5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
77 #ifndef PERL_IN_XSUB_RE
82 #ifdef PERL_IN_XSUB_RE
84 EXTERN_C const struct regexp_engine my_reg_engine;
89 #include "dquote_static.c"
90 #include "charclass_invlists.h"
91 #include "inline_invlist.c"
92 #include "unicode_constants.h"
94 #define HAS_NONLATIN1_FOLD_CLOSURE(i) \
95 _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
96 #define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
97 #define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
100 #define STATIC static
104 struct RExC_state_t {
105 U32 flags; /* RXf_* are we folding, multilining? */
106 U32 pm_flags; /* PMf_* stuff from the calling PMOP */
107 char *precomp; /* uncompiled string. */
108 REGEXP *rx_sv; /* The SV that is the regexp. */
109 regexp *rx; /* perl core regexp structure */
110 regexp_internal *rxi; /* internal data for regexp object
112 char *start; /* Start of input for compile */
113 char *end; /* End of input for compile */
114 char *parse; /* Input-scan pointer. */
115 SSize_t whilem_seen; /* number of WHILEM in this expr */
116 regnode *emit_start; /* Start of emitted-code area */
117 regnode *emit_bound; /* First regnode outside of the
119 regnode *emit; /* Code-emit pointer; if = &emit_dummy,
120 implies compiling, so don't emit */
121 regnode_ssc emit_dummy; /* placeholder for emit to point to;
122 large enough for the largest
123 non-EXACTish node, so can use it as
125 I32 naughty; /* How bad is this pattern? */
126 I32 sawback; /* Did we see \1, ...? */
128 SSize_t size; /* Code size. */
129 I32 npar; /* Capture buffer count, (OPEN) plus
130 one. ("par" 0 is the whole
132 I32 nestroot; /* root parens we are in - used by
136 regnode **open_parens; /* pointers to open parens */
137 regnode **close_parens; /* pointers to close parens */
138 regnode *opend; /* END node in program */
139 I32 utf8; /* whether the pattern is utf8 or not */
140 I32 orig_utf8; /* whether the pattern was originally in utf8 */
141 /* XXX use this for future optimisation of case
142 * where pattern must be upgraded to utf8. */
143 I32 uni_semantics; /* If a d charset modifier should use unicode
144 rules, even if the pattern is not in
146 HV *paren_names; /* Paren names */
148 regnode **recurse; /* Recurse regops */
149 I32 recurse_count; /* Number of recurse regops */
150 U8 *study_chunk_recursed; /* bitmap of which parens we have moved
152 U32 study_chunk_recursed_bytes; /* bytes in bitmap */
156 I32 override_recoding;
157 I32 in_multi_char_class;
158 struct reg_code_block *code_blocks; /* positions of literal (?{})
160 int num_code_blocks; /* size of code_blocks[] */
161 int code_index; /* next code_blocks[] slot */
162 SSize_t maxlen; /* mininum possible number of chars in string to match */
163 #ifdef ADD_TO_REGEXEC
164 char *starttry; /* -Dr: where regtry was called. */
165 #define RExC_starttry (pRExC_state->starttry)
167 SV *runtime_code_qr; /* qr with the runtime code blocks */
169 const char *lastparse;
171 AV *paren_name_list; /* idx -> name */
172 #define RExC_lastparse (pRExC_state->lastparse)
173 #define RExC_lastnum (pRExC_state->lastnum)
174 #define RExC_paren_name_list (pRExC_state->paren_name_list)
178 #define RExC_flags (pRExC_state->flags)
179 #define RExC_pm_flags (pRExC_state->pm_flags)
180 #define RExC_precomp (pRExC_state->precomp)
181 #define RExC_rx_sv (pRExC_state->rx_sv)
182 #define RExC_rx (pRExC_state->rx)
183 #define RExC_rxi (pRExC_state->rxi)
184 #define RExC_start (pRExC_state->start)
185 #define RExC_end (pRExC_state->end)
186 #define RExC_parse (pRExC_state->parse)
187 #define RExC_whilem_seen (pRExC_state->whilem_seen)
188 #ifdef RE_TRACK_PATTERN_OFFSETS
189 #define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the
192 #define RExC_emit (pRExC_state->emit)
193 #define RExC_emit_dummy (pRExC_state->emit_dummy)
194 #define RExC_emit_start (pRExC_state->emit_start)
195 #define RExC_emit_bound (pRExC_state->emit_bound)
196 #define RExC_naughty (pRExC_state->naughty)
197 #define RExC_sawback (pRExC_state->sawback)
198 #define RExC_seen (pRExC_state->seen)
199 #define RExC_size (pRExC_state->size)
200 #define RExC_maxlen (pRExC_state->maxlen)
201 #define RExC_npar (pRExC_state->npar)
202 #define RExC_nestroot (pRExC_state->nestroot)
203 #define RExC_extralen (pRExC_state->extralen)
204 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
205 #define RExC_utf8 (pRExC_state->utf8)
206 #define RExC_uni_semantics (pRExC_state->uni_semantics)
207 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
208 #define RExC_open_parens (pRExC_state->open_parens)
209 #define RExC_close_parens (pRExC_state->close_parens)
210 #define RExC_opend (pRExC_state->opend)
211 #define RExC_paren_names (pRExC_state->paren_names)
212 #define RExC_recurse (pRExC_state->recurse)
213 #define RExC_recurse_count (pRExC_state->recurse_count)
214 #define RExC_study_chunk_recursed (pRExC_state->study_chunk_recursed)
215 #define RExC_study_chunk_recursed_bytes \
216 (pRExC_state->study_chunk_recursed_bytes)
217 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
218 #define RExC_contains_locale (pRExC_state->contains_locale)
219 #define RExC_contains_i (pRExC_state->contains_i)
220 #define RExC_override_recoding (pRExC_state->override_recoding)
221 #define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
224 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
225 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
226 ((*s) == '{' && regcurly(s, FALSE)))
229 * Flags to be passed up and down.
231 #define WORST 0 /* Worst case. */
232 #define HASWIDTH 0x01 /* Known to match non-null strings. */
234 /* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
235 * character. (There needs to be a case: in the switch statement in regexec.c
236 * for any node marked SIMPLE.) Note that this is not the same thing as
239 #define SPSTART 0x04 /* Starts with * or + */
240 #define POSTPONED 0x08 /* (?1),(?&name), (??{...}) or similar */
241 #define TRYAGAIN 0x10 /* Weeded out a declaration. */
242 #define RESTART_UTF8 0x20 /* Restart, need to calcuate sizes as UTF-8 */
244 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
246 /* whether trie related optimizations are enabled */
247 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
248 #define TRIE_STUDY_OPT
249 #define FULL_TRIE_STUDY
255 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
256 #define PBITVAL(paren) (1 << ((paren) & 7))
257 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
258 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
259 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
261 #define REQUIRE_UTF8 STMT_START { \
263 *flagp = RESTART_UTF8; \
268 /* This converts the named class defined in regcomp.h to its equivalent class
269 * number defined in handy.h. */
270 #define namedclass_to_classnum(class) ((int) ((class) / 2))
271 #define classnum_to_namedclass(classnum) ((classnum) * 2)
273 #define _invlist_union_complement_2nd(a, b, output) \
274 _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
275 #define _invlist_intersection_complement_2nd(a, b, output) \
276 _invlist_intersection_maybe_complement_2nd(a, b, TRUE, output)
278 /* About scan_data_t.
280 During optimisation we recurse through the regexp program performing
281 various inplace (keyhole style) optimisations. In addition study_chunk
282 and scan_commit populate this data structure with information about
283 what strings MUST appear in the pattern. We look for the longest
284 string that must appear at a fixed location, and we look for the
285 longest string that may appear at a floating location. So for instance
290 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
291 strings (because they follow a .* construct). study_chunk will identify
292 both FOO and BAR as being the longest fixed and floating strings respectively.
294 The strings can be composites, for instance
298 will result in a composite fixed substring 'foo'.
300 For each string some basic information is maintained:
302 - offset or min_offset
303 This is the position the string must appear at, or not before.
304 It also implicitly (when combined with minlenp) tells us how many
305 characters must match before the string we are searching for.
306 Likewise when combined with minlenp and the length of the string it
307 tells us how many characters must appear after the string we have
311 Only used for floating strings. This is the rightmost point that
312 the string can appear at. If set to SSize_t_MAX it indicates that the
313 string can occur infinitely far to the right.
316 A pointer to the minimum number of characters of the pattern that the
317 string was found inside. This is important as in the case of positive
318 lookahead or positive lookbehind we can have multiple patterns
323 The minimum length of the pattern overall is 3, the minimum length
324 of the lookahead part is 3, but the minimum length of the part that
325 will actually match is 1. So 'FOO's minimum length is 3, but the
326 minimum length for the F is 1. This is important as the minimum length
327 is used to determine offsets in front of and behind the string being
328 looked for. Since strings can be composites this is the length of the
329 pattern at the time it was committed with a scan_commit. Note that
330 the length is calculated by study_chunk, so that the minimum lengths
331 are not known until the full pattern has been compiled, thus the
332 pointer to the value.
336 In the case of lookbehind the string being searched for can be
337 offset past the start point of the final matching string.
338 If this value was just blithely removed from the min_offset it would
339 invalidate some of the calculations for how many chars must match
340 before or after (as they are derived from min_offset and minlen and
341 the length of the string being searched for).
342 When the final pattern is compiled and the data is moved from the
343 scan_data_t structure into the regexp structure the information
344 about lookbehind is factored in, with the information that would
345 have been lost precalculated in the end_shift field for the
348 The fields pos_min and pos_delta are used to store the minimum offset
349 and the delta to the maximum offset at the current point in the pattern.
353 typedef struct scan_data_t {
354 /*I32 len_min; unused */
355 /*I32 len_delta; unused */
359 SSize_t last_end; /* min value, <0 unless valid. */
360 SSize_t last_start_min;
361 SSize_t last_start_max;
362 SV **longest; /* Either &l_fixed, or &l_float. */
363 SV *longest_fixed; /* longest fixed string found in pattern */
364 SSize_t offset_fixed; /* offset where it starts */
365 SSize_t *minlen_fixed; /* pointer to the minlen relevant to the string */
366 I32 lookbehind_fixed; /* is the position of the string modfied by LB */
367 SV *longest_float; /* longest floating string found in pattern */
368 SSize_t offset_float_min; /* earliest point in string it can appear */
369 SSize_t offset_float_max; /* latest point in string it can appear */
370 SSize_t *minlen_float; /* pointer to the minlen relevant to the string */
371 SSize_t lookbehind_float; /* is the pos of the string modified by LB */
374 SSize_t *last_closep;
375 regnode_ssc *start_class;
378 /* The below is perhaps overboard, but this allows us to save a test at the
379 * expense of a mask. This is because on both EBCDIC and ASCII machines, 'A'
380 * and 'a' differ by a single bit; the same with the upper and lower case of
381 * all other ASCII-range alphabetics. On ASCII platforms, they are 32 apart;
382 * on EBCDIC, they are 64. This uses an exclusive 'or' to find that bit and
383 * then inverts it to form a mask, with just a single 0, in the bit position
384 * where the upper- and lowercase differ. XXX There are about 40 other
385 * instances in the Perl core where this micro-optimization could be used.
386 * Should decide if maintenance cost is worse, before changing those
388 * Returns a boolean as to whether or not 'v' is either a lowercase or
389 * uppercase instance of 'c', where 'c' is in [A-Za-z]. If 'c' is a
390 * compile-time constant, the generated code is better than some optimizing
391 * compilers figure out, amounting to a mask and test. The results are
392 * meaningless if 'c' is not one of [A-Za-z] */
393 #define isARG2_lower_or_UPPER_ARG1(c, v) \
394 (((v) & ~('A' ^ 'a')) == ((c) & ~('A' ^ 'a')))
397 * Forward declarations for pregcomp()'s friends.
400 static const scan_data_t zero_scan_data =
401 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
403 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
404 #define SF_BEFORE_SEOL 0x0001
405 #define SF_BEFORE_MEOL 0x0002
406 #define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
407 #define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
409 #define SF_FIX_SHIFT_EOL (+2)
410 #define SF_FL_SHIFT_EOL (+4)
412 #define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
413 #define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
415 #define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
416 #define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
417 #define SF_IS_INF 0x0040
418 #define SF_HAS_PAR 0x0080
419 #define SF_IN_PAR 0x0100
420 #define SF_HAS_EVAL 0x0200
421 #define SCF_DO_SUBSTR 0x0400
422 #define SCF_DO_STCLASS_AND 0x0800
423 #define SCF_DO_STCLASS_OR 0x1000
424 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
425 #define SCF_WHILEM_VISITED_POS 0x2000
427 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
428 #define SCF_SEEN_ACCEPT 0x8000
429 #define SCF_TRIE_DOING_RESTUDY 0x10000
431 #define UTF cBOOL(RExC_utf8)
433 /* The enums for all these are ordered so things work out correctly */
434 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
435 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) \
436 == REGEX_DEPENDS_CHARSET)
437 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
438 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) \
439 >= REGEX_UNICODE_CHARSET)
440 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
441 == REGEX_ASCII_RESTRICTED_CHARSET)
442 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
443 >= REGEX_ASCII_RESTRICTED_CHARSET)
444 #define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) \
445 == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
447 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
449 /* For programs that want to be strictly Unicode compatible by dying if any
450 * attempt is made to match a non-Unicode code point against a Unicode
452 #define ALWAYS_WARN_SUPER ckDEAD(packWARN(WARN_NON_UNICODE))
454 #define OOB_NAMEDCLASS -1
456 /* There is no code point that is out-of-bounds, so this is problematic. But
457 * its only current use is to initialize a variable that is always set before
459 #define OOB_UNICODE 0xDEADBEEF
461 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
462 #define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
465 /* length of regex to show in messages that don't mark a position within */
466 #define RegexLengthToShowInErrorMessages 127
469 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
470 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
471 * op/pragma/warn/regcomp.
473 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
474 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
476 #define REPORT_LOCATION " in regex; marked by " MARKER1 \
477 " in m/%"UTF8f MARKER2 "%"UTF8f"/"
479 #define REPORT_LOCATION_ARGS(offset) \
480 UTF8fARG(UTF, offset, RExC_precomp), \
481 UTF8fARG(UTF, RExC_end - RExC_precomp - offset, RExC_precomp + offset)
484 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
485 * arg. Show regex, up to a maximum length. If it's too long, chop and add
488 #define _FAIL(code) STMT_START { \
489 const char *ellipses = ""; \
490 IV len = RExC_end - RExC_precomp; \
493 SAVEFREESV(RExC_rx_sv); \
494 if (len > RegexLengthToShowInErrorMessages) { \
495 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
496 len = RegexLengthToShowInErrorMessages - 10; \
502 #define FAIL(msg) _FAIL( \
503 Perl_croak(aTHX_ "%s in regex m/%"UTF8f"%s/", \
504 msg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
506 #define FAIL2(msg,arg) _FAIL( \
507 Perl_croak(aTHX_ msg " in regex m/%"UTF8f"%s/", \
508 arg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
511 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
513 #define Simple_vFAIL(m) STMT_START { \
514 const IV offset = RExC_parse - RExC_precomp; \
515 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
516 m, REPORT_LOCATION_ARGS(offset)); \
520 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
522 #define vFAIL(m) STMT_START { \
524 SAVEFREESV(RExC_rx_sv); \
529 * Like Simple_vFAIL(), but accepts two arguments.
