3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 * 2000, 2001, 2002, 2003, 2004, 2005, 2006, by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
9 * "I wonder what the Entish is for 'yes' and 'no'," he thought.
12 * This file contains the code that creates, manipulates and destroys
13 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
14 * structure of an SV, so their creation and destruction is handled
15 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
16 * level functions (eg. substr, split, join) for each of the types are
28 /* Missing proto on LynxOS */
29 char *gconvert(double, int, int, char *);
32 #ifdef PERL_UTF8_CACHE_ASSERT
33 /* if adding more checks watch out for the following tests:
34 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
35 * lib/utf8.t lib/Unicode/Collate/t/index.t
38 # define ASSERT_UTF8_CACHE(cache) \
39 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
40 assert((cache)[2] <= (cache)[3]); \
41 assert((cache)[3] <= (cache)[1]);} \
44 # define ASSERT_UTF8_CACHE(cache) NOOP
47 #ifdef PERL_OLD_COPY_ON_WRITE
48 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
49 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
50 /* This is a pessimistic view. Scalar must be purely a read-write PV to copy-
54 /* ============================================================================
56 =head1 Allocation and deallocation of SVs.
58 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
59 sv, av, hv...) contains type and reference count information, and for
60 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
61 contains fields specific to each type. Some types store all they need
62 in the head, so don't have a body.
64 In all but the most memory-paranoid configuations (ex: PURIFY), heads
65 and bodies are allocated out of arenas, which by default are
66 approximately 4K chunks of memory parcelled up into N heads or bodies.
67 Sv-bodies are allocated by their sv-type, guaranteeing size
68 consistency needed to allocate safely from arrays.
70 For SV-heads, the first slot in each arena is reserved, and holds a
71 link to the next arena, some flags, and a note of the number of slots.
72 Snaked through each arena chain is a linked list of free items; when
73 this becomes empty, an extra arena is allocated and divided up into N
74 items which are threaded into the free list.
76 SV-bodies are similar, but they use arena-sets by default, which
77 separate the link and info from the arena itself, and reclaim the 1st
78 slot in the arena. SV-bodies are further described later.
80 The following global variables are associated with arenas:
82 PL_sv_arenaroot pointer to list of SV arenas
83 PL_sv_root pointer to list of free SV structures
85 PL_body_arenas head of linked-list of body arenas
86 PL_body_roots[] array of pointers to list of free bodies of svtype
87 arrays are indexed by the svtype needed
89 A few special SV heads are not allocated from an arena, but are
90 instead directly created in the interpreter structure, eg PL_sv_undef.
91 The size of arenas can be changed from the default by setting
92 PERL_ARENA_SIZE appropriately at compile time.
94 The SV arena serves the secondary purpose of allowing still-live SVs
95 to be located and destroyed during final cleanup.
97 At the lowest level, the macros new_SV() and del_SV() grab and free
98 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
99 to return the SV to the free list with error checking.) new_SV() calls
100 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
101 SVs in the free list have their SvTYPE field set to all ones.
103 At the time of very final cleanup, sv_free_arenas() is called from
104 perl_destruct() to physically free all the arenas allocated since the
105 start of the interpreter.
107 Manipulation of any of the PL_*root pointers is protected by enclosing
108 LOCK_SV_MUTEX; ... UNLOCK_SV_MUTEX calls which should Do the Right Thing
109 if threads are enabled.
111 The function visit() scans the SV arenas list, and calls a specified
112 function for each SV it finds which is still live - ie which has an SvTYPE
113 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
114 following functions (specified as [function that calls visit()] / [function
115 called by visit() for each SV]):
117 sv_report_used() / do_report_used()
118 dump all remaining SVs (debugging aid)
120 sv_clean_objs() / do_clean_objs(),do_clean_named_objs()
121 Attempt to free all objects pointed to by RVs,
122 and, unless DISABLE_DESTRUCTOR_KLUDGE is defined,
123 try to do the same for all objects indirectly
124 referenced by typeglobs too. Called once from
125 perl_destruct(), prior to calling sv_clean_all()
128 sv_clean_all() / do_clean_all()
129 SvREFCNT_dec(sv) each remaining SV, possibly
130 triggering an sv_free(). It also sets the
131 SVf_BREAK flag on the SV to indicate that the
132 refcnt has been artificially lowered, and thus
133 stopping sv_free() from giving spurious warnings
134 about SVs which unexpectedly have a refcnt
135 of zero. called repeatedly from perl_destruct()
136 until there are no SVs left.
138 =head2 Arena allocator API Summary
140 Private API to rest of sv.c
144 new_XIV(), del_XIV(),
145 new_XNV(), del_XNV(),
150 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
154 ============================================================================ */
157 * "A time to plant, and a time to uproot what was planted..."
161 * nice_chunk and nice_chunk size need to be set
162 * and queried under the protection of sv_mutex
165 Perl_offer_nice_chunk(pTHX_ void *chunk, U32 chunk_size)
171 new_chunk = (void *)(chunk);
172 new_chunk_size = (chunk_size);
173 if (new_chunk_size > PL_nice_chunk_size) {
174 Safefree(PL_nice_chunk);
175 PL_nice_chunk = (char *) new_chunk;
176 PL_nice_chunk_size = new_chunk_size;
183 #ifdef DEBUG_LEAKING_SCALARS
184 # define FREE_SV_DEBUG_FILE(sv) Safefree((sv)->sv_debug_file)
186 # define FREE_SV_DEBUG_FILE(sv)
190 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
191 /* Whilst I'd love to do this, it seems that things like to check on
193 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
195 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
196 PoisonNew(&SvREFCNT(sv), 1, U32)
198 # define SvARENA_CHAIN(sv) SvANY(sv)
199 # define POSION_SV_HEAD(sv)
202 #define plant_SV(p) \
204 FREE_SV_DEBUG_FILE(p); \
206 SvARENA_CHAIN(p) = (void *)PL_sv_root; \
207 SvFLAGS(p) = SVTYPEMASK; \
212 /* sv_mutex must be held while calling uproot_SV() */
213 #define uproot_SV(p) \
216 PL_sv_root = (SV*)SvARENA_CHAIN(p); \
221 /* make some more SVs by adding another arena */
223 /* sv_mutex must be held while calling more_sv() */
231 sv_add_arena(PL_nice_chunk, PL_nice_chunk_size, 0);
232 PL_nice_chunk = NULL;
233 PL_nice_chunk_size = 0;
236 char *chunk; /* must use New here to match call to */
237 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
238 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
244 /* new_SV(): return a new, empty SV head */
246 #ifdef DEBUG_LEAKING_SCALARS
247 /* provide a real function for a debugger to play with */
257 sv = S_more_sv(aTHX);
262 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
263 sv->sv_debug_line = (U16) ((PL_copline == NOLINE) ?
264 (PL_curcop ? CopLINE(PL_curcop) : 0) : PL_copline);
265 sv->sv_debug_inpad = 0;
266 sv->sv_debug_cloned = 0;
267 sv->sv_debug_file = PL_curcop ? savepv(CopFILE(PL_curcop)): NULL;
271 # define new_SV(p) (p)=S_new_SV(aTHX)
280 (p) = S_more_sv(aTHX); \
289 /* del_SV(): return an empty SV head to the free list */
304 S_del_sv(pTHX_ SV *p)
310 for (sva = PL_sv_arenaroot; sva; sva = (SV *) SvANY(sva)) {
311 const SV * const sv = sva + 1;
312 const SV * const svend = &sva[SvREFCNT(sva)];
313 if (p >= sv && p < svend) {
319 if (ckWARN_d(WARN_INTERNAL))
320 Perl_warner(aTHX_ packWARN(WARN_INTERNAL),
321 "Attempt to free non-arena SV: 0x%"UVxf
322 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
329 #else /* ! DEBUGGING */
331 #define del_SV(p) plant_SV(p)
333 #endif /* DEBUGGING */
337 =head1 SV Manipulation Functions
339 =for apidoc sv_add_arena
341 Given a chunk of memory, link it to the head of the list of arenas,
342 and split it into a list of free SVs.
348 Perl_sv_add_arena(pTHX_ char *ptr, U32 size, U32 flags)
351 SV* const sva = (SV*)ptr;
355 /* The first SV in an arena isn't an SV. */
356 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
357 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
358 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
360 PL_sv_arenaroot = sva;
361 PL_sv_root = sva + 1;
363 svend = &sva[SvREFCNT(sva) - 1];
366 SvARENA_CHAIN(sv) = (void *)(SV*)(sv + 1);
370 /* Must always set typemask because it's awlays checked in on cleanup
371 when the arenas are walked looking for objects. */
372 SvFLAGS(sv) = SVTYPEMASK;
375 SvARENA_CHAIN(sv) = 0;
379 SvFLAGS(sv) = SVTYPEMASK;
382 /* visit(): call the named function for each non-free SV in the arenas
383 * whose flags field matches the flags/mask args. */
386 S_visit(pTHX_ SVFUNC_t f, U32 flags, U32 mask)
392 for (sva = PL_sv_arenaroot; sva; sva = (SV*)SvANY(sva)) {
393 register const SV * const svend = &sva[SvREFCNT(sva)];
395 for (sv = sva + 1; sv < svend; ++sv) {
396 if (SvTYPE(sv) != SVTYPEMASK
397 && (sv->sv_flags & mask) == flags
410 /* called by sv_report_used() for each live SV */
413 do_report_used(pTHX_ SV *sv)
415 if (SvTYPE(sv) != SVTYPEMASK) {
416 PerlIO_printf(Perl_debug_log, "****\n");
423 =for apidoc sv_report_used
425 Dump the contents of all SVs not yet freed. (Debugging aid).
431 Perl_sv_report_used(pTHX)
434 visit(do_report_used, 0, 0);
440 /* called by sv_clean_objs() for each live SV */
443 do_clean_objs(pTHX_ SV *ref)
447 SV * const target = SvRV(ref);
448 if (SvOBJECT(target)) {
449 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
450 if (SvWEAKREF(ref)) {
451 sv_del_backref(target, ref);
457 SvREFCNT_dec(target);
462 /* XXX Might want to check arrays, etc. */
465 /* called by sv_clean_objs() for each live SV */
467 #ifndef DISABLE_DESTRUCTOR_KLUDGE
469 do_clean_named_objs(pTHX_ SV *sv)
472 if (SvTYPE(sv) == SVt_PVGV && isGV_with_GP(sv) && GvGP(sv)) {
474 #ifdef PERL_DONT_CREATE_GVSV
477 SvOBJECT(GvSV(sv))) ||
478 (GvAV(sv) && SvOBJECT(GvAV(sv))) ||
479 (GvHV(sv) && SvOBJECT(GvHV(sv))) ||
480 (GvIO(sv) && SvOBJECT(GvIO(sv))) ||
481 (GvCV(sv) && SvOBJECT(GvCV(sv))) )
483 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning named glob object:\n "), sv_dump(sv)));
484 SvFLAGS(sv) |= SVf_BREAK;
492 =for apidoc sv_clean_objs
494 Attempt to destroy all objects not yet freed
500 Perl_sv_clean_objs(pTHX)
503 PL_in_clean_objs = TRUE;
504 visit(do_clean_objs, SVf_ROK, SVf_ROK);
505 #ifndef DISABLE_DESTRUCTOR_KLUDGE
506 /* some barnacles may yet remain, clinging to typeglobs */
507 visit(do_clean_named_objs, SVt_PVGV, SVTYPEMASK);
509 PL_in_clean_objs = FALSE;
512 /* called by sv_clean_all() for each live SV */
515 do_clean_all(pTHX_ SV *sv)
518 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
519 SvFLAGS(sv) |= SVf_BREAK;
520 if (PL_comppad == (AV*)sv) {
528 =for apidoc sv_clean_all
530 Decrement the refcnt of each remaining SV, possibly triggering a
531 cleanup. This function may have to be called multiple times to free
532 SVs which are in complex self-referential hierarchies.
538 Perl_sv_clean_all(pTHX)
542 PL_in_clean_all = TRUE;
543 cleaned = visit(do_clean_all, 0,0);
544 PL_in_clean_all = FALSE;
549 ARENASETS: a meta-arena implementation which separates arena-info
550 into struct arena_set, which contains an array of struct
551 arena_descs, each holding info for a single arena. By separating
552 the meta-info from the arena, we recover the 1st slot, formerly
553 borrowed for list management. The arena_set is about the size of an
554 arena, avoiding the needless malloc overhead of a naive linked-list
556 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
557 memory in the last arena-set (1/2 on average). In trade, we get
558 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
559 smaller types). The recovery of the wasted space allows use of
560 small arenas for large, rare body types,
563 char *arena; /* the raw storage, allocated aligned */
564 size_t size; /* its size ~4k typ */
565 int unit_type; /* useful for arena audits */
566 /* info for sv-heads (eventually)
573 /* Get the maximum number of elements in set[] such that struct arena_set
574 will fit within PERL_ARENA_SIZE, which is probabably just under 4K, and
575 therefore likely to be 1 aligned memory page. */
577 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
578 - 2 * sizeof(int)) / sizeof (struct arena_desc))
581 struct arena_set* next;
582 int set_size; /* ie ARENAS_PER_SET */
583 int curr; /* index of next available arena-desc */
584 struct arena_desc set[ARENAS_PER_SET];
588 =for apidoc sv_free_arenas
590 Deallocate the memory used by all arenas. Note that all the individual SV
591 heads and bodies within the arenas must already have been freed.
596 Perl_sv_free_arenas(pTHX)
603 /* Free arenas here, but be careful about fake ones. (We assume
604 contiguity of the fake ones with the corresponding real ones.) */
606 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
607 svanext = (SV*) SvANY(sva);
608 while (svanext && SvFAKE(svanext))
609 svanext = (SV*) SvANY(svanext);
616 struct arena_set *next, *aroot = (struct arena_set*) PL_body_arenas;
618 for (; aroot; aroot = next) {
619 const int max = aroot->curr;
620 for (i=0; i<max; i++) {
621 assert(aroot->set[i].arena);
622 Safefree(aroot->set[i].arena);
630 for (i=0; i<PERL_ARENA_ROOTS_SIZE; i++)
631 PL_body_roots[i] = 0;
633 Safefree(PL_nice_chunk);
634 PL_nice_chunk = NULL;
635 PL_nice_chunk_size = 0;
641 Here are mid-level routines that manage the allocation of bodies out
642 of the various arenas. There are 5 kinds of arenas:
644 1. SV-head arenas, which are discussed and handled above
645 2. regular body arenas
646 3. arenas for reduced-size bodies
648 5. pte arenas (thread related)
650 Arena types 2 & 3 are chained by body-type off an array of
651 arena-root pointers, which is indexed by svtype. Some of the
652 larger/less used body types are malloced singly, since a large
653 unused block of them is wasteful. Also, several svtypes dont have
654 bodies; the data fits into the sv-head itself. The arena-root
655 pointer thus has a few unused root-pointers (which may be hijacked
656 later for arena types 4,5)
658 3 differs from 2 as an optimization; some body types have several
659 unused fields in the front of the structure (which are kept in-place
660 for consistency). These bodies can be allocated in smaller chunks,
661 because the leading fields arent accessed. Pointers to such bodies
662 are decremented to point at the unused 'ghost' memory, knowing that
663 the pointers are used with offsets to the real memory.
665 HE, HEK arenas are managed separately, with separate code, but may
666 be merge-able later..
