3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by Larry Wall
7 * You may distribute under the terms of either the GNU General Public
8 * License or the Artistic License, as specified in the README file.
13 * 'I wonder what the Entish is for "yes" and "no",' he thought.
16 * [p.480 of _The Lord of the Rings_, III/iv: "Treebeard"]
22 * This file contains the code that creates, manipulates and destroys
23 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
24 * structure of an SV, so their creation and destruction is handled
25 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
26 * level functions (eg. substr, split, join) for each of the types are
38 /* Missing proto on LynxOS */
39 char *gconvert(double, int, int, char *);
42 #ifdef PERL_UTF8_CACHE_ASSERT
43 /* if adding more checks watch out for the following tests:
44 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
45 * lib/utf8.t lib/Unicode/Collate/t/index.t
48 # define ASSERT_UTF8_CACHE(cache) \
49 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
50 assert((cache)[2] <= (cache)[3]); \
51 assert((cache)[3] <= (cache)[1]);} \
54 # define ASSERT_UTF8_CACHE(cache) NOOP
57 #ifdef PERL_OLD_COPY_ON_WRITE
58 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
59 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
60 /* This is a pessimistic view. Scalar must be purely a read-write PV to copy-
64 /* ============================================================================
66 =head1 Allocation and deallocation of SVs.
68 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
69 sv, av, hv...) contains type and reference count information, and for
70 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
71 contains fields specific to each type. Some types store all they need
72 in the head, so don't have a body.
74 In all but the most memory-paranoid configuations (ex: PURIFY), heads
75 and bodies are allocated out of arenas, which by default are
76 approximately 4K chunks of memory parcelled up into N heads or bodies.
77 Sv-bodies are allocated by their sv-type, guaranteeing size
78 consistency needed to allocate safely from arrays.
80 For SV-heads, the first slot in each arena is reserved, and holds a
81 link to the next arena, some flags, and a note of the number of slots.
82 Snaked through each arena chain is a linked list of free items; when
83 this becomes empty, an extra arena is allocated and divided up into N
84 items which are threaded into the free list.
86 SV-bodies are similar, but they use arena-sets by default, which
87 separate the link and info from the arena itself, and reclaim the 1st
88 slot in the arena. SV-bodies are further described later.
90 The following global variables are associated with arenas:
92 PL_sv_arenaroot pointer to list of SV arenas
93 PL_sv_root pointer to list of free SV structures
95 PL_body_arenas head of linked-list of body arenas
96 PL_body_roots[] array of pointers to list of free bodies of svtype
97 arrays are indexed by the svtype needed
99 A few special SV heads are not allocated from an arena, but are
100 instead directly created in the interpreter structure, eg PL_sv_undef.
101 The size of arenas can be changed from the default by setting
102 PERL_ARENA_SIZE appropriately at compile time.
104 The SV arena serves the secondary purpose of allowing still-live SVs
105 to be located and destroyed during final cleanup.
107 At the lowest level, the macros new_SV() and del_SV() grab and free
108 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
109 to return the SV to the free list with error checking.) new_SV() calls
110 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
111 SVs in the free list have their SvTYPE field set to all ones.
113 At the time of very final cleanup, sv_free_arenas() is called from
114 perl_destruct() to physically free all the arenas allocated since the
115 start of the interpreter.
117 The function visit() scans the SV arenas list, and calls a specified
118 function for each SV it finds which is still live - ie which has an SvTYPE
119 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
120 following functions (specified as [function that calls visit()] / [function
121 called by visit() for each SV]):
123 sv_report_used() / do_report_used()
124 dump all remaining SVs (debugging aid)
126 sv_clean_objs() / do_clean_objs(),do_clean_named_objs()
127 Attempt to free all objects pointed to by RVs,
128 and, unless DISABLE_DESTRUCTOR_KLUDGE is defined,
129 try to do the same for all objects indirectly
130 referenced by typeglobs too. Called once from
131 perl_destruct(), prior to calling sv_clean_all()
134 sv_clean_all() / do_clean_all()
135 SvREFCNT_dec(sv) each remaining SV, possibly
136 triggering an sv_free(). It also sets the
137 SVf_BREAK flag on the SV to indicate that the
138 refcnt has been artificially lowered, and thus
139 stopping sv_free() from giving spurious warnings
140 about SVs which unexpectedly have a refcnt
141 of zero. called repeatedly from perl_destruct()
142 until there are no SVs left.
144 =head2 Arena allocator API Summary
146 Private API to rest of sv.c
150 new_XIV(), del_XIV(),
151 new_XNV(), del_XNV(),
156 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
160 * ========================================================================= */
163 * "A time to plant, and a time to uproot what was planted..."
167 Perl_offer_nice_chunk(pTHX_ void *const chunk, const U32 chunk_size)
173 PERL_ARGS_ASSERT_OFFER_NICE_CHUNK;
175 new_chunk = (void *)(chunk);
176 new_chunk_size = (chunk_size);
177 if (new_chunk_size > PL_nice_chunk_size) {
178 Safefree(PL_nice_chunk);
179 PL_nice_chunk = (char *) new_chunk;
180 PL_nice_chunk_size = new_chunk_size;
187 # define MEM_LOG_NEW_SV(sv, file, line, func) \
188 Perl_mem_log_new_sv(sv, file, line, func)
189 # define MEM_LOG_DEL_SV(sv, file, line, func) \
190 Perl_mem_log_del_sv(sv, file, line, func)
192 # define MEM_LOG_NEW_SV(sv, file, line, func) NOOP
193 # define MEM_LOG_DEL_SV(sv, file, line, func) NOOP
196 #ifdef DEBUG_LEAKING_SCALARS
197 # define FREE_SV_DEBUG_FILE(sv) Safefree((sv)->sv_debug_file)
198 # define DEBUG_SV_SERIAL(sv) \
199 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) del_SV\n", \
200 PTR2UV(sv), (long)(sv)->sv_debug_serial))
202 # define FREE_SV_DEBUG_FILE(sv)
203 # define DEBUG_SV_SERIAL(sv) NOOP
207 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
208 # define SvARENA_CHAIN_SET(sv,val) (sv)->sv_u.svu_rv = MUTABLE_SV((val))
209 /* Whilst I'd love to do this, it seems that things like to check on
211 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
213 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
214 PoisonNew(&SvREFCNT(sv), 1, U32)
216 # define SvARENA_CHAIN(sv) SvANY(sv)
217 # define SvARENA_CHAIN_SET(sv,val) SvANY(sv) = (void *)(val)
218 # define POSION_SV_HEAD(sv)
221 /* Mark an SV head as unused, and add to free list.
223 * If SVf_BREAK is set, skip adding it to the free list, as this SV had
224 * its refcount artificially decremented during global destruction, so
225 * there may be dangling pointers to it. The last thing we want in that
226 * case is for it to be reused. */
228 #define plant_SV(p) \
230 const U32 old_flags = SvFLAGS(p); \
231 MEM_LOG_DEL_SV(p, __FILE__, __LINE__, FUNCTION__); \
232 DEBUG_SV_SERIAL(p); \
233 FREE_SV_DEBUG_FILE(p); \
235 SvFLAGS(p) = SVTYPEMASK; \
236 if (!(old_flags & SVf_BREAK)) { \
237 SvARENA_CHAIN_SET(p, PL_sv_root); \
243 #define uproot_SV(p) \
246 PL_sv_root = MUTABLE_SV(SvARENA_CHAIN(p)); \
251 /* make some more SVs by adding another arena */
260 sv_add_arena(PL_nice_chunk, PL_nice_chunk_size, 0);
261 PL_nice_chunk = NULL;
262 PL_nice_chunk_size = 0;
265 char *chunk; /* must use New here to match call to */
266 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
267 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
273 /* new_SV(): return a new, empty SV head */
275 #ifdef DEBUG_LEAKING_SCALARS
276 /* provide a real function for a debugger to play with */
278 S_new_SV(pTHX_ const char *file, int line, const char *func)
285 sv = S_more_sv(aTHX);
289 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
290 sv->sv_debug_line = (U16) (PL_parser && PL_parser->copline != NOLINE
296 sv->sv_debug_inpad = 0;
297 sv->sv_debug_cloned = 0;
298 sv->sv_debug_file = PL_curcop ? savepv(CopFILE(PL_curcop)): NULL;
300 sv->sv_debug_serial = PL_sv_serial++;
302 MEM_LOG_NEW_SV(sv, file, line, func);
303 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) new_SV (from %s:%d [%s])\n",
304 PTR2UV(sv), (long)sv->sv_debug_serial, file, line, func));
308 # define new_SV(p) (p)=S_new_SV(aTHX_ __FILE__, __LINE__, FUNCTION__)
316 (p) = S_more_sv(aTHX); \
320 MEM_LOG_NEW_SV(p, __FILE__, __LINE__, FUNCTION__); \
325 /* del_SV(): return an empty SV head to the free list */
338 S_del_sv(pTHX_ SV *p)
342 PERL_ARGS_ASSERT_DEL_SV;
347 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
348 const SV * const sv = sva + 1;
349 const SV * const svend = &sva[SvREFCNT(sva)];
350 if (p >= sv && p < svend) {
356 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
357 "Attempt to free non-arena SV: 0x%"UVxf
358 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
365 #else /* ! DEBUGGING */
367 #define del_SV(p) plant_SV(p)
369 #endif /* DEBUGGING */
373 =head1 SV Manipulation Functions
375 =for apidoc sv_add_arena
377 Given a chunk of memory, link it to the head of the list of arenas,
378 and split it into a list of free SVs.
384 S_sv_add_arena(pTHX_ char *const ptr, const U32 size, const U32 flags)
387 SV *const sva = MUTABLE_SV(ptr);
391 PERL_ARGS_ASSERT_SV_ADD_ARENA;
393 /* The first SV in an arena isn't an SV. */
394 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
395 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
396 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
398 PL_sv_arenaroot = sva;
399 PL_sv_root = sva + 1;
401 svend = &sva[SvREFCNT(sva) - 1];
404 SvARENA_CHAIN_SET(sv, (sv + 1));
408 /* Must always set typemask because it's always checked in on cleanup
409 when the arenas are walked looking for objects. */
410 SvFLAGS(sv) = SVTYPEMASK;
413 SvARENA_CHAIN_SET(sv, 0);
417 SvFLAGS(sv) = SVTYPEMASK;
420 /* visit(): call the named function for each non-free SV in the arenas
421 * whose flags field matches the flags/mask args. */
424 S_visit(pTHX_ SVFUNC_t f, const U32 flags, const U32 mask)
430 PERL_ARGS_ASSERT_VISIT;
432 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
433 register const SV * const svend = &sva[SvREFCNT(sva)];
435 for (sv = sva + 1; sv < svend; ++sv) {
436 if (SvTYPE(sv) != SVTYPEMASK
437 && (sv->sv_flags & mask) == flags
450 /* called by sv_report_used() for each live SV */
453 do_report_used(pTHX_ SV *const sv)
455 if (SvTYPE(sv) != SVTYPEMASK) {
456 PerlIO_printf(Perl_debug_log, "****\n");
463 =for apidoc sv_report_used
465 Dump the contents of all SVs not yet freed. (Debugging aid).
471 Perl_sv_report_used(pTHX)
474 visit(do_report_used, 0, 0);
480 /* called by sv_clean_objs() for each live SV */
483 do_clean_objs(pTHX_ SV *const ref)
488 SV * const target = SvRV(ref);
489 if (SvOBJECT(target)) {
490 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
491 if (SvWEAKREF(ref)) {
492 sv_del_backref(target, ref);
498 SvREFCNT_dec(target);
503 /* XXX Might want to check arrays, etc. */
506 /* called by sv_clean_objs() for each live SV */
508 #ifndef DISABLE_DESTRUCTOR_KLUDGE
510 do_clean_named_objs(pTHX_ SV *const sv)
513 assert(SvTYPE(sv) == SVt_PVGV);
514 assert(isGV_with_GP(sv));
517 #ifdef PERL_DONT_CREATE_GVSV
520 SvOBJECT(GvSV(sv))) ||
521 (GvAV(sv) && SvOBJECT(GvAV(sv))) ||
522 (GvHV(sv) && SvOBJECT(GvHV(sv))) ||
523 /* In certain rare cases GvIOp(sv) can be NULL, which would make SvOBJECT(GvIO(sv)) dereference NULL. */
524 (GvIO(sv) ? (SvFLAGS(GvIOp(sv)) & SVs_OBJECT) : 0) ||
525 (GvCV(sv) && SvOBJECT(GvCV(sv))) )
527 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning named glob object:\n "), sv_dump(sv)));
528 SvFLAGS(sv) |= SVf_BREAK;
536 =for apidoc sv_clean_objs
538 Attempt to destroy all objects not yet freed
544 Perl_sv_clean_objs(pTHX)
547 PL_in_clean_objs = TRUE;
548 visit(do_clean_objs, SVf_ROK, SVf_ROK);
549 #ifndef DISABLE_DESTRUCTOR_KLUDGE
550 /* some barnacles may yet remain, clinging to typeglobs */
551 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
553 PL_in_clean_objs = FALSE;
556 /* called by sv_clean_all() for each live SV */
559 do_clean_all(pTHX_ SV *const sv)
562 if (sv == (const SV *) PL_fdpid || sv == (const SV *)PL_strtab) {
563 /* don't clean pid table and strtab */
566 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
567 SvFLAGS(sv) |= SVf_BREAK;
572 =for apidoc sv_clean_all
574 Decrement the refcnt of each remaining SV, possibly triggering a
575 cleanup. This function may have to be called multiple times to free
576 SVs which are in complex self-referential hierarchies.
582 Perl_sv_clean_all(pTHX)
586 PL_in_clean_all = TRUE;
587 cleaned = visit(do_clean_all, 0,0);
588 PL_in_clean_all = FALSE;
593 ARENASETS: a meta-arena implementation which separates arena-info
594 into struct arena_set, which contains an array of struct
595 arena_descs, each holding info for a single arena. By separating
596 the meta-info from the arena, we recover the 1st slot, formerly
597 borrowed for list management. The arena_set is about the size of an
598 arena, avoiding the needless malloc overhead of a naive linked-list.
600 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
601 memory in the last arena-set (1/2 on average). In trade, we get
602 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
603 smaller types). The recovery of the wasted space allows use of
604 small arenas for large, rare body types, by changing array* fields
605 in body_details_by_type[] below.
608 char *arena; /* the raw storage, allocated aligned */
609 size_t size; /* its size ~4k typ */
610 svtype utype; /* bodytype stored in arena */
615 /* Get the maximum number of elements in set[] such that struct arena_set
616 will fit within PERL_ARENA_SIZE, which is probably just under 4K, and
617 therefore likely to be 1 aligned memory page. */
619 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
620 - 2 * sizeof(int)) / sizeof (struct arena_desc))
623 struct arena_set* next;
624 unsigned int set_size; /* ie ARENAS_PER_SET */
625 unsigned int curr; /* index of next available arena-desc */
626 struct arena_desc set[ARENAS_PER_SET];
630 =for apidoc sv_free_arenas
632 Deallocate the memory used by all arenas. Note that all the individual SV
633 heads and bodies within the arenas must already have been freed.