531 #define Simple_vFAIL2(m,a1) STMT_START { \
532 const IV offset = RExC_parse - RExC_precomp; \
533 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
534 REPORT_LOCATION_ARGS(offset)); \
538 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
540 #define vFAIL2(m,a1) STMT_START { \
542 SAVEFREESV(RExC_rx_sv); \
543 Simple_vFAIL2(m, a1); \
548 * Like Simple_vFAIL(), but accepts three arguments.
550 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
551 const IV offset = RExC_parse - RExC_precomp; \
552 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
553 REPORT_LOCATION_ARGS(offset)); \
557 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
559 #define vFAIL3(m,a1,a2) STMT_START { \
561 SAVEFREESV(RExC_rx_sv); \
562 Simple_vFAIL3(m, a1, a2); \
566 * Like Simple_vFAIL(), but accepts four arguments.
568 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
569 const IV offset = RExC_parse - RExC_precomp; \
570 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, a3, \
571 REPORT_LOCATION_ARGS(offset)); \
574 #define vFAIL4(m,a1,a2,a3) STMT_START { \
576 SAVEFREESV(RExC_rx_sv); \
577 Simple_vFAIL4(m, a1, a2, a3); \
580 /* A specialized version of vFAIL2 that works with UTF8f */
581 #define vFAIL2utf8f(m, a1) STMT_START { \
582 const IV offset = RExC_parse - RExC_precomp; \
584 SAVEFREESV(RExC_rx_sv); \
585 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
586 REPORT_LOCATION_ARGS(offset)); \
590 /* m is not necessarily a "literal string", in this macro */
591 #define reg_warn_non_literal_string(loc, m) STMT_START { \
592 const IV offset = loc - RExC_precomp; \
593 Perl_warner(aTHX_ packWARN(WARN_REGEXP), "%s" REPORT_LOCATION, \
594 m, REPORT_LOCATION_ARGS(offset)); \
597 #define ckWARNreg(loc,m) STMT_START { \
598 const IV offset = loc - RExC_precomp; \
599 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
600 REPORT_LOCATION_ARGS(offset)); \
603 #define vWARN_dep(loc, m) STMT_START { \
604 const IV offset = loc - RExC_precomp; \
605 Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), m REPORT_LOCATION, \
606 REPORT_LOCATION_ARGS(offset)); \
609 #define ckWARNdep(loc,m) STMT_START { \
610 const IV offset = loc - RExC_precomp; \
611 Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
613 REPORT_LOCATION_ARGS(offset)); \
616 #define ckWARNregdep(loc,m) STMT_START { \
617 const IV offset = loc - RExC_precomp; \
618 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
620 REPORT_LOCATION_ARGS(offset)); \
623 #define ckWARN2reg_d(loc,m, a1) STMT_START { \
624 const IV offset = loc - RExC_precomp; \
625 Perl_ck_warner_d(aTHX_ packWARN(WARN_REGEXP), \
627 a1, REPORT_LOCATION_ARGS(offset)); \
630 #define ckWARN2reg(loc, m, a1) STMT_START { \
631 const IV offset = loc - RExC_precomp; \
632 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
633 a1, REPORT_LOCATION_ARGS(offset)); \
636 #define vWARN3(loc, m, a1, a2) STMT_START { \
637 const IV offset = loc - RExC_precomp; \
638 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
639 a1, a2, REPORT_LOCATION_ARGS(offset)); \
642 #define ckWARN3reg(loc, m, a1, a2) STMT_START { \
643 const IV offset = loc - RExC_precomp; \
644 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
645 a1, a2, REPORT_LOCATION_ARGS(offset)); \
648 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \
649 const IV offset = loc - RExC_precomp; \
650 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
651 a1, a2, a3, REPORT_LOCATION_ARGS(offset)); \
654 #define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
655 const IV offset = loc - RExC_precomp; \
656 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
657 a1, a2, a3, REPORT_LOCATION_ARGS(offset)); \
660 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
661 const IV offset = loc - RExC_precomp; \
662 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
663 a1, a2, a3, a4, REPORT_LOCATION_ARGS(offset)); \
667 /* Allow for side effects in s */
668 #define REGC(c,s) STMT_START { \
669 if (!SIZE_ONLY) *(s) = (c); else (void)(s); \
672 /* Macros for recording node offsets. 20001227 mjd@plover.com
673 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
674 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
675 * Element 0 holds the number n.
676 * Position is 1 indexed.
678 #ifndef RE_TRACK_PATTERN_OFFSETS
679 #define Set_Node_Offset_To_R(node,byte)
680 #define Set_Node_Offset(node,byte)
681 #define Set_Cur_Node_Offset
682 #define Set_Node_Length_To_R(node,len)
683 #define Set_Node_Length(node,len)
684 #define Set_Node_Cur_Length(node,start)
685 #define Node_Offset(n)
686 #define Node_Length(n)
687 #define Set_Node_Offset_Length(node,offset,len)
688 #define ProgLen(ri) ri->u.proglen
689 #define SetProgLen(ri,x) ri->u.proglen = x
691 #define ProgLen(ri) ri->u.offsets[0]
692 #define SetProgLen(ri,x) ri->u.offsets[0] = x
693 #define Set_Node_Offset_To_R(node,byte) STMT_START { \
695 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
696 __LINE__, (int)(node), (int)(byte))); \
698 Perl_croak(aTHX_ "value of node is %d in Offset macro", \
701 RExC_offsets[2*(node)-1] = (byte); \
706 #define Set_Node_Offset(node,byte) \
707 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
708 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
710 #define Set_Node_Length_To_R(node,len) STMT_START { \
712 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
713 __LINE__, (int)(node), (int)(len))); \
715 Perl_croak(aTHX_ "value of node is %d in Length macro", \
718 RExC_offsets[2*(node)] = (len); \
723 #define Set_Node_Length(node,len) \
724 Set_Node_Length_To_R((node)-RExC_emit_start, len)
725 #define Set_Node_Cur_Length(node, start) \
726 Set_Node_Length(node, RExC_parse - start)
728 /* Get offsets and lengths */
729 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
730 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
732 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
733 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
734 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
738 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
739 #define EXPERIMENTAL_INPLACESCAN
740 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
742 #define DEBUG_RExC_seen() \
743 DEBUG_OPTIMISE_MORE_r({ \
744 PerlIO_printf(Perl_debug_log,"RExC_seen: "); \
746 if (RExC_seen & REG_ZERO_LEN_SEEN) \
747 PerlIO_printf(Perl_debug_log,"REG_ZERO_LEN_SEEN "); \
749 if (RExC_seen & REG_LOOKBEHIND_SEEN) \
750 PerlIO_printf(Perl_debug_log,"REG_LOOKBEHIND_SEEN "); \
752 if (RExC_seen & REG_GPOS_SEEN) \
753 PerlIO_printf(Perl_debug_log,"REG_GPOS_SEEN "); \
755 if (RExC_seen & REG_CANY_SEEN) \
756 PerlIO_printf(Perl_debug_log,"REG_CANY_SEEN "); \
758 if (RExC_seen & REG_RECURSE_SEEN) \
759 PerlIO_printf(Perl_debug_log,"REG_RECURSE_SEEN "); \
761 if (RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN) \
762 PerlIO_printf(Perl_debug_log,"REG_TOP_LEVEL_BRANCHES_SEEN "); \
764 if (RExC_seen & REG_VERBARG_SEEN) \
765 PerlIO_printf(Perl_debug_log,"REG_VERBARG_SEEN "); \
767 if (RExC_seen & REG_CUTGROUP_SEEN) \
768 PerlIO_printf(Perl_debug_log,"REG_CUTGROUP_SEEN "); \
770 if (RExC_seen & REG_RUN_ON_COMMENT_SEEN) \
771 PerlIO_printf(Perl_debug_log,"REG_RUN_ON_COMMENT_SEEN "); \
773 if (RExC_seen & REG_UNFOLDED_MULTI_SEEN) \
774 PerlIO_printf(Perl_debug_log,"REG_UNFOLDED_MULTI_SEEN "); \
776 if (RExC_seen & REG_GOSTART_SEEN) \
777 PerlIO_printf(Perl_debug_log,"REG_GOSTART_SEEN "); \
779 if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) \
780 PerlIO_printf(Perl_debug_log,"REG_UNBOUNDED_QUANTIFIER_SEEN "); \
782 PerlIO_printf(Perl_debug_log,"\n"); \
785 #define DEBUG_STUDYDATA(str,data,depth) \
786 DEBUG_OPTIMISE_MORE_r(if(data){ \
787 PerlIO_printf(Perl_debug_log, \
788 "%*s" str "Pos:%"IVdf"/%"IVdf \
789 " Flags: 0x%"UVXf" Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
790 (int)(depth)*2, "", \
791 (IV)((data)->pos_min), \
792 (IV)((data)->pos_delta), \
793 (UV)((data)->flags), \
794 (IV)((data)->whilem_c), \
795 (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
796 is_inf ? "INF " : "" \
798 if ((data)->last_found) \
799 PerlIO_printf(Perl_debug_log, \
800 "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
801 " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
802 SvPVX_const((data)->last_found), \
803 (IV)((data)->last_end), \
804 (IV)((data)->last_start_min), \
805 (IV)((data)->last_start_max), \
806 ((data)->longest && \
807 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
808 SvPVX_const((data)->longest_fixed), \
809 (IV)((data)->offset_fixed), \
810 ((data)->longest && \
811 (data)->longest==&((data)->longest_float)) ? "*" : "", \
812 SvPVX_const((data)->longest_float), \
813 (IV)((data)->offset_float_min), \
814 (IV)((data)->offset_float_max) \
816 PerlIO_printf(Perl_debug_log,"\n"); \
819 /* Mark that we cannot extend a found fixed substring at this point.
820 Update the longest found anchored substring and the longest found
821 floating substrings if needed. */
824 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data,
825 SSize_t *minlenp, int is_inf)
827 const STRLEN l = CHR_SVLEN(data->last_found);
828 const STRLEN old_l = CHR_SVLEN(*data->longest);
829 GET_RE_DEBUG_FLAGS_DECL;
831 PERL_ARGS_ASSERT_SCAN_COMMIT;
833 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
834 SvSetMagicSV(*data->longest, data->last_found);
835 if (*data->longest == data->longest_fixed) {
836 data->offset_fixed = l ? data->last_start_min : data->pos_min;
837 if (data->flags & SF_BEFORE_EOL)
839 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
841 data->flags &= ~SF_FIX_BEFORE_EOL;
842 data->minlen_fixed=minlenp;
843 data->lookbehind_fixed=0;
845 else { /* *data->longest == data->longest_float */
846 data->offset_float_min = l ? data->last_start_min : data->pos_min;
847 data->offset_float_max = (l
848 ? data->last_start_max
849 : (data->pos_delta == SSize_t_MAX
851 : data->pos_min + data->pos_delta));
853 || (STRLEN)data->offset_float_max > (STRLEN)SSize_t_MAX)
854 data->offset_float_max = SSize_t_MAX;
855 if (data->flags & SF_BEFORE_EOL)
857 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
859 data->flags &= ~SF_FL_BEFORE_EOL;
860 data->minlen_float=minlenp;
861 data->lookbehind_float=0;
864 SvCUR_set(data->last_found, 0);
866 SV * const sv = data->last_found;
867 if (SvUTF8(sv) && SvMAGICAL(sv)) {
868 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
874 data->flags &= ~SF_BEFORE_EOL;
875 DEBUG_STUDYDATA("commit: ",data,0);
878 /* An SSC is just a regnode_charclass_posix with an extra field: the inversion
879 * list that describes which code points it matches */
882 S_ssc_anything(pTHX_ regnode_ssc *ssc)
884 /* Set the SSC 'ssc' to match an empty string or any code point */
886 PERL_ARGS_ASSERT_SSC_ANYTHING;
888 assert(is_ANYOF_SYNTHETIC(ssc));
890 ssc->invlist = sv_2mortal(_new_invlist(2)); /* mortalize so won't leak */
891 _append_range_to_invlist(ssc->invlist, 0, UV_MAX);
892 ANYOF_FLAGS(ssc) |= ANYOF_EMPTY_STRING; /* Plus match empty string */
896 S_ssc_is_anything(pTHX_ const regnode_ssc *ssc)
898 /* Returns TRUE if the SSC 'ssc' can match the empty string and any code
899 * point; FALSE otherwise. Thus, this is used to see if using 'ssc' buys
900 * us anything: if the function returns TRUE, 'ssc' hasn't been restricted
901 * in any way, so there's no point in using it */
906 PERL_ARGS_ASSERT_SSC_IS_ANYTHING;
908 assert(is_ANYOF_SYNTHETIC(ssc));
910 if (! (ANYOF_FLAGS(ssc) & ANYOF_EMPTY_STRING)) {
914 /* See if the list consists solely of the range 0 - Infinity */
915 invlist_iterinit(ssc->invlist);
916 ret = invlist_iternext(ssc->invlist, &start, &end)
920 invlist_iterfinish(ssc->invlist);
926 /* If e.g., both \w and \W are set, matches everything */
927 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
929 for (i = 0; i < ANYOF_POSIXL_MAX; i += 2) {
930 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i+1)) {
940 S_ssc_init(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc)
942 /* Initializes the SSC 'ssc'. This includes setting it to match an empty
943 * string, any code point, or any posix class under locale */
945 PERL_ARGS_ASSERT_SSC_INIT;
947 Zero(ssc, 1, regnode_ssc);
948 set_ANYOF_SYNTHETIC(ssc);
949 ARG_SET(ssc, ANYOF_NONBITMAP_EMPTY);
952 /* If any portion of the regex is to operate under locale rules,
953 * initialization includes it. The reason this isn't done for all regexes
954 * is that the optimizer was written under the assumption that locale was
955 * all-or-nothing. Given the complexity and lack of documentation in the
956 * optimizer, and that there are inadequate test cases for locale, many
957 * parts of it may not work properly, it is safest to avoid locale unless