668 PTE arenas are not sv-bodies, but they share these mid-level
669 mechanics, so are considered here. The new mid-level mechanics rely
670 on the sv_type of the body being allocated, so we just reserve one
671 of the unused body-slots for PTEs, then use it in those (2) PTE
672 contexts below (line ~10k)
675 /* get_arena(size): this creates custom-sized arenas
676 TBD: export properly for hv.c: S_more_he().
679 Perl_get_arena(pTHX_ int arena_size)
682 struct arena_desc* adesc;
683 struct arena_set *newroot, **aroot = (struct arena_set**) &PL_body_arenas;
686 /* shouldnt need this
687 if (!arena_size) arena_size = PERL_ARENA_SIZE;
690 /* may need new arena-set to hold new arena */
691 if (!*aroot || (*aroot)->curr >= (*aroot)->set_size) {
692 Newxz(newroot, 1, struct arena_set);
693 newroot->set_size = ARENAS_PER_SET;
694 newroot->next = *aroot;
696 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)*aroot));
699 /* ok, now have arena-set with at least 1 empty/available arena-desc */
700 curr = (*aroot)->curr++;
701 adesc = &((*aroot)->set[curr]);
702 assert(!adesc->arena);
704 Newxz(adesc->arena, arena_size, char);
705 adesc->size = arena_size;
706 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %d\n",
707 curr, adesc->arena, arena_size));
713 /* return a thing to the free list */
715 #define del_body(thing, root) \
717 void ** const thing_copy = (void **)thing;\
719 *thing_copy = *root; \
720 *root = (void*)thing_copy; \
726 =head1 SV-Body Allocation
728 Allocation of SV-bodies is similar to SV-heads, differing as follows;
729 the allocation mechanism is used for many body types, so is somewhat
730 more complicated, it uses arena-sets, and has no need for still-live
733 At the outermost level, (new|del)_X*V macros return bodies of the
734 appropriate type. These macros call either (new|del)_body_type or
735 (new|del)_body_allocated macro pairs, depending on specifics of the
736 type. Most body types use the former pair, the latter pair is used to
737 allocate body types with "ghost fields".
739 "ghost fields" are fields that are unused in certain types, and
740 consequently dont need to actually exist. They are declared because
741 they're part of a "base type", which allows use of functions as
742 methods. The simplest examples are AVs and HVs, 2 aggregate types
743 which don't use the fields which support SCALAR semantics.
745 For these types, the arenas are carved up into *_allocated size
746 chunks, we thus avoid wasted memory for those unaccessed members.
747 When bodies are allocated, we adjust the pointer back in memory by the
748 size of the bit not allocated, so it's as if we allocated the full
749 structure. (But things will all go boom if you write to the part that
750 is "not there", because you'll be overwriting the last members of the
751 preceding structure in memory.)
753 We calculate the correction using the STRUCT_OFFSET macro. For
754 example, if xpv_allocated is the same structure as XPV then the two
755 OFFSETs sum to zero, and the pointer is unchanged. If the allocated
756 structure is smaller (no initial NV actually allocated) then the net
757 effect is to subtract the size of the NV from the pointer, to return a
758 new pointer as if an initial NV were actually allocated.
760 This is the same trick as was used for NV and IV bodies. Ironically it
761 doesn't need to be used for NV bodies any more, because NV is now at
762 the start of the structure. IV bodies don't need it either, because
763 they are no longer allocated.
765 In turn, the new_body_* allocators call S_new_body(), which invokes
766 new_body_inline macro, which takes a lock, and takes a body off the
767 linked list at PL_body_roots[sv_type], calling S_more_bodies() if
768 necessary to refresh an empty list. Then the lock is released, and
769 the body is returned.
771 S_more_bodies calls get_arena(), and carves it up into an array of N
772 bodies, which it strings into a linked list. It looks up arena-size
773 and body-size from the body_details table described below, thus
774 supporting the multiple body-types.
776 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
777 the (new|del)_X*V macros are mapped directly to malloc/free.
783 For each sv-type, struct body_details bodies_by_type[] carries
784 parameters which control these aspects of SV handling:
786 Arena_size determines whether arenas are used for this body type, and if
787 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
788 zero, forcing individual mallocs and frees.
790 Body_size determines how big a body is, and therefore how many fit into
791 each arena. Offset carries the body-pointer adjustment needed for
792 *_allocated body types, and is used in *_allocated macros.
794 But its main purpose is to parameterize info needed in
795 Perl_sv_upgrade(). The info here dramatically simplifies the function
796 vs the implementation in 5.8.7, making it table-driven. All fields
797 are used for this, except for arena_size.
799 For the sv-types that have no bodies, arenas are not used, so those
800 PL_body_roots[sv_type] are unused, and can be overloaded. In
801 something of a special case, SVt_NULL is borrowed for HE arenas;
802 PL_body_roots[SVt_NULL] is filled by S_more_he, but the
803 bodies_by_type[SVt_NULL] slot is not used, as the table is not
806 PTEs also use arenas, but are never seen in Perl_sv_upgrade.
807 Nonetheless, they get their own slot in bodies_by_type[SVt_NULL], so
808 they can just use the same allocation semantics. At first, PTEs were
809 also overloaded to a non-body sv-type, but this yielded hard-to-find
810 malloc bugs, so was simplified by claiming a new slot. This choice
811 has no consequence at this time.
815 struct body_details {
816 U8 body_size; /* Size to allocate */
817 U8 copy; /* Size of structure to copy (may be shorter) */
819 unsigned int type : 4; /* We have space for a sanity check. */
820 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
821 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
822 unsigned int arena : 1; /* Allocated from an arena */
823 size_t arena_size; /* Size of arena to allocate */
831 /* With -DPURFIY we allocate everything directly, and don't use arenas.
832 This seems a rather elegant way to simplify some of the code below. */
833 #define HASARENA FALSE
835 #define HASARENA TRUE
837 #define NOARENA FALSE
839 /* Size the arenas to exactly fit a given number of bodies. A count
840 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
841 simplifying the default. If count > 0, the arena is sized to fit
842 only that many bodies, allowing arenas to be used for large, rare
843 bodies (XPVFM, XPVIO) without undue waste. The arena size is
844 limited by PERL_ARENA_SIZE, so we can safely oversize the
847 #define FIT_ARENA0(body_size) \
848 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
849 #define FIT_ARENAn(count,body_size) \
850 ( count * body_size <= PERL_ARENA_SIZE) \
851 ? count * body_size \
852 : FIT_ARENA0 (body_size)
853 #define FIT_ARENA(count,body_size) \
855 ? FIT_ARENAn (count, body_size) \
856 : FIT_ARENA0 (body_size)
858 /* A macro to work out the offset needed to subtract from a pointer to (say)
865 to make its members accessible via a pointer to (say)
875 #define relative_STRUCT_OFFSET(longer, shorter, member) \
876 (STRUCT_OFFSET(shorter, member) - STRUCT_OFFSET(longer, member))
878 /* Calculate the length to copy. Specifically work out the length less any
879 final padding the compiler needed to add. See the comment in sv_upgrade
880 for why copying the padding proved to be a bug. */
882 #define copy_length(type, last_member) \
883 STRUCT_OFFSET(type, last_member) \
884 + sizeof (((type*)SvANY((SV*)0))->last_member)
886 static const struct body_details bodies_by_type[] = {
887 { sizeof(HE), 0, 0, SVt_NULL,
888 FALSE, NONV, NOARENA, FIT_ARENA(0, sizeof(HE)) },
890 /* IVs are in the head, so the allocation size is 0.
891 However, the slot is overloaded for PTEs. */
892 { sizeof(struct ptr_tbl_ent), /* This is used for PTEs. */
893 sizeof(IV), /* This is used to copy out the IV body. */
894 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
895 NOARENA /* IVS don't need an arena */,
896 /* But PTEs need to know the size of their arena */
897 FIT_ARENA(0, sizeof(struct ptr_tbl_ent))
900 /* 8 bytes on most ILP32 with IEEE doubles */
901 { sizeof(NV), sizeof(NV), 0, SVt_NV, FALSE, HADNV, HASARENA,
902 FIT_ARENA(0, sizeof(NV)) },
904 /* RVs are in the head now. */
905 { 0, 0, 0, SVt_RV, FALSE, NONV, NOARENA, 0 },
907 /* 8 bytes on most ILP32 with IEEE doubles */
908 { sizeof(xpv_allocated),
909 copy_length(XPV, xpv_len)
910 - relative_STRUCT_OFFSET(xpv_allocated, XPV, xpv_cur),
911 + relative_STRUCT_OFFSET(xpv_allocated, XPV, xpv_cur),
912 SVt_PV, FALSE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpv_allocated)) },
915 { sizeof(xpviv_allocated),
916 copy_length(XPVIV, xiv_u)
917 - relative_STRUCT_OFFSET(xpviv_allocated, XPVIV, xpv_cur),
918 + relative_STRUCT_OFFSET(xpviv_allocated, XPVIV, xpv_cur),
919 SVt_PVIV, FALSE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpviv_allocated)) },
922 { sizeof(XPVNV), copy_length(XPVNV, xiv_u), 0, SVt_PVNV, FALSE, HADNV,
923 HASARENA, FIT_ARENA(0, sizeof(XPVNV)) },
926 { sizeof(XPVMG), copy_length(XPVMG, xmg_stash), 0, SVt_PVMG, FALSE, HADNV,
927 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
930 { sizeof(XPVBM), sizeof(XPVBM), 0, SVt_PVBM, TRUE, HADNV,
931 HASARENA, FIT_ARENA(0, sizeof(XPVBM)) },
934 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
935 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
938 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
939 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
941 { sizeof(xpvav_allocated),
942 copy_length(XPVAV, xmg_stash)
943 - relative_STRUCT_OFFSET(xpvav_allocated, XPVAV, xav_fill),
944 + relative_STRUCT_OFFSET(xpvav_allocated, XPVAV, xav_fill),
945 SVt_PVAV, TRUE, HADNV, HASARENA, FIT_ARENA(0, sizeof(xpvav_allocated)) },
947 { sizeof(xpvhv_allocated),
948 copy_length(XPVHV, xmg_stash)
949 - relative_STRUCT_OFFSET(xpvhv_allocated, XPVHV, xhv_fill),
950 + relative_STRUCT_OFFSET(xpvhv_allocated, XPVHV, xhv_fill),
951 SVt_PVHV, TRUE, HADNV, HASARENA, FIT_ARENA(0, sizeof(xpvhv_allocated)) },
954 { sizeof(xpvcv_allocated), sizeof(xpvcv_allocated),
955 + relative_STRUCT_OFFSET(xpvcv_allocated, XPVCV, xpv_cur),
956 SVt_PVCV, TRUE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpvcv_allocated)) },
958 { sizeof(xpvfm_allocated), sizeof(xpvfm_allocated),
959 + relative_STRUCT_OFFSET(xpvfm_allocated, XPVFM, xpv_cur),
960 SVt_PVFM, TRUE, NONV, NOARENA, FIT_ARENA(20, sizeof(xpvfm_allocated)) },
962 /* XPVIO is 84 bytes, fits 48x */
963 { sizeof(XPVIO), sizeof(XPVIO), 0, SVt_PVIO, TRUE, HADNV,
964 HASARENA, FIT_ARENA(24, sizeof(XPVIO)) },
967 #define new_body_type(sv_type) \
968 (void *)((char *)S_new_body(aTHX_ sv_type))
970 #define del_body_type(p, sv_type) \
971 del_body(p, &PL_body_roots[sv_type])
974 #define new_body_allocated(sv_type) \
975 (void *)((char *)S_new_body(aTHX_ sv_type) \
976 - bodies_by_type[sv_type].offset)
978 #define del_body_allocated(p, sv_type) \
979 del_body(p + bodies_by_type[sv_type].offset, &PL_body_roots[sv_type])
982 #define my_safemalloc(s) (void*)safemalloc(s)
983 #define my_safecalloc(s) (void*)safecalloc(s, 1)
984 #define my_safefree(p) safefree((char*)p)
988 #define new_XNV() my_safemalloc(sizeof(XPVNV))
989 #define del_XNV(p) my_safefree(p)
991 #define new_XPVNV() my_safemalloc(sizeof(XPVNV))
992 #define del_XPVNV(p) my_safefree(p)
994 #define new_XPVAV() my_safemalloc(sizeof(XPVAV))
995 #define del_XPVAV(p) my_safefree(p)
997 #define new_XPVHV() my_safemalloc(sizeof(XPVHV))
998 #define del_XPVHV(p) my_safefree(p)
1000 #define new_XPVMG() my_safemalloc(sizeof(XPVMG))
1001 #define del_XPVMG(p) my_safefree(p)
1003 #define new_XPVGV() my_safemalloc(sizeof(XPVGV))
1004 #define del_XPVGV(p) my_safefree(p)
1008 #define new_XNV() new_body_type(SVt_NV)
1009 #define del_XNV(p) del_body_type(p, SVt_NV)
1011 #define new_XPVNV() new_body_type(SVt_PVNV)
1012 #define del_XPVNV(p) del_body_type(p, SVt_PVNV)
1014 #define new_XPVAV() new_body_allocated(SVt_PVAV)
1015 #define del_XPVAV(p) del_body_allocated(p, SVt_PVAV)
1017 #define new_XPVHV() new_body_allocated(SVt_PVHV)
1018 #define del_XPVHV(p) del_body_allocated(p, SVt_PVHV)
1020 #define new_XPVMG() new_body_type(SVt_PVMG)
1021 #define del_XPVMG(p) del_body_type(p, SVt_PVMG)
1023 #define new_XPVGV() new_body_type(SVt_PVGV)
1024 #define del_XPVGV(p) del_body_type(p, SVt_PVGV)
1028 /* no arena for you! */
1030 #define new_NOARENA(details) \
1031 my_safemalloc((details)->body_size + (details)->offset)
1032 #define new_NOARENAZ(details) \
1033 my_safecalloc((details)->body_size + (details)->offset)
1035 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1036 static bool done_sanity_check;
1040 S_more_bodies (pTHX_ svtype sv_type)
1043 void ** const root = &PL_body_roots[sv_type];
1044 const struct body_details * const bdp = &bodies_by_type[sv_type];
1045 const size_t body_size = bdp->body_size;
1049 assert(bdp->arena_size);
1051 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1052 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1053 * variables like done_sanity_check. */
1054 if (!done_sanity_check) {
1055 unsigned int i = SVt_LAST;
1057 done_sanity_check = TRUE;
1060 assert (bodies_by_type[i].type == i);
1064 start = (char*) Perl_get_arena(aTHX_ bdp->arena_size);
1066 end = start + bdp->arena_size - body_size;
1068 /* computed count doesnt reflect the 1st slot reservation */
1069 DEBUG_m(PerlIO_printf(Perl_debug_log,
1070 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1072 (int)bdp->arena_size, sv_type, (int)body_size,
1073 (int)bdp->arena_size / (int)body_size));
1075 *root = (void *)start;
1077 while (start < end) {
1078 char * const next = start + body_size;
1079 *(void**) start = (void *)next;
1082 *(void **)start = 0;
1087 /* grab a new thing from the free list, allocating more if necessary.
1088 The inline version is used for speed in hot routines, and the
1089 function using it serves the rest (unless PURIFY).