638 Perl_sv_free_arenas(pTHX)
645 /* Free arenas here, but be careful about fake ones. (We assume
646 contiguity of the fake ones with the corresponding real ones.) */
648 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
649 svanext = MUTABLE_SV(SvANY(sva));
650 while (svanext && SvFAKE(svanext))
651 svanext = MUTABLE_SV(SvANY(svanext));
658 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
661 struct arena_set *current = aroot;
664 assert(aroot->set[i].arena);
665 Safefree(aroot->set[i].arena);
673 i = PERL_ARENA_ROOTS_SIZE;
675 PL_body_roots[i] = 0;
677 Safefree(PL_nice_chunk);
678 PL_nice_chunk = NULL;
679 PL_nice_chunk_size = 0;
685 Here are mid-level routines that manage the allocation of bodies out
686 of the various arenas. There are 5 kinds of arenas:
688 1. SV-head arenas, which are discussed and handled above
689 2. regular body arenas
690 3. arenas for reduced-size bodies
692 5. pte arenas (thread related)
694 Arena types 2 & 3 are chained by body-type off an array of
695 arena-root pointers, which is indexed by svtype. Some of the
696 larger/less used body types are malloced singly, since a large
697 unused block of them is wasteful. Also, several svtypes dont have
698 bodies; the data fits into the sv-head itself. The arena-root
699 pointer thus has a few unused root-pointers (which may be hijacked
700 later for arena types 4,5)
702 3 differs from 2 as an optimization; some body types have several
703 unused fields in the front of the structure (which are kept in-place
704 for consistency). These bodies can be allocated in smaller chunks,
705 because the leading fields arent accessed. Pointers to such bodies
706 are decremented to point at the unused 'ghost' memory, knowing that
707 the pointers are used with offsets to the real memory.
709 HE, HEK arenas are managed separately, with separate code, but may
710 be merge-able later..
712 PTE arenas are not sv-bodies, but they share these mid-level
713 mechanics, so are considered here. The new mid-level mechanics rely
714 on the sv_type of the body being allocated, so we just reserve one
715 of the unused body-slots for PTEs, then use it in those (2) PTE
716 contexts below (line ~10k)
719 /* get_arena(size): this creates custom-sized arenas
720 TBD: export properly for hv.c: S_more_he().
723 Perl_get_arena(pTHX_ const size_t arena_size, const svtype bodytype)
726 struct arena_desc* adesc;
727 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
730 /* shouldnt need this
731 if (!arena_size) arena_size = PERL_ARENA_SIZE;
734 /* may need new arena-set to hold new arena */
735 if (!aroot || aroot->curr >= aroot->set_size) {
736 struct arena_set *newroot;
737 Newxz(newroot, 1, struct arena_set);
738 newroot->set_size = ARENAS_PER_SET;
739 newroot->next = aroot;
741 PL_body_arenas = (void *) newroot;
742 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
745 /* ok, now have arena-set with at least 1 empty/available arena-desc */
746 curr = aroot->curr++;
747 adesc = &(aroot->set[curr]);
748 assert(!adesc->arena);
750 Newx(adesc->arena, arena_size, char);
751 adesc->size = arena_size;
752 adesc->utype = bodytype;
753 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %"UVuf"\n",
754 curr, (void*)adesc->arena, (UV)arena_size));
760 /* return a thing to the free list */
762 #define del_body(thing, root) \
764 void ** const thing_copy = (void **)thing;\
765 *thing_copy = *root; \
766 *root = (void*)thing_copy; \
771 =head1 SV-Body Allocation
773 Allocation of SV-bodies is similar to SV-heads, differing as follows;
774 the allocation mechanism is used for many body types, so is somewhat
775 more complicated, it uses arena-sets, and has no need for still-live
778 At the outermost level, (new|del)_X*V macros return bodies of the
779 appropriate type. These macros call either (new|del)_body_type or
780 (new|del)_body_allocated macro pairs, depending on specifics of the
781 type. Most body types use the former pair, the latter pair is used to
782 allocate body types with "ghost fields".
784 "ghost fields" are fields that are unused in certain types, and
785 consequently don't need to actually exist. They are declared because
786 they're part of a "base type", which allows use of functions as
787 methods. The simplest examples are AVs and HVs, 2 aggregate types
788 which don't use the fields which support SCALAR semantics.
790 For these types, the arenas are carved up into appropriately sized
791 chunks, we thus avoid wasted memory for those unaccessed members.
792 When bodies are allocated, we adjust the pointer back in memory by the
793 size of the part not allocated, so it's as if we allocated the full
794 structure. (But things will all go boom if you write to the part that
795 is "not there", because you'll be overwriting the last members of the
796 preceding structure in memory.)
798 We calculate the correction using the STRUCT_OFFSET macro on the first
799 member present. If the allocated structure is smaller (no initial NV
800 actually allocated) then the net effect is to subtract the size of the NV
801 from the pointer, to return a new pointer as if an initial NV were actually
802 allocated. (We were using structures named *_allocated for this, but
803 this turned out to be a subtle bug, because a structure without an NV
804 could have a lower alignment constraint, but the compiler is allowed to
805 optimised accesses based on the alignment constraint of the actual pointer
806 to the full structure, for example, using a single 64 bit load instruction
807 because it "knows" that two adjacent 32 bit members will be 8-byte aligned.)
809 This is the same trick as was used for NV and IV bodies. Ironically it
810 doesn't need to be used for NV bodies any more, because NV is now at
811 the start of the structure. IV bodies don't need it either, because
812 they are no longer allocated.
814 In turn, the new_body_* allocators call S_new_body(), which invokes
815 new_body_inline macro, which takes a lock, and takes a body off the
816 linked list at PL_body_roots[sv_type], calling S_more_bodies() if
817 necessary to refresh an empty list. Then the lock is released, and
818 the body is returned.
820 S_more_bodies calls get_arena(), and carves it up into an array of N
821 bodies, which it strings into a linked list. It looks up arena-size
822 and body-size from the body_details table described below, thus
823 supporting the multiple body-types.
825 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
826 the (new|del)_X*V macros are mapped directly to malloc/free.
832 For each sv-type, struct body_details bodies_by_type[] carries
833 parameters which control these aspects of SV handling:
835 Arena_size determines whether arenas are used for this body type, and if
836 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
837 zero, forcing individual mallocs and frees.
839 Body_size determines how big a body is, and therefore how many fit into
840 each arena. Offset carries the body-pointer adjustment needed for
841 "ghost fields", and is used in *_allocated macros.
843 But its main purpose is to parameterize info needed in
844 Perl_sv_upgrade(). The info here dramatically simplifies the function
845 vs the implementation in 5.8.8, making it table-driven. All fields
846 are used for this, except for arena_size.
848 For the sv-types that have no bodies, arenas are not used, so those
849 PL_body_roots[sv_type] are unused, and can be overloaded. In
850 something of a special case, SVt_NULL is borrowed for HE arenas;
851 PL_body_roots[HE_SVSLOT=SVt_NULL] is filled by S_more_he, but the
852 bodies_by_type[SVt_NULL] slot is not used, as the table is not
855 PTEs also use arenas, but are never seen in Perl_sv_upgrade. Nonetheless,
856 they get their own slot in bodies_by_type[PTE_SVSLOT =SVt_IV], so they can
857 just use the same allocation semantics. At first, PTEs were also
858 overloaded to a non-body sv-type, but this yielded hard-to-find malloc
859 bugs, so was simplified by claiming a new slot. This choice has no
860 consequence at this time.
864 struct body_details {
865 U8 body_size; /* Size to allocate */
866 U8 copy; /* Size of structure to copy (may be shorter) */
868 unsigned int type : 4; /* We have space for a sanity check. */
869 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
870 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
871 unsigned int arena : 1; /* Allocated from an arena */
872 size_t arena_size; /* Size of arena to allocate */
880 /* With -DPURFIY we allocate everything directly, and don't use arenas.
881 This seems a rather elegant way to simplify some of the code below. */
882 #define HASARENA FALSE
884 #define HASARENA TRUE
886 #define NOARENA FALSE
888 /* Size the arenas to exactly fit a given number of bodies. A count
889 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
890 simplifying the default. If count > 0, the arena is sized to fit
891 only that many bodies, allowing arenas to be used for large, rare
892 bodies (XPVFM, XPVIO) without undue waste. The arena size is
893 limited by PERL_ARENA_SIZE, so we can safely oversize the
896 #define FIT_ARENA0(body_size) \
897 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
898 #define FIT_ARENAn(count,body_size) \
899 ( count * body_size <= PERL_ARENA_SIZE) \
900 ? count * body_size \
901 : FIT_ARENA0 (body_size)
902 #define FIT_ARENA(count,body_size) \
904 ? FIT_ARENAn (count, body_size) \
905 : FIT_ARENA0 (body_size)
907 /* Calculate the length to copy. Specifically work out the length less any
908 final padding the compiler needed to add. See the comment in sv_upgrade
909 for why copying the padding proved to be a bug. */
911 #define copy_length(type, last_member) \
912 STRUCT_OFFSET(type, last_member) \
913 + sizeof (((type*)SvANY((const SV *)0))->last_member)
915 static const struct body_details bodies_by_type[] = {
916 { sizeof(HE), 0, 0, SVt_NULL,
917 FALSE, NONV, NOARENA, FIT_ARENA(0, sizeof(HE)) },
919 /* The bind placeholder pretends to be an RV for now.
920 Also it's marked as "can't upgrade" to stop anyone using it before it's
922 { 0, 0, 0, SVt_BIND, TRUE, NONV, NOARENA, 0 },
924 /* IVs are in the head, so the allocation size is 0.
925 However, the slot is overloaded for PTEs. */
926 { sizeof(struct ptr_tbl_ent), /* This is used for PTEs. */
927 sizeof(IV), /* This is used to copy out the IV body. */
928 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
929 NOARENA /* IVS don't need an arena */,
930 /* But PTEs need to know the size of their arena */
931 FIT_ARENA(0, sizeof(struct ptr_tbl_ent))
934 /* 8 bytes on most ILP32 with IEEE doubles */
935 { sizeof(NV), sizeof(NV), 0, SVt_NV, FALSE, HADNV, HASARENA,
936 FIT_ARENA(0, sizeof(NV)) },
938 /* 8 bytes on most ILP32 with IEEE doubles */
939 { sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur),
940 copy_length(XPV, xpv_len) - STRUCT_OFFSET(XPV, xpv_cur),
941 + STRUCT_OFFSET(XPV, xpv_cur),
942 SVt_PV, FALSE, NONV, HASARENA,
943 FIT_ARENA(0, sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur)) },
946 { sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur),
947 copy_length(XPVIV, xiv_u) - STRUCT_OFFSET(XPV, xpv_cur),
948 + STRUCT_OFFSET(XPVIV, xpv_cur),
949 SVt_PVIV, FALSE, NONV, HASARENA,
950 FIT_ARENA(0, sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur)) },
953 { sizeof(XPVNV), copy_length(XPVNV, xiv_u), 0, SVt_PVNV, FALSE, HADNV,
954 HASARENA, FIT_ARENA(0, sizeof(XPVNV)) },
957 { sizeof(XPVMG), copy_length(XPVMG, xmg_stash), 0, SVt_PVMG, FALSE, HADNV,
958 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
961 { sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur),
962 sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur),
963 + STRUCT_OFFSET(regexp, xpv_cur),
964 SVt_REGEXP, FALSE, NONV, HASARENA,
965 FIT_ARENA(0, sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur))
969 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
970 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
973 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
974 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
976 { sizeof(XPVAV) - STRUCT_OFFSET(XPVAV, xav_fill),
977 copy_length(XPVAV, xmg_stash) - STRUCT_OFFSET(XPVAV, xav_fill),
978 + STRUCT_OFFSET(XPVAV, xav_fill),
979 SVt_PVAV, TRUE, NONV, HASARENA,
980 FIT_ARENA(0, sizeof(XPVAV) - STRUCT_OFFSET(XPVAV, xav_fill)) },
982 { sizeof(XPVHV) - STRUCT_OFFSET(XPVHV, xhv_fill),
983 copy_length(XPVHV, xmg_stash) - STRUCT_OFFSET(XPVHV, xhv_fill),
984 + STRUCT_OFFSET(XPVHV, xhv_fill),
985 SVt_PVHV, TRUE, NONV, HASARENA,
986 FIT_ARENA(0, sizeof(XPVHV) - STRUCT_OFFSET(XPVHV, xhv_fill)) },
989 { sizeof(XPVCV) - STRUCT_OFFSET(XPVCV, xpv_cur),
990 sizeof(XPVCV) - STRUCT_OFFSET(XPVCV, xpv_cur),
991 + STRUCT_OFFSET(XPVCV, xpv_cur),
992 SVt_PVCV, TRUE, NONV, HASARENA,
993 FIT_ARENA(0, sizeof(XPVCV) - STRUCT_OFFSET(XPVCV, xpv_cur)) },
995 { sizeof(XPVFM) - STRUCT_OFFSET(XPVFM, xpv_cur),
996 sizeof(XPVFM) - STRUCT_OFFSET(XPVFM, xpv_cur),
997 + STRUCT_OFFSET(XPVFM, xpv_cur),
998 SVt_PVFM, TRUE, NONV, NOARENA,
999 FIT_ARENA(20, sizeof(XPVFM) - STRUCT_OFFSET(XPVFM, xpv_cur)) },
1001 /* XPVIO is 84 bytes, fits 48x */
1002 { sizeof(XPVIO) - STRUCT_OFFSET(XPVIO, xpv_cur),
1003 sizeof(XPVIO) - STRUCT_OFFSET(XPVIO, xpv_cur),
1004 + STRUCT_OFFSET(XPVIO, xpv_cur),
1005 SVt_PVIO, TRUE, NONV, HASARENA,
1006 FIT_ARENA(24, sizeof(XPVIO) - STRUCT_OFFSET(XPVIO, xpv_cur)) },
1009 #define new_body_type(sv_type) \
1010 (void *)((char *)S_new_body(aTHX_ sv_type))
1012 #define del_body_type(p, sv_type) \
1013 del_body(p, &PL_body_roots[sv_type])
1016 #define new_body_allocated(sv_type) \
1017 (void *)((char *)S_new_body(aTHX_ sv_type) \
1018 - bodies_by_type[sv_type].offset)
1020 #define del_body_allocated(p, sv_type) \
1021 del_body(p + bodies_by_type[sv_type].offset, &PL_body_roots[sv_type])
1024 #define my_safemalloc(s) (void*)safemalloc(s)
1025 #define my_safecalloc(s) (void*)safecalloc(s, 1)
1026 #define my_safefree(p) safefree((char*)p)
1030 #define new_XNV() my_safemalloc(sizeof(XPVNV))
1031 #define del_XNV(p) my_safefree(p)
1033 #define new_XPVNV() my_safemalloc(sizeof(XPVNV))
1034 #define del_XPVNV(p) my_safefree(p)
1036 #define new_XPVAV() my_safemalloc(sizeof(XPVAV))
1037 #define del_XPVAV(p) my_safefree(p)
1039 #define new_XPVHV() my_safemalloc(sizeof(XPVHV))
1040 #define del_XPVHV(p) my_safefree(p)
1042 #define new_XPVMG() my_safemalloc(sizeof(XPVMG))
1043 #define del_XPVMG(p) my_safefree(p)
1045 #define new_XPVGV() my_safemalloc(sizeof(XPVGV))
1046 #define del_XPVGV(p) my_safefree(p)
1050 #define new_XNV() new_body_type(SVt_NV)
1051 #define del_XNV(p) del_body_type(p, SVt_NV)
1053 #define new_XPVNV() new_body_type(SVt_PVNV)
1054 #define del_XPVNV(p) del_body_type(p, SVt_PVNV)
1056 #define new_XPVAV() new_body_allocated(SVt_PVAV)
1057 #define del_XPVAV(p) del_body_allocated(p, SVt_PVAV)
1059 #define new_XPVHV() new_body_allocated(SVt_PVHV)
1060 #define del_XPVHV(p) del_body_allocated(p, SVt_PVHV)
1062 #define new_XPVMG() new_body_type(SVt_PVMG)
1063 #define del_XPVMG(p) del_body_type(p, SVt_PVMG)
1065 #define new_XPVGV() new_body_type(SVt_PVGV)
1066 #define del_XPVGV(p) del_body_type(p, SVt_PVGV)
1070 /* no arena for you! */
1072 #define new_NOARENA(details) \
1073 my_safemalloc((details)->body_size + (details)->offset)
1074 #define new_NOARENAZ(details) \
1075 my_safecalloc((details)->body_size + (details)->offset)
1078 S_more_bodies (pTHX_ const svtype sv_type)
1081 void ** const root = &PL_body_roots[sv_type];
1082 const struct body_details * const bdp = &bodies_by_type[sv_type];
1083 const size_t body_size = bdp->body_size;
1086 const size_t arena_size = Perl_malloc_good_size(bdp->arena_size);
1087 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1088 static bool done_sanity_check;
1090 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1091 * variables like done_sanity_check. */
1092 if (!done_sanity_check) {
1093 unsigned int i = SVt_LAST;
1095 done_sanity_check = TRUE;
1098 assert (bodies_by_type[i].type == i);
1102 assert(bdp->arena_size);
1104 start = (char*) Perl_get_arena(aTHX_ arena_size, sv_type);
1106 end = start + arena_size - 2 * body_size;
1108 /* computed count doesnt reflect the 1st slot reservation */
1109 #if defined(MYMALLOC) || defined(HAS_MALLOC_GOOD_SIZE)
1110 DEBUG_m(PerlIO_printf(Perl_debug_log,
1111 "arena %p end %p arena-size %d (from %d) type %d "
1113 (void*)start, (void*)end, (int)arena_size,
1114 (int)bdp->arena_size, sv_type, (int)body_size,
1115 (int)arena_size / (int)body_size));
1117 DEBUG_m(PerlIO_printf(Perl_debug_log,
1118 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1119 (void*)start, (void*)end,
1120 (int)bdp->arena_size, sv_type, (int)body_size,
1121 (int)bdp->arena_size / (int)body_size));
1123 *root = (void *)start;
1125 while (start <= end) {
1126 char * const next = start + body_size;
1127 *(void**) start = (void *)next;
1130 *(void **)start = 0;
1135 /* grab a new thing from the free list, allocating more if necessary.