959 if (RExC_contains_locale) {
960 ANYOF_POSIXL_SETALL(ssc);
963 ANYOF_POSIXL_ZERO(ssc);
968 S_ssc_is_cp_posixl_init(pTHX_ const RExC_state_t *pRExC_state,
969 const regnode_ssc *ssc)
971 /* Returns TRUE if the SSC 'ssc' is in its initial state with regard only
972 * to the list of code points matched, and locale posix classes; hence does
973 * not check its flags) */
978 PERL_ARGS_ASSERT_SSC_IS_CP_POSIXL_INIT;
980 assert(is_ANYOF_SYNTHETIC(ssc));
982 invlist_iterinit(ssc->invlist);
983 ret = invlist_iternext(ssc->invlist, &start, &end)
987 invlist_iterfinish(ssc->invlist);
993 if (RExC_contains_locale && ! ANYOF_POSIXL_SSC_TEST_ALL_SET(ssc)) {
1001 S_get_ANYOF_cp_list_for_ssc(pTHX_ const RExC_state_t *pRExC_state,
1002 const regnode_charclass* const node)
1004 /* Returns a mortal inversion list defining which code points are matched
1005 * by 'node', which is of type ANYOF. Handles complementing the result if
1006 * appropriate. If some code points aren't knowable at this time, the
1007 * returned list must, and will, contain every code point that is a
1010 SV* invlist = sv_2mortal(_new_invlist(0));
1011 SV* only_utf8_locale_invlist = NULL;
1013 const U32 n = ARG(node);
1014 bool new_node_has_latin1 = FALSE;
1016 PERL_ARGS_ASSERT_GET_ANYOF_CP_LIST_FOR_SSC;
1018 /* Look at the data structure created by S_set_ANYOF_arg() */
1019 if (n != ANYOF_NONBITMAP_EMPTY) {
1020 SV * const rv = MUTABLE_SV(RExC_rxi->data->data[n]);
1021 AV * const av = MUTABLE_AV(SvRV(rv));
1022 SV **const ary = AvARRAY(av);
1023 assert(RExC_rxi->data->what[n] == 's');
1025 if (ary[1] && ary[1] != &PL_sv_undef) { /* Has compile-time swash */
1026 invlist = sv_2mortal(invlist_clone(_get_swash_invlist(ary[1])));
1028 else if (ary[0] && ary[0] != &PL_sv_undef) {
1030 /* Here, no compile-time swash, and there are things that won't be
1031 * known until runtime -- we have to assume it could be anything */
1032 return _add_range_to_invlist(invlist, 0, UV_MAX);
1034 else if (ary[3] && ary[3] != &PL_sv_undef) {
1036 /* Here no compile-time swash, and no run-time only data. Use the
1037 * node's inversion list */
1038 invlist = sv_2mortal(invlist_clone(ary[3]));
1041 /* Get the code points valid only under UTF-8 locales */
1042 if ((ANYOF_FLAGS(node) & ANYOF_LOC_FOLD)
1043 && ary[2] && ary[2] != &PL_sv_undef)
1045 only_utf8_locale_invlist = ary[2];
1049 /* An ANYOF node contains a bitmap for the first 256 code points, and an
1050 * inversion list for the others, but if there are code points that should
1051 * match only conditionally on the target string being UTF-8, those are
1052 * placed in the inversion list, and not the bitmap. Since there are
1053 * circumstances under which they could match, they are included in the
1054 * SSC. But if the ANYOF node is to be inverted, we have to exclude them
1055 * here, so that when we invert below, the end result actually does include
1056 * them. (Think about "\xe0" =~ /[^\xc0]/di;). We have to do this here
1057 * before we add the unconditionally matched code points */
1058 if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
1059 _invlist_intersection_complement_2nd(invlist,
1064 /* Add in the points from the bit map */
1065 for (i = 0; i < 256; i++) {
1066 if (ANYOF_BITMAP_TEST(node, i)) {
1067 invlist = add_cp_to_invlist(invlist, i);
1068 new_node_has_latin1 = TRUE;
1072 /* If this can match all upper Latin1 code points, have to add them
1074 if (ANYOF_FLAGS(node) & ANYOF_NON_UTF8_NON_ASCII_ALL) {
1075 _invlist_union(invlist, PL_UpperLatin1, &invlist);
1078 /* Similarly for these */
1079 if (ANYOF_FLAGS(node) & ANYOF_ABOVE_LATIN1_ALL) {
1080 invlist = _add_range_to_invlist(invlist, 256, UV_MAX);
1083 if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
1084 _invlist_invert(invlist);
1086 else if (new_node_has_latin1 && ANYOF_FLAGS(node) & ANYOF_LOC_FOLD) {
1088 /* Under /li, any 0-255 could fold to any other 0-255, depending on the
1089 * locale. We can skip this if there are no 0-255 at all. */
1090 _invlist_union(invlist, PL_Latin1, &invlist);
1093 /* Similarly add the UTF-8 locale possible matches. These have to be
1094 * deferred until after the non-UTF-8 locale ones are taken care of just
1095 * above, or it leads to wrong results under ANYOF_INVERT */
1096 if (only_utf8_locale_invlist) {
1097 _invlist_union_maybe_complement_2nd(invlist,
1098 only_utf8_locale_invlist,
1099 ANYOF_FLAGS(node) & ANYOF_INVERT,
1106 /* These two functions currently do the exact same thing */
1107 #define ssc_init_zero ssc_init
1109 #define ssc_add_cp(ssc, cp) ssc_add_range((ssc), (cp), (cp))
1110 #define ssc_match_all_cp(ssc) ssc_add_range(ssc, 0, UV_MAX)
1112 /* 'AND' a given class with another one. Can create false positives. 'ssc'
1113 * should not be inverted. 'and_with->flags & ANYOF_POSIXL' should be 0 if
1114 * 'and_with' is a regnode_charclass instead of a regnode_ssc. */
1117 S_ssc_and(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1118 const regnode_charclass *and_with)
1120 /* Accumulate into SSC 'ssc' its 'AND' with 'and_with', which is either
1121 * another SSC or a regular ANYOF class. Can create false positives. */
1126 PERL_ARGS_ASSERT_SSC_AND;
1128 assert(is_ANYOF_SYNTHETIC(ssc));
1130 /* 'and_with' is used as-is if it too is an SSC; otherwise have to extract
1131 * the code point inversion list and just the relevant flags */
1132 if (is_ANYOF_SYNTHETIC(and_with)) {
1133 anded_cp_list = ((regnode_ssc *)and_with)->invlist;
1134 anded_flags = ANYOF_FLAGS(and_with);
1136 /* XXX This is a kludge around what appears to be deficiencies in the
1137 * optimizer. If we make S_ssc_anything() add in the WARN_SUPER flag,
1138 * there are paths through the optimizer where it doesn't get weeded
1139 * out when it should. And if we don't make some extra provision for
1140 * it like the code just below, it doesn't get added when it should.
1141 * This solution is to add it only when AND'ing, which is here, and
1142 * only when what is being AND'ed is the pristine, original node
1143 * matching anything. Thus it is like adding it to ssc_anything() but
1144 * only when the result is to be AND'ed. Probably the same solution
1145 * could be adopted for the same problem we have with /l matching,
1146 * which is solved differently in S_ssc_init(), and that would lead to
1147 * fewer false positives than that solution has. But if this solution
1148 * creates bugs, the consequences are only that a warning isn't raised
1149 * that should be; while the consequences for having /l bugs is
1150 * incorrect matches */
1151 if (ssc_is_anything((regnode_ssc *)and_with)) {
1152 anded_flags |= ANYOF_WARN_SUPER;
1156 anded_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, and_with);
1157 anded_flags = ANYOF_FLAGS(and_with) & ANYOF_COMMON_FLAGS;
1160 ANYOF_FLAGS(ssc) &= anded_flags;
1162 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1163 * C2 is the list of code points in 'and-with'; P2, its posix classes.
1164 * 'and_with' may be inverted. When not inverted, we have the situation of
1166 * (C1 | P1) & (C2 | P2)
1167 * = (C1 & (C2 | P2)) | (P1 & (C2 | P2))
1168 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1169 * <= ((C1 & C2) | P2)) | ( P1 | (P1 & P2))
1170 * <= ((C1 & C2) | P1 | P2)
1171 * Alternatively, the last few steps could be:
1172 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1173 * <= ((C1 & C2) | C1 ) | ( C2 | (P1 & P2))
1174 * <= (C1 | C2 | (P1 & P2))
1175 * We favor the second approach if either P1 or P2 is non-empty. This is
1176 * because these components are a barrier to doing optimizations, as what
1177 * they match cannot be known until the moment of matching as they are
1178 * dependent on the current locale, 'AND"ing them likely will reduce or
1180 * But we can do better if we know that C1,P1 are in their initial state (a
1181 * frequent occurrence), each matching everything:
1182 * (<everything>) & (C2 | P2) = C2 | P2
1183 * Similarly, if C2,P2 are in their initial state (again a frequent
1184 * occurrence), the result is a no-op
1185 * (C1 | P1) & (<everything>) = C1 | P1
1188 * (C1 | P1) & ~(C2 | P2) = (C1 | P1) & (~C2 & ~P2)
1189 * = (C1 & (~C2 & ~P2)) | (P1 & (~C2 & ~P2))
1190 * <= (C1 & ~C2) | (P1 & ~P2)
1193 if ((ANYOF_FLAGS(and_with) & ANYOF_INVERT)
1194 && ! is_ANYOF_SYNTHETIC(and_with))
1198 ssc_intersection(ssc,
1200 FALSE /* Has already been inverted */
1203 /* If either P1 or P2 is empty, the intersection will be also; can skip
1205 if (! (ANYOF_FLAGS(and_with) & ANYOF_POSIXL)) {
1206 ANYOF_POSIXL_ZERO(ssc);
1208 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1210 /* Note that the Posix class component P from 'and_with' actually
1212 * P = Pa | Pb | ... | Pn
1213 * where each component is one posix class, such as in [\w\s].
1215 * ~P = ~(Pa | Pb | ... | Pn)
1216 * = ~Pa & ~Pb & ... & ~Pn
1217 * <= ~Pa | ~Pb | ... | ~Pn
1218 * The last is something we can easily calculate, but unfortunately
1219 * is likely to have many false positives. We could do better
1220 * in some (but certainly not all) instances if two classes in
1221 * P have known relationships. For example
1222 * :lower: <= :alpha: <= :alnum: <= \w <= :graph: <= :print:
1224 * :lower: & :print: = :lower:
1225 * And similarly for classes that must be disjoint. For example,
1226 * since \s and \w can have no elements in common based on rules in
1227 * the POSIX standard,
1228 * \w & ^\S = nothing
1229 * Unfortunately, some vendor locales do not meet the Posix
1230 * standard, in particular almost everything by Microsoft.
1231 * The loop below just changes e.g., \w into \W and vice versa */
1233 regnode_charclass_posixl temp;
1234 int add = 1; /* To calculate the index of the complement */
1236 ANYOF_POSIXL_ZERO(&temp);
1237 for (i = 0; i < ANYOF_MAX; i++) {
1239 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)
1240 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i + 1));
1242 if (ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)) {
1243 ANYOF_POSIXL_SET(&temp, i + add);
1245 add = 0 - add; /* 1 goes to -1; -1 goes to 1 */
1247 ANYOF_POSIXL_AND(&temp, ssc);
1249 } /* else ssc already has no posixes */
1250 } /* else: Not inverted. This routine is a no-op if 'and_with' is an SSC
1251 in its initial state */
1252 else if (! is_ANYOF_SYNTHETIC(and_with)
1253 || ! ssc_is_cp_posixl_init(pRExC_state, (regnode_ssc *)and_with))
1255 /* But if 'ssc' is in its initial state, the result is just 'and_with';
1256 * copy it over 'ssc' */
1257 if (ssc_is_cp_posixl_init(pRExC_state, ssc)) {
1258 if (is_ANYOF_SYNTHETIC(and_with)) {
1259 StructCopy(and_with, ssc, regnode_ssc);
1262 ssc->invlist = anded_cp_list;
1263 ANYOF_POSIXL_ZERO(ssc);
1264 if (ANYOF_FLAGS(and_with) & ANYOF_POSIXL) {
1265 ANYOF_POSIXL_OR((regnode_charclass_posixl*) and_with, ssc);
1269 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)
1270 || (ANYOF_FLAGS(and_with) & ANYOF_POSIXL))
1272 /* One or the other of P1, P2 is non-empty. */
1273 if (ANYOF_FLAGS(and_with) & ANYOF_POSIXL) {
1274 ANYOF_POSIXL_AND((regnode_charclass_posixl*) and_with, ssc);
1276 ssc_union(ssc, anded_cp_list, FALSE);
1278 else { /* P1 = P2 = empty */
1279 ssc_intersection(ssc, anded_cp_list, FALSE);
1285 S_ssc_or(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1286 const regnode_charclass *or_with)
1288 /* Accumulate into SSC 'ssc' its 'OR' with 'or_with', which is either
1289 * another SSC or a regular ANYOF class. Can create false positives if
1290 * 'or_with' is to be inverted. */
1295 PERL_ARGS_ASSERT_SSC_OR;
1297 assert(is_ANYOF_SYNTHETIC(ssc));
1299 /* 'or_with' is used as-is if it too is an SSC; otherwise have to extract
1300 * the code point inversion list and just the relevant flags */
1301 if (is_ANYOF_SYNTHETIC(or_with)) {
1302 ored_cp_list = ((regnode_ssc*) or_with)->invlist;
1303 ored_flags = ANYOF_FLAGS(or_with);
1306 ored_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, or_with);
1307 ored_flags = ANYOF_FLAGS(or_with) & ANYOF_COMMON_FLAGS;
1310 ANYOF_FLAGS(ssc) |= ored_flags;
1312 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1313 * C2 is the list of code points in 'or-with'; P2, its posix classes.
1314 * 'or_with' may be inverted. When not inverted, we have the simple
1315 * situation of computing:
1316 * (C1 | P1) | (C2 | P2) = (C1 | C2) | (P1 | P2)
1317 * If P1|P2 yields a situation with both a class and its complement are
1318 * set, like having both \w and \W, this matches all code points, and we
1319 * can delete these from the P component of the ssc going forward. XXX We
1320 * might be able to delete all the P components, but I (khw) am not certain
1321 * about this, and it is better to be safe.