1091 #define new_body_inline(xpv, sv_type) \
1093 void ** const r3wt = &PL_body_roots[sv_type]; \
1095 xpv = *((void **)(r3wt)) \
1096 ? *((void **)(r3wt)) : more_bodies(sv_type); \
1097 *(r3wt) = *(void**)(xpv); \
1104 S_new_body(pTHX_ svtype sv_type)
1108 new_body_inline(xpv, sv_type);
1115 =for apidoc sv_upgrade
1117 Upgrade an SV to a more complex form. Generally adds a new body type to the
1118 SV, then copies across as much information as possible from the old body.
1119 You generally want to use the C<SvUPGRADE> macro wrapper. See also C<svtype>.
1125 Perl_sv_upgrade(pTHX_ register SV *sv, svtype new_type)
1130 const svtype old_type = SvTYPE(sv);
1131 const struct body_details *new_type_details;
1132 const struct body_details *const old_type_details
1133 = bodies_by_type + old_type;
1135 if (new_type != SVt_PV && SvIsCOW(sv)) {
1136 sv_force_normal_flags(sv, 0);
1139 if (old_type == new_type)
1142 if (old_type > new_type)
1143 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1144 (int)old_type, (int)new_type);
1147 old_body = SvANY(sv);
1149 /* Copying structures onto other structures that have been neatly zeroed
1150 has a subtle gotcha. Consider XPVMG
1152 +------+------+------+------+------+-------+-------+
1153 | NV | CUR | LEN | IV | MAGIC | STASH |
1154 +------+------+------+------+------+-------+-------+
1155 0 4 8 12 16 20 24 28
1157 where NVs are aligned to 8 bytes, so that sizeof that structure is
1158 actually 32 bytes long, with 4 bytes of padding at the end:
1160 +------+------+------+------+------+-------+-------+------+
1161 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1162 +------+------+------+------+------+-------+-------+------+
1163 0 4 8 12 16 20 24 28 32
1165 so what happens if you allocate memory for this structure:
1167 +------+------+------+------+------+-------+-------+------+------+...
1168 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1169 +------+------+------+------+------+-------+-------+------+------+...
1170 0 4 8 12 16 20 24 28 32 36
1172 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1173 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1174 started out as zero once, but it's quite possible that it isn't. So now,
1175 rather than a nicely zeroed GP, you have it pointing somewhere random.
1178 (In fact, GP ends up pointing at a previous GP structure, because the
1179 principle cause of the padding in XPVMG getting garbage is a copy of
1180 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob)
1182 So we are careful and work out the size of used parts of all the
1189 if (new_type < SVt_PVIV) {
1190 new_type = (new_type == SVt_NV)
1191 ? SVt_PVNV : SVt_PVIV;
1195 if (new_type < SVt_PVNV) {
1196 new_type = SVt_PVNV;
1202 assert(new_type > SVt_PV);
1203 assert(SVt_IV < SVt_PV);
1204 assert(SVt_NV < SVt_PV);
1211 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1212 there's no way that it can be safely upgraded, because perl.c
1213 expects to Safefree(SvANY(PL_mess_sv)) */
1214 assert(sv != PL_mess_sv);
1215 /* This flag bit is used to mean other things in other scalar types.
1216 Given that it only has meaning inside the pad, it shouldn't be set
1217 on anything that can get upgraded. */
1218 assert(!SvPAD_TYPED(sv));
1221 if (old_type_details->cant_upgrade)
1222 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1223 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1225 new_type_details = bodies_by_type + new_type;
1227 SvFLAGS(sv) &= ~SVTYPEMASK;
1228 SvFLAGS(sv) |= new_type;
1230 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1231 the return statements above will have triggered. */
1232 assert (new_type != SVt_NULL);
1235 assert(old_type == SVt_NULL);
1236 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1240 assert(old_type == SVt_NULL);
1241 SvANY(sv) = new_XNV();
1245 assert(old_type == SVt_NULL);
1246 SvANY(sv) = &sv->sv_u.svu_rv;
1251 assert(new_type_details->body_size);
1254 assert(new_type_details->arena);
1255 assert(new_type_details->arena_size);
1256 /* This points to the start of the allocated area. */
1257 new_body_inline(new_body, new_type);
1258 Zero(new_body, new_type_details->body_size, char);
1259 new_body = ((char *)new_body) - new_type_details->offset;
1261 /* We always allocated the full length item with PURIFY. To do this
1262 we fake things so that arena is false for all 16 types.. */
1263 new_body = new_NOARENAZ(new_type_details);
1265 SvANY(sv) = new_body;
1266 if (new_type == SVt_PVAV) {
1272 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1273 The target created by newSVrv also is, and it can have magic.
1274 However, it never has SvPVX set.
1276 if (old_type >= SVt_RV) {
1277 assert(SvPVX_const(sv) == 0);
1280 /* Could put this in the else clause below, as PVMG must have SvPVX
1281 0 already (the assertion above) */
1284 if (old_type >= SVt_PVMG) {
1285 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1286 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1292 /* XXX Is this still needed? Was it ever needed? Surely as there is
1293 no route from NV to PVIV, NOK can never be true */
1294 assert(!SvNOKp(sv));
1306 assert(new_type_details->body_size);
1307 /* We always allocated the full length item with PURIFY. To do this
1308 we fake things so that arena is false for all 16 types.. */
1309 if(new_type_details->arena) {
1310 /* This points to the start of the allocated area. */
1311 new_body_inline(new_body, new_type);
1312 Zero(new_body, new_type_details->body_size, char);
1313 new_body = ((char *)new_body) - new_type_details->offset;
1315 new_body = new_NOARENAZ(new_type_details);
1317 SvANY(sv) = new_body;
1319 if (old_type_details->copy) {
1320 /* There is now the potential for an upgrade from something without
1321 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1322 int offset = old_type_details->offset;
1323 int length = old_type_details->copy;
1325 if (new_type_details->offset > old_type_details->offset) {
1326 const int difference
1327 = new_type_details->offset - old_type_details->offset;
1328 offset += difference;
1329 length -= difference;
1331 assert (length >= 0);
1333 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1337 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1338 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1339 * correct 0.0 for us. Otherwise, if the old body didn't have an
1340 * NV slot, but the new one does, then we need to initialise the
1341 * freshly created NV slot with whatever the correct bit pattern is
1343 if (old_type_details->zero_nv && !new_type_details->zero_nv)
1347 if (new_type == SVt_PVIO)
1348 IoPAGE_LEN(sv) = 60;
1349 if (old_type < SVt_RV)
1353 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1354 (unsigned long)new_type);
1357 if (old_type_details->arena) {
1358 /* If there was an old body, then we need to free it.
1359 Note that there is an assumption that all bodies of types that
1360 can be upgraded came from arenas. Only the more complex non-
1361 upgradable types are allowed to be directly malloc()ed. */
1363 my_safefree(old_body);
1365 del_body((void*)((char*)old_body + old_type_details->offset),
1366 &PL_body_roots[old_type]);
1372 =for apidoc sv_backoff
1374 Remove any string offset. You should normally use the C<SvOOK_off> macro
1381 Perl_sv_backoff(pTHX_ register SV *sv)
1383 PERL_UNUSED_CONTEXT;
1385 assert(SvTYPE(sv) != SVt_PVHV);
1386 assert(SvTYPE(sv) != SVt_PVAV);
1388 const char * const s = SvPVX_const(sv);
1389 SvLEN_set(sv, SvLEN(sv) + SvIVX(sv));
1390 SvPV_set(sv, SvPVX(sv) - SvIVX(sv));
1392 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1394 SvFLAGS(sv) &= ~SVf_OOK;
1401 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1402 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1403 Use the C<SvGROW> wrapper instead.
1409 Perl_sv_grow(pTHX_ register SV *sv, register STRLEN newlen)
1413 if (PL_madskills && newlen >= 0x100000) {
1414 PerlIO_printf(Perl_debug_log,
1415 "Allocation too large: %"UVxf"\n", (UV)newlen);
1417 #ifdef HAS_64K_LIMIT
1418 if (newlen >= 0x10000) {
1419 PerlIO_printf(Perl_debug_log,
1420 "Allocation too large: %"UVxf"\n", (UV)newlen);
1423 #endif /* HAS_64K_LIMIT */
1426 if (SvTYPE(sv) < SVt_PV) {
1427 sv_upgrade(sv, SVt_PV);
1428 s = SvPVX_mutable(sv);
1430 else if (SvOOK(sv)) { /* pv is offset? */
1432 s = SvPVX_mutable(sv);
1433 if (newlen > SvLEN(sv))
1434 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1435 #ifdef HAS_64K_LIMIT
1436 if (newlen >= 0x10000)
1441 s = SvPVX_mutable(sv);
1443 if (newlen > SvLEN(sv)) { /* need more room? */
1444 newlen = PERL_STRLEN_ROUNDUP(newlen);
1445 if (SvLEN(sv) && s) {
1447 const STRLEN l = malloced_size((void*)SvPVX_const(sv));
1453 s = (char*)saferealloc(s, newlen);
1456 s = (char*)safemalloc(newlen);
1457 if (SvPVX_const(sv) && SvCUR(sv)) {
1458 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1462 SvLEN_set(sv, newlen);
1468 =for apidoc sv_setiv
1470 Copies an integer into the given SV, upgrading first if necessary.
1471 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1477 Perl_sv_setiv(pTHX_ register SV *sv, IV i)
1480 SV_CHECK_THINKFIRST_COW_DROP(sv);
1481 switch (SvTYPE(sv)) {
1483 sv_upgrade(sv, SVt_IV);
1486 sv_upgrade(sv, SVt_PVNV);
1490 sv_upgrade(sv, SVt_PVIV);
1499 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1503 (void)SvIOK_only(sv); /* validate number */
1509 =for apidoc sv_setiv_mg
1511 Like C<sv_setiv>, but also handles 'set' magic.
1517 Perl_sv_setiv_mg(pTHX_ register SV *sv, IV i)
1524 =for apidoc sv_setuv
1526 Copies an unsigned integer into the given SV, upgrading first if necessary.
1527 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1533 Perl_sv_setuv(pTHX_ register SV *sv, UV u)
1535 /* With these two if statements:
1536 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1539 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1541 If you wish to remove them, please benchmark to see what the effect is
1543 if (u <= (UV)IV_MAX) {
1544 sv_setiv(sv, (IV)u);
1553 =for apidoc sv_setuv_mg
1555 Like C<sv_setuv>, but also handles 'set' magic.
1561 Perl_sv_setuv_mg(pTHX_ register SV *sv, UV u)
1570 =for apidoc sv_setnv
1572 Copies a double into the given SV, upgrading first if necessary.
1573 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1579 Perl_sv_setnv(pTHX_ register SV *sv, NV num)
1582 SV_CHECK_THINKFIRST_COW_DROP(sv);
1583 switch (SvTYPE(sv)) {
1586 sv_upgrade(sv, SVt_NV);
1591 sv_upgrade(sv, SVt_PVNV);
1600 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1605 (void)SvNOK_only(sv); /* validate number */
1610 =for apidoc sv_setnv_mg
1612 Like C<sv_setnv>, but also handles 'set' magic.
1618 Perl_sv_setnv_mg(pTHX_ register SV *sv, NV num)
1624 /* Print an "isn't numeric" warning, using a cleaned-up,
1625 * printable version of the offending string
1629 S_not_a_number(pTHX_ SV *sv)
1637 dsv = sv_2mortal(newSVpvs(""));
1638 pv = sv_uni_display(dsv, sv, 10, 0);
1641 const char * const limit = tmpbuf + sizeof(tmpbuf) - 8;
1642 /* each *s can expand to 4 chars + "...\0",
1643 i.e. need room for 8 chars */
1645 const char *s = SvPVX_const(sv);
1646 const char * const end = s + SvCUR(sv);
1647 for ( ; s < end && d < limit; s++ ) {
1649 if (ch & 128 && !isPRINT_LC(ch)) {
1658 else if (ch == '\r') {
1662 else if (ch == '\f') {
1666 else if (ch == '\\') {
1670 else if (ch == '\0') {
1674 else if (isPRINT_LC(ch))
1691 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1692 "Argument \"%s\" isn't numeric in %s", pv,
1695 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1696 "Argument \"%s\" isn't numeric", pv);
1700 =for apidoc looks_like_number
1702 Test if the content of an SV looks like a number (or is a number).
1703 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1704 non-numeric warning), even if your atof() doesn't grok them.
1710 Perl_looks_like_number(pTHX_ SV *sv)
1712 register const char *sbegin;
1716 sbegin = SvPVX_const(sv);
1719 else if (SvPOKp(sv))
1720 sbegin = SvPV_const(sv, len);
1722 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1723 return grok_number(sbegin, len, NULL);
1727 S_glob_2number(pTHX_ GV * const gv)
1729 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1730 SV *const buffer = sv_newmortal();
1732 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1735 gv_efullname3(buffer, gv, "*");
1736 SvFLAGS(gv) |= wasfake;
1738 /* We know that all GVs stringify to something that is not-a-number,
1739 so no need to test that. */
1740 if (ckWARN(WARN_NUMERIC))
1741 not_a_number(buffer);
1742 /* We just want something true to return, so that S_sv_2iuv_common
1743 can tail call us and return true. */
1748 S_glob_2pv(pTHX_ GV * const gv, STRLEN * const len)
1750 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1751 SV *const buffer = sv_newmortal();
1753 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1756 gv_efullname3(buffer, gv, "*");
1757 SvFLAGS(gv) |= wasfake;
1759 assert(SvPOK(buffer));
1761 *len = SvCUR(buffer);
1763 return SvPVX(buffer);
1766 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1767 until proven guilty, assume that things are not that bad... */
1772 As 64 bit platforms often have an NV that doesn't preserve all bits of
1773 an IV (an assumption perl has been based on to date) it becomes necessary
1774 to remove the assumption that the NV always carries enough precision to
1775 recreate the IV whenever needed, and that the NV is the canonical form.
1776 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1777 precision as a side effect of conversion (which would lead to insanity
1778 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1779 1) to distinguish between IV/UV/NV slots that have cached a valid
1780 conversion where precision was lost and IV/UV/NV slots that have a
1781 valid conversion which has lost no precision
1782 2) to ensure that if a numeric conversion to one form is requested that
1783 would lose precision, the precise conversion (or differently
1784 imprecise conversion) is also performed and cached, to prevent
1785 requests for different numeric formats on the same SV causing
1786 lossy conversion chains. (lossless conversion chains are perfectly
1791 SvIOKp is true if the IV slot contains a valid value
1792 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1793 SvNOKp is true if the NV slot contains a valid value
1794 SvNOK is true only if the NV value is accurate
1797 while converting from PV to NV, check to see if converting that NV to an
1798 IV(or UV) would lose accuracy over a direct conversion from PV to
1799 IV(or UV). If it would, cache both conversions, return NV, but mark
1800 SV as IOK NOKp (ie not NOK).
1802 While converting from PV to IV, check to see if converting that IV to an
1803 NV would lose accuracy over a direct conversion from PV to NV. If it
1804 would, cache both conversions, flag similarly.
1806 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1807 correctly because if IV & NV were set NV *always* overruled.
1808 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1809 changes - now IV and NV together means that the two are interchangeable:
1810 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1812 The benefit of this is that operations such as pp_add know that if
1813 SvIOK is true for both left and right operands, then integer addition
1814 can be used instead of floating point (for cases where the result won't
1815 overflow). Before, floating point was always used, which could lead to
1816 loss of precision compared with integer addition.
1818 * making IV and NV equal status should make maths accurate on 64 bit
1820 * may speed up maths somewhat if pp_add and friends start to use
1821 integers when possible instead of fp. (Hopefully the overhead in
1822 looking for SvIOK and checking for overflow will not outweigh the
1823 fp to integer speedup)
1824 * will slow down integer operations (callers of SvIV) on "inaccurate"
1825 values, as the change from SvIOK to SvIOKp will cause a call into
1826 sv_2iv each time rather than a macro access direct to the IV slot
1827 * should speed up number->string conversion on integers as IV is
1828 favoured when IV and NV are equally accurate
1830 ####################################################################
1831 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1832 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1833 On the other hand, SvUOK is true iff UV.
