need to find the point xI in it which
599 * corresponds to xC. xC >= tC, since the portion of the string sC..tC has
600 * been constructed by us, and so shouldn't have errors. We get:
602 * xI = sI + (tI - sI) + (xC - tC)
604 * and, the offset into sI is:
606 * (xI - sI) = (tI - sI) + (xC - tC)
608 * When the substitute is constructed, we save (tI -sI) as RExC_precomp_adj,
609 * and we save tC as RExC_adjusted_start.
611 * During normal processing of the input pattern, everything points to that,
612 * with RExC_precomp_adj set to 0, and RExC_adjusted_start set to sI.
615 #define tI_sI RExC_precomp_adj
616 #define tC RExC_adjusted_start
617 #define sC RExC_precomp
618 #define xI_offset(xC) ((IV) (tI_sI + (xC - tC)))
619 #define xI(xC) (sC + xI_offset(xC))
620 #define eC RExC_precomp_end
622 #define REPORT_LOCATION_ARGS(xC) \
624 (xI(xC) > eC) /* Don't run off end */ \
625 ? eC - sC /* Length before the <--HERE */ \
627 sC), /* The input pattern printed up to the <--HERE */ \
629 (xI(xC) > eC) ? 0 : eC - xI(xC), /* Length after <--HERE */ \
630 (xI(xC) > eC) ? eC : xI(xC)) /* pattern after <--HERE */
632 /* Used to point after bad bytes for an error message, but avoid skipping
633 * past a nul byte. */
634 #define SKIP_IF_CHAR(s) (!*(s) ? 0 : UTF ? UTF8SKIP(s) : 1)
637 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
638 * arg. Show regex, up to a maximum length. If it's too long, chop and add
641 #define _FAIL(code) STMT_START { \
642 const char *ellipses = ""; \
643 IV len = RExC_precomp_end - RExC_precomp; \
646 SAVEFREESV(RExC_rx_sv); \
647 if (len > RegexLengthToShowInErrorMessages) { \
648 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
649 len = RegexLengthToShowInErrorMessages - 10; \
655 #define FAIL(msg) _FAIL( \
656 Perl_croak(aTHX_ "%s in regex m/%" UTF8f "%s/", \
657 msg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
659 #define FAIL2(msg,arg) _FAIL( \
660 Perl_croak(aTHX_ msg " in regex m/%" UTF8f "%s/", \
661 arg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
664 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
666 #define Simple_vFAIL(m) STMT_START { \
667 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
668 m, REPORT_LOCATION_ARGS(RExC_parse)); \
672 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
674 #define vFAIL(m) STMT_START { \
676 SAVEFREESV(RExC_rx_sv); \
681 * Like Simple_vFAIL(), but accepts two arguments.
683 #define Simple_vFAIL2(m,a1) STMT_START { \
684 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
685 REPORT_LOCATION_ARGS(RExC_parse)); \
689 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
691 #define vFAIL2(m,a1) STMT_START { \
693 SAVEFREESV(RExC_rx_sv); \
694 Simple_vFAIL2(m, a1); \
699 * Like Simple_vFAIL(), but accepts three arguments.
701 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
702 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
703 REPORT_LOCATION_ARGS(RExC_parse)); \
707 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
709 #define vFAIL3(m,a1,a2) STMT_START { \
711 SAVEFREESV(RExC_rx_sv); \
712 Simple_vFAIL3(m, a1, a2); \
716 * Like Simple_vFAIL(), but accepts four arguments.
718 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
719 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, a3, \
720 REPORT_LOCATION_ARGS(RExC_parse)); \
723 #define vFAIL4(m,a1,a2,a3) STMT_START { \
725 SAVEFREESV(RExC_rx_sv); \
726 Simple_vFAIL4(m, a1, a2, a3); \
729 /* A specialized version of vFAIL2 that works with UTF8f */
730 #define vFAIL2utf8f(m, a1) STMT_START { \
732 SAVEFREESV(RExC_rx_sv); \
733 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
734 REPORT_LOCATION_ARGS(RExC_parse)); \
737 #define vFAIL3utf8f(m, a1, a2) STMT_START { \
739 SAVEFREESV(RExC_rx_sv); \
740 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
741 REPORT_LOCATION_ARGS(RExC_parse)); \
744 /* These have asserts in them because of [perl #122671] Many warnings in
745 * regcomp.c can occur twice. If they get output in pass1 and later in that
746 * pass, the pattern has to be converted to UTF-8 and the pass restarted, they
747 * would get output again. So they should be output in pass2, and these
748 * asserts make sure new warnings follow that paradigm. */
750 /* m is not necessarily a "literal string", in this macro */
751 #define reg_warn_non_literal_string(loc, m) STMT_START { \
752 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
753 "%s" REPORT_LOCATION, \
754 m, REPORT_LOCATION_ARGS(loc)); \
757 #define ckWARNreg(loc,m) STMT_START { \
758 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
760 REPORT_LOCATION_ARGS(loc)); \
763 #define vWARN(loc, m) STMT_START { \
764 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
766 REPORT_LOCATION_ARGS(loc)); \
769 #define vWARN_dep(loc, m) STMT_START { \
770 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), \
772 REPORT_LOCATION_ARGS(loc)); \
775 #define ckWARNdep(loc,m) STMT_START { \
776 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
778 REPORT_LOCATION_ARGS(loc)); \
781 #define ckWARNregdep(loc,m) STMT_START { \
782 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, \
785 REPORT_LOCATION_ARGS(loc)); \
788 #define ckWARN2reg_d(loc,m, a1) STMT_START { \
789 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_REGEXP), \
791 a1, REPORT_LOCATION_ARGS(loc)); \
794 #define ckWARN2reg(loc, m, a1) STMT_START { \
795 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
797 a1, REPORT_LOCATION_ARGS(loc)); \
800 #define vWARN3(loc, m, a1, a2) STMT_START { \
801 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
803 a1, a2, REPORT_LOCATION_ARGS(loc)); \
806 #define ckWARN3reg(loc, m, a1, a2) STMT_START { \
807 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
810 REPORT_LOCATION_ARGS(loc)); \
813 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \
814 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
817 REPORT_LOCATION_ARGS(loc)); \
820 #define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
821 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), \
824 REPORT_LOCATION_ARGS(loc)); \
827 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
828 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), \
831 REPORT_LOCATION_ARGS(loc)); \
834 /* Macros for recording node offsets. 20001227 mjd@plover.com
835 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
836 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
837 * Element 0 holds the number n.
838 * Position is 1 indexed.
840 #ifndef RE_TRACK_PATTERN_OFFSETS
841 #define Set_Node_Offset_To_R(node,byte)
842 #define Set_Node_Offset(node,byte)
843 #define Set_Cur_Node_Offset
844 #define Set_Node_Length_To_R(node,len)
845 #define Set_Node_Length(node,len)
846 #define Set_Node_Cur_Length(node,start)
847 #define Node_Offset(n)
848 #define Node_Length(n)
849 #define Set_Node_Offset_Length(node,offset,len)
850 #define ProgLen(ri) ri->u.proglen
851 #define SetProgLen(ri,x) ri->u.proglen = x
853 #define ProgLen(ri) ri->u.offsets[0]
854 #define SetProgLen(ri,x) ri->u.offsets[0] = x
855 #define Set_Node_Offset_To_R(node,byte) STMT_START { \
857 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
858 __LINE__, (int)(node), (int)(byte))); \
860 Perl_croak(aTHX_ "value of node is %d in Offset macro", \
863 RExC_offsets[2*(node)-1] = (byte); \
868 #define Set_Node_Offset(node,byte) \
869 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
870 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
872 #define Set_Node_Length_To_R(node,len) STMT_START { \
874 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
875 __LINE__, (int)(node), (int)(len))); \
877 Perl_croak(aTHX_ "value of node is %d in Length macro", \
880 RExC_offsets[2*(node)] = (len); \
885 #define Set_Node_Length(node,len) \
886 Set_Node_Length_To_R((node)-RExC_emit_start, len)
887 #define Set_Node_Cur_Length(node, start) \
888 Set_Node_Length(node, RExC_parse - start)
890 /* Get offsets and lengths */
891 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
892 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
894 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
895 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
896 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
900 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
901 #define EXPERIMENTAL_INPLACESCAN
902 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
906 Perl_re_printf(pTHX_ const char *fmt, ...)
910 PerlIO *f= Perl_debug_log;
911 PERL_ARGS_ASSERT_RE_PRINTF;
913 result = PerlIO_vprintf(f, fmt, ap);
919 Perl_re_indentf(pTHX_ const char *fmt, U32 depth, ...)
923 PerlIO *f= Perl_debug_log;
924 PERL_ARGS_ASSERT_RE_INDENTF;
926 PerlIO_printf(f, "%*s", ( (int)depth % 20 ) * 2, "");
927 result = PerlIO_vprintf(f, fmt, ap);
931 #endif /* DEBUGGING */
933 #define DEBUG_RExC_seen() \
934 DEBUG_OPTIMISE_MORE_r({ \
935 Perl_re_printf( aTHX_ "RExC_seen: "); \
937 if (RExC_seen & REG_ZERO_LEN_SEEN) \
938 Perl_re_printf( aTHX_ "REG_ZERO_LEN_SEEN "); \
940 if (RExC_seen & REG_LOOKBEHIND_SEEN) \
941 Perl_re_printf( aTHX_ "REG_LOOKBEHIND_SEEN "); \
943 if (RExC_seen & REG_GPOS_SEEN) \
944 Perl_re_printf( aTHX_ "REG_GPOS_SEEN "); \
946 if (RExC_seen & REG_RECURSE_SEEN) \
947 Perl_re_printf( aTHX_ "REG_RECURSE_SEEN "); \
949 if (RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN) \
950 Perl_re_printf( aTHX_ "REG_TOP_LEVEL_BRANCHES_SEEN "); \
952 if (RExC_seen & REG_VERBARG_SEEN) \
953 Perl_re_printf( aTHX_ "REG_VERBARG_SEEN "); \
955 if (RExC_seen & REG_CUTGROUP_SEEN) \
956 Perl_re_printf( aTHX_ "REG_CUTGROUP_SEEN "); \
958 if (RExC_seen & REG_RUN_ON_COMMENT_SEEN) \
959 Perl_re_printf( aTHX_ "REG_RUN_ON_COMMENT_SEEN "); \
961 if (RExC_seen & REG_UNFOLDED_MULTI_SEEN) \
962 Perl_re_printf( aTHX_ "REG_UNFOLDED_MULTI_SEEN "); \
964 if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) \
965 Perl_re_printf( aTHX_ "REG_UNBOUNDED_QUANTIFIER_SEEN "); \
967 Perl_re_printf( aTHX_ "\n"); \
970 #define DEBUG_SHOW_STUDY_FLAG(flags,flag) \
971 if ((flags) & flag) Perl_re_printf( aTHX_ "%s ", #flag)
973 #define DEBUG_SHOW_STUDY_FLAGS(flags,open_str,close_str) \
975 Perl_re_printf( aTHX_ "%s", open_str); \
976 DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_SEOL); \
977 DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_MEOL); \
978 DEBUG_SHOW_STUDY_FLAG(flags,SF_IS_INF); \
979 DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_PAR); \
980 DEBUG_SHOW_STUDY_FLAG(flags,SF_IN_PAR); \
981 DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_EVAL); \
982 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_SUBSTR); \
983 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_AND); \
984 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_OR); \
985 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS); \
986 DEBUG_SHOW_STUDY_FLAG(flags,SCF_WHILEM_VISITED_POS); \
987 DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_RESTUDY); \
988 DEBUG_SHOW_STUDY_FLAG(flags,SCF_SEEN_ACCEPT); \
989 DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_DOING_RESTUDY); \
990 DEBUG_SHOW_STUDY_FLAG(flags,SCF_IN_DEFINE); \
991 Perl_re_printf( aTHX_ "%s", close_str); \
995 #define DEBUG_STUDYDATA(str,data,depth) \
996 DEBUG_OPTIMISE_MORE_r(if(data){ \
997 Perl_re_indentf( aTHX_ "" str "Pos:%" IVdf "/%" IVdf \
998 " Flags: 0x%" UVXf, \
1000 (IV)((data)->pos_min), \
1001 (IV)((data)->pos_delta), \
1002 (UV)((data)->flags) \
1004 DEBUG_SHOW_STUDY_FLAGS((data)->flags," [ ","]"); \
1005 Perl_re_printf( aTHX_ \
1006 " Whilem_c: %" IVdf " Lcp: %" IVdf " %s", \
1007 (IV)((data)->whilem_c), \
1008 (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
1009 is_inf ? "INF " : "" \
1011 if ((data)->last_found) \
1012 Perl_re_printf( aTHX_ \
1013 "Last:'%s' %" IVdf ":%" IVdf "/%" IVdf \
1014 " %sFixed:'%s' @ %" IVdf \
1015 " %sFloat: '%s' @ %" IVdf "/%" IVdf, \
1016 SvPVX_const((data)->last_found), \
1017 (IV)((data)->last_end), \
1018 (IV)((data)->last_start_min), \
1019 (IV)((data)->last_start_max), \
1020 ((data)->longest && \
1021 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
1022 SvPVX_const((data)->longest_fixed), \
1023 (IV)((data)->offset_fixed), \
1024 ((data)->longest && \
1025 (data)->longest==&((data)->longest_float)) ? "*" : "", \
1026 SvPVX_const((data)->longest_float), \
1027 (IV)((data)->offset_float_min), \
1028 (IV)((data)->offset_float_max) \
1030 Perl_re_printf( aTHX_ "\n"); \
1034 /* =========================================================
1035 * BEGIN edit_distance stuff.