1324 * (C1 | P1) | ~(C2 | P2) = (C1 | P1) | (~C2 & ~P2)
1325 * <= (C1 | P1) | ~C2
1326 * <= (C1 | ~C2) | P1
1327 * (which results in actually simpler code than the non-inverted case)
1330 if ((ANYOF_FLAGS(or_with) & ANYOF_INVERT)
1331 && ! is_ANYOF_SYNTHETIC(or_with))
1333 /* We ignore P2, leaving P1 going forward */
1334 } /* else Not inverted */
1335 else if (ANYOF_FLAGS(or_with) & ANYOF_POSIXL) {
1336 ANYOF_POSIXL_OR((regnode_charclass_posixl*)or_with, ssc);
1337 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1339 for (i = 0; i < ANYOF_MAX; i += 2) {
1340 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i + 1))
1342 ssc_match_all_cp(ssc);
1343 ANYOF_POSIXL_CLEAR(ssc, i);
1344 ANYOF_POSIXL_CLEAR(ssc, i+1);
1352 FALSE /* Already has been inverted */
1356 PERL_STATIC_INLINE void
1357 S_ssc_union(pTHX_ regnode_ssc *ssc, SV* const invlist, const bool invert2nd)
1359 PERL_ARGS_ASSERT_SSC_UNION;
1361 assert(is_ANYOF_SYNTHETIC(ssc));
1363 _invlist_union_maybe_complement_2nd(ssc->invlist,
1369 PERL_STATIC_INLINE void
1370 S_ssc_intersection(pTHX_ regnode_ssc *ssc,
1372 const bool invert2nd)
1374 PERL_ARGS_ASSERT_SSC_INTERSECTION;
1376 assert(is_ANYOF_SYNTHETIC(ssc));
1378 _invlist_intersection_maybe_complement_2nd(ssc->invlist,
1384 PERL_STATIC_INLINE void
1385 S_ssc_add_range(pTHX_ regnode_ssc *ssc, const UV start, const UV end)
1387 PERL_ARGS_ASSERT_SSC_ADD_RANGE;
1389 assert(is_ANYOF_SYNTHETIC(ssc));
1391 ssc->invlist = _add_range_to_invlist(ssc->invlist, start, end);
1394 PERL_STATIC_INLINE void
1395 S_ssc_cp_and(pTHX_ regnode_ssc *ssc, const UV cp)
1397 /* AND just the single code point 'cp' into the SSC 'ssc' */
1399 SV* cp_list = _new_invlist(2);
1401 PERL_ARGS_ASSERT_SSC_CP_AND;
1403 assert(is_ANYOF_SYNTHETIC(ssc));
1405 cp_list = add_cp_to_invlist(cp_list, cp);
1406 ssc_intersection(ssc, cp_list,
1407 FALSE /* Not inverted */
1409 SvREFCNT_dec_NN(cp_list);
1412 PERL_STATIC_INLINE void
1413 S_ssc_clear_locale(pTHX_ regnode_ssc *ssc)
1415 /* Set the SSC 'ssc' to not match any locale things */
1417 PERL_ARGS_ASSERT_SSC_CLEAR_LOCALE;
1419 assert(is_ANYOF_SYNTHETIC(ssc));
1421 ANYOF_POSIXL_ZERO(ssc);
1422 ANYOF_FLAGS(ssc) &= ~ANYOF_LOCALE_FLAGS;
1426 S_ssc_finalize(pTHX_ RExC_state_t *pRExC_state, regnode_ssc *ssc)
1428 /* The inversion list in the SSC is marked mortal; now we need a more
1429 * permanent copy, which is stored the same way that is done in a regular
1430 * ANYOF node, with the first 256 code points in a bit map */
1432 SV* invlist = invlist_clone(ssc->invlist);
1434 PERL_ARGS_ASSERT_SSC_FINALIZE;
1436 assert(is_ANYOF_SYNTHETIC(ssc));
1438 /* The code in this file assumes that all but these flags aren't relevant
1439 * to the SSC, except ANYOF_EMPTY_STRING, which should be cleared by the
1440 * time we reach here */
1441 assert(! (ANYOF_FLAGS(ssc) & ~ANYOF_COMMON_FLAGS));
1443 populate_ANYOF_from_invlist( (regnode *) ssc, &invlist);
1445 set_ANYOF_arg(pRExC_state, (regnode *) ssc, invlist,
1446 NULL, NULL, NULL, FALSE);
1448 /* Make sure is clone-safe */
1449 ssc->invlist = NULL;
1451 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1452 ANYOF_FLAGS(ssc) |= ANYOF_POSIXL;
1455 assert(! (ANYOF_FLAGS(ssc) & ANYOF_LOCALE_FLAGS) || RExC_contains_locale);
1458 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
1459 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
1460 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
1461 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list \
1462 ? (TRIE_LIST_CUR( idx ) - 1) \
1468 dump_trie(trie,widecharmap,revcharmap)
1469 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
1470 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
1472 These routines dump out a trie in a somewhat readable format.
1473 The _interim_ variants are used for debugging the interim
1474 tables that are used to generate the final compressed
1475 representation which is what dump_trie expects.
1477 Part of the reason for their existence is to provide a form
1478 of documentation as to how the different representations function.
1483 Dumps the final compressed table form of the trie to Perl_debug_log.
1484 Used for debugging make_trie().
1488 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
1489 AV *revcharmap, U32 depth)
1492 SV *sv=sv_newmortal();
1493 int colwidth= widecharmap ? 6 : 4;
1495 GET_RE_DEBUG_FLAGS_DECL;
1497 PERL_ARGS_ASSERT_DUMP_TRIE;
1499 PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
1500 (int)depth * 2 + 2,"",
1501 "Match","Base","Ofs" );
1503 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
1504 SV ** const tmp = av_fetch( revcharmap, state, 0);
1506 PerlIO_printf( Perl_debug_log, "%*s",
1508 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1509 PL_colors[0], PL_colors[1],
1510 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1511 PERL_PV_ESCAPE_FIRSTCHAR
1516 PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
1517 (int)depth * 2 + 2,"");
1519 for( state = 0 ; state < trie->uniquecharcount ; state++ )
1520 PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
1521 PerlIO_printf( Perl_debug_log, "\n");
1523 for( state = 1 ; state < trie->statecount ; state++ ) {
1524 const U32 base = trie->states[ state ].trans.base;
1526 PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|",
1527 (int)depth * 2 + 2,"", (UV)state);
1529 if ( trie->states[ state ].wordnum ) {
1530 PerlIO_printf( Perl_debug_log, " W%4X",
1531 trie->states[ state ].wordnum );
1533 PerlIO_printf( Perl_debug_log, "%6s", "" );
1536 PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
1541 while( ( base + ofs < trie->uniquecharcount ) ||
1542 ( base + ofs - trie->uniquecharcount < trie->lasttrans
1543 && trie->trans[ base + ofs - trie->uniquecharcount ].check
1547 PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
1549 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
1550 if ( ( base + ofs >= trie->uniquecharcount )
1551 && ( base + ofs - trie->uniquecharcount
1553 && trie->trans[ base + ofs
1554 - trie->uniquecharcount ].check == state )
1556 PerlIO_printf( Perl_debug_log, "%*"UVXf,
1558 (UV)trie->trans[ base + ofs
1559 - trie->uniquecharcount ].next );
1561 PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
1565 PerlIO_printf( Perl_debug_log, "]");
1568 PerlIO_printf( Perl_debug_log, "\n" );
1570 PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=",
1572 for (word=1; word <= trie->wordcount; word++) {
1573 PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
1574 (int)word, (int)(trie->wordinfo[word].prev),
1575 (int)(trie->wordinfo[word].len));
1577 PerlIO_printf(Perl_debug_log, "\n" );
1580 Dumps a fully constructed but uncompressed trie in list form.
1581 List tries normally only are used for construction when the number of
1582 possible chars (trie->uniquecharcount) is very high.
1583 Used for debugging make_trie().
1586 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
1587 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1591 SV *sv=sv_newmortal();
1592 int colwidth= widecharmap ? 6 : 4;
1593 GET_RE_DEBUG_FLAGS_DECL;
1595 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
1597 /* print out the table precompression. */
1598 PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
1599 (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
1600 "------:-----+-----------------\n" );
1602 for( state=1 ; state < next_alloc ; state ++ ) {
1605 PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
1606 (int)depth * 2 + 2,"", (UV)state );
1607 if ( ! trie->states[ state ].wordnum ) {
1608 PerlIO_printf( Perl_debug_log, "%5s| ","");
1610 PerlIO_printf( Perl_debug_log, "W%4x| ",
1611 trie->states[ state ].wordnum
1614 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
1615 SV ** const tmp = av_fetch( revcharmap,
1616 TRIE_LIST_ITEM(state,charid).forid, 0);
1618 PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
1620 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp),
1622 PL_colors[0], PL_colors[1],
1623 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
1624 | PERL_PV_ESCAPE_FIRSTCHAR
1626 TRIE_LIST_ITEM(state,charid).forid,
1627 (UV)TRIE_LIST_ITEM(state,charid).newstate
1630 PerlIO_printf(Perl_debug_log, "\n%*s| ",
1631 (int)((depth * 2) + 14), "");
1634 PerlIO_printf( Perl_debug_log, "\n");
1639 Dumps a fully constructed but uncompressed trie in table form.
1640 This is the normal DFA style state transition table, with a few
1641 twists to facilitate compression later.
1642 Used for debugging make_trie().
1645 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
1646 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1651 SV *sv=sv_newmortal();
1652 int colwidth= widecharmap ? 6 : 4;
1653 GET_RE_DEBUG_FLAGS_DECL;
1655 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
1658 print out the table precompression so that we can do a visual check
1659 that they are identical.
1662 PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
1664 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1665 SV ** const tmp = av_fetch( revcharmap, charid, 0);
1667 PerlIO_printf( Perl_debug_log, "%*s",
1669 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1670 PL_colors[0], PL_colors[1],
1671 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1672 PERL_PV_ESCAPE_FIRSTCHAR
1678 PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
1680 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
1681 PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
1684 PerlIO_printf( Perl_debug_log, "\n" );
1686 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
1688 PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
1689 (int)depth * 2 + 2,"",
1690 (UV)TRIE_NODENUM( state ) );
1692 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1693 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
1695 PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
1697 PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
1699 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
1700 PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n",
1701 (UV)trie->trans[ state ].check );
1703 PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n",
1704 (UV)trie->trans[ state ].check,
1705 trie->states[ TRIE_NODENUM( state ) ].wordnum );
1713 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
1714 startbranch: the first branch in the whole branch sequence
1715 first : start branch of sequence of branch-exact nodes.
1716 May be the same as startbranch
1717 last : Thing following the last branch.
1718 May be the same as tail.
1719 tail : item following the branch sequence
1720 count : words in the sequence
1721 flags : currently the OP() type we will be building one of /EXACT(|F|Fl)/
1722 depth : indent depth
1724 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
1726 A trie is an N'ary tree where the branches are determined by digital
1727 decomposition of the key. IE, at the root node you look up the 1st character and
1728 follow that branch repeat until you find the end of the branches. Nodes can be
1729 marked as "accepting" meaning they represent a complete word. Eg:
1733 would convert into the following structure. Numbers represent states, letters
1734 following numbers represent valid transitions on the letter from that state, if
1735 the number is in square brackets it represents an accepting state, otherwise it
1736 will be in parenthesis.
1738 +-h->+-e->[3]-+-r->(8)-+-s->[9]
1742 (1) +-i->(6)-+-s->[7]
1744 +-s->(3)-+-h->(4)-+-e->[5]
1746 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
1748 This shows that when matching against the string 'hers' we will begin at state 1
1749 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
1750 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
1751 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
1752 single traverse. We store a mapping from accepting to state to which word was
1753 matched, and then when we have multiple possibilities we try to complete the
1754 rest of the regex in the order in which they occured in the alternation.
1756 The only prior NFA like behaviour that would be changed by the TRIE support is
1757 the silent ignoring of duplicate alternations which are of the form:
1759 / (DUPE|DUPE) X? (?{ ... }) Y /x
1761 Thus EVAL blocks following a trie may be called a different number of times with
1762 and without the optimisation. With the optimisations dupes will be silently
1763 ignored. This inconsistent behaviour of EVAL type nodes is well established as
1764 the following demonstrates:
1766 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
1768 which prints out 'word' three times, but
1770 'words'=~/(word|word|word)(?{ print $1 })S/
1772 which doesnt print it out at all. This is due to other optimisations kicking in.
1774 Example of what happens on a structural level:
1776 The regexp /(ac|ad|ab)+/ will produce the following debug output:
1778 1: CURLYM[1] {1,32767}(18)
1789 This would be optimizable with startbranch=5, first=5, last=16, tail=16
1790 and should turn into:
1792 1: CURLYM[1] {1,32767}(18)
1794 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
1802 Cases where tail != last would be like /(?foo|bar)baz/:
1812 which would be optimizable with startbranch=1, first=1, last=7, tail=8
1813 and would end up looking like:
1816 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
1823 d = uvchr_to_utf8_flags(d, uv, 0);
1825 is the recommended Unicode-aware way of saying
1830 #define TRIE_STORE_REVCHAR(val) \
1833 SV *zlopp = newSV(7); /* XXX: optimize me */ \
1834 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
1835 unsigned const char *const kapow = uvchr_to_utf8(flrbbbbb, val); \
1836 SvCUR_set(zlopp, kapow - flrbbbbb); \
1839 av_push(revcharmap, zlopp); \
1841 char ooooff = (char)val; \
1842 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
1846 /* This gets the next character from the input, folding it if not already
1848 #define TRIE_READ_CHAR STMT_START { \
1851 /* if it is UTF then it is either already folded, or does not need \
1853 uvc = valid_utf8_to_uvchr( (const U8*) uc, &len); \
1855 else if (folder == PL_fold_latin1) { \
1856 /* This folder implies Unicode rules, which in the range expressible \
1857 * by not UTF is the lower case, with the two exceptions, one of \
1858 * which should have been taken care of before calling this */ \
1859 assert(*uc != LATIN_SMALL_LETTER_SHARP_S); \
1860 uvc = toLOWER_L1(*uc); \
1861 if (UNLIKELY(uvc == MICRO_SIGN)) uvc = GREEK_SMALL_LETTER_MU; \
1864 /* raw data, will be folded later if needed */ \
1872 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
1873 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
1874 U32 ging = TRIE_LIST_LEN( state ) *= 2; \
1875 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
1877 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
1878 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
1879 TRIE_LIST_CUR( state )++; \
1882 #define TRIE_LIST_NEW(state) STMT_START { \
1883 Newxz( trie->states[ state ].trans.list, \
1884 4, reg_trie_trans_le ); \
1885 TRIE_LIST_CUR( state ) = 1; \
1886 TRIE_LIST_LEN( state ) = 4; \
1889 #define TRIE_HANDLE_WORD(state) STMT_START { \
1890 U16 dupe= trie->states[ state ].wordnum; \
1891 regnode * const noper_next = regnext( noper ); \
1894 /* store the word for dumping */ \
1896 if (OP(noper) != NOTHING) \
1897 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
1899 tmp = newSVpvn_utf8( "", 0, UTF ); \
1900 av_push( trie_words, tmp ); \
1904 trie->wordinfo[curword].prev = 0; \
1905 trie->wordinfo[curword].len = wordlen; \
1906 trie->wordinfo[curword].accept = state; \
1908 if ( noper_next < tail ) { \
1910 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, \
1912 trie->jump[curword] = (U16)(noper_next - convert); \
1914 jumper = noper_next; \
1916 nextbranch= regnext(cur); \
1920 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
1921 /* chain, so that when the bits of chain are later */\
1922 /* linked together, the dups appear in the chain */\
1923 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
1924 trie->wordinfo[dupe].prev = curword; \
1926 /* we haven't inserted this word yet. */ \
1927 trie->states[ state ].wordnum = curword; \
1932 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
1933 ( ( base + charid >= ucharcount \
1934 && base + charid < ubound \
1935 && state == trie->trans[ base - ucharcount + charid ].check \
1936 && trie->trans[ base - ucharcount + charid ].next ) \
1937 ? trie->trans[ base - ucharcount + charid ].next \
1938 : ( state==1 ? special : 0 ) \
1942 #define MADE_JUMP_TRIE 2
1943 #define MADE_EXACT_TRIE 4
1946 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch,
1947 regnode *first, regnode *last, regnode *tail,
1948 U32 word_count, U32 flags, U32 depth)
1951 /* first pass, loop through and scan words */
1952 reg_trie_data *trie;
1953 HV *widecharmap = NULL;
1954 AV *revcharmap = newAV();
1960 regnode *jumper = NULL;
1961 regnode *nextbranch = NULL;
1962 regnode *convert = NULL;
1963 U32 *prev_states; /* temp array mapping each state to previous one */
1964 /* we just use folder as a flag in utf8 */
1965 const U8 * folder = NULL;
1968 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tuuu"));
1969 AV *trie_words = NULL;
1970 /* along with revcharmap, this only used during construction but both are
1971 * useful during debugging so we store them in the struct when debugging.