1834 ####################################################################
1836 Your mileage will vary depending your CPU's relative fp to integer
1840 #ifndef NV_PRESERVES_UV
1841 # define IS_NUMBER_UNDERFLOW_IV 1
1842 # define IS_NUMBER_UNDERFLOW_UV 2
1843 # define IS_NUMBER_IV_AND_UV 2
1844 # define IS_NUMBER_OVERFLOW_IV 4
1845 # define IS_NUMBER_OVERFLOW_UV 5
1847 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1849 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1851 S_sv_2iuv_non_preserve(pTHX_ register SV *sv, I32 numtype)
1854 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1855 if (SvNVX(sv) < (NV)IV_MIN) {
1856 (void)SvIOKp_on(sv);
1858 SvIV_set(sv, IV_MIN);
1859 return IS_NUMBER_UNDERFLOW_IV;
1861 if (SvNVX(sv) > (NV)UV_MAX) {
1862 (void)SvIOKp_on(sv);
1865 SvUV_set(sv, UV_MAX);
1866 return IS_NUMBER_OVERFLOW_UV;
1868 (void)SvIOKp_on(sv);
1870 /* Can't use strtol etc to convert this string. (See truth table in
1872 if (SvNVX(sv) <= (UV)IV_MAX) {
1873 SvIV_set(sv, I_V(SvNVX(sv)));
1874 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1875 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1877 /* Integer is imprecise. NOK, IOKp */
1879 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
1882 SvUV_set(sv, U_V(SvNVX(sv)));
1883 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
1884 if (SvUVX(sv) == UV_MAX) {
1885 /* As we know that NVs don't preserve UVs, UV_MAX cannot
1886 possibly be preserved by NV. Hence, it must be overflow.
1888 return IS_NUMBER_OVERFLOW_UV;
1890 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
1892 /* Integer is imprecise. NOK, IOKp */
1894 return IS_NUMBER_OVERFLOW_IV;
1896 #endif /* !NV_PRESERVES_UV*/
1899 S_sv_2iuv_common(pTHX_ SV *sv) {
1902 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
1903 * without also getting a cached IV/UV from it at the same time
1904 * (ie PV->NV conversion should detect loss of accuracy and cache
1905 * IV or UV at same time to avoid this. */
1906 /* IV-over-UV optimisation - choose to cache IV if possible */
1908 if (SvTYPE(sv) == SVt_NV)
1909 sv_upgrade(sv, SVt_PVNV);
1911 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
1912 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
1913 certainly cast into the IV range at IV_MAX, whereas the correct
1914 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
1916 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
1917 if (Perl_isnan(SvNVX(sv))) {
1923 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
1924 SvIV_set(sv, I_V(SvNVX(sv)));
1925 if (SvNVX(sv) == (NV) SvIVX(sv)
1926 #ifndef NV_PRESERVES_UV
1927 && (((UV)1 << NV_PRESERVES_UV_BITS) >
1928 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
1929 /* Don't flag it as "accurately an integer" if the number
1930 came from a (by definition imprecise) NV operation, and
1931 we're outside the range of NV integer precision */
1934 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
1935 DEBUG_c(PerlIO_printf(Perl_debug_log,
1936 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
1942 /* IV not precise. No need to convert from PV, as NV
1943 conversion would already have cached IV if it detected
1944 that PV->IV would be better than PV->NV->IV
1945 flags already correct - don't set public IOK. */
1946 DEBUG_c(PerlIO_printf(Perl_debug_log,
1947 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
1952 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
1953 but the cast (NV)IV_MIN rounds to a the value less (more
1954 negative) than IV_MIN which happens to be equal to SvNVX ??
1955 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
1956 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
1957 (NV)UVX == NVX are both true, but the values differ. :-(
1958 Hopefully for 2s complement IV_MIN is something like
1959 0x8000000000000000 which will be exact. NWC */
1962 SvUV_set(sv, U_V(SvNVX(sv)));
1964 (SvNVX(sv) == (NV) SvUVX(sv))
1965 #ifndef NV_PRESERVES_UV
1966 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
1967 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
1968 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
1969 /* Don't flag it as "accurately an integer" if the number
1970 came from a (by definition imprecise) NV operation, and
1971 we're outside the range of NV integer precision */
1976 DEBUG_c(PerlIO_printf(Perl_debug_log,
1977 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
1983 else if (SvPOKp(sv) && SvLEN(sv)) {
1985 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
1986 /* We want to avoid a possible problem when we cache an IV/ a UV which
1987 may be later translated to an NV, and the resulting NV is not
1988 the same as the direct translation of the initial string
1989 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
1990 be careful to ensure that the value with the .456 is around if the
1991 NV value is requested in the future).
1993 This means that if we cache such an IV/a UV, we need to cache the
1994 NV as well. Moreover, we trade speed for space, and do not
1995 cache the NV if we are sure it's not needed.
1998 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
1999 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2000 == IS_NUMBER_IN_UV) {
2001 /* It's definitely an integer, only upgrade to PVIV */
2002 if (SvTYPE(sv) < SVt_PVIV)
2003 sv_upgrade(sv, SVt_PVIV);
2005 } else if (SvTYPE(sv) < SVt_PVNV)
2006 sv_upgrade(sv, SVt_PVNV);
2008 /* If NVs preserve UVs then we only use the UV value if we know that
2009 we aren't going to call atof() below. If NVs don't preserve UVs
2010 then the value returned may have more precision than atof() will
2011 return, even though value isn't perfectly accurate. */
2012 if ((numtype & (IS_NUMBER_IN_UV
2013 #ifdef NV_PRESERVES_UV
2016 )) == IS_NUMBER_IN_UV) {
2017 /* This won't turn off the public IOK flag if it was set above */
2018 (void)SvIOKp_on(sv);
2020 if (!(numtype & IS_NUMBER_NEG)) {
2022 if (value <= (UV)IV_MAX) {
2023 SvIV_set(sv, (IV)value);
2025 /* it didn't overflow, and it was positive. */
2026 SvUV_set(sv, value);
2030 /* 2s complement assumption */
2031 if (value <= (UV)IV_MIN) {
2032 SvIV_set(sv, -(IV)value);
2034 /* Too negative for an IV. This is a double upgrade, but
2035 I'm assuming it will be rare. */
2036 if (SvTYPE(sv) < SVt_PVNV)
2037 sv_upgrade(sv, SVt_PVNV);
2041 SvNV_set(sv, -(NV)value);
2042 SvIV_set(sv, IV_MIN);
2046 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2047 will be in the previous block to set the IV slot, and the next
2048 block to set the NV slot. So no else here. */
2050 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2051 != IS_NUMBER_IN_UV) {
2052 /* It wasn't an (integer that doesn't overflow the UV). */
2053 SvNV_set(sv, Atof(SvPVX_const(sv)));
2055 if (! numtype && ckWARN(WARN_NUMERIC))
2058 #if defined(USE_LONG_DOUBLE)
2059 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2060 PTR2UV(sv), SvNVX(sv)));
2062 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2063 PTR2UV(sv), SvNVX(sv)));
2066 #ifdef NV_PRESERVES_UV
2067 (void)SvIOKp_on(sv);
2069 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2070 SvIV_set(sv, I_V(SvNVX(sv)));
2071 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2074 NOOP; /* Integer is imprecise. NOK, IOKp */
2076 /* UV will not work better than IV */
2078 if (SvNVX(sv) > (NV)UV_MAX) {
2080 /* Integer is inaccurate. NOK, IOKp, is UV */
2081 SvUV_set(sv, UV_MAX);
2083 SvUV_set(sv, U_V(SvNVX(sv)));
2084 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2085 NV preservse UV so can do correct comparison. */
2086 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2089 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2094 #else /* NV_PRESERVES_UV */
2095 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2096 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2097 /* The IV/UV slot will have been set from value returned by
2098 grok_number above. The NV slot has just been set using
2101 assert (SvIOKp(sv));
2103 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2104 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2105 /* Small enough to preserve all bits. */
2106 (void)SvIOKp_on(sv);
2108 SvIV_set(sv, I_V(SvNVX(sv)));
2109 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2111 /* Assumption: first non-preserved integer is < IV_MAX,
2112 this NV is in the preserved range, therefore: */
2113 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2115 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2119 0 0 already failed to read UV.
2120 0 1 already failed to read UV.
2121 1 0 you won't get here in this case. IV/UV
2122 slot set, public IOK, Atof() unneeded.
2123 1 1 already read UV.
2124 so there's no point in sv_2iuv_non_preserve() attempting
2125 to use atol, strtol, strtoul etc. */
2126 sv_2iuv_non_preserve (sv, numtype);
2129 #endif /* NV_PRESERVES_UV */
2133 if (isGV_with_GP(sv))
2134 return glob_2number((GV *)sv);
2136 if (!(SvFLAGS(sv) & SVs_PADTMP)) {
2137 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2140 if (SvTYPE(sv) < SVt_IV)
2141 /* Typically the caller expects that sv_any is not NULL now. */
2142 sv_upgrade(sv, SVt_IV);
2143 /* Return 0 from the caller. */
2150 =for apidoc sv_2iv_flags
2152 Return the integer value of an SV, doing any necessary string
2153 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2154 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2160 Perl_sv_2iv_flags(pTHX_ register SV *sv, I32 flags)
2165 if (SvGMAGICAL(sv)) {
2166 if (flags & SV_GMAGIC)
2171 return I_V(SvNVX(sv));
2173 if (SvPOKp(sv) && SvLEN(sv)) {
2176 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2178 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2179 == IS_NUMBER_IN_UV) {
2180 /* It's definitely an integer */
2181 if (numtype & IS_NUMBER_NEG) {
2182 if (value < (UV)IV_MIN)
2185 if (value < (UV)IV_MAX)
2190 if (ckWARN(WARN_NUMERIC))
2193 return I_V(Atof(SvPVX_const(sv)));
2198 assert(SvTYPE(sv) >= SVt_PVMG);
2199 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2200 } else if (SvTHINKFIRST(sv)) {
2204 SV * const tmpstr=AMG_CALLun(sv,numer);
2205 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2206 return SvIV(tmpstr);
2209 return PTR2IV(SvRV(sv));
2212 sv_force_normal_flags(sv, 0);
2214 if (SvREADONLY(sv) && !SvOK(sv)) {
2215 if (ckWARN(WARN_UNINITIALIZED))
2221 if (S_sv_2iuv_common(aTHX_ sv))
2224 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2225 PTR2UV(sv),SvIVX(sv)));
2226 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2230 =for apidoc sv_2uv_flags
2232 Return the unsigned integer value of an SV, doing any necessary string
2233 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2234 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2240 Perl_sv_2uv_flags(pTHX_ register SV *sv, I32 flags)
2245 if (SvGMAGICAL(sv)) {
2246 if (flags & SV_GMAGIC)
2251 return U_V(SvNVX(sv));
2252 if (SvPOKp(sv) && SvLEN(sv)) {
2255 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2257 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2258 == IS_NUMBER_IN_UV) {
2259 /* It's definitely an integer */
2260 if (!(numtype & IS_NUMBER_NEG))
2264 if (ckWARN(WARN_NUMERIC))
2267 return U_V(Atof(SvPVX_const(sv)));
2272 assert(SvTYPE(sv) >= SVt_PVMG);
2273 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2274 } else if (SvTHINKFIRST(sv)) {
2278 SV *const tmpstr = AMG_CALLun(sv,numer);
2279 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2280 return SvUV(tmpstr);
2283 return PTR2UV(SvRV(sv));
2286 sv_force_normal_flags(sv, 0);
2288 if (SvREADONLY(sv) && !SvOK(sv)) {
2289 if (ckWARN(WARN_UNINITIALIZED))
2295 if (S_sv_2iuv_common(aTHX_ sv))
2299 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2300 PTR2UV(sv),SvUVX(sv)));
2301 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2307 Return the num value of an SV, doing any necessary string or integer
2308 conversion, magic etc. Normally used via the C<SvNV(sv)> and C<SvNVx(sv)>
2315 Perl_sv_2nv(pTHX_ register SV *sv)
2320 if (SvGMAGICAL(sv)) {
2324 if ((SvPOKp(sv) && SvLEN(sv)) && !SvIOKp(sv)) {
2325 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2326 !grok_number(SvPVX_const(sv), SvCUR(sv), NULL))
2328 return Atof(SvPVX_const(sv));
2332 return (NV)SvUVX(sv);
2334 return (NV)SvIVX(sv);
2339 assert(SvTYPE(sv) >= SVt_PVMG);
2340 /* This falls through to the report_uninit near the end of the
2342 } else if (SvTHINKFIRST(sv)) {
2346 SV *const tmpstr = AMG_CALLun(sv,numer);
2347 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2348 return SvNV(tmpstr);
2351 return PTR2NV(SvRV(sv));
2354 sv_force_normal_flags(sv, 0);
2356 if (SvREADONLY(sv) && !SvOK(sv)) {
2357 if (ckWARN(WARN_UNINITIALIZED))
2362 if (SvTYPE(sv) < SVt_NV) {
2363 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2364 sv_upgrade(sv, SVt_NV);
2365 #ifdef USE_LONG_DOUBLE
2367 STORE_NUMERIC_LOCAL_SET_STANDARD();
2368 PerlIO_printf(Perl_debug_log,
2369 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2370 PTR2UV(sv), SvNVX(sv));
2371 RESTORE_NUMERIC_LOCAL();
2375 STORE_NUMERIC_LOCAL_SET_STANDARD();
2376 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2377 PTR2UV(sv), SvNVX(sv));
2378 RESTORE_NUMERIC_LOCAL();
2382 else if (SvTYPE(sv) < SVt_PVNV)
2383 sv_upgrade(sv, SVt_PVNV);
2388 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2389 #ifdef NV_PRESERVES_UV
2392 /* Only set the public NV OK flag if this NV preserves the IV */
2393 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2394 if (SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2395 : (SvIVX(sv) == I_V(SvNVX(sv))))
2401 else if (SvPOKp(sv) && SvLEN(sv)) {
2403 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2404 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2406 #ifdef NV_PRESERVES_UV
2407 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2408 == IS_NUMBER_IN_UV) {
2409 /* It's definitely an integer */
2410 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2412 SvNV_set(sv, Atof(SvPVX_const(sv)));
2415 SvNV_set(sv, Atof(SvPVX_const(sv)));
2416 /* Only set the public NV OK flag if this NV preserves the value in
2417 the PV at least as well as an IV/UV would.
2418 Not sure how to do this 100% reliably. */
2419 /* if that shift count is out of range then Configure's test is
2420 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2422 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2423 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2424 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2425 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2426 /* Can't use strtol etc to convert this string, so don't try.
2427 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2430 /* value has been set. It may not be precise. */
2431 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2432 /* 2s complement assumption for (UV)IV_MIN */
2433 SvNOK_on(sv); /* Integer is too negative. */
2438 if (numtype & IS_NUMBER_NEG) {
2439 SvIV_set(sv, -(IV)value);
2440 } else if (value <= (UV)IV_MAX) {
2441 SvIV_set(sv, (IV)value);
2443 SvUV_set(sv, value);
2447 if (numtype & IS_NUMBER_NOT_INT) {
2448 /* I believe that even if the original PV had decimals,
2449 they are lost beyond the limit of the FP precision.