1037 * This calculates how many single character changes of any type are needed to
1038 * transform a string into another one. It is taken from version 3.1 of
1040 * https://metacpan.org/pod/Text::Levenshtein::Damerau::XS
1043 /* Our unsorted dictionary linked list. */
1044 /* Note we use UVs, not chars. */
1049 struct dictionary* next;
1051 typedef struct dictionary item;
1054 PERL_STATIC_INLINE item*
1055 push(UV key,item* curr)
1058 Newxz(head, 1, item);
1066 PERL_STATIC_INLINE item*
1067 find(item* head, UV key)
1069 item* iterator = head;
1071 if (iterator->key == key){
1074 iterator = iterator->next;
1080 PERL_STATIC_INLINE item*
1081 uniquePush(item* head,UV key)
1083 item* iterator = head;
1086 if (iterator->key == key) {
1089 iterator = iterator->next;
1092 return push(key,head);
1095 PERL_STATIC_INLINE void
1096 dict_free(item* head)
1098 item* iterator = head;
1101 item* temp = iterator;
1102 iterator = iterator->next;
1109 /* End of Dictionary Stuff */
1111 /* All calculations/work are done here */
1113 S_edit_distance(const UV* src,
1115 const STRLEN x, /* length of src[] */
1116 const STRLEN y, /* length of tgt[] */
1117 const SSize_t maxDistance
1121 UV swapCount,swapScore,targetCharCount,i,j;
1123 UV score_ceil = x + y;
1125 PERL_ARGS_ASSERT_EDIT_DISTANCE;
1127 /* intialize matrix start values */
1128 Newxz(scores, ( (x + 2) * (y + 2)), UV);
1129 scores[0] = score_ceil;
1130 scores[1 * (y + 2) + 0] = score_ceil;
1131 scores[0 * (y + 2) + 1] = score_ceil;
1132 scores[1 * (y + 2) + 1] = 0;
1133 head = uniquePush(uniquePush(head,src[0]),tgt[0]);
1138 for (i=1;i<=x;i++) {
1140 head = uniquePush(head,src[i]);
1141 scores[(i+1) * (y + 2) + 1] = i;
1142 scores[(i+1) * (y + 2) + 0] = score_ceil;
1145 for (j=1;j<=y;j++) {
1148 head = uniquePush(head,tgt[j]);
1149 scores[1 * (y + 2) + (j + 1)] = j;
1150 scores[0 * (y + 2) + (j + 1)] = score_ceil;
1153 targetCharCount = find(head,tgt[j-1])->value;
1154 swapScore = scores[targetCharCount * (y + 2) + swapCount] + i - targetCharCount - 1 + j - swapCount;
1156 if (src[i-1] != tgt[j-1]){
1157 scores[(i+1) * (y + 2) + (j + 1)] = MIN(swapScore,(MIN(scores[i * (y + 2) + j], MIN(scores[(i+1) * (y + 2) + j], scores[i * (y + 2) + (j + 1)])) + 1));
1161 scores[(i+1) * (y + 2) + (j + 1)] = MIN(scores[i * (y + 2) + j], swapScore);
1165 find(head,src[i-1])->value = i;
1169 IV score = scores[(x+1) * (y + 2) + (y + 1)];
1172 return (maxDistance != 0 && maxDistance < score)?(-1):score;
1176 /* END of edit_distance() stuff
1177 * ========================================================= */
1179 /* is c a control character for which we have a mnemonic? */
1180 #define isMNEMONIC_CNTRL(c) _IS_MNEMONIC_CNTRL_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
1183 S_cntrl_to_mnemonic(const U8 c)
1185 /* Returns the mnemonic string that represents character 'c', if one
1186 * exists; NULL otherwise. The only ones that exist for the purposes of
1187 * this routine are a few control characters */
1190 case '\a': return "\\a";
1191 case '\b': return "\\b";
1192 case ESC_NATIVE: return "\\e";
1193 case '\f': return "\\f";
1194 case '\n': return "\\n";
1195 case '\r': return "\\r";
1196 case '\t': return "\\t";
1202 /* Mark that we cannot extend a found fixed substring at this point.
1203 Update the longest found anchored substring and the longest found
1204 floating substrings if needed. */
1207 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data,
1208 SSize_t *minlenp, int is_inf)
1210 const STRLEN l = CHR_SVLEN(data->last_found);
1211 const STRLEN old_l = CHR_SVLEN(*data->longest);
1212 GET_RE_DEBUG_FLAGS_DECL;
1214 PERL_ARGS_ASSERT_SCAN_COMMIT;
1216 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
1217 SvSetMagicSV(*data->longest, data->last_found);
1218 if (*data->longest == data->longest_fixed) {
1219 data->offset_fixed = l ? data->last_start_min : data->pos_min;
1220 if (data->flags & SF_BEFORE_EOL)
1222 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
1224 data->flags &= ~SF_FIX_BEFORE_EOL;
1225 data->minlen_fixed=minlenp;
1226 data->lookbehind_fixed=0;
1228 else { /* *data->longest == data->longest_float */
1229 data->offset_float_min = l ? data->last_start_min : data->pos_min;
1230 data->offset_float_max = (l
1231 ? data->last_start_max
1232 : (data->pos_delta > SSize_t_MAX - data->pos_min
1234 : data->pos_min + data->pos_delta));
1236 || (STRLEN)data->offset_float_max > (STRLEN)SSize_t_MAX)
1237 data->offset_float_max = SSize_t_MAX;
1238 if (data->flags & SF_BEFORE_EOL)
1240 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
1242 data->flags &= ~SF_FL_BEFORE_EOL;
1243 data->minlen_float=minlenp;
1244 data->lookbehind_float=0;
1247 SvCUR_set(data->last_found, 0);
1249 SV * const sv = data->last_found;
1250 if (SvUTF8(sv) && SvMAGICAL(sv)) {
1251 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
1256 data->last_end = -1;
1257 data->flags &= ~SF_BEFORE_EOL;
1258 DEBUG_STUDYDATA("commit: ",data,0);
1261 /* An SSC is just a regnode_charclass_posix with an extra field: the inversion
1262 * list that describes which code points it matches */
1265 S_ssc_anything(pTHX_ regnode_ssc *ssc)
1267 /* Set the SSC 'ssc' to match an empty string or any code point */
1269 PERL_ARGS_ASSERT_SSC_ANYTHING;
1271 assert(is_ANYOF_SYNTHETIC(ssc));
1273 /* mortalize so won't leak */
1274 ssc->invlist = sv_2mortal(_add_range_to_invlist(NULL, 0, UV_MAX));
1275 ANYOF_FLAGS(ssc) |= SSC_MATCHES_EMPTY_STRING; /* Plus matches empty */
1279 S_ssc_is_anything(const regnode_ssc *ssc)
1281 /* Returns TRUE if the SSC 'ssc' can match the empty string and any code
1282 * point; FALSE otherwise. Thus, this is used to see if using 'ssc' buys
1283 * us anything: if the function returns TRUE, 'ssc' hasn't been restricted
1284 * in any way, so there's no point in using it */
1289 PERL_ARGS_ASSERT_SSC_IS_ANYTHING;
1291 assert(is_ANYOF_SYNTHETIC(ssc));
1293 if (! (ANYOF_FLAGS(ssc) & SSC_MATCHES_EMPTY_STRING)) {
1297 /* See if the list consists solely of the range 0 - Infinity */
1298 invlist_iterinit(ssc->invlist);
1299 ret = invlist_iternext(ssc->invlist, &start, &end)
1303 invlist_iterfinish(ssc->invlist);
1309 /* If e.g., both \w and \W are set, matches everything */
1310 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1312 for (i = 0; i < ANYOF_POSIXL_MAX; i += 2) {
1313 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i+1)) {
1323 S_ssc_init(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc)
1325 /* Initializes the SSC 'ssc'. This includes setting it to match an empty
1326 * string, any code point, or any posix class under locale */
1328 PERL_ARGS_ASSERT_SSC_INIT;
1330 Zero(ssc, 1, regnode_ssc);
1331 set_ANYOF_SYNTHETIC(ssc);
1332 ARG_SET(ssc, ANYOF_ONLY_HAS_BITMAP);
1335 /* If any portion of the regex is to operate under locale rules that aren't
1336 * fully known at compile time, initialization includes it. The reason
1337 * this isn't done for all regexes is that the optimizer was written under
1338 * the assumption that locale was all-or-nothing. Given the complexity and
1339 * lack of documentation in the optimizer, and that there are inadequate
1340 * test cases for locale, many parts of it may not work properly, it is
1341 * safest to avoid locale unless necessary. */
1342 if (RExC_contains_locale) {
1343 ANYOF_POSIXL_SETALL(ssc);
1346 ANYOF_POSIXL_ZERO(ssc);
1351 S_ssc_is_cp_posixl_init(const RExC_state_t *pRExC_state,
1352 const regnode_ssc *ssc)
1354 /* Returns TRUE if the SSC 'ssc' is in its initial state with regard only
1355 * to the list of code points matched, and locale posix classes; hence does
1356 * not check its flags) */
1361 PERL_ARGS_ASSERT_SSC_IS_CP_POSIXL_INIT;
1363 assert(is_ANYOF_SYNTHETIC(ssc));
1365 invlist_iterinit(ssc->invlist);
1366 ret = invlist_iternext(ssc->invlist, &start, &end)
1370 invlist_iterfinish(ssc->invlist);
1376 if (RExC_contains_locale && ! ANYOF_POSIXL_SSC_TEST_ALL_SET(ssc)) {
1384 S_get_ANYOF_cp_list_for_ssc(pTHX_ const RExC_state_t *pRExC_state,
1385 const regnode_charclass* const node)
1387 /* Returns a mortal inversion list defining which code points are matched
1388 * by 'node', which is of type ANYOF. Handles complementing the result if
1389 * appropriate. If some code points aren't knowable at this time, the
1390 * returned list must, and will, contain every code point that is a
1394 SV* only_utf8_locale_invlist = NULL;
1396 const U32 n = ARG(node);
1397 bool new_node_has_latin1 = FALSE;
1399 PERL_ARGS_ASSERT_GET_ANYOF_CP_LIST_FOR_SSC;
1401 /* Look at the data structure created by S_set_ANYOF_arg() */
1402 if (n != ANYOF_ONLY_HAS_BITMAP) {
1403 SV * const rv = MUTABLE_SV(RExC_rxi->data->data[n]);
1404 AV * const av = MUTABLE_AV(SvRV(rv));
1405 SV **const ary = AvARRAY(av);
1406 assert(RExC_rxi->data->what[n] == 's');
1408 if (ary[1] && ary[1] != &PL_sv_undef) { /* Has compile-time swash */
1409 invlist = sv_2mortal(invlist_clone(_get_swash_invlist(ary[1])));
1411 else if (ary[0] && ary[0] != &PL_sv_undef) {
1413 /* Here, no compile-time swash, and there are things that won't be
1414 * known until runtime -- we have to assume it could be anything */
1415 invlist = sv_2mortal(_new_invlist(1));
1416 return _add_range_to_invlist(invlist, 0, UV_MAX);
1418 else if (ary[3] && ary[3] != &PL_sv_undef) {
1420 /* Here no compile-time swash, and no run-time only data. Use the
1421 * node's inversion list */
1422 invlist = sv_2mortal(invlist_clone(ary[3]));
1425 /* Get the code points valid only under UTF-8 locales */
1426 if ((ANYOF_FLAGS(node) & ANYOFL_FOLD)
1427 && ary[2] && ary[2] != &PL_sv_undef)
1429 only_utf8_locale_invlist = ary[2];
1434 invlist = sv_2mortal(_new_invlist(0));
1437 /* An ANYOF node contains a bitmap for the first NUM_ANYOF_CODE_POINTS
1438 * code points, and an inversion list for the others, but if there are code
1439 * points that should match only conditionally on the target string being
1440 * UTF-8, those are placed in the inversion list, and not the bitmap.
