3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1999, 2000,
4 * 2001, 2002, 2004, 2005, 2006, 2007, 2008, 2012 by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
11 /* IMPORTANT NOTE: Everything whose name begins with an underscore is for
12 * internal core Perl use only. */
14 #ifndef PERL_HANDY_H_ /* Guard against nested #inclusion */
18 # define Null(type) ((type)NULL)
23 =for apidoc AmnU||Nullch
24 Null character pointer. (No longer available when C<PERL_CORE> is
27 =for apidoc AmnU||Nullsv
28 Null SV pointer. (No longer available when C<PERL_CORE> is defined.)
33 # define Nullch Null(char*)
34 # define Nullfp Null(PerlIO*)
35 # define Nullsv Null(SV*)
47 /* The MUTABLE_*() macros cast pointers to the types shown, in such a way
48 * (compiler permitting) that casting away const-ness will give a warning;
52 * AV *av1 = (AV*)sv; <== BAD: the const has been silently cast away
53 * AV *av2 = MUTABLE_AV(sv); <== GOOD: it may warn
56 #if defined(__GNUC__) && !defined(PERL_GCC_BRACE_GROUPS_FORBIDDEN)
57 # define MUTABLE_PTR(p) ({ void *_p = (p); _p; })
59 # define MUTABLE_PTR(p) ((void *) (p))
62 #define MUTABLE_AV(p) ((AV *)MUTABLE_PTR(p))
63 #define MUTABLE_CV(p) ((CV *)MUTABLE_PTR(p))
64 #define MUTABLE_GV(p) ((GV *)MUTABLE_PTR(p))
65 #define MUTABLE_HV(p) ((HV *)MUTABLE_PTR(p))
66 #define MUTABLE_IO(p) ((IO *)MUTABLE_PTR(p))
67 #define MUTABLE_SV(p) ((SV *)MUTABLE_PTR(p))
69 #if defined(I_STDBOOL) && !defined(PERL_BOOL_AS_CHAR)
76 /* bool is built-in for g++-2.6.3 and later, which might be used
77 for extensions. <_G_config.h> defines _G_HAVE_BOOL, but we can't
78 be sure _G_config.h will be included before this file. _G_config.h
79 also defines _G_HAVE_BOOL for both gcc and g++, but only g++
80 actually has bool. Hence, _G_HAVE_BOOL is pretty useless for us.
81 g++ can be identified by __GNUG__.
82 Andy Dougherty February 2000
84 #ifdef __GNUG__ /* GNU g++ has bool built-in */
85 # ifndef PERL_BOOL_AS_CHAR
101 =for apidoc Am|bool|cBOOL|bool expr
103 Cast-to-bool. A simple S<C<(bool) I<expr>>> cast may not do the right thing:
104 if C<bool> is defined as C<char>, for example, then the cast from C<int> is
105 implementation-defined.
107 C<(bool)!!(cbool)> in a ternary triggers a bug in xlc on AIX
111 #define cBOOL(cbool) ((cbool) ? (bool)1 : (bool)0)
113 /* Try to figure out __func__ or __FUNCTION__ equivalent, if any.
114 * XXX Should really be a Configure probe, with HAS__FUNCTION__
115 * and FUNCTION__ as results.
116 * XXX Similarly, a Configure probe for __FILE__ and __LINE__ is needed. */
117 #if (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || (defined(__SUNPRO_C)) /* C99 or close enough. */
118 # define FUNCTION__ __func__
119 #elif (defined(__DECC_VER)) /* Tru64 or VMS, and strict C89 being used, but not modern enough cc (in Tur64, -c99 not known, only -std1). */
120 # define FUNCTION__ ""
122 # define FUNCTION__ __FUNCTION__ /* Common extension. */
125 /* XXX A note on the perl source internal type system. The
126 original intent was that I32 be *exactly* 32 bits.
128 Currently, we only guarantee that I32 is *at least* 32 bits.
129 Specifically, if int is 64 bits, then so is I32. (This is the case
130 for the Cray.) This has the advantage of meshing nicely with
131 standard library calls (where we pass an I32 and the library is
132 expecting an int), but the disadvantage that an I32 is not 32 bits.
133 Andy Dougherty August 1996
135 There is no guarantee that there is *any* integral type with
136 exactly 32 bits. It is perfectly legal for a system to have
137 sizeof(short) == sizeof(int) == sizeof(long) == 8.
139 Similarly, there is no guarantee that I16 and U16 have exactly 16
142 For dealing with issues that may arise from various 32/64-bit
143 systems, we will ask Configure to check out
145 SHORTSIZE == sizeof(short)
146 INTSIZE == sizeof(int)
147 LONGSIZE == sizeof(long)
148 LONGLONGSIZE == sizeof(long long) (if HAS_LONG_LONG)
149 PTRSIZE == sizeof(void *)
150 DOUBLESIZE == sizeof(double)
151 LONG_DOUBLESIZE == sizeof(long double) (if HAS_LONG_DOUBLE).
155 #ifdef I_INTTYPES /* e.g. Linux has int64_t without <inttypes.h> */
156 # include <inttypes.h>
157 # ifdef INT32_MIN_BROKEN
159 # define INT32_MIN (-2147483647-1)
161 # ifdef INT64_MIN_BROKEN
163 # define INT64_MIN (-9223372036854775807LL-1)
179 #if defined(UINT8_MAX) && defined(INT16_MAX) && defined(INT32_MAX)
181 /* I8_MAX and I8_MIN constants are not defined, as I8 is an ambiguous type.
182 Please search CHAR_MAX in perl.h for further details. */
183 #define U8_MAX UINT8_MAX
184 #define U8_MIN UINT8_MIN
186 #define I16_MAX INT16_MAX
187 #define I16_MIN INT16_MIN
188 #define U16_MAX UINT16_MAX
189 #define U16_MIN UINT16_MIN
191 #define I32_MAX INT32_MAX
192 #define I32_MIN INT32_MIN
193 #ifndef UINT32_MAX_BROKEN /* e.g. HP-UX with gcc messes this up */
194 # define U32_MAX UINT32_MAX
196 # define U32_MAX 4294967295U
198 #define U32_MIN UINT32_MIN
202 /* I8_MAX and I8_MIN constants are not defined, as I8 is an ambiguous type.
203 Please search CHAR_MAX in perl.h for further details. */
204 #define U8_MAX PERL_UCHAR_MAX
205 #define U8_MIN PERL_UCHAR_MIN
207 #define I16_MAX PERL_SHORT_MAX
208 #define I16_MIN PERL_SHORT_MIN
209 #define U16_MAX PERL_USHORT_MAX
210 #define U16_MIN PERL_USHORT_MIN
213 # define I32_MAX PERL_INT_MAX
214 # define I32_MIN PERL_INT_MIN
215 # define U32_MAX PERL_UINT_MAX
216 # define U32_MIN PERL_UINT_MIN
218 # define I32_MAX PERL_LONG_MAX
219 # define I32_MIN PERL_LONG_MIN
220 # define U32_MAX PERL_ULONG_MAX
221 # define U32_MIN PERL_ULONG_MIN
226 /* These C99 typedefs are useful sometimes for, say, loop variables whose
227 * maximum values are small, but for which speed trumps size. If we have a C99
228 * compiler, use that. Otherwise, a plain 'int' should be good enough.
230 * Restrict these to core for now until we are more certain this is a good
232 #if defined(PERL_CORE) || defined(PERL_EXT)
234 typedef int_fast8_t PERL_INT_FAST8_T;
235 typedef uint_fast8_t PERL_UINT_FAST8_T;
236 typedef int_fast16_t PERL_INT_FAST16_T;
237 typedef uint_fast16_t PERL_UINT_FAST16_T;
239 typedef int PERL_INT_FAST8_T;
240 typedef unsigned int PERL_UINT_FAST8_T;
241 typedef int PERL_INT_FAST16_T;
242 typedef unsigned int PERL_UINT_FAST16_T;
246 /* log(2) (i.e., log base 10 of 2) is pretty close to 0.30103, just in case
247 * anyone is grepping for it */
248 #define BIT_DIGITS(N) (((N)*146)/485 + 1) /* log10(2) =~ 146/485 */
249 #define TYPE_DIGITS(T) BIT_DIGITS(sizeof(T) * 8)
250 #define TYPE_CHARS(T) (TYPE_DIGITS(T) + 2) /* sign, NUL */
252 /* Unused by core; should be deprecated */
253 #define Ctl(ch) ((ch) & 037)
255 #if defined(PERL_CORE) || defined(PERL_EXT)
257 # define MIN(a,b) ((a) < (b) ? (a) : (b))
260 # define MAX(a,b) ((a) > (b) ? (a) : (b))
264 /* Returns a boolean as to whether the input unsigned number is a power of 2
265 * (2**0, 2**1, etc). In other words if it has just a single bit set.
266 * If not, subtracting 1 would leave the uppermost bit set, so the & would
268 #if defined(PERL_CORE) || defined(PERL_EXT)
269 # define isPOWER_OF_2(n) ((n) && ((n) & ((n)-1)) == 0)
273 =for apidoc Am|void|__ASSERT_|bool expr
275 This is a helper macro to avoid preprocessor issues, replaced by nothing
276 unless under DEBUGGING, where it expands to an assert of its argument,
277 followed by a comma (hence the comma operator). If we just used a straight
278 assert(), we would get a comma with nothing before it when not DEBUGGING.
282 We also use empty definition under Coverity since the __ASSERT__
283 checks often check for things that Really Cannot Happen, and Coverity
284 detects that and gets all excited. */
286 #if defined(DEBUGGING) && !defined(__COVERITY__) \
287 && ! defined(PERL_SMALL_MACRO_BUFFER)
288 # define __ASSERT_(statement) assert(statement),
290 # define __ASSERT_(statement)
294 =head1 SV Manipulation Functions
296 =for apidoc Ama|SV*|newSVpvs|"literal string"
297 Like C<newSVpvn>, but takes a literal string instead of a
300 =for apidoc Ama|SV*|newSVpvs_flags|"literal string"|U32 flags
301 Like C<newSVpvn_flags>, but takes a literal string instead of
302 a string/length pair.
304 =for apidoc Ama|SV*|newSVpvs_share|"literal string"
305 Like C<newSVpvn_share>, but takes a literal string instead of
306 a string/length pair and omits the hash parameter.
308 =for apidoc Am|void|sv_catpvs_flags|SV* sv|"literal string"|I32 flags
309 Like C<sv_catpvn_flags>, but takes a literal string instead
310 of a string/length pair.
312 =for apidoc Am|void|sv_catpvs_nomg|SV* sv|"literal string"
313 Like C<sv_catpvn_nomg>, but takes a literal string instead of
314 a string/length pair.
316 =for apidoc Am|void|sv_catpvs|SV* sv|"literal string"
317 Like C<sv_catpvn>, but takes a literal string instead of a
320 =for apidoc Am|void|sv_catpvs_mg|SV* sv|"literal string"
321 Like C<sv_catpvn_mg>, but takes a literal string instead of a
324 =for apidoc Am|void|sv_setpvs|SV* sv|"literal string"
325 Like C<sv_setpvn>, but takes a literal string instead of a
328 =for apidoc Am|void|sv_setpvs_mg|SV* sv|"literal string"
329 Like C<sv_setpvn_mg>, but takes a literal string instead of a
332 =for apidoc Am|SV *|sv_setref_pvs|SV *const rv|const char *const classname|"literal string"
333 Like C<sv_setref_pvn>, but takes a literal string instead of
334 a string/length pair.
336 =head1 Memory Management
338 =for apidoc Ama|char*|savepvs|"literal string"
339 Like C<savepvn>, but takes a literal string instead of a
342 =for apidoc Ama|char*|savesharedpvs|"literal string"
343 A version of C<savepvs()> which allocates the duplicate string in memory
344 which is shared between threads.
348 =for apidoc Am|HV*|gv_stashpvs|"name"|I32 create
349 Like C<gv_stashpvn>, but takes a literal string instead of a
352 =head1 Hash Manipulation Functions
354 =for apidoc Am|SV**|hv_fetchs|HV* tb|"key"|I32 lval
355 Like C<hv_fetch>, but takes a literal string instead of a
358 =for apidoc Am|SV**|hv_stores|HV* tb|"key"|SV* val
359 Like C<hv_store>, but takes a literal string instead of a
361 and omits the hash parameter.
363 =head1 Lexer interface
365 =for apidoc Amx|void|lex_stuff_pvs|"pv"|U32 flags
367 Like L</lex_stuff_pvn>, but takes a literal string instead of
368 a string/length pair.
376 =for apidoc Amu|pair|STR_WITH_LEN|"literal string"
378 Returns two comma separated tokens of the input literal string, and its length.
379 This is convenience macro which helps out in some API calls.
380 Note that it can't be used as an argument to macros or functions that under
381 some configurations might be macros, which means that it requires the full
382 Perl_xxx(aTHX_ ...) form for any API calls where it's used.
388 #define STR_WITH_LEN(s) ("" s ""), (sizeof(s)-1)
390 /* STR_WITH_LEN() shortcuts */
391 #define newSVpvs(str) Perl_newSVpvn(aTHX_ STR_WITH_LEN(str))
392 #define newSVpvs_flags(str,flags) \
393 Perl_newSVpvn_flags(aTHX_ STR_WITH_LEN(str), flags)
394 #define newSVpvs_share(str) Perl_newSVpvn_share(aTHX_ STR_WITH_LEN(str), 0)
395 #define sv_catpvs_flags(sv, str, flags) \
396 Perl_sv_catpvn_flags(aTHX_ sv, STR_WITH_LEN(str), flags)
397 #define sv_catpvs_nomg(sv, str) \
398 Perl_sv_catpvn_flags(aTHX_ sv, STR_WITH_LEN(str), 0)
399 #define sv_catpvs(sv, str) \
400 Perl_sv_catpvn_flags(aTHX_ sv, STR_WITH_LEN(str), SV_GMAGIC)
401 #define sv_catpvs_mg(sv, str) \
402 Perl_sv_catpvn_flags(aTHX_ sv, STR_WITH_LEN(str), SV_GMAGIC|SV_SMAGIC)
403 #define sv_setpvs(sv, str) Perl_sv_setpvn(aTHX_ sv, STR_WITH_LEN(str))
404 #define sv_setpvs_mg(sv, str) Perl_sv_setpvn_mg(aTHX_ sv, STR_WITH_LEN(str))
405 #define sv_setref_pvs(rv, classname, str) \
406 Perl_sv_setref_pvn(aTHX_ rv, classname, STR_WITH_LEN(str))
407 #define savepvs(str) Perl_savepvn(aTHX_ STR_WITH_LEN(str))
408 #define savesharedpvs(str) Perl_savesharedpvn(aTHX_ STR_WITH_LEN(str))
409 #define gv_stashpvs(str, create) \
410 Perl_gv_stashpvn(aTHX_ STR_WITH_LEN(str), create)
411 #define gv_fetchpvs(namebeg, add, sv_type) \
412 Perl_gv_fetchpvn_flags(aTHX_ STR_WITH_LEN(namebeg), add, sv_type)
413 #define gv_fetchpvn(namebeg, len, add, sv_type) \
414 Perl_gv_fetchpvn_flags(aTHX_ namebeg, len, add, sv_type)
415 #define sv_catxmlpvs(dsv, str, utf8) \
416 Perl_sv_catxmlpvn(aTHX_ dsv, STR_WITH_LEN(str), utf8)
419 #define lex_stuff_pvs(pv,flags) Perl_lex_stuff_pvn(aTHX_ STR_WITH_LEN(pv), flags)
421 #define get_cvs(str, flags) \
422 Perl_get_cvn_flags(aTHX_ STR_WITH_LEN(str), (flags))
425 =head1 Miscellaneous Functions
427 =for apidoc Am|bool|strNE|char* s1|char* s2
428 Test two C<NUL>-terminated strings to see if they are different. Returns true
431 =for apidoc Am|bool|strEQ|char* s1|char* s2
432 Test two C<NUL>-terminated strings to see if they are equal. Returns true or
435 =for apidoc Am|bool|strLT|char* s1|char* s2
436 Test two C<NUL>-terminated strings to see if the first, C<s1>, is less than the
437 second, C<s2>. Returns true or false.
439 =for apidoc Am|bool|strLE|char* s1|char* s2
440 Test two C<NUL>-terminated strings to see if the first, C<s1>, is less than or
441 equal to the second, C<s2>. Returns true or false.
443 =for apidoc Am|bool|strGT|char* s1|char* s2
444 Test two C<NUL>-terminated strings to see if the first, C<s1>, is greater than
445 the second, C<s2>. Returns true or false.
447 =for apidoc Am|bool|strGE|char* s1|char* s2
448 Test two C<NUL>-terminated strings to see if the first, C<s1>, is greater than
449 or equal to the second, C<s2>. Returns true or false.
451 =for apidoc Am|bool|strnNE|char* s1|char* s2|STRLEN len
452 Test two C<NUL>-terminated strings to see if they are different. The C<len>
453 parameter indicates the number of bytes to compare. Returns true or false. (A
454 wrapper for C<strncmp>).
456 =for apidoc Am|bool|strnEQ|char* s1|char* s2|STRLEN len
457 Test two C<NUL>-terminated strings to see if they are equal. The C<len>
458 parameter indicates the number of bytes to compare. Returns true or false. (A
459 wrapper for C<strncmp>).
461 =for apidoc Am|bool|memEQ|char* s1|char* s2|STRLEN len
462 Test two buffers (which may contain embedded C<NUL> characters, to see if they
463 are equal. The C<len> parameter indicates the number of bytes to compare.
464 Returns zero if equal, or non-zero if non-equal.
466 =for apidoc Am|bool|memEQs|char* s1|STRLEN l1|"s2"
467 Like L</memEQ>, but the second string is a literal enclosed in double quotes,
468 C<l1> gives the number of bytes in C<s1>.
469 Returns zero if equal, or non-zero if non-equal.
471 =for apidoc Am|bool|memNE|char* s1|char* s2|STRLEN len
472 Test two buffers (which may contain embedded C<NUL> characters, to see if they
473 are not equal. The C<len> parameter indicates the number of bytes to compare.
474 Returns zero if non-equal, or non-zero if equal.
476 =for apidoc Am|bool|memNEs|char* s1|STRLEN l1|"s2"
477 Like L</memNE>, but the second string is a literal enclosed in double quotes,
478 C<l1> gives the number of bytes in C<s1>.
479 Returns zero if non-equal, or zero if non-equal.
483 New macros should use the following conventions for their names (which are
484 based on the underlying C library functions):
486 (mem | str n? ) (EQ | NE | LT | GT | GE | (( BEGIN | END ) P? )) l? s?
488 Each has two main parameters, string-like operands that are compared
489 against each other, as specified by the macro name. Some macros may
490 additionally have one or potentially even two length parameters. If a length
491 parameter applies to both string parameters, it will be positioned third;
492 otherwise any length parameter immediately follows the string parameter it
495 If the prefix to the name is 'str', the string parameter is a pointer to a C
496 language string. Such a string does not contain embedded NUL bytes; its
497 length may be unknown, but can be calculated by C<strlen()>, since it is
498 terminated by a NUL, which isn't included in its length.