1974 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tu"));
1975 STRLEN trie_charcount=0;
1977 SV *re_trie_maxbuff;
1978 GET_RE_DEBUG_FLAGS_DECL;
1980 PERL_ARGS_ASSERT_MAKE_TRIE;
1982 PERL_UNUSED_ARG(depth);
1989 case EXACTFU: folder = PL_fold_latin1; break;
1990 case EXACTF: folder = PL_fold; break;
1991 default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
1994 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
1996 trie->startstate = 1;
1997 trie->wordcount = word_count;
1998 RExC_rxi->data->data[ data_slot ] = (void*)trie;
1999 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
2001 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
2002 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
2003 trie->wordcount+1, sizeof(reg_trie_wordinfo));
2006 trie_words = newAV();
2009 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
2010 if (!SvIOK(re_trie_maxbuff)) {
2011 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
2013 DEBUG_TRIE_COMPILE_r({
2014 PerlIO_printf( Perl_debug_log,
2015 "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
2016 (int)depth * 2 + 2, "",
2017 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
2018 REG_NODE_NUM(last), REG_NODE_NUM(tail), (int)depth);
2021 /* Find the node we are going to overwrite */
2022 if ( first == startbranch && OP( last ) != BRANCH ) {
2023 /* whole branch chain */
2026 /* branch sub-chain */
2027 convert = NEXTOPER( first );
2030 /* -- First loop and Setup --
2032 We first traverse the branches and scan each word to determine if it
2033 contains widechars, and how many unique chars there are, this is
2034 important as we have to build a table with at least as many columns as we
2037 We use an array of integers to represent the character codes 0..255
2038 (trie->charmap) and we use a an HV* to store Unicode characters. We use
2039 the native representation of the character value as the key and IV's for
2042 *TODO* If we keep track of how many times each character is used we can
2043 remap the columns so that the table compression later on is more
2044 efficient in terms of memory by ensuring the most common value is in the
2045 middle and the least common are on the outside. IMO this would be better
2046 than a most to least common mapping as theres a decent chance the most
2047 common letter will share a node with the least common, meaning the node
2048 will not be compressible. With a middle is most common approach the worst
2049 case is when we have the least common nodes twice.
2053 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2054 regnode *noper = NEXTOPER( cur );
2055 const U8 *uc = (U8*)STRING( noper );
2056 const U8 *e = uc + STR_LEN( noper );
2058 U32 wordlen = 0; /* required init */
2059 STRLEN minbytes = 0;
2060 STRLEN maxbytes = 0;
2061 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the
2064 if (OP(noper) == NOTHING) {
2065 regnode *noper_next= regnext(noper);
2066 if (noper_next != tail && OP(noper_next) == flags) {
2068 uc= (U8*)STRING(noper);
2069 e= uc + STR_LEN(noper);
2070 trie->minlen= STR_LEN(noper);
2077 if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
2078 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
2079 regardless of encoding */
2080 if (OP( noper ) == EXACTFU_SS) {
2081 /* false positives are ok, so just set this */
2082 TRIE_BITMAP_SET(trie, LATIN_SMALL_LETTER_SHARP_S);
2085 for ( ; uc < e ; uc += len ) {
2086 TRIE_CHARCOUNT(trie)++;
2089 /* Acummulate to the current values, the range in the number of
2090 * bytes that this character could match. The max is presumed to
2091 * be the same as the folded input (which TRIE_READ_CHAR returns),
2092 * except that when this is not in UTF-8, it could be matched
2093 * against a string which is UTF-8, and the variant characters
2094 * could be 2 bytes instead of the 1 here. Likewise, for the
2095 * minimum number of bytes when not folded. When folding, the min
2096 * is assumed to be 1 byte could fold to match the single character
2097 * here, or in the case of a multi-char fold, 1 byte can fold to
2098 * the whole sequence. 'foldlen' is used to denote whether we are
2099 * in such a sequence, skipping the min setting if so. XXX TODO
2100 * Use the exact list of what folds to each character, from
2101 * PL_utf8_foldclosures */
2103 maxbytes += UTF8SKIP(uc);
2105 /* A non-UTF-8 string could be 1 byte to match our 2 */
2106 minbytes += (UTF8_IS_DOWNGRADEABLE_START(*uc))
2112 foldlen -= UTF8SKIP(uc);
2115 foldlen = is_MULTI_CHAR_FOLD_utf8_safe(uc, e);
2121 maxbytes += (UNI_IS_INVARIANT(*uc))
2132 foldlen = is_MULTI_CHAR_FOLD_latin1_safe(uc, e);
2139 U8 folded= folder[ (U8) uvc ];
2140 if ( !trie->charmap[ folded ] ) {
2141 trie->charmap[ folded ]=( ++trie->uniquecharcount );
2142 TRIE_STORE_REVCHAR( folded );
2145 if ( !trie->charmap[ uvc ] ) {
2146 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
2147 TRIE_STORE_REVCHAR( uvc );
2150 /* store the codepoint in the bitmap, and its folded
2152 TRIE_BITMAP_SET(trie, uvc);
2154 /* store the folded codepoint */
2155 if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);
2158 /* store first byte of utf8 representation of
2159 variant codepoints */
2160 if (! UVCHR_IS_INVARIANT(uvc)) {
2161 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
2164 set_bit = 0; /* We've done our bit :-) */
2169 widecharmap = newHV();
2171 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
2174 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
2176 if ( !SvTRUE( *svpp ) ) {
2177 sv_setiv( *svpp, ++trie->uniquecharcount );
2178 TRIE_STORE_REVCHAR(uvc);
2182 if( cur == first ) {
2183 trie->minlen = minbytes;
2184 trie->maxlen = maxbytes;
2185 } else if (minbytes < trie->minlen) {
2186 trie->minlen = minbytes;
2187 } else if (maxbytes > trie->maxlen) {
2188 trie->maxlen = maxbytes;
2190 } /* end first pass */
2191 DEBUG_TRIE_COMPILE_r(
2192 PerlIO_printf( Perl_debug_log,
2193 "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
2194 (int)depth * 2 + 2,"",
2195 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
2196 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
2197 (int)trie->minlen, (int)trie->maxlen )
2201 We now know what we are dealing with in terms of unique chars and
2202 string sizes so we can calculate how much memory a naive
2203 representation using a flat table will take. If it's over a reasonable
2204 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
2205 conservative but potentially much slower representation using an array
2208 At the end we convert both representations into the same compressed
2209 form that will be used in regexec.c for matching with. The latter
2210 is a form that cannot be used to construct with but has memory
2211 properties similar to the list form and access properties similar
2212 to the table form making it both suitable for fast searches and
2213 small enough that its feasable to store for the duration of a program.
2215 See the comment in the code where the compressed table is produced
2216 inplace from the flat tabe representation for an explanation of how
2217 the compression works.
2222 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
2225 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1)
2226 > SvIV(re_trie_maxbuff) )
2229 Second Pass -- Array Of Lists Representation
2231 Each state will be represented by a list of charid:state records
2232 (reg_trie_trans_le) the first such element holds the CUR and LEN
2233 points of the allocated array. (See defines above).
2235 We build the initial structure using the lists, and then convert
2236 it into the compressed table form which allows faster lookups
2237 (but cant be modified once converted).
2240 STRLEN transcount = 1;
2242 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
2243 "%*sCompiling trie using list compiler\n",
2244 (int)depth * 2 + 2, ""));
2246 trie->states = (reg_trie_state *)
2247 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2248 sizeof(reg_trie_state) );
2252 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2254 regnode *noper = NEXTOPER( cur );
2255 U8 *uc = (U8*)STRING( noper );
2256 const U8 *e = uc + STR_LEN( noper );
2257 U32 state = 1; /* required init */
2258 U16 charid = 0; /* sanity init */
2259 U32 wordlen = 0; /* required init */
2261 if (OP(noper) == NOTHING) {
2262 regnode *noper_next= regnext(noper);
2263 if (noper_next != tail && OP(noper_next) == flags) {
2265 uc= (U8*)STRING(noper);
2266 e= uc + STR_LEN(noper);
2270 if (OP(noper) != NOTHING) {
2271 for ( ; uc < e ; uc += len ) {
2276 charid = trie->charmap[ uvc ];
2278 SV** const svpp = hv_fetch( widecharmap,
2285 charid=(U16)SvIV( *svpp );
2288 /* charid is now 0 if we dont know the char read, or
2289 * nonzero if we do */
2296 if ( !trie->states[ state ].trans.list ) {
2297 TRIE_LIST_NEW( state );
2300 check <= TRIE_LIST_USED( state );
2303 if ( TRIE_LIST_ITEM( state, check ).forid
2306 newstate = TRIE_LIST_ITEM( state, check ).newstate;
2311 newstate = next_alloc++;
2312 prev_states[newstate] = state;
2313 TRIE_LIST_PUSH( state, charid, newstate );
2318 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
2322 TRIE_HANDLE_WORD(state);
2324 } /* end second pass */
2326 /* next alloc is the NEXT state to be allocated */
2327 trie->statecount = next_alloc;
2328 trie->states = (reg_trie_state *)
2329 PerlMemShared_realloc( trie->states,
2331 * sizeof(reg_trie_state) );
2333 /* and now dump it out before we compress it */
2334 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
2335 revcharmap, next_alloc,
2339 trie->trans = (reg_trie_trans *)
2340 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
2347 for( state=1 ; state < next_alloc ; state ++ ) {
2351 DEBUG_TRIE_COMPILE_MORE_r(
2352 PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
2356 if (trie->states[state].trans.list) {
2357 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
2361 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
2362 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
2363 if ( forid < minid ) {
2365 } else if ( forid > maxid ) {
2369 if ( transcount < tp + maxid - minid + 1) {
2371 trie->trans = (reg_trie_trans *)
2372 PerlMemShared_realloc( trie->trans,
2374 * sizeof(reg_trie_trans) );
2375 Zero( trie->trans + (transcount / 2),
2379 base = trie->uniquecharcount + tp - minid;
2380 if ( maxid == minid ) {
2382 for ( ; zp < tp ; zp++ ) {
2383 if ( ! trie->trans[ zp ].next ) {
2384 base = trie->uniquecharcount + zp - minid;
2385 trie->trans[ zp ].next = TRIE_LIST_ITEM( state,
2387 trie->trans[ zp ].check = state;
2393 trie->trans[ tp ].next = TRIE_LIST_ITEM( state,
2395 trie->trans[ tp ].check = state;
2400 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
2401 const U32 tid = base
2402 - trie->uniquecharcount
2403 + TRIE_LIST_ITEM( state, idx ).forid;
2404 trie->trans[ tid ].next = TRIE_LIST_ITEM( state,
2406 trie->trans[ tid ].check = state;
2408 tp += ( maxid - minid + 1 );
2410 Safefree(trie->states[ state ].trans.list);
2413 DEBUG_TRIE_COMPILE_MORE_r(
2414 PerlIO_printf( Perl_debug_log, " base: %d\n",base);
2417 trie->states[ state ].trans.base=base;
2419 trie->lasttrans = tp + 1;
2423 Second Pass -- Flat Table Representation.
2425 we dont use the 0 slot of either trans[] or states[] so we add 1 to
2426 each. We know that we will need Charcount+1 trans at most to store
2427 the data (one row per char at worst case) So we preallocate both
2428 structures assuming worst case.
2430 We then construct the trie using only the .next slots of the entry
2433 We use the .check field of the first entry of the node temporarily
2434 to make compression both faster and easier by keeping track of how
2435 many non zero fields are in the node.
2437 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
2440 There are two terms at use here: state as a TRIE_NODEIDX() which is
2441 a number representing the first entry of the node, and state as a
2442 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1)
2443 and TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3)
2444 if there are 2 entrys per node. eg:
2452 The table is internally in the right hand, idx form. However as we
2453 also have to deal with the states array which is indexed by nodenum
2454 we have to use TRIE_NODENUM() to convert.
2457 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
2458 "%*sCompiling trie using table compiler\n",
2459 (int)depth * 2 + 2, ""));
2461 trie->trans = (reg_trie_trans *)
2462 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
2463 * trie->uniquecharcount + 1,
2464 sizeof(reg_trie_trans) );
2465 trie->states = (reg_trie_state *)
2466 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2467 sizeof(reg_trie_state) );
2468 next_alloc = trie->uniquecharcount + 1;
2471 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2473 regnode *noper = NEXTOPER( cur );
2474 const U8 *uc = (U8*)STRING( noper );
2475 const U8 *e = uc + STR_LEN( noper );
2477 U32 state = 1; /* required init */
2479 U16 charid = 0; /* sanity init */
2480 U32 accept_state = 0; /* sanity init */
2482 U32 wordlen = 0; /* required init */
2484 if (OP(noper) == NOTHING) {
2485 regnode *noper_next= regnext(noper);
2486 if (noper_next != tail && OP(noper_next) == flags) {
2488 uc= (U8*)STRING(noper);
2489 e= uc + STR_LEN(noper);
2493 if ( OP(noper) != NOTHING ) {
2494 for ( ; uc < e ; uc += len ) {
2499 charid = trie->charmap[ uvc ];
2501 SV* const * const svpp = hv_fetch( widecharmap,
2505 charid = svpp ? (U16)SvIV(*svpp) : 0;
2509 if ( !trie->trans[ state + charid ].next ) {
2510 trie->trans[ state + charid ].next = next_alloc;
2511 trie->trans[ state ].check++;
2512 prev_states[TRIE_NODENUM(next_alloc)]
2513 = TRIE_NODENUM(state);
2514 next_alloc += trie->uniquecharcount;
2516 state = trie->trans[ state + charid ].next;
2518 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
2520 /* charid is now 0 if we dont know the char read, or
2521 * nonzero if we do */
2524 accept_state = TRIE_NODENUM( state );
2525 TRIE_HANDLE_WORD(accept_state);
2527 } /* end second pass */
2529 /* and now dump it out before we compress it */
2530 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
2532 next_alloc, depth+1));
2536 * Inplace compress the table.*
2538 For sparse data sets the table constructed by the trie algorithm will
2539 be mostly 0/FAIL transitions or to put it another way mostly empty.