1441 * Since there are circumstances under which they could match, they are
1442 * included in the SSC. But if the ANYOF node is to be inverted, we have
1443 * to exclude them here, so that when we invert below, the end result
1444 * actually does include them. (Think about "\xe0" =~ /[^\xc0]/di;). We
1445 * have to do this here before we add the unconditionally matched code
1447 if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
1448 _invlist_intersection_complement_2nd(invlist,
1453 /* Add in the points from the bit map */
1454 for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
1455 if (ANYOF_BITMAP_TEST(node, i)) {
1456 unsigned int start = i++;
1458 for (; i < NUM_ANYOF_CODE_POINTS && ANYOF_BITMAP_TEST(node, i); ++i) {
1461 invlist = _add_range_to_invlist(invlist, start, i-1);
1462 new_node_has_latin1 = TRUE;
1466 /* If this can match all upper Latin1 code points, have to add them
1467 * as well. But don't add them if inverting, as when that gets done below,
1468 * it would exclude all these characters, including the ones it shouldn't
1469 * that were added just above */
1470 if (! (ANYOF_FLAGS(node) & ANYOF_INVERT) && OP(node) == ANYOFD
1471 && (ANYOF_FLAGS(node) & ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER))
1473 _invlist_union(invlist, PL_UpperLatin1, &invlist);
1476 /* Similarly for these */
1477 if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
1478 _invlist_union_complement_2nd(invlist, PL_InBitmap, &invlist);
1481 if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
1482 _invlist_invert(invlist);
1484 else if (new_node_has_latin1 && ANYOF_FLAGS(node) & ANYOFL_FOLD) {
1486 /* Under /li, any 0-255 could fold to any other 0-255, depending on the
1487 * locale. We can skip this if there are no 0-255 at all. */
1488 _invlist_union(invlist, PL_Latin1, &invlist);
1491 /* Similarly add the UTF-8 locale possible matches. These have to be
1492 * deferred until after the non-UTF-8 locale ones are taken care of just
1493 * above, or it leads to wrong results under ANYOF_INVERT */
1494 if (only_utf8_locale_invlist) {
1495 _invlist_union_maybe_complement_2nd(invlist,
1496 only_utf8_locale_invlist,
1497 ANYOF_FLAGS(node) & ANYOF_INVERT,
1504 /* These two functions currently do the exact same thing */
1505 #define ssc_init_zero ssc_init
1507 #define ssc_add_cp(ssc, cp) ssc_add_range((ssc), (cp), (cp))
1508 #define ssc_match_all_cp(ssc) ssc_add_range(ssc, 0, UV_MAX)
1510 /* 'AND' a given class with another one. Can create false positives. 'ssc'
1511 * should not be inverted. 'and_with->flags & ANYOF_MATCHES_POSIXL' should be
1512 * 0 if 'and_with' is a regnode_charclass instead of a regnode_ssc. */
1515 S_ssc_and(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1516 const regnode_charclass *and_with)
1518 /* Accumulate into SSC 'ssc' its 'AND' with 'and_with', which is either
1519 * another SSC or a regular ANYOF class. Can create false positives. */
1524 PERL_ARGS_ASSERT_SSC_AND;
1526 assert(is_ANYOF_SYNTHETIC(ssc));
1528 /* 'and_with' is used as-is if it too is an SSC; otherwise have to extract
1529 * the code point inversion list and just the relevant flags */
1530 if (is_ANYOF_SYNTHETIC(and_with)) {
1531 anded_cp_list = ((regnode_ssc *)and_with)->invlist;
1532 anded_flags = ANYOF_FLAGS(and_with);
1534 /* XXX This is a kludge around what appears to be deficiencies in the
1535 * optimizer. If we make S_ssc_anything() add in the WARN_SUPER flag,
1536 * there are paths through the optimizer where it doesn't get weeded
1537 * out when it should. And if we don't make some extra provision for
1538 * it like the code just below, it doesn't get added when it should.
1539 * This solution is to add it only when AND'ing, which is here, and
1540 * only when what is being AND'ed is the pristine, original node
1541 * matching anything. Thus it is like adding it to ssc_anything() but
1542 * only when the result is to be AND'ed. Probably the same solution
1543 * could be adopted for the same problem we have with /l matching,
1544 * which is solved differently in S_ssc_init(), and that would lead to
1545 * fewer false positives than that solution has. But if this solution
1546 * creates bugs, the consequences are only that a warning isn't raised
1547 * that should be; while the consequences for having /l bugs is
1548 * incorrect matches */
1549 if (ssc_is_anything((regnode_ssc *)and_with)) {
1550 anded_flags |= ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER;
1554 anded_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, and_with);
1555 if (OP(and_with) == ANYOFD) {
1556 anded_flags = ANYOF_FLAGS(and_with) & ANYOF_COMMON_FLAGS;
1559 anded_flags = ANYOF_FLAGS(and_with)
1560 &( ANYOF_COMMON_FLAGS
1561 |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1562 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
1563 if (ANYOFL_UTF8_LOCALE_REQD(ANYOF_FLAGS(and_with))) {
1565 ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
1570 ANYOF_FLAGS(ssc) &= anded_flags;
1572 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1573 * C2 is the list of code points in 'and-with'; P2, its posix classes.
1574 * 'and_with' may be inverted. When not inverted, we have the situation of
1576 * (C1 | P1) & (C2 | P2)
1577 * = (C1 & (C2 | P2)) | (P1 & (C2 | P2))
1578 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1579 * <= ((C1 & C2) | P2)) | ( P1 | (P1 & P2))
1580 * <= ((C1 & C2) | P1 | P2)
1581 * Alternatively, the last few steps could be:
1582 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1583 * <= ((C1 & C2) | C1 ) | ( C2 | (P1 & P2))
1584 * <= (C1 | C2 | (P1 & P2))
1585 * We favor the second approach if either P1 or P2 is non-empty. This is
1586 * because these components are a barrier to doing optimizations, as what
1587 * they match cannot be known until the moment of matching as they are
1588 * dependent on the current locale, 'AND"ing them likely will reduce or
1590 * But we can do better if we know that C1,P1 are in their initial state (a
1591 * frequent occurrence), each matching everything:
1592 * (<everything>) & (C2 | P2) = C2 | P2
1593 * Similarly, if C2,P2 are in their initial state (again a frequent
1594 * occurrence), the result is a no-op
1595 * (C1 | P1) & (<everything>) = C1 | P1
1598 * (C1 | P1) & ~(C2 | P2) = (C1 | P1) & (~C2 & ~P2)
1599 * = (C1 & (~C2 & ~P2)) | (P1 & (~C2 & ~P2))
1600 * <= (C1 & ~C2) | (P1 & ~P2)
1603 if ((ANYOF_FLAGS(and_with) & ANYOF_INVERT)
1604 && ! is_ANYOF_SYNTHETIC(and_with))
1608 ssc_intersection(ssc,
1610 FALSE /* Has already been inverted */
1613 /* If either P1 or P2 is empty, the intersection will be also; can skip
1615 if (! (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL)) {
1616 ANYOF_POSIXL_ZERO(ssc);
1618 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1620 /* Note that the Posix class component P from 'and_with' actually
1622 * P = Pa | Pb | ... | Pn
1623 * where each component is one posix class, such as in [\w\s].
1625 * ~P = ~(Pa | Pb | ... | Pn)
1626 * = ~Pa & ~Pb & ... & ~Pn
1627 * <= ~Pa | ~Pb | ... | ~Pn
1628 * The last is something we can easily calculate, but unfortunately
1629 * is likely to have many false positives. We could do better
1630 * in some (but certainly not all) instances if two classes in
1631 * P have known relationships. For example
1632 * :lower: <= :alpha: <= :alnum: <= \w <= :graph: <= :print:
1634 * :lower: & :print: = :lower:
1635 * And similarly for classes that must be disjoint. For example,
1636 * since \s and \w can have no elements in common based on rules in
1637 * the POSIX standard,
1638 * \w & ^\S = nothing
1639 * Unfortunately, some vendor locales do not meet the Posix
1640 * standard, in particular almost everything by Microsoft.
1641 * The loop below just changes e.g., \w into \W and vice versa */
1643 regnode_charclass_posixl temp;
1644 int add = 1; /* To calculate the index of the complement */
1646 ANYOF_POSIXL_ZERO(&temp);
1647 for (i = 0; i < ANYOF_MAX; i++) {
1649 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)
1650 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i + 1));
1652 if (ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)) {
1653 ANYOF_POSIXL_SET(&temp, i + add);
1655 add = 0 - add; /* 1 goes to -1; -1 goes to 1 */
1657 ANYOF_POSIXL_AND(&temp, ssc);
1659 } /* else ssc already has no posixes */
1660 } /* else: Not inverted. This routine is a no-op if 'and_with' is an SSC
1661 in its initial state */
1662 else if (! is_ANYOF_SYNTHETIC(and_with)
1663 || ! ssc_is_cp_posixl_init(pRExC_state, (regnode_ssc *)and_with))
1665 /* But if 'ssc' is in its initial state, the result is just 'and_with';
1666 * copy it over 'ssc' */
1667 if (ssc_is_cp_posixl_init(pRExC_state, ssc)) {
1668 if (is_ANYOF_SYNTHETIC(and_with)) {
1669 StructCopy(and_with, ssc, regnode_ssc);
1672 ssc->invlist = anded_cp_list;
1673 ANYOF_POSIXL_ZERO(ssc);
1674 if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
1675 ANYOF_POSIXL_OR((regnode_charclass_posixl*) and_with, ssc);
1679 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)
1680 || (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL))
1682 /* One or the other of P1, P2 is non-empty. */
1683 if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
1684 ANYOF_POSIXL_AND((regnode_charclass_posixl*) and_with, ssc);
1686 ssc_union(ssc, anded_cp_list, FALSE);
1688 else { /* P1 = P2 = empty */
1689 ssc_intersection(ssc, anded_cp_list, FALSE);
1695 S_ssc_or(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1696 const regnode_charclass *or_with)
1698 /* Accumulate into SSC 'ssc' its 'OR' with 'or_with', which is either
1699 * another SSC or a regular ANYOF class. Can create false positives if
1700 * 'or_with' is to be inverted. */
1705 PERL_ARGS_ASSERT_SSC_OR;
1707 assert(is_ANYOF_SYNTHETIC(ssc));
1709 /* 'or_with' is used as-is if it too is an SSC; otherwise have to extract
1710 * the code point inversion list and just the relevant flags */
1711 if (is_ANYOF_SYNTHETIC(or_with)) {
1712 ored_cp_list = ((regnode_ssc*) or_with)->invlist;
1713 ored_flags = ANYOF_FLAGS(or_with);
1716 ored_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, or_with);
1717 ored_flags = ANYOF_FLAGS(or_with) & ANYOF_COMMON_FLAGS;
1718 if (OP(or_with) != ANYOFD) {
1720 |= ANYOF_FLAGS(or_with)
1721 & ( ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1722 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP);
1723 if (ANYOFL_UTF8_LOCALE_REQD(ANYOF_FLAGS(or_with))) {
1725 ANYOFL_SHARED_UTF8_LOCALE_fold_HAS_MATCHES_nonfold_REQD;
1730 ANYOF_FLAGS(ssc) |= ored_flags;
1732 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1733 * C2 is the list of code points in 'or-with'; P2, its posix classes.
1734 * 'or_with' may be inverted. When not inverted, we have the simple
1735 * situation of computing:
1736 * (C1 | P1) | (C2 | P2) = (C1 | C2) | (P1 | P2)
1737 * If P1|P2 yields a situation with both a class and its complement are
1738 * set, like having both \w and \W, this matches all code points, and we
1739 * can delete these from the P component of the ssc going forward. XXX We
1740 * might be able to delete all the P components, but I (khw) am not certain
1741 * about this, and it is better to be safe.
1744 * (C1 | P1) | ~(C2 | P2) = (C1 | P1) | (~C2 & ~P2)
1745 * <= (C1 | P1) | ~C2
1746 * <= (C1 | ~C2) | P1
1747 * (which results in actually simpler code than the non-inverted case)
1750 if ((ANYOF_FLAGS(or_with) & ANYOF_INVERT)
1751 && ! is_ANYOF_SYNTHETIC(or_with))
1753 /* We ignore P2, leaving P1 going forward */
1754 } /* else Not inverted */
1755 else if (ANYOF_FLAGS(or_with) & ANYOF_MATCHES_POSIXL) {
1756 ANYOF_POSIXL_OR((regnode_charclass_posixl*)or_with, ssc);
1757 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1759 for (i = 0; i < ANYOF_MAX; i += 2) {
1760 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i + 1))
1762 ssc_match_all_cp(ssc);
1763 ANYOF_POSIXL_CLEAR(ssc, i);
1764 ANYOF_POSIXL_CLEAR(ssc, i+1);
1772 FALSE /* Already has been inverted */
1776 PERL_STATIC_INLINE void
1777 S_ssc_union(pTHX_ regnode_ssc *ssc, SV* const invlist, const bool invert2nd)
1779 PERL_ARGS_ASSERT_SSC_UNION;
1781 assert(is_ANYOF_SYNTHETIC(ssc));
1783 _invlist_union_maybe_complement_2nd(ssc->invlist,
1789 PERL_STATIC_INLINE void
1790 S_ssc_intersection(pTHX_ regnode_ssc *ssc,
1792 const bool invert2nd)
1794 PERL_ARGS_ASSERT_SSC_INTERSECTION;
1796 assert(is_ANYOF_SYNTHETIC(ssc));
1798 _invlist_intersection_maybe_complement_2nd(ssc->invlist,
1804 PERL_STATIC_INLINE void
1805 S_ssc_add_range(pTHX_ regnode_ssc *ssc, const UV start, const UV end)
1807 PERL_ARGS_ASSERT_SSC_ADD_RANGE;
1809 assert(is_ANYOF_SYNTHETIC(ssc));
1811 ssc->invlist = _add_range_to_invlist(ssc->invlist, start, end);
1814 PERL_STATIC_INLINE void
1815 S_ssc_cp_and(pTHX_ regnode_ssc *ssc, const UV cp)
1817 /* AND just the single code point 'cp' into the SSC 'ssc' */
1819 SV* cp_list = _new_invlist(2);
1821 PERL_ARGS_ASSERT_SSC_CP_AND;
1823 assert(is_ANYOF_SYNTHETIC(ssc));
1825 cp_list = add_cp_to_invlist(cp_list, cp);
1826 ssc_intersection(ssc, cp_list,
1827 FALSE /* Not inverted */
1829 SvREFCNT_dec_NN(cp_list);
1832 PERL_STATIC_INLINE void
1833 S_ssc_clear_locale(regnode_ssc *ssc)
1835 /* Set the SSC 'ssc' to not match any locale things */
1836 PERL_ARGS_ASSERT_SSC_CLEAR_LOCALE;
1838 assert(is_ANYOF_SYNTHETIC(ssc));
1840 ANYOF_POSIXL_ZERO(ssc);
1841 ANYOF_FLAGS(ssc) &= ~ANYOF_LOCALE_FLAGS;
1844 #define NON_OTHER_COUNT NON_OTHER_COUNT_FOR_USE_ONLY_BY_REGCOMP_DOT_C
1847 S_is_ssc_worth_it(const RExC_state_t * pRExC_state, const regnode_ssc * ssc)
1849 /* The synthetic start class is used to hopefully quickly winnow down
1850 * places where a pattern could start a match in the target string. If it
1851 * doesn't really narrow things down that much, there isn't much point to
1852 * having the overhead of using it. This function uses some very crude
1853 * heuristics to decide if to use the ssc or not.