1136 The inline version is used for speed in hot routines, and the
1137 function using it serves the rest (unless PURIFY).
1139 #define new_body_inline(xpv, sv_type) \
1141 void ** const r3wt = &PL_body_roots[sv_type]; \
1142 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1143 ? *((void **)(r3wt)) : more_bodies(sv_type)); \
1144 *(r3wt) = *(void**)(xpv); \
1150 S_new_body(pTHX_ const svtype sv_type)
1154 new_body_inline(xpv, sv_type);
1160 static const struct body_details fake_rv =
1161 { 0, 0, 0, SVt_IV, FALSE, NONV, NOARENA, 0 };
1164 =for apidoc sv_upgrade
1166 Upgrade an SV to a more complex form. Generally adds a new body type to the
1167 SV, then copies across as much information as possible from the old body.
1168 You generally want to use the C<SvUPGRADE> macro wrapper. See also C<svtype>.
1174 Perl_sv_upgrade(pTHX_ register SV *const sv, svtype new_type)
1179 const svtype old_type = SvTYPE(sv);
1180 const struct body_details *new_type_details;
1181 const struct body_details *old_type_details
1182 = bodies_by_type + old_type;
1183 SV *referant = NULL;
1185 PERL_ARGS_ASSERT_SV_UPGRADE;
1187 if (old_type == new_type)
1190 /* This clause was purposefully added ahead of the early return above to
1191 the shared string hackery for (sort {$a <=> $b} keys %hash), with the
1192 inference by Nick I-S that it would fix other troublesome cases. See
1193 changes 7162, 7163 (f130fd4589cf5fbb24149cd4db4137c8326f49c1 and parent)
1195 Given that shared hash key scalars are no longer PVIV, but PV, there is
1196 no longer need to unshare so as to free up the IVX slot for its proper
1197 purpose. So it's safe to move the early return earlier. */
1199 if (new_type != SVt_PV && SvIsCOW(sv)) {
1200 sv_force_normal_flags(sv, 0);
1203 old_body = SvANY(sv);
1205 /* Copying structures onto other structures that have been neatly zeroed
1206 has a subtle gotcha. Consider XPVMG
1208 +------+------+------+------+------+-------+-------+
1209 | NV | CUR | LEN | IV | MAGIC | STASH |
1210 +------+------+------+------+------+-------+-------+
1211 0 4 8 12 16 20 24 28
1213 where NVs are aligned to 8 bytes, so that sizeof that structure is
1214 actually 32 bytes long, with 4 bytes of padding at the end:
1216 +------+------+------+------+------+-------+-------+------+
1217 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1218 +------+------+------+------+------+-------+-------+------+
1219 0 4 8 12 16 20 24 28 32
1221 so what happens if you allocate memory for this structure:
1223 +------+------+------+------+------+-------+-------+------+------+...
1224 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1225 +------+------+------+------+------+-------+-------+------+------+...
1226 0 4 8 12 16 20 24 28 32 36
1228 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1229 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1230 started out as zero once, but it's quite possible that it isn't. So now,
1231 rather than a nicely zeroed GP, you have it pointing somewhere random.
1234 (In fact, GP ends up pointing at a previous GP structure, because the
1235 principle cause of the padding in XPVMG getting garbage is a copy of
1236 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1237 this happens to be moot because XPVGV has been re-ordered, with GP
1238 no longer after STASH)
1240 So we are careful and work out the size of used parts of all the
1248 referant = SvRV(sv);
1249 old_type_details = &fake_rv;
1250 if (new_type == SVt_NV)
1251 new_type = SVt_PVNV;
1253 if (new_type < SVt_PVIV) {
1254 new_type = (new_type == SVt_NV)
1255 ? SVt_PVNV : SVt_PVIV;
1260 if (new_type < SVt_PVNV) {
1261 new_type = SVt_PVNV;
1265 assert(new_type > SVt_PV);
1266 assert(SVt_IV < SVt_PV);
1267 assert(SVt_NV < SVt_PV);
1274 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1275 there's no way that it can be safely upgraded, because perl.c
1276 expects to Safefree(SvANY(PL_mess_sv)) */
1277 assert(sv != PL_mess_sv);
1278 /* This flag bit is used to mean other things in other scalar types.
1279 Given that it only has meaning inside the pad, it shouldn't be set
1280 on anything that can get upgraded. */
1281 assert(!SvPAD_TYPED(sv));
1284 if (old_type_details->cant_upgrade)
1285 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1286 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1289 if (old_type > new_type)
1290 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1291 (int)old_type, (int)new_type);
1293 new_type_details = bodies_by_type + new_type;
1295 SvFLAGS(sv) &= ~SVTYPEMASK;
1296 SvFLAGS(sv) |= new_type;
1298 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1299 the return statements above will have triggered. */
1300 assert (new_type != SVt_NULL);
1303 assert(old_type == SVt_NULL);
1304 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1308 assert(old_type == SVt_NULL);
1309 SvANY(sv) = new_XNV();
1314 assert(new_type_details->body_size);
1317 assert(new_type_details->arena);
1318 assert(new_type_details->arena_size);
1319 /* This points to the start of the allocated area. */
1320 new_body_inline(new_body, new_type);
1321 Zero(new_body, new_type_details->body_size, char);
1322 new_body = ((char *)new_body) - new_type_details->offset;
1324 /* We always allocated the full length item with PURIFY. To do this
1325 we fake things so that arena is false for all 16 types.. */
1326 new_body = new_NOARENAZ(new_type_details);
1328 SvANY(sv) = new_body;
1329 if (new_type == SVt_PVAV) {
1333 if (old_type_details->body_size) {
1336 /* It will have been zeroed when the new body was allocated.
1337 Lets not write to it, in case it confuses a write-back
1343 #ifndef NODEFAULT_SHAREKEYS
1344 HvSHAREKEYS_on(sv); /* key-sharing on by default */
1346 HvMAX(sv) = 7; /* (start with 8 buckets) */
1347 if (old_type_details->body_size) {
1350 /* It will have been zeroed when the new body was allocated.
1351 Lets not write to it, in case it confuses a write-back
1356 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1357 The target created by newSVrv also is, and it can have magic.
1358 However, it never has SvPVX set.
1360 if (old_type == SVt_IV) {
1362 } else if (old_type >= SVt_PV) {
1363 assert(SvPVX_const(sv) == 0);
1366 if (old_type >= SVt_PVMG) {
1367 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1368 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1370 sv->sv_u.svu_array = NULL; /* or svu_hash */
1376 /* This ensures that SvTHINKFIRST(sv) is true, and hence that
1377 sv_force_normal_flags(sv) is called. */
1380 /* XXX Is this still needed? Was it ever needed? Surely as there is
1381 no route from NV to PVIV, NOK can never be true */
1382 assert(!SvNOKp(sv));
1393 assert(new_type_details->body_size);
1394 /* We always allocated the full length item with PURIFY. To do this
1395 we fake things so that arena is false for all 16 types.. */
1396 if(new_type_details->arena) {
1397 /* This points to the start of the allocated area. */
1398 new_body_inline(new_body, new_type);
1399 Zero(new_body, new_type_details->body_size, char);
1400 new_body = ((char *)new_body) - new_type_details->offset;
1402 new_body = new_NOARENAZ(new_type_details);
1404 SvANY(sv) = new_body;
1406 if (old_type_details->copy) {
1407 /* There is now the potential for an upgrade from something without
1408 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1409 int offset = old_type_details->offset;
1410 int length = old_type_details->copy;
1412 if (new_type_details->offset > old_type_details->offset) {
1413 const int difference
1414 = new_type_details->offset - old_type_details->offset;
1415 offset += difference;
1416 length -= difference;
1418 assert (length >= 0);
1420 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1424 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1425 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1426 * correct 0.0 for us. Otherwise, if the old body didn't have an
1427 * NV slot, but the new one does, then we need to initialise the
1428 * freshly created NV slot with whatever the correct bit pattern is
1430 if (old_type_details->zero_nv && !new_type_details->zero_nv
1431 && !isGV_with_GP(sv))
1435 if (new_type == SVt_PVIO) {
1436 IO * const io = MUTABLE_IO(sv);
1437 GV *iogv = gv_fetchpvs("IO::File::", GV_ADD, SVt_PVHV);
1440 /* Clear the stashcache because a new IO could overrule a package
1442 hv_clear(PL_stashcache);
1444 SvSTASH_set(io, MUTABLE_HV(SvREFCNT_inc(GvHV(iogv))));
1445 IoPAGE_LEN(sv) = 60;
1447 if (old_type < SVt_PV) {
1448 /* referant will be NULL unless the old type was SVt_IV emulating
1450 sv->sv_u.svu_rv = referant;
1454 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1455 (unsigned long)new_type);
1458 if (old_type > SVt_IV) { /* SVt_IVs are overloaded for PTEs */
1460 my_safefree(old_body);
1462 /* Note that there is an assumption that all bodies of types that
1463 can be upgraded came from arenas. Only the more complex non-
1464 upgradable types are allowed to be directly malloc()ed. */
1465 assert(old_type_details->arena);
1466 del_body((void*)((char*)old_body + old_type_details->offset),
1467 &PL_body_roots[old_type]);
1473 =for apidoc sv_backoff
1475 Remove any string offset. You should normally use the C<SvOOK_off> macro
1482 Perl_sv_backoff(pTHX_ register SV *const sv)
1485 const char * const s = SvPVX_const(sv);
1487 PERL_ARGS_ASSERT_SV_BACKOFF;
1488 PERL_UNUSED_CONTEXT;
1491 assert(SvTYPE(sv) != SVt_PVHV);
1492 assert(SvTYPE(sv) != SVt_PVAV);
1494 SvOOK_offset(sv, delta);
1496 SvLEN_set(sv, SvLEN(sv) + delta);
1497 SvPV_set(sv, SvPVX(sv) - delta);
1498 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1499 SvFLAGS(sv) &= ~SVf_OOK;
1506 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1507 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1508 Use the C<SvGROW> wrapper instead.
1514 Perl_sv_grow(pTHX_ register SV *const sv, register STRLEN newlen)
1518 PERL_ARGS_ASSERT_SV_GROW;
1520 if (PL_madskills && newlen >= 0x100000) {
1521 PerlIO_printf(Perl_debug_log,
1522 "Allocation too large: %"UVxf"\n", (UV)newlen);
1524 #ifdef HAS_64K_LIMIT
1525 if (newlen >= 0x10000) {
1526 PerlIO_printf(Perl_debug_log,
1527 "Allocation too large: %"UVxf"\n", (UV)newlen);
1530 #endif /* HAS_64K_LIMIT */
1533 if (SvTYPE(sv) < SVt_PV) {
1534 sv_upgrade(sv, SVt_PV);
1535 s = SvPVX_mutable(sv);
1537 else if (SvOOK(sv)) { /* pv is offset? */
1539 s = SvPVX_mutable(sv);
1540 if (newlen > SvLEN(sv))
1541 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1542 #ifdef HAS_64K_LIMIT
1543 if (newlen >= 0x10000)
1548 s = SvPVX_mutable(sv);
1550 if (newlen > SvLEN(sv)) { /* need more room? */
1551 #ifndef Perl_safesysmalloc_size
1552 newlen = PERL_STRLEN_ROUNDUP(newlen);
1554 if (SvLEN(sv) && s) {
1555 s = (char*)saferealloc(s, newlen);
1558 s = (char*)safemalloc(newlen);
1559 if (SvPVX_const(sv) && SvCUR(sv)) {
1560 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1564 #ifdef Perl_safesysmalloc_size
1565 /* Do this here, do it once, do it right, and then we will never get
1566 called back into sv_grow() unless there really is some growing
1568 SvLEN_set(sv, Perl_safesysmalloc_size(s));
1570 SvLEN_set(sv, newlen);
1577 =for apidoc sv_setiv
1579 Copies an integer into the given SV, upgrading first if necessary.
1580 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1586 Perl_sv_setiv(pTHX_ register SV *const sv, const IV i)
1590 PERL_ARGS_ASSERT_SV_SETIV;
1592 SV_CHECK_THINKFIRST_COW_DROP(sv);
1593 switch (SvTYPE(sv)) {
1596 sv_upgrade(sv, SVt_IV);
1599 sv_upgrade(sv, SVt_PVIV);
1603 if (!isGV_with_GP(sv))
1610 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1614 (void)SvIOK_only(sv); /* validate number */
1620 =for apidoc sv_setiv_mg
1622 Like C<sv_setiv>, but also handles 'set' magic.
1628 Perl_sv_setiv_mg(pTHX_ register SV *const sv, const IV i)
1630 PERL_ARGS_ASSERT_SV_SETIV_MG;
1637 =for apidoc sv_setuv
1639 Copies an unsigned integer into the given SV, upgrading first if necessary.
1640 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1646 Perl_sv_setuv(pTHX_ register SV *const sv, const UV u)
1648 PERL_ARGS_ASSERT_SV_SETUV;
1650 /* With these two if statements:
1651 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1654 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1656 If you wish to remove them, please benchmark to see what the effect is
1658 if (u <= (UV)IV_MAX) {
1659 sv_setiv(sv, (IV)u);
1668 =for apidoc sv_setuv_mg
1670 Like C<sv_setuv>, but also handles 'set' magic.
1676 Perl_sv_setuv_mg(pTHX_ register SV *const sv, const UV u)
1678 PERL_ARGS_ASSERT_SV_SETUV_MG;
1685 =for apidoc sv_setnv
1687 Copies a double into the given SV, upgrading first if necessary.
1688 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1694 Perl_sv_setnv(pTHX_ register SV *const sv, const NV num)
1698 PERL_ARGS_ASSERT_SV_SETNV;
1700 SV_CHECK_THINKFIRST_COW_DROP(sv);
1701 switch (SvTYPE(sv)) {
1704 sv_upgrade(sv, SVt_NV);
1708 sv_upgrade(sv, SVt_PVNV);
1712 if (!isGV_with_GP(sv))
1719 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1724 (void)SvNOK_only(sv); /* validate number */
1729 =for apidoc sv_setnv_mg
1731 Like C<sv_setnv>, but also handles 'set' magic.
1737 Perl_sv_setnv_mg(pTHX_ register SV *const sv, const NV num)
1739 PERL_ARGS_ASSERT_SV_SETNV_MG;
1745 /* Print an "isn't numeric" warning, using a cleaned-up,
1746 * printable version of the offending string
1750 S_not_a_number(pTHX_ SV *const sv)
1757 PERL_ARGS_ASSERT_NOT_A_NUMBER;
1760 dsv = newSVpvs_flags("", SVs_TEMP);
1761 pv = sv_uni_display(dsv, sv, 10, 0);
1764 const char * const limit = tmpbuf + sizeof(tmpbuf) - 8;
1765 /* each *s can expand to 4 chars + "...\0",
1766 i.e. need room for 8 chars */
1768 const char *s = SvPVX_const(sv);
1769 const char * const end = s + SvCUR(sv);
1770 for ( ; s < end && d < limit; s++ ) {
1772 if (ch & 128 && !isPRINT_LC(ch)) {
1781 else if (ch == '\r') {
1785 else if (ch == '\f') {
1789 else if (ch == '\\') {
1793 else if (ch == '\0') {
1797 else if (isPRINT_LC(ch))
1814 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1815 "Argument \"%s\" isn't numeric in %s", pv,
1818 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1819 "Argument \"%s\" isn't numeric", pv);
1823 =for apidoc looks_like_number
1825 Test if the content of an SV looks like a number (or is a number).
1826 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1827 non-numeric warning), even if your atof() doesn't grok them.