2450 However, neither is canonical, so both only get p
2451 flags. NWC, 2000/11/25 */
2452 /* Both already have p flags, so do nothing */
2454 const NV nv = SvNVX(sv);
2455 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2456 if (SvIVX(sv) == I_V(nv)) {
2459 /* It had no "." so it must be integer. */
2463 /* between IV_MAX and NV(UV_MAX).
2464 Could be slightly > UV_MAX */
2466 if (numtype & IS_NUMBER_NOT_INT) {
2467 /* UV and NV both imprecise. */
2469 const UV nv_as_uv = U_V(nv);
2471 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2480 #endif /* NV_PRESERVES_UV */
2483 if (isGV_with_GP(sv)) {
2484 glob_2number((GV *)sv);
2488 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2490 assert (SvTYPE(sv) >= SVt_NV);
2491 /* Typically the caller expects that sv_any is not NULL now. */
2492 /* XXX Ilya implies that this is a bug in callers that assume this
2493 and ideally should be fixed. */
2496 #if defined(USE_LONG_DOUBLE)
2498 STORE_NUMERIC_LOCAL_SET_STANDARD();
2499 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2500 PTR2UV(sv), SvNVX(sv));
2501 RESTORE_NUMERIC_LOCAL();
2505 STORE_NUMERIC_LOCAL_SET_STANDARD();
2506 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2507 PTR2UV(sv), SvNVX(sv));
2508 RESTORE_NUMERIC_LOCAL();
2514 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2515 * UV as a string towards the end of buf, and return pointers to start and
2518 * We assume that buf is at least TYPE_CHARS(UV) long.
2522 S_uiv_2buf(char *buf, IV iv, UV uv, int is_uv, char **peob)
2524 char *ptr = buf + TYPE_CHARS(UV);
2525 char * const ebuf = ptr;
2538 *--ptr = '0' + (char)(uv % 10);
2546 /* stringify_regexp(): private routine for use by sv_2pv_flags(): converts
2547 * a regexp to its stringified form.
2551 S_stringify_regexp(pTHX_ SV *sv, MAGIC *mg, STRLEN *lp) {
2553 const regexp * const re = (regexp *)mg->mg_obj;
2556 const char *fptr = "msix";
2561 bool need_newline = 0;
2562 U16 reganch = (U16)((re->reganch & PMf_COMPILETIME) >> 12);
2564 while((ch = *fptr++)) {
2566 reflags[left++] = ch;
2569 reflags[right--] = ch;
2574 reflags[left] = '-';
2578 mg->mg_len = re->prelen + 4 + left;
2580 * If /x was used, we have to worry about a regex ending with a
2581 * comment later being embedded within another regex. If so, we don't
2582 * want this regex's "commentization" to leak out to the right part of
2583 * the enclosing regex, we must cap it with a newline.
2585 * So, if /x was used, we scan backwards from the end of the regex. If
2586 * we find a '#' before we find a newline, we need to add a newline
2587 * ourself. If we find a '\n' first (or if we don't find '#' or '\n'),
2588 * we don't need to add anything. -jfriedl
2590 if (PMf_EXTENDED & re->reganch) {
2591 const char *endptr = re->precomp + re->prelen;
2592 while (endptr >= re->precomp) {
2593 const char c = *(endptr--);
2595 break; /* don't need another */
2597 /* we end while in a comment, so we need a newline */
2598 mg->mg_len++; /* save space for it */
2599 need_newline = 1; /* note to add it */
2605 Newx(mg->mg_ptr, mg->mg_len + 1 + left, char);
2606 mg->mg_ptr[0] = '(';
2607 mg->mg_ptr[1] = '?';
2608 Copy(reflags, mg->mg_ptr+2, left, char);
2609 *(mg->mg_ptr+left+2) = ':';
2610 Copy(re->precomp, mg->mg_ptr+3+left, re->prelen, char);
2612 mg->mg_ptr[mg->mg_len - 2] = '\n';
2613 mg->mg_ptr[mg->mg_len - 1] = ')';
2614 mg->mg_ptr[mg->mg_len] = 0;
2616 PL_reginterp_cnt += re->program[0].next_off;
2618 if (re->reganch & ROPT_UTF8)
2628 =for apidoc sv_2pv_flags
2630 Returns a pointer to the string value of an SV, and sets *lp to its length.
2631 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a string
2633 Normally invoked via the C<SvPV_flags> macro. C<sv_2pv()> and C<sv_2pv_nomg>
2634 usually end up here too.
2640 Perl_sv_2pv_flags(pTHX_ register SV *sv, STRLEN *lp, I32 flags)
2650 if (SvGMAGICAL(sv)) {
2651 if (flags & SV_GMAGIC)
2656 if (flags & SV_MUTABLE_RETURN)
2657 return SvPVX_mutable(sv);
2658 if (flags & SV_CONST_RETURN)
2659 return (char *)SvPVX_const(sv);
2662 if (SvIOKp(sv) || SvNOKp(sv)) {
2663 char tbuf[64]; /* Must fit sprintf/Gconvert of longest IV/NV */
2668 ? my_snprintf(tbuf, sizeof(tbuf), "%"UVuf, (UV)SvUVX(sv))
2669 : my_snprintf(tbuf, sizeof(tbuf), "%"IVdf, (IV)SvIVX(sv));
2671 Gconvert(SvNVX(sv), NV_DIG, 0, tbuf);
2678 #ifdef FIXNEGATIVEZERO
2679 if (len == 2 && tbuf[0] == '-' && tbuf[1] == '0') {
2685 SvUPGRADE(sv, SVt_PV);
2688 s = SvGROW_mutable(sv, len + 1);
2691 return (char*)memcpy(s, tbuf, len + 1);
2697 assert(SvTYPE(sv) >= SVt_PVMG);
2698 /* This falls through to the report_uninit near the end of the
2700 } else if (SvTHINKFIRST(sv)) {
2704 SV *const tmpstr = AMG_CALLun(sv,string);
2705 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2707 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2711 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2712 if (flags & SV_CONST_RETURN) {
2713 pv = (char *) SvPVX_const(tmpstr);
2715 pv = (flags & SV_MUTABLE_RETURN)
2716 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2719 *lp = SvCUR(tmpstr);
2721 pv = sv_2pv_flags(tmpstr, lp, flags);
2733 const SV *const referent = (SV*)SvRV(sv);
2736 tsv = sv_2mortal(newSVpvs("NULLREF"));
2737 } else if (SvTYPE(referent) == SVt_PVMG
2738 && ((SvFLAGS(referent) &
2739 (SVs_OBJECT|SVf_OK|SVs_GMG|SVs_SMG|SVs_RMG))
2740 == (SVs_OBJECT|SVs_SMG))
2741 && (mg = mg_find(referent, PERL_MAGIC_qr))) {
2742 return stringify_regexp(sv, mg, lp);
2744 const char *const typestr = sv_reftype(referent, 0);
2746 tsv = sv_newmortal();
2747 if (SvOBJECT(referent)) {
2748 const char *const name = HvNAME_get(SvSTASH(referent));
2749 Perl_sv_setpvf(aTHX_ tsv, "%s=%s(0x%"UVxf")",
2750 name ? name : "__ANON__" , typestr,
2754 Perl_sv_setpvf(aTHX_ tsv, "%s(0x%"UVxf")", typestr,
2762 if (SvREADONLY(sv) && !SvOK(sv)) {
2763 if (ckWARN(WARN_UNINITIALIZED))
2770 if (SvIOK(sv) || ((SvIOKp(sv) && !SvNOKp(sv)))) {
2771 /* I'm assuming that if both IV and NV are equally valid then
2772 converting the IV is going to be more efficient */
2773 const U32 isIOK = SvIOK(sv);
2774 const U32 isUIOK = SvIsUV(sv);
2775 char buf[TYPE_CHARS(UV)];
2778 if (SvTYPE(sv) < SVt_PVIV)
2779 sv_upgrade(sv, SVt_PVIV);
2780 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2781 /* inlined from sv_setpvn */
2782 SvGROW_mutable(sv, (STRLEN)(ebuf - ptr + 1));
2783 Move(ptr,SvPVX_mutable(sv),ebuf - ptr,char);
2784 SvCUR_set(sv, ebuf - ptr);
2794 else if (SvNOKp(sv)) {
2795 const int olderrno = errno;
2796 if (SvTYPE(sv) < SVt_PVNV)
2797 sv_upgrade(sv, SVt_PVNV);
2798 /* The +20 is pure guesswork. Configure test needed. --jhi */
2799 s = SvGROW_mutable(sv, NV_DIG + 20);
2800 /* some Xenix systems wipe out errno here */
2802 if (SvNVX(sv) == 0.0)
2803 my_strlcpy(s, "0", SvLEN(sv));
2807 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2810 #ifdef FIXNEGATIVEZERO
2811 if (*s == '-' && s[1] == '0' && !s[2])
2812 my_strlcpy(s, "0", SvLEN(s));
2821 if (isGV_with_GP(sv))
2822 return glob_2pv((GV *)sv, lp);
2824 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2828 if (SvTYPE(sv) < SVt_PV)
2829 /* Typically the caller expects that sv_any is not NULL now. */
2830 sv_upgrade(sv, SVt_PV);
2834 const STRLEN len = s - SvPVX_const(sv);
2840 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
2841 PTR2UV(sv),SvPVX_const(sv)));
2842 if (flags & SV_CONST_RETURN)
2843 return (char *)SvPVX_const(sv);
2844 if (flags & SV_MUTABLE_RETURN)
2845 return SvPVX_mutable(sv);
2850 =for apidoc sv_copypv
2852 Copies a stringified representation of the source SV into the
2853 destination SV. Automatically performs any necessary mg_get and
2854 coercion of numeric values into strings. Guaranteed to preserve
2855 UTF-8 flag even from overloaded objects. Similar in nature to
2856 sv_2pv[_flags] but operates directly on an SV instead of just the
2857 string. Mostly uses sv_2pv_flags to do its work, except when that
2858 would lose the UTF-8'ness of the PV.
2864 Perl_sv_copypv(pTHX_ SV *dsv, register SV *ssv)
2867 const char * const s = SvPV_const(ssv,len);
2868 sv_setpvn(dsv,s,len);
2876 =for apidoc sv_2pvbyte
2878 Return a pointer to the byte-encoded representation of the SV, and set *lp
2879 to its length. May cause the SV to be downgraded from UTF-8 as a
2882 Usually accessed via the C<SvPVbyte> macro.
2888 Perl_sv_2pvbyte(pTHX_ register SV *sv, STRLEN *lp)
2890 sv_utf8_downgrade(sv,0);
2891 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
2895 =for apidoc sv_2pvutf8
2897 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
2898 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
2900 Usually accessed via the C<SvPVutf8> macro.
2906 Perl_sv_2pvutf8(pTHX_ register SV *sv, STRLEN *lp)
2908 sv_utf8_upgrade(sv);
2909 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
2914 =for apidoc sv_2bool
2916 This function is only called on magical items, and is only used by
2917 sv_true() or its macro equivalent.
2923 Perl_sv_2bool(pTHX_ register SV *sv)
2932 SV * const tmpsv = AMG_CALLun(sv,bool_);
2933 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2934 return (bool)SvTRUE(tmpsv);
2936 return SvRV(sv) != 0;
2939 register XPV* const Xpvtmp = (XPV*)SvANY(sv);
2941 (*sv->sv_u.svu_pv > '0' ||
2942 Xpvtmp->xpv_cur > 1 ||
2943 (Xpvtmp->xpv_cur && *sv->sv_u.svu_pv != '0')))
2950 return SvIVX(sv) != 0;
2953 return SvNVX(sv) != 0.0;
2955 if (isGV_with_GP(sv))
2965 =for apidoc sv_utf8_upgrade
2967 Converts the PV of an SV to its UTF-8-encoded form.
2968 Forces the SV to string form if it is not already.
2969 Always sets the SvUTF8 flag to avoid future validity checks even
2970 if all the bytes have hibit clear.
2972 This is not as a general purpose byte encoding to Unicode interface:
2973 use the Encode extension for that.
2975 =for apidoc sv_utf8_upgrade_flags
2977 Converts the PV of an SV to its UTF-8-encoded form.
2978 Forces the SV to string form if it is not already.
2979 Always sets the SvUTF8 flag to avoid future validity checks even
2980 if all the bytes have hibit clear. If C<flags> has C<SV_GMAGIC> bit set,
2981 will C<mg_get> on C<sv> if appropriate, else not. C<sv_utf8_upgrade> and
2982 C<sv_utf8_upgrade_nomg> are implemented in terms of this function.
2984 This is not as a general purpose byte encoding to Unicode interface:
2985 use the Encode extension for that.
2991 Perl_sv_utf8_upgrade_flags(pTHX_ register SV *sv, I32 flags)
2994 if (sv == &PL_sv_undef)
2998 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
2999 (void) sv_2pv_flags(sv,&len, flags);
3003 (void) SvPV_force(sv,len);
3012 sv_force_normal_flags(sv, 0);
3015 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING))
3016 sv_recode_to_utf8(sv, PL_encoding);
3017 else { /* Assume Latin-1/EBCDIC */
3018 /* This function could be much more efficient if we
3019 * had a FLAG in SVs to signal if there are any hibit
3020 * chars in the PV. Given that there isn't such a flag
3021 * make the loop as fast as possible. */
3022 const U8 * const s = (U8 *) SvPVX_const(sv);
3023 const U8 * const e = (U8 *) SvEND(sv);
3028 /* Check for hi bit */
3029 if (!NATIVE_IS_INVARIANT(ch)) {
3030 STRLEN len = SvCUR(sv) + 1; /* Plus the \0 */
3031 U8 * const recoded = bytes_to_utf8((U8*)s, &len);
3033 SvPV_free(sv); /* No longer using what was there before. */
3034 SvPV_set(sv, (char*)recoded);
3035 SvCUR_set(sv, len - 1);
3036 SvLEN_set(sv, len); /* No longer know the real size. */
3040 /* Mark as UTF-8 even if no hibit - saves scanning loop */
3047 =for apidoc sv_utf8_downgrade
3049 Attempts to convert the PV of an SV from characters to bytes.
3050 If the PV contains a character beyond byte, this conversion will fail;
3051 in this case, either returns false or, if C<fail_ok> is not
3054 This is not as a general purpose Unicode to byte encoding interface:
3055 use the Encode extension for that.
3061 Perl_sv_utf8_downgrade(pTHX_ register SV* sv, bool fail_ok)
3064 if (SvPOKp(sv) && SvUTF8(sv)) {
3070 sv_force_normal_flags(sv, 0);
3072 s = (U8 *) SvPV(sv, len);
3073 if (!utf8_to_bytes(s, &len)) {
3078 Perl_croak(aTHX_ "Wide character in %s",
3081 Perl_croak(aTHX_ "Wide character");
3092 =for apidoc sv_utf8_encode
3094 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3095 flag off so that it looks like octets again.
3101 Perl_sv_utf8_encode(pTHX_ register SV *sv)
3104 sv_force_normal_flags(sv, 0);
3106 if (SvREADONLY(sv)) {
3107 Perl_croak(aTHX_ PL_no_modify);
3109 (void) sv_utf8_upgrade(sv);
3114 =for apidoc sv_utf8_decode
3116 If the PV of the SV is an octet sequence in UTF-8
3117 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3118 so that it looks like a character. If the PV contains only single-byte
3119 characters, the C<SvUTF8> flag stays being off.
3120 Scans PV for validity and returns false if the PV is invalid UTF-8.
3126 Perl_sv_utf8_decode(pTHX_ register SV *sv)
3132 /* The octets may have got themselves encoded - get them back as
3135 if (!sv_utf8_downgrade(sv, TRUE))
3138 /* it is actually just a matter of turning the utf8 flag on, but
3139 * we want to make sure everything inside is valid utf8 first.