500 The optional 'n' following 'str' means that that there is a third parameter,
501 giving the maximum number of bytes to look at in each string. Even if both
502 strings are longer than the length parameter, those extra bytes will be
505 The 's' suffix means that the 2nd byte string parameter is a literal C
506 double-quoted string. Its length will automatically be calculated by the
507 macro, so no length parameter will ever be needed for it.
509 If the prefix is 'mem', the string parameters don't have to be C strings;
510 they may contain embedded NUL bytes, do not necessarily have a terminating
511 NUL, and their lengths can be known only through other means, which in
512 practice are additional parameter(s) passed to the function. All 'mem'
513 functions have at least one length parameter. Barring any 'l' or 's' suffix,
514 there is a single length parameter, in position 3, which applies to both
515 string parameters. The 's' suffix means, as described above, that the 2nd
516 string is a literal double-quoted C string (hence its length is calculated by
517 the macro, and the length parameter to the function applies just to the first
518 string parameter, and hence is positioned just after it). An 'l' suffix
519 means that the 2nd string parameter has its own length parameter, and the
520 signature will look like memFOOl(s1, l1, s2, l2).
522 BEGIN (and END) are for testing if the 2nd string is an initial (or final)
523 substring of the 1st string. 'P' if present indicates that the substring
524 must be a "proper" one in tha mathematical sense that the first one must be
525 strictly larger than the 2nd.
530 #define strNE(s1,s2) (strcmp(s1,s2) != 0)
531 #define strEQ(s1,s2) (strcmp(s1,s2) == 0)
532 #define strLT(s1,s2) (strcmp(s1,s2) < 0)
533 #define strLE(s1,s2) (strcmp(s1,s2) <= 0)
534 #define strGT(s1,s2) (strcmp(s1,s2) > 0)
535 #define strGE(s1,s2) (strcmp(s1,s2) >= 0)
537 #define strnNE(s1,s2,l) (strncmp(s1,s2,l) != 0)
538 #define strnEQ(s1,s2,l) (strncmp(s1,s2,l) == 0)
540 #define memEQ(s1,s2,l) (memcmp(((const void *) (s1)), ((const void *) (s2)), l) == 0)
541 #define memNE(s1,s2,l) (! memEQ(s1,s2,l))
543 /* memEQ and memNE where second comparand is a string constant */
544 #define memEQs(s1, l, s2) \
545 (((sizeof(s2)-1) == (l)) && memEQ((s1), ("" s2 ""), (sizeof(s2)-1)))
546 #define memNEs(s1, l, s2) (! memEQs(s1, l, s2))
548 /* Keep these private until we decide it was a good idea */
549 #if defined(PERL_CORE) || defined(PERL_EXT) || defined(PERL_EXT_POSIX)
551 #define strBEGINs(s1,s2) (strncmp(s1,"" s2 "", sizeof(s2)-1) == 0)
553 #define memBEGINs(s1, l, s2) \
554 ( (Ptrdiff_t) (l) >= (Ptrdiff_t) sizeof(s2) - 1 \
555 && memEQ(s1, "" s2 "", sizeof(s2)-1))
556 #define memBEGINPs(s1, l, s2) \
557 ( (Ptrdiff_t) (l) > (Ptrdiff_t) sizeof(s2) - 1 \
558 && memEQ(s1, "" s2 "", sizeof(s2)-1))
559 #define memENDs(s1, l, s2) \
560 ( (Ptrdiff_t) (l) >= (Ptrdiff_t) sizeof(s2) - 1 \
561 && memEQ(s1 + (l) - (sizeof(s2) - 1), "" s2 "", sizeof(s2)-1))
562 #define memENDPs(s1, l, s2) \
563 ( (Ptrdiff_t) (l) > (Ptrdiff_t) sizeof(s2) \
564 && memEQ(s1 + (l) - (sizeof(s2) - 1), "" s2 "", sizeof(s2)-1))
565 #endif /* End of making macros private */
567 #define memLT(s1,s2,l) (memcmp(s1,s2,l) < 0)
568 #define memLE(s1,s2,l) (memcmp(s1,s2,l) <= 0)
569 #define memGT(s1,s2,l) (memcmp(s1,s2,l) > 0)
570 #define memGE(s1,s2,l) (memcmp(s1,s2,l) >= 0)
575 * Unfortunately, the introduction of locales means that we
576 * can't trust isupper(), etc. to tell the truth. And when
577 * it comes to /\w+/ with tainting enabled, we *must* be able
578 * to trust our character classes.
580 * Therefore, the default tests in the text of Perl will be
581 * independent of locale. Any code that wants to depend on
582 * the current locale will use the tests that begin with "lc".
585 #ifdef HAS_SETLOCALE /* XXX Is there a better test for this? */
593 =head1 Character classification
594 This section is about functions (really macros) that classify characters
595 into types, such as punctuation versus alphabetic, etc. Most of these are
596 analogous to regular expression character classes. (See
597 L<perlrecharclass/POSIX Character Classes>.) There are several variants for
598 each class. (Not all macros have all variants; each item below lists the
599 ones valid for it.) None are affected by C<use bytes>, and only the ones
600 with C<LC> in the name are affected by the current locale.
602 The base function, e.g., C<isALPHA()>, takes any signed or unsigned value,
603 treating it as a code point, and returns a boolean as to whether or not the
604 character represented by it is (or on non-ASCII platforms, corresponds to) an
605 ASCII character in the named class based on platform, Unicode, and Perl rules.
606 If the input is a number that doesn't fit in an octet, FALSE is returned.
608 Variant C<isI<FOO>_A> (e.g., C<isALPHA_A()>) is identical to the base function
609 with no suffix C<"_A">. This variant is used to emphasize by its name that
610 only ASCII-range characters can return TRUE.
612 Variant C<isI<FOO>_L1> imposes the Latin-1 (or EBCDIC equivalent) character set
613 onto the platform. That is, the code points that are ASCII are unaffected,
614 since ASCII is a subset of Latin-1. But the non-ASCII code points are treated
615 as if they are Latin-1 characters. For example, C<isWORDCHAR_L1()> will return
616 true when called with the code point 0xDF, which is a word character in both
617 ASCII and EBCDIC (though it represents different characters in each).
618 If the input is a number that doesn't fit in an octet, FALSE is returned.
619 (Perl's documentation uses a colloquial definition of Latin-1, to include all
620 code points below 256.)
622 Variant C<isI<FOO>_uvchr> is exactly like the C<isI<FOO>_L1> variant, for
623 inputs below 256, but if the code point is larger than 255, Unicode rules are
624 used to determine if it is in the character class. For example,
625 C<isWORDCHAR_uvchr(0x100)> returns TRUE, since 0x100 is LATIN CAPITAL LETTER A
626 WITH MACRON in Unicode, and is a word character.
628 Variants C<isI<FOO>_utf8> and C<isI<FOO>_utf8_safe> are like C<isI<FOO>_uvchr>,
629 but are used for UTF-8 encoded strings. The two forms are different names for
630 the same thing. Each call to one of these classifies the first character of
631 the string starting at C<p>. The second parameter, C<e>, points to anywhere in
632 the string beyond the first character, up to one byte past the end of the
633 entire string. Although both variants are identical, the suffix C<_safe> in
634 one name emphasizes that it will not attempt to read beyond S<C<e - 1>>,
635 provided that the constraint S<C<s E<lt> e>> is true (this is asserted for in
636 C<-DDEBUGGING> builds). If the UTF-8 for the input character is malformed in
637 some way, the program may croak, or the function may return FALSE, at the
638 discretion of the implementation, and subject to change in future releases.
640 Variant C<isI<FOO>_LC> is like the C<isI<FOO>_A> and C<isI<FOO>_L1> variants,
641 but the result is based on the current locale, which is what C<LC> in the name
642 stands for. If Perl can determine that the current locale is a UTF-8 locale,
643 it uses the published Unicode rules; otherwise, it uses the C library function
644 that gives the named classification. For example, C<isDIGIT_LC()> when not in
645 a UTF-8 locale returns the result of calling C<isdigit()>. FALSE is always
646 returned if the input won't fit into an octet. On some platforms where the C
647 library function is known to be defective, Perl changes its result to follow
648 the POSIX standard's rules.
650 Variant C<isI<FOO>_LC_uvchr> acts exactly like C<isI<FOO>_LC> for inputs less
651 than 256, but for larger ones it returns the Unicode classification of the code
654 Variants C<isI<FOO>_LC_utf8> and C<isI<FOO>_LC_utf8_safe> are like
655 C<isI<FOO>_LC_uvchr>, but are used for UTF-8 encoded strings. The two forms
656 are different names for the same thing. Each call to one of these classifies
657 the first character of the string starting at C<p>. The second parameter,
658 C<e>, points to anywhere in the string beyond the first character, up to one
659 byte past the end of the entire string. Although both variants are identical,
660 the suffix C<_safe> in one name emphasizes that it will not attempt to read
661 beyond S<C<e - 1>>, provided that the constraint S<C<s E<lt> e>> is true (this
662 is asserted for in C<-DDEBUGGING> builds). If the UTF-8 for the input
663 character is malformed in some way, the program may croak, or the function may
664 return FALSE, at the discretion of the implementation, and subject to change in
667 =for apidoc Am|bool|isALPHA|int ch
668 Returns a boolean indicating whether the specified input is one of C<[A-Za-z]>,
669 analogous to C<m/[[:alpha:]]/>.
670 See the L<top of this section|/Character classification> for an explanation of
672 C<isALPHA_A>, C<isALPHA_L1>, C<isALPHA_uvchr>, C<isALPHA_utf8>,
673 C<isALPHA_utf8_safe>, C<isALPHA_LC>, C<isALPHA_LC_uvchr>, C<isALPHA_LC_utf8>,
674 and C<isALPHA_LC_utf8_safe>.
678 Here and below, we add the protoypes of these macros for downstream programs
679 that would be interested in them, such as Devel::PPPort
681 =for apidoc Amh|bool|isALPHA_A|int ch
682 =for apidoc Amh|bool|isALPHA_L1|int ch
683 =for apidoc Amh|bool|isALPHA_uvchr|int ch
684 =for apidoc Amh|bool|isALPHA_utf8_safe|U8 * s|U8 * end
685 =for apidoc Amh|bool|isALPHA_utf8|U8 * s|U8 * end
686 =for apidoc Amh|bool|isALPHA_LC|int ch
687 =for apidoc Amh|bool|isALPHA_LC_uvchr|int ch
688 =for apidoc Amh|bool|isALPHA_LC_utf8_safe|U8 * s| U8 *end
690 =for apidoc Am|bool|isALPHANUMERIC|int ch
691 Returns a boolean indicating whether the specified character is one of
692 C<[A-Za-z0-9]>, analogous to C<m/[[:alnum:]]/>.
693 See the L<top of this section|/Character classification> for an explanation of
695 C<isALPHANUMERIC_A>, C<isALPHANUMERIC_L1>, C<isALPHANUMERIC_uvchr>,
696 C<isALPHANUMERIC_utf8>, C<isALPHANUMERIC_utf8_safe>, C<isALPHANUMERIC_LC>,
697 C<isALPHANUMERIC_LC_uvchr>, C<isALPHANUMERIC_LC_utf8>, and
698 C<isALPHANUMERIC_LC_utf8_safe>.
700 A (discouraged from use) synonym is C<isALNUMC> (where the C<C> suffix means
701 this corresponds to the C language alphanumeric definition). Also
702 there are the variants
703 C<isALNUMC_A>, C<isALNUMC_L1>
704 C<isALNUMC_LC>, and C<isALNUMC_LC_uvchr>.
706 =for apidoc Amh|bool|isALPHANUMERIC_A|int ch
707 =for apidoc Amh|bool|isALPHANUMERIC_L1|int ch
708 =for apidoc Amh|bool|isALPHANUMERIC_uvchr|int ch
709 =for apidoc Amh|bool|isALPHANUMERIC_utf8_safe|U8 * s|U8 * end
710 =for apidoc Amh|bool|isALPHANUMERIC_utf8|U8 * s|U8 * end
711 =for apidoc Amh|bool|isALPHANUMERIC_LC|int ch
712 =for apidoc Amh|bool|isALPHANUMERIC_LC_uvchr|int ch
713 =for apidoc Amh|bool|isALPHANUMERIC_LC_utf8_safe|U8 * s| U8 *end
714 =for apidoc Amh|bool|isALNUMC|int ch
715 =for apidoc Amh|bool|isALNUMC_A|int ch
716 =for apidoc Amh|bool|isALNUMC_L1|int ch
717 =for apidoc Amh|bool|isALNUMC_LC|int ch
718 =for apidoc Amh|bool|isALNUMC_LC_uvchr|int ch
720 =for apidoc Am|bool|isASCII|int ch
721 Returns a boolean indicating whether the specified character is one of the 128
722 characters in the ASCII character set, analogous to C<m/[[:ascii:]]/>.
723 On non-ASCII platforms, it returns TRUE iff this
724 character corresponds to an ASCII character. Variants C<isASCII_A()> and
725 C<isASCII_L1()> are identical to C<isASCII()>.
726 See the L<top of this section|/Character classification> for an explanation of
728 C<isASCII_uvchr>, C<isASCII_utf8>, C<isASCII_utf8_safe>, C<isASCII_LC>,
729 C<isASCII_LC_uvchr>, C<isASCII_LC_utf8>, and C<isASCII_LC_utf8_safe>.
730 Note, however, that some platforms do not have the C library routine
731 C<isascii()>. In these cases, the variants whose names contain C<LC> are the
732 same as the corresponding ones without.
734 =for apidoc Amh|bool|isASCII_A|int ch
735 =for apidoc Amh|bool|isASCII_L1|int ch
736 =for apidoc Amh|bool|isASCII_uvchr|int ch
737 =for apidoc Amh|bool|isASCII_utf8_safe|U8 * s|U8 * end
738 =for apidoc Amh|bool|isASCII_utf8|U8 * s|U8 * end
739 =for apidoc Amh|bool|isASCII_LC|int ch
740 =for apidoc Amh|bool|isASCII_LC_uvchr|int ch
741 =for apidoc Amh|bool|isASCII_LC_utf8_safe|U8 * s| U8 *end
743 Also note, that because all ASCII characters are UTF-8 invariant (meaning they
744 have the exact same representation (always a single byte) whether encoded in
745 UTF-8 or not), C<isASCII> will give the correct results when called with any
746 byte in any string encoded or not in UTF-8. And similarly C<isASCII_utf8> and
747 C<isASCII_utf8_safe> will work properly on any string encoded or not in UTF-8.
749 =for apidoc Am|bool|isBLANK|char ch
750 Returns a boolean indicating whether the specified character is a
751 character considered to be a blank, analogous to C<m/[[:blank:]]/>.
752 See the L<top of this section|/Character classification> for an explanation of
754 C<isBLANK_A>, C<isBLANK_L1>, C<isBLANK_uvchr>, C<isBLANK_utf8>,
755 C<isBLANK_utf8_safe>, C<isBLANK_LC>, C<isBLANK_LC_uvchr>, C<isBLANK_LC_utf8>,
756 and C<isBLANK_LC_utf8_safe>. Note,
757 however, that some platforms do not have the C library routine
758 C<isblank()>. In these cases, the variants whose names contain C<LC> are
759 the same as the corresponding ones without.
761 =for apidoc Amh|bool|isBLANK_A|int ch
762 =for apidoc Amh|bool|isBLANK_L1|int ch
763 =for apidoc Amh|bool|isBLANK_uvchr|int ch
764 =for apidoc Amh|bool|isBLANK_utf8_safe|U8 * s|U8 * end
765 =for apidoc Amh|bool|isBLANK_utf8|U8 * s|U8 * end
766 =for apidoc Amh|bool|isBLANK_LC|int ch
767 =for apidoc Amh|bool|isBLANK_LC_uvchr|int ch
768 =for apidoc Amh|bool|isBLANK_LC_utf8_safe|U8 * s| U8 *end
770 =for apidoc Am|bool|isCNTRL|char ch
771 Returns a boolean indicating whether the specified character is a
772 control character, analogous to C<m/[[:cntrl:]]/>.
773 See the L<top of this section|/Character classification> for an explanation of
775 C<isCNTRL_A>, C<isCNTRL_L1>, C<isCNTRL_uvchr>, C<isCNTRL_utf8>,
776 C<isCNTRL_utf8_safe>, C<isCNTRL_LC>, C<isCNTRL_LC_uvchr>, C<isCNTRL_LC_utf8>
777 and C<isCNTRL_LC_utf8_safe>. On EBCDIC
778 platforms, you almost always want to use the C<isCNTRL_L1> variant.
780 =for apidoc Amh|bool|isCNTRL_A|int ch
781 =for apidoc Amh|bool|isCNTRL_L1|int ch
782 =for apidoc Amh|bool|isCNTRL_uvchr|int ch
783 =for apidoc Amh|bool|isCNTRL_utf8_safe|U8 * s|U8 * end
784 =for apidoc Amh|bool|isCNTRL_utf8|U8 * s|U8 * end
785 =for apidoc Amh|bool|isCNTRL_LC|int ch
786 =for apidoc Amh|bool|isCNTRL_LC_uvchr|int ch
787 =for apidoc Amh|bool|isCNTRL_LC_utf8_safe|U8 * s| U8 *end
789 =for apidoc Am|bool|isDIGIT|char ch
790 Returns a boolean indicating whether the specified character is a
791 digit, analogous to C<m/[[:digit:]]/>.
792 Variants C<isDIGIT_A> and C<isDIGIT_L1> are identical to C<isDIGIT>.
793 See the L<top of this section|/Character classification> for an explanation of
795 C<isDIGIT_uvchr>, C<isDIGIT_utf8>, C<isDIGIT_utf8_safe>, C<isDIGIT_LC>,
796 C<isDIGIT_LC_uvchr>, C<isDIGIT_LC_utf8>, and C<isDIGIT_LC_utf8_safe>.
798 =for apidoc Amh|bool|isDIGIT_A|int ch
799 =for apidoc Amh|bool|isDIGIT_L1|int ch
800 =for apidoc Amh|bool|isDIGIT_uvchr|int ch
801 =for apidoc Amh|bool|isDIGIT_utf8_safe|U8 * s|U8 * end
802 =for apidoc Amh|bool|isDIGIT_utf8|U8 * s|U8 * end
803 =for apidoc Amh|bool|isDIGIT_LC|int ch
804 =for apidoc Amh|bool|isDIGIT_LC_uvchr|int ch
805 =for apidoc Amh|bool|isDIGIT_LC_utf8_safe|U8 * s| U8 *end
807 =for apidoc Am|bool|isGRAPH|char ch
808 Returns a boolean indicating whether the specified character is a
809 graphic character, analogous to C<m/[[:graph:]]/>.