2540 (Note that leaf nodes will not contain any transitions.)
2542 This algorithm compresses the tables by eliminating most such
2543 transitions, at the cost of a modest bit of extra work during lookup:
2545 - Each states[] entry contains a .base field which indicates the
2546 index in the state[] array wheres its transition data is stored.
2548 - If .base is 0 there are no valid transitions from that node.
2550 - If .base is nonzero then charid is added to it to find an entry in
2553 -If trans[states[state].base+charid].check!=state then the
2554 transition is taken to be a 0/Fail transition. Thus if there are fail
2555 transitions at the front of the node then the .base offset will point
2556 somewhere inside the previous nodes data (or maybe even into a node
2557 even earlier), but the .check field determines if the transition is
2561 The following process inplace converts the table to the compressed
2562 table: We first do not compress the root node 1,and mark all its
2563 .check pointers as 1 and set its .base pointer as 1 as well. This
2564 allows us to do a DFA construction from the compressed table later,
2565 and ensures that any .base pointers we calculate later are greater
2568 - We set 'pos' to indicate the first entry of the second node.
2570 - We then iterate over the columns of the node, finding the first and
2571 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
2572 and set the .check pointers accordingly, and advance pos
2573 appropriately and repreat for the next node. Note that when we copy
2574 the next pointers we have to convert them from the original
2575 NODEIDX form to NODENUM form as the former is not valid post
2578 - If a node has no transitions used we mark its base as 0 and do not
2579 advance the pos pointer.
2581 - If a node only has one transition we use a second pointer into the
2582 structure to fill in allocated fail transitions from other states.
2583 This pointer is independent of the main pointer and scans forward
2584 looking for null transitions that are allocated to a state. When it
2585 finds one it writes the single transition into the "hole". If the
2586 pointer doesnt find one the single transition is appended as normal.
2588 - Once compressed we can Renew/realloc the structures to release the
2591 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
2592 specifically Fig 3.47 and the associated pseudocode.
2596 const U32 laststate = TRIE_NODENUM( next_alloc );
2599 trie->statecount = laststate;
2601 for ( state = 1 ; state < laststate ; state++ ) {
2603 const U32 stateidx = TRIE_NODEIDX( state );
2604 const U32 o_used = trie->trans[ stateidx ].check;
2605 U32 used = trie->trans[ stateidx ].check;
2606 trie->trans[ stateidx ].check = 0;
2609 used && charid < trie->uniquecharcount;
2612 if ( flag || trie->trans[ stateidx + charid ].next ) {
2613 if ( trie->trans[ stateidx + charid ].next ) {
2615 for ( ; zp < pos ; zp++ ) {
2616 if ( ! trie->trans[ zp ].next ) {
2620 trie->states[ state ].trans.base
2622 + trie->uniquecharcount
2624 trie->trans[ zp ].next
2625 = SAFE_TRIE_NODENUM( trie->trans[ stateidx
2627 trie->trans[ zp ].check = state;
2628 if ( ++zp > pos ) pos = zp;
2635 trie->states[ state ].trans.base
2636 = pos + trie->uniquecharcount - charid ;
2638 trie->trans[ pos ].next
2639 = SAFE_TRIE_NODENUM(
2640 trie->trans[ stateidx + charid ].next );
2641 trie->trans[ pos ].check = state;
2646 trie->lasttrans = pos + 1;
2647 trie->states = (reg_trie_state *)
2648 PerlMemShared_realloc( trie->states, laststate
2649 * sizeof(reg_trie_state) );
2650 DEBUG_TRIE_COMPILE_MORE_r(
2651 PerlIO_printf( Perl_debug_log,
2652 "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
2653 (int)depth * 2 + 2,"",
2654 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount
2658 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
2661 } /* end table compress */
2663 DEBUG_TRIE_COMPILE_MORE_r(
2664 PerlIO_printf(Perl_debug_log,
2665 "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
2666 (int)depth * 2 + 2, "",
2667 (UV)trie->statecount,
2668 (UV)trie->lasttrans)
2670 /* resize the trans array to remove unused space */
2671 trie->trans = (reg_trie_trans *)
2672 PerlMemShared_realloc( trie->trans, trie->lasttrans
2673 * sizeof(reg_trie_trans) );
2675 { /* Modify the program and insert the new TRIE node */
2676 U8 nodetype =(U8)(flags & 0xFF);
2680 regnode *optimize = NULL;
2681 #ifdef RE_TRACK_PATTERN_OFFSETS
2684 U32 mjd_nodelen = 0;
2685 #endif /* RE_TRACK_PATTERN_OFFSETS */
2686 #endif /* DEBUGGING */
2688 This means we convert either the first branch or the first Exact,
2689 depending on whether the thing following (in 'last') is a branch
2690 or not and whther first is the startbranch (ie is it a sub part of
2691 the alternation or is it the whole thing.)
2692 Assuming its a sub part we convert the EXACT otherwise we convert
2693 the whole branch sequence, including the first.
2695 /* Find the node we are going to overwrite */
2696 if ( first != startbranch || OP( last ) == BRANCH ) {
2697 /* branch sub-chain */
2698 NEXT_OFF( first ) = (U16)(last - first);
2699 #ifdef RE_TRACK_PATTERN_OFFSETS
2701 mjd_offset= Node_Offset((convert));
2702 mjd_nodelen= Node_Length((convert));
2705 /* whole branch chain */
2707 #ifdef RE_TRACK_PATTERN_OFFSETS
2710 const regnode *nop = NEXTOPER( convert );
2711 mjd_offset= Node_Offset((nop));
2712 mjd_nodelen= Node_Length((nop));
2716 PerlIO_printf(Perl_debug_log,
2717 "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
2718 (int)depth * 2 + 2, "",
2719 (UV)mjd_offset, (UV)mjd_nodelen)
2722 /* But first we check to see if there is a common prefix we can
2723 split out as an EXACT and put in front of the TRIE node. */
2724 trie->startstate= 1;
2725 if ( trie->bitmap && !widecharmap && !trie->jump ) {
2727 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
2731 const U32 base = trie->states[ state ].trans.base;
2733 if ( trie->states[state].wordnum )
2736 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2737 if ( ( base + ofs >= trie->uniquecharcount ) &&
2738 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
2739 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
2741 if ( ++count > 1 ) {
2742 SV **tmp = av_fetch( revcharmap, ofs, 0);
2743 const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
2744 if ( state == 1 ) break;
2746 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
2748 PerlIO_printf(Perl_debug_log,
2749 "%*sNew Start State=%"UVuf" Class: [",
2750 (int)depth * 2 + 2, "",
2753 SV ** const tmp = av_fetch( revcharmap, idx, 0);
2754 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
2756 TRIE_BITMAP_SET(trie,*ch);
2758 TRIE_BITMAP_SET(trie, folder[ *ch ]);
2760 PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
2764 TRIE_BITMAP_SET(trie,*ch);
2766 TRIE_BITMAP_SET(trie,folder[ *ch ]);
2767 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
2773 SV **tmp = av_fetch( revcharmap, idx, 0);
2775 char *ch = SvPV( *tmp, len );
2777 SV *sv=sv_newmortal();
2778 PerlIO_printf( Perl_debug_log,
2779 "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
2780 (int)depth * 2 + 2, "",
2782 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
2783 PL_colors[0], PL_colors[1],
2784 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2785 PERL_PV_ESCAPE_FIRSTCHAR
2790 OP( convert ) = nodetype;
2791 str=STRING(convert);
2794 STR_LEN(convert) += len;
2800 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
2805 trie->prefixlen = (state-1);
2807 regnode *n = convert+NODE_SZ_STR(convert);
2808 NEXT_OFF(convert) = NODE_SZ_STR(convert);
2809 trie->startstate = state;
2810 trie->minlen -= (state - 1);
2811 trie->maxlen -= (state - 1);
2813 /* At least the UNICOS C compiler choked on this
2814 * being argument to DEBUG_r(), so let's just have
2817 #ifdef PERL_EXT_RE_BUILD
2823 regnode *fix = convert;
2824 U32 word = trie->wordcount;
2826 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
2827 while( ++fix < n ) {
2828 Set_Node_Offset_Length(fix, 0, 0);
2831 SV ** const tmp = av_fetch( trie_words, word, 0 );
2833 if ( STR_LEN(convert) <= SvCUR(*tmp) )
2834 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
2836 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
2844 NEXT_OFF(convert) = (U16)(tail - convert);
2845 DEBUG_r(optimize= n);
2851 if ( trie->maxlen ) {
2852 NEXT_OFF( convert ) = (U16)(tail - convert);
2853 ARG_SET( convert, data_slot );
2854 /* Store the offset to the first unabsorbed branch in
2855 jump[0], which is otherwise unused by the jump logic.
2856 We use this when dumping a trie and during optimisation. */
2858 trie->jump[0] = (U16)(nextbranch - convert);
2860 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
2861 * and there is a bitmap
2862 * and the first "jump target" node we found leaves enough room
2863 * then convert the TRIE node into a TRIEC node, with the bitmap
2864 * embedded inline in the opcode - this is hypothetically faster.
2866 if ( !trie->states[trie->startstate].wordnum
2868 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
2870 OP( convert ) = TRIEC;
2871 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
2872 PerlMemShared_free(trie->bitmap);
2875 OP( convert ) = TRIE;
2877 /* store the type in the flags */
2878 convert->flags = nodetype;
2882 + regarglen[ OP( convert ) ];
2884 /* XXX We really should free up the resource in trie now,
2885 as we won't use them - (which resources?) dmq */
2887 /* needed for dumping*/
2888 DEBUG_r(if (optimize) {
2889 regnode *opt = convert;
2891 while ( ++opt < optimize) {
2892 Set_Node_Offset_Length(opt,0,0);
2895 Try to clean up some of the debris left after the
2898 while( optimize < jumper ) {
2899 mjd_nodelen += Node_Length((optimize));
2900 OP( optimize ) = OPTIMIZED;
2901 Set_Node_Offset_Length(optimize,0,0);
2904 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
2906 } /* end node insert */
2908 /* Finish populating the prev field of the wordinfo array. Walk back
2909 * from each accept state until we find another accept state, and if
2910 * so, point the first word's .prev field at the second word. If the
2911 * second already has a .prev field set, stop now. This will be the
2912 * case either if we've already processed that word's accept state,
2913 * or that state had multiple words, and the overspill words were
2914 * already linked up earlier.
2921 for (word=1; word <= trie->wordcount; word++) {
2923 if (trie->wordinfo[word].prev)
2925 state = trie->wordinfo[word].accept;
2927 state = prev_states[state];
2930 prev = trie->states[state].wordnum;
2934 trie->wordinfo[word].prev = prev;
2936 Safefree(prev_states);
2940 /* and now dump out the compressed format */
2941 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
2943 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
2945 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
2946 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
2948 SvREFCNT_dec_NN(revcharmap);
2952 : trie->startstate>1
2958 S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source, regnode *stclass, U32 depth)
2960 /* The Trie is constructed and compressed now so we can build a fail array if
2963 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and
2965 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi,
2969 We find the fail state for each state in the trie, this state is the longest
2970 proper suffix of the current state's 'word' that is also a proper prefix of
2971 another word in our trie. State 1 represents the word '' and is thus the
2972 default fail state. This allows the DFA not to have to restart after its
2973 tried and failed a word at a given point, it simply continues as though it
2974 had been matching the other word in the first place.
2976 'abcdgu'=~/abcdefg|cdgu/
2977 When we get to 'd' we are still matching the first word, we would encounter
2978 'g' which would fail, which would bring us to the state representing 'd' in
2979 the second word where we would try 'g' and succeed, proceeding to match
2982 /* add a fail transition */
2983 const U32 trie_offset = ARG(source);
2984 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
2986 const U32 ucharcount = trie->uniquecharcount;
2987 const U32 numstates = trie->statecount;
2988 const U32 ubound = trie->lasttrans + ucharcount;
2992 U32 base = trie->states[ 1 ].trans.base;
2995 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("T"));
2996 GET_RE_DEBUG_FLAGS_DECL;
2998 PERL_ARGS_ASSERT_MAKE_TRIE_FAILTABLE;
3000 PERL_UNUSED_ARG(depth);
3004 ARG_SET( stclass, data_slot );
3005 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
3006 RExC_rxi->data->data[ data_slot ] = (void*)aho;
3007 aho->trie=trie_offset;
3008 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
3009 Copy( trie->states, aho->states, numstates, reg_trie_state );
3010 Newxz( q, numstates, U32);
3011 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
3014 /* initialize fail[0..1] to be 1 so that we always have
3015 a valid final fail state */
3016 fail[ 0 ] = fail[ 1 ] = 1;
3018 for ( charid = 0; charid < ucharcount ; charid++ ) {
3019 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
3021 q[ q_write ] = newstate;
3022 /* set to point at the root */
3023 fail[ q[ q_write++ ] ]=1;
3026 while ( q_read < q_write) {
3027 const U32 cur = q[ q_read++ % numstates ];
3028 base = trie->states[ cur ].trans.base;
3030 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
3031 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
3033 U32 fail_state = cur;
3036 fail_state = fail[ fail_state ];
3037 fail_base = aho->states[ fail_state ].trans.base;
3038 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
3040 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
3041 fail[ ch_state ] = fail_state;
3042 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
3044 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
3046 q[ q_write++ % numstates] = ch_state;
3050 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
3051 when we fail in state 1, this allows us to use the
3052 charclass scan to find a valid start char. This is based on the principle
3053 that theres a good chance the string being searched contains lots of stuff
3054 that cant be a start char.