3141 c = (const U8 *) SvPVX_const(sv);
3142 if (!is_utf8_string(c, SvCUR(sv)+1))
3144 e = (const U8 *) SvEND(sv);
3147 if (!UTF8_IS_INVARIANT(ch)) {
3157 =for apidoc sv_setsv
3159 Copies the contents of the source SV C<ssv> into the destination SV
3160 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3161 function if the source SV needs to be reused. Does not handle 'set' magic.
3162 Loosely speaking, it performs a copy-by-value, obliterating any previous
3163 content of the destination.
3165 You probably want to use one of the assortment of wrappers, such as
3166 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3167 C<SvSetMagicSV_nosteal>.
3169 =for apidoc sv_setsv_flags
3171 Copies the contents of the source SV C<ssv> into the destination SV
3172 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3173 function if the source SV needs to be reused. Does not handle 'set' magic.
3174 Loosely speaking, it performs a copy-by-value, obliterating any previous
3175 content of the destination.
3176 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3177 C<ssv> if appropriate, else not. If the C<flags> parameter has the
3178 C<NOSTEAL> bit set then the buffers of temps will not be stolen. <sv_setsv>
3179 and C<sv_setsv_nomg> are implemented in terms of this function.
3181 You probably want to use one of the assortment of wrappers, such as
3182 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3183 C<SvSetMagicSV_nosteal>.
3185 This is the primary function for copying scalars, and most other
3186 copy-ish functions and macros use this underneath.
3192 S_glob_assign_glob(pTHX_ SV *dstr, SV *sstr, const int dtype)
3194 if (dtype != SVt_PVGV) {
3195 const char * const name = GvNAME(sstr);
3196 const STRLEN len = GvNAMELEN(sstr);
3197 /* don't upgrade SVt_PVLV: it can hold a glob */
3198 if (dtype != SVt_PVLV) {
3199 if (dtype >= SVt_PV) {
3205 sv_upgrade(dstr, SVt_PVGV);
3206 (void)SvOK_off(dstr);
3209 GvSTASH(dstr) = GvSTASH(sstr);
3211 Perl_sv_add_backref(aTHX_ (SV*)GvSTASH(dstr), dstr);
3212 gv_name_set((GV *)dstr, name, len, GV_ADD);
3213 SvFAKE_on(dstr); /* can coerce to non-glob */
3216 #ifdef GV_UNIQUE_CHECK
3217 if (GvUNIQUE((GV*)dstr)) {
3218 Perl_croak(aTHX_ PL_no_modify);
3224 (void)SvOK_off(dstr);
3226 GvINTRO_off(dstr); /* one-shot flag */
3227 GvGP(dstr) = gp_ref(GvGP(sstr));
3228 if (SvTAINTED(sstr))
3230 if (GvIMPORTED(dstr) != GVf_IMPORTED
3231 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3233 GvIMPORTED_on(dstr);
3240 S_glob_assign_ref(pTHX_ SV *dstr, SV *sstr) {
3241 SV * const sref = SvREFCNT_inc(SvRV(sstr));
3243 const int intro = GvINTRO(dstr);
3246 const U32 stype = SvTYPE(sref);
3249 #ifdef GV_UNIQUE_CHECK
3250 if (GvUNIQUE((GV*)dstr)) {
3251 Perl_croak(aTHX_ PL_no_modify);
3256 GvINTRO_off(dstr); /* one-shot flag */
3257 GvLINE(dstr) = CopLINE(PL_curcop);
3258 GvEGV(dstr) = (GV*)dstr;
3263 location = (SV **) &GvCV(dstr);
3264 import_flag = GVf_IMPORTED_CV;
3267 location = (SV **) &GvHV(dstr);
3268 import_flag = GVf_IMPORTED_HV;
3271 location = (SV **) &GvAV(dstr);
3272 import_flag = GVf_IMPORTED_AV;
3275 location = (SV **) &GvIOp(dstr);
3278 location = (SV **) &GvFORM(dstr);
3280 location = &GvSV(dstr);
3281 import_flag = GVf_IMPORTED_SV;
3284 if (stype == SVt_PVCV) {
3285 if (GvCVGEN(dstr) && GvCV(dstr) != (CV*)sref) {
3286 SvREFCNT_dec(GvCV(dstr));
3288 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3289 PL_sub_generation++;
3292 SAVEGENERICSV(*location);
3296 if (stype == SVt_PVCV && *location != sref) {
3297 CV* const cv = (CV*)*location;
3299 if (!GvCVGEN((GV*)dstr) &&
3300 (CvROOT(cv) || CvXSUB(cv)))
3302 /* Redefining a sub - warning is mandatory if
3303 it was a const and its value changed. */
3304 if (CvCONST(cv) && CvCONST((CV*)sref)
3305 && cv_const_sv(cv) == cv_const_sv((CV*)sref)) {
3307 /* They are 2 constant subroutines generated from
3308 the same constant. This probably means that
3309 they are really the "same" proxy subroutine
3310 instantiated in 2 places. Most likely this is
3311 when a constant is exported twice. Don't warn.
3314 else if (ckWARN(WARN_REDEFINE)
3316 && (!CvCONST((CV*)sref)
3317 || sv_cmp(cv_const_sv(cv),
3318 cv_const_sv((CV*)sref))))) {
3319 Perl_warner(aTHX_ packWARN(WARN_REDEFINE),
3322 ? "Constant subroutine %s::%s redefined"
3323 : "Subroutine %s::%s redefined"),
3324 HvNAME_get(GvSTASH((GV*)dstr)),
3325 GvENAME((GV*)dstr));
3329 cv_ckproto_len(cv, (GV*)dstr,
3330 SvPOK(sref) ? SvPVX_const(sref) : NULL,
3331 SvPOK(sref) ? SvCUR(sref) : 0);
3333 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3334 GvASSUMECV_on(dstr);
3335 PL_sub_generation++;
3338 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3339 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3340 GvFLAGS(dstr) |= import_flag;
3345 if (SvTAINTED(sstr))
3351 Perl_sv_setsv_flags(pTHX_ SV *dstr, register SV *sstr, I32 flags)
3354 register U32 sflags;
3356 register svtype stype;
3360 SV_CHECK_THINKFIRST_COW_DROP(dstr);
3362 sstr = &PL_sv_undef;
3363 stype = SvTYPE(sstr);
3364 dtype = SvTYPE(dstr);
3369 /* need to nuke the magic */
3371 SvRMAGICAL_off(dstr);
3374 /* There's a lot of redundancy below but we're going for speed here */
3379 if (dtype != SVt_PVGV) {
3380 (void)SvOK_off(dstr);
3388 sv_upgrade(dstr, SVt_IV);
3393 sv_upgrade(dstr, SVt_PVIV);
3396 (void)SvIOK_only(dstr);
3397 SvIV_set(dstr, SvIVX(sstr));
3400 /* SvTAINTED can only be true if the SV has taint magic, which in
3401 turn means that the SV type is PVMG (or greater). This is the
3402 case statement for SVt_IV, so this cannot be true (whatever gcov
3404 assert(!SvTAINTED(sstr));
3414 sv_upgrade(dstr, SVt_NV);
3419 sv_upgrade(dstr, SVt_PVNV);
3422 SvNV_set(dstr, SvNVX(sstr));
3423 (void)SvNOK_only(dstr);
3424 /* SvTAINTED can only be true if the SV has taint magic, which in
3425 turn means that the SV type is PVMG (or greater). This is the
3426 case statement for SVt_NV, so this cannot be true (whatever gcov
3428 assert(!SvTAINTED(sstr));
3435 sv_upgrade(dstr, SVt_RV);
3438 #ifdef PERL_OLD_COPY_ON_WRITE
3439 if ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS) {
3440 if (dtype < SVt_PVIV)
3441 sv_upgrade(dstr, SVt_PVIV);
3448 sv_upgrade(dstr, SVt_PV);
3451 if (dtype < SVt_PVIV)
3452 sv_upgrade(dstr, SVt_PVIV);
3455 if (dtype < SVt_PVNV)
3456 sv_upgrade(dstr, SVt_PVNV);
3460 const char * const type = sv_reftype(sstr,0);
3462 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_NAME(PL_op));
3464 Perl_croak(aTHX_ "Bizarre copy of %s", type);
3469 if (dtype <= SVt_PVGV) {
3470 glob_assign_glob(dstr, sstr, dtype);
3478 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
3480 if ((int)SvTYPE(sstr) != stype) {
3481 stype = SvTYPE(sstr);
3482 if (stype == SVt_PVGV && dtype <= SVt_PVGV) {
3483 glob_assign_glob(dstr, sstr, dtype);
3488 if (stype == SVt_PVLV)
3489 SvUPGRADE(dstr, SVt_PVNV);
3491 SvUPGRADE(dstr, (svtype)stype);
3494 /* dstr may have been upgraded. */
3495 dtype = SvTYPE(dstr);
3496 sflags = SvFLAGS(sstr);
3498 if (sflags & SVf_ROK) {
3499 if (dtype == SVt_PVGV &&
3500 SvROK(sstr) && SvTYPE(SvRV(sstr)) == SVt_PVGV) {
3503 if (GvIMPORTED(dstr) != GVf_IMPORTED
3504 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3506 GvIMPORTED_on(dstr);
3511 glob_assign_glob(dstr, sstr, dtype);
3515 if (dtype >= SVt_PV) {
3516 if (dtype == SVt_PVGV) {
3517 glob_assign_ref(dstr, sstr);
3520 if (SvPVX_const(dstr)) {
3526 (void)SvOK_off(dstr);
3527 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
3528 SvFLAGS(dstr) |= sflags & (SVf_ROK|SVf_AMAGIC);
3529 assert(!(sflags & SVp_NOK));
3530 assert(!(sflags & SVp_IOK));
3531 assert(!(sflags & SVf_NOK));
3532 assert(!(sflags & SVf_IOK));
3534 else if (dtype == SVt_PVGV) {
3535 if (!(sflags & SVf_OK)) {
3536 if (ckWARN(WARN_MISC))
3537 Perl_warner(aTHX_ packWARN(WARN_MISC),
3538 "Undefined value assigned to typeglob");
3541 GV *gv = gv_fetchsv(sstr, GV_ADD, SVt_PVGV);
3542 if (dstr != (SV*)gv) {
3545 GvGP(dstr) = gp_ref(GvGP(gv));
3549 else if (sflags & SVp_POK) {
3553 * Check to see if we can just swipe the string. If so, it's a
3554 * possible small lose on short strings, but a big win on long ones.
3555 * It might even be a win on short strings if SvPVX_const(dstr)
3556 * has to be allocated and SvPVX_const(sstr) has to be freed.
3559 /* Whichever path we take through the next code, we want this true,
3560 and doing it now facilitates the COW check. */
3561 (void)SvPOK_only(dstr);
3564 /* We're not already COW */
3565 ((sflags & (SVf_FAKE | SVf_READONLY)) != (SVf_FAKE | SVf_READONLY)
3566 #ifndef PERL_OLD_COPY_ON_WRITE
3567 /* or we are, but dstr isn't a suitable target. */
3568 || (SvFLAGS(dstr) & CAN_COW_MASK) != CAN_COW_FLAGS
3573 (sflags & SVs_TEMP) && /* slated for free anyway? */
3574 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
3575 (!(flags & SV_NOSTEAL)) &&
3576 /* and we're allowed to steal temps */
3577 SvREFCNT(sstr) == 1 && /* and no other references to it? */
3578 SvLEN(sstr) && /* and really is a string */
3579 /* and won't be needed again, potentially */
3580 !(PL_op && PL_op->op_type == OP_AASSIGN))
3581 #ifdef PERL_OLD_COPY_ON_WRITE
3582 && !((sflags & CAN_COW_MASK) == CAN_COW_FLAGS
3583 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
3584 && SvTYPE(sstr) >= SVt_PVIV)
3587 /* Failed the swipe test, and it's not a shared hash key either.
3588 Have to copy the string. */
3589 STRLEN len = SvCUR(sstr);
3590 SvGROW(dstr, len + 1); /* inlined from sv_setpvn */
3591 Move(SvPVX_const(sstr),SvPVX(dstr),len,char);
3592 SvCUR_set(dstr, len);
3593 *SvEND(dstr) = '\0';
3595 /* If PERL_OLD_COPY_ON_WRITE is not defined, then isSwipe will always
3597 /* Either it's a shared hash key, or it's suitable for
3598 copy-on-write or we can swipe the string. */
3600 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
3604 #ifdef PERL_OLD_COPY_ON_WRITE
3606 /* I believe I should acquire a global SV mutex if
3607 it's a COW sv (not a shared hash key) to stop
3608 it going un copy-on-write.
3609 If the source SV has gone un copy on write between up there
3610 and down here, then (assert() that) it is of the correct
3611 form to make it copy on write again */
3612 if ((sflags & (SVf_FAKE | SVf_READONLY))
3613 != (SVf_FAKE | SVf_READONLY)) {
3614 SvREADONLY_on(sstr);
3616 /* Make the source SV into a loop of 1.
3617 (about to become 2) */
3618 SV_COW_NEXT_SV_SET(sstr, sstr);
3622 /* Initial code is common. */
3623 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
3628 /* making another shared SV. */
3629 STRLEN cur = SvCUR(sstr);
3630 STRLEN len = SvLEN(sstr);
3631 #ifdef PERL_OLD_COPY_ON_WRITE
3633 assert (SvTYPE(dstr) >= SVt_PVIV);
3634 /* SvIsCOW_normal */
3635 /* splice us in between source and next-after-source. */
3636 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
3637 SV_COW_NEXT_SV_SET(sstr, dstr);
3638 SvPV_set(dstr, SvPVX_mutable(sstr));
3642 /* SvIsCOW_shared_hash */
3643 DEBUG_C(PerlIO_printf(Perl_debug_log,
3644 "Copy on write: Sharing hash\n"));
3646 assert (SvTYPE(dstr) >= SVt_PV);
3648 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
3650 SvLEN_set(dstr, len);
3651 SvCUR_set(dstr, cur);
3652 SvREADONLY_on(dstr);
3654 /* Relesase a global SV mutex. */
3657 { /* Passes the swipe test. */
3658 SvPV_set(dstr, SvPVX_mutable(sstr));
3659 SvLEN_set(dstr, SvLEN(sstr));
3660 SvCUR_set(dstr, SvCUR(sstr));
3663 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
3664 SvPV_set(sstr, NULL);
3670 if (sflags & SVp_NOK) {
3671 SvNV_set(dstr, SvNVX(sstr));
3673 if (sflags & SVp_IOK) {
3674 SvRELEASE_IVX(dstr);
3675 SvIV_set(dstr, SvIVX(sstr));
3676 /* Must do this otherwise some other overloaded use of 0x80000000
3677 gets confused. I guess SVpbm_VALID */
3678 if (sflags & SVf_IVisUV)
3681 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8
3684 const MAGIC * const smg = SvVSTRING_mg(sstr);
3686 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
3687 smg->mg_ptr, smg->mg_len);
3688 SvRMAGICAL_on(dstr);
3692 else if (sflags & (SVp_IOK|SVp_NOK)) {
3693 (void)SvOK_off(dstr);
3694 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK
3696 if (sflags & SVp_IOK) {
3697 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
3698 SvIV_set(dstr, SvIVX(sstr));
3700 if (sflags & SVp_NOK) {
3701 SvNV_set(dstr, SvNVX(sstr));
3705 if (isGV_with_GP(sstr)) {
3706 /* This stringification rule for globs is spread in 3 places.