810 See the L<top of this section|/Character classification> for an explanation of
811 variants C<isGRAPH_A>, C<isGRAPH_L1>, C<isGRAPH_uvchr>, C<isGRAPH_utf8>,
812 C<isGRAPH_utf8_safe>, C<isGRAPH_LC>, C<isGRAPH_LC_uvchr>,
813 C<isGRAPH_LC_utf8_safe>, and C<isGRAPH_LC_utf8_safe>.
815 =for apidoc Amh|bool|isGRAPH_A|int ch
816 =for apidoc Amh|bool|isGRAPH_L1|int ch
817 =for apidoc Amh|bool|isGRAPH_uvchr|int ch
818 =for apidoc Amh|bool|isGRAPH_utf8_safe|U8 * s|U8 * end
819 =for apidoc Amh|bool|isGRAPH_utf8|U8 * s|U8 * end
820 =for apidoc Amh|bool|isGRAPH_LC|int ch
821 =for apidoc Amh|bool|isGRAPH_LC_uvchr|int ch
822 =for apidoc Amh|bool|isGRAPH_LC_utf8_safe|U8 * s| U8 *end
824 =for apidoc Am|bool|isLOWER|char ch
825 Returns a boolean indicating whether the specified character is a
826 lowercase character, analogous to C<m/[[:lower:]]/>.
827 See the L<top of this section|/Character classification> for an explanation of
829 C<isLOWER_A>, C<isLOWER_L1>, C<isLOWER_uvchr>, C<isLOWER_utf8>,
830 C<isLOWER_utf8_safe>, C<isLOWER_LC>, C<isLOWER_LC_uvchr>, C<isLOWER_LC_utf8>,
831 and C<isLOWER_LC_utf8_safe>.
833 =for apidoc Amh|bool|isLOWER_A|int ch
834 =for apidoc Amh|bool|isLOWER_L1|int ch
835 =for apidoc Amh|bool|isLOWER_uvchr|int ch
836 =for apidoc Amh|bool|isLOWER_utf8_safe|U8 * s|U8 * end
837 =for apidoc Amh|bool|isLOWER_utf8|U8 * s|U8 * end
838 =for apidoc Amh|bool|isLOWER_LC|int ch
839 =for apidoc Amh|bool|isLOWER_LC_uvchr|int ch
840 =for apidoc Amh|bool|isLOWER_LC_utf8_safe|U8 * s| U8 *end
842 =for apidoc Am|bool|isOCTAL|char ch
843 Returns a boolean indicating whether the specified character is an
845 The only two variants are C<isOCTAL_A> and C<isOCTAL_L1>; each is identical to
848 =for apidoc Amh|bool|isOCTAL_A|int ch
849 =for apidoc Amh|bool|isOCTAL_L1|int ch
851 =for apidoc Am|bool|isPUNCT|char ch
852 Returns a boolean indicating whether the specified character is a
853 punctuation character, analogous to C<m/[[:punct:]]/>.
854 Note that the definition of what is punctuation isn't as
855 straightforward as one might desire. See L<perlrecharclass/POSIX Character
856 Classes> for details.
857 See the L<top of this section|/Character classification> for an explanation of
858 variants C<isPUNCT_A>, C<isPUNCT_L1>, C<isPUNCT_uvchr>, C<isPUNCT_utf8>,
859 C<isPUNCT_utf8_safe>, C<isPUNCT_LC>, C<isPUNCT_LC_uvchr>, C<isPUNCT_LC_utf8>,
860 and C<isPUNCT_LC_utf8_safe>.
862 =for apidoc Amh|bool|isPUNCT_A|int ch
863 =for apidoc Amh|bool|isPUNCT_L1|int ch
864 =for apidoc Amh|bool|isPUNCT_uvchr|int ch
865 =for apidoc Amh|bool|isPUNCT_utf8_safe|U8 * s|U8 * end
866 =for apidoc Amh|bool|isPUNCT_utf8|U8 * s|U8 * end
867 =for apidoc Amh|bool|isPUNCT_LC|int ch
868 =for apidoc Amh|bool|isPUNCT_LC_uvchr|int ch
869 =for apidoc Amh|bool|isPUNCT_LC_utf8_safe|U8 * s| U8 *end
871 =for apidoc Am|bool|isSPACE|char ch
872 Returns a boolean indicating whether the specified character is a
873 whitespace character. This is analogous
874 to what C<m/\s/> matches in a regular expression. Starting in Perl 5.18
875 this also matches what C<m/[[:space:]]/> does. Prior to 5.18, only the
876 locale forms of this macro (the ones with C<LC> in their names) matched
877 precisely what C<m/[[:space:]]/> does. In those releases, the only difference,
878 in the non-locale variants, was that C<isSPACE()> did not match a vertical tab.
879 (See L</isPSXSPC> for a macro that matches a vertical tab in all releases.)
880 See the L<top of this section|/Character classification> for an explanation of
882 C<isSPACE_A>, C<isSPACE_L1>, C<isSPACE_uvchr>, C<isSPACE_utf8>,
883 C<isSPACE_utf8_safe>, C<isSPACE_LC>, C<isSPACE_LC_uvchr>, C<isSPACE_LC_utf8>,
884 and C<isSPACE_LC_utf8_safe>.
886 =for apidoc Amh|bool|isSPACE_A|int ch
887 =for apidoc Amh|bool|isSPACE_L1|int ch
888 =for apidoc Amh|bool|isSPACE_uvchr|int ch
889 =for apidoc Amh|bool|isSPACE_utf8_safe|U8 * s|U8 * end
890 =for apidoc Amh|bool|isSPACE_utf8|U8 * s|U8 * end
891 =for apidoc Amh|bool|isSPACE_LC|int ch
892 =for apidoc Amh|bool|isSPACE_LC_uvchr|int ch
893 =for apidoc Amh|bool|isSPACE_LC_utf8_safe|U8 * s| U8 *end
895 =for apidoc Am|bool|isPSXSPC|char ch
896 (short for Posix Space)
897 Starting in 5.18, this is identical in all its forms to the
898 corresponding C<isSPACE()> macros.
899 The locale forms of this macro are identical to their corresponding
900 C<isSPACE()> forms in all Perl releases. In releases prior to 5.18, the
901 non-locale forms differ from their C<isSPACE()> forms only in that the
902 C<isSPACE()> forms don't match a Vertical Tab, and the C<isPSXSPC()> forms do.
903 Otherwise they are identical. Thus this macro is analogous to what
904 C<m/[[:space:]]/> matches in a regular expression.
905 See the L<top of this section|/Character classification> for an explanation of
906 variants C<isPSXSPC_A>, C<isPSXSPC_L1>, C<isPSXSPC_uvchr>, C<isPSXSPC_utf8>,
907 C<isPSXSPC_utf8_safe>, C<isPSXSPC_LC>, C<isPSXSPC_LC_uvchr>,
908 C<isPSXSPC_LC_utf8>, and C<isPSXSPC_LC_utf8_safe>.
910 =for apidoc Amh|bool|isPSXSPC_A|int ch
911 =for apidoc Amh|bool|isPSXSPC_L1|int ch
912 =for apidoc Amh|bool|isPSXSPC_uvchr|int ch
913 =for apidoc Amh|bool|isPSXSPC_utf8_safe|U8 * s|U8 * end
914 =for apidoc Amh|bool|isPSXSPC_utf8|U8 * s|U8 * end
915 =for apidoc Amh|bool|isPSXSPC_LC|int ch
916 =for apidoc Amh|bool|isPSXSPC_LC_uvchr|int ch
917 =for apidoc Amh|bool|isPSXSPC_LC_utf8_safe|U8 * s| U8 *end
919 =for apidoc Am|bool|isUPPER|char ch
920 Returns a boolean indicating whether the specified character is an
921 uppercase character, analogous to C<m/[[:upper:]]/>.
922 See the L<top of this section|/Character classification> for an explanation of
923 variants C<isUPPER_A>, C<isUPPER_L1>, C<isUPPER_uvchr>, C<isUPPER_utf8>,
924 C<isUPPER_utf8_safe>, C<isUPPER_LC>, C<isUPPER_LC_uvchr>, C<isUPPER_LC_utf8>,
925 and C<isUPPER_LC_utf8_safe>.
927 =for apidoc Amh|bool|isUPPER_A|int ch
928 =for apidoc Amh|bool|isUPPER_L1|int ch
929 =for apidoc Amh|bool|isUPPER_uvchr|int ch
930 =for apidoc Amh|bool|isUPPER_utf8_safe|U8 * s|U8 * end
931 =for apidoc Amh|bool|isUPPER_utf8|U8 * s|U8 * end
932 =for apidoc Amh|bool|isUPPER_LC|int ch
933 =for apidoc Amh|bool|isUPPER_LC_uvchr|int ch
934 =for apidoc Amh|bool|isUPPER_LC_utf8_safe|U8 * s| U8 *end
936 =for apidoc Am|bool|isPRINT|char ch
937 Returns a boolean indicating whether the specified character is a
938 printable character, analogous to C<m/[[:print:]]/>.
939 See the L<top of this section|/Character classification> for an explanation of
941 C<isPRINT_A>, C<isPRINT_L1>, C<isPRINT_uvchr>, C<isPRINT_utf8>,
942 C<isPRINT_utf8_safe>, C<isPRINT_LC>, C<isPRINT_LC_uvchr>, C<isPRINT_LC_utf8>,
943 and C<isPRINT_LC_utf8_safe>.
945 =for apidoc Amh|bool|isPRINT_A|int ch
946 =for apidoc Amh|bool|isPRINT_L1|int ch
947 =for apidoc Amh|bool|isPRINT_uvchr|int ch
948 =for apidoc Amh|bool|isPRINT_utf8_safe|U8 * s|U8 * end
949 =for apidoc Amh|bool|isPRINT_utf8|U8 * s|U8 * end
950 =for apidoc Amh|bool|isPRINT_LC|int ch
951 =for apidoc Amh|bool|isPRINT_LC_uvchr|int ch
952 =for apidoc Amh|bool|isPRINT_LC_utf8_safe|U8 * s| U8 *end
954 =for apidoc Am|bool|isWORDCHAR|char ch
955 Returns a boolean indicating whether the specified character is a character
956 that is a word character, analogous to what C<m/\w/> and C<m/[[:word:]]/> match
957 in a regular expression. A word character is an alphabetic character, a
958 decimal digit, a connecting punctuation character (such as an underscore), or
959 a "mark" character that attaches to one of those (like some sort of accent).
960 C<isALNUM()> is a synonym provided for backward compatibility, even though a
961 word character includes more than the standard C language meaning of
963 See the L<top of this section|/Character classification> for an explanation of
964 variants C<isWORDCHAR_A>, C<isWORDCHAR_L1>, C<isWORDCHAR_uvchr>,
965 C<isWORDCHAR_utf8>, and C<isWORDCHAR_utf8_safe>. C<isWORDCHAR_LC>,
966 C<isWORDCHAR_LC_uvchr>, C<isWORDCHAR_LC_utf8>, and C<isWORDCHAR_LC_utf8_safe>
967 are also as described there, but additionally include the platform's native
970 =for apidoc Amh|bool|isWORDCHAR_A|int ch
971 =for apidoc Amh|bool|isWORDCHAR_L1|int ch
972 =for apidoc Amh|bool|isWORDCHAR_uvchr|int ch
973 =for apidoc Amh|bool|isWORDCHAR_utf8_safe|U8 * s|U8 * end
974 =for apidoc Amh|bool|isWORDCHAR_utf8|U8 * s|U8 * end
975 =for apidoc Amh|bool|isWORDCHAR_LC|int ch
976 =for apidoc Amh|bool|isWORDCHAR_LC_uvchr|int ch
977 =for apidoc Amh|bool|isWORDCHAR_LC_utf8_safe|U8 * s| U8 *end
978 =for apidoc Amh|bool|isALNUM|int ch
979 =for apidoc Amh|bool|isALNUM_A|int ch
980 =for apidoc Amh|bool|isALNUM_LC|int ch
981 =for apidoc Amh|bool|isALNUM_LC_uvchr|int ch
983 =for apidoc Am|bool|isXDIGIT|char ch
984 Returns a boolean indicating whether the specified character is a hexadecimal
985 digit. In the ASCII range these are C<[0-9A-Fa-f]>. Variants C<isXDIGIT_A()>
986 and C<isXDIGIT_L1()> are identical to C<isXDIGIT()>.
987 See the L<top of this section|/Character classification> for an explanation of
989 C<isXDIGIT_uvchr>, C<isXDIGIT_utf8>, C<isXDIGIT_utf8_safe>, C<isXDIGIT_LC>,
990 C<isXDIGIT_LC_uvchr>, C<isXDIGIT_LC_utf8>, and C<isXDIGIT_LC_utf8_safe>.
992 =for apidoc Amh|bool|isXDIGIT_A|int ch
993 =for apidoc Amh|bool|isXDIGIT_L1|int ch
994 =for apidoc Amh|bool|isXDIGIT_uvchr|int ch
995 =for apidoc Amh|bool|isXDIGIT_utf8_safe|U8 * s|U8 * end
996 =for apidoc Amh|bool|isXDIGIT_utf8|U8 * s|U8 * end
997 =for apidoc Amh|bool|isXDIGIT_LC|int ch
998 =for apidoc Amh|bool|isXDIGIT_LC_uvchr|int ch
999 =for apidoc Amh|bool|isXDIGIT_LC_utf8_safe|U8 * s| U8 *end
1001 =for apidoc Am|bool|isIDFIRST|char ch
1002 Returns a boolean indicating whether the specified character can be the first
1003 character of an identifier. This is very close to, but not quite the same as
1004 the official Unicode property C<XID_Start>. The difference is that this
1005 returns true only if the input character also matches L</isWORDCHAR>.
1006 See the L<top of this section|/Character classification> for an explanation of
1008 C<isIDFIRST_A>, C<isIDFIRST_L1>, C<isIDFIRST_uvchr>, C<isIDFIRST_utf8>,
1009 C<isIDFIRST_utf8_safe>, C<isIDFIRST_LC>, C<isIDFIRST_LC_uvchr>,
1010 C<isIDFIRST_LC_utf8>, and C<isIDFIRST_LC_utf8_safe>.
1012 =for apidoc Amh|bool|isIDFIRST_A|int ch
1013 =for apidoc Amh|bool|isIDFIRST_L1|int ch
1014 =for apidoc Amh|bool|isIDFIRST_uvchr|int ch
1015 =for apidoc Amh|bool|isIDFIRST_utf8_safe|U8 * s|U8 * end
1016 =for apidoc Amh|bool|isIDFIRST_utf8|U8 * s|U8 * end
1017 =for apidoc Amh|bool|isIDFIRST_LC|int ch
1018 =for apidoc Amh|bool|isIDFIRST_LC_uvchr|int ch
1019 =for apidoc Amh|bool|isIDFIRST_LC_utf8_safe|U8 * s| U8 *end
1021 =for apidoc Am|bool|isIDCONT|char ch
1022 Returns a boolean indicating whether the specified character can be the
1023 second or succeeding character of an identifier. This is very close to, but
1024 not quite the same as the official Unicode property C<XID_Continue>. The
1025 difference is that this returns true only if the input character also matches
1026 L</isWORDCHAR>. See the L<top of this section|/Character classification> for
1027 an explanation of variants C<isIDCONT_A>, C<isIDCONT_L1>, C<isIDCONT_uvchr>,
1028 C<isIDCONT_utf8>, C<isIDCONT_utf8_safe>, C<isIDCONT_LC>, C<isIDCONT_LC_uvchr>,
1029 C<isIDCONT_LC_utf8>, and C<isIDCONT_LC_utf8_safe>.
1031 =for apidoc Amh|bool|isIDCONT_A|int ch
1032 =for apidoc Amh|bool|isIDCONT_L1|int ch
1033 =for apidoc Amh|bool|isIDCONT_uvchr|int ch
1034 =for apidoc Amh|bool|isIDCONT_utf8_safe|U8 * s|U8 * end
1035 =for apidoc Amh|bool|isIDCONT_utf8|U8 * s|U8 * end
1036 =for apidoc Amh|bool|isIDCONT_LC|int ch
1037 =for apidoc Amh|bool|isIDCONT_LC_uvchr|int ch
1038 =for apidoc Amh|bool|isIDCONT_LC_utf8_safe|U8 * s| U8 *end
1040 =head1 Miscellaneous Functions
1042 =for apidoc Am|U8|READ_XDIGIT|char str*
1043 Returns the value of an ASCII-range hex digit and advances the string pointer.
1044 Behaviour is only well defined when isXDIGIT(*str) is true.
1046 =head1 Character case changing
1047 Perl uses "full" Unicode case mappings. This means that converting a single
1048 character to another case may result in a sequence of more than one character.
1049 For example, the uppercase of C<E<223>> (LATIN SMALL LETTER SHARP S) is the two
1050 character sequence C<SS>. This presents some complications The lowercase of
1051 all characters in the range 0..255 is a single character, and thus
1052 C<L</toLOWER_L1>> is furnished. But, C<toUPPER_L1> can't exist, as it couldn't
1053 return a valid result for all legal inputs. Instead C<L</toUPPER_uvchr>> has
1054 an API that does allow every possible legal result to be returned.) Likewise
1055 no other function that is crippled by not being able to give the correct
1056 results for the full range of possible inputs has been implemented here.
1058 =for apidoc Am|U8|toUPPER|int ch
1059 Converts the specified character to uppercase. If the input is anything but an
1060 ASCII lowercase character, that input character itself is returned. Variant
1061 C<toUPPER_A> is equivalent.
1063 =for apidoc Am|UV|toUPPER_uvchr|UV cp|U8* s|STRLEN* lenp
1064 Converts the code point C<cp> to its uppercase version, and
1065 stores that in UTF-8 in C<s>, and its length in bytes in C<lenp>. The code
1066 point is interpreted as native if less than 256; otherwise as Unicode. Note
1067 that the buffer pointed to by C<s> needs to be at least C<UTF8_MAXBYTES_CASE+1>
1068 bytes since the uppercase version may be longer than the original character.
1070 The first code point of the uppercased version is returned
1071 (but note, as explained at L<the top of this section|/Character case
1072 changing>, that there may be more.)
1074 =for apidoc Am|UV|toUPPER_utf8|U8* p|U8* e|U8* s|STRLEN* lenp
1075 Converts the first UTF-8 encoded character in the sequence starting at C<p> and
1076 extending no further than S<C<e - 1>> to its uppercase version, and
1077 stores that in UTF-8 in C<s>, and its length in bytes in C<lenp>. Note
1078 that the buffer pointed to by C<s> needs to be at least C<UTF8_MAXBYTES_CASE+1>
1079 bytes since the uppercase version may be longer than the original character.
1081 The first code point of the uppercased version is returned
1082 (but note, as explained at L<the top of this section|/Character case
1083 changing>, that there may be more).
1085 It will not attempt to read beyond S<C<e - 1>>, provided that the constraint
1086 S<C<s E<lt> e>> is true (this is asserted for in C<-DDEBUGGING> builds). If
1087 the UTF-8 for the input character is malformed in some way, the program may
1088 croak, or the function may return the REPLACEMENT CHARACTER, at the discretion
1089 of the implementation, and subject to change in future releases.