3056 fail[ 0 ] = fail[ 1 ] = 0;
3057 DEBUG_TRIE_COMPILE_r({
3058 PerlIO_printf(Perl_debug_log,
3059 "%*sStclass Failtable (%"UVuf" states): 0",
3060 (int)(depth * 2), "", (UV)numstates
3062 for( q_read=1; q_read<numstates; q_read++ ) {
3063 PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
3065 PerlIO_printf(Perl_debug_log, "\n");
3068 /*RExC_seen |= REG_TRIEDFA_SEEN;*/
3072 #define DEBUG_PEEP(str,scan,depth) \
3073 DEBUG_OPTIMISE_r({if (scan){ \
3074 SV * const mysv=sv_newmortal(); \
3075 regnode *Next = regnext(scan); \
3076 regprop(RExC_rx, mysv, scan, NULL); \
3077 PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)\n", \
3078 (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\
3079 Next ? (REG_NODE_NUM(Next)) : 0 ); \
3083 /* The below joins as many adjacent EXACTish nodes as possible into a single
3084 * one. The regop may be changed if the node(s) contain certain sequences that
3085 * require special handling. The joining is only done if:
3086 * 1) there is room in the current conglomerated node to entirely contain the
3088 * 2) they are the exact same node type
3090 * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
3091 * these get optimized out
3093 * If a node is to match under /i (folded), the number of characters it matches
3094 * can be different than its character length if it contains a multi-character
3095 * fold. *min_subtract is set to the total delta number of characters of the
3098 * And *unfolded_multi_char is set to indicate whether or not the node contains
3099 * an unfolded multi-char fold. This happens when whether the fold is valid or
3100 * not won't be known until runtime; namely for EXACTF nodes that contain LATIN
3101 * SMALL LETTER SHARP S, as only if the target string being matched against
3102 * turns out to be UTF-8 is that fold valid; and also for EXACTFL nodes whose
3103 * folding rules depend on the locale in force at runtime. (Multi-char folds
3104 * whose components are all above the Latin1 range are not run-time locale
3105 * dependent, and have already been folded by the time this function is
3108 * This is as good a place as any to discuss the design of handling these
3109 * multi-character fold sequences. It's been wrong in Perl for a very long
3110 * time. There are three code points in Unicode whose multi-character folds
3111 * were long ago discovered to mess things up. The previous designs for
3112 * dealing with these involved assigning a special node for them. This
3113 * approach doesn't always work, as evidenced by this example:
3114 * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
3115 * Both sides fold to "sss", but if the pattern is parsed to create a node that
3116 * would match just the \xDF, it won't be able to handle the case where a
3117 * successful match would have to cross the node's boundary. The new approach
3118 * that hopefully generally solves the problem generates an EXACTFU_SS node
3119 * that is "sss" in this case.
3121 * It turns out that there are problems with all multi-character folds, and not
3122 * just these three. Now the code is general, for all such cases. The
3123 * approach taken is:
3124 * 1) This routine examines each EXACTFish node that could contain multi-
3125 * character folded sequences. Since a single character can fold into
3126 * such a sequence, the minimum match length for this node is less than
3127 * the number of characters in the node. This routine returns in
3128 * *min_subtract how many characters to subtract from the the actual
3129 * length of the string to get a real minimum match length; it is 0 if
3130 * there are no multi-char foldeds. This delta is used by the caller to
3131 * adjust the min length of the match, and the delta between min and max,
3132 * so that the optimizer doesn't reject these possibilities based on size
3134 * 2) For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS
3135 * is used for an EXACTFU node that contains at least one "ss" sequence in
3136 * it. For non-UTF-8 patterns and strings, this is the only case where
3137 * there is a possible fold length change. That means that a regular
3138 * EXACTFU node without UTF-8 involvement doesn't have to concern itself
3139 * with length changes, and so can be processed faster. regexec.c takes
3140 * advantage of this. Generally, an EXACTFish node that is in UTF-8 is
3141 * pre-folded by regcomp.c (except EXACTFL, some of whose folds aren't
3142 * known until runtime). This saves effort in regex matching. However,
3143 * the pre-folding isn't done for non-UTF8 patterns because the fold of
3144 * the MICRO SIGN requires UTF-8, and we don't want to slow things down by
3145 * forcing the pattern into UTF8 unless necessary. Also what EXACTF (and,
3146 * again, EXACTFL) nodes fold to isn't known until runtime. The fold
3147 * possibilities for the non-UTF8 patterns are quite simple, except for
3148 * the sharp s. All the ones that don't involve a UTF-8 target string are
3149 * members of a fold-pair, and arrays are set up for all of them so that
3150 * the other member of the pair can be found quickly. Code elsewhere in
3151 * this file makes sure that in EXACTFU nodes, the sharp s gets folded to
3152 * 'ss', even if the pattern isn't UTF-8. This avoids the issues
3153 * described in the next item.
3154 * 3) A problem remains for unfolded multi-char folds. (These occur when the
3155 * validity of the fold won't be known until runtime, and so must remain
3156 * unfolded for now. This happens for the sharp s in EXACTF and EXACTFA
3157 * nodes when the pattern isn't in UTF-8. (Note, BTW, that there cannot
3158 * be an EXACTF node with a UTF-8 pattern.) They also occur for various
3159 * folds in EXACTFL nodes, regardless of the UTF-ness of the pattern.)
3160 * The reason this is a problem is that the optimizer part of regexec.c
3161 * (probably unwittingly, in Perl_regexec_flags()) makes an assumption
3162 * that a character in the pattern corresponds to at most a single
3163 * character in the target string. (And I do mean character, and not byte
3164 * here, unlike other parts of the documentation that have never been
3165 * updated to account for multibyte Unicode.) sharp s in EXACTF and
3166 * EXACTFL nodes can match the two character string 'ss'; in EXACTFA nodes
3167 * it can match "\x{17F}\x{17F}". These, along with other ones in EXACTFL
3168 * nodes, violate the assumption, and they are the only instances where it
3169 * is violated. I'm reluctant to try to change the assumption, as the
3170 * code involved is impenetrable to me (khw), so instead the code here
3171 * punts. This routine examines EXACTFL nodes, and (when the pattern
3172 * isn't UTF-8) EXACTF and EXACTFA for such unfolded folds, and returns a
3173 * boolean indicating whether or not the node contains such a fold. When
3174 * it is true, the caller sets a flag that later causes the optimizer in
3175 * this file to not set values for the floating and fixed string lengths,
3176 * and thus avoids the optimizer code in regexec.c that makes the invalid
3177 * assumption. Thus, there is no optimization based on string lengths for
3178 * EXACTFL nodes that contain these few folds, nor for non-UTF8-pattern
3179 * EXACTF and EXACTFA nodes that contain the sharp s. (The reason the
3180 * assumption is wrong only in these cases is that all other non-UTF-8
3181 * folds are 1-1; and, for UTF-8 patterns, we pre-fold all other folds to
3182 * their expanded versions. (Again, we can't prefold sharp s to 'ss' in
3183 * EXACTF nodes because we don't know at compile time if it actually
3184 * matches 'ss' or not. For EXACTF nodes it will match iff the target
3185 * string is in UTF-8. This is in contrast to EXACTFU nodes, where it
3186 * always matches; and EXACTFA where it never does. In an EXACTFA node in
3187 * a UTF-8 pattern, sharp s is folded to "\x{17F}\x{17F}, avoiding the
3188 * problem; but in a non-UTF8 pattern, folding it to that above-Latin1
3189 * string would require the pattern to be forced into UTF-8, the overhead
3190 * of which we want to avoid. Similarly the unfolded multi-char folds in
3191 * EXACTFL nodes will match iff the locale at the time of match is a UTF-8
3194 * Similarly, the code that generates tries doesn't currently handle
3195 * not-already-folded multi-char folds, and it looks like a pain to change
3196 * that. Therefore, trie generation of EXACTFA nodes with the sharp s
3197 * doesn't work. Instead, such an EXACTFA is turned into a new regnode,
3198 * EXACTFA_NO_TRIE, which the trie code knows not to handle. Most people
3199 * using /iaa matching will be doing so almost entirely with ASCII
3200 * strings, so this should rarely be encountered in practice */
3202 #define JOIN_EXACT(scan,min_subtract,unfolded_multi_char, flags) \
3203 if (PL_regkind[OP(scan)] == EXACT) \
3204 join_exact(pRExC_state,(scan),(min_subtract),unfolded_multi_char, (flags),NULL,depth+1)
3207 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan,
3208 UV *min_subtract, bool *unfolded_multi_char,
3209 U32 flags,regnode *val, U32 depth)
3211 /* Merge several consecutive EXACTish nodes into one. */
3212 regnode *n = regnext(scan);
3214 regnode *next = scan + NODE_SZ_STR(scan);
3218 regnode *stop = scan;
3219 GET_RE_DEBUG_FLAGS_DECL;
3221 PERL_UNUSED_ARG(depth);
3224 PERL_ARGS_ASSERT_JOIN_EXACT;
3225 #ifndef EXPERIMENTAL_INPLACESCAN
3226 PERL_UNUSED_ARG(flags);
3227 PERL_UNUSED_ARG(val);
3229 DEBUG_PEEP("join",scan,depth);
3231 /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
3232 * EXACT ones that are mergeable to the current one. */
3234 && (PL_regkind[OP(n)] == NOTHING
3235 || (stringok && OP(n) == OP(scan)))
3237 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
3240 if (OP(n) == TAIL || n > next)
3242 if (PL_regkind[OP(n)] == NOTHING) {
3243 DEBUG_PEEP("skip:",n,depth);
3244 NEXT_OFF(scan) += NEXT_OFF(n);
3245 next = n + NODE_STEP_REGNODE;
3252 else if (stringok) {
3253 const unsigned int oldl = STR_LEN(scan);
3254 regnode * const nnext = regnext(n);
3256 /* XXX I (khw) kind of doubt that this works on platforms (should
3257 * Perl ever run on one) where U8_MAX is above 255 because of lots
3258 * of other assumptions */
3259 /* Don't join if the sum can't fit into a single node */
3260 if (oldl + STR_LEN(n) > U8_MAX)
3263 DEBUG_PEEP("merg",n,depth);
3266 NEXT_OFF(scan) += NEXT_OFF(n);
3267 STR_LEN(scan) += STR_LEN(n);
3268 next = n + NODE_SZ_STR(n);
3269 /* Now we can overwrite *n : */
3270 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
3278 #ifdef EXPERIMENTAL_INPLACESCAN
3279 if (flags && !NEXT_OFF(n)) {
3280 DEBUG_PEEP("atch", val, depth);
3281 if (reg_off_by_arg[OP(n)]) {
3282 ARG_SET(n, val - n);
3285 NEXT_OFF(n) = val - n;
3293 *unfolded_multi_char = FALSE;
3295 /* Here, all the adjacent mergeable EXACTish nodes have been merged. We
3296 * can now analyze for sequences of problematic code points. (Prior to
3297 * this final joining, sequences could have been split over boundaries, and
3298 * hence missed). The sequences only happen in folding, hence for any
3299 * non-EXACT EXACTish node */
3300 if (OP(scan) != EXACT) {
3301 U8* s0 = (U8*) STRING(scan);
3303 U8* s_end = s0 + STR_LEN(scan);
3305 int total_count_delta = 0; /* Total delta number of characters that
3306 multi-char folds expand to */
3308 /* One pass is made over the node's string looking for all the
3309 * possibilities. To avoid some tests in the loop, there are two main
3310 * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
3315 if (OP(scan) == EXACTFL) {
3318 /* An EXACTFL node would already have been changed to another
3319 * node type unless there is at least one character in it that
3320 * is problematic; likely a character whose fold definition
3321 * won't be known until runtime, and so has yet to be folded.
3322 * For all but the UTF-8 locale, folds are 1-1 in length, but
3323 * to handle the UTF-8 case, we need to create a temporary
3324 * folded copy using UTF-8 locale rules in order to analyze it.
3325 * This is because our macros that look to see if a sequence is
3326 * a multi-char fold assume everything is folded (otherwise the
3327 * tests in those macros would be too complicated and slow).
3328 * Note that here, the non-problematic folds will have already
3329 * been done, so we can just copy such characters. We actually
3330 * don't completely fold the EXACTFL string. We skip the
3331 * unfolded multi-char folds, as that would just create work
3332 * below to figure out the size they already are */
3334 Newx(folded, UTF8_MAX_FOLD_CHAR_EXPAND * STR_LEN(scan) + 1, U8);
3337 STRLEN s_len = UTF8SKIP(s);
3338 if (! is_PROBLEMATIC_LOCALE_FOLD_utf8(s)) {
3339 Copy(s, d, s_len, U8);
3342 else if (is_FOLDS_TO_MULTI_utf8(s)) {
3343 *unfolded_multi_char = TRUE;
3344 Copy(s, d, s_len, U8);
3347 else if (isASCII(*s)) {
3348 *(d++) = toFOLD(*s);
3352 _to_utf8_fold_flags(s, d, &len, FOLD_FLAGS_FULL);
3358 /* Point the remainder of the routine to look at our temporary
3362 } /* End of creating folded copy of EXACTFL string */
3364 /* Examine the string for a multi-character fold sequence. UTF-8
3365 * patterns have all characters pre-folded by the time this code is
3367 while (s < s_end - 1) /* Can stop 1 before the end, as minimum
3368 length sequence we are looking for is 2 */
3370 int count = 0; /* How many characters in a multi-char fold */
3371 int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end);
3372 if (! len) { /* Not a multi-char fold: get next char */
3377 /* Nodes with 'ss' require special handling, except for
3378 * EXACTFA-ish for which there is no multi-char fold to this */
3379 if (len == 2 && *s == 's' && *(s+1) == 's'
3380 && OP(scan) != EXACTFA
3381 && OP(scan) != EXACTFA_NO_TRIE)
3384 if (OP(scan) != EXACTFL) {
3385 OP(scan) = EXACTFU_SS;
3389 else { /* Here is a generic multi-char fold. */
3390 U8* multi_end = s + len;
3392 /* Count how many characters in it. In the case of /aa, no
3393 * folds which contain ASCII code points are allowed, so
3394 * check for those, and skip if found. */
3395 if (OP(scan) != EXACTFA && OP(scan) != EXACTFA_NO_TRIE) {
3396 count = utf8_length(s, multi_end);
3400 while (s < multi_end) {
3403 goto next_iteration;
3413 /* The delta is how long the sequence is minus 1 (1 is how long
3414 * the character that folds to the sequence is) */
3415 total_count_delta += count - 1;
3419 /* We created a temporary folded copy of the string in EXACTFL
3420 * nodes. Therefore we need to be sure it doesn't go below zero,
3421 * as the real string could be shorter */
3422 if (OP(scan) == EXACTFL) {
3423 int total_chars = utf8_length((U8*) STRING(scan),
3424 (U8*) STRING(scan) + STR_LEN(scan));
3425 if (total_count_delta > total_chars) {
3426 total_count_delta = total_chars;
3430 *min_subtract += total_count_delta;
3433 else if (OP(scan) == EXACTFA) {
3435 /* Non-UTF-8 pattern, EXACTFA node. There can't be a multi-char
3436 * fold to the ASCII range (and there are no existing ones in the
3437 * upper latin1 range). But, as outlined in the comments preceding
3438 * this function, we need to flag any occurrences of the sharp s.