3707 This feels bad. FIXME. */
3708 const U32 wasfake = sflags & SVf_FAKE;
3710 /* FAKE globs can get coerced, so need to turn this off
3711 temporarily if it is on. */
3713 gv_efullname3(dstr, (GV *)sstr, "*");
3714 SvFLAGS(sstr) |= wasfake;
3715 SvFLAGS(dstr) |= sflags & SVf_AMAGIC;
3718 (void)SvOK_off(dstr);
3720 if (SvTAINTED(sstr))
3725 =for apidoc sv_setsv_mg
3727 Like C<sv_setsv>, but also handles 'set' magic.
3733 Perl_sv_setsv_mg(pTHX_ SV *dstr, register SV *sstr)
3735 sv_setsv(dstr,sstr);
3739 #ifdef PERL_OLD_COPY_ON_WRITE
3741 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
3743 STRLEN cur = SvCUR(sstr);
3744 STRLEN len = SvLEN(sstr);
3745 register char *new_pv;
3748 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
3756 if (SvTHINKFIRST(dstr))
3757 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
3758 else if (SvPVX_const(dstr))
3759 Safefree(SvPVX_const(dstr));
3763 SvUPGRADE(dstr, SVt_PVIV);
3765 assert (SvPOK(sstr));
3766 assert (SvPOKp(sstr));
3767 assert (!SvIOK(sstr));
3768 assert (!SvIOKp(sstr));
3769 assert (!SvNOK(sstr));
3770 assert (!SvNOKp(sstr));
3772 if (SvIsCOW(sstr)) {
3774 if (SvLEN(sstr) == 0) {
3775 /* source is a COW shared hash key. */
3776 DEBUG_C(PerlIO_printf(Perl_debug_log,
3777 "Fast copy on write: Sharing hash\n"));
3778 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
3781 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
3783 assert ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS);
3784 SvUPGRADE(sstr, SVt_PVIV);
3785 SvREADONLY_on(sstr);
3787 DEBUG_C(PerlIO_printf(Perl_debug_log,
3788 "Fast copy on write: Converting sstr to COW\n"));
3789 SV_COW_NEXT_SV_SET(dstr, sstr);
3791 SV_COW_NEXT_SV_SET(sstr, dstr);
3792 new_pv = SvPVX_mutable(sstr);
3795 SvPV_set(dstr, new_pv);
3796 SvFLAGS(dstr) = (SVt_PVIV|SVf_POK|SVp_POK|SVf_FAKE|SVf_READONLY);
3799 SvLEN_set(dstr, len);
3800 SvCUR_set(dstr, cur);
3809 =for apidoc sv_setpvn
3811 Copies a string into an SV. The C<len> parameter indicates the number of
3812 bytes to be copied. If the C<ptr> argument is NULL the SV will become
3813 undefined. Does not handle 'set' magic. See C<sv_setpvn_mg>.
3819 Perl_sv_setpvn(pTHX_ register SV *sv, register const char *ptr, register STRLEN len)
3822 register char *dptr;
3824 SV_CHECK_THINKFIRST_COW_DROP(sv);
3830 /* len is STRLEN which is unsigned, need to copy to signed */
3833 Perl_croak(aTHX_ "panic: sv_setpvn called with negative strlen");
3835 SvUPGRADE(sv, SVt_PV);
3837 dptr = SvGROW(sv, len + 1);
3838 Move(ptr,dptr,len,char);
3841 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3846 =for apidoc sv_setpvn_mg
3848 Like C<sv_setpvn>, but also handles 'set' magic.
3854 Perl_sv_setpvn_mg(pTHX_ register SV *sv, register const char *ptr, register STRLEN len)
3856 sv_setpvn(sv,ptr,len);
3861 =for apidoc sv_setpv
3863 Copies a string into an SV. The string must be null-terminated. Does not
3864 handle 'set' magic. See C<sv_setpv_mg>.
3870 Perl_sv_setpv(pTHX_ register SV *sv, register const char *ptr)
3873 register STRLEN len;
3875 SV_CHECK_THINKFIRST_COW_DROP(sv);
3881 SvUPGRADE(sv, SVt_PV);
3883 SvGROW(sv, len + 1);
3884 Move(ptr,SvPVX(sv),len+1,char);
3886 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3891 =for apidoc sv_setpv_mg
3893 Like C<sv_setpv>, but also handles 'set' magic.
3899 Perl_sv_setpv_mg(pTHX_ register SV *sv, register const char *ptr)
3906 =for apidoc sv_usepvn_flags
3908 Tells an SV to use C<ptr> to find its string value. Normally the
3909 string is stored inside the SV but sv_usepvn allows the SV to use an
3910 outside string. The C<ptr> should point to memory that was allocated
3911 by C<malloc>. The string length, C<len>, must be supplied. By default
3912 this function will realloc (i.e. move) the memory pointed to by C<ptr>,
3913 so that pointer should not be freed or used by the programmer after
3914 giving it to sv_usepvn, and neither should any pointers from "behind"
3915 that pointer (e.g. ptr + 1) be used.
3917 If C<flags> & SV_SMAGIC is true, will call SvSETMAGIC. If C<flags> &
3918 SV_HAS_TRAILING_NUL is true, then C<ptr[len]> must be NUL, and the realloc
3919 will be skipped. (i.e. the buffer is actually at least 1 byte longer than
3920 C<len>, and already meets the requirements for storing in C<SvPVX>)
3926 Perl_sv_usepvn_flags(pTHX_ SV *sv, char *ptr, STRLEN len, U32 flags)
3930 SV_CHECK_THINKFIRST_COW_DROP(sv);
3931 SvUPGRADE(sv, SVt_PV);
3934 if (flags & SV_SMAGIC)
3938 if (SvPVX_const(sv))
3942 if (flags & SV_HAS_TRAILING_NUL)
3943 assert(ptr[len] == '\0');
3946 allocate = (flags & SV_HAS_TRAILING_NUL)
3947 ? len + 1: PERL_STRLEN_ROUNDUP(len + 1);
3948 if (flags & SV_HAS_TRAILING_NUL) {
3949 /* It's long enough - do nothing.
3950 Specfically Perl_newCONSTSUB is relying on this. */
3953 /* Force a move to shake out bugs in callers. */
3954 char *new_ptr = (char*)safemalloc(allocate);
3955 Copy(ptr, new_ptr, len, char);
3956 PoisonFree(ptr,len,char);
3960 ptr = (char*) saferealloc (ptr, allocate);
3965 SvLEN_set(sv, allocate);
3966 if (!(flags & SV_HAS_TRAILING_NUL)) {
3969 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3971 if (flags & SV_SMAGIC)
3975 #ifdef PERL_OLD_COPY_ON_WRITE
3976 /* Need to do this *after* making the SV normal, as we need the buffer
3977 pointer to remain valid until after we've copied it. If we let go too early,
3978 another thread could invalidate it by unsharing last of the same hash key
3979 (which it can do by means other than releasing copy-on-write Svs)
3980 or by changing the other copy-on-write SVs in the loop. */
3982 S_sv_release_COW(pTHX_ register SV *sv, const char *pvx, STRLEN len, SV *after)
3984 if (len) { /* this SV was SvIsCOW_normal(sv) */
3985 /* we need to find the SV pointing to us. */
3986 SV *current = SV_COW_NEXT_SV(after);
3988 if (current == sv) {
3989 /* The SV we point to points back to us (there were only two of us
3991 Hence other SV is no longer copy on write either. */
3993 SvREADONLY_off(after);
3995 /* We need to follow the pointers around the loop. */
3997 while ((next = SV_COW_NEXT_SV(current)) != sv) {
4000 /* don't loop forever if the structure is bust, and we have
4001 a pointer into a closed loop. */
4002 assert (current != after);
4003 assert (SvPVX_const(current) == pvx);
4005 /* Make the SV before us point to the SV after us. */
4006 SV_COW_NEXT_SV_SET(current, after);
4009 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4014 Perl_sv_release_IVX(pTHX_ register SV *sv)
4017 sv_force_normal_flags(sv, 0);
4023 =for apidoc sv_force_normal_flags
4025 Undo various types of fakery on an SV: if the PV is a shared string, make
4026 a private copy; if we're a ref, stop refing; if we're a glob, downgrade to
4027 an xpvmg; if we're a copy-on-write scalar, this is the on-write time when
4028 we do the copy, and is also used locally. If C<SV_COW_DROP_PV> is set
4029 then a copy-on-write scalar drops its PV buffer (if any) and becomes
4030 SvPOK_off rather than making a copy. (Used where this scalar is about to be
4031 set to some other value.) In addition, the C<flags> parameter gets passed to
4032 C<sv_unref_flags()> when unrefing. C<sv_force_normal> calls this function
4033 with flags set to 0.
4039 Perl_sv_force_normal_flags(pTHX_ register SV *sv, U32 flags)
4042 #ifdef PERL_OLD_COPY_ON_WRITE
4043 if (SvREADONLY(sv)) {
4044 /* At this point I believe I should acquire a global SV mutex. */
4046 const char * const pvx = SvPVX_const(sv);
4047 const STRLEN len = SvLEN(sv);
4048 const STRLEN cur = SvCUR(sv);
4049 SV * const next = SV_COW_NEXT_SV(sv); /* next COW sv in the loop. */
4051 PerlIO_printf(Perl_debug_log,
4052 "Copy on write: Force normal %ld\n",
4058 /* This SV doesn't own the buffer, so need to Newx() a new one: */
4061 if (flags & SV_COW_DROP_PV) {
4062 /* OK, so we don't need to copy our buffer. */
4065 SvGROW(sv, cur + 1);
4066 Move(pvx,SvPVX(sv),cur,char);
4070 sv_release_COW(sv, pvx, len, next);
4075 else if (IN_PERL_RUNTIME)
4076 Perl_croak(aTHX_ PL_no_modify);
4077 /* At this point I believe that I can drop the global SV mutex. */
4080 if (SvREADONLY(sv)) {
4082 const char * const pvx = SvPVX_const(sv);
4083 const STRLEN len = SvCUR(sv);
4088 SvGROW(sv, len + 1);
4089 Move(pvx,SvPVX(sv),len,char);
4091 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4093 else if (IN_PERL_RUNTIME)
4094 Perl_croak(aTHX_ PL_no_modify);
4098 sv_unref_flags(sv, flags);
4099 else if (SvFAKE(sv) && SvTYPE(sv) == SVt_PVGV)
4106 Efficient removal of characters from the beginning of the string buffer.
4107 SvPOK(sv) must be true and the C<ptr> must be a pointer to somewhere inside
4108 the string buffer. The C<ptr> becomes the first character of the adjusted
4109 string. Uses the "OOK hack".
4110 Beware: after this function returns, C<ptr> and SvPVX_const(sv) may no longer
4111 refer to the same chunk of data.
4117 Perl_sv_chop(pTHX_ register SV *sv, register const char *ptr)
4119 register STRLEN delta;
4120 if (!ptr || !SvPOKp(sv))
4122 delta = ptr - SvPVX_const(sv);
4123 SV_CHECK_THINKFIRST(sv);
4124 if (SvTYPE(sv) < SVt_PVIV)
4125 sv_upgrade(sv,SVt_PVIV);
4128 if (!SvLEN(sv)) { /* make copy of shared string */
4129 const char *pvx = SvPVX_const(sv);
4130 const STRLEN len = SvCUR(sv);
4131 SvGROW(sv, len + 1);
4132 Move(pvx,SvPVX(sv),len,char);
4136 /* Same SvOOK_on but SvOOK_on does a SvIOK_off
4137 and we do that anyway inside the SvNIOK_off
4139 SvFLAGS(sv) |= SVf_OOK;
4142 SvLEN_set(sv, SvLEN(sv) - delta);
4143 SvCUR_set(sv, SvCUR(sv) - delta);
4144 SvPV_set(sv, SvPVX(sv) + delta);
4145 SvIV_set(sv, SvIVX(sv) + delta);
4149 =for apidoc sv_catpvn
4151 Concatenates the string onto the end of the string which is in the SV. The
4152 C<len> indicates number of bytes to copy. If the SV has the UTF-8
4153 status set, then the bytes appended should be valid UTF-8.
4154 Handles 'get' magic, but not 'set' magic. See C<sv_catpvn_mg>.
4156 =for apidoc sv_catpvn_flags
4158 Concatenates the string onto the end of the string which is in the SV. The
4159 C<len> indicates number of bytes to copy. If the SV has the UTF-8
4160 status set, then the bytes appended should be valid UTF-8.
4161 If C<flags> has C<SV_GMAGIC> bit set, will C<mg_get> on C<dsv> if
4162 appropriate, else not. C<sv_catpvn> and C<sv_catpvn_nomg> are implemented
4163 in terms of this function.
4169 Perl_sv_catpvn_flags(pTHX_ register SV *dsv, register const char *sstr, register STRLEN slen, I32 flags)
4173 const char * const dstr = SvPV_force_flags(dsv, dlen, flags);
4175 SvGROW(dsv, dlen + slen + 1);
4177 sstr = SvPVX_const(dsv);
4178 Move(sstr, SvPVX(dsv) + dlen, slen, char);
4179 SvCUR_set(dsv, SvCUR(dsv) + slen);
4181 (void)SvPOK_only_UTF8(dsv); /* validate pointer */
4183 if (flags & SV_SMAGIC)
4188 =for apidoc sv_catsv
4190 Concatenates the string from SV C<ssv> onto the end of the string in
4191 SV C<dsv>. Modifies C<dsv> but not C<ssv>. Handles 'get' magic, but
4192 not 'set' magic. See C<sv_catsv_mg>.
4194 =for apidoc sv_catsv_flags
4196 Concatenates the string from SV C<ssv> onto the end of the string in
4197 SV C<dsv>. Modifies C<dsv> but not C<ssv>. If C<flags> has C<SV_GMAGIC>
4198 bit set, will C<mg_get> on the SVs if appropriate, else not. C<sv_catsv>
4199 and C<sv_catsv_nomg> are implemented in terms of this function.
4204 Perl_sv_catsv_flags(pTHX_ SV *dsv, register SV *ssv, I32 flags)
4209 const char *spv = SvPV_const(ssv, slen);
4211 /* sutf8 and dutf8 were type bool, but under USE_ITHREADS,
4212 gcc version 2.95.2 20000220 (Debian GNU/Linux) for
4213 Linux xxx 2.2.17 on sparc64 with gcc -O2, we erroneously
4214 get dutf8 = 0x20000000, (i.e. SVf_UTF8) even though
4215 dsv->sv_flags doesn't have that bit set.
4216 Andy Dougherty 12 Oct 2001
4218 const I32 sutf8 = DO_UTF8(ssv);
4221 if (SvGMAGICAL(dsv) && (flags & SV_GMAGIC))
4223 dutf8 = DO_UTF8(dsv);
4225 if (dutf8 != sutf8) {
4227 /* Not modifying source SV, so taking a temporary copy. */
4228 SV* const csv = sv_2mortal(newSVpvn(spv, slen));
4230 sv_utf8_upgrade(csv);
4231 spv = SvPV_const(csv, slen);
4234 sv_utf8_upgrade_nomg(dsv);
4236 sv_catpvn_nomg(dsv, spv, slen);
4239 if (flags & SV_SMAGIC)
4244 =for apidoc sv_catpv
4246 Concatenates the string onto the end of the string which is in the SV.
4247 If the SV has the UTF-8 status set, then the bytes appended should be
4248 valid UTF-8. Handles 'get' magic, but not 'set' magic. See C<sv_catpv_mg>.