1855 * It returns TRUE if 'ssc' rules out more than half what it considers to
1856 * be the "likely" possible matches, but of course it doesn't know what the
1857 * actual things being matched are going to be; these are only guesses
1859 * For /l matches, it assumes that the only likely matches are going to be
1860 * in the 0-255 range, uniformly distributed, so half of that is 127
1861 * For /a and /d matches, it assumes that the likely matches will be just
1862 * the ASCII range, so half of that is 63
1863 * For /u and there isn't anything matching above the Latin1 range, it
1864 * assumes that that is the only range likely to be matched, and uses
1865 * half that as the cut-off: 127. If anything matches above Latin1,
1866 * it assumes that all of Unicode could match (uniformly), except for
1867 * non-Unicode code points and things in the General Category "Other"
1868 * (unassigned, private use, surrogates, controls and formats). This
1869 * is a much large number. */
1871 U32 count = 0; /* Running total of number of code points matched by
1873 UV start, end; /* Start and end points of current range in inversion
1875 const U32 max_code_points = (LOC)
1877 : (( ! UNI_SEMANTICS
1878 || invlist_highest(ssc->invlist) < 256)
1881 const U32 max_match = max_code_points / 2;
1883 PERL_ARGS_ASSERT_IS_SSC_WORTH_IT;
1885 invlist_iterinit(ssc->invlist);
1886 while (invlist_iternext(ssc->invlist, &start, &end)) {
1887 if (start >= max_code_points) {
1890 end = MIN(end, max_code_points - 1);
1891 count += end - start + 1;
1892 if (count >= max_match) {
1893 invlist_iterfinish(ssc->invlist);
1903 S_ssc_finalize(pTHX_ RExC_state_t *pRExC_state, regnode_ssc *ssc)
1905 /* The inversion list in the SSC is marked mortal; now we need a more
1906 * permanent copy, which is stored the same way that is done in a regular
1907 * ANYOF node, with the first NUM_ANYOF_CODE_POINTS code points in a bit
1910 SV* invlist = invlist_clone(ssc->invlist);
1912 PERL_ARGS_ASSERT_SSC_FINALIZE;
1914 assert(is_ANYOF_SYNTHETIC(ssc));
1916 /* The code in this file assumes that all but these flags aren't relevant
1917 * to the SSC, except SSC_MATCHES_EMPTY_STRING, which should be cleared
1918 * by the time we reach here */
1919 assert(! (ANYOF_FLAGS(ssc)
1920 & ~( ANYOF_COMMON_FLAGS
1921 |ANYOF_SHARED_d_MATCHES_ALL_NON_UTF8_NON_ASCII_non_d_WARN_SUPER
1922 |ANYOF_SHARED_d_UPPER_LATIN1_UTF8_STRING_MATCHES_non_d_RUNTIME_USER_PROP)));
1924 populate_ANYOF_from_invlist( (regnode *) ssc, &invlist);
1926 set_ANYOF_arg(pRExC_state, (regnode *) ssc, invlist,
1927 NULL, NULL, NULL, FALSE);
1929 /* Make sure is clone-safe */
1930 ssc->invlist = NULL;
1932 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1933 ANYOF_FLAGS(ssc) |= ANYOF_MATCHES_POSIXL;
1936 if (RExC_contains_locale) {
1940 assert(! (ANYOF_FLAGS(ssc) & ANYOF_LOCALE_FLAGS) || RExC_contains_locale);
1943 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
1944 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
1945 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
1946 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list \
1947 ? (TRIE_LIST_CUR( idx ) - 1) \
1953 dump_trie(trie,widecharmap,revcharmap)
1954 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
1955 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
1957 These routines dump out a trie in a somewhat readable format.
1958 The _interim_ variants are used for debugging the interim
1959 tables that are used to generate the final compressed
1960 representation which is what dump_trie expects.
1962 Part of the reason for their existence is to provide a form
1963 of documentation as to how the different representations function.
1968 Dumps the final compressed table form of the trie to Perl_debug_log.
1969 Used for debugging make_trie().
1973 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
1974 AV *revcharmap, U32 depth)
1977 SV *sv=sv_newmortal();
1978 int colwidth= widecharmap ? 6 : 4;
1980 GET_RE_DEBUG_FLAGS_DECL;
1982 PERL_ARGS_ASSERT_DUMP_TRIE;
1984 Perl_re_indentf( aTHX_ "Char : %-6s%-6s%-4s ",
1985 depth+1, "Match","Base","Ofs" );
1987 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
1988 SV ** const tmp = av_fetch( revcharmap, state, 0);
1990 Perl_re_printf( aTHX_ "%*s",
1992 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1993 PL_colors[0], PL_colors[1],
1994 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1995 PERL_PV_ESCAPE_FIRSTCHAR
2000 Perl_re_printf( aTHX_ "\n");
2001 Perl_re_indentf( aTHX_ "State|-----------------------", depth+1);
2003 for( state = 0 ; state < trie->uniquecharcount ; state++ )
2004 Perl_re_printf( aTHX_ "%.*s", colwidth, "--------");
2005 Perl_re_printf( aTHX_ "\n");
2007 for( state = 1 ; state < trie->statecount ; state++ ) {
2008 const U32 base = trie->states[ state ].trans.base;
2010 Perl_re_indentf( aTHX_ "#%4" UVXf "|", depth+1, (UV)state);
2012 if ( trie->states[ state ].wordnum ) {
2013 Perl_re_printf( aTHX_ " W%4X", trie->states[ state ].wordnum );
2015 Perl_re_printf( aTHX_ "%6s", "" );
2018 Perl_re_printf( aTHX_ " @%4" UVXf " ", (UV)base );
2023 while( ( base + ofs < trie->uniquecharcount ) ||
2024 ( base + ofs - trie->uniquecharcount < trie->lasttrans
2025 && trie->trans[ base + ofs - trie->uniquecharcount ].check
2029 Perl_re_printf( aTHX_ "+%2" UVXf "[ ", (UV)ofs);
2031 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2032 if ( ( base + ofs >= trie->uniquecharcount )
2033 && ( base + ofs - trie->uniquecharcount
2035 && trie->trans[ base + ofs
2036 - trie->uniquecharcount ].check == state )
2038 Perl_re_printf( aTHX_ "%*" UVXf, colwidth,
2039 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next
2042 Perl_re_printf( aTHX_ "%*s",colwidth," ." );
2046 Perl_re_printf( aTHX_ "]");
2049 Perl_re_printf( aTHX_ "\n" );
2051 Perl_re_indentf( aTHX_ "word_info N:(prev,len)=",
2053 for (word=1; word <= trie->wordcount; word++) {
2054 Perl_re_printf( aTHX_ " %d:(%d,%d)",
2055 (int)word, (int)(trie->wordinfo[word].prev),
2056 (int)(trie->wordinfo[word].len));
2058 Perl_re_printf( aTHX_ "\n" );
2061 Dumps a fully constructed but uncompressed trie in list form.
2062 List tries normally only are used for construction when the number of
2063 possible chars (trie->uniquecharcount) is very high.
2064 Used for debugging make_trie().
2067 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
2068 HV *widecharmap, AV *revcharmap, U32 next_alloc,
2072 SV *sv=sv_newmortal();
2073 int colwidth= widecharmap ? 6 : 4;
2074 GET_RE_DEBUG_FLAGS_DECL;
2076 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
2078 /* print out the table precompression. */
2079 Perl_re_indentf( aTHX_ "State :Word | Transition Data\n",
2081 Perl_re_indentf( aTHX_ "%s",
2082 depth+1, "------:-----+-----------------\n" );
2084 for( state=1 ; state < next_alloc ; state ++ ) {
2087 Perl_re_indentf( aTHX_ " %4" UVXf " :",
2088 depth+1, (UV)state );
2089 if ( ! trie->states[ state ].wordnum ) {
2090 Perl_re_printf( aTHX_ "%5s| ","");
2092 Perl_re_printf( aTHX_ "W%4x| ",
2093 trie->states[ state ].wordnum
2096 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
2097 SV ** const tmp = av_fetch( revcharmap,
2098 TRIE_LIST_ITEM(state,charid).forid, 0);
2100 Perl_re_printf( aTHX_ "%*s:%3X=%4" UVXf " | ",
2102 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp),
2104 PL_colors[0], PL_colors[1],
2105 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
2106 | PERL_PV_ESCAPE_FIRSTCHAR
2108 TRIE_LIST_ITEM(state,charid).forid,
2109 (UV)TRIE_LIST_ITEM(state,charid).newstate
2112 Perl_re_printf( aTHX_ "\n%*s| ",
2113 (int)((depth * 2) + 14), "");
2116 Perl_re_printf( aTHX_ "\n");
2121 Dumps a fully constructed but uncompressed trie in table form.
2122 This is the normal DFA style state transition table, with a few
2123 twists to facilitate compression later.
2124 Used for debugging make_trie().
2127 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
2128 HV *widecharmap, AV *revcharmap, U32 next_alloc,
2133 SV *sv=sv_newmortal();
2134 int colwidth= widecharmap ? 6 : 4;
2135 GET_RE_DEBUG_FLAGS_DECL;
2137 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
2140 print out the table precompression so that we can do a visual check
2141 that they are identical.
2144 Perl_re_indentf( aTHX_ "Char : ", depth+1 );
2146 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
2147 SV ** const tmp = av_fetch( revcharmap, charid, 0);
2149 Perl_re_printf( aTHX_ "%*s",
2151 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
2152 PL_colors[0], PL_colors[1],
2153 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2154 PERL_PV_ESCAPE_FIRSTCHAR
2160 Perl_re_printf( aTHX_ "\n");
2161 Perl_re_indentf( aTHX_ "State+-", depth+1 );
2163 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
2164 Perl_re_printf( aTHX_ "%.*s", colwidth,"--------");
2167 Perl_re_printf( aTHX_ "\n" );
2169 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
2171 Perl_re_indentf( aTHX_ "%4" UVXf " : ",
2173 (UV)TRIE_NODENUM( state ) );
2175 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
2176 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
2178 Perl_re_printf( aTHX_ "%*" UVXf, colwidth, v );
2180 Perl_re_printf( aTHX_ "%*s", colwidth, "." );
2182 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
2183 Perl_re_printf( aTHX_ " (%4" UVXf ")\n",
2184 (UV)trie->trans[ state ].check );
2186 Perl_re_printf( aTHX_ " (%4" UVXf ") W%4X\n",
2187 (UV)trie->trans[ state ].check,
2188 trie->states[ TRIE_NODENUM( state ) ].wordnum );
2196 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
2197 startbranch: the first branch in the whole branch sequence
2198 first : start branch of sequence of branch-exact nodes.
2199 May be the same as startbranch
2200 last : Thing following the last branch.
2201 May be the same as tail.
2202 tail : item following the branch sequence
2203 count : words in the sequence
2204 flags : currently the OP() type we will be building one of /EXACT(|F|FA|FU|FU_SS|L|FLU8)/
2205 depth : indent depth
2207 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
2209 A trie is an N'ary tree where the branches are determined by digital
2210 decomposition of the key. IE, at the root node you look up the 1st character and
2211 follow that branch repeat until you find the end of the branches. Nodes can be
2212 marked as "accepting" meaning they represent a complete word. Eg:
2216 would convert into the following structure. Numbers represent states, letters
2217 following numbers represent valid transitions on the letter from that state, if
2218 the number is in square brackets it represents an accepting state, otherwise it
2219 will be in parenthesis.