1833 Perl_looks_like_number(pTHX_ SV *const sv)
1835 register const char *sbegin;
1838 PERL_ARGS_ASSERT_LOOKS_LIKE_NUMBER;
1841 sbegin = SvPVX_const(sv);
1844 else if (SvPOKp(sv))
1845 sbegin = SvPV_const(sv, len);
1847 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1848 return grok_number(sbegin, len, NULL);
1852 S_glob_2number(pTHX_ GV * const gv)
1854 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1855 SV *const buffer = sv_newmortal();
1857 PERL_ARGS_ASSERT_GLOB_2NUMBER;
1859 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1862 gv_efullname3(buffer, gv, "*");
1863 SvFLAGS(gv) |= wasfake;
1865 /* We know that all GVs stringify to something that is not-a-number,
1866 so no need to test that. */
1867 if (ckWARN(WARN_NUMERIC))
1868 not_a_number(buffer);
1869 /* We just want something true to return, so that S_sv_2iuv_common
1870 can tail call us and return true. */
1874 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1875 until proven guilty, assume that things are not that bad... */
1880 As 64 bit platforms often have an NV that doesn't preserve all bits of
1881 an IV (an assumption perl has been based on to date) it becomes necessary
1882 to remove the assumption that the NV always carries enough precision to
1883 recreate the IV whenever needed, and that the NV is the canonical form.
1884 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1885 precision as a side effect of conversion (which would lead to insanity
1886 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1887 1) to distinguish between IV/UV/NV slots that have cached a valid
1888 conversion where precision was lost and IV/UV/NV slots that have a
1889 valid conversion which has lost no precision
1890 2) to ensure that if a numeric conversion to one form is requested that
1891 would lose precision, the precise conversion (or differently
1892 imprecise conversion) is also performed and cached, to prevent
1893 requests for different numeric formats on the same SV causing
1894 lossy conversion chains. (lossless conversion chains are perfectly
1899 SvIOKp is true if the IV slot contains a valid value
1900 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1901 SvNOKp is true if the NV slot contains a valid value
1902 SvNOK is true only if the NV value is accurate
1905 while converting from PV to NV, check to see if converting that NV to an
1906 IV(or UV) would lose accuracy over a direct conversion from PV to
1907 IV(or UV). If it would, cache both conversions, return NV, but mark
1908 SV as IOK NOKp (ie not NOK).
1910 While converting from PV to IV, check to see if converting that IV to an
1911 NV would lose accuracy over a direct conversion from PV to NV. If it
1912 would, cache both conversions, flag similarly.
1914 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1915 correctly because if IV & NV were set NV *always* overruled.
1916 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1917 changes - now IV and NV together means that the two are interchangeable:
1918 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1920 The benefit of this is that operations such as pp_add know that if
1921 SvIOK is true for both left and right operands, then integer addition
1922 can be used instead of floating point (for cases where the result won't
1923 overflow). Before, floating point was always used, which could lead to
1924 loss of precision compared with integer addition.
1926 * making IV and NV equal status should make maths accurate on 64 bit
1928 * may speed up maths somewhat if pp_add and friends start to use
1929 integers when possible instead of fp. (Hopefully the overhead in
1930 looking for SvIOK and checking for overflow will not outweigh the
1931 fp to integer speedup)
1932 * will slow down integer operations (callers of SvIV) on "inaccurate"
1933 values, as the change from SvIOK to SvIOKp will cause a call into
1934 sv_2iv each time rather than a macro access direct to the IV slot
1935 * should speed up number->string conversion on integers as IV is
1936 favoured when IV and NV are equally accurate
1938 ####################################################################
1939 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1940 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1941 On the other hand, SvUOK is true iff UV.
1942 ####################################################################
1944 Your mileage will vary depending your CPU's relative fp to integer
1948 #ifndef NV_PRESERVES_UV
1949 # define IS_NUMBER_UNDERFLOW_IV 1
1950 # define IS_NUMBER_UNDERFLOW_UV 2
1951 # define IS_NUMBER_IV_AND_UV 2
1952 # define IS_NUMBER_OVERFLOW_IV 4
1953 # define IS_NUMBER_OVERFLOW_UV 5
1955 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1957 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1959 S_sv_2iuv_non_preserve(pTHX_ register SV *const sv
1967 PERL_ARGS_ASSERT_SV_2IUV_NON_PRESERVE;
1969 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1970 if (SvNVX(sv) < (NV)IV_MIN) {
1971 (void)SvIOKp_on(sv);
1973 SvIV_set(sv, IV_MIN);
1974 return IS_NUMBER_UNDERFLOW_IV;
1976 if (SvNVX(sv) > (NV)UV_MAX) {
1977 (void)SvIOKp_on(sv);
1980 SvUV_set(sv, UV_MAX);
1981 return IS_NUMBER_OVERFLOW_UV;
1983 (void)SvIOKp_on(sv);
1985 /* Can't use strtol etc to convert this string. (See truth table in
1987 if (SvNVX(sv) <= (UV)IV_MAX) {
1988 SvIV_set(sv, I_V(SvNVX(sv)));
1989 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1990 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1992 /* Integer is imprecise. NOK, IOKp */
1994 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
1997 SvUV_set(sv, U_V(SvNVX(sv)));
1998 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
1999 if (SvUVX(sv) == UV_MAX) {
2000 /* As we know that NVs don't preserve UVs, UV_MAX cannot
2001 possibly be preserved by NV. Hence, it must be overflow.
2003 return IS_NUMBER_OVERFLOW_UV;
2005 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
2007 /* Integer is imprecise. NOK, IOKp */
2009 return IS_NUMBER_OVERFLOW_IV;
2011 #endif /* !NV_PRESERVES_UV*/
2014 S_sv_2iuv_common(pTHX_ SV *const sv)
2018 PERL_ARGS_ASSERT_SV_2IUV_COMMON;
2021 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
2022 * without also getting a cached IV/UV from it at the same time
2023 * (ie PV->NV conversion should detect loss of accuracy and cache
2024 * IV or UV at same time to avoid this. */
2025 /* IV-over-UV optimisation - choose to cache IV if possible */
2027 if (SvTYPE(sv) == SVt_NV)
2028 sv_upgrade(sv, SVt_PVNV);
2030 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
2031 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
2032 certainly cast into the IV range at IV_MAX, whereas the correct
2033 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
2035 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
2036 if (Perl_isnan(SvNVX(sv))) {
2042 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2043 SvIV_set(sv, I_V(SvNVX(sv)));
2044 if (SvNVX(sv) == (NV) SvIVX(sv)
2045 #ifndef NV_PRESERVES_UV
2046 && (((UV)1 << NV_PRESERVES_UV_BITS) >
2047 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
2048 /* Don't flag it as "accurately an integer" if the number
2049 came from a (by definition imprecise) NV operation, and
2050 we're outside the range of NV integer precision */
2054 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
2056 /* scalar has trailing garbage, eg "42a" */
2058 DEBUG_c(PerlIO_printf(Perl_debug_log,
2059 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
2065 /* IV not precise. No need to convert from PV, as NV
2066 conversion would already have cached IV if it detected
2067 that PV->IV would be better than PV->NV->IV
2068 flags already correct - don't set public IOK. */
2069 DEBUG_c(PerlIO_printf(Perl_debug_log,
2070 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
2075 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
2076 but the cast (NV)IV_MIN rounds to a the value less (more
2077 negative) than IV_MIN which happens to be equal to SvNVX ??
2078 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
2079 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
2080 (NV)UVX == NVX are both true, but the values differ. :-(
2081 Hopefully for 2s complement IV_MIN is something like
2082 0x8000000000000000 which will be exact. NWC */
2085 SvUV_set(sv, U_V(SvNVX(sv)));
2087 (SvNVX(sv) == (NV) SvUVX(sv))
2088 #ifndef NV_PRESERVES_UV
2089 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
2090 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
2091 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
2092 /* Don't flag it as "accurately an integer" if the number
2093 came from a (by definition imprecise) NV operation, and
2094 we're outside the range of NV integer precision */
2100 DEBUG_c(PerlIO_printf(Perl_debug_log,
2101 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
2107 else if (SvPOKp(sv) && SvLEN(sv)) {
2109 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2110 /* We want to avoid a possible problem when we cache an IV/ a UV which
2111 may be later translated to an NV, and the resulting NV is not
2112 the same as the direct translation of the initial string
2113 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
2114 be careful to ensure that the value with the .456 is around if the
2115 NV value is requested in the future).
2117 This means that if we cache such an IV/a UV, we need to cache the
2118 NV as well. Moreover, we trade speed for space, and do not
2119 cache the NV if we are sure it's not needed.
2122 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
2123 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2124 == IS_NUMBER_IN_UV) {
2125 /* It's definitely an integer, only upgrade to PVIV */
2126 if (SvTYPE(sv) < SVt_PVIV)
2127 sv_upgrade(sv, SVt_PVIV);
2129 } else if (SvTYPE(sv) < SVt_PVNV)
2130 sv_upgrade(sv, SVt_PVNV);
2132 /* If NVs preserve UVs then we only use the UV value if we know that
2133 we aren't going to call atof() below. If NVs don't preserve UVs
2134 then the value returned may have more precision than atof() will
2135 return, even though value isn't perfectly accurate. */
2136 if ((numtype & (IS_NUMBER_IN_UV
2137 #ifdef NV_PRESERVES_UV
2140 )) == IS_NUMBER_IN_UV) {
2141 /* This won't turn off the public IOK flag if it was set above */
2142 (void)SvIOKp_on(sv);
2144 if (!(numtype & IS_NUMBER_NEG)) {
2146 if (value <= (UV)IV_MAX) {
2147 SvIV_set(sv, (IV)value);
2149 /* it didn't overflow, and it was positive. */
2150 SvUV_set(sv, value);
2154 /* 2s complement assumption */
2155 if (value <= (UV)IV_MIN) {
2156 SvIV_set(sv, -(IV)value);
2158 /* Too negative for an IV. This is a double upgrade, but
2159 I'm assuming it will be rare. */
2160 if (SvTYPE(sv) < SVt_PVNV)
2161 sv_upgrade(sv, SVt_PVNV);
2165 SvNV_set(sv, -(NV)value);
2166 SvIV_set(sv, IV_MIN);
2170 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2171 will be in the previous block to set the IV slot, and the next
2172 block to set the NV slot. So no else here. */
2174 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2175 != IS_NUMBER_IN_UV) {
2176 /* It wasn't an (integer that doesn't overflow the UV). */
2177 SvNV_set(sv, Atof(SvPVX_const(sv)));
2179 if (! numtype && ckWARN(WARN_NUMERIC))
2182 #if defined(USE_LONG_DOUBLE)
2183 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2184 PTR2UV(sv), SvNVX(sv)));
2186 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2187 PTR2UV(sv), SvNVX(sv)));
2190 #ifdef NV_PRESERVES_UV
2191 (void)SvIOKp_on(sv);
2193 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2194 SvIV_set(sv, I_V(SvNVX(sv)));
2195 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2198 NOOP; /* Integer is imprecise. NOK, IOKp */
2200 /* UV will not work better than IV */
2202 if (SvNVX(sv) > (NV)UV_MAX) {
2204 /* Integer is inaccurate. NOK, IOKp, is UV */
2205 SvUV_set(sv, UV_MAX);
2207 SvUV_set(sv, U_V(SvNVX(sv)));
2208 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2209 NV preservse UV so can do correct comparison. */
2210 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2213 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2218 #else /* NV_PRESERVES_UV */
2219 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2220 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2221 /* The IV/UV slot will have been set from value returned by
2222 grok_number above. The NV slot has just been set using
2225 assert (SvIOKp(sv));
2227 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2228 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2229 /* Small enough to preserve all bits. */
2230 (void)SvIOKp_on(sv);
2232 SvIV_set(sv, I_V(SvNVX(sv)));
2233 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2235 /* Assumption: first non-preserved integer is < IV_MAX,
2236 this NV is in the preserved range, therefore: */
2237 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2239 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2243 0 0 already failed to read UV.
2244 0 1 already failed to read UV.
2245 1 0 you won't get here in this case. IV/UV
2246 slot set, public IOK, Atof() unneeded.
2247 1 1 already read UV.