4253 Perl_sv_catpv(pTHX_ register SV *sv, register const char *ptr)
4256 register STRLEN len;
4262 junk = SvPV_force(sv, tlen);
4264 SvGROW(sv, tlen + len + 1);
4266 ptr = SvPVX_const(sv);
4267 Move(ptr,SvPVX(sv)+tlen,len+1,char);
4268 SvCUR_set(sv, SvCUR(sv) + len);
4269 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4274 =for apidoc sv_catpv_mg
4276 Like C<sv_catpv>, but also handles 'set' magic.
4282 Perl_sv_catpv_mg(pTHX_ register SV *sv, register const char *ptr)
4291 Creates a new SV. A non-zero C<len> parameter indicates the number of
4292 bytes of preallocated string space the SV should have. An extra byte for a
4293 trailing NUL is also reserved. (SvPOK is not set for the SV even if string
4294 space is allocated.) The reference count for the new SV is set to 1.
4296 In 5.9.3, newSV() replaces the older NEWSV() API, and drops the first
4297 parameter, I<x>, a debug aid which allowed callers to identify themselves.
4298 This aid has been superseded by a new build option, PERL_MEM_LOG (see
4299 L<perlhack/PERL_MEM_LOG>). The older API is still there for use in XS
4300 modules supporting older perls.
4306 Perl_newSV(pTHX_ STRLEN len)
4313 sv_upgrade(sv, SVt_PV);
4314 SvGROW(sv, len + 1);
4319 =for apidoc sv_magicext
4321 Adds magic to an SV, upgrading it if necessary. Applies the
4322 supplied vtable and returns a pointer to the magic added.
4324 Note that C<sv_magicext> will allow things that C<sv_magic> will not.
4325 In particular, you can add magic to SvREADONLY SVs, and add more than
4326 one instance of the same 'how'.
4328 If C<namlen> is greater than zero then a C<savepvn> I<copy> of C<name> is
4329 stored, if C<namlen> is zero then C<name> is stored as-is and - as another
4330 special case - if C<(name && namlen == HEf_SVKEY)> then C<name> is assumed
4331 to contain an C<SV*> and is stored as-is with its REFCNT incremented.
4333 (This is now used as a subroutine by C<sv_magic>.)
4338 Perl_sv_magicext(pTHX_ SV* sv, SV* obj, int how, MGVTBL *vtable,
4339 const char* name, I32 namlen)
4344 if (SvTYPE(sv) < SVt_PVMG) {
4345 SvUPGRADE(sv, SVt_PVMG);
4347 Newxz(mg, 1, MAGIC);
4348 mg->mg_moremagic = SvMAGIC(sv);
4349 SvMAGIC_set(sv, mg);
4351 /* Sometimes a magic contains a reference loop, where the sv and
4352 object refer to each other. To prevent a reference loop that
4353 would prevent such objects being freed, we look for such loops
4354 and if we find one we avoid incrementing the object refcount.
4356 Note we cannot do this to avoid self-tie loops as intervening RV must
4357 have its REFCNT incremented to keep it in existence.
4360 if (!obj || obj == sv ||
4361 how == PERL_MAGIC_arylen ||
4362 how == PERL_MAGIC_qr ||
4363 how == PERL_MAGIC_symtab ||
4364 (SvTYPE(obj) == SVt_PVGV &&
4365 (GvSV(obj) == sv || GvHV(obj) == (HV*)sv || GvAV(obj) == (AV*)sv ||
4366 GvCV(obj) == (CV*)sv || GvIOp(obj) == (IO*)sv ||
4367 GvFORM(obj) == (CV*)sv)))
4372 mg->mg_obj = SvREFCNT_inc_simple(obj);
4373 mg->mg_flags |= MGf_REFCOUNTED;
4376 /* Normal self-ties simply pass a null object, and instead of
4377 using mg_obj directly, use the SvTIED_obj macro to produce a
4378 new RV as needed. For glob "self-ties", we are tieing the PVIO
4379 with an RV obj pointing to the glob containing the PVIO. In
4380 this case, to avoid a reference loop, we need to weaken the
4384 if (how == PERL_MAGIC_tiedscalar && SvTYPE(sv) == SVt_PVIO &&
4385 obj && SvROK(obj) && GvIO(SvRV(obj)) == (IO*)sv)
4391 mg->mg_len = namlen;
4394 mg->mg_ptr = savepvn(name, namlen);
4395 else if (namlen == HEf_SVKEY)
4396 mg->mg_ptr = (char*)SvREFCNT_inc_simple_NN((SV*)name);
4398 mg->mg_ptr = (char *) name;
4400 mg->mg_virtual = vtable;
4404 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK|SVf_POK);
4409 =for apidoc sv_magic
4411 Adds magic to an SV. First upgrades C<sv> to type C<SVt_PVMG> if necessary,
4412 then adds a new magic item of type C<how> to the head of the magic list.
4414 See C<sv_magicext> (which C<sv_magic> now calls) for a description of the
4415 handling of the C<name> and C<namlen> arguments.
4417 You need to use C<sv_magicext> to add magic to SvREADONLY SVs and also
4418 to add more than one instance of the same 'how'.
4424 Perl_sv_magic(pTHX_ register SV *sv, SV *obj, int how, const char *name, I32 namlen)
4430 #ifdef PERL_OLD_COPY_ON_WRITE
4432 sv_force_normal_flags(sv, 0);
4434 if (SvREADONLY(sv)) {
4436 /* its okay to attach magic to shared strings; the subsequent
4437 * upgrade to PVMG will unshare the string */
4438 !(SvFAKE(sv) && SvTYPE(sv) < SVt_PVMG)
4441 && how != PERL_MAGIC_regex_global
4442 && how != PERL_MAGIC_bm
4443 && how != PERL_MAGIC_fm
4444 && how != PERL_MAGIC_sv
4445 && how != PERL_MAGIC_backref
4448 Perl_croak(aTHX_ PL_no_modify);
4451 if (SvMAGICAL(sv) || (how == PERL_MAGIC_taint && SvTYPE(sv) >= SVt_PVMG)) {
4452 if (SvMAGIC(sv) && (mg = mg_find(sv, how))) {
4453 /* sv_magic() refuses to add a magic of the same 'how' as an
4456 if (how == PERL_MAGIC_taint) {
4458 /* Any scalar which already had taint magic on which someone
4459 (erroneously?) did SvIOK_on() or similar will now be
4460 incorrectly sporting public "OK" flags. */
4461 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK|SVf_POK);
4469 vtable = &PL_vtbl_sv;
4471 case PERL_MAGIC_overload:
4472 vtable = &PL_vtbl_amagic;
4474 case PERL_MAGIC_overload_elem:
4475 vtable = &PL_vtbl_amagicelem;
4477 case PERL_MAGIC_overload_table:
4478 vtable = &PL_vtbl_ovrld;
4481 vtable = &PL_vtbl_bm;
4483 case PERL_MAGIC_regdata:
4484 vtable = &PL_vtbl_regdata;
4486 case PERL_MAGIC_regdatum:
4487 vtable = &PL_vtbl_regdatum;
4489 case PERL_MAGIC_env:
4490 vtable = &PL_vtbl_env;
4493 vtable = &PL_vtbl_fm;
4495 case PERL_MAGIC_envelem:
4496 vtable = &PL_vtbl_envelem;
4498 case PERL_MAGIC_regex_global:
4499 vtable = &PL_vtbl_mglob;
4501 case PERL_MAGIC_isa:
4502 vtable = &PL_vtbl_isa;
4504 case PERL_MAGIC_isaelem:
4505 vtable = &PL_vtbl_isaelem;
4507 case PERL_MAGIC_nkeys:
4508 vtable = &PL_vtbl_nkeys;
4510 case PERL_MAGIC_dbfile:
4513 case PERL_MAGIC_dbline:
4514 vtable = &PL_vtbl_dbline;
4516 #ifdef USE_LOCALE_COLLATE
4517 case PERL_MAGIC_collxfrm:
4518 vtable = &PL_vtbl_collxfrm;
4520 #endif /* USE_LOCALE_COLLATE */
4521 case PERL_MAGIC_tied:
4522 vtable = &PL_vtbl_pack;
4524 case PERL_MAGIC_tiedelem:
4525 case PERL_MAGIC_tiedscalar:
4526 vtable = &PL_vtbl_packelem;
4529 vtable = &PL_vtbl_regexp;
4531 case PERL_MAGIC_hints:
4532 /* As this vtable is all NULL, we can reuse it. */
4533 case PERL_MAGIC_sig:
4534 vtable = &PL_vtbl_sig;
4536 case PERL_MAGIC_sigelem:
4537 vtable = &PL_vtbl_sigelem;
4539 case PERL_MAGIC_taint:
4540 vtable = &PL_vtbl_taint;
4542 case PERL_MAGIC_uvar:
4543 vtable = &PL_vtbl_uvar;
4545 case PERL_MAGIC_vec:
4546 vtable = &PL_vtbl_vec;
4548 case PERL_MAGIC_arylen_p:
4549 case PERL_MAGIC_rhash:
4550 case PERL_MAGIC_symtab:
4551 case PERL_MAGIC_vstring:
4554 case PERL_MAGIC_utf8:
4555 vtable = &PL_vtbl_utf8;
4557 case PERL_MAGIC_substr:
4558 vtable = &PL_vtbl_substr;
4560 case PERL_MAGIC_defelem:
4561 vtable = &PL_vtbl_defelem;
4563 case PERL_MAGIC_arylen:
4564 vtable = &PL_vtbl_arylen;
4566 case PERL_MAGIC_pos:
4567 vtable = &PL_vtbl_pos;
4569 case PERL_MAGIC_backref:
4570 vtable = &PL_vtbl_backref;
4572 case PERL_MAGIC_hintselem:
4573 vtable = &PL_vtbl_hintselem;
4575 case PERL_MAGIC_ext:
4576 /* Reserved for use by extensions not perl internals. */
4577 /* Useful for attaching extension internal data to perl vars. */
4578 /* Note that multiple extensions may clash if magical scalars */
4579 /* etc holding private data from one are passed to another. */
4583 Perl_croak(aTHX_ "Don't know how to handle magic of type \\%o", how);
4586 /* Rest of work is done else where */
4587 mg = sv_magicext(sv,obj,how,vtable,name,namlen);
4590 case PERL_MAGIC_taint:
4593 case PERL_MAGIC_ext:
4594 case PERL_MAGIC_dbfile:
4601 =for apidoc sv_unmagic
4603 Removes all magic of type C<type> from an SV.
4609 Perl_sv_unmagic(pTHX_ SV *sv, int type)
4613 if (SvTYPE(sv) < SVt_PVMG || !SvMAGIC(sv))
4615 mgp = &(((XPVMG*) SvANY(sv))->xmg_u.xmg_magic);
4616 for (mg = *mgp; mg; mg = *mgp) {
4617 if (mg->mg_type == type) {
4618 const MGVTBL* const vtbl = mg->mg_virtual;
4619 *mgp = mg->mg_moremagic;
4620 if (vtbl && vtbl->svt_free)
4621 CALL_FPTR(vtbl->svt_free)(aTHX_ sv, mg);
4622 if (mg->mg_ptr && mg->mg_type != PERL_MAGIC_regex_global) {
4624 Safefree(mg->mg_ptr);
4625 else if (mg->mg_len == HEf_SVKEY)
4626 SvREFCNT_dec((SV*)mg->mg_ptr);
4627 else if (mg->mg_type == PERL_MAGIC_utf8)
4628 Safefree(mg->mg_ptr);
4630 if (mg->mg_flags & MGf_REFCOUNTED)
4631 SvREFCNT_dec(mg->mg_obj);
4635 mgp = &mg->mg_moremagic;
4639 SvFLAGS(sv) |= (SvFLAGS(sv) & (SVp_IOK|SVp_NOK|SVp_POK)) >> PRIVSHIFT;
4640 SvMAGIC_set(sv, NULL);
4647 =for apidoc sv_rvweaken
4649 Weaken a reference: set the C<SvWEAKREF> flag on this RV; give the
4650 referred-to SV C<PERL_MAGIC_backref> magic if it hasn't already; and
4651 push a back-reference to this RV onto the array of backreferences
4652 associated with that magic. If the RV is magical, set magic will be
4653 called after the RV is cleared.
4659 Perl_sv_rvweaken(pTHX_ SV *sv)
4662 if (!SvOK(sv)) /* let undefs pass */
4665 Perl_croak(aTHX_ "Can't weaken a nonreference");
4666 else if (SvWEAKREF(sv)) {
4667 if (ckWARN(WARN_MISC))
4668 Perl_warner(aTHX_ packWARN(WARN_MISC), "Reference is already weak");
4672 Perl_sv_add_backref(aTHX_ tsv, sv);
4678 /* Give tsv backref magic if it hasn't already got it, then push a
4679 * back-reference to sv onto the array associated with the backref magic.
4683 Perl_sv_add_backref(pTHX_ SV *tsv, SV *sv)
4688 if (SvTYPE(tsv) == SVt_PVHV) {
4689 AV **const avp = Perl_hv_backreferences_p(aTHX_ (HV*)tsv);
4693 /* There is no AV in the offical place - try a fixup. */
4694 MAGIC *const mg = mg_find(tsv, PERL_MAGIC_backref);
4697 /* Aha. They've got it stowed in magic. Bring it back. */
4698 av = (AV*)mg->mg_obj;
4699 /* Stop mg_free decreasing the refernce count. */
4701 /* Stop mg_free even calling the destructor, given that
4702 there's no AV to free up. */
4704 sv_unmagic(tsv, PERL_MAGIC_backref);
4708 SvREFCNT_inc_simple_void(av);
4713 const MAGIC *const mg
4714 = SvMAGICAL(tsv) ? mg_find(tsv, PERL_MAGIC_backref) : NULL;
4716 av = (AV*)mg->mg_obj;
4720 sv_magic(tsv, (SV*)av, PERL_MAGIC_backref, NULL, 0);
4721 /* av now has a refcnt of 2, which avoids it getting freed
4722 * before us during global cleanup. The extra ref is removed
4723 * by magic_killbackrefs() when tsv is being freed */
4726 if (AvFILLp(av) >= AvMAX(av)) {
4727 av_extend(av, AvFILLp(av)+1);
4729 AvARRAY(av)[++AvFILLp(av)] = sv; /* av_push() */
4732 /* delete a back-reference to ourselves from the backref magic associated
4733 * with the SV we point to.
4737 S_sv_del_backref(pTHX_ SV *tsv, SV *sv)
4744 if (SvTYPE(tsv) == SVt_PVHV && SvOOK(tsv)) {
4745 av = *Perl_hv_backreferences_p(aTHX_ (HV*)tsv);
4746 /* We mustn't attempt to "fix up" the hash here by moving the
4747 backreference array back to the hv_aux structure, as that is stored
4748 in the main HvARRAY(), and hfreentries assumes that no-one
4749 reallocates HvARRAY() while it is running. */
4752 const MAGIC *const mg
4753 = SvMAGICAL(tsv) ? mg_find(tsv, PERL_MAGIC_backref) : NULL;
4755 av = (AV *)mg->mg_obj;
4758 if (PL_in_clean_all)
4760 Perl_croak(aTHX_ "panic: del_backref");
4767 /* We shouldn't be in here more than once, but for paranoia reasons lets
4769 for (i = AvFILLp(av); i >= 0; i--) {
4771 const SSize_t fill = AvFILLp(av);
4773 /* We weren't the last entry.
4774 An unordered list has this property that you can take the
4775 last element off the end to fill the hole, and it's still
4776 an unordered list :-)