2221 +-h->+-e->[3]-+-r->(8)-+-s->[9]
2225 (1) +-i->(6)-+-s->[7]
2227 +-s->(3)-+-h->(4)-+-e->[5]
2229 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
2231 This shows that when matching against the string 'hers' we will begin at state 1
2232 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
2233 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
2234 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
2235 single traverse. We store a mapping from accepting to state to which word was
2236 matched, and then when we have multiple possibilities we try to complete the
2237 rest of the regex in the order in which they occurred in the alternation.
2239 The only prior NFA like behaviour that would be changed by the TRIE support is
2240 the silent ignoring of duplicate alternations which are of the form:
2242 / (DUPE|DUPE) X? (?{ ... }) Y /x
2244 Thus EVAL blocks following a trie may be called a different number of times with
2245 and without the optimisation. With the optimisations dupes will be silently
2246 ignored. This inconsistent behaviour of EVAL type nodes is well established as
2247 the following demonstrates:
2249 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
2251 which prints out 'word' three times, but
2253 'words'=~/(word|word|word)(?{ print $1 })S/
2255 which doesnt print it out at all. This is due to other optimisations kicking in.
2257 Example of what happens on a structural level:
2259 The regexp /(ac|ad|ab)+/ will produce the following debug output:
2261 1: CURLYM[1] {1,32767}(18)
2272 This would be optimizable with startbranch=5, first=5, last=16, tail=16
2273 and should turn into:
2275 1: CURLYM[1] {1,32767}(18)
2277 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
2285 Cases where tail != last would be like /(?foo|bar)baz/:
2295 which would be optimizable with startbranch=1, first=1, last=7, tail=8
2296 and would end up looking like:
2299 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
2306 d = uvchr_to_utf8_flags(d, uv, 0);
2308 is the recommended Unicode-aware way of saying
2313 #define TRIE_STORE_REVCHAR(val) \
2316 SV *zlopp = newSV(UTF8_MAXBYTES); \
2317 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
2318 unsigned const char *const kapow = uvchr_to_utf8(flrbbbbb, val); \
2319 SvCUR_set(zlopp, kapow - flrbbbbb); \
2322 av_push(revcharmap, zlopp); \
2324 char ooooff = (char)val; \
2325 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
2329 /* This gets the next character from the input, folding it if not already
2331 #define TRIE_READ_CHAR STMT_START { \
2334 /* if it is UTF then it is either already folded, or does not need \
2336 uvc = valid_utf8_to_uvchr( (const U8*) uc, &len); \
2338 else if (folder == PL_fold_latin1) { \
2339 /* This folder implies Unicode rules, which in the range expressible \
2340 * by not UTF is the lower case, with the two exceptions, one of \
2341 * which should have been taken care of before calling this */ \
2342 assert(*uc != LATIN_SMALL_LETTER_SHARP_S); \
2343 uvc = toLOWER_L1(*uc); \
2344 if (UNLIKELY(uvc == MICRO_SIGN)) uvc = GREEK_SMALL_LETTER_MU; \
2347 /* raw data, will be folded later if needed */ \
2355 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
2356 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
2357 U32 ging = TRIE_LIST_LEN( state ) * 2; \
2358 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
2359 TRIE_LIST_LEN( state ) = ging; \
2361 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
2362 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
2363 TRIE_LIST_CUR( state )++; \
2366 #define TRIE_LIST_NEW(state) STMT_START { \
2367 Newxz( trie->states[ state ].trans.list, \
2368 4, reg_trie_trans_le ); \
2369 TRIE_LIST_CUR( state ) = 1; \
2370 TRIE_LIST_LEN( state ) = 4; \
2373 #define TRIE_HANDLE_WORD(state) STMT_START { \
2374 U16 dupe= trie->states[ state ].wordnum; \
2375 regnode * const noper_next = regnext( noper ); \
2378 /* store the word for dumping */ \
2380 if (OP(noper) != NOTHING) \
2381 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
2383 tmp = newSVpvn_utf8( "", 0, UTF ); \
2384 av_push( trie_words, tmp ); \
2388 trie->wordinfo[curword].prev = 0; \
2389 trie->wordinfo[curword].len = wordlen; \
2390 trie->wordinfo[curword].accept = state; \
2392 if ( noper_next < tail ) { \
2394 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, \
2396 trie->jump[curword] = (U16)(noper_next - convert); \
2398 jumper = noper_next; \
2400 nextbranch= regnext(cur); \
2404 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
2405 /* chain, so that when the bits of chain are later */\
2406 /* linked together, the dups appear in the chain */\
2407 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
2408 trie->wordinfo[dupe].prev = curword; \
2410 /* we haven't inserted this word yet. */ \
2411 trie->states[ state ].wordnum = curword; \
2416 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
2417 ( ( base + charid >= ucharcount \
2418 && base + charid < ubound \
2419 && state == trie->trans[ base - ucharcount + charid ].check \
2420 && trie->trans[ base - ucharcount + charid ].next ) \
2421 ? trie->trans[ base - ucharcount + charid ].next \
2422 : ( state==1 ? special : 0 ) \
2425 #define TRIE_BITMAP_SET_FOLDED(trie, uvc, folder) \
2427 TRIE_BITMAP_SET(trie, uvc); \
2428 /* store the folded codepoint */ \
2430 TRIE_BITMAP_SET(trie, folder[(U8) uvc ]); \
2433 /* store first byte of utf8 representation of */ \
2434 /* variant codepoints */ \
2435 if (! UVCHR_IS_INVARIANT(uvc)) { \
2436 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc)); \
2441 #define MADE_JUMP_TRIE 2
2442 #define MADE_EXACT_TRIE 4
2445 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch,
2446 regnode *first, regnode *last, regnode *tail,
2447 U32 word_count, U32 flags, U32 depth)
2449 /* first pass, loop through and scan words */
2450 reg_trie_data *trie;
2451 HV *widecharmap = NULL;
2452 AV *revcharmap = newAV();
2458 regnode *jumper = NULL;
2459 regnode *nextbranch = NULL;
2460 regnode *convert = NULL;
2461 U32 *prev_states; /* temp array mapping each state to previous one */
2462 /* we just use folder as a flag in utf8 */
2463 const U8 * folder = NULL;
2466 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tuuu"));
2467 AV *trie_words = NULL;
2468 /* along with revcharmap, this only used during construction but both are
2469 * useful during debugging so we store them in the struct when debugging.
2472 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tu"));
2473 STRLEN trie_charcount=0;
2475 SV *re_trie_maxbuff;
2476 GET_RE_DEBUG_FLAGS_DECL;
2478 PERL_ARGS_ASSERT_MAKE_TRIE;
2480 PERL_UNUSED_ARG(depth);
2484 case EXACT: case EXACTL: break;
2488 case EXACTFLU8: folder = PL_fold_latin1; break;
2489 case EXACTF: folder = PL_fold; break;
2490 default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
2493 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
2495 trie->startstate = 1;
2496 trie->wordcount = word_count;
2497 RExC_rxi->data->data[ data_slot ] = (void*)trie;
2498 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
2499 if (flags == EXACT || flags == EXACTL)
2500 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
2501 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
2502 trie->wordcount+1, sizeof(reg_trie_wordinfo));
2505 trie_words = newAV();
2508 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
2509 assert(re_trie_maxbuff);
2510 if (!SvIOK(re_trie_maxbuff)) {
2511 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
2513 DEBUG_TRIE_COMPILE_r({
2514 Perl_re_indentf( aTHX_
2515 "make_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
2517 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
2518 REG_NODE_NUM(last), REG_NODE_NUM(tail), (int)depth);
2521 /* Find the node we are going to overwrite */
2522 if ( first == startbranch && OP( last ) != BRANCH ) {
2523 /* whole branch chain */
2526 /* branch sub-chain */
2527 convert = NEXTOPER( first );
2530 /* -- First loop and Setup --
2532 We first traverse the branches and scan each word to determine if it
2533 contains widechars, and how many unique chars there are, this is
2534 important as we have to build a table with at least as many columns as we
2537 We use an array of integers to represent the character codes 0..255
2538 (trie->charmap) and we use a an HV* to store Unicode characters. We use
2539 the native representation of the character value as the key and IV's for
2542 *TODO* If we keep track of how many times each character is used we can
2543 remap the columns so that the table compression later on is more
2544 efficient in terms of memory by ensuring the most common value is in the
2545 middle and the least common are on the outside. IMO this would be better
2546 than a most to least common mapping as theres a decent chance the most
2547 common letter will share a node with the least common, meaning the node
2548 will not be compressible. With a middle is most common approach the worst
2549 case is when we have the least common nodes twice.
2553 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2554 regnode *noper = NEXTOPER( cur );
2558 U32 wordlen = 0; /* required init */
2559 STRLEN minchars = 0;
2560 STRLEN maxchars = 0;
2561 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the
2564 if (OP(noper) == NOTHING) {
2565 /* skip past a NOTHING at the start of an alternation
2566 * eg, /(?:)a|(?:b)/ should be the same as /a|b/
2568 regnode *noper_next= regnext(noper);
2569 if (noper_next < tail)
2573 if ( noper < tail &&
2575 OP(noper) == flags ||
2578 OP(noper) == EXACTFU_SS
2582 uc= (U8*)STRING(noper);
2583 e= uc + STR_LEN(noper);
2590 if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
2591 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
2592 regardless of encoding */
2593 if (OP( noper ) == EXACTFU_SS) {
2594 /* false positives are ok, so just set this */
2595 TRIE_BITMAP_SET(trie, LATIN_SMALL_LETTER_SHARP_S);
2599 for ( ; uc < e ; uc += len ) { /* Look at each char in the current
2601 TRIE_CHARCOUNT(trie)++;
2604 /* TRIE_READ_CHAR returns the current character, or its fold if /i
2605 * is in effect. Under /i, this character can match itself, or
2606 * anything that folds to it. If not under /i, it can match just
2607 * itself. Most folds are 1-1, for example k, K, and KELVIN SIGN
2608 * all fold to k, and all are single characters. But some folds
2609 * expand to more than one character, so for example LATIN SMALL
2610 * LIGATURE FFI folds to the three character sequence 'ffi'. If
2611 * the string beginning at 'uc' is 'ffi', it could be matched by
2612 * three characters, or just by the one ligature character. (It
2613 * could also be matched by two characters: LATIN SMALL LIGATURE FF
2614 * followed by 'i', or by 'f' followed by LATIN SMALL LIGATURE FI).
2615 * (Of course 'I' and/or 'F' instead of 'i' and 'f' can also
2616 * match.) The trie needs to know the minimum and maximum number
2617 * of characters that could match so that it can use size alone to
2618 * quickly reject many match attempts. The max is simple: it is
2619 * the number of folded characters in this branch (since a fold is
2620 * never shorter than what folds to it. */
2624 /* And the min is equal to the max if not under /i (indicated by
2625 * 'folder' being NULL), or there are no multi-character folds. If
2626 * there is a multi-character fold, the min is incremented just
2627 * once, for the character that folds to the sequence. Each
2628 * character in the sequence needs to be added to the list below of
2629 * characters in the trie, but we count only the first towards the
2630 * min number of characters needed. This is done through the
2631 * variable 'foldlen', which is returned by the macros that look
2632 * for these sequences as the number of bytes the sequence
2633 * occupies. Each time through the loop, we decrement 'foldlen' by
2634 * how many bytes the current char occupies. Only when it reaches
2635 * 0 do we increment 'minchars' or look for another multi-character
2637 if (folder == NULL) {
2640 else if (foldlen > 0) {
2641 foldlen -= (UTF) ? UTF8SKIP(uc) : 1;
2646 /* See if *uc is the beginning of a multi-character fold. If
2647 * so, we decrement the length remaining to look at, to account
2648 * for the current character this iteration. (We can use 'uc'
2649 * instead of the fold returned by TRIE_READ_CHAR because for
2650 * non-UTF, the latin1_safe macro is smart enough to account
2651 * for all the unfolded characters, and because for UTF, the
2652 * string will already have been folded earlier in the
2653 * compilation process */
2655 if ((foldlen = is_MULTI_CHAR_FOLD_utf8_safe(uc, e))) {
2656 foldlen -= UTF8SKIP(uc);
2659 else if ((foldlen = is_MULTI_CHAR_FOLD_latin1_safe(uc, e))) {
2664 /* The current character (and any potential folds) should be added
2665 * to the possible matching characters for this position in this
2669 U8 folded= folder[ (U8) uvc ];
2670 if ( !trie->charmap[ folded ] ) {
2671 trie->charmap[ folded ]=( ++trie->uniquecharcount );
2672 TRIE_STORE_REVCHAR( folded );
2675 if ( !trie->charmap[ uvc ] ) {
2676 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
2677 TRIE_STORE_REVCHAR( uvc );
2680 /* store the codepoint in the bitmap, and its folded
2682 TRIE_BITMAP_SET_FOLDED(trie, uvc, folder);
2683 set_bit = 0; /* We've done our bit :-) */
2687 /* XXX We could come up with the list of code points that fold
2688 * to this using PL_utf8_foldclosures, except not for
2689 * multi-char folds, as there may be multiple combinations
2690 * there that could work, which needs to wait until runtime to
2691 * resolve (The comment about LIGATURE FFI above is such an
2696 widecharmap = newHV();
2698 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
2701 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%" UVXf, uvc );
2703 if ( !SvTRUE( *svpp ) ) {
2704 sv_setiv( *svpp, ++trie->uniquecharcount );
2705 TRIE_STORE_REVCHAR(uvc);
2708 } /* end loop through characters in this branch of the trie */
2710 /* We take the min and max for this branch and combine to find the min
2711 * and max for all branches processed so far */
2712 if( cur == first ) {
2713 trie->minlen = minchars;
2714 trie->maxlen = maxchars;
2715 } else if (minchars < trie->minlen) {
2716 trie->minlen = minchars;
2717 } else if (maxchars > trie->maxlen) {
2718 trie->maxlen = maxchars;
2720 } /* end first pass */
2721 DEBUG_TRIE_COMPILE_r(
2722 Perl_re_indentf( aTHX_
2723 "TRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
2725 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
2726 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
2727 (int)trie->minlen, (int)trie->maxlen )
2731 We now know what we are dealing with in terms of unique chars and
2732 string sizes so we can calculate how much memory a naive
2733 representation using a flat table will take. If it's over a reasonable
2734 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
2735 conservative but potentially much slower representation using an array
2738 At the end we convert both representations into the same compressed
2739 form that will be used in regexec.c for matching with. The latter
2740 is a form that cannot be used to construct with but has memory
2741 properties similar to the list form and access properties similar
2742 to the table form making it both suitable for fast searches and
2743 small enough that its feasable to store for the duration of a program.