1091 =for apidoc Am|UV|toUPPER_utf8_safe|U8* p|U8* e|U8* s|STRLEN* lenp
1092 Same as L</toUPPER_utf8>.
1094 =for apidoc Am|U8|toFOLD|U8 ch
1095 Converts the specified character to foldcase. If the input is anything but an
1096 ASCII uppercase character, that input character itself is returned. Variant
1097 C<toFOLD_A> is equivalent. (There is no equivalent C<to_FOLD_L1> for the full
1098 Latin1 range, as the full generality of L</toFOLD_uvchr> is needed there.)
1100 =for apidoc Am|UV|toFOLD_uvchr|UV cp|U8* s|STRLEN* lenp
1101 Converts the code point C<cp> to its foldcase version, and
1102 stores that in UTF-8 in C<s>, and its length in bytes in C<lenp>. The code
1103 point is interpreted as native if less than 256; otherwise as Unicode. Note
1104 that the buffer pointed to by C<s> needs to be at least C<UTF8_MAXBYTES_CASE+1>
1105 bytes since the foldcase version may be longer than the original character.
1107 The first code point of the foldcased version is returned
1108 (but note, as explained at L<the top of this section|/Character case
1109 changing>, that there may be more).
1111 =for apidoc Am|UV|toFOLD_utf8|U8* p|U8* e|U8* s|STRLEN* lenp
1112 Converts the first UTF-8 encoded character in the sequence starting at C<p> and
1113 extending no further than S<C<e - 1>> to its foldcase version, and
1114 stores that in UTF-8 in C<s>, and its length in bytes in C<lenp>. Note
1115 that the buffer pointed to by C<s> needs to be at least C<UTF8_MAXBYTES_CASE+1>
1116 bytes since the foldcase version may be longer than the original character.
1118 The first code point of the foldcased version is returned
1119 (but note, as explained at L<the top of this section|/Character case
1120 changing>, that there may be more).
1123 to read beyond S<C<e - 1>>, provided that the constraint S<C<s E<lt> e>> is
1124 true (this is asserted for in C<-DDEBUGGING> builds). If the UTF-8 for the
1125 input character is malformed in some way, the program may croak, or the
1126 function may return the REPLACEMENT CHARACTER, at the discretion of the
1127 implementation, and subject to change in future releases.
1129 =for apidoc Am|UV|toFOLD_utf8_safe|U8* p|U8* e|U8* s|STRLEN* lenp
1130 Same as L</toFOLD_utf8>.
1132 =for apidoc Am|U8|toLOWER|U8 ch
1133 Converts the specified character to lowercase. If the input is anything but an
1134 ASCII uppercase character, that input character itself is returned. Variant
1135 C<toLOWER_A> is equivalent.
1137 =for apidoc Am|U8|toLOWER_L1|U8 ch
1138 Converts the specified Latin1 character to lowercase. The results are
1139 undefined if the input doesn't fit in a byte.
1141 =for apidoc Am|U8|toLOWER_LC|U8 ch
1142 Converts the specified character to lowercase using the current locale's rules,
1143 if possible; otherwise returns the input character itself.
1145 =for apidoc Am|UV|toLOWER_uvchr|UV cp|U8* s|STRLEN* lenp
1146 Converts the code point C<cp> to its lowercase version, and
1147 stores that in UTF-8 in C<s>, and its length in bytes in C<lenp>. The code
1148 point is interpreted as native if less than 256; otherwise as Unicode. Note
1149 that the buffer pointed to by C<s> needs to be at least C<UTF8_MAXBYTES_CASE+1>
1150 bytes since the lowercase version may be longer than the original character.
1152 The first code point of the lowercased version is returned
1153 (but note, as explained at L<the top of this section|/Character case
1154 changing>, that there may be more).
1156 =for apidoc Am|UV|toLOWER_utf8|U8* p|U8* e|U8* s|STRLEN* lenp
1157 Converts the first UTF-8 encoded character in the sequence starting at C<p> and
1158 extending no further than S<C<e - 1>> to its lowercase version, and
1159 stores that in UTF-8 in C<s>, and its length in bytes in C<lenp>. Note
1160 that the buffer pointed to by C<s> needs to be at least C<UTF8_MAXBYTES_CASE+1>
1161 bytes since the lowercase version may be longer than the original character.
1163 The first code point of the lowercased version is returned
1164 (but note, as explained at L<the top of this section|/Character case
1165 changing>, that there may be more).
1166 It will not attempt to read beyond S<C<e - 1>>, provided that the constraint
1167 S<C<s E<lt> e>> is true (this is asserted for in C<-DDEBUGGING> builds). If
1168 the UTF-8 for the input character is malformed in some way, the program may
1169 croak, or the function may return the REPLACEMENT CHARACTER, at the discretion
1170 of the implementation, and subject to change in future releases.
1172 =for apidoc Am|UV|toLOWER_utf8_safe|U8* p|U8* e|U8* s|STRLEN* lenp
1173 Same as L</toLOWER_utf8>.
1175 =for apidoc Am|U8|toTITLE|U8 ch
1176 Converts the specified character to titlecase. If the input is anything but an
1177 ASCII lowercase character, that input character itself is returned. Variant
1178 C<toTITLE_A> is equivalent. (There is no C<toTITLE_L1> for the full Latin1
1179 range, as the full generality of L</toTITLE_uvchr> is needed there. Titlecase is
1180 not a concept used in locale handling, so there is no functionality for that.)
1182 =for apidoc Am|UV|toTITLE_uvchr|UV cp|U8* s|STRLEN* lenp
1183 Converts the code point C<cp> to its titlecase version, and
1184 stores that in UTF-8 in C<s>, and its length in bytes in C<lenp>. The code
1185 point is interpreted as native if less than 256; otherwise as Unicode. Note
1186 that the buffer pointed to by C<s> needs to be at least C<UTF8_MAXBYTES_CASE+1>
1187 bytes since the titlecase version may be longer than the original character.
1189 The first code point of the titlecased version is returned
1190 (but note, as explained at L<the top of this section|/Character case
1191 changing>, that there may be more).
1193 =for apidoc Am|UV|toTITLE_utf8|U8* p|U8* e|U8* s|STRLEN* lenp
1194 Converts the first UTF-8 encoded character in the sequence starting at C<p> and
1195 extending no further than S<C<e - 1>> to its titlecase version, and
1196 stores that in UTF-8 in C<s>, and its length in bytes in C<lenp>. Note
1197 that the buffer pointed to by C<s> needs to be at least C<UTF8_MAXBYTES_CASE+1>
1198 bytes since the titlecase version may be longer than the original character.
1200 The first code point of the titlecased version is returned
1201 (but note, as explained at L<the top of this section|/Character case
1202 changing>, that there may be more).
1205 to read beyond S<C<e - 1>>, provided that the constraint S<C<s E<lt> e>> is
1206 true (this is asserted for in C<-DDEBUGGING> builds). If the UTF-8 for the
1207 input character is malformed in some way, the program may croak, or the
1208 function may return the REPLACEMENT CHARACTER, at the discretion of the
1209 implementation, and subject to change in future releases.
1211 =for apidoc Am|UV|toTITLE_utf8_safe|U8* p|U8* e|U8* s|STRLEN* lenp
1212 Same as L</toTITLE_utf8>.
1216 XXX Still undocumented isVERTWS_uvchr and _utf8; it's unclear what their names
1217 really should be. Also toUPPER_LC and toFOLD_LC, which are subject to change,
1218 and aren't general purpose as they don't work on U+DF, and assert against that.
1220 Note that these macros are repeated in Devel::PPPort, so should also be
1221 patched there. The file as of this writing is cpan/Devel-PPPort/parts/inc/misc
1226 void below because that's the best fit, and works for Devel::PPPort
1227 =for apidoc AmnU|void|WIDEST_UTYPE
1229 Yields the widest unsigned integer type on the platform, currently either
1230 C<U32> or C<64>. This can be used in declarations such as
1236 my_uv = (WIDEST_UTYPE) val;
1242 # define WIDEST_UTYPE U64
1244 # define WIDEST_UTYPE U32
1247 /* FITS_IN_8_BITS(c) returns true if c doesn't have a bit set other than in
1248 * the lower 8. It is designed to be hopefully bomb-proof, making sure that no
1249 * bits of information are lost even on a 64-bit machine, but to get the
1250 * compiler to optimize it out if possible. This is because Configure makes
1251 * sure that the machine has an 8-bit byte, so if c is stored in a byte, the
1252 * sizeof() guarantees that this evaluates to a constant true at compile time.
1254 * For Coverity, be always true, because otherwise Coverity thinks
1255 * it finds several expressions that are always true, independent
1256 * of operands. Well, they are, but that is kind of the point.
1258 #ifndef __COVERITY__
1259 /* The '| 0' part ensures a compiler error if c is not integer (like e.g., a
1261 #define FITS_IN_8_BITS(c) ( (sizeof(c) == 1) \
1262 || !(((WIDEST_UTYPE)((c) | 0)) & ~0xFF))
1264 #define FITS_IN_8_BITS(c) (1)
1267 /* Returns true if l <= c <= (l + n), where 'l' and 'n' are non-negative
1268 * Written this way so that after optimization, only one conditional test is
1269 * needed. (The NV casts stop any warnings about comparison always being true
1270 * if called with an unsigned. The cast preserves the sign, which is all we
1272 #define withinCOUNT(c, l, n) (__ASSERT_((NV) (l) >= 0) \
1273 __ASSERT_((NV) (n) >= 0) \
1274 (((WIDEST_UTYPE) (((c)) - ((l) | 0))) <= (((WIDEST_UTYPE) ((n) | 0)))))
1276 /* Returns true if c is in the range l..u, where 'l' is non-negative
1277 * Written this way so that after optimization, only one conditional test is
1279 #define inRANGE(c, l, u) (__ASSERT_((u) >= (l)) \
1280 ( (sizeof(c) == sizeof(U8)) ? withinCOUNT(((U8) (c)), (l), ((u) - (l))) \
1281 : (sizeof(c) == sizeof(U32)) ? withinCOUNT(((U32) (c)), (l), ((u) - (l))) \
1282 : (__ASSERT_(sizeof(c) == sizeof(WIDEST_UTYPE)) \
1283 withinCOUNT(((WIDEST_UTYPE) (c)), (l), ((u) - (l))))))
1286 # ifndef _ALL_SOURCE
1287 /* The native libc isascii() et.al. functions return the wrong results
1288 * on at least z/OS unless this is defined. */
1289 # error _ALL_SOURCE should probably be defined
1292 /* There is a simple definition of ASCII for ASCII platforms. But the
1293 * EBCDIC one isn't so simple, so is defined using table look-up like the
1294 * other macros below.
1296 * The cast here is used instead of '(c) >= 0', because some compilers emit
1297 * a warning that that test is always true when the parameter is an
1298 * unsigned type. khw supposes that it could be written as
1299 * && ((c) == '\0' || (c) > 0)
1300 * to avoid the message, but the cast will likely avoid extra branches even
1301 * with stupid compilers.
1303 * The '| 0' part ensures a compiler error if c is not integer (like e.g.,
1305 # define isASCII(c) ((WIDEST_UTYPE)((c) | 0) < 128)
1308 /* Take the eight possible bit patterns of the lower 3 bits and you get the
1309 * lower 3 bits of the 8 octal digits, in both ASCII and EBCDIC, so those bits
1310 * can be ignored. If the rest match '0', we have an octal */
1311 #define isOCTAL_A(c) (((WIDEST_UTYPE)((c) | 0) & ~7) == '0')
1313 #ifdef H_PERL /* If have access to perl.h, lookup in its table */
1315 /* Character class numbers. For internal core Perl use only. The ones less
1316 * than 32 are used in PL_charclass[] and the ones up through the one that
1317 * corresponds to <_HIGHEST_REGCOMP_DOT_H_SYNC> are used by regcomp.h and
1318 * related files. PL_charclass ones use names used in l1_char_class_tab.h but
1319 * their actual definitions are here. If that file has a name not used here,
1322 * The first group of these is ordered in what I (khw) estimate to be the
1323 * frequency of their use. This gives a slight edge to exiting a loop earlier
1324 * (in reginclass() in regexec.c). Except \v should be last, as it isn't a
1325 * real Posix character class, and some (small) inefficiencies in regular
1326 * expression handling would be introduced by putting it in the middle of those
1327 * that are. Also, cntrl and ascii come after the others as it may be useful
1328 * to group these which have no members that match above Latin1, (or above
1329 * ASCII in the latter case) */
1331 # define _CC_WORDCHAR 0 /* \w and [:word:] */
1332 # define _CC_DIGIT 1 /* \d and [:digit:] */
1333 # define _CC_ALPHA 2 /* [:alpha:] */
1334 # define _CC_LOWER 3 /* [:lower:] */
1335 # define _CC_UPPER 4 /* [:upper:] */
1336 # define _CC_PUNCT 5 /* [:punct:] */
1337 # define _CC_PRINT 6 /* [:print:] */
1338 # define _CC_ALPHANUMERIC 7 /* [:alnum:] */
1339 # define _CC_GRAPH 8 /* [:graph:] */
1340 # define _CC_CASED 9 /* [:lower:] or [:upper:] under /i */
1341 # define _CC_SPACE 10 /* \s, [:space:] */
1342 # define _CC_BLANK 11 /* [:blank:] */
1343 # define _CC_XDIGIT 12 /* [:xdigit:] */
1344 # define _CC_CNTRL 13 /* [:cntrl:] */
1345 # define _CC_ASCII 14 /* [:ascii:] */
1346 # define _CC_VERTSPACE 15 /* \v */
1348 # define _HIGHEST_REGCOMP_DOT_H_SYNC _CC_VERTSPACE
1350 /* The members of the third group below do not need to be coordinated with data
1351 * structures in regcomp.[ch] and regexec.c. */
1352 # define _CC_IDFIRST 16
1353 # define _CC_CHARNAME_CONT 17
1354 # define _CC_NONLATIN1_FOLD 18
1355 # define _CC_NONLATIN1_SIMPLE_FOLD 19
1356 # define _CC_QUOTEMETA 20
1357 # define _CC_NON_FINAL_FOLD 21
1358 # define _CC_IS_IN_SOME_FOLD 22
1359 # define _CC_MNEMONIC_CNTRL 23
1361 /* This next group is only used on EBCDIC platforms, so theoretically could be
1362 * shared with something entirely different that's only on ASCII platforms */
1363 # define _CC_UTF8_START_BYTE_IS_FOR_AT_LEAST_SURROGATE 31
1365 * If more bits are needed, one could add a second word for non-64bit
1366 * QUAD_IS_INT systems, using some #ifdefs to distinguish between having a 2nd
1367 * word or not. The IS_IN_SOME_FOLD bit is the most easily expendable, as it
1368 * is used only for optimization (as of this writing), and differs in the
1369 * Latin1 range from the ALPHA bit only in two relatively unimportant
1370 * characters: the masculine and feminine ordinal indicators, so removing it
1371 * would just cause /i regexes which match them to run less efficiently.