2248 so there's no point in sv_2iuv_non_preserve() attempting
2249 to use atol, strtol, strtoul etc. */
2251 sv_2iuv_non_preserve (sv, numtype);
2253 sv_2iuv_non_preserve (sv);
2257 #endif /* NV_PRESERVES_UV */
2258 /* It might be more code efficient to go through the entire logic above
2259 and conditionally set with SvIOKp_on() rather than SvIOK(), but it
2260 gets complex and potentially buggy, so more programmer efficient
2261 to do it this way, by turning off the public flags: */
2263 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2267 if (isGV_with_GP(sv))
2268 return glob_2number(MUTABLE_GV(sv));
2270 if (!(SvFLAGS(sv) & SVs_PADTMP)) {
2271 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2274 if (SvTYPE(sv) < SVt_IV)
2275 /* Typically the caller expects that sv_any is not NULL now. */
2276 sv_upgrade(sv, SVt_IV);
2277 /* Return 0 from the caller. */
2284 =for apidoc sv_2iv_flags
2286 Return the integer value of an SV, doing any necessary string
2287 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2288 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2294 Perl_sv_2iv_flags(pTHX_ register SV *const sv, const I32 flags)
2299 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2300 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2301 cache IVs just in case. In practice it seems that they never
2302 actually anywhere accessible by user Perl code, let alone get used
2303 in anything other than a string context. */
2304 if (flags & SV_GMAGIC)
2309 return I_V(SvNVX(sv));
2311 if (SvPOKp(sv) && SvLEN(sv)) {
2314 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2316 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2317 == IS_NUMBER_IN_UV) {
2318 /* It's definitely an integer */
2319 if (numtype & IS_NUMBER_NEG) {
2320 if (value < (UV)IV_MIN)
2323 if (value < (UV)IV_MAX)
2328 if (ckWARN(WARN_NUMERIC))
2331 return I_V(Atof(SvPVX_const(sv)));
2336 assert(SvTYPE(sv) >= SVt_PVMG);
2337 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2338 } else if (SvTHINKFIRST(sv)) {
2342 SV * const tmpstr=AMG_CALLun(sv,numer);
2343 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2344 return SvIV(tmpstr);
2347 return PTR2IV(SvRV(sv));
2350 sv_force_normal_flags(sv, 0);
2352 if (SvREADONLY(sv) && !SvOK(sv)) {
2353 if (ckWARN(WARN_UNINITIALIZED))
2359 if (S_sv_2iuv_common(aTHX_ sv))
2362 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2363 PTR2UV(sv),SvIVX(sv)));
2364 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2368 =for apidoc sv_2uv_flags
2370 Return the unsigned integer value of an SV, doing any necessary string
2371 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2372 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2378 Perl_sv_2uv_flags(pTHX_ register SV *const sv, const I32 flags)
2383 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2384 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2385 cache IVs just in case. */
2386 if (flags & SV_GMAGIC)
2391 return U_V(SvNVX(sv));
2392 if (SvPOKp(sv) && SvLEN(sv)) {
2395 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2397 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2398 == IS_NUMBER_IN_UV) {
2399 /* It's definitely an integer */
2400 if (!(numtype & IS_NUMBER_NEG))
2404 if (ckWARN(WARN_NUMERIC))
2407 return U_V(Atof(SvPVX_const(sv)));
2412 assert(SvTYPE(sv) >= SVt_PVMG);
2413 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2414 } else if (SvTHINKFIRST(sv)) {
2418 SV *const tmpstr = AMG_CALLun(sv,numer);
2419 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2420 return SvUV(tmpstr);
2423 return PTR2UV(SvRV(sv));
2426 sv_force_normal_flags(sv, 0);
2428 if (SvREADONLY(sv) && !SvOK(sv)) {
2429 if (ckWARN(WARN_UNINITIALIZED))
2435 if (S_sv_2iuv_common(aTHX_ sv))
2439 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2440 PTR2UV(sv),SvUVX(sv)));
2441 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2447 Return the num value of an SV, doing any necessary string or integer
2448 conversion, magic etc. Normally used via the C<SvNV(sv)> and C<SvNVx(sv)>
2455 Perl_sv_2nv(pTHX_ register SV *const sv)
2460 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2461 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2462 cache IVs just in case. */
2466 if ((SvPOKp(sv) && SvLEN(sv)) && !SvIOKp(sv)) {
2467 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2468 !grok_number(SvPVX_const(sv), SvCUR(sv), NULL))
2470 return Atof(SvPVX_const(sv));
2474 return (NV)SvUVX(sv);
2476 return (NV)SvIVX(sv);
2481 assert(SvTYPE(sv) >= SVt_PVMG);
2482 /* This falls through to the report_uninit near the end of the
2484 } else if (SvTHINKFIRST(sv)) {
2488 SV *const tmpstr = AMG_CALLun(sv,numer);
2489 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2490 return SvNV(tmpstr);
2493 return PTR2NV(SvRV(sv));
2496 sv_force_normal_flags(sv, 0);
2498 if (SvREADONLY(sv) && !SvOK(sv)) {
2499 if (ckWARN(WARN_UNINITIALIZED))
2504 if (SvTYPE(sv) < SVt_NV) {
2505 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2506 sv_upgrade(sv, SVt_NV);
2507 #ifdef USE_LONG_DOUBLE
2509 STORE_NUMERIC_LOCAL_SET_STANDARD();
2510 PerlIO_printf(Perl_debug_log,
2511 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2512 PTR2UV(sv), SvNVX(sv));
2513 RESTORE_NUMERIC_LOCAL();
2517 STORE_NUMERIC_LOCAL_SET_STANDARD();
2518 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2519 PTR2UV(sv), SvNVX(sv));
2520 RESTORE_NUMERIC_LOCAL();
2524 else if (SvTYPE(sv) < SVt_PVNV)
2525 sv_upgrade(sv, SVt_PVNV);
2530 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2531 #ifdef NV_PRESERVES_UV
2537 /* Only set the public NV OK flag if this NV preserves the IV */
2538 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2540 SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2541 : (SvIVX(sv) == I_V(SvNVX(sv))))
2547 else if (SvPOKp(sv) && SvLEN(sv)) {
2549 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2550 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2552 #ifdef NV_PRESERVES_UV
2553 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2554 == IS_NUMBER_IN_UV) {
2555 /* It's definitely an integer */
2556 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2558 SvNV_set(sv, Atof(SvPVX_const(sv)));
2564 SvNV_set(sv, Atof(SvPVX_const(sv)));
2565 /* Only set the public NV OK flag if this NV preserves the value in
2566 the PV at least as well as an IV/UV would.
2567 Not sure how to do this 100% reliably. */
2568 /* if that shift count is out of range then Configure's test is
2569 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2571 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2572 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2573 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2574 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2575 /* Can't use strtol etc to convert this string, so don't try.
2576 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2579 /* value has been set. It may not be precise. */
2580 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2581 /* 2s complement assumption for (UV)IV_MIN */
2582 SvNOK_on(sv); /* Integer is too negative. */
2587 if (numtype & IS_NUMBER_NEG) {
2588 SvIV_set(sv, -(IV)value);
2589 } else if (value <= (UV)IV_MAX) {
2590 SvIV_set(sv, (IV)value);
2592 SvUV_set(sv, value);
2596 if (numtype & IS_NUMBER_NOT_INT) {
2597 /* I believe that even if the original PV had decimals,
2598 they are lost beyond the limit of the FP precision.
2599 However, neither is canonical, so both only get p
2600 flags. NWC, 2000/11/25 */
2601 /* Both already have p flags, so do nothing */
2603 const NV nv = SvNVX(sv);
2604 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2605 if (SvIVX(sv) == I_V(nv)) {
2608 /* It had no "." so it must be integer. */
2612 /* between IV_MAX and NV(UV_MAX).
2613 Could be slightly > UV_MAX */
2615 if (numtype & IS_NUMBER_NOT_INT) {
2616 /* UV and NV both imprecise. */
2618 const UV nv_as_uv = U_V(nv);
2620 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2629 /* It might be more code efficient to go through the entire logic above
2630 and conditionally set with SvNOKp_on() rather than SvNOK(), but it
2631 gets complex and potentially buggy, so more programmer efficient
2632 to do it this way, by turning off the public flags: */
2634 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2635 #endif /* NV_PRESERVES_UV */
2638 if (isGV_with_GP(sv)) {
2639 glob_2number(MUTABLE_GV(sv));
2643 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2645 assert (SvTYPE(sv) >= SVt_NV);
2646 /* Typically the caller expects that sv_any is not NULL now. */
2647 /* XXX Ilya implies that this is a bug in callers that assume this
2648 and ideally should be fixed. */
2651 #if defined(USE_LONG_DOUBLE)
2653 STORE_NUMERIC_LOCAL_SET_STANDARD();
2654 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2655 PTR2UV(sv), SvNVX(sv));
2656 RESTORE_NUMERIC_LOCAL();
2660 STORE_NUMERIC_LOCAL_SET_STANDARD();
2661 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2662 PTR2UV(sv), SvNVX(sv));
2663 RESTORE_NUMERIC_LOCAL();
2672 Return an SV with the numeric value of the source SV, doing any necessary
2673 reference or overload conversion. You must use the C<SvNUM(sv)> macro to
2674 access this function.
2680 Perl_sv_2num(pTHX_ register SV *const sv)
2682 PERL_ARGS_ASSERT_SV_2NUM;
2687 SV * const tmpsv = AMG_CALLun(sv,numer);
2688 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2689 return sv_2num(tmpsv);
2691 return sv_2mortal(newSVuv(PTR2UV(SvRV(sv))));
2694 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2695 * UV as a string towards the end of buf, and return pointers to start and
2698 * We assume that buf is at least TYPE_CHARS(UV) long.
2702 S_uiv_2buf(char *const buf, const IV iv, UV uv, const int is_uv, char **const peob)
2704 char *ptr = buf + TYPE_CHARS(UV);
2705 char * const ebuf = ptr;
2708 PERL_ARGS_ASSERT_UIV_2BUF;
2720 *--ptr = '0' + (char)(uv % 10);
2729 =for apidoc sv_2pv_flags
2731 Returns a pointer to the string value of an SV, and sets *lp to its length.
2732 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a string
2734 Normally invoked via the C<SvPV_flags> macro. C<sv_2pv()> and C<sv_2pv_nomg>
2735 usually end up here too.
2741 Perl_sv_2pv_flags(pTHX_ register SV *const sv, STRLEN *const lp, const I32 flags)
2751 if (SvGMAGICAL(sv)) {
2752 if (flags & SV_GMAGIC)
2757 if (flags & SV_MUTABLE_RETURN)
2758 return SvPVX_mutable(sv);
2759 if (flags & SV_CONST_RETURN)
2760 return (char *)SvPVX_const(sv);
2763 if (SvIOKp(sv) || SvNOKp(sv)) {
2764 char tbuf[64]; /* Must fit sprintf/Gconvert of longest IV/NV */
2769 ? my_snprintf(tbuf, sizeof(tbuf), "%"UVuf, (UV)SvUVX(sv))
2770 : my_snprintf(tbuf, sizeof(tbuf), "%"IVdf, (IV)SvIVX(sv));
2772 Gconvert(SvNVX(sv), NV_DIG, 0, tbuf);
2779 #ifdef FIXNEGATIVEZERO
2780 if (len == 2 && tbuf[0] == '-' && tbuf[1] == '0') {
2786 SvUPGRADE(sv, SVt_PV);
2789 s = SvGROW_mutable(sv, len + 1);
2792 return (char*)memcpy(s, tbuf, len + 1);
2798 assert(SvTYPE(sv) >= SVt_PVMG);
2799 /* This falls through to the report_uninit near the end of the
2801 } else if (SvTHINKFIRST(sv)) {
2805 SV *const tmpstr = AMG_CALLun(sv,string);
2806 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2808 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2812 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2813 if (flags & SV_CONST_RETURN) {
2814 pv = (char *) SvPVX_const(tmpstr);
2816 pv = (flags & SV_MUTABLE_RETURN)
2817 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2820 *lp = SvCUR(tmpstr);
2822 pv = sv_2pv_flags(tmpstr, lp, flags);
2835 SV *const referent = SvRV(sv);
2839 retval = buffer = savepvn("NULLREF", len);
2840 } else if (SvTYPE(referent) == SVt_REGEXP) {
2841 REGEXP * const re = (REGEXP *)MUTABLE_PTR(referent);
2846 /* If the regex is UTF-8 we want the containing scalar to
2847 have an UTF-8 flag too */
2853 if ((seen_evals = RX_SEEN_EVALS(re)))
2854 PL_reginterp_cnt += seen_evals;
2857 *lp = RX_WRAPLEN(re);
2859 return RX_WRAPPED(re);
2861 const char *const typestr = sv_reftype(referent, 0);
2862 const STRLEN typelen = strlen(typestr);
2863 UV addr = PTR2UV(referent);
2864 const char *stashname = NULL;
2865 STRLEN stashnamelen = 0; /* hush, gcc */
2866 const char *buffer_end;
2868 if (SvOBJECT(referent)) {
2869 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2872 stashname = HEK_KEY(name);
2873 stashnamelen = HEK_LEN(name);
2875 if (HEK_UTF8(name)) {
2881 stashname = "__ANON__";
2884 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2885 + 2 * sizeof(UV) + 2 /* )\0 */;
2887 len = typelen + 3 /* (0x */
2888 + 2 * sizeof(UV) + 2 /* )\0 */;
2891 Newx(buffer, len, char);
2892 buffer_end = retval = buffer + len;
2894 /* Working backwards */
2898 *--retval = PL_hexdigit[addr & 15];
2899 } while (addr >>= 4);
2905 memcpy(retval, typestr, typelen);
2909 retval -= stashnamelen;
2910 memcpy(retval, stashname, stashnamelen);
2912 /* retval may not neccesarily have reached the start of the
2914 assert (retval >= buffer);
2916 len = buffer_end - retval - 1; /* -1 for that \0 */
2924 if (SvREADONLY(sv) && !SvOK(sv)) {
2927 if (flags & SV_UNDEF_RETURNS_NULL)
2929 if (ckWARN(WARN_UNINITIALIZED))
2934 if (SvIOK(sv) || ((SvIOKp(sv) && !SvNOKp(sv)))) {
2935 /* I'm assuming that if both IV and NV are equally valid then
2936 converting the IV is going to be more efficient */
2937 const U32 isUIOK = SvIsUV(sv);
2938 char buf[TYPE_CHARS(UV)];
2942 if (SvTYPE(sv) < SVt_PVIV)
2943 sv_upgrade(sv, SVt_PVIV);
2944 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2946 /* inlined from sv_setpvn */
2947 s = SvGROW_mutable(sv, len + 1);
2948 Move(ptr, s, len, char);
2952 else if (SvNOKp(sv)) {
2954 if (SvTYPE(sv) < SVt_PVNV)
2955 sv_upgrade(sv, SVt_PVNV);
2956 /* The +20 is pure guesswork. Configure test needed. --jhi */
2957 s = SvGROW_mutable(sv, NV_DIG + 20);
2958 /* some Xenix systems wipe out errno here */
2960 if (SvNVX(sv) == 0.0)
2961 my_strlcpy(s, "0", SvLEN(sv));
2965 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2968 #ifdef FIXNEGATIVEZERO
2969 if (*s == '-' && s[1] == '0' && !s[2]) {
2981 if (isGV_with_GP(sv)) {
2982 GV *const gv = MUTABLE_GV(sv);
2983 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
2984 SV *const buffer = sv_newmortal();
2986 /* FAKE globs can get coerced, so need to turn this off temporarily
2989 gv_efullname3(buffer, gv, "*");
2990 SvFLAGS(gv) |= wasfake;
2992 if (SvPOK(buffer)) {
2994 *lp = SvCUR(buffer);
2996 return SvPVX(buffer);
3007 if (flags & SV_UNDEF_RETURNS_NULL)
3009 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
3011 if (SvTYPE(sv) < SVt_PV)
3012 /* Typically the caller expects that sv_any is not NULL now. */
3013 sv_upgrade(sv, SVt_PV);
3017 const STRLEN len = s - SvPVX_const(sv);
3023 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
3024 PTR2UV(sv),SvPVX_const(sv)));
3025 if (flags & SV_CONST_RETURN)
3026 return (char *)SvPVX_const(sv);
3027 if (flags & SV_MUTABLE_RETURN)
3028 return SvPVX_mutable(sv);
3033 =for apidoc sv_copypv
3035 Copies a stringified representation of the source SV into the
3036 destination SV. Automatically performs any necessary mg_get and
3037 coercion of numeric values into strings. Guaranteed to preserve
3038 UTF8 flag even from overloaded objects. Similar in nature to
3039 sv_2pv[_flags] but operates directly on an SV instead of just the
3040 string. Mostly uses sv_2pv_flags to do its work, except when that
3041 would lose the UTF-8'ness of the PV.