2745 See the comment in the code where the compressed table is produced
2746 inplace from the flat tabe representation for an explanation of how
2747 the compression works.
2752 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
2755 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1)
2756 > SvIV(re_trie_maxbuff) )
2759 Second Pass -- Array Of Lists Representation
2761 Each state will be represented by a list of charid:state records
2762 (reg_trie_trans_le) the first such element holds the CUR and LEN
2763 points of the allocated array. (See defines above).
2765 We build the initial structure using the lists, and then convert
2766 it into the compressed table form which allows faster lookups
2767 (but cant be modified once converted).
2770 STRLEN transcount = 1;
2772 DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_ "Compiling trie using list compiler\n",
2775 trie->states = (reg_trie_state *)
2776 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2777 sizeof(reg_trie_state) );
2781 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2783 regnode *noper = NEXTOPER( cur );
2784 U32 state = 1; /* required init */
2785 U16 charid = 0; /* sanity init */
2786 U32 wordlen = 0; /* required init */
2788 if (OP(noper) == NOTHING) {
2789 regnode *noper_next= regnext(noper);
2790 if (noper_next < tail)
2794 if ( noper < tail && ( OP(noper) == flags || ( flags == EXACTFU && OP(noper) == EXACTFU_SS ) ) ) {
2795 const U8 *uc= (U8*)STRING(noper);
2796 const U8 *e= uc + STR_LEN(noper);
2798 for ( ; uc < e ; uc += len ) {
2803 charid = trie->charmap[ uvc ];
2805 SV** const svpp = hv_fetch( widecharmap,
2812 charid=(U16)SvIV( *svpp );
2815 /* charid is now 0 if we dont know the char read, or
2816 * nonzero if we do */
2823 if ( !trie->states[ state ].trans.list ) {
2824 TRIE_LIST_NEW( state );
2827 check <= TRIE_LIST_USED( state );
2830 if ( TRIE_LIST_ITEM( state, check ).forid
2833 newstate = TRIE_LIST_ITEM( state, check ).newstate;
2838 newstate = next_alloc++;
2839 prev_states[newstate] = state;
2840 TRIE_LIST_PUSH( state, charid, newstate );
2845 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %" IVdf, uvc );
2849 TRIE_HANDLE_WORD(state);
2851 } /* end second pass */
2853 /* next alloc is the NEXT state to be allocated */
2854 trie->statecount = next_alloc;
2855 trie->states = (reg_trie_state *)
2856 PerlMemShared_realloc( trie->states,
2858 * sizeof(reg_trie_state) );
2860 /* and now dump it out before we compress it */
2861 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
2862 revcharmap, next_alloc,
2866 trie->trans = (reg_trie_trans *)
2867 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
2874 for( state=1 ; state < next_alloc ; state ++ ) {
2878 DEBUG_TRIE_COMPILE_MORE_r(
2879 Perl_re_printf( aTHX_ "tp: %d zp: %d ",tp,zp)
2883 if (trie->states[state].trans.list) {
2884 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
2888 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
2889 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
2890 if ( forid < minid ) {
2892 } else if ( forid > maxid ) {
2896 if ( transcount < tp + maxid - minid + 1) {
2898 trie->trans = (reg_trie_trans *)
2899 PerlMemShared_realloc( trie->trans,
2901 * sizeof(reg_trie_trans) );
2902 Zero( trie->trans + (transcount / 2),
2906 base = trie->uniquecharcount + tp - minid;
2907 if ( maxid == minid ) {
2909 for ( ; zp < tp ; zp++ ) {
2910 if ( ! trie->trans[ zp ].next ) {
2911 base = trie->uniquecharcount + zp - minid;
2912 trie->trans[ zp ].next = TRIE_LIST_ITEM( state,
2914 trie->trans[ zp ].check = state;
2920 trie->trans[ tp ].next = TRIE_LIST_ITEM( state,
2922 trie->trans[ tp ].check = state;
2927 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
2928 const U32 tid = base
2929 - trie->uniquecharcount
2930 + TRIE_LIST_ITEM( state, idx ).forid;
2931 trie->trans[ tid ].next = TRIE_LIST_ITEM( state,
2933 trie->trans[ tid ].check = state;
2935 tp += ( maxid - minid + 1 );
2937 Safefree(trie->states[ state ].trans.list);
2940 DEBUG_TRIE_COMPILE_MORE_r(
2941 Perl_re_printf( aTHX_ " base: %d\n",base);
2944 trie->states[ state ].trans.base=base;
2946 trie->lasttrans = tp + 1;
2950 Second Pass -- Flat Table Representation.
2952 we dont use the 0 slot of either trans[] or states[] so we add 1 to
2953 each. We know that we will need Charcount+1 trans at most to store
2954 the data (one row per char at worst case) So we preallocate both
2955 structures assuming worst case.
2957 We then construct the trie using only the .next slots of the entry
2960 We use the .check field of the first entry of the node temporarily
2961 to make compression both faster and easier by keeping track of how
2962 many non zero fields are in the node.
2964 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
2967 There are two terms at use here: state as a TRIE_NODEIDX() which is
2968 a number representing the first entry of the node, and state as a
2969 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1)
2970 and TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3)
2971 if there are 2 entrys per node. eg:
2979 The table is internally in the right hand, idx form. However as we
2980 also have to deal with the states array which is indexed by nodenum
2981 we have to use TRIE_NODENUM() to convert.
2984 DEBUG_TRIE_COMPILE_MORE_r( Perl_re_indentf( aTHX_ "Compiling trie using table compiler\n",
2987 trie->trans = (reg_trie_trans *)
2988 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
2989 * trie->uniquecharcount + 1,
2990 sizeof(reg_trie_trans) );
2991 trie->states = (reg_trie_state *)
2992 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2993 sizeof(reg_trie_state) );
2994 next_alloc = trie->uniquecharcount + 1;
2997 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2999 regnode *noper = NEXTOPER( cur );
3001 U32 state = 1; /* required init */
3003 U16 charid = 0; /* sanity init */
3004 U32 accept_state = 0; /* sanity init */
3006 U32 wordlen = 0; /* required init */
3008 if (OP(noper) == NOTHING) {
3009 regnode *noper_next= regnext(noper);
3010 if (noper_next < tail)
3014 if ( noper < tail && ( OP(noper) == flags || ( flags == EXACTFU && OP(noper) == EXACTFU_SS ) ) ) {
3015 const U8 *uc= (U8*)STRING(noper);
3016 const U8 *e= uc + STR_LEN(noper);
3018 for ( ; uc < e ; uc += len ) {
3023 charid = trie->charmap[ uvc ];
3025 SV* const * const svpp = hv_fetch( widecharmap,
3029 charid = svpp ? (U16)SvIV(*svpp) : 0;
3033 if ( !trie->trans[ state + charid ].next ) {
3034 trie->trans[ state + charid ].next = next_alloc;
3035 trie->trans[ state ].check++;
3036 prev_states[TRIE_NODENUM(next_alloc)]
3037 = TRIE_NODENUM(state);
3038 next_alloc += trie->uniquecharcount;
3040 state = trie->trans[ state + charid ].next;
3042 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %" IVdf, uvc );
3044 /* charid is now 0 if we dont know the char read, or
3045 * nonzero if we do */
3048 accept_state = TRIE_NODENUM( state );
3049 TRIE_HANDLE_WORD(accept_state);
3051 } /* end second pass */
3053 /* and now dump it out before we compress it */
3054 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
3056 next_alloc, depth+1));
3060 * Inplace compress the table.*
3062 For sparse data sets the table constructed by the trie algorithm will
3063 be mostly 0/FAIL transitions or to put it another way mostly empty.
3064 (Note that leaf nodes will not contain any transitions.)
3066 This algorithm compresses the tables by eliminating most such
3067 transitions, at the cost of a modest bit of extra work during lookup:
3069 - Each states[] entry contains a .base field which indicates the
3070 index in the state[] array wheres its transition data is stored.
3072 - If .base is 0 there are no valid transitions from that node.
3074 - If .base is nonzero then charid is added to it to find an entry in
3077 -If trans[states[state].base+charid].check!=state then the
3078 transition is taken to be a 0/Fail transition. Thus if there are fail
3079 transitions at the front of the node then the .base offset will point
3080 somewhere inside the previous nodes data (or maybe even into a node
3081 even earlier), but the .check field determines if the transition is
3085 The following process inplace converts the table to the compressed
3086 table: We first do not compress the root node 1,and mark all its
3087 .check pointers as 1 and set its .base pointer as 1 as well. This
3088 allows us to do a DFA construction from the compressed table later,
3089 and ensures that any .base pointers we calculate later are greater
3092 - We set 'pos' to indicate the first entry of the second node.
3094 - We then iterate over the columns of the node, finding the first and
3095 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
3096 and set the .check pointers accordingly, and advance pos
3097 appropriately and repreat for the next node. Note that when we copy
3098 the next pointers we have to convert them from the original
3099 NODEIDX form to NODENUM form as the former is not valid post
3102 - If a node has no transitions used we mark its base as 0 and do not
3103 advance the pos pointer.
3105 - If a node only has one transition we use a second pointer into the
3106 structure to fill in allocated fail transitions from other states.
3107 This pointer is independent of the main pointer and scans forward
3108 looking for null transitions that are allocated to a state. When it
3109 finds one it writes the single transition into the "hole". If the
3110 pointer doesnt find one the single transition is appended as normal.
3112 - Once compressed we can Renew/realloc the structures to release the
3115 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
3116 specifically Fig 3.47 and the associated pseudocode.
3120 const U32 laststate = TRIE_NODENUM( next_alloc );
3123 trie->statecount = laststate;
3125 for ( state = 1 ; state < laststate ; state++ ) {
3127 const U32 stateidx = TRIE_NODEIDX( state );
3128 const U32 o_used = trie->trans[ stateidx ].check;
3129 U32 used = trie->trans[ stateidx ].check;
3130 trie->trans[ stateidx ].check = 0;
3133 used && charid < trie->uniquecharcount;
3136 if ( flag || trie->trans[ stateidx + charid ].next ) {
3137 if ( trie->trans[ stateidx + charid ].next ) {
3139 for ( ; zp < pos ; zp++ ) {
3140 if ( ! trie->trans[ zp ].next ) {
3144 trie->states[ state ].trans.base
3146 + trie->uniquecharcount
3148 trie->trans[ zp ].next
3149 = SAFE_TRIE_NODENUM( trie->trans[ stateidx
3151 trie->trans[ zp ].check = state;
3152 if ( ++zp > pos ) pos = zp;
3159 trie->states[ state ].trans.base
3160 = pos + trie->uniquecharcount - charid ;
3162 trie->trans[ pos ].next
3163 = SAFE_TRIE_NODENUM(
3164 trie->trans[ stateidx + charid ].next );
3165 trie->trans[ pos ].check = state;
3170 trie->lasttrans = pos + 1;
3171 trie->states = (reg_trie_state *)
3172 PerlMemShared_realloc( trie->states, laststate
3173 * sizeof(reg_trie_state) );
3174 DEBUG_TRIE_COMPILE_MORE_r(
3175 Perl_re_indentf( aTHX_ "Alloc: %d Orig: %" IVdf " elements, Final:%" IVdf ". Savings of %%%5.2f\n",
3177 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount
3181 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
3184 } /* end table compress */
3186 DEBUG_TRIE_COMPILE_MORE_r(
3187 Perl_re_indentf( aTHX_ "Statecount:%" UVxf " Lasttrans:%" UVxf "\n",
3189 (UV)trie->statecount,
3190 (UV)trie->lasttrans)
3192 /* resize the trans array to remove unused space */
3193 trie->trans = (reg_trie_trans *)
3194 PerlMemShared_realloc( trie->trans, trie->lasttrans
3195 * sizeof(reg_trie_trans) );
3197 { /* Modify the program and insert the new TRIE node */
3198 U8 nodetype =(U8)(flags & 0xFF);
3202 regnode *optimize = NULL;
3203 #ifdef RE_TRACK_PATTERN_OFFSETS
3206 U32 mjd_nodelen = 0;
3207 #endif /* RE_TRACK_PATTERN_OFFSETS */
3208 #endif /* DEBUGGING */
3210 This means we convert either the first branch or the first Exact,
3211 depending on whether the thing following (in 'last') is a branch
3212 or not and whther first is the startbranch (ie is it a sub part of
3213 the alternation or is it the whole thing.)