1372 * Similarly the EBCDIC-only bits are used just for speed, and could be
1373 * replaced by other means */
1375 #if defined(PERL_CORE) || defined(PERL_EXT)
1376 /* An enum version of the character class numbers, to help compilers
1379 _CC_ENUM_ALPHA = _CC_ALPHA,
1380 _CC_ENUM_ALPHANUMERIC = _CC_ALPHANUMERIC,
1381 _CC_ENUM_ASCII = _CC_ASCII,
1382 _CC_ENUM_BLANK = _CC_BLANK,
1383 _CC_ENUM_CASED = _CC_CASED,
1384 _CC_ENUM_CNTRL = _CC_CNTRL,
1385 _CC_ENUM_DIGIT = _CC_DIGIT,
1386 _CC_ENUM_GRAPH = _CC_GRAPH,
1387 _CC_ENUM_LOWER = _CC_LOWER,
1388 _CC_ENUM_PRINT = _CC_PRINT,
1389 _CC_ENUM_PUNCT = _CC_PUNCT,
1390 _CC_ENUM_SPACE = _CC_SPACE,
1391 _CC_ENUM_UPPER = _CC_UPPER,
1392 _CC_ENUM_VERTSPACE = _CC_VERTSPACE,
1393 _CC_ENUM_WORDCHAR = _CC_WORDCHAR,
1394 _CC_ENUM_XDIGIT = _CC_XDIGIT
1395 } _char_class_number;
1398 #define POSIX_CC_COUNT (_HIGHEST_REGCOMP_DOT_H_SYNC + 1)
1402 EXTCONST U32 PL_charclass[] = {
1403 # include "l1_char_class_tab.h"
1406 # else /* ! DOINIT */
1407 EXTCONST U32 PL_charclass[];
1411 /* The 1U keeps Solaris from griping when shifting sets the uppermost bit */
1412 # define _CC_mask(classnum) (1U << (classnum))
1414 /* For internal core Perl use only: the base macro for defining macros like
1416 # define _generic_isCC(c, classnum) cBOOL(FITS_IN_8_BITS(c) \
1417 && (PL_charclass[(U8) (c)] & _CC_mask(classnum)))
1419 /* The mask for the _A versions of the macros; it just adds in the bit for
1421 # define _CC_mask_A(classnum) (_CC_mask(classnum) | _CC_mask(_CC_ASCII))
1423 /* For internal core Perl use only: the base macro for defining macros like
1424 * isALPHA_A. The foo_A version makes sure that both the desired bit and
1425 * the ASCII bit are present */
1426 # define _generic_isCC_A(c, classnum) (FITS_IN_8_BITS(c) \
1427 && ((PL_charclass[(U8) (c)] & _CC_mask_A(classnum)) \
1428 == _CC_mask_A(classnum)))
1430 /* On ASCII platforms certain classes form a single range. It's faster to
1431 * special case these. isDIGIT is a single range on all platforms */
1433 # define isALPHA_A(c) _generic_isCC_A(c, _CC_ALPHA)
1434 # define isGRAPH_A(c) _generic_isCC_A(c, _CC_GRAPH)
1435 # define isLOWER_A(c) _generic_isCC_A(c, _CC_LOWER)
1436 # define isPRINT_A(c) _generic_isCC_A(c, _CC_PRINT)
1437 # define isUPPER_A(c) _generic_isCC_A(c, _CC_UPPER)
1439 /* By folding the upper and lowercase, we can use a single range */
1440 # define isALPHA_A(c) inRANGE((~('A' ^ 'a') & (c)), 'A', 'Z')
1441 # define isGRAPH_A(c) inRANGE(c, ' ' + 1, 0x7e)
1442 # define isLOWER_A(c) inRANGE(c, 'a', 'z')
1443 # define isPRINT_A(c) inRANGE(c, ' ', 0x7e)
1444 # define isUPPER_A(c) inRANGE(c, 'A', 'Z')
1446 # define isALPHANUMERIC_A(c) _generic_isCC_A(c, _CC_ALPHANUMERIC)
1447 # define isBLANK_A(c) _generic_isCC_A(c, _CC_BLANK)
1448 # define isCNTRL_A(c) _generic_isCC_A(c, _CC_CNTRL)
1449 # define isDIGIT_A(c) inRANGE(c, '0', '9')
1450 # define isPUNCT_A(c) _generic_isCC_A(c, _CC_PUNCT)
1451 # define isSPACE_A(c) _generic_isCC_A(c, _CC_SPACE)
1452 # define isWORDCHAR_A(c) _generic_isCC_A(c, _CC_WORDCHAR)
1453 # define isXDIGIT_A(c) _generic_isCC(c, _CC_XDIGIT) /* No non-ASCII xdigits
1455 # define isIDFIRST_A(c) _generic_isCC_A(c, _CC_IDFIRST)
1456 # define isALPHA_L1(c) _generic_isCC(c, _CC_ALPHA)
1457 # define isALPHANUMERIC_L1(c) _generic_isCC(c, _CC_ALPHANUMERIC)
1458 # define isBLANK_L1(c) _generic_isCC(c, _CC_BLANK)
1460 /* continuation character for legal NAME in \N{NAME} */
1461 # define isCHARNAME_CONT(c) _generic_isCC(c, _CC_CHARNAME_CONT)
1463 # define isCNTRL_L1(c) _generic_isCC(c, _CC_CNTRL)
1464 # define isGRAPH_L1(c) _generic_isCC(c, _CC_GRAPH)
1465 # define isLOWER_L1(c) _generic_isCC(c, _CC_LOWER)
1466 # define isPRINT_L1(c) _generic_isCC(c, _CC_PRINT)
1467 # define isPSXSPC_L1(c) isSPACE_L1(c)
1468 # define isPUNCT_L1(c) _generic_isCC(c, _CC_PUNCT)
1469 # define isSPACE_L1(c) _generic_isCC(c, _CC_SPACE)
1470 # define isUPPER_L1(c) _generic_isCC(c, _CC_UPPER)
1471 # define isWORDCHAR_L1(c) _generic_isCC(c, _CC_WORDCHAR)
1472 # define isIDFIRST_L1(c) _generic_isCC(c, _CC_IDFIRST)
1475 # define isASCII(c) _generic_isCC(c, _CC_ASCII)
1478 /* Participates in a single-character fold with a character above 255 */
1479 # define _HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(c) ((! cBOOL(FITS_IN_8_BITS(c))) || (PL_charclass[(U8) (c)] & _CC_mask(_CC_NONLATIN1_SIMPLE_FOLD)))
1481 /* Like the above, but also can be part of a multi-char fold */
1482 # define _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(c) ((! cBOOL(FITS_IN_8_BITS(c))) || (PL_charclass[(U8) (c)] & _CC_mask(_CC_NONLATIN1_FOLD)))
1484 # define _isQUOTEMETA(c) _generic_isCC(c, _CC_QUOTEMETA)
1485 # define _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c) \
1486 _generic_isCC(c, _CC_NON_FINAL_FOLD)
1487 # define _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c) \
1488 _generic_isCC(c, _CC_IS_IN_SOME_FOLD)
1489 # define _IS_MNEMONIC_CNTRL_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c) \
1490 _generic_isCC(c, _CC_MNEMONIC_CNTRL)
1491 #else /* else we don't have perl.h H_PERL */
1493 /* If we don't have perl.h, we are compiling a utility program. Below we
1494 * hard-code various macro definitions that wouldn't otherwise be available
1495 * to it. Most are coded based on first principles. These are written to
1496 * avoid EBCDIC vs. ASCII #ifdef's as much as possible. */
1497 # define isDIGIT_A(c) inRANGE(c, '0', '9')
1498 # define isBLANK_A(c) ((c) == ' ' || (c) == '\t')
1499 # define isSPACE_A(c) (isBLANK_A(c) \
1504 /* On EBCDIC, there are gaps between 'i' and 'j'; 'r' and 's'. Same for
1505 * uppercase. The tests for those aren't necessary on ASCII, but hurt only
1506 * performance (if optimization isn't on), and allow the same code to be
1507 * used for both platform types */
1508 # define isLOWER_A(c) inRANGE((c), 'a', 'i') \
1509 || inRANGE((c), 'j', 'r') \
1510 || inRANGE((c), 's', 'z')
1511 # define isUPPER_A(c) inRANGE((c), 'A', 'I') \
1512 || inRANGE((c), 'J', 'R') \
1513 || inRANGE((c), 'S', 'Z')
1514 # define isALPHA_A(c) (isUPPER_A(c) || isLOWER_A(c))
1515 # define isALPHANUMERIC_A(c) (isALPHA_A(c) || isDIGIT_A(c))
1516 # define isWORDCHAR_A(c) (isALPHANUMERIC_A(c) || (c) == '_')
1517 # define isIDFIRST_A(c) (isALPHA_A(c) || (c) == '_')
1518 # define isXDIGIT_A(c) ( isDIGIT_A(c) \
1519 || inRANGE((c), 'a', 'f') \
1520 || inRANGE((c), 'A', 'F')
1521 # define isPUNCT_A(c) ((c) == '-' || (c) == '!' || (c) == '"' \
1522 || (c) == '#' || (c) == '$' || (c) == '%' \
1523 || (c) == '&' || (c) == '\'' || (c) == '(' \
1524 || (c) == ')' || (c) == '*' || (c) == '+' \
1525 || (c) == ',' || (c) == '.' || (c) == '/' \
1526 || (c) == ':' || (c) == ';' || (c) == '<' \
1527 || (c) == '=' || (c) == '>' || (c) == '?' \
1528 || (c) == '@' || (c) == '[' || (c) == '\\' \
1529 || (c) == ']' || (c) == '^' || (c) == '_' \
1530 || (c) == '`' || (c) == '{' || (c) == '|' \
1531 || (c) == '}' || (c) == '~')
1532 # define isGRAPH_A(c) (isALPHANUMERIC_A(c) || isPUNCT_A(c))
1533 # define isPRINT_A(c) (isGRAPH_A(c) || (c) == ' ')
1536 /* The below is accurate for the 3 EBCDIC code pages traditionally
1537 * supported by perl. The only difference between them in the controls
1538 * is the position of \n, and that is represented symbolically below */
1539 # define isCNTRL_A(c) ((c) == '\0' || (c) == '\a' || (c) == '\b' \
1540 || (c) == '\f' || (c) == '\n' || (c) == '\r' \
1541 || (c) == '\t' || (c) == '\v' \
1542 || inRANGE((c), 1, 3) /* SOH, STX, ETX */ \
1543 || (c) == 7 /* U+7F DEL */ \
1544 || inRANGE((c), 0x0E, 0x13) /* SO SI DLE \
1546 || (c) == 0x18 /* U+18 CAN */ \
1547 || (c) == 0x19 /* U+19 EOM */ \
1548 || inRANGE((c), 0x1C, 0x1F) /* [FGRU]S */ \
1549 || (c) == 0x26 /* U+17 ETB */ \
1550 || (c) == 0x27 /* U+1B ESC */ \
1551 || (c) == 0x2D /* U+05 ENQ */ \
1552 || (c) == 0x2E /* U+06 ACK */ \
1553 || (c) == 0x32 /* U+16 SYN */ \
1554 || (c) == 0x37 /* U+04 EOT */ \
1555 || (c) == 0x3C /* U+14 DC4 */ \
1556 || (c) == 0x3D /* U+15 NAK */ \
1557 || (c) == 0x3F)/* U+1A SUB */
1558 # define isASCII(c) (isCNTRL_A(c) || isPRINT_A(c))
1559 # else /* isASCII is already defined for ASCII platforms, so can use that to
1561 # define isCNTRL_A(c) (isASCII(c) && ! isPRINT_A(c))
1564 /* The _L1 macros may be unnecessary for the utilities; I (khw) added them
1565 * during debugging, and it seems best to keep them. We may be called
1566 * without NATIVE_TO_LATIN1 being defined. On ASCII platforms, it doesn't
1567 * do anything anyway, so make it not a problem */
1568 # if ! defined(EBCDIC) && ! defined(NATIVE_TO_LATIN1)
1569 # define NATIVE_TO_LATIN1(ch) (ch)
1571 # define isALPHA_L1(c) (isUPPER_L1(c) || isLOWER_L1(c))
1572 # define isALPHANUMERIC_L1(c) (isALPHA_L1(c) || isDIGIT_A(c))
1573 # define isBLANK_L1(c) (isBLANK_A(c) \
1574 || (FITS_IN_8_BITS(c) \
1575 && NATIVE_TO_LATIN1((U8) c) == 0xA0))
1576 # define isCNTRL_L1(c) (FITS_IN_8_BITS(c) && (! isPRINT_L1(c)))
1577 # define isGRAPH_L1(c) (isPRINT_L1(c) && (! isBLANK_L1(c)))
1578 # define isLOWER_L1(c) (isLOWER_A(c) \
1579 || (FITS_IN_8_BITS(c) \
1580 && (( NATIVE_TO_LATIN1((U8) c) >= 0xDF \
1581 && NATIVE_TO_LATIN1((U8) c) != 0xF7) \
1582 || NATIVE_TO_LATIN1((U8) c) == 0xAA \
1583 || NATIVE_TO_LATIN1((U8) c) == 0xBA \
1584 || NATIVE_TO_LATIN1((U8) c) == 0xB5)))
1585 # define isPRINT_L1(c) (isPRINT_A(c) \
1586 || (FITS_IN_8_BITS(c) \
1587 && NATIVE_TO_LATIN1((U8) c) >= 0xA0))
1588 # define isPUNCT_L1(c) (isPUNCT_A(c) \
1589 || (FITS_IN_8_BITS(c) \
1590 && ( NATIVE_TO_LATIN1((U8) c) == 0xA1 \
1591 || NATIVE_TO_LATIN1((U8) c) == 0xA7 \
1592 || NATIVE_TO_LATIN1((U8) c) == 0xAB \
1593 || NATIVE_TO_LATIN1((U8) c) == 0xB6 \
1594 || NATIVE_TO_LATIN1((U8) c) == 0xB7 \
1595 || NATIVE_TO_LATIN1((U8) c) == 0xBB \
1596 || NATIVE_TO_LATIN1((U8) c) == 0xBF)))
1597 # define isSPACE_L1(c) (isSPACE_A(c) \
1598 || (FITS_IN_8_BITS(c) \
1599 && ( NATIVE_TO_LATIN1((U8) c) == 0x85 \
1600 || NATIVE_TO_LATIN1((U8) c) == 0xA0)))
1601 # define isUPPER_L1(c) (isUPPER_A(c) \
1602 || (FITS_IN_8_BITS(c) \
1603 && ( IN_RANGE(NATIVE_TO_LATIN1((U8) c), \
1605 && NATIVE_TO_LATIN1((U8) c) != 0xD7)))
1606 # define isWORDCHAR_L1(c) (isIDFIRST_L1(c) || isDIGIT_A(c))
1607 # define isIDFIRST_L1(c) (isALPHA_L1(c) || NATIVE_TO_LATIN1(c) == '_')
1608 # define isCHARNAME_CONT(c) (isWORDCHAR_L1(c) \
1613 /* The following are not fully accurate in the above-ASCII range. I (khw)
1614 * don't think it's necessary to be so for the purposes where this gets
1616 # define _isQUOTEMETA(c) (FITS_IN_8_BITS(c) && ! isWORDCHAR_L1(c))
1617 # define _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c) isALPHA_L1(c)
1619 /* And these aren't accurate at all. They are useful only for above
1620 * Latin1, which utilities and bootstrapping don't deal with */
1621 # define _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c) 0
1622 # define _HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(c) 0
1623 # define _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(c) 0
1625 /* Many of the macros later in this file are defined in terms of these. By
1626 * implementing them with a function, which converts the class number into
1627 * a call to the desired macro, all of the later ones work. However, that
1628 * function won't be actually defined when building a utility program (no
1629 * perl.h), and so a compiler error will be generated if one is attempted
1630 * to be used. And the above-Latin1 code points require Unicode tables to
1631 * be present, something unlikely to be the case when bootstrapping */
1632 # define _generic_isCC(c, classnum) \
1633 (FITS_IN_8_BITS(c) && S_bootstrap_ctype((U8) (c), (classnum), TRUE))
1634 # define _generic_isCC_A(c, classnum) \
1635 (FITS_IN_8_BITS(c) && S_bootstrap_ctype((U8) (c), (classnum), FALSE))
1636 #endif /* End of no perl.h H_PERL */
1638 #define isALPHANUMERIC(c) isALPHANUMERIC_A(c)
1639 #define isALPHA(c) isALPHA_A(c)
1640 #define isASCII_A(c) isASCII(c)
1641 #define isASCII_L1(c) isASCII(c)
1642 #define isBLANK(c) isBLANK_A(c)
1643 #define isCNTRL(c) isCNTRL_A(c)
1644 #define isDIGIT(c) isDIGIT_A(c)
1645 #define isGRAPH(c) isGRAPH_A(c)
1646 #define isIDFIRST(c) isIDFIRST_A(c)
1647 #define isLOWER(c) isLOWER_A(c)
1648 #define isPRINT(c) isPRINT_A(c)
1649 #define isPSXSPC_A(c) isSPACE_A(c)
1650 #define isPSXSPC(c) isPSXSPC_A(c)
1651 #define isPSXSPC_L1(c) isSPACE_L1(c)
1652 #define isPUNCT(c) isPUNCT_A(c)
1653 #define isSPACE(c) isSPACE_A(c)
1654 #define isUPPER(c) isUPPER_A(c)
1655 #define isWORDCHAR(c) isWORDCHAR_A(c)
1656 #define isXDIGIT(c) isXDIGIT_A(c)
1658 /* ASCII casing. These could also be written as
1659 #define toLOWER(c) (isASCII(c) ? toLOWER_LATIN1(c) : (c))
1660 #define toUPPER(c) (isASCII(c) ? toUPPER_LATIN1_MOD(c) : (c))
1661 which uses table lookup and mask instead of subtraction. (This would
1662 work because the _MOD does not apply in the ASCII range).
1664 These actually are UTF-8 invariant casing, not just ASCII, as any non-ASCII
1665 UTF-8 invariants are neither upper nor lower. (Only on EBCDIC platforms are
1666 there non-ASCII invariants, and all of them are controls.) */
1667 #define toLOWER(c) (isUPPER(c) ? (U8)((c) + ('a' - 'A')) : (c))
1668 #define toUPPER(c) (isLOWER(c) ? (U8)((c) - ('a' - 'A')) : (c))
1670 /* In the ASCII range, these are equivalent to what they're here defined to be.
1671 * But by creating these definitions, other code doesn't have to be aware of
1672 * this detail. Actually this works for all UTF-8 invariants, not just the
1673 * ASCII range. (EBCDIC platforms can have non-ASCII invariants.) */
1674 #define toFOLD(c) toLOWER(c)
1675 #define toTITLE(c) toUPPER(c)
1677 #define toLOWER_A(c) toLOWER(c)
1678 #define toUPPER_A(c) toUPPER(c)
1679 #define toFOLD_A(c) toFOLD(c)
1680 #define toTITLE_A(c) toTITLE(c)
1682 /* Use table lookup for speed; returns the input itself if is out-of-range */
1683 #define toLOWER_LATIN1(c) ((! FITS_IN_8_BITS(c)) \
1685 : PL_latin1_lc[ (U8) (c) ])
1686 #define toLOWER_L1(c) toLOWER_LATIN1(c) /* Synonym for consistency */
1688 /* Modified uc. Is correct uc except for three non-ascii chars which are
1689 * all mapped to one of them, and these need special handling; returns the
1690 * input itself if is out-of-range */
1691 #define toUPPER_LATIN1_MOD(c) ((! FITS_IN_8_BITS(c)) \
1693 : PL_mod_latin1_uc[ (U8) (c) ])
1694 #define IN_UTF8_CTYPE_LOCALE PL_in_utf8_CTYPE_locale
1696 /* Use foo_LC_uvchr() instead of these for beyond the Latin1 range */
1698 /* For internal core Perl use only: the base macro for defining macros like
1699 * isALPHA_LC, which uses the current LC_CTYPE locale. 'c' is the code point
1700 * (0-255) to check. In a UTF-8 locale, the result is the same as calling
1701 * isFOO_L1(); the 'utf8_locale_classnum' parameter is something like
1702 * _CC_UPPER, which gives the class number for doing this. For non-UTF-8
1703 * locales, the code to actually do the test this is passed in 'non_utf8'. If
1704 * 'c' is above 255, 0 is returned. For accessing the full range of possible
1705 * code points under locale rules, use the macros based on _generic_LC_uvchr
1706 * instead of this. */
1707 #define _generic_LC_base(c, utf8_locale_classnum, non_utf8) \
1708 (! FITS_IN_8_BITS(c) \
1710 : IN_UTF8_CTYPE_LOCALE \
1711 ? cBOOL(PL_charclass[(U8) (c)] & _CC_mask(utf8_locale_classnum)) \
1714 /* For internal core Perl use only: a helper macro for defining macros like
1715 * isALPHA_LC. 'c' is the code point (0-255) to check. The function name to
1716 * actually do this test is passed in 'non_utf8_func', which is called on 'c',
1717 * casting 'c' to the macro _LC_CAST, which should not be parenthesized. See
1718 * _generic_LC_base for more info */
1719 #define _generic_LC(c, utf8_locale_classnum, non_utf8_func) \
1720 _generic_LC_base(c,utf8_locale_classnum, \
1721 non_utf8_func( (_LC_CAST) (c)))
1723 /* For internal core Perl use only: like _generic_LC, but also returns TRUE if
1724 * 'c' is the platform's native underscore character */
1725 #define _generic_LC_underscore(c,utf8_locale_classnum,non_utf8_func) \
1726 _generic_LC_base(c, utf8_locale_classnum, \
1727 (non_utf8_func( (_LC_CAST) (c)) \
1728 || (char)(c) == '_'))
1730 /* These next three are also for internal core Perl use only: case-change
1731 * helper macros. The reason for using the PL_latin arrays is in case the
1732 * system function is defective; it ensures uniform results that conform to the
1733 * Unicod standard. It does not handle the anomalies in UTF-8 Turkic locales */
1734 #define _generic_toLOWER_LC(c, function, cast) (! FITS_IN_8_BITS(c) \
1736 : (IN_UTF8_CTYPE_LOCALE) \
1737 ? PL_latin1_lc[ (U8) (c) ] \
1738 : (cast)function((cast)(c)))
1740 /* Note that the result can be larger than a byte in a UTF-8 locale. It
1741 * returns a single value, so can't adequately return the upper case of LATIN
1742 * SMALL LETTER SHARP S in a UTF-8 locale (which should be a string of two
1743 * values "SS"); instead it asserts against that under DEBUGGING, and
1744 * otherwise returns its input. It does not handle the anomalies in UTF-8
1745 * Turkic locales. */
1746 #define _generic_toUPPER_LC(c, function, cast) \
1747 (! FITS_IN_8_BITS(c) \
1749 : ((! IN_UTF8_CTYPE_LOCALE) \
1750 ? (cast)function((cast)(c)) \
1751 : ((((U8)(c)) == MICRO_SIGN) \
1752 ? GREEK_CAPITAL_LETTER_MU \
1753 : ((((U8)(c)) == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS) \
1754 ? LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS \
1755 : ((((U8)(c)) == LATIN_SMALL_LETTER_SHARP_S) \
1756 ? (__ASSERT_(0) (c)) \
1757 : PL_mod_latin1_uc[ (U8) (c) ])))))
1759 /* Note that the result can be larger than a byte in a UTF-8 locale. It
1760 * returns a single value, so can't adequately return the fold case of LATIN
1761 * SMALL LETTER SHARP S in a UTF-8 locale (which should be a string of two
1762 * values "ss"); instead it asserts against that under DEBUGGING, and
1763 * otherwise returns its input. It does not handle the anomalies in UTF-8
1765 #define _generic_toFOLD_LC(c, function, cast) \
1766 ((UNLIKELY((c) == MICRO_SIGN) && IN_UTF8_CTYPE_LOCALE) \
1767 ? GREEK_SMALL_LETTER_MU \
1768 : (__ASSERT_(! IN_UTF8_CTYPE_LOCALE \
1769 || (c) != LATIN_SMALL_LETTER_SHARP_S) \
1770 _generic_toLOWER_LC(c, function, cast)))
1772 /* Use the libc versions for these if available. */
1773 #if defined(HAS_ISASCII)
1774 # define isASCII_LC(c) (FITS_IN_8_BITS(c) && isascii( (U8) (c)))
1776 # define isASCII_LC(c) isASCII(c)
1779 #if defined(HAS_ISBLANK)
1780 # define isBLANK_LC(c) _generic_LC(c, _CC_BLANK, isblank)
1781 #else /* Unlike isASCII, varies if in a UTF-8 locale */
1782 # define isBLANK_LC(c) ((IN_UTF8_CTYPE_LOCALE) ? isBLANK_L1(c) : isBLANK(c))
1788 /* The Windows functions don't bother to follow the POSIX standard, which
1789 * for example says that something can't both be a printable and a control.