3047 Perl_sv_copypv(pTHX_ SV *const dsv, register SV *const ssv)
3050 const char * const s = SvPV_const(ssv,len);
3052 PERL_ARGS_ASSERT_SV_COPYPV;
3054 sv_setpvn(dsv,s,len);
3062 =for apidoc sv_2pvbyte
3064 Return a pointer to the byte-encoded representation of the SV, and set *lp
3065 to its length. May cause the SV to be downgraded from UTF-8 as a
3068 Usually accessed via the C<SvPVbyte> macro.
3074 Perl_sv_2pvbyte(pTHX_ register SV *const sv, STRLEN *const lp)
3076 PERL_ARGS_ASSERT_SV_2PVBYTE;
3078 sv_utf8_downgrade(sv,0);
3079 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
3083 =for apidoc sv_2pvutf8
3085 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
3086 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
3088 Usually accessed via the C<SvPVutf8> macro.
3094 Perl_sv_2pvutf8(pTHX_ register SV *const sv, STRLEN *const lp)
3096 PERL_ARGS_ASSERT_SV_2PVUTF8;
3098 sv_utf8_upgrade(sv);
3099 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
3104 =for apidoc sv_2bool
3106 This function is only called on magical items, and is only used by
3107 sv_true() or its macro equivalent.
3113 Perl_sv_2bool(pTHX_ register SV *const sv)
3117 PERL_ARGS_ASSERT_SV_2BOOL;
3125 SV * const tmpsv = AMG_CALLun(sv,bool_);
3126 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
3127 return (bool)SvTRUE(tmpsv);
3129 return SvRV(sv) != 0;
3132 register XPV* const Xpvtmp = (XPV*)SvANY(sv);
3134 (*sv->sv_u.svu_pv > '0' ||
3135 Xpvtmp->xpv_cur > 1 ||
3136 (Xpvtmp->xpv_cur && *sv->sv_u.svu_pv != '0')))
3143 return SvIVX(sv) != 0;
3146 return SvNVX(sv) != 0.0;
3148 if (isGV_with_GP(sv))
3158 =for apidoc sv_utf8_upgrade
3160 Converts the PV of an SV to its UTF-8-encoded form.
3161 Forces the SV to string form if it is not already.
3162 Will C<mg_get> on C<sv> if appropriate.
3163 Always sets the SvUTF8 flag to avoid future validity checks even
3164 if the whole string is the same in UTF-8 as not.
3165 Returns the number of bytes in the converted string
3167 This is not as a general purpose byte encoding to Unicode interface:
3168 use the Encode extension for that.
3170 =for apidoc sv_utf8_upgrade_nomg
3172 Like sv_utf8_upgrade, but doesn't do magic on C<sv>
3174 =for apidoc sv_utf8_upgrade_flags
3176 Converts the PV of an SV to its UTF-8-encoded form.
3177 Forces the SV to string form if it is not already.
3178 Always sets the SvUTF8 flag to avoid future validity checks even
3179 if all the bytes are invariant in UTF-8. If C<flags> has C<SV_GMAGIC> bit set,
3180 will C<mg_get> on C<sv> if appropriate, else not.
3181 Returns the number of bytes in the converted string
3182 C<sv_utf8_upgrade> and
3183 C<sv_utf8_upgrade_nomg> are implemented in terms of this function.
3185 This is not as a general purpose byte encoding to Unicode interface:
3186 use the Encode extension for that.
3190 The grow version is currently not externally documented. It adds a parameter,
3191 extra, which is the number of unused bytes the string of 'sv' is guaranteed to
3192 have free after it upon return. This allows the caller to reserve extra space
3193 that it intends to fill, to avoid extra grows.
3195 Also externally undocumented for the moment is the flag SV_FORCE_UTF8_UPGRADE,
3196 which can be used to tell this function to not first check to see if there are
3197 any characters that are different in UTF-8 (variant characters) which would
3198 force it to allocate a new string to sv, but to assume there are. Typically
3199 this flag is used by a routine that has already parsed the string to find that
3200 there are such characters, and passes this information on so that the work
3201 doesn't have to be repeated.
3203 (One might think that the calling routine could pass in the position of the
3204 first such variant, so it wouldn't have to be found again. But that is not the
3205 case, because typically when the caller is likely to use this flag, it won't be
3206 calling this routine unless it finds something that won't fit into a byte.
3207 Otherwise it tries to not upgrade and just use bytes. But some things that
3208 do fit into a byte are variants in utf8, and the caller may not have been
3209 keeping track of these.)
3211 If the routine itself changes the string, it adds a trailing NUL. Such a NUL
3212 isn't guaranteed due to having other routines do the work in some input cases,
3213 or if the input is already flagged as being in utf8.
3215 The speed of this could perhaps be improved for many cases if someone wanted to
3216 write a fast function that counts the number of variant characters in a string,
3217 especially if it could return the position of the first one.
3222 Perl_sv_utf8_upgrade_flags_grow(pTHX_ register SV *const sv, const I32 flags, STRLEN extra)
3226 PERL_ARGS_ASSERT_SV_UTF8_UPGRADE_FLAGS_GROW;
3228 if (sv == &PL_sv_undef)
3232 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
3233 (void) sv_2pv_flags(sv,&len, flags);
3235 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3239 (void) SvPV_force(sv,len);
3244 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3249 sv_force_normal_flags(sv, 0);
3252 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING)) {
3253 sv_recode_to_utf8(sv, PL_encoding);
3254 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3258 if (SvCUR(sv) == 0) {
3259 if (extra) SvGROW(sv, extra);
3260 } else { /* Assume Latin-1/EBCDIC */
3261 /* This function could be much more efficient if we
3262 * had a FLAG in SVs to signal if there are any variant
3263 * chars in the PV. Given that there isn't such a flag
3264 * make the loop as fast as possible (although there are certainly ways
3265 * to speed this up, eg. through vectorization) */
3266 U8 * s = (U8 *) SvPVX_const(sv);
3267 U8 * e = (U8 *) SvEND(sv);
3269 STRLEN two_byte_count = 0;
3271 if (flags & SV_FORCE_UTF8_UPGRADE) goto must_be_utf8;
3273 /* See if really will need to convert to utf8. We mustn't rely on our
3274 * incoming SV being well formed and having a trailing '\0', as certain
3275 * code in pp_formline can send us partially built SVs. */
3279 if (NATIVE_IS_INVARIANT(ch)) continue;
3281 t--; /* t already incremented; re-point to first variant */
3286 /* utf8 conversion not needed because all are invariants. Mark as
3287 * UTF-8 even if no variant - saves scanning loop */
3293 /* Here, the string should be converted to utf8, either because of an
3294 * input flag (two_byte_count = 0), or because a character that
3295 * requires 2 bytes was found (two_byte_count = 1). t points either to
3296 * the beginning of the string (if we didn't examine anything), or to
3297 * the first variant. In either case, everything from s to t - 1 will
3298 * occupy only 1 byte each on output.
3300 * There are two main ways to convert. One is to create a new string
3301 * and go through the input starting from the beginning, appending each
3302 * converted value onto the new string as we go along. It's probably
3303 * best to allocate enough space in the string for the worst possible
3304 * case rather than possibly running out of space and having to
3305 * reallocate and then copy what we've done so far. Since everything
3306 * from s to t - 1 is invariant, the destination can be initialized
3307 * with these using a fast memory copy
3309 * The other way is to figure out exactly how big the string should be
3310 * by parsing the entire input. Then you don't have to make it big
3311 * enough to handle the worst possible case, and more importantly, if
3312 * the string you already have is large enough, you don't have to
3313 * allocate a new string, you can copy the last character in the input
3314 * string to the final position(s) that will be occupied by the
3315 * converted string and go backwards, stopping at t, since everything
3316 * before that is invariant.
3318 * There are advantages and disadvantages to each method.
3320 * In the first method, we can allocate a new string, do the memory
3321 * copy from the s to t - 1, and then proceed through the rest of the
3322 * string byte-by-byte.
3324 * In the second method, we proceed through the rest of the input
3325 * string just calculating how big the converted string will be. Then
3326 * there are two cases:
3327 * 1) if the string has enough extra space to handle the converted
3328 * value. We go backwards through the string, converting until we
3329 * get to the position we are at now, and then stop. If this
3330 * position is far enough along in the string, this method is
3331 * faster than the other method. If the memory copy were the same
3332 * speed as the byte-by-byte loop, that position would be about
3333 * half-way, as at the half-way mark, parsing to the end and back
3334 * is one complete string's parse, the same amount as starting
3335 * over and going all the way through. Actually, it would be
3336 * somewhat less than half-way, as it's faster to just count bytes
3337 * than to also copy, and we don't have the overhead of allocating
3338 * a new string, changing the scalar to use it, and freeing the
3339 * existing one. But if the memory copy is fast, the break-even
3340 * point is somewhere after half way. The counting loop could be
3341 * sped up by vectorization, etc, to move the break-even point
3342 * further towards the beginning.
3343 * 2) if the string doesn't have enough space to handle the converted
3344 * value. A new string will have to be allocated, and one might
3345 * as well, given that, start from the beginning doing the first
3346 * method. We've spent extra time parsing the string and in
3347 * exchange all we've gotten is that we know precisely how big to
3348 * make the new one. Perl is more optimized for time than space,
3349 * so this case is a loser.
3350 * So what I've decided to do is not use the 2nd method unless it is
3351 * guaranteed that a new string won't have to be allocated, assuming
3352 * the worst case. I also decided not to put any more conditions on it
3353 * than this, for now. It seems likely that, since the worst case is
3354 * twice as big as the unknown portion of the string (plus 1), we won't
3355 * be guaranteed enough space, causing us to go to the first method,
3356 * unless the string is short, or the first variant character is near
3357 * the end of it. In either of these cases, it seems best to use the
3358 * 2nd method. The only circumstance I can think of where this would
3359 * be really slower is if the string had once had much more data in it
3360 * than it does now, but there is still a substantial amount in it */
3363 STRLEN invariant_head = t - s;
3364 STRLEN size = invariant_head + (e - t) * 2 + 1 + extra;
3365 if (SvLEN(sv) < size) {
3367 /* Here, have decided to allocate a new string */
3372 Newx(dst, size, U8);
3374 /* If no known invariants at the beginning of the input string,
3375 * set so starts from there. Otherwise, can use memory copy to
3376 * get up to where we are now, and then start from here */
3378 if (invariant_head <= 0) {
3381 Copy(s, dst, invariant_head, char);
3382 d = dst + invariant_head;
3386 const UV uv = NATIVE8_TO_UNI(*t++);
3387 if (UNI_IS_INVARIANT(uv))
3388 *d++ = (U8)UNI_TO_NATIVE(uv);
3390 *d++ = (U8)UTF8_EIGHT_BIT_HI(uv);
3391 *d++ = (U8)UTF8_EIGHT_BIT_LO(uv);
3395 SvPV_free(sv); /* No longer using pre-existing string */
3396 SvPV_set(sv, (char*)dst);
3397 SvCUR_set(sv, d - dst);
3398 SvLEN_set(sv, size);
3401 /* Here, have decided to get the exact size of the string.
3402 * Currently this happens only when we know that there is
3403 * guaranteed enough space to fit the converted string, so
3404 * don't have to worry about growing. If two_byte_count is 0,
3405 * then t points to the first byte of the string which hasn't
3406 * been examined yet. Otherwise two_byte_count is 1, and t
3407 * points to the first byte in the string that will expand to
3408 * two. Depending on this, start examining at t or 1 after t.
3411 U8 *d = t + two_byte_count;
3414 /* Count up the remaining bytes that expand to two */
3417 const U8 chr = *d++;
3418 if (! NATIVE_IS_INVARIANT(chr)) two_byte_count++;
3421 /* The string will expand by just the number of bytes that
3422 * occupy two positions. But we are one afterwards because of
3423 * the increment just above. This is the place to put the
3424 * trailing NUL, and to set the length before we decrement */
3426 d += two_byte_count;
3427 SvCUR_set(sv, d - s);
3431 /* Having decremented d, it points to the position to put the
3432 * very last byte of the expanded string. Go backwards through
3433 * the string, copying and expanding as we go, stopping when we
3434 * get to the part that is invariant the rest of the way down */
3438 const U8 ch = NATIVE8_TO_UNI(*e--);
3439 if (UNI_IS_INVARIANT(ch)) {
3440 *d-- = UNI_TO_NATIVE(ch);
3442 *d-- = (U8)UTF8_EIGHT_BIT_LO(ch);
3443 *d-- = (U8)UTF8_EIGHT_BIT_HI(ch);
3450 /* Mark as UTF-8 even if no variant - saves scanning loop */
3456 =for apidoc sv_utf8_downgrade
3458 Attempts to convert the PV of an SV from characters to bytes.
3459 If the PV contains a character that cannot fit
3460 in a byte, this conversion will fail;
3461 in this case, either returns false or, if C<fail_ok> is not
3464 This is not as a general purpose Unicode to byte encoding interface:
3465 use the Encode extension for that.
3471 Perl_sv_utf8_downgrade(pTHX_ register SV *const sv, const bool fail_ok)
3475 PERL_ARGS_ASSERT_SV_UTF8_DOWNGRADE;
3477 if (SvPOKp(sv) && SvUTF8(sv)) {
3483 sv_force_normal_flags(sv, 0);
3485 s = (U8 *) SvPV(sv, len);
3486 if (!utf8_to_bytes(s, &len)) {
3491 Perl_croak(aTHX_ "Wide character in %s",
3494 Perl_croak(aTHX_ "Wide character");
3505 =for apidoc sv_utf8_encode
3507 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3508 flag off so that it looks like octets again.
3514 Perl_sv_utf8_encode(pTHX_ register SV *const sv)
3516 PERL_ARGS_ASSERT_SV_UTF8_ENCODE;
3519 sv_force_normal_flags(sv, 0);
3521 if (SvREADONLY(sv)) {
3522 Perl_croak(aTHX_ "%s", PL_no_modify);
3524 (void) sv_utf8_upgrade(sv);
3529 =for apidoc sv_utf8_decode
3531 If the PV of the SV is an octet sequence in UTF-8
3532 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3533 so that it looks like a character. If the PV contains only single-byte
3534 characters, the C<SvUTF8> flag stays being off.
3535 Scans PV for validity and returns false if the PV is invalid UTF-8.
3541 Perl_sv_utf8_decode(pTHX_ register SV *const sv)
3543 PERL_ARGS_ASSERT_SV_UTF8_DECODE;
3549 /* The octets may have got themselves encoded - get them back as
3552 if (!sv_utf8_downgrade(sv, TRUE))
3555 /* it is actually just a matter of turning the utf8 flag on, but
3556 * we want to make sure everything inside is valid utf8 first.
3558 c = (const U8 *) SvPVX_const(sv);
3559 if (!is_utf8_string(c, SvCUR(sv)+1))
3561 e = (const U8 *) SvEND(sv);
3564 if (!UTF8_IS_INVARIANT(ch)) {
3574 =for apidoc sv_setsv
3576 Copies the contents of the source SV C<ssv> into the destination SV
3577 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3578 function if the source SV needs to be reused. Does not handle 'set' magic.
3579 Loosely speaking, it performs a copy-by-value, obliterating any previous
3580 content of the destination.
3582 You probably want to use one of the assortment of wrappers, such as
3583 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3584 C<SvSetMagicSV_nosteal>.
3586 =for apidoc sv_setsv_flags
3588 Copies the contents of the source SV C<ssv> into the destination SV
3589 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3590 function if the source SV needs to be reused. Does not handle 'set' magic.
3591 Loosely speaking, it performs a copy-by-value, obliterating any previous
3592 content of the destination.