3439 * This character forbids trie formation (because of added
3442 if (*s == LATIN_SMALL_LETTER_SHARP_S) {
3443 OP(scan) = EXACTFA_NO_TRIE;
3444 *unfolded_multi_char = TRUE;
3453 /* Non-UTF-8 pattern, not EXACTFA node. Look for the multi-char
3454 * folds that are all Latin1. As explained in the comments
3455 * preceding this function, we look also for the sharp s in EXACTF
3456 * and EXACTFL nodes; it can be in the final position. Otherwise
3457 * we can stop looking 1 byte earlier because have to find at least
3458 * two characters for a multi-fold */
3459 const U8* upper = (OP(scan) == EXACTF || OP(scan) == EXACTFL)
3464 int len = is_MULTI_CHAR_FOLD_latin1_safe(s, s_end);
3465 if (! len) { /* Not a multi-char fold. */
3466 if (*s == LATIN_SMALL_LETTER_SHARP_S
3467 && (OP(scan) == EXACTF || OP(scan) == EXACTFL))
3469 *unfolded_multi_char = TRUE;
3476 && isARG2_lower_or_UPPER_ARG1('s', *s)
3477 && isARG2_lower_or_UPPER_ARG1('s', *(s+1)))
3480 /* EXACTF nodes need to know that the minimum length
3481 * changed so that a sharp s in the string can match this
3482 * ss in the pattern, but they remain EXACTF nodes, as they
3483 * won't match this unless the target string is is UTF-8,
3484 * which we don't know until runtime. EXACTFL nodes can't
3485 * transform into EXACTFU nodes */
3486 if (OP(scan) != EXACTF && OP(scan) != EXACTFL) {
3487 OP(scan) = EXACTFU_SS;
3491 *min_subtract += len - 1;
3498 /* Allow dumping but overwriting the collection of skipped
3499 * ops and/or strings with fake optimized ops */
3500 n = scan + NODE_SZ_STR(scan);
3508 DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
3512 /* REx optimizer. Converts nodes into quicker variants "in place".
3513 Finds fixed substrings. */
3515 /* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
3516 to the position after last scanned or to NULL. */
3518 #define INIT_AND_WITHP \
3519 assert(!and_withp); \
3520 Newx(and_withp,1, regnode_ssc); \
3521 SAVEFREEPV(and_withp)
3523 /* this is a chain of data about sub patterns we are processing that
3524 need to be handled separately/specially in study_chunk. Its so
3525 we can simulate recursion without losing state. */
3527 typedef struct scan_frame {
3528 regnode *last; /* last node to process in this frame */
3529 regnode *next; /* next node to process when last is reached */
3530 struct scan_frame *prev; /*previous frame*/
3531 U32 prev_recursed_depth;
3532 I32 stop; /* what stopparen do we use */
3537 S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
3538 SSize_t *minlenp, SSize_t *deltap,
3543 regnode_ssc *and_withp,
3544 U32 flags, U32 depth)
3545 /* scanp: Start here (read-write). */
3546 /* deltap: Write maxlen-minlen here. */
3547 /* last: Stop before this one. */
3548 /* data: string data about the pattern */
3549 /* stopparen: treat close N as END */
3550 /* recursed: which subroutines have we recursed into */
3551 /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
3554 /* There must be at least this number of characters to match */
3557 regnode *scan = *scanp, *next;
3559 int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
3560 int is_inf_internal = 0; /* The studied chunk is infinite */
3561 I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
3562 scan_data_t data_fake;
3563 SV *re_trie_maxbuff = NULL;
3564 regnode *first_non_open = scan;
3565 SSize_t stopmin = SSize_t_MAX;
3566 scan_frame *frame = NULL;
3567 GET_RE_DEBUG_FLAGS_DECL;
3569 PERL_ARGS_ASSERT_STUDY_CHUNK;
3572 StructCopy(&zero_scan_data, &data_fake, scan_data_t);
3575 while (first_non_open && OP(first_non_open) == OPEN)
3576 first_non_open=regnext(first_non_open);
3581 while ( scan && OP(scan) != END && scan < last ){
3582 UV min_subtract = 0; /* How mmany chars to subtract from the minimum
3583 node length to get a real minimum (because
3584 the folded version may be shorter) */
3585 bool unfolded_multi_char = FALSE;
3586 /* Peephole optimizer: */
3587 DEBUG_OPTIMISE_MORE_r(
3589 PerlIO_printf(Perl_debug_log,
3590 "%*sstudy_chunk stopparen=%ld depth=%lu recursed_depth=%lu ",
3591 ((int) depth*2), "", (long)stopparen,
3592 (unsigned long)depth, (unsigned long)recursed_depth);
3593 if (recursed_depth) {
3596 for ( j = 0 ; j < recursed_depth ; j++ ) {
3597 PerlIO_printf(Perl_debug_log,"[");
3598 for ( i = 0 ; i < (U32)RExC_npar ; i++ )
3599 PerlIO_printf(Perl_debug_log,"%d",
3600 PAREN_TEST(RExC_study_chunk_recursed +
3601 (j * RExC_study_chunk_recursed_bytes), i)
3604 PerlIO_printf(Perl_debug_log,"]");
3607 PerlIO_printf(Perl_debug_log,"\n");
3610 DEBUG_STUDYDATA("Peep:", data, depth);
3611 DEBUG_PEEP("Peep", scan, depth);
3614 /* The reason we do this here we need to deal with things like /(?:f)(?:o)(?:o)/
3615 * which cant be dealt with by the normal EXACT parsing code, as each (?:..) is handled
3616 * by a different invocation of reg() -- Yves
3618 JOIN_EXACT(scan,&min_subtract, &unfolded_multi_char, 0);
3620 /* Follow the next-chain of the current node and optimize
3621 away all the NOTHINGs from it. */
3622 if (OP(scan) != CURLYX) {
3623 const int max = (reg_off_by_arg[OP(scan)]
3625 /* I32 may be smaller than U16 on CRAYs! */
3626 : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
3627 int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
3631 /* Skip NOTHING and LONGJMP. */
3632 while ((n = regnext(n))
3633 && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
3634 || ((OP(n) == LONGJMP) && (noff = ARG(n))))
3635 && off + noff < max)
3637 if (reg_off_by_arg[OP(scan)])
3640 NEXT_OFF(scan) = off;
3645 /* The principal pseudo-switch. Cannot be a switch, since we
3646 look into several different things. */
3647 if (OP(scan) == BRANCH || OP(scan) == BRANCHJ
3648 || OP(scan) == IFTHEN) {
3649 next = regnext(scan);
3651 /* demq: the op(next)==code check is to see if we have
3652 * "branch-branch" AFAICT */
3654 if (OP(next) == code || code == IFTHEN) {
3655 /* NOTE - There is similar code to this block below for
3656 * handling TRIE nodes on a re-study. If you change stuff here
3657 * check there too. */
3658 SSize_t max1 = 0, min1 = SSize_t_MAX, num = 0;
3660 regnode * const startbranch=scan;
3662 if (flags & SCF_DO_SUBSTR) {
3663 /* Cannot merge strings after this. */
3664 scan_commit(pRExC_state, data, minlenp, is_inf);
3667 if (flags & SCF_DO_STCLASS)
3668 ssc_init_zero(pRExC_state, &accum);
3670 while (OP(scan) == code) {
3671 SSize_t deltanext, minnext, fake;
3673 regnode_ssc this_class;
3676 data_fake.flags = 0;
3678 data_fake.whilem_c = data->whilem_c;
3679 data_fake.last_closep = data->last_closep;
3682 data_fake.last_closep = &fake;
3684 data_fake.pos_delta = delta;
3685 next = regnext(scan);
3686 scan = NEXTOPER(scan);
3688 scan = NEXTOPER(scan);
3689 if (flags & SCF_DO_STCLASS) {
3690 ssc_init(pRExC_state, &this_class);
3691 data_fake.start_class = &this_class;
3692 f = SCF_DO_STCLASS_AND;
3694 if (flags & SCF_WHILEM_VISITED_POS)
3695 f |= SCF_WHILEM_VISITED_POS;
3697 /* we suppose the run is continuous, last=next...*/
3698 minnext = study_chunk(pRExC_state, &scan, minlenp,
3699 &deltanext, next, &data_fake, stopparen,
3700 recursed_depth, NULL, f,depth+1);
3703 if (deltanext == SSize_t_MAX) {
3704 is_inf = is_inf_internal = 1;
3706 } else if (max1 < minnext + deltanext)
3707 max1 = minnext + deltanext;
3709 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
3711 if (data_fake.flags & SCF_SEEN_ACCEPT) {
3712 if ( stopmin > minnext)
3713 stopmin = min + min1;
3714 flags &= ~SCF_DO_SUBSTR;
3716 data->flags |= SCF_SEEN_ACCEPT;
3719 if (data_fake.flags & SF_HAS_EVAL)
3720 data->flags |= SF_HAS_EVAL;
3721 data->whilem_c = data_fake.whilem_c;
3723 if (flags & SCF_DO_STCLASS)
3724 ssc_or(pRExC_state, &accum, (regnode_charclass*)&this_class);
3726 if (code == IFTHEN && num < 2) /* Empty ELSE branch */
3728 if (flags & SCF_DO_SUBSTR) {
3729 data->pos_min += min1;
3730 if (data->pos_delta >= SSize_t_MAX - (max1 - min1))
3731 data->pos_delta = SSize_t_MAX;
3733 data->pos_delta += max1 - min1;
3734 if (max1 != min1 || is_inf)
3735 data->longest = &(data->longest_float);
3738 if (delta == SSize_t_MAX
3739 || SSize_t_MAX - delta - (max1 - min1) < 0)
3740 delta = SSize_t_MAX;
3742 delta += max1 - min1;
3743 if (flags & SCF_DO_STCLASS_OR) {
3744 ssc_or(pRExC_state, data->start_class, (regnode_charclass*) &accum);
3746 ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
3747 flags &= ~SCF_DO_STCLASS;
3750 else if (flags & SCF_DO_STCLASS_AND) {
3752 ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &accum);
3753 flags &= ~SCF_DO_STCLASS;
3756 /* Switch to OR mode: cache the old value of
3757 * data->start_class */
3759 StructCopy(data->start_class, and_withp, regnode_ssc);
3760 flags &= ~SCF_DO_STCLASS_AND;
3761 StructCopy(&accum, data->start_class, regnode_ssc);
3762 flags |= SCF_DO_STCLASS_OR;
3766 if (PERL_ENABLE_TRIE_OPTIMISATION &&
3767 OP( startbranch ) == BRANCH )
3771 Assuming this was/is a branch we are dealing with: 'scan'
3772 now points at the item that follows the branch sequence,
3773 whatever it is. We now start at the beginning of the
3774 sequence and look for subsequences of
3780 which would be constructed from a pattern like
3783 If we can find such a subsequence we need to turn the first
3784 element into a trie and then add the subsequent branch exact
3785 strings to the trie.
3789 1. patterns where the whole set of branches can be
3792 2. patterns where only a subset can be converted.
3794 In case 1 we can replace the whole set with a single regop
3795 for the trie. In case 2 we need to keep the start and end
3798 'BRANCH EXACT; BRANCH EXACT; BRANCH X'
3799 becomes BRANCH TRIE; BRANCH X;
3801 There is an additional case, that being where there is a
3802 common prefix, which gets split out into an EXACT like node
3803 preceding the TRIE node.
3805 If x(1..n)==tail then we can do a simple trie, if not we make
3806 a "jump" trie, such that when we match the appropriate word
3807 we "jump" to the appropriate tail node. Essentially we turn
3808 a nested if into a case structure of sorts.
3813 if (!re_trie_maxbuff) {
3814 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
3815 if (!SvIOK(re_trie_maxbuff))
3816 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
3818 if ( SvIV(re_trie_maxbuff)>=0 ) {
3820 regnode *first = (regnode *)NULL;
3821 regnode *last = (regnode *)NULL;
3822 regnode *tail = scan;
3827 SV * const mysv = sv_newmortal(); /* for dumping */
3829 /* var tail is used because there may be a TAIL
3830 regop in the way. Ie, the exacts will point to the
3831 thing following the TAIL, but the last branch will
3832 point at the TAIL. So we advance tail. If we
3833 have nested (?:) we may have to move through several
3837 while ( OP( tail ) == TAIL ) {
3838 /* this is the TAIL generated by (?:) */
3839 tail = regnext( tail );
3843 DEBUG_TRIE_COMPILE_r({
3844 regprop(RExC_rx, mysv, tail, NULL);
3845 PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
3846 (int)depth * 2 + 2, "",
3847 "Looking for TRIE'able sequences. Tail node is: ",
3848 SvPV_nolen_const( mysv )
3854 Step through the branches
3855 cur represents each branch,
3856 noper is the first thing to be matched as part
3858 noper_next is the regnext() of that node.
3860 We normally handle a case like this
3861 /FOO[xyz]|BAR[pqr]/ via a "jump trie" but we also
3862 support building with NOJUMPTRIE, which restricts
3863 the trie logic to structures like /FOO|BAR/.
3865 If noper is a trieable nodetype then the branch is
3866 a possible optimization target. If we are building
3867 under NOJUMPTRIE then we require that noper_next is
3868 the same as scan (our current position in the regex
3871 Once we have two or more consecutive such branches
3872 we can create a trie of the EXACT's contents and
3873 stitch it in place into the program.
3875 If the sequence represents all of the branches in
3876 the alternation we replace the entire thing with a
3879 Otherwise when it is a subsequence we need to
3880 stitch it in place and replace only the relevant
3881 branches. This means the first branch has to remain
3882 as it is used by the alternation logic, and its
3883 next pointer, and needs to be repointed at the item
3884 on the branch chain following the last branch we
3885 have optimized away.
3887 This could be either a BRANCH, in which case the
3888 subsequence is internal, or it could be the item
3889 following the branch sequence in which case the
3890 subsequence is at the end (which does not
3891 necessarily mean the first node is the start of the
3894 TRIE_TYPE(X) is a define which maps the optype to a
3898 ----------------+-----------
3902 EXACTFU_SS | EXACTFU
3907 #define TRIE_TYPE(X) ( ( NOTHING == (X) ) ? NOTHING : \
3908 ( EXACT == (X) ) ? EXACT : \
3909 ( EXACTFU == (X) || EXACTFU_SS == (X) ) ? EXACTFU : \
3910 ( EXACTFA == (X) ) ? EXACTFA : \
3913 /* dont use tail as the end marker for this traverse */
3914 for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
3915 regnode * const noper = NEXTOPER( cur );
3916 U8 noper_type = OP( noper );
3917 U8 noper_trietype = TRIE_TYPE( noper_type );
3918 #if defined(DEBUGGING) || defined(NOJUMPTRIE)
3919 regnode * const noper_next = regnext( noper );
3920 U8 noper_next_type = (noper_next && noper_next != tail) ? OP(noper_next) : 0;
3921 U8 noper_next_trietype = (noper_next && noper_next != tail) ? TRIE_TYPE( noper_next_type ) :0;
3924 DEBUG_TRIE_COMPILE_r({
3925 regprop(RExC_rx, mysv, cur, NULL);
3926 PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
3927 (int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) );