1790 * But Windows treats the \t control as a printable, and does such things
1791 * as making superscripts into both digits and punctuation. This tames
1792 * these flaws by assuming that the definitions of both controls and space
1793 * are correct, and then making sure that other definitions don't have
1794 * weirdnesses, by making sure that isalnum() isn't also ispunct(), etc.
1795 * Not all possible weirdnesses are checked for, just the ones that were
1796 * detected on actual Microsoft code pages */
1798 # define isCNTRL_LC(c) _generic_LC(c, _CC_CNTRL, iscntrl)
1799 # define isSPACE_LC(c) _generic_LC(c, _CC_SPACE, isspace)
1801 # define isALPHA_LC(c) (_generic_LC(c, _CC_ALPHA, isalpha) \
1802 && isALPHANUMERIC_LC(c))
1803 # define isALPHANUMERIC_LC(c) (_generic_LC(c, _CC_ALPHANUMERIC, isalnum) && \
1805 # define isDIGIT_LC(c) (_generic_LC(c, _CC_DIGIT, isdigit) && \
1806 isALPHANUMERIC_LC(c))
1807 # define isGRAPH_LC(c) (_generic_LC(c, _CC_GRAPH, isgraph) && isPRINT_LC(c))
1808 # define isIDFIRST_LC(c) (((c) == '_') \
1809 || (_generic_LC(c, _CC_IDFIRST, isalpha) && ! isPUNCT_LC(c)))
1810 # define isLOWER_LC(c) (_generic_LC(c, _CC_LOWER, islower) && isALPHA_LC(c))
1811 # define isPRINT_LC(c) (_generic_LC(c, _CC_PRINT, isprint) && ! isCNTRL_LC(c))
1812 # define isPUNCT_LC(c) (_generic_LC(c, _CC_PUNCT, ispunct) && ! isCNTRL_LC(c))
1813 # define isUPPER_LC(c) (_generic_LC(c, _CC_UPPER, isupper) && isALPHA_LC(c))
1814 # define isWORDCHAR_LC(c) (((c) == '_') || isALPHANUMERIC_LC(c))
1815 # define isXDIGIT_LC(c) (_generic_LC(c, _CC_XDIGIT, isxdigit) \
1816 && isALPHANUMERIC_LC(c))
1818 # define toLOWER_LC(c) _generic_toLOWER_LC((c), tolower, U8)
1819 # define toUPPER_LC(c) _generic_toUPPER_LC((c), toupper, U8)
1820 # define toFOLD_LC(c) _generic_toFOLD_LC((c), tolower, U8)
1822 #elif defined(CTYPE256) || (!defined(isascii) && !defined(HAS_ISASCII))
1823 /* For most other platforms */
1825 # define isALPHA_LC(c) _generic_LC(c, _CC_ALPHA, isalpha)
1826 # define isALPHANUMERIC_LC(c) _generic_LC(c, _CC_ALPHANUMERIC, isalnum)
1827 # define isCNTRL_LC(c) _generic_LC(c, _CC_CNTRL, iscntrl)
1828 # define isDIGIT_LC(c) _generic_LC(c, _CC_DIGIT, isdigit)
1829 # define isGRAPH_LC(c) _generic_LC(c, _CC_GRAPH, isgraph)
1830 # define isIDFIRST_LC(c) _generic_LC_underscore(c, _CC_IDFIRST, isalpha)
1831 # define isLOWER_LC(c) _generic_LC(c, _CC_LOWER, islower)
1832 # define isPRINT_LC(c) _generic_LC(c, _CC_PRINT, isprint)
1833 # define isPUNCT_LC(c) _generic_LC(c, _CC_PUNCT, ispunct)
1834 # define isSPACE_LC(c) _generic_LC(c, _CC_SPACE, isspace)
1835 # define isUPPER_LC(c) _generic_LC(c, _CC_UPPER, isupper)
1836 # define isWORDCHAR_LC(c) _generic_LC_underscore(c, _CC_WORDCHAR, isalnum)
1837 # define isXDIGIT_LC(c) _generic_LC(c, _CC_XDIGIT, isxdigit)
1840 # define toLOWER_LC(c) _generic_toLOWER_LC((c), tolower, U8)
1841 # define toUPPER_LC(c) _generic_toUPPER_LC((c), toupper, U8)
1842 # define toFOLD_LC(c) _generic_toFOLD_LC((c), tolower, U8)
1844 #else /* The final fallback position */
1846 # define isALPHA_LC(c) (isascii(c) && isalpha(c))
1847 # define isALPHANUMERIC_LC(c) (isascii(c) && isalnum(c))
1848 # define isCNTRL_LC(c) (isascii(c) && iscntrl(c))
1849 # define isDIGIT_LC(c) (isascii(c) && isdigit(c))
1850 # define isGRAPH_LC(c) (isascii(c) && isgraph(c))
1851 # define isIDFIRST_LC(c) (isascii(c) && (isalpha(c) || (c) == '_'))
1852 # define isLOWER_LC(c) (isascii(c) && islower(c))
1853 # define isPRINT_LC(c) (isascii(c) && isprint(c))
1854 # define isPUNCT_LC(c) (isascii(c) && ispunct(c))
1855 # define isSPACE_LC(c) (isascii(c) && isspace(c))
1856 # define isUPPER_LC(c) (isascii(c) && isupper(c))
1857 # define isWORDCHAR_LC(c) (isascii(c) && (isalnum(c) || (c) == '_'))
1858 # define isXDIGIT_LC(c) (isascii(c) && isxdigit(c))
1860 # define toLOWER_LC(c) (isascii(c) ? tolower(c) : (c))
1861 # define toUPPER_LC(c) (isascii(c) ? toupper(c) : (c))
1862 # define toFOLD_LC(c) (isascii(c) ? tolower(c) : (c))
1866 #define isIDCONT(c) isWORDCHAR(c)
1867 #define isIDCONT_A(c) isWORDCHAR_A(c)
1868 #define isIDCONT_L1(c) isWORDCHAR_L1(c)
1869 #define isIDCONT_LC(c) isWORDCHAR_LC(c)
1870 #define isPSXSPC_LC(c) isSPACE_LC(c)
1872 /* For internal core Perl use only: the base macros for defining macros like
1873 * isALPHA_uvchr. 'c' is the code point to check. 'classnum' is the POSIX class
1874 * number defined earlier in this file. _generic_uvchr() is used for POSIX
1875 * classes where there is a macro or function 'above_latin1' that takes the
1876 * single argument 'c' and returns the desired value. These exist for those
1877 * classes which have simple definitions, avoiding the overhead of an inversion
1878 * list binary search. _generic_invlist_uvchr() can be used
1879 * for classes where that overhead is faster than a direct lookup.
1880 * _generic_uvchr() won't compile if 'c' isn't unsigned, as it won't match the
1881 * 'above_latin1' prototype. _generic_isCC() macro does bounds checking, so
1882 * have duplicate checks here, so could create versions of the macros that
1883 * don't, but experiments show that gcc optimizes them out anyway. */
1885 /* Note that all ignore 'use bytes' */
1886 #define _generic_uvchr(classnum, above_latin1, c) ((c) < 256 \
1887 ? _generic_isCC(c, classnum) \
1889 #define _generic_invlist_uvchr(classnum, c) ((c) < 256 \
1890 ? _generic_isCC(c, classnum) \
1891 : _is_uni_FOO(classnum, c))
1892 #define isALPHA_uvchr(c) _generic_invlist_uvchr(_CC_ALPHA, c)
1893 #define isALPHANUMERIC_uvchr(c) _generic_invlist_uvchr(_CC_ALPHANUMERIC, c)
1894 #define isASCII_uvchr(c) isASCII(c)
1895 #define isBLANK_uvchr(c) _generic_uvchr(_CC_BLANK, is_HORIZWS_cp_high, c)
1896 #define isCNTRL_uvchr(c) isCNTRL_L1(c) /* All controls are in Latin1 */
1897 #define isDIGIT_uvchr(c) _generic_invlist_uvchr(_CC_DIGIT, c)
1898 #define isGRAPH_uvchr(c) _generic_invlist_uvchr(_CC_GRAPH, c)
1899 #define isIDCONT_uvchr(c) \
1900 _generic_uvchr(_CC_WORDCHAR, _is_uni_perl_idcont, c)
1901 #define isIDFIRST_uvchr(c) \
1902 _generic_uvchr(_CC_IDFIRST, _is_uni_perl_idstart, c)
1903 #define isLOWER_uvchr(c) _generic_invlist_uvchr(_CC_LOWER, c)
1904 #define isPRINT_uvchr(c) _generic_invlist_uvchr(_CC_PRINT, c)
1906 #define isPUNCT_uvchr(c) _generic_invlist_uvchr(_CC_PUNCT, c)
1907 #define isSPACE_uvchr(c) _generic_uvchr(_CC_SPACE, is_XPERLSPACE_cp_high, c)
1908 #define isPSXSPC_uvchr(c) isSPACE_uvchr(c)
1910 #define isUPPER_uvchr(c) _generic_invlist_uvchr(_CC_UPPER, c)
1911 #define isVERTWS_uvchr(c) _generic_uvchr(_CC_VERTSPACE, is_VERTWS_cp_high, c)
1912 #define isWORDCHAR_uvchr(c) _generic_invlist_uvchr(_CC_WORDCHAR, c)
1913 #define isXDIGIT_uvchr(c) _generic_uvchr(_CC_XDIGIT, is_XDIGIT_cp_high, c)
1915 #define toFOLD_uvchr(c,s,l) to_uni_fold(c,s,l)
1916 #define toLOWER_uvchr(c,s,l) to_uni_lower(c,s,l)
1917 #define toTITLE_uvchr(c,s,l) to_uni_title(c,s,l)
1918 #define toUPPER_uvchr(c,s,l) to_uni_upper(c,s,l)
1920 /* For backwards compatibility, even though '_uni' should mean official Unicode
1921 * code points, in Perl it means native for those below 256 */
1922 #define isALPHA_uni(c) isALPHA_uvchr(c)
1923 #define isALPHANUMERIC_uni(c) isALPHANUMERIC_uvchr(c)
1924 #define isASCII_uni(c) isASCII_uvchr(c)
1925 #define isBLANK_uni(c) isBLANK_uvchr(c)
1926 #define isCNTRL_uni(c) isCNTRL_uvchr(c)
1927 #define isDIGIT_uni(c) isDIGIT_uvchr(c)
1928 #define isGRAPH_uni(c) isGRAPH_uvchr(c)
1929 #define isIDCONT_uni(c) isIDCONT_uvchr(c)
1930 #define isIDFIRST_uni(c) isIDFIRST_uvchr(c)
1931 #define isLOWER_uni(c) isLOWER_uvchr(c)
1932 #define isPRINT_uni(c) isPRINT_uvchr(c)
1933 #define isPUNCT_uni(c) isPUNCT_uvchr(c)
1934 #define isSPACE_uni(c) isSPACE_uvchr(c)
1935 #define isPSXSPC_uni(c) isPSXSPC_uvchr(c)
1936 #define isUPPER_uni(c) isUPPER_uvchr(c)
1937 #define isVERTWS_uni(c) isVERTWS_uvchr(c)
1938 #define isWORDCHAR_uni(c) isWORDCHAR_uvchr(c)
1939 #define isXDIGIT_uni(c) isXDIGIT_uvchr(c)
1940 #define toFOLD_uni(c,s,l) toFOLD_uvchr(c,s,l)
1941 #define toLOWER_uni(c,s,l) toLOWER_uvchr(c,s,l)
1942 #define toTITLE_uni(c,s,l) toTITLE_uvchr(c,s,l)
1943 #define toUPPER_uni(c,s,l) toUPPER_uvchr(c,s,l)
1945 /* For internal core Perl use only: the base macros for defining macros like
1946 * isALPHA_LC_uvchr. These are like isALPHA_LC, but the input can be any code
1947 * point, not just 0-255. Like _generic_uvchr, there are two versions, one for
1948 * simple class definitions; the other for more complex. These are like
1949 * _generic_uvchr, so see it for more info. */
1950 #define _generic_LC_uvchr(latin1, above_latin1, c) \
1951 (c < 256 ? latin1(c) : above_latin1(c))
1952 #define _generic_LC_invlist_uvchr(latin1, classnum, c) \
1953 (c < 256 ? latin1(c) : _is_uni_FOO(classnum, c))
1955 #define isALPHA_LC_uvchr(c) _generic_LC_invlist_uvchr(isALPHA_LC, _CC_ALPHA, c)
1956 #define isALPHANUMERIC_LC_uvchr(c) _generic_LC_invlist_uvchr(isALPHANUMERIC_LC, \
1957 _CC_ALPHANUMERIC, c)
1958 #define isASCII_LC_uvchr(c) isASCII_LC(c)
1959 #define isBLANK_LC_uvchr(c) _generic_LC_uvchr(isBLANK_LC, \
1960 is_HORIZWS_cp_high, c)
1961 #define isCNTRL_LC_uvchr(c) (c < 256 ? isCNTRL_LC(c) : 0)
1962 #define isDIGIT_LC_uvchr(c) _generic_LC_invlist_uvchr(isDIGIT_LC, _CC_DIGIT, c)
1963 #define isGRAPH_LC_uvchr(c) _generic_LC_invlist_uvchr(isGRAPH_LC, _CC_GRAPH, c)
1964 #define isIDCONT_LC_uvchr(c) _generic_LC_uvchr(isIDCONT_LC, \
1965 _is_uni_perl_idcont, c)
1966 #define isIDFIRST_LC_uvchr(c) _generic_LC_uvchr(isIDFIRST_LC, \
1967 _is_uni_perl_idstart, c)
1968 #define isLOWER_LC_uvchr(c) _generic_LC_invlist_uvchr(isLOWER_LC, _CC_LOWER, c)
1969 #define isPRINT_LC_uvchr(c) _generic_LC_invlist_uvchr(isPRINT_LC, _CC_PRINT, c)
1970 #define isPSXSPC_LC_uvchr(c) isSPACE_LC_uvchr(c)
1971 #define isPUNCT_LC_uvchr(c) _generic_LC_invlist_uvchr(isPUNCT_LC, _CC_PUNCT, c)
1972 #define isSPACE_LC_uvchr(c) _generic_LC_uvchr(isSPACE_LC, \
1973 is_XPERLSPACE_cp_high, c)
1974 #define isUPPER_LC_uvchr(c) _generic_LC_invlist_uvchr(isUPPER_LC, _CC_UPPER, c)
1975 #define isWORDCHAR_LC_uvchr(c) _generic_LC_invlist_uvchr(isWORDCHAR_LC, \
1977 #define isXDIGIT_LC_uvchr(c) _generic_LC_uvchr(isXDIGIT_LC, \
1978 is_XDIGIT_cp_high, c)
1980 #define isBLANK_LC_uni(c) isBLANK_LC_uvchr(UNI_TO_NATIVE(c))
1982 /* The "_safe" macros make sure that we don't attempt to read beyond 'e', but
1983 * they don't otherwise go out of their way to look for malformed UTF-8. If
1984 * they can return accurate results without knowing if the input is otherwise
1985 * malformed, they do so. For example isASCII is accurate in spite of any
1986 * non-length malformations because it looks only at a single byte. Likewise
1987 * isDIGIT looks just at the first byte for code points 0-255, as all UTF-8
1988 * variant ones return FALSE. But, if the input has to be well-formed in order
1989 * for the results to be accurate, the macros will test and if malformed will
1990 * call a routine to die
1992 * Except for toke.c, the macros do assume that e > p, asserting that on
1993 * DEBUGGING builds. Much code that calls these depends on this being true,
1994 * for other reasons. toke.c is treated specially as using the regular
1995 * assertion breaks it in many ways. All strings that these operate on there
1996 * are supposed to have an extra NUL character at the end, so that *e = \0. A
1997 * bunch of code in toke.c assumes that this is true, so the assertion allows
1999 #ifdef PERL_IN_TOKE_C
2000 # define _utf8_safe_assert(p,e) ((e) > (p) || ((e) == (p) && *(p) == '\0'))
2002 # define _utf8_safe_assert(p,e) ((e) > (p))
2005 #define _generic_utf8_safe(classnum, p, e, above_latin1) \
2006 ((! _utf8_safe_assert(p, e)) \
2007 ? (_force_out_malformed_utf8_message((U8 *) (p), (U8 *) (e), 0, 1), 0)\
2008 : (UTF8_IS_INVARIANT(*(p))) \
2009 ? _generic_isCC(*(p), classnum) \
2010 : (UTF8_IS_DOWNGRADEABLE_START(*(p)) \
2011 ? ((LIKELY((e) - (p) > 1 && UTF8_IS_CONTINUATION(*((p)+1)))) \
2012 ? _generic_isCC(EIGHT_BIT_UTF8_TO_NATIVE(*(p), *((p)+1 )), \
2014 : (_force_out_malformed_utf8_message( \
2015 (U8 *) (p), (U8 *) (e), 0, 1), 0)) \
2017 /* Like the above, but calls 'above_latin1(p)' to get the utf8 value.
2018 * 'above_latin1' can be a macro */
2019 #define _generic_func_utf8_safe(classnum, above_latin1, p, e) \
2020 _generic_utf8_safe(classnum, p, e, above_latin1(p, e))
2021 #define _generic_non_invlist_utf8_safe(classnum, above_latin1, p, e) \
2022 _generic_utf8_safe(classnum, p, e, \
2023 (UNLIKELY((e) - (p) < UTF8SKIP(p)) \
2024 ? (_force_out_malformed_utf8_message( \
2025 (U8 *) (p), (U8 *) (e), 0, 1), 0) \
2027 /* Like the above, but passes classnum to _isFOO_utf8(), instead of having an
2028 * 'above_latin1' parameter */
2029 #define _generic_invlist_utf8_safe(classnum, p, e) \
2030 _generic_utf8_safe(classnum, p, e, _is_utf8_FOO(classnum, p, e))
2032 /* Like the above, but should be used only when it is known that there are no
2033 * characters in the upper-Latin1 range (128-255 on ASCII platforms) which the
2034 * class is TRUE for. Hence it can skip the tests for this range.