3593 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3594 C<ssv> if appropriate, else not. If the C<flags> parameter has the
3595 C<NOSTEAL> bit set then the buffers of temps will not be stolen. <sv_setsv>
3596 and C<sv_setsv_nomg> are implemented in terms of this function.
3598 You probably want to use one of the assortment of wrappers, such as
3599 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3600 C<SvSetMagicSV_nosteal>.
3602 This is the primary function for copying scalars, and most other
3603 copy-ish functions and macros use this underneath.
3609 S_glob_assign_glob(pTHX_ SV *const dstr, SV *const sstr, const int dtype)
3611 I32 mro_changes = 0; /* 1 = method, 2 = isa */
3613 PERL_ARGS_ASSERT_GLOB_ASSIGN_GLOB;
3615 if (dtype != SVt_PVGV) {
3616 const char * const name = GvNAME(sstr);
3617 const STRLEN len = GvNAMELEN(sstr);
3619 if (dtype >= SVt_PV) {
3625 SvUPGRADE(dstr, SVt_PVGV);
3626 (void)SvOK_off(dstr);
3627 /* FIXME - why are we doing this, then turning it off and on again
3629 isGV_with_GP_on(dstr);
3631 GvSTASH(dstr) = GvSTASH(sstr);
3633 Perl_sv_add_backref(aTHX_ MUTABLE_SV(GvSTASH(dstr)), dstr);
3634 gv_name_set(MUTABLE_GV(dstr), name, len, GV_ADD);
3635 SvFAKE_on(dstr); /* can coerce to non-glob */
3638 if(GvGP(MUTABLE_GV(sstr))) {
3639 /* If source has method cache entry, clear it */
3641 SvREFCNT_dec(GvCV(sstr));
3645 /* If source has a real method, then a method is
3647 else if(GvCV((const GV *)sstr)) {
3652 /* If dest already had a real method, that's a change as well */
3653 if(!mro_changes && GvGP(MUTABLE_GV(dstr)) && GvCVu((const GV *)dstr)) {
3657 if(strEQ(GvNAME((const GV *)dstr),"ISA"))
3660 gp_free(MUTABLE_GV(dstr));
3661 isGV_with_GP_off(dstr);
3662 (void)SvOK_off(dstr);
3663 isGV_with_GP_on(dstr);
3664 GvINTRO_off(dstr); /* one-shot flag */
3665 GvGP(dstr) = gp_ref(GvGP(sstr));
3666 if (SvTAINTED(sstr))
3668 if (GvIMPORTED(dstr) != GVf_IMPORTED
3669 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3671 GvIMPORTED_on(dstr);
3674 if(mro_changes == 2) mro_isa_changed_in(GvSTASH(dstr));
3675 else if(mro_changes) mro_method_changed_in(GvSTASH(dstr));
3680 S_glob_assign_ref(pTHX_ SV *const dstr, SV *const sstr)
3682 SV * const sref = SvREFCNT_inc(SvRV(sstr));
3684 const int intro = GvINTRO(dstr);
3687 const U32 stype = SvTYPE(sref);
3688 bool mro_changes = FALSE;
3690 PERL_ARGS_ASSERT_GLOB_ASSIGN_REF;
3693 GvINTRO_off(dstr); /* one-shot flag */
3694 GvLINE(dstr) = CopLINE(PL_curcop);
3695 GvEGV(dstr) = MUTABLE_GV(dstr);
3700 location = (SV **) &GvCV(dstr);
3701 import_flag = GVf_IMPORTED_CV;
3704 location = (SV **) &GvHV(dstr);
3705 import_flag = GVf_IMPORTED_HV;
3708 location = (SV **) &GvAV(dstr);
3709 if (strEQ(GvNAME((GV*)dstr), "ISA"))
3711 import_flag = GVf_IMPORTED_AV;
3714 location = (SV **) &GvIOp(dstr);
3717 location = (SV **) &GvFORM(dstr);
3720 location = &GvSV(dstr);
3721 import_flag = GVf_IMPORTED_SV;
3724 if (stype == SVt_PVCV) {
3725 /*if (GvCVGEN(dstr) && (GvCV(dstr) != (const CV *)sref || GvCVGEN(dstr))) {*/
3726 if (GvCVGEN(dstr)) {
3727 SvREFCNT_dec(GvCV(dstr));
3729 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3732 SAVEGENERICSV(*location);
3736 if (stype == SVt_PVCV && (*location != sref || GvCVGEN(dstr))) {
3737 CV* const cv = MUTABLE_CV(*location);
3739 if (!GvCVGEN((const GV *)dstr) &&
3740 (CvROOT(cv) || CvXSUB(cv)))
3742 /* Redefining a sub - warning is mandatory if
3743 it was a const and its value changed. */
3744 if (CvCONST(cv) && CvCONST((const CV *)sref)
3746 == cv_const_sv((const CV *)sref)) {
3748 /* They are 2 constant subroutines generated from
3749 the same constant. This probably means that
3750 they are really the "same" proxy subroutine
3751 instantiated in 2 places. Most likely this is
3752 when a constant is exported twice. Don't warn.
3755 else if (ckWARN(WARN_REDEFINE)
3757 && (!CvCONST((const CV *)sref)
3758 || sv_cmp(cv_const_sv(cv),
3759 cv_const_sv((const CV *)
3761 Perl_warner(aTHX_ packWARN(WARN_REDEFINE),
3764 ? "Constant subroutine %s::%s redefined"
3765 : "Subroutine %s::%s redefined"),
3766 HvNAME_get(GvSTASH((const GV *)dstr)),
3767 GvENAME(MUTABLE_GV(dstr)));
3771 cv_ckproto_len(cv, (const GV *)dstr,
3772 SvPOK(sref) ? SvPVX_const(sref) : NULL,
3773 SvPOK(sref) ? SvCUR(sref) : 0);
3775 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3776 GvASSUMECV_on(dstr);
3777 if(GvSTASH(dstr)) mro_method_changed_in(GvSTASH(dstr)); /* sub foo { 1 } sub bar { 2 } *bar = \&foo */
3780 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3781 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3782 GvFLAGS(dstr) |= import_flag;
3787 if (SvTAINTED(sstr))
3789 if (mro_changes) mro_isa_changed_in(GvSTASH(dstr));
3794 Perl_sv_setsv_flags(pTHX_ SV *dstr, register SV* sstr, const I32 flags)
3797 register U32 sflags;
3799 register svtype stype;
3801 PERL_ARGS_ASSERT_SV_SETSV_FLAGS;
3806 if (SvIS_FREED(dstr)) {
3807 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
3808 " to a freed scalar %p", SVfARG(sstr), (void *)dstr);
3810 SV_CHECK_THINKFIRST_COW_DROP(dstr);
3812 sstr = &PL_sv_undef;
3813 if (SvIS_FREED(sstr)) {
3814 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
3815 (void*)sstr, (void*)dstr);
3817 stype = SvTYPE(sstr);
3818 dtype = SvTYPE(dstr);
3820 (void)SvAMAGIC_off(dstr);
3823 /* need to nuke the magic */
3827 /* There's a lot of redundancy below but we're going for speed here */
3832 if (dtype != SVt_PVGV) {
3833 (void)SvOK_off(dstr);
3841 sv_upgrade(dstr, SVt_IV);
3845 sv_upgrade(dstr, SVt_PVIV);
3848 goto end_of_first_switch;
3850 (void)SvIOK_only(dstr);
3851 SvIV_set(dstr, SvIVX(sstr));
3854 /* SvTAINTED can only be true if the SV has taint magic, which in
3855 turn means that the SV type is PVMG (or greater). This is the
3856 case statement for SVt_IV, so this cannot be true (whatever gcov
3858 assert(!SvTAINTED(sstr));
3863 if (dtype < SVt_PV && dtype != SVt_IV)
3864 sv_upgrade(dstr, SVt_IV);
3872 sv_upgrade(dstr, SVt_NV);
3876 sv_upgrade(dstr, SVt_PVNV);
3879 goto end_of_first_switch;
3881 SvNV_set(dstr, SvNVX(sstr));
3882 (void)SvNOK_only(dstr);
3883 /* SvTAINTED can only be true if the SV has taint magic, which in
3884 turn means that the SV type is PVMG (or greater). This is the
3885 case statement for SVt_NV, so this cannot be true (whatever gcov
3887 assert(!SvTAINTED(sstr));
3893 #ifdef PERL_OLD_COPY_ON_WRITE
3894 if ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS) {
3895 if (dtype < SVt_PVIV)
3896 sv_upgrade(dstr, SVt_PVIV);
3903 sv_upgrade(dstr, SVt_PV);
3906 if (dtype < SVt_PVIV)
3907 sv_upgrade(dstr, SVt_PVIV);
3910 if (dtype < SVt_PVNV)
3911 sv_upgrade(dstr, SVt_PVNV);
3915 const char * const type = sv_reftype(sstr,0);
3917 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_NAME(PL_op));
3919 Perl_croak(aTHX_ "Bizarre copy of %s", type);
3924 if (dtype < SVt_REGEXP)
3925 sv_upgrade(dstr, SVt_REGEXP);
3928 /* case SVt_BIND: */
3931 if (isGV_with_GP(sstr) && dtype <= SVt_PVGV) {
3932 glob_assign_glob(dstr, sstr, dtype);
3935 /* SvVALID means that this PVGV is playing at being an FBM. */
3939 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
3941 if (SvTYPE(sstr) != stype) {
3942 stype = SvTYPE(sstr);
3943 if (isGV_with_GP(sstr) && stype == SVt_PVGV && dtype <= SVt_PVGV) {
3944 glob_assign_glob(dstr, sstr, dtype);
3949 if (stype == SVt_PVLV)
3950 SvUPGRADE(dstr, SVt_PVNV);
3952 SvUPGRADE(dstr, (svtype)stype);
3954 end_of_first_switch:
3956 /* dstr may have been upgraded. */
3957 dtype = SvTYPE(dstr);
3958 sflags = SvFLAGS(sstr);
3960 if (dtype == SVt_PVCV || dtype == SVt_PVFM) {
3961 /* Assigning to a subroutine sets the prototype. */
3964 const char *const ptr = SvPV_const(sstr, len);
3966 SvGROW(dstr, len + 1);
3967 Copy(ptr, SvPVX(dstr), len + 1, char);
3968 SvCUR_set(dstr, len);
3970 SvFLAGS(dstr) |= sflags & SVf_UTF8;
3974 } else if (dtype == SVt_PVAV || dtype == SVt_PVHV) {
3975 const char * const type = sv_reftype(dstr,0);
3977 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_NAME(PL_op));
3979 Perl_croak(aTHX_ "Cannot copy to %s", type);
3980 } else if (sflags & SVf_ROK) {
3981 if (isGV_with_GP(dstr) && dtype == SVt_PVGV
3982 && SvTYPE(SvRV(sstr)) == SVt_PVGV && isGV_with_GP(SvRV(sstr))) {
3985 if (GvIMPORTED(dstr) != GVf_IMPORTED
3986 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3988 GvIMPORTED_on(dstr);
3993 glob_assign_glob(dstr, sstr, dtype);
3997 if (dtype >= SVt_PV) {
3998 if (dtype == SVt_PVGV && isGV_with_GP(dstr)) {
3999 glob_assign_ref(dstr, sstr);
4002 if (SvPVX_const(dstr)) {
4008 (void)SvOK_off(dstr);
4009 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
4010 SvFLAGS(dstr) |= sflags & SVf_ROK;
4011 assert(!(sflags & SVp_NOK));
4012 assert(!(sflags & SVp_IOK));
4013 assert(!(sflags & SVf_NOK));
4014 assert(!(sflags & SVf_IOK));
4016 else if (dtype == SVt_PVGV && isGV_with_GP(dstr)) {
4017 if (!(sflags & SVf_OK)) {
4018 Perl_ck_warner(aTHX_ packWARN(WARN_MISC),
4019 "Undefined value assigned to typeglob");
4022 GV *gv = gv_fetchsv(sstr, GV_ADD, SVt_PVGV);
4023 if (dstr != (const SV *)gv) {
4025 gp_free(MUTABLE_GV(dstr));
4026 GvGP(dstr) = gp_ref(GvGP(gv));
4030 else if (dtype == SVt_REGEXP && stype == SVt_REGEXP) {
4031 reg_temp_copy((REGEXP*)dstr, (REGEXP*)sstr);
4033 else if (sflags & SVp_POK) {
4037 * Check to see if we can just swipe the string. If so, it's a
4038 * possible small lose on short strings, but a big win on long ones.
4039 * It might even be a win on short strings if SvPVX_const(dstr)
4040 * has to be allocated and SvPVX_const(sstr) has to be freed.
4041 * Likewise if we can set up COW rather than doing an actual copy, we
4042 * drop to the else clause, as the swipe code and the COW setup code
4043 * have much in common.
4046 /* Whichever path we take through the next code, we want this true,
4047 and doing it now facilitates the COW check. */
4048 (void)SvPOK_only(dstr);
4051 /* If we're already COW then this clause is not true, and if COW
4052 is allowed then we drop down to the else and make dest COW
4053 with us. If caller hasn't said that we're allowed to COW
4054 shared hash keys then we don't do the COW setup, even if the
4055 source scalar is a shared hash key scalar. */
4056 (((flags & SV_COW_SHARED_HASH_KEYS)
4057 ? (sflags & (SVf_FAKE|SVf_READONLY)) != (SVf_FAKE|SVf_READONLY)
4058 : 1 /* If making a COW copy is forbidden then the behaviour we
4059 desire is as if the source SV isn't actually already
4060 COW, even if it is. So we act as if the source flags
4061 are not COW, rather than actually testing them. */
4063 #ifndef PERL_OLD_COPY_ON_WRITE
4064 /* The change that added SV_COW_SHARED_HASH_KEYS makes the logic
4065 when PERL_OLD_COPY_ON_WRITE is defined a little wrong.
4066 Conceptually PERL_OLD_COPY_ON_WRITE being defined should
4067 override SV_COW_SHARED_HASH_KEYS, because it means "always COW"
4068 but in turn, it's somewhat dead code, never expected to go
4069 live, but more kept as a placeholder on how to do it better
4070 in a newer implementation. */
4071 /* If we are COW and dstr is a suitable target then we drop down
4072 into the else and make dest a COW of us. */
4073 || (SvFLAGS(dstr) & CAN_COW_MASK) != CAN_COW_FLAGS
4078 (sflags & SVs_TEMP) && /* slated for free anyway? */
4079 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
4080 (!(flags & SV_NOSTEAL)) &&
4081 /* and we're allowed to steal temps */
4082 SvREFCNT(sstr) == 1 && /* and no other references to it? */
4083 SvLEN(sstr) && /* and really is a string */
4084 /* and won't be needed again, potentially */
4085 !(PL_op && PL_op->op_type == OP_AASSIGN))
4086 #ifdef PERL_OLD_COPY_ON_WRITE
4087 && ((flags & SV_COW_SHARED_HASH_KEYS)
4088 ? (!((sflags & CAN_COW_MASK) == CAN_COW_FLAGS
4089 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
4090 && SvTYPE(sstr) >= SVt_PVIV && SvTYPE(sstr) != SVt_PVFM))
4094 /* Failed the swipe test, and it's not a shared hash key either.