3214 Assuming its a sub part we convert the EXACT otherwise we convert
3215 the whole branch sequence, including the first.
3217 /* Find the node we are going to overwrite */
3218 if ( first != startbranch || OP( last ) == BRANCH ) {
3219 /* branch sub-chain */
3220 NEXT_OFF( first ) = (U16)(last - first);
3221 #ifdef RE_TRACK_PATTERN_OFFSETS
3223 mjd_offset= Node_Offset((convert));
3224 mjd_nodelen= Node_Length((convert));
3227 /* whole branch chain */
3229 #ifdef RE_TRACK_PATTERN_OFFSETS
3232 const regnode *nop = NEXTOPER( convert );
3233 mjd_offset= Node_Offset((nop));
3234 mjd_nodelen= Node_Length((nop));
3238 Perl_re_indentf( aTHX_ "MJD offset:%" UVuf " MJD length:%" UVuf "\n",
3240 (UV)mjd_offset, (UV)mjd_nodelen)
3243 /* But first we check to see if there is a common prefix we can
3244 split out as an EXACT and put in front of the TRIE node. */
3245 trie->startstate= 1;
3246 if ( trie->bitmap && !widecharmap && !trie->jump ) {
3247 /* we want to find the first state that has more than
3248 * one transition, if that state is not the first state
3249 * then we have a common prefix which we can remove.
3252 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
3254 I32 first_ofs = -1; /* keeps track of the ofs of the first
3255 transition, -1 means none */
3257 const U32 base = trie->states[ state ].trans.base;
3259 /* does this state terminate an alternation? */
3260 if ( trie->states[state].wordnum )
3263 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
3264 if ( ( base + ofs >= trie->uniquecharcount ) &&
3265 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
3266 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
3268 if ( ++count > 1 ) {
3269 /* we have more than one transition */
3272 /* if this is the first state there is no common prefix
3273 * to extract, so we can exit */
3274 if ( state == 1 ) break;
3275 tmp = av_fetch( revcharmap, ofs, 0);
3276 ch = (U8*)SvPV_nolen_const( *tmp );
3278 /* if we are on count 2 then we need to initialize the
3279 * bitmap, and store the previous char if there was one
3282 /* clear the bitmap */
3283 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
3285 Perl_re_indentf( aTHX_ "New Start State=%" UVuf " Class: [",
3288 if (first_ofs >= 0) {
3289 SV ** const tmp = av_fetch( revcharmap, first_ofs, 0);
3290 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
3292 TRIE_BITMAP_SET_FOLDED(trie,*ch,folder);
3294 Perl_re_printf( aTHX_ "%s", (char*)ch)
3298 /* store the current firstchar in the bitmap */
3299 TRIE_BITMAP_SET_FOLDED(trie,*ch,folder);
3300 DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "%s", ch));
3306 /* This state has only one transition, its transition is part
3307 * of a common prefix - we need to concatenate the char it
3308 * represents to what we have so far. */
3309 SV **tmp = av_fetch( revcharmap, first_ofs, 0);
3311 char *ch = SvPV( *tmp, len );
3313 SV *sv=sv_newmortal();
3314 Perl_re_indentf( aTHX_ "Prefix State: %" UVuf " Ofs:%" UVuf " Char='%s'\n",
3316 (UV)state, (UV)first_ofs,
3317 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
3318 PL_colors[0], PL_colors[1],
3319 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
3320 PERL_PV_ESCAPE_FIRSTCHAR
3325 OP( convert ) = nodetype;
3326 str=STRING(convert);
3329 STR_LEN(convert) += len;
3335 DEBUG_OPTIMISE_r(Perl_re_printf( aTHX_ "]\n"));
3340 trie->prefixlen = (state-1);
3342 regnode *n = convert+NODE_SZ_STR(convert);
3343 NEXT_OFF(convert) = NODE_SZ_STR(convert);
3344 trie->startstate = state;
3345 trie->minlen -= (state - 1);
3346 trie->maxlen -= (state - 1);
3348 /* At least the UNICOS C compiler choked on this
3349 * being argument to DEBUG_r(), so let's just have
3352 #ifdef PERL_EXT_RE_BUILD
3358 regnode *fix = convert;
3359 U32 word = trie->wordcount;
3361 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
3362 while( ++fix < n ) {
3363 Set_Node_Offset_Length(fix, 0, 0);
3366 SV ** const tmp = av_fetch( trie_words, word, 0 );
3368 if ( STR_LEN(convert) <= SvCUR(*tmp) )
3369 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
3371 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
3379 NEXT_OFF(convert) = (U16)(tail - convert);
3380 DEBUG_r(optimize= n);
3386 if ( trie->maxlen ) {
3387 NEXT_OFF( convert ) = (U16)(tail - convert);
3388 ARG_SET( convert, data_slot );
3389 /* Store the offset to the first unabsorbed branch in
3390 jump[0], which is otherwise unused by the jump logic.
3391 We use this when dumping a trie and during optimisation. */
3393 trie->jump[0] = (U16)(nextbranch - convert);
3395 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
3396 * and there is a bitmap
3397 * and the first "jump target" node we found leaves enough room
3398 * then convert the TRIE node into a TRIEC node, with the bitmap
3399 * embedded inline in the opcode - this is hypothetically faster.
3401 if ( !trie->states[trie->startstate].wordnum
3403 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
3405 OP( convert ) = TRIEC;
3406 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
3407 PerlMemShared_free(trie->bitmap);
3410 OP( convert ) = TRIE;
3412 /* store the type in the flags */
3413 convert->flags = nodetype;
3417 + regarglen[ OP( convert ) ];
3419 /* XXX We really should free up the resource in trie now,
3420 as we won't use them - (which resources?) dmq */
3422 /* needed for dumping*/
3423 DEBUG_r(if (optimize) {
3424 regnode *opt = convert;
3426 while ( ++opt < optimize) {
3427 Set_Node_Offset_Length(opt,0,0);
3430 Try to clean up some of the debris left after the
3433 while( optimize < jumper ) {
3434 mjd_nodelen += Node_Length((optimize));
3435 OP( optimize ) = OPTIMIZED;
3436 Set_Node_Offset_Length(optimize,0,0);
3439 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
3441 } /* end node insert */
3443 /* Finish populating the prev field of the wordinfo array. Walk back
3444 * from each accept state until we find another accept state, and if
3445 * so, point the first word's .prev field at the second word. If the
3446 * second already has a .prev field set, stop now. This will be the
3447 * case either if we've already processed that word's accept state,
3448 * or that state had multiple words, and the overspill words were
3449 * already linked up earlier.
3456 for (word=1; word <= trie->wordcount; word++) {
3458 if (trie->wordinfo[word].prev)
3460 state = trie->wordinfo[word].accept;
3462 state = prev_states[state];
3465 prev = trie->states[state].wordnum;
3469 trie->wordinfo[word].prev = prev;
3471 Safefree(prev_states);
3475 /* and now dump out the compressed format */
3476 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
3478 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
3480 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
3481 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
3483 SvREFCNT_dec_NN(revcharmap);
3487 : trie->startstate>1
3493 S_construct_ahocorasick_from_trie(pTHX_ RExC_state_t *pRExC_state, regnode *source, U32 depth)
3495 /* The Trie is constructed and compressed now so we can build a fail array if
3498 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and
3500 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi,
3504 We find the fail state for each state in the trie, this state is the longest
3505 proper suffix of the current state's 'word' that is also a proper prefix of
3506 another word in our trie. State 1 represents the word '' and is thus the
3507 default fail state. This allows the DFA not to have to restart after its
3508 tried and failed a word at a given point, it simply continues as though it
3509 had been matching the other word in the first place.
3511 'abcdgu'=~/abcdefg|cdgu/
3512 When we get to 'd' we are still matching the first word, we would encounter
3513 'g' which would fail, which would bring us to the state representing 'd' in
3514 the second word where we would try 'g' and succeed, proceeding to match
3517 /* add a fail transition */
3518 const U32 trie_offset = ARG(source);
3519 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
3521 const U32 ucharcount = trie->uniquecharcount;
3522 const U32 numstates = trie->statecount;
3523 const U32 ubound = trie->lasttrans + ucharcount;
3527 U32 base = trie->states[ 1 ].trans.base;
3530 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("T"));
3532 GET_RE_DEBUG_FLAGS_DECL;
3534 PERL_ARGS_ASSERT_CONSTRUCT_AHOCORASICK_FROM_TRIE;
3535 PERL_UNUSED_CONTEXT;
3537 PERL_UNUSED_ARG(depth);
3540 if ( OP(source) == TRIE ) {
3541 struct regnode_1 *op = (struct regnode_1 *)
3542 PerlMemShared_calloc(1, sizeof(struct regnode_1));
3543 StructCopy(source,op,struct regnode_1);
3544 stclass = (regnode *)op;
3546 struct regnode_charclass *op = (struct regnode_charclass *)
3547 PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
3548 StructCopy(source,op,struct regnode_charclass);
3549 stclass = (regnode *)op;
3551 OP(stclass)+=2; /* convert the TRIE type to its AHO-CORASICK equivalent */
3553 ARG_SET( stclass, data_slot );
3554 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
3555 RExC_rxi->data->data[ data_slot ] = (void*)aho;
3556 aho->trie=trie_offset;
3557 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
3558 Copy( trie->states, aho->states, numstates, reg_trie_state );
3559 Newxz( q, numstates, U32);
3560 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
3563 /* initialize fail[0..1] to be 1 so that we always have
3564 a valid final fail state */
3565 fail[ 0 ] = fail[ 1 ] = 1;
3567 for ( charid = 0; charid < ucharcount ; charid++ ) {
3568 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
3570 q[ q_write ] = newstate;
3571 /* set to point at the root */
3572 fail[ q[ q_write++ ] ]=1;
3575 while ( q_read < q_write) {
3576 const U32 cur = q[ q_read++ % numstates ];
3577 base = trie->states[ cur ].trans.base;
3579 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
3580 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
3582 U32 fail_state = cur;
3585 fail_state = fail[ fail_state ];
3586 fail_base = aho->states[ fail_state ].trans.base;
3587 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
3589 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
3590 fail[ ch_state ] = fail_state;
3591 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
3593 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
3595 q[ q_write++ % numstates] = ch_state;
3599 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
3600 when we fail in state 1, this allows us to use the
3601 charclass scan to find a valid start char. This is based on the principle
3602 that theres a good chance the string being searched contains lots of stuff
3603 that cant be a start char.
3605 fail[ 0 ] = fail[ 1 ] = 0;
3606 DEBUG_TRIE_COMPILE_r({
3607 Perl_re_indentf( aTHX_ "Stclass Failtable (%" UVuf " states): 0",
3608 depth, (UV)numstates
3610 for( q_read=1; q_read<numstates; q_read++ ) {
3611 Perl_re_printf( aTHX_ ", %" UVuf, (UV)fail[q_read]);
3613 Perl_re_printf( aTHX_ "\n");
3616 /*RExC_seen |= REG_TRIEDFA_SEEN;*/
3621 #define DEBUG_PEEP(str,scan,depth) \
3622 DEBUG_OPTIMISE_r({if (scan){ \
3623 regnode *Next = regnext(scan); \
3624 regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);\
3625 Perl_re_indentf( aTHX_ "" str ">%3d: %s (%d)", \
3626 depth, REG_NODE_NUM(scan), SvPV_nolen_const(RExC_mysv),\
3627 Next ? (REG_NODE_NUM(Next)) : 0 );\
3628 DEBUG_SHOW_STUDY_FLAGS(flags," [ ","]");\
3629 Perl_re_printf( aTHX_ "\n"); \
3632 /* The below joins as many adjacent EXACTish nodes as possible into a single
3633 * one. The regop may be changed if the node(s) contain certain sequences that
3634 * require special handling. The joining is only done if:
3635 * 1) there is room in the current conglomerated node to entirely contain the
3637 * 2) they are the exact same node type
3639 * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
3640 * these get optimized out
3642 * XXX khw thinks this should be enhanced to fill EXACT (at least) nodes as full
3643 * as possible, even if that means splitting an existing node so that its first
3644 * part is moved to the preceeding node. This would maximise the efficiency of
3645 * memEQ during matching. Elsewhere in this file, khw proposes splitting
3646 * EXACTFish nodes into portions that don't change under folding vs those that
3647 * do. Those portions that don't change may be the only things in the pattern that
3648 * could be used to find fixed and floating strings.
3650 * If a node is to match under /i (folded), the number of characters it matches
3651 * can be different than its character length if it contains a multi-character
3652 * fold. *min_subtract is set to the total delta number of characters of the
3655 * And *unfolded_multi_char is set to indicate whether or not the node contains
3656 * an unfolded multi-char fold. This happens when whether the fold is valid or
3657 * not won't be known until runtime; namely for EXACTF nodes that contain LATIN
3658 * SMALL LETTER SHARP S, as only if the target string being matched against
3659 * turns out to be UTF-8 is that fold valid; and also for EXACTFL nodes whose
3660 * folding rules depend on the locale in force at runtime. (Multi-char folds
3661 * whose components are all above the Latin1 range are not run-time locale
3662 * dependent, and have already been folded by the time this function is
3665 * This is as good a place as any to discuss the design of handling these
3666 * multi-character fold sequences. It's been wrong in Perl for a very long
3667 * time. There are three code points in Unicode whose multi-character folds
3668 * were long ago discovered to mess things up. The previous designs for
3669 * dealing with these involved assigning a special node for them. This
3670 * approach doesn't always work, as evidenced by this example:
3671 * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
3672 * Both sides fold to "sss", but if the pattern is parsed to create a node that
3673 * would match just the \xDF, it won't be able to handle the case where a
3674 * successful match would have to cross the node's boundary. The new approach
3675 * that hopefully generally solves the problem generates an EXACTFU_SS node
3676 * that is "sss" in this case.
3678 * It turns out that there are problems with all multi-character folds, and not
3679 * just these three. Now the code is general, for all such cases. The
3680 * approach taken is:
3681 * 1) This routine examines each EXACTFish node that could contain multi-
3682 * character folded sequences. Since a single character can fold into
3683 * such a sequence, the minimum match length for this node is less than
3684 * the number of characters in the node. This routine returns in
3685 * *min_subtract how many characters to subtract from the the actual
3686 * length of the string to get a real minimum match length; it is 0 if
3687 * there are no multi-char foldeds. This delta is used by the caller to
3688 * adjust the min length of the match, and the delta between min and max,
3689 * so that the optimizer doesn't reject these possibilities based on size
3691 * 2) For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS
3692 * is used for an EXACTFU node that contains at least one "ss" sequence in
3693 * it. For non-UTF-8 patterns and strings, this is the only case where
3694 * there is a possible fold length change. That means that a regular
3695 * EXACTFU node without UTF-8 involvement doesn't have to concern itself
3696 * with length changes, and so can be processed faster. regexec.c takes
3697 * advantage of this. Generally, an EXACTFish node that is in UTF-8 is
3698 * pre-folded by regcomp.c (except EXACTFL, some of whose folds aren't
3699 * known until runtime). This saves effort in regex matching. However,
3700 * the pre-folding isn't done for non-UTF8 patterns because the fold of
3701 * the MICRO SIGN requires UTF-8, and we don't want to slow things down by
3702 * forcing the pattern into UTF8 unless necessary. Also what EXACTF (and,
3703 * again, EXACTFL) nodes fold to isn't known until runtime. The fold
3704 * possibilities for the non-UTF8 patterns are quite simple, except for
3705 * the sharp s. All the ones that don't involve a UTF-8 target string are
3706 * members of a fold-pair, and arrays are set up for all of them so that
3707 * the other member of the pair can be found quickly. Code elsewhere in
3708 * this file makes sure that in EXACTFU nodes, the sharp s gets folded to
3709 * 'ss', even if the pattern isn't UTF-8. This avoids the issues
3710 * described in the next item.
3711 * 3) A problem remains for unfolded multi-char folds. (These occur when the
3712 * validity of the fold won't be known until runtime, and so must remain
3713 * unfolded for now. This happens for the sharp s in EXACTF and EXACTFA
3714 * nodes when the pattern isn't in UTF-8. (Note, BTW, that there cannot
3715 * be an EXACTF node with a UTF-8 pattern.) They also occur for various
3716 * folds in EXACTFL nodes, regardless of the UTF-ness of the pattern.)
3717 * The reason this is a problem is that the optimizer part of regexec.c
3718 * (probably unwittingly, in Perl_regexec_flags()) makes an assumption
3719 * that a character in the pattern corresponds to at most a single
3720 * character in the target string. (And I do mean character, and not byte
3721 * here, unlike other parts of the documentation that have never been
3722 * updated to account for multibyte Unicode.) sharp s in EXACTF and
3723 * EXACTFL nodes can match the two character string 'ss'; in EXACTFA nodes
3724 * it can match "\x{17F}\x{17F}". These, along with other ones in EXACTFL
3725 * nodes, violate the assumption, and they are the only instances where it
3726 * is violated. I'm reluctant to try to change the assumption, as the
3727 * code involved is impenetrable to me (khw), so instead the code here
3728 * punts. This routine examines EXACTFL nodes, and (when the pattern
3729 * isn't UTF-8) EXACTF and EXACTFA for such unfolded folds, and returns a
3730 * boolean indicating whether or not the node contains such a fold. When
3731 * it is true, the caller sets a flag that later causes the optimizer in
3732 * this file to not set values for the floating and fixed string lengths,
3733 * and thus avoids the optimizer code in regexec.c that makes the invalid
3734 * assumption. Thus, there is no optimization based on string lengths for
3735 * EXACTFL nodes that contain these few folds, nor for non-UTF8-pattern
3736 * EXACTF and EXACTFA nodes that contain the sharp s. (The reason the
3737 * assumption is wrong only in these cases is that all other non-UTF-8
3738 * folds are 1-1; and, for UTF-8 patterns, we pre-fold all other folds to
3739 * their expanded versions. (Again, we can't prefold sharp s to 'ss' in
3740 * EXACTF nodes because we don't know at compile time if it actually
3741 * matches 'ss' or not. For EXACTF nodes it will match iff the target
3742 * string is in UTF-8. This is in contrast to EXACTFU nodes, where it
3743 * always matches; and EXACTFA where it never does. In an EXACTFA node in
3744 * a UTF-8 pattern, sharp s is folded to "\x{17F}\x{17F}, avoiding the
3745 * problem; but in a non-UTF8 pattern, folding it to that above-Latin1
3746 * string would require the pattern to be forced into UTF-8, the overhead
3747 * of which we want to avoid. Similarly the unfolded multi-char folds in
3748 * EXACTFL nodes will match iff the locale at the time of match is a UTF-8
3751 * Similarly, the code that generates tries doesn't currently handle
3752 * not-already-folded multi-char folds, and it looks like a pain to change
3753 * that. Therefore, trie generation of EXACTFA nodes with the sharp s
3754 * doesn't work. Instead, such an EXACTFA is turned into a new regnode,
3755 * EXACTFA_NO_TRIE, which the trie code knows not to handle. Most people
3756 * using /iaa matching will be doing so almost entirely with ASCII
3757 * strings, so this should rarely be encountered in practice */
3759 #define JOIN_EXACT(scan,min_subtract,unfolded_multi_char, flags) \
3760 if (PL_regkind[OP(scan)] == EXACT) \
3761 join_exact(pRExC_state,(scan),(min_subtract),unfolded_multi_char, (flags),NULL,depth+1)
3764 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan,
3765 UV *min_subtract, bool *unfolded_multi_char,
3766 U32 flags,regnode *val, U32 depth)
3768 /* Merge several consecutive EXACTish nodes into one. */
3769 regnode *n = regnext(scan);
3771 regnode *next = scan + NODE_SZ_STR(scan);
3775 regnode *stop = scan;
3776 GET_RE_DEBUG_FLAGS_DECL;
3778 PERL_UNUSED_ARG(depth);
3781 PERL_ARGS_ASSERT_JOIN_EXACT;
3782 #ifndef EXPERIMENTAL_INPLACESCAN
3783 PERL_UNUSED_ARG(flags);
3784 PERL_UNUSED_ARG(val);
3786 DEBUG_PEEP("join",scan,depth);
3788 /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
3789 * EXACT ones that are mergeable to the current one. */
3791 && (PL_regkind[OP(n)] == NOTHING
3792 || (stringok && OP(n) == OP(scan)))
3794 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
3797 if (OP(n) == TAIL || n > next)
3799 if (PL_regkind[OP(n)] == NOTHING) {
3800 DEBUG_PEEP("skip:",n,depth);
3801 NEXT_OFF(scan) += NEXT_OFF(n);
3802 next = n + NODE_STEP_REGNODE;
3809 else if (stringok) {
3810 const unsigned int oldl = STR_LEN(scan);
3811 regnode * const nnext = regnext(n);
3813 /* XXX I (khw) kind of doubt that this works on platforms (should
3814 * Perl ever run on one) where U8_MAX is above 255 because of lots
3815 * of other assumptions */
3816 /* Don't join if the sum can't fit into a single node */
3817 if (oldl + STR_LEN(n) > U8_MAX)
3820 DEBUG_PEEP("merg",n,depth);
3823 NEXT_OFF(scan) += NEXT_OFF(n);
3824 STR_LEN(scan) += STR_LEN(n);
3825 next = n + NODE_SZ_STR(n);
3826 /* Now we can overwrite *n : */
3827 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
3835 #ifdef EXPERIMENTAL_INPLACESCAN
3836 if (flags && !NEXT_OFF(n)) {
3837 DEBUG_PEEP("atch", val, depth);
3838 if (reg_off_by_arg[OP(n)]) {
3839 ARG_SET(n, val - n);
3842 NEXT_OFF(n) = val - n;
3850 *unfolded_multi_char = FALSE;
3852 /* Here, all the adjacent mergeable EXACTish nodes have been merged. We
3853 * can now analyze for sequences of problematic code points. (Prior to
3854 * this final joining, sequences could have been split over boundaries, and
3855 * hence missed). The sequences only happen in folding, hence for any
3856 * non-EXACT EXACTish node */
3857 if (OP(scan) != EXACT && OP(scan) != EXACTL) {
3858 U8* s0 = (U8*) STRING(scan);
3860 U8* s_end = s0 + STR_LEN(scan);
3862 int total_count_delta = 0; /* Total delta number of characters that
3863 multi-char folds expand to */
3865 /* One pass is made over the node's string looking for all the
3866 * possibilities. To avoid some tests in the loop, there are two main
3867 * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
3872 if (OP(scan) == EXACTFL) {
3875 /* An EXACTFL node would already have been changed to another
3876 * node type unless there is at least one character in it that
3877 * is problematic; likely a character whose fold definition
3878 * won't be known until runtime, and so has yet to be folded.
3879 * For all but the UTF-8 locale, folds are 1-1 in length, but
3880 * to handle the UTF-8 case, we need to create a temporary
3881 * folded copy using UTF-8 locale rules in order to analyze it.
3882 * This is because our macros that look to see if a sequence is
3883 * a multi-char fold assume everything is folded (otherwise the
3884 * tests in those macros would be too complicated and slow).
3885 * Note that here, the non-problematic folds will have already
3886 * been done, so we can just copy such characters. We actually
3887 * don't completely fold the EXACTFL string. We skip the
3888 * unfolded multi-char folds, as that would just create work
3889 * below to figure out the size they already are */
3891 Newx(folded, UTF8_MAX_FOLD_CHAR_EXPAND * STR_LEN(scan) + 1, U8);
3894 STRLEN s_len = UTF8SKIP(s);
3895 if (! is_PROBLEMATIC_LOCALE_FOLD_utf8(s)) {
3896 Copy(s, d, s_len, U8);
3899 else if (is_FOLDS_TO_MULTI_utf8(s)) {
3900 *unfolded_multi_char = TRUE;
3901 Copy(s, d, s_len, U8);
3904 else if (isASCII(*s)) {
3905 *(d++) = toFOLD(*s);
3909 _toFOLD_utf8_flags(s, s_end, d, &len, FOLD_FLAGS_FULL);
3915 /* Point the remainder of the routine to look at our temporary
3919 } /* End of creating folded copy of EXACTFL string */
3921 /* Examine the string for a multi-character fold sequence. UTF-8
3922 * patterns have all characters pre-folded by the time this code is
3924 while (s < s_end - 1) /* Can stop 1 before the end, as minimum
3925 length sequence we are looking for is 2 */
3927 int count = 0; /* How many characters in a multi-char fold */
3928 int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end);
3929 if (! len) { /* Not a multi-char fold: get next char */
3934 /* Nodes with 'ss' require special handling, except for
3935 * EXACTFA-ish for which there is no multi-char fold to this */
3936 if (len == 2 && *s == 's' && *(s+1) == 's'
3937 && OP(scan) != EXACTFA
3938 && OP(scan) != EXACTFA_NO_TRIE)
3941 if (OP(scan) != EXACTFL) {
3942 OP(scan) = EXACTFU_SS;
3946 else { /* Here is a generic multi-char fold. */
3947 U8* multi_end = s + len;
3949 /* Count how many characters are in it. In the case of
3950 * /aa, no folds which contain ASCII code points are
3951 * allowed, so check for those, and skip if found. */
3952 if (OP(scan) != EXACTFA && OP(scan) != EXACTFA_NO_TRIE) {
3953 count = utf8_length(s, multi_end);
3957 while (s < multi_end) {
3960 goto next_iteration;
3970 /* The delta is how long the sequence is minus 1 (1 is how long
3971 * the character that folds to the sequence is) */
3972 total_count_delta += count - 1;
3976 /* We created a temporary folded copy of the string in EXACTFL
3977 * nodes. Therefore we need to be sure it doesn't go below zero,
3978 * as the real string could be shorter */
3979 if (OP(scan) == EXACTFL) {