2035 * 'above_latin1' should include its arguments */
2036 #define _generic_utf8_safe_no_upper_latin1(classnum, p, e, above_latin1) \
2037 (__ASSERT_(_utf8_safe_assert(p, e)) \
2038 (UTF8_IS_INVARIANT(*(p))) \
2039 ? _generic_isCC(*(p), classnum) \
2040 : (UTF8_IS_DOWNGRADEABLE_START(*(p))) \
2041 ? 0 /* Note that doesn't check validity for latin1 */ \
2045 #define isALPHA_utf8(p, e) isALPHA_utf8_safe(p, e)
2046 #define isALPHANUMERIC_utf8(p, e) isALPHANUMERIC_utf8_safe(p, e)
2047 #define isASCII_utf8(p, e) isASCII_utf8_safe(p, e)
2048 #define isBLANK_utf8(p, e) isBLANK_utf8_safe(p, e)
2049 #define isCNTRL_utf8(p, e) isCNTRL_utf8_safe(p, e)
2050 #define isDIGIT_utf8(p, e) isDIGIT_utf8_safe(p, e)
2051 #define isGRAPH_utf8(p, e) isGRAPH_utf8_safe(p, e)
2052 #define isIDCONT_utf8(p, e) isIDCONT_utf8_safe(p, e)
2053 #define isIDFIRST_utf8(p, e) isIDFIRST_utf8_safe(p, e)
2054 #define isLOWER_utf8(p, e) isLOWER_utf8_safe(p, e)
2055 #define isPRINT_utf8(p, e) isPRINT_utf8_safe(p, e)
2056 #define isPSXSPC_utf8(p, e) isPSXSPC_utf8_safe(p, e)
2057 #define isPUNCT_utf8(p, e) isPUNCT_utf8_safe(p, e)
2058 #define isSPACE_utf8(p, e) isSPACE_utf8_safe(p, e)
2059 #define isUPPER_utf8(p, e) isUPPER_utf8_safe(p, e)
2060 #define isVERTWS_utf8(p, e) isVERTWS_utf8_safe(p, e)
2061 #define isWORDCHAR_utf8(p, e) isWORDCHAR_utf8_safe(p, e)
2062 #define isXDIGIT_utf8(p, e) isXDIGIT_utf8_safe(p, e)
2064 #define isALPHA_utf8_safe(p, e) _generic_invlist_utf8_safe(_CC_ALPHA, p, e)
2065 #define isALPHANUMERIC_utf8_safe(p, e) \
2066 _generic_invlist_utf8_safe(_CC_ALPHANUMERIC, p, e)
2067 #define isASCII_utf8_safe(p, e) \
2068 /* Because ASCII is invariant under utf8, the non-utf8 macro \
2070 (__ASSERT_(_utf8_safe_assert(p, e)) isASCII(*(p)))
2071 #define isBLANK_utf8_safe(p, e) \
2072 _generic_non_invlist_utf8_safe(_CC_BLANK, is_HORIZWS_high, p, e)
2075 /* Because all controls are UTF-8 invariants in EBCDIC, we can use this
2076 * more efficient macro instead of the more general one */
2077 # define isCNTRL_utf8_safe(p, e) \
2078 (__ASSERT_(_utf8_safe_assert(p, e)) isCNTRL_L1(*(p)))
2080 # define isCNTRL_utf8_safe(p, e) _generic_utf8_safe(_CC_CNTRL, p, e, 0)
2083 #define isDIGIT_utf8_safe(p, e) \
2084 _generic_utf8_safe_no_upper_latin1(_CC_DIGIT, p, e, \
2085 _is_utf8_FOO(_CC_DIGIT, p, e))
2086 #define isGRAPH_utf8_safe(p, e) _generic_invlist_utf8_safe(_CC_GRAPH, p, e)
2087 #define isIDCONT_utf8_safe(p, e) _generic_func_utf8_safe(_CC_WORDCHAR, \
2088 _is_utf8_perl_idcont, p, e)
2090 /* To prevent S_scan_word in toke.c from hanging, we have to make sure that
2091 * IDFIRST is an alnum. See
2092 * https://rt.perl.org/rt3/Ticket/Display.html?id=74022 for more detail than you
2093 * ever wanted to know about. (In the ASCII range, there isn't a difference.)
2094 * This used to be not the XID version, but we decided to go with the more
2095 * modern Unicode definition */
2096 #define isIDFIRST_utf8_safe(p, e) \
2097 _generic_func_utf8_safe(_CC_IDFIRST, \
2098 _is_utf8_perl_idstart, (U8 *) (p), (U8 *) (e))
2100 #define isLOWER_utf8_safe(p, e) _generic_invlist_utf8_safe(_CC_LOWER, p, e)
2101 #define isPRINT_utf8_safe(p, e) _generic_invlist_utf8_safe(_CC_PRINT, p, e)
2102 #define isPSXSPC_utf8_safe(p, e) isSPACE_utf8_safe(p, e)
2103 #define isPUNCT_utf8_safe(p, e) _generic_invlist_utf8_safe(_CC_PUNCT, p, e)
2104 #define isSPACE_utf8_safe(p, e) \
2105 _generic_non_invlist_utf8_safe(_CC_SPACE, is_XPERLSPACE_high, p, e)
2106 #define isUPPER_utf8_safe(p, e) _generic_invlist_utf8_safe(_CC_UPPER, p, e)
2107 #define isVERTWS_utf8_safe(p, e) \
2108 _generic_non_invlist_utf8_safe(_CC_VERTSPACE, is_VERTWS_high, p, e)
2109 #define isWORDCHAR_utf8_safe(p, e) \
2110 _generic_invlist_utf8_safe(_CC_WORDCHAR, p, e)
2111 #define isXDIGIT_utf8_safe(p, e) \
2112 _generic_utf8_safe_no_upper_latin1(_CC_XDIGIT, p, e, \
2113 (UNLIKELY((e) - (p) < UTF8SKIP(p)) \
2114 ? (_force_out_malformed_utf8_message( \
2115 (U8 *) (p), (U8 *) (e), 0, 1), 0) \
2116 : is_XDIGIT_high(p)))
2118 #define toFOLD_utf8(p,e,s,l) toFOLD_utf8_safe(p,e,s,l)
2119 #define toLOWER_utf8(p,e,s,l) toLOWER_utf8_safe(p,e,s,l)
2120 #define toTITLE_utf8(p,e,s,l) toTITLE_utf8_safe(p,e,s,l)
2121 #define toUPPER_utf8(p,e,s,l) toUPPER_utf8_safe(p,e,s,l)
2123 /* For internal core use only, subject to change */
2124 #define _toFOLD_utf8_flags(p,e,s,l,f) _to_utf8_fold_flags (p,e,s,l,f)
2125 #define _toLOWER_utf8_flags(p,e,s,l,f) _to_utf8_lower_flags(p,e,s,l,f)
2126 #define _toTITLE_utf8_flags(p,e,s,l,f) _to_utf8_title_flags(p,e,s,l,f)
2127 #define _toUPPER_utf8_flags(p,e,s,l,f) _to_utf8_upper_flags(p,e,s,l,f)
2129 #define toFOLD_utf8_safe(p,e,s,l) _toFOLD_utf8_flags(p,e,s,l, FOLD_FLAGS_FULL)
2130 #define toLOWER_utf8_safe(p,e,s,l) _toLOWER_utf8_flags(p,e,s,l, 0)
2131 #define toTITLE_utf8_safe(p,e,s,l) _toTITLE_utf8_flags(p,e,s,l, 0)
2132 #define toUPPER_utf8_safe(p,e,s,l) _toUPPER_utf8_flags(p,e,s,l, 0)
2134 #define isALPHA_LC_utf8(p, e) isALPHA_LC_utf8_safe(p, e)
2135 #define isALPHANUMERIC_LC_utf8(p, e) isALPHANUMERIC_LC_utf8_safe(p, e)
2136 #define isASCII_LC_utf8(p, e) isASCII_LC_utf8_safe(p, e)
2137 #define isBLANK_LC_utf8(p, e) isBLANK_LC_utf8_safe(p, e)
2138 #define isCNTRL_LC_utf8(p, e) isCNTRL_LC_utf8_safe(p, e)
2139 #define isDIGIT_LC_utf8(p, e) isDIGIT_LC_utf8_safe(p, e)
2140 #define isGRAPH_LC_utf8(p, e) isGRAPH_LC_utf8_safe(p, e)
2141 #define isIDCONT_LC_utf8(p, e) isIDCONT_LC_utf8_safe(p, e)
2142 #define isIDFIRST_LC_utf8(p, e) isIDFIRST_LC_utf8_safe(p, e)
2143 #define isLOWER_LC_utf8(p, e) isLOWER_LC_utf8_safe(p, e)
2144 #define isPRINT_LC_utf8(p, e) isPRINT_LC_utf8_safe(p, e)
2145 #define isPSXSPC_LC_utf8(p, e) isPSXSPC_LC_utf8_safe(p, e)
2146 #define isPUNCT_LC_utf8(p, e) isPUNCT_LC_utf8_safe(p, e)
2147 #define isSPACE_LC_utf8(p, e) isSPACE_LC_utf8_safe(p, e)
2148 #define isUPPER_LC_utf8(p, e) isUPPER_LC_utf8_safe(p, e)
2149 #define isWORDCHAR_LC_utf8(p, e) isWORDCHAR_LC_utf8_safe(p, e)
2150 #define isXDIGIT_LC_utf8(p, e) isXDIGIT_LC_utf8_safe(p, e)
2152 /* For internal core Perl use only: the base macros for defining macros like
2153 * isALPHA_LC_utf8_safe. These are like _generic_utf8, but if the first code
2154 * point in 'p' is within the 0-255 range, it uses locale rules from the
2155 * passed-in 'macro' parameter */
2156 #define _generic_LC_utf8_safe(macro, p, e, above_latin1) \
2157 (__ASSERT_(_utf8_safe_assert(p, e)) \
2158 (UTF8_IS_INVARIANT(*(p))) \
2160 : (UTF8_IS_DOWNGRADEABLE_START(*(p)) \
2161 ? ((LIKELY((e) - (p) > 1 && UTF8_IS_CONTINUATION(*((p)+1)))) \
2162 ? macro(EIGHT_BIT_UTF8_TO_NATIVE(*(p), *((p)+1))) \
2163 : (_force_out_malformed_utf8_message( \
2164 (U8 *) (p), (U8 *) (e), 0, 1), 0)) \
2167 #define _generic_LC_invlist_utf8_safe(macro, classnum, p, e) \
2168 _generic_LC_utf8_safe(macro, p, e, \
2169 _is_utf8_FOO(classnum, p, e))
2171 #define _generic_LC_func_utf8_safe(macro, above_latin1, p, e) \
2172 _generic_LC_utf8_safe(macro, p, e, above_latin1(p, e))
2174 #define _generic_LC_non_invlist_utf8_safe(classnum, above_latin1, p, e) \
2175 _generic_LC_utf8_safe(classnum, p, e, \
2176 (UNLIKELY((e) - (p) < UTF8SKIP(p)) \
2177 ? (_force_out_malformed_utf8_message( \
2178 (U8 *) (p), (U8 *) (e), 0, 1), 0) \
2181 #define isALPHANUMERIC_LC_utf8_safe(p, e) \
2182 _generic_LC_invlist_utf8_safe(isALPHANUMERIC_LC, \
2183 _CC_ALPHANUMERIC, p, e)
2184 #define isALPHA_LC_utf8_safe(p, e) \
2185 _generic_LC_invlist_utf8_safe(isALPHA_LC, _CC_ALPHA, p, e)
2186 #define isASCII_LC_utf8_safe(p, e) \
2187 (__ASSERT_(_utf8_safe_assert(p, e)) isASCII_LC(*(p)))
2188 #define isBLANK_LC_utf8_safe(p, e) \
2189 _generic_LC_non_invlist_utf8_safe(isBLANK_LC, is_HORIZWS_high, p, e)
2190 #define isCNTRL_LC_utf8_safe(p, e) \
2191 _generic_LC_utf8_safe(isCNTRL_LC, p, e, 0)
2192 #define isDIGIT_LC_utf8_safe(p, e) \
2193 _generic_LC_invlist_utf8_safe(isDIGIT_LC, _CC_DIGIT, p, e)
2194 #define isGRAPH_LC_utf8_safe(p, e) \
2195 _generic_LC_invlist_utf8_safe(isGRAPH_LC, _CC_GRAPH, p, e)
2196 #define isIDCONT_LC_utf8_safe(p, e) \
2197 _generic_LC_func_utf8_safe(isIDCONT_LC, \
2198 _is_utf8_perl_idcont, p, e)
2199 #define isIDFIRST_LC_utf8_safe(p, e) \
2200 _generic_LC_func_utf8_safe(isIDFIRST_LC, \
2201 _is_utf8_perl_idstart, p, e)
2202 #define isLOWER_LC_utf8_safe(p, e) \
2203 _generic_LC_invlist_utf8_safe(isLOWER_LC, _CC_LOWER, p, e)
2204 #define isPRINT_LC_utf8_safe(p, e) \
2205 _generic_LC_invlist_utf8_safe(isPRINT_LC, _CC_PRINT, p, e)
2206 #define isPSXSPC_LC_utf8_safe(p, e) isSPACE_LC_utf8_safe(p, e)
2207 #define isPUNCT_LC_utf8_safe(p, e) \
2208 _generic_LC_invlist_utf8_safe(isPUNCT_LC, _CC_PUNCT, p, e)
2209 #define isSPACE_LC_utf8_safe(p, e) \
2210 _generic_LC_non_invlist_utf8_safe(isSPACE_LC, is_XPERLSPACE_high, p, e)
2211 #define isUPPER_LC_utf8_safe(p, e) \
2212 _generic_LC_invlist_utf8_safe(isUPPER_LC, _CC_UPPER, p, e)
2213 #define isWORDCHAR_LC_utf8_safe(p, e) \
2214 _generic_LC_invlist_utf8_safe(isWORDCHAR_LC, _CC_WORDCHAR, p, e)
2215 #define isXDIGIT_LC_utf8_safe(p, e) \
2216 _generic_LC_non_invlist_utf8_safe(isXDIGIT_LC, is_XDIGIT_high, p, e)
2218 /* Macros for backwards compatibility and for completeness when the ASCII and
2219 * Latin1 values are identical */
2220 #define isALPHAU(c) isALPHA_L1(c)
2221 #define isDIGIT_L1(c) isDIGIT_A(c)
2222 #define isOCTAL(c) isOCTAL_A(c)
2223 #define isOCTAL_L1(c) isOCTAL_A(c)
2224 #define isXDIGIT_L1(c) isXDIGIT_A(c)
2225 #define isALNUM(c) isWORDCHAR(c)
2226 #define isALNUM_A(c) isALNUM(c)
2227 #define isALNUMU(c) isWORDCHAR_L1(c)
2228 #define isALNUM_LC(c) isWORDCHAR_LC(c)
2229 #define isALNUM_uni(c) isWORDCHAR_uni(c)
2230 #define isALNUM_LC_uvchr(c) isWORDCHAR_LC_uvchr(c)
2231 #define isALNUM_utf8(p,e) isWORDCHAR_utf8(p,e)
2232 #define isALNUM_utf8_safe(p,e) isWORDCHAR_utf8_safe(p,e)
2233 #define isALNUM_LC_utf8(p,e)isWORDCHAR_LC_utf8(p,e)
2234 #define isALNUM_LC_utf8_safe(p,e)isWORDCHAR_LC_utf8_safe(p,e)
2235 #define isALNUMC_A(c) isALPHANUMERIC_A(c) /* Mnemonic: "C's alnum" */
2236 #define isALNUMC_L1(c) isALPHANUMERIC_L1(c)
2237 #define isALNUMC(c) isALPHANUMERIC(c)
2238 #define isALNUMC_LC(c) isALPHANUMERIC_LC(c)
2239 #define isALNUMC_uni(c) isALPHANUMERIC_uni(c)
2240 #define isALNUMC_LC_uvchr(c) isALPHANUMERIC_LC_uvchr(c)
2241 #define isALNUMC_utf8(p,e) isALPHANUMERIC_utf8(p,e)
2242 #define isALNUMC_utf8_safe(p,e) isALPHANUMERIC_utf8_safe(p,e)
2243 #define isALNUMC_LC_utf8_safe(p,e) isALPHANUMERIC_LC_utf8_safe(p,e)
2245 /* On EBCDIC platforms, CTRL-@ is 0, CTRL-A is 1, etc, just like on ASCII,
2246 * except that they don't necessarily mean the same characters, e.g. CTRL-D is
2247 * 4 on both systems, but that is EOT on ASCII; ST on EBCDIC.
2248 * '?' is special-cased on EBCDIC to APC, which is the control there that is
2249 * the outlier from the block that contains the other controls, just like
2250 * toCTRL('?') on ASCII yields DEL, the control that is the outlier from the C0
2251 * block. If it weren't special cased, it would yield a non-control.
2252 * The conversion works both ways, so toCTRL('D') is 4, and toCTRL(4) is D,
2255 # define toCTRL(c) (__ASSERT_(FITS_IN_8_BITS(c)) toUPPER(((U8)(c))) ^ 64)
2257 # define toCTRL(c) (__ASSERT_(FITS_IN_8_BITS(c)) \
2259 ? (UNLIKELY((c) == '?') \
2260 ? QUESTION_MARK_CTRL \
2261 : (NATIVE_TO_LATIN1(toUPPER((U8) (c))) ^ 64)) \
2262 : (UNLIKELY((c) == QUESTION_MARK_CTRL) \
2264 : (LATIN1_TO_NATIVE(((U8) (c)) ^ 64)))))
2267 /* Line numbers are unsigned, 32 bits. */
2269 #define NOLINE ((line_t) 4294967295UL) /* = FFFFFFFF */
2271 /* Helpful alias for version prescan */
2272 #define is_LAX_VERSION(a,b) \
2273 (a != Perl_prescan_version(aTHX_ a, FALSE, b, NULL, NULL, NULL, NULL))
2275 #define is_STRICT_VERSION(a,b) \
2276 (a != Perl_prescan_version(aTHX_ a, TRUE, b, NULL, NULL, NULL, NULL))
2278 #define BADVERSION(a,b,c) \
2284 /* Converts a character known to represent a hexadecimal digit (0-9, A-F, or
2285 * a-f) to its numeric value. READ_XDIGIT's argument is a string pointer,
2286 * which is advanced. The input is validated only by an assert() in DEBUGGING
2287 * builds. In both ASCII and EBCDIC the last 4 bits of the digits are 0-9; and
2288 * the last 4 bits of A-F and a-f are 1-6, so adding 9 yields 10-15 */
2289 #define XDIGIT_VALUE(c) (__ASSERT_(isXDIGIT(c)) (0xf & (isDIGIT(c) \
2292 #define READ_XDIGIT(s) (__ASSERT_(isXDIGIT(*s)) (0xf & (isDIGIT(*(s)) \
2296 /* Converts a character known to represent an octal digit (0-7) to its numeric
2297 * value. The input is validated only by an assert() in DEBUGGING builds. In
2298 * both ASCII and EBCDIC the last 3 bits of the octal digits range from 0-7. */
2299 #define OCTAL_VALUE(c) (__ASSERT_(isOCTAL(c)) (7 & (c)))
2301 /* Efficiently returns a boolean as to if two native characters are equivalent
2302 * case-insenstively. At least one of the characters must be one of [A-Za-z];
2303 * the ALPHA in the name is to remind you of that. This is asserted() in
2304 * DEBUGGING builds. Because [A-Za-z] are invariant under UTF-8, this macro
2305 * works (on valid input) for both non- and UTF-8-encoded bytes.