4095 Have to copy the string. */
4096 STRLEN len = SvCUR(sstr);
4097 SvGROW(dstr, len + 1); /* inlined from sv_setpvn */
4098 Move(SvPVX_const(sstr),SvPVX(dstr),len,char);
4099 SvCUR_set(dstr, len);
4100 *SvEND(dstr) = '\0';
4102 /* If PERL_OLD_COPY_ON_WRITE is not defined, then isSwipe will always
4104 /* Either it's a shared hash key, or it's suitable for
4105 copy-on-write or we can swipe the string. */
4107 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
4111 #ifdef PERL_OLD_COPY_ON_WRITE
4113 if ((sflags & (SVf_FAKE | SVf_READONLY))
4114 != (SVf_FAKE | SVf_READONLY)) {
4115 SvREADONLY_on(sstr);
4117 /* Make the source SV into a loop of 1.
4118 (about to become 2) */
4119 SV_COW_NEXT_SV_SET(sstr, sstr);
4123 /* Initial code is common. */
4124 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
4129 /* making another shared SV. */
4130 STRLEN cur = SvCUR(sstr);
4131 STRLEN len = SvLEN(sstr);
4132 #ifdef PERL_OLD_COPY_ON_WRITE
4134 assert (SvTYPE(dstr) >= SVt_PVIV);
4135 /* SvIsCOW_normal */
4136 /* splice us in between source and next-after-source. */
4137 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4138 SV_COW_NEXT_SV_SET(sstr, dstr);
4139 SvPV_set(dstr, SvPVX_mutable(sstr));
4143 /* SvIsCOW_shared_hash */
4144 DEBUG_C(PerlIO_printf(Perl_debug_log,
4145 "Copy on write: Sharing hash\n"));
4147 assert (SvTYPE(dstr) >= SVt_PV);
4149 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
4151 SvLEN_set(dstr, len);
4152 SvCUR_set(dstr, cur);
4153 SvREADONLY_on(dstr);
4157 { /* Passes the swipe test. */
4158 SvPV_set(dstr, SvPVX_mutable(sstr));
4159 SvLEN_set(dstr, SvLEN(sstr));
4160 SvCUR_set(dstr, SvCUR(sstr));
4163 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
4164 SvPV_set(sstr, NULL);
4170 if (sflags & SVp_NOK) {
4171 SvNV_set(dstr, SvNVX(sstr));
4173 if (sflags & SVp_IOK) {
4174 SvIV_set(dstr, SvIVX(sstr));
4175 /* Must do this otherwise some other overloaded use of 0x80000000
4176 gets confused. I guess SVpbm_VALID */
4177 if (sflags & SVf_IVisUV)
4180 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8);
4182 const MAGIC * const smg = SvVSTRING_mg(sstr);
4184 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
4185 smg->mg_ptr, smg->mg_len);
4186 SvRMAGICAL_on(dstr);
4190 else if (sflags & (SVp_IOK|SVp_NOK)) {
4191 (void)SvOK_off(dstr);
4192 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK);
4193 if (sflags & SVp_IOK) {
4194 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
4195 SvIV_set(dstr, SvIVX(sstr));
4197 if (sflags & SVp_NOK) {
4198 SvNV_set(dstr, SvNVX(sstr));
4202 if (isGV_with_GP(sstr)) {
4203 /* This stringification rule for globs is spread in 3 places.
4204 This feels bad. FIXME. */
4205 const U32 wasfake = sflags & SVf_FAKE;
4207 /* FAKE globs can get coerced, so need to turn this off
4208 temporarily if it is on. */
4210 gv_efullname3(dstr, MUTABLE_GV(sstr), "*");
4211 SvFLAGS(sstr) |= wasfake;
4214 (void)SvOK_off(dstr);
4216 if (SvTAINTED(sstr))
4221 =for apidoc sv_setsv_mg
4223 Like C<sv_setsv>, but also handles 'set' magic.
4229 Perl_sv_setsv_mg(pTHX_ SV *const dstr, register SV *const sstr)
4231 PERL_ARGS_ASSERT_SV_SETSV_MG;
4233 sv_setsv(dstr,sstr);
4237 #ifdef PERL_OLD_COPY_ON_WRITE
4239 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
4241 STRLEN cur = SvCUR(sstr);
4242 STRLEN len = SvLEN(sstr);
4243 register char *new_pv;
4245 PERL_ARGS_ASSERT_SV_SETSV_COW;
4248 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
4249 (void*)sstr, (void*)dstr);
4256 if (SvTHINKFIRST(dstr))
4257 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
4258 else if (SvPVX_const(dstr))
4259 Safefree(SvPVX_const(dstr));
4263 SvUPGRADE(dstr, SVt_PVIV);
4265 assert (SvPOK(sstr));
4266 assert (SvPOKp(sstr));
4267 assert (!SvIOK(sstr));
4268 assert (!SvIOKp(sstr));
4269 assert (!SvNOK(sstr));
4270 assert (!SvNOKp(sstr));
4272 if (SvIsCOW(sstr)) {
4274 if (SvLEN(sstr) == 0) {
4275 /* source is a COW shared hash key. */
4276 DEBUG_C(PerlIO_printf(Perl_debug_log,
4277 "Fast copy on write: Sharing hash\n"));
4278 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
4281 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4283 assert ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS);
4284 SvUPGRADE(sstr, SVt_PVIV);
4285 SvREADONLY_on(sstr);
4287 DEBUG_C(PerlIO_printf(Perl_debug_log,
4288 "Fast copy on write: Converting sstr to COW\n"));
4289 SV_COW_NEXT_SV_SET(dstr, sstr);
4291 SV_COW_NEXT_SV_SET(sstr, dstr);
4292 new_pv = SvPVX_mutable(sstr);
4295 SvPV_set(dstr, new_pv);
4296 SvFLAGS(dstr) = (SVt_PVIV|SVf_POK|SVp_POK|SVf_FAKE|SVf_READONLY);
4299 SvLEN_set(dstr, len);
4300 SvCUR_set(dstr, cur);
4309 =for apidoc sv_setpvn
4311 Copies a string into an SV. The C<len> parameter indicates the number of
4312 bytes to be copied. If the C<ptr> argument is NULL the SV will become
4313 undefined. Does not handle 'set' magic. See C<sv_setpvn_mg>.
4319 Perl_sv_setpvn(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4322 register char *dptr;
4324 PERL_ARGS_ASSERT_SV_SETPVN;
4326 SV_CHECK_THINKFIRST_COW_DROP(sv);
4332 /* len is STRLEN which is unsigned, need to copy to signed */
4335 Perl_croak(aTHX_ "panic: sv_setpvn called with negative strlen");
4337 SvUPGRADE(sv, SVt_PV);
4339 dptr = SvGROW(sv, len + 1);
4340 Move(ptr,dptr,len,char);
4343 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4348 =for apidoc sv_setpvn_mg
4350 Like C<sv_setpvn>, but also handles 'set' magic.
4356 Perl_sv_setpvn_mg(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4358 PERL_ARGS_ASSERT_SV_SETPVN_MG;
4360 sv_setpvn(sv,ptr,len);
4365 =for apidoc sv_setpv
4367 Copies a string into an SV. The string must be null-terminated. Does not
4368 handle 'set' magic. See C<sv_setpv_mg>.
4374 Perl_sv_setpv(pTHX_ register SV *const sv, register const char *const ptr)
4377 register STRLEN len;
4379 PERL_ARGS_ASSERT_SV_SETPV;
4381 SV_CHECK_THINKFIRST_COW_DROP(sv);
4387 SvUPGRADE(sv, SVt_PV);
4389 SvGROW(sv, len + 1);
4390 Move(ptr,SvPVX(sv),len+1,char);
4392 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4397 =for apidoc sv_setpv_mg
4399 Like C<sv_setpv>, but also handles 'set' magic.
4405 Perl_sv_setpv_mg(pTHX_ register SV *const sv, register const char *const ptr)
4407 PERL_ARGS_ASSERT_SV_SETPV_MG;
4414 =for apidoc sv_usepvn_flags
4416 Tells an SV to use C<ptr> to find its string value. Normally the
4417 string is stored inside the SV but sv_usepvn allows the SV to use an
4418 outside string. The C<ptr> should point to memory that was allocated
4419 by C<malloc>. The string length, C<len>, must be supplied. By default
4420 this function will realloc (i.e. move) the memory pointed to by C<ptr>,
4421 so that pointer should not be freed or used by the programmer after
4422 giving it to sv_usepvn, and neither should any pointers from "behind"
4423 that pointer (e.g. ptr + 1) be used.
4425 If C<flags> & SV_SMAGIC is true, will call SvSETMAGIC. If C<flags> &
4426 SV_HAS_TRAILING_NUL is true, then C<ptr[len]> must be NUL, and the realloc
4427 will be skipped. (i.e. the buffer is actually at least 1 byte longer than
4428 C<len>, and already meets the requirements for storing in C<SvPVX>)
4434 Perl_sv_usepvn_flags(pTHX_ SV *const sv, char *ptr, const STRLEN len, const U32 flags)
4439 PERL_ARGS_ASSERT_SV_USEPVN_FLAGS;
4441 SV_CHECK_THINKFIRST_COW_DROP(sv);
4442 SvUPGRADE(sv, SVt_PV);
4445 if (flags & SV_SMAGIC)
4449 if (SvPVX_const(sv))
4453 if (flags & SV_HAS_TRAILING_NUL)
4454 assert(ptr[len] == '\0');
4457 allocate = (flags & SV_HAS_TRAILING_NUL)
4459 #ifdef Perl_safesysmalloc_size
4462 PERL_STRLEN_ROUNDUP(len + 1);
4464 if (flags & SV_HAS_TRAILING_NUL) {
4465 /* It's long enough - do nothing.
4466 Specfically Perl_newCONSTSUB is relying on this. */
4469 /* Force a move to shake out bugs in callers. */
4470 char *new_ptr = (char*)safemalloc(allocate);
4471 Copy(ptr, new_ptr, len, char);
4472 PoisonFree(ptr,len,char);
4476 ptr = (char*) saferealloc (ptr, allocate);
4479 #ifdef Perl_safesysmalloc_size
4480 SvLEN_set(sv, Perl_safesysmalloc_size(ptr));
4482 SvLEN_set(sv, allocate);
4486 if (!(flags & SV_HAS_TRAILING_NUL)) {
4489 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4491 if (flags & SV_SMAGIC)
4495 #ifdef PERL_OLD_COPY_ON_WRITE
4496 /* Need to do this *after* making the SV normal, as we need the buffer
4497 pointer to remain valid until after we've copied it. If we let go too early,
4498 another thread could invalidate it by unsharing last of the same hash key
4499 (which it can do by means other than releasing copy-on-write Svs)
4500 or by changing the other copy-on-write SVs in the loop. */
4502 S_sv_release_COW(pTHX_ register SV *sv, const char *pvx, SV *after)
4504 PERL_ARGS_ASSERT_SV_RELEASE_COW;
4506 { /* this SV was SvIsCOW_normal(sv) */
4507 /* we need to find the SV pointing to us. */
4508 SV *current = SV_COW_NEXT_SV(after);
4510 if (current == sv) {
4511 /* The SV we point to points back to us (there were only two of us
4513 Hence other SV is no longer copy on write either. */
4515 SvREADONLY_off(after);
4517 /* We need to follow the pointers around the loop. */
4519 while ((next = SV_COW_NEXT_SV(current)) != sv) {
4522 /* don't loop forever if the structure is bust, and we have
4523 a pointer into a closed loop. */
4524 assert (current != after);
4525 assert (SvPVX_const(current) == pvx);
4527 /* Make the SV before us point to the SV after us. */
4528 SV_COW_NEXT_SV_SET(current, after);
4534 =for apidoc sv_force_normal_flags
4536 Undo various types of fakery on an SV: if the PV is a shared string, make
4537 a private copy; if we're a ref, stop refing; if we're a glob, downgrade to
4538 an xpvmg; if we're a copy-on-write scalar, this is the on-write time when
4539 we do the copy, and is also used locally. If C<SV_COW_DROP_PV> is set
4540 then a copy-on-write scalar drops its PV buffer (if any) and becomes
4541 SvPOK_off rather than making a copy. (Used where this scalar is about to be
4542 set to some other value.) In addition, the C<flags> parameter gets passed to
4543 C<sv_unref_flags()> when unrefing. C<sv_force_normal> calls this function
4544 with flags set to 0.
4550 Perl_sv_force_normal_flags(pTHX_ register SV *const sv, const U32 flags)
4554 PERL_ARGS_ASSERT_SV_FORCE_NORMAL_FLAGS;
4556 #ifdef PERL_OLD_COPY_ON_WRITE
4557 if (SvREADONLY(sv)) {
4559 const char * const pvx = SvPVX_const(sv);
4560 const STRLEN len = SvLEN(sv);
4561 const STRLEN cur = SvCUR(sv);
4562 /* next COW sv in the loop. If len is 0 then this is a shared-hash
4563 key scalar, so we mustn't attempt to call SV_COW_NEXT_SV(), as
4564 we'll fail an assertion. */
4565 SV * const next = len ? SV_COW_NEXT_SV(sv) : 0;
4568 PerlIO_printf(Perl_debug_log,
4569 "Copy on write: Force normal %ld\n",
4575 /* This SV doesn't own the buffer, so need to Newx() a new one: */
4578 if (flags & SV_COW_DROP_PV) {
4579 /* OK, so we don't need to copy our buffer. */
4582 SvGROW(sv, cur + 1);
4583 Move(pvx,SvPVX(sv),cur,char);
4588 sv_release_COW(sv, pvx, next);
4590 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4596 else if (IN_PERL_RUNTIME)
4597 Perl_croak(aTHX_ "%s", PL_no_modify);
4600 if (SvREADONLY(sv)) {
4602 const char * const pvx = SvPVX_const(sv);
4603 const STRLEN len = SvCUR(sv);
4608 SvGROW(sv, len + 1);
4609 Move(pvx,SvPVX(sv),len,char);
4611 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4613 else if (IN_PERL_RUNTIME)
4614 Perl_croak(aTHX_ "%s", PL_no_modify);
4618 sv_unref_flags(sv, flags);
4619 else if (SvFAKE(sv) && SvTYPE(sv) == SVt_PVGV)
4621 else if (SvFAKE(sv) && SvTYPE(sv) == SVt_REGEXP) {
4622 /* Need to downgrade the REGEXP to a simple(r) scalar. This is analagous
4623 to sv_unglob. We only need it here, so inline it. */
4624 const svtype new_type = SvMAGIC(sv) || SvSTASH(sv) ? SVt_PVMG : SVt_PV;
4625 SV *const temp = newSV_type(new_type);
4626 void *const temp_p = SvANY(sv);
4628 if (new_type == SVt_PVMG) {
4629 SvMAGIC_set(temp, SvMAGIC(sv));
4630 SvMAGIC_set(sv, NULL);
4631 SvSTASH_set(temp, SvSTASH(sv));
4632 SvSTASH_set(sv, NULL);
4634 SvCUR_set(temp, SvCUR(sv));
4635 /* Remember that SvPVX is in the head, not the body. */
4637 SvLEN_set(temp, SvLEN(sv));
4638 /* This signals "buffer is owned by someone else" in sv_clear,
4639 which is the least effort way to stop it freeing the buffer.
4641 SvLEN_set(sv, SvLEN(sv)+1);
4643 /* Their buffer is already owned by someone else. */
4644 SvPVX(sv) = savepvn(SvPVX(sv), SvCUR(sv));
4645 SvLEN_set(temp, SvCUR(sv)+1);
4648 /* Now swap the rest of the bodies. */
4650 SvFLAGS(sv) &= ~(SVf_FAKE|SVTYPEMASK);
4651 SvFLAGS(sv) |= new_type;
4652 SvANY(sv) = SvANY(temp);
4654 SvFLAGS(temp) &= ~(SVTYPEMASK);
4655 SvFLAGS(temp) |= SVt_REGEXP|SVf_FAKE;
4656 SvANY(temp) = temp_p;