2307 * When one of the inputs is a compile-time constant and gets folded by the
2308 * compiler, this reduces to an AND and a TEST. On both EBCDIC and ASCII
2309 * machines, 'A' and 'a' differ by a single bit; the same with the upper and
2310 * lower case of all other ASCII-range alphabetics. On ASCII platforms, they
2311 * are 32 apart; on EBCDIC, they are 64. At compile time, this uses an
2312 * exclusive 'or' to find that bit and then inverts it to form a mask, with
2313 * just a single 0, in the bit position where the upper- and lowercase differ.
2315 #define isALPHA_FOLD_EQ(c1, c2) \
2316 (__ASSERT_(isALPHA_A(c1) || isALPHA_A(c2)) \
2317 ((c1) & ~('A' ^ 'a')) == ((c2) & ~('A' ^ 'a')))
2318 #define isALPHA_FOLD_NE(c1, c2) (! isALPHA_FOLD_EQ((c1), (c2)))
2321 =head1 Memory Management
2323 =for apidoc Am|void|Newx|void* ptr|int nitems|type
2324 The XSUB-writer's interface to the C C<malloc> function.
2326 Memory obtained by this should B<ONLY> be freed with L</"Safefree">.
2328 In 5.9.3, Newx() and friends replace the older New() API, and drops
2329 the first parameter, I<x>, a debug aid which allowed callers to identify
2330 themselves. This aid has been superseded by a new build option,
2331 PERL_MEM_LOG (see L<perlhacktips/PERL_MEM_LOG>). The older API is still
2332 there for use in XS modules supporting older perls.
2334 =for apidoc Am|void|Newxc|void* ptr|int nitems|type|cast
2335 The XSUB-writer's interface to the C C<malloc> function, with
2336 cast. See also C<L</Newx>>.
2338 Memory obtained by this should B<ONLY> be freed with L</"Safefree">.
2340 =for apidoc Am|void|Newxz|void* ptr|int nitems|type
2341 The XSUB-writer's interface to the C C<malloc> function. The allocated
2342 memory is zeroed with C<memzero>. See also C<L</Newx>>.
2344 Memory obtained by this should B<ONLY> be freed with L</"Safefree">.
2346 =for apidoc Am|void|Renew|void* ptr|int nitems|type
2347 The XSUB-writer's interface to the C C<realloc> function.
2349 Memory obtained by this should B<ONLY> be freed with L</"Safefree">.
2351 =for apidoc Am|void|Renewc|void* ptr|int nitems|type|cast
2352 The XSUB-writer's interface to the C C<realloc> function, with
2355 Memory obtained by this should B<ONLY> be freed with L</"Safefree">.
2357 =for apidoc Am|void|Safefree|void* ptr
2358 The XSUB-writer's interface to the C C<free> function.
2360 This should B<ONLY> be used on memory obtained using L</"Newx"> and friends.
2362 =for apidoc Am|void|Move|void* src|void* dest|int nitems|type
2363 The XSUB-writer's interface to the C C<memmove> function. The C<src> is the
2364 source, C<dest> is the destination, C<nitems> is the number of items, and
2365 C<type> is the type. Can do overlapping moves. See also C<L</Copy>>.
2367 =for apidoc Am|void *|MoveD|void* src|void* dest|int nitems|type
2368 Like C<Move> but returns C<dest>. Useful
2369 for encouraging compilers to tail-call
2372 =for apidoc Am|void|Copy|void* src|void* dest|int nitems|type
2373 The XSUB-writer's interface to the C C<memcpy> function. The C<src> is the
2374 source, C<dest> is the destination, C<nitems> is the number of items, and
2375 C<type> is the type. May fail on overlapping copies. See also C<L</Move>>.
2377 =for apidoc Am|void *|CopyD|void* src|void* dest|int nitems|type
2379 Like C<Copy> but returns C<dest>. Useful
2380 for encouraging compilers to tail-call
2383 =for apidoc Am|void|Zero|void* dest|int nitems|type
2385 The XSUB-writer's interface to the C C<memzero> function. The C<dest> is the
2386 destination, C<nitems> is the number of items, and C<type> is the type.
2388 =for apidoc Am|void *|ZeroD|void* dest|int nitems|type
2390 Like C<Zero> but returns dest. Useful
2391 for encouraging compilers to tail-call
2394 =for apidoc Am|void|StructCopy|type *src|type *dest|type
2395 This is an architecture-independent macro to copy one structure to another.
2397 =for apidoc Am|void|PoisonWith|void* dest|int nitems|type|U8 byte
2399 Fill up memory with a byte pattern (a byte repeated over and over
2400 again) that hopefully catches attempts to access uninitialized memory.
2402 =for apidoc Am|void|PoisonNew|void* dest|int nitems|type
2404 PoisonWith(0xAB) for catching access to allocated but uninitialized memory.
2406 =for apidoc Am|void|PoisonFree|void* dest|int nitems|type
2408 PoisonWith(0xEF) for catching access to freed memory.
2410 =for apidoc Am|void|Poison|void* dest|int nitems|type
2412 PoisonWith(0xEF) for catching access to freed memory.
2416 /* Maintained for backwards-compatibility only. Use newSV() instead. */
2418 #define NEWSV(x,len) newSV(len)
2421 #define MEM_SIZE_MAX ((MEM_SIZE)-1)
2423 #define _PERL_STRLEN_ROUNDUP_UNCHECKED(n) (((n) - 1 + PERL_STRLEN_ROUNDUP_QUANTUM) & ~((MEM_SIZE)PERL_STRLEN_ROUNDUP_QUANTUM - 1))
2425 #ifdef PERL_MALLOC_WRAP
2427 /* This expression will be constant-folded at compile time. It checks
2428 * whether or not the type of the count n is so small (e.g. U8 or U16, or
2429 * U32 on 64-bit systems) that there's no way a wrap-around could occur.
2430 * As well as avoiding the need for a run-time check in some cases, it's
2431 * designed to avoid compiler warnings like:
2432 * comparison is always false due to limited range of data type
2433 * It's mathematically equivalent to
2434 * max(n) * sizeof(t) > MEM_SIZE_MAX
2437 # define _MEM_WRAP_NEEDS_RUNTIME_CHECK(n,t) \
2438 ( sizeof(MEM_SIZE) < sizeof(n) \
2439 || sizeof(t) > ((MEM_SIZE)1 << 8*(sizeof(MEM_SIZE) - sizeof(n))))
2441 /* This is written in a slightly odd way to avoid various spurious
2442 * compiler warnings. We *want* to write the expression as
2443 * _MEM_WRAP_NEEDS_RUNTIME_CHECK(n,t) && (n > C)
2444 * (for some compile-time constant C), but even when the LHS
2445 * constant-folds to false at compile-time, g++ insists on emitting
2446 * warnings about the RHS (e.g. "comparison is always false"), so instead
2449 * (cond ? n : X) > C
2451 * where X is a constant with X > C always false. Choosing a value for X
2452 * is tricky. If 0, some compilers will complain about 0 > C always being
2453 * false; if 1, Coverity complains when n happens to be the constant value
2454 * '1', that cond ? 1 : 1 has the same value on both branches; so use C
2455 * for X and hope that nothing else whines.
2458 # define _MEM_WRAP_WILL_WRAP(n,t) \
2459 ((_MEM_WRAP_NEEDS_RUNTIME_CHECK(n,t) ? (MEM_SIZE)(n) : \
2460 MEM_SIZE_MAX/sizeof(t)) > MEM_SIZE_MAX/sizeof(t))
2462 # define MEM_WRAP_CHECK(n,t) \
2463 (void)(UNLIKELY(_MEM_WRAP_WILL_WRAP(n,t)) \
2464 && (croak_memory_wrap(),0))
2466 # define MEM_WRAP_CHECK_1(n,t,a) \
2467 (void)(UNLIKELY(_MEM_WRAP_WILL_WRAP(n,t)) \
2468 && (Perl_croak_nocontext("%s",(a)),0))
2470 /* "a" arg must be a string literal */
2471 # define MEM_WRAP_CHECK_s(n,t,a) \
2472 (void)(UNLIKELY(_MEM_WRAP_WILL_WRAP(n,t)) \
2473 && (Perl_croak_nocontext("" a ""),0))
2475 #define MEM_WRAP_CHECK_(n,t) MEM_WRAP_CHECK(n,t),
2477 #define PERL_STRLEN_ROUNDUP(n) ((void)(((n) > MEM_SIZE_MAX - 2 * PERL_STRLEN_ROUNDUP_QUANTUM) ? (croak_memory_wrap(),0) : 0), _PERL_STRLEN_ROUNDUP_UNCHECKED(n))
2480 #define MEM_WRAP_CHECK(n,t)
2481 #define MEM_WRAP_CHECK_1(n,t,a)
2482 #define MEM_WRAP_CHECK_s(n,t,a)
2483 #define MEM_WRAP_CHECK_(n,t)
2485 #define PERL_STRLEN_ROUNDUP(n) _PERL_STRLEN_ROUNDUP_UNCHECKED(n)
2491 * If PERL_MEM_LOG is defined, all Newx()s, Renew()s, and Safefree()s
2492 * go through functions, which are handy for debugging breakpoints, but
2493 * which more importantly get the immediate calling environment (file and
2494 * line number, and C function name if available) passed in. This info can
2495 * then be used for logging the calls, for which one gets a sample
2496 * implementation unless -DPERL_MEM_LOG_NOIMPL is also defined.
2499 * - not all memory allocs get logged, only those
2500 * that go through Newx() and derivatives (while all
2501 * Safefrees do get logged)
2502 * - __FILE__ and __LINE__ do not work everywhere
2503 * - __func__ or __FUNCTION__ even less so
2504 * - I think more goes on after the perlio frees but
2505 * the thing is that STDERR gets closed (as do all
2506 * the file descriptors)
2507 * - no deeper calling stack than the caller of the Newx()
2508 * or the kind, but do I look like a C reflection/introspection
2510 * - the function prototypes for the logging functions
2511 * probably should maybe be somewhere else than handy.h
2512 * - one could consider inlining (macrofying) the logging
2513 * for speed, but I am too lazy
2514 * - one could imagine recording the allocations in a hash,
2515 * (keyed by the allocation address?), and maintain that
2516 * through reallocs and frees, but how to do that without
2517 * any News() happening...?
2518 * - lots of -Ddefines to get useful/controllable output
2519 * - lots of ENV reads
2523 # ifndef PERL_MEM_LOG_NOIMPL
2532 # if defined(PERL_IN_SV_C) /* those are only used in sv.c */
2533 void Perl_mem_log_new_sv(const SV *sv, const char *filename, const int linenumber, const char *funcname);
2534 void Perl_mem_log_del_sv(const SV *sv, const char *filename, const int linenumber, const char *funcname);
2541 #define MEM_LOG_ALLOC(n,t,a) Perl_mem_log_alloc(n,sizeof(t),STRINGIFY(t),a,__FILE__,__LINE__,FUNCTION__)
2542 #define MEM_LOG_REALLOC(n,t,v,a) Perl_mem_log_realloc(n,sizeof(t),STRINGIFY(t),v,a,__FILE__,__LINE__,FUNCTION__)
2543 #define MEM_LOG_FREE(a) Perl_mem_log_free(a,__FILE__,__LINE__,FUNCTION__)
2546 #ifndef MEM_LOG_ALLOC
2547 #define MEM_LOG_ALLOC(n,t,a) (a)
2549 #ifndef MEM_LOG_REALLOC
2550 #define MEM_LOG_REALLOC(n,t,v,a) (a)
2552 #ifndef MEM_LOG_FREE
2553 #define MEM_LOG_FREE(a) (a)
2556 #define Newx(v,n,t) (v = (MEM_WRAP_CHECK_(n,t) (t*)MEM_LOG_ALLOC(n,t,safemalloc((MEM_SIZE)((n)*sizeof(t))))))
2557 #define Newxc(v,n,t,c) (v = (MEM_WRAP_CHECK_(n,t) (c*)MEM_LOG_ALLOC(n,t,safemalloc((MEM_SIZE)((n)*sizeof(t))))))
2558 #define Newxz(v,n,t) (v = (MEM_WRAP_CHECK_(n,t) (t*)MEM_LOG_ALLOC(n,t,safecalloc((n),sizeof(t)))))
2561 /* pre 5.9.x compatibility */
2562 #define New(x,v,n,t) Newx(v,n,t)
2563 #define Newc(x,v,n,t,c) Newxc(v,n,t,c)
2564 #define Newz(x,v,n,t) Newxz(v,n,t)
2567 #define Renew(v,n,t) \
2568 (v = (MEM_WRAP_CHECK_(n,t) (t*)MEM_LOG_REALLOC(n,t,v,saferealloc((Malloc_t)(v),(MEM_SIZE)((n)*sizeof(t))))))
2569 #define Renewc(v,n,t,c) \
2570 (v = (MEM_WRAP_CHECK_(n,t) (c*)MEM_LOG_REALLOC(n,t,v,saferealloc((Malloc_t)(v),(MEM_SIZE)((n)*sizeof(t))))))
2573 #define Safefree(d) \
2574 ((d) ? (void)(safefree(MEM_LOG_FREE((Malloc_t)(d))), Poison(&(d), 1, Malloc_t)) : (void) 0)
2576 #define Safefree(d) safefree(MEM_LOG_FREE((Malloc_t)(d)))
2579 /* assert that a valid ptr has been supplied - use this instead of assert(ptr) *
2580 * as it handles cases like constant string arguments without throwing warnings *
2581 * the cast is required, as is the inequality check, to avoid warnings */
2582 #define perl_assert_ptr(p) assert( ((void*)(p)) != 0 )
2585 #define Move(s,d,n,t) (MEM_WRAP_CHECK_(n,t) perl_assert_ptr(d), perl_assert_ptr(s), (void)memmove((char*)(d),(const char*)(s), (n) * sizeof(t)))
2586 #define Copy(s,d,n,t) (MEM_WRAP_CHECK_(n,t) perl_assert_ptr(d), perl_assert_ptr(s), (void)memcpy((char*)(d),(const char*)(s), (n) * sizeof(t)))
2587 #define Zero(d,n,t) (MEM_WRAP_CHECK_(n,t) perl_assert_ptr(d), (void)memzero((char*)(d), (n) * sizeof(t)))
2589 /* Like above, but returns a pointer to 'd' */
2590 #define MoveD(s,d,n,t) (MEM_WRAP_CHECK_(n,t) perl_assert_ptr(d), perl_assert_ptr(s), memmove((char*)(d),(const char*)(s), (n) * sizeof(t)))
2591 #define CopyD(s,d,n,t) (MEM_WRAP_CHECK_(n,t) perl_assert_ptr(d), perl_assert_ptr(s), memcpy((char*)(d),(const char*)(s), (n) * sizeof(t)))
2592 #define ZeroD(d,n,t) (MEM_WRAP_CHECK_(n,t) perl_assert_ptr(d), memzero((char*)(d), (n) * sizeof(t)))
2594 #define PoisonWith(d,n,t,b) (MEM_WRAP_CHECK_(n,t) (void)memset((char*)(d), (U8)(b), (n) * sizeof(t)))
2595 #define PoisonNew(d,n,t) PoisonWith(d,n,t,0xAB)
2596 #define PoisonFree(d,n,t) PoisonWith(d,n,t,0xEF)
2597 #define Poison(d,n,t) PoisonFree(d,n,t)
2600 # define PERL_POISON_EXPR(x) x
2602 # define PERL_POISON_EXPR(x)
2605 #define StructCopy(s,d,t) (*((t*)(d)) = *((t*)(s)))
2610 =for apidoc Am|STRLEN|C_ARRAY_LENGTH|void *a
2612 Returns the number of elements in the input C array (so you want your
2613 zero-based indices to be less than but not equal to).
2615 =for apidoc Am|void *|C_ARRAY_END|void *a
2617 Returns a pointer to one element past the final element of the input C array.
2621 C_ARRAY_END is one past the last: half-open/half-closed range, not
2622 last-inclusive range.
2624 #define C_ARRAY_LENGTH(a) (sizeof(a)/sizeof((a)[0]))
2625 #define C_ARRAY_END(a) ((a) + C_ARRAY_LENGTH(a))
2629 # define Perl_va_copy(s, d) va_copy(d, s)
2630 # elif defined(__va_copy)
2631 # define Perl_va_copy(s, d) __va_copy(d, s)
2633 # define Perl_va_copy(s, d) Copy(s, d, 1, va_list)
2637 /* convenience debug macros */
2639 #define pTHX_FORMAT "Perl interpreter: 0x%p"
2640 #define pTHX__FORMAT ", Perl interpreter: 0x%p"
2641 #define pTHX_VALUE_ (void *)my_perl,
2642 #define pTHX_VALUE (void *)my_perl
2643 #define pTHX__VALUE_ ,(void *)my_perl,
2644 #define pTHX__VALUE ,(void *)my_perl
2647 #define pTHX__FORMAT
2650 #define pTHX__VALUE_
2652 #endif /* USE_ITHREADS */
2654 /* Perl_deprecate was not part of the public API, and did not have a deprecate()
2655 shortcut macro defined without -DPERL_CORE. Neither codesearch.google.com nor
2656 CPAN::Unpack show any users outside the core. */
2658 # define deprecate(s) Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
2659 "Use of " s " is deprecated")
2660 # define deprecate_disappears_in(when,message) \
2661 Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
2662 message ", and will disappear in Perl " when)
2663 # define deprecate_fatal_in(when,message) \
2664 Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
2665 message ". Its use will be fatal in Perl " when)
2668 /* Internal macros to deal with gids and uids */
2671 # if Uid_t_size > IVSIZE
2672 # define sv_setuid(sv, uid) sv_setnv((sv), (NV)(uid))
2673 # define SvUID(sv) SvNV(sv)
2674 # elif Uid_t_sign <= 0
2675 # define sv_setuid(sv, uid) sv_setiv((sv), (IV)(uid))
2676 # define SvUID(sv) SvIV(sv)
2678 # define sv_setuid(sv, uid) sv_setuv((sv), (UV)(uid))
2679 # define SvUID(sv) SvUV(sv)
2680 # endif /* Uid_t_size */
2682 # if Gid_t_size > IVSIZE
2683 # define sv_setgid(sv, gid) sv_setnv((sv), (NV)(gid))
2684 # define SvGID(sv) SvNV(sv)
2685 # elif Gid_t_sign <= 0
2686 # define sv_setgid(sv, gid) sv_setiv((sv), (IV)(gid))
2687 # define SvGID(sv) SvIV(sv)
2689 # define sv_setgid(sv, gid) sv_setuv((sv), (UV)(gid))
2690 # define SvGID(sv) SvUV(sv)
2691 # endif /* Gid_t_size */
2695 #endif /* PERL_HANDY_H_ */
2698 * ex: set ts=8 sts=4 sw=4 et: