3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by Larry Wall
7 * You may distribute under the terms of either the GNU General Public
8 * License or the Artistic License, as specified in the README file.
13 * 'I wonder what the Entish is for "yes" and "no",' he thought.
16 * [p.480 of _The Lord of the Rings_, III/iv: "Treebeard"]
22 * This file contains the code that creates, manipulates and destroys
23 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
24 * structure of an SV, so their creation and destruction is handled
25 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
26 * level functions (eg. substr, split, join) for each of the types are
36 # if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L && !defined(VMS)
45 /* Missing proto on LynxOS */
46 char *gconvert(double, int, int, char *);
49 /* void Gconvert: on Linux at least, gcvt (which Gconvert gets deffed to),
50 * has a mandatory return value, even though that value is just the same
53 #define V_Gconvert(x,n,t,b) \
55 char *rc = (char *)Gconvert(x,n,t,b); \
56 PERL_UNUSED_VAR(rc); \
60 #ifdef PERL_UTF8_CACHE_ASSERT
61 /* if adding more checks watch out for the following tests:
62 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
63 * lib/utf8.t lib/Unicode/Collate/t/index.t
66 # define ASSERT_UTF8_CACHE(cache) \
67 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
68 assert((cache)[2] <= (cache)[3]); \
69 assert((cache)[3] <= (cache)[1]);} \
72 # define ASSERT_UTF8_CACHE(cache) NOOP
75 #ifdef PERL_OLD_COPY_ON_WRITE
76 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
77 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
80 /* ============================================================================
82 =head1 Allocation and deallocation of SVs.
84 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
85 sv, av, hv...) contains type and reference count information, and for
86 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
87 contains fields specific to each type. Some types store all they need
88 in the head, so don't have a body.
90 In all but the most memory-paranoid configurations (ex: PURIFY), heads
91 and bodies are allocated out of arenas, which by default are
92 approximately 4K chunks of memory parcelled up into N heads or bodies.
93 Sv-bodies are allocated by their sv-type, guaranteeing size
94 consistency needed to allocate safely from arrays.
96 For SV-heads, the first slot in each arena is reserved, and holds a
97 link to the next arena, some flags, and a note of the number of slots.
98 Snaked through each arena chain is a linked list of free items; when
99 this becomes empty, an extra arena is allocated and divided up into N
100 items which are threaded into the free list.
102 SV-bodies are similar, but they use arena-sets by default, which
103 separate the link and info from the arena itself, and reclaim the 1st
104 slot in the arena. SV-bodies are further described later.
106 The following global variables are associated with arenas:
108 PL_sv_arenaroot pointer to list of SV arenas
109 PL_sv_root pointer to list of free SV structures
111 PL_body_arenas head of linked-list of body arenas
112 PL_body_roots[] array of pointers to list of free bodies of svtype
113 arrays are indexed by the svtype needed
115 A few special SV heads are not allocated from an arena, but are
116 instead directly created in the interpreter structure, eg PL_sv_undef.
117 The size of arenas can be changed from the default by setting
118 PERL_ARENA_SIZE appropriately at compile time.
120 The SV arena serves the secondary purpose of allowing still-live SVs
121 to be located and destroyed during final cleanup.
123 At the lowest level, the macros new_SV() and del_SV() grab and free
124 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
125 to return the SV to the free list with error checking.) new_SV() calls
126 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
127 SVs in the free list have their SvTYPE field set to all ones.
129 At the time of very final cleanup, sv_free_arenas() is called from
130 perl_destruct() to physically free all the arenas allocated since the
131 start of the interpreter.
133 The function visit() scans the SV arenas list, and calls a specified
134 function for each SV it finds which is still live - ie which has an SvTYPE
135 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
136 following functions (specified as [function that calls visit()] / [function
137 called by visit() for each SV]):
139 sv_report_used() / do_report_used()
140 dump all remaining SVs (debugging aid)
142 sv_clean_objs() / do_clean_objs(),do_clean_named_objs(),
143 do_clean_named_io_objs(),do_curse()
144 Attempt to free all objects pointed to by RVs,
145 try to do the same for all objects indir-
146 ectly referenced by typeglobs too, and
147 then do a final sweep, cursing any
148 objects that remain. Called once from
149 perl_destruct(), prior to calling sv_clean_all()
152 sv_clean_all() / do_clean_all()
153 SvREFCNT_dec(sv) each remaining SV, possibly
154 triggering an sv_free(). It also sets the
155 SVf_BREAK flag on the SV to indicate that the
156 refcnt has been artificially lowered, and thus
157 stopping sv_free() from giving spurious warnings
158 about SVs which unexpectedly have a refcnt
159 of zero. called repeatedly from perl_destruct()
160 until there are no SVs left.
162 =head2 Arena allocator API Summary
164 Private API to rest of sv.c
168 new_XPVNV(), del_XPVGV(),
173 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
177 * ========================================================================= */
180 * "A time to plant, and a time to uproot what was planted..."
184 # define MEM_LOG_NEW_SV(sv, file, line, func) \
185 Perl_mem_log_new_sv(sv, file, line, func)
186 # define MEM_LOG_DEL_SV(sv, file, line, func) \
187 Perl_mem_log_del_sv(sv, file, line, func)
189 # define MEM_LOG_NEW_SV(sv, file, line, func) NOOP
190 # define MEM_LOG_DEL_SV(sv, file, line, func) NOOP
193 #ifdef DEBUG_LEAKING_SCALARS
194 # define FREE_SV_DEBUG_FILE(sv) STMT_START { \
195 if ((sv)->sv_debug_file) PerlMemShared_free((sv)->sv_debug_file); \
197 # define DEBUG_SV_SERIAL(sv) \
198 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) del_SV\n", \
199 PTR2UV(sv), (long)(sv)->sv_debug_serial))
201 # define FREE_SV_DEBUG_FILE(sv)
202 # define DEBUG_SV_SERIAL(sv) NOOP
206 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
207 # define SvARENA_CHAIN_SET(sv,val) (sv)->sv_u.svu_rv = MUTABLE_SV((val))
208 /* Whilst I'd love to do this, it seems that things like to check on
210 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
212 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
213 PoisonNew(&SvREFCNT(sv), 1, U32)
215 # define SvARENA_CHAIN(sv) SvANY(sv)
216 # define SvARENA_CHAIN_SET(sv,val) SvANY(sv) = (void *)(val)
217 # define POSION_SV_HEAD(sv)
220 /* Mark an SV head as unused, and add to free list.
222 * If SVf_BREAK is set, skip adding it to the free list, as this SV had
223 * its refcount artificially decremented during global destruction, so
224 * there may be dangling pointers to it. The last thing we want in that
225 * case is for it to be reused. */
227 #define plant_SV(p) \
229 const U32 old_flags = SvFLAGS(p); \
230 MEM_LOG_DEL_SV(p, __FILE__, __LINE__, FUNCTION__); \
231 DEBUG_SV_SERIAL(p); \
232 FREE_SV_DEBUG_FILE(p); \
234 SvFLAGS(p) = SVTYPEMASK; \
235 if (!(old_flags & SVf_BREAK)) { \
236 SvARENA_CHAIN_SET(p, PL_sv_root); \
242 #define uproot_SV(p) \
245 PL_sv_root = MUTABLE_SV(SvARENA_CHAIN(p)); \
250 /* make some more SVs by adding another arena */
257 char *chunk; /* must use New here to match call to */
258 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
259 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
264 /* new_SV(): return a new, empty SV head */
266 #ifdef DEBUG_LEAKING_SCALARS
267 /* provide a real function for a debugger to play with */
269 S_new_SV(pTHX_ const char *file, int line, const char *func)
276 sv = S_more_sv(aTHX);
280 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
281 sv->sv_debug_line = (U16) (PL_parser && PL_parser->copline != NOLINE
287 sv->sv_debug_inpad = 0;
288 sv->sv_debug_parent = NULL;
289 sv->sv_debug_file = PL_curcop ? savesharedpv(CopFILE(PL_curcop)): NULL;
291 sv->sv_debug_serial = PL_sv_serial++;
293 MEM_LOG_NEW_SV(sv, file, line, func);
294 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) new_SV (from %s:%d [%s])\n",
295 PTR2UV(sv), (long)sv->sv_debug_serial, file, line, func));
299 # define new_SV(p) (p)=S_new_SV(aTHX_ __FILE__, __LINE__, FUNCTION__)
307 (p) = S_more_sv(aTHX); \
311 MEM_LOG_NEW_SV(p, __FILE__, __LINE__, FUNCTION__); \
316 /* del_SV(): return an empty SV head to the free list */
329 S_del_sv(pTHX_ SV *p)
333 PERL_ARGS_ASSERT_DEL_SV;
338 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
339 const SV * const sv = sva + 1;
340 const SV * const svend = &sva[SvREFCNT(sva)];
341 if (p >= sv && p < svend) {
347 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
348 "Attempt to free non-arena SV: 0x%"UVxf
349 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
356 #else /* ! DEBUGGING */
358 #define del_SV(p) plant_SV(p)
360 #endif /* DEBUGGING */
364 =head1 SV Manipulation Functions
366 =for apidoc sv_add_arena
368 Given a chunk of memory, link it to the head of the list of arenas,
369 and split it into a list of free SVs.
375 S_sv_add_arena(pTHX_ char *const ptr, const U32 size, const U32 flags)
378 SV *const sva = MUTABLE_SV(ptr);
382 PERL_ARGS_ASSERT_SV_ADD_ARENA;
384 /* The first SV in an arena isn't an SV. */
385 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
386 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
387 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
389 PL_sv_arenaroot = sva;
390 PL_sv_root = sva + 1;
392 svend = &sva[SvREFCNT(sva) - 1];
395 SvARENA_CHAIN_SET(sv, (sv + 1));
399 /* Must always set typemask because it's always checked in on cleanup
400 when the arenas are walked looking for objects. */
401 SvFLAGS(sv) = SVTYPEMASK;
404 SvARENA_CHAIN_SET(sv, 0);
408 SvFLAGS(sv) = SVTYPEMASK;
411 /* visit(): call the named function for each non-free SV in the arenas
412 * whose flags field matches the flags/mask args. */
415 S_visit(pTHX_ SVFUNC_t f, const U32 flags, const U32 mask)
421 PERL_ARGS_ASSERT_VISIT;
423 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
424 const SV * const svend = &sva[SvREFCNT(sva)];
426 for (sv = sva + 1; sv < svend; ++sv) {
427 if (SvTYPE(sv) != (svtype)SVTYPEMASK
428 && (sv->sv_flags & mask) == flags
441 /* called by sv_report_used() for each live SV */
444 do_report_used(pTHX_ SV *const sv)
446 if (SvTYPE(sv) != (svtype)SVTYPEMASK) {
447 PerlIO_printf(Perl_debug_log, "****\n");
454 =for apidoc sv_report_used
456 Dump the contents of all SVs not yet freed (debugging aid).
462 Perl_sv_report_used(pTHX)
465 visit(do_report_used, 0, 0);
471 /* called by sv_clean_objs() for each live SV */
474 do_clean_objs(pTHX_ SV *const ref)
479 SV * const target = SvRV(ref);
480 if (SvOBJECT(target)) {
481 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
482 if (SvWEAKREF(ref)) {
483 sv_del_backref(target, ref);
489 SvREFCNT_dec_NN(target);
496 /* clear any slots in a GV which hold objects - except IO;
497 * called by sv_clean_objs() for each live GV */
500 do_clean_named_objs(pTHX_ SV *const sv)
504 assert(SvTYPE(sv) == SVt_PVGV);
505 assert(isGV_with_GP(sv));
509 /* freeing GP entries may indirectly free the current GV;
510 * hold onto it while we mess with the GP slots */
513 if ( ((obj = GvSV(sv) )) && SvOBJECT(obj)) {
514 DEBUG_D((PerlIO_printf(Perl_debug_log,
515 "Cleaning named glob SV object:\n "), sv_dump(obj)));
517 SvREFCNT_dec_NN(obj);
519 if ( ((obj = MUTABLE_SV(GvAV(sv)) )) && SvOBJECT(obj)) {
520 DEBUG_D((PerlIO_printf(Perl_debug_log,
521 "Cleaning named glob AV object:\n "), sv_dump(obj)));
523 SvREFCNT_dec_NN(obj);
525 if ( ((obj = MUTABLE_SV(GvHV(sv)) )) && SvOBJECT(obj)) {
526 DEBUG_D((PerlIO_printf(Perl_debug_log,
527 "Cleaning named glob HV object:\n "), sv_dump(obj)));
529 SvREFCNT_dec_NN(obj);
531 if ( ((obj = MUTABLE_SV(GvCV(sv)) )) && SvOBJECT(obj)) {
532 DEBUG_D((PerlIO_printf(Perl_debug_log,
533 "Cleaning named glob CV object:\n "), sv_dump(obj)));
535 SvREFCNT_dec_NN(obj);
537 SvREFCNT_dec_NN(sv); /* undo the inc above */
540 /* clear any IO slots in a GV which hold objects (except stderr, defout);
541 * called by sv_clean_objs() for each live GV */
544 do_clean_named_io_objs(pTHX_ SV *const sv)
548 assert(SvTYPE(sv) == SVt_PVGV);
549 assert(isGV_with_GP(sv));
550 if (!GvGP(sv) || sv == (SV*)PL_stderrgv || sv == (SV*)PL_defoutgv)
554 if ( ((obj = MUTABLE_SV(GvIO(sv)) )) && SvOBJECT(obj)) {
555 DEBUG_D((PerlIO_printf(Perl_debug_log,
556 "Cleaning named glob IO object:\n "), sv_dump(obj)));
558 SvREFCNT_dec_NN(obj);
560 SvREFCNT_dec_NN(sv); /* undo the inc above */
563 /* Void wrapper to pass to visit() */
565 do_curse(pTHX_ SV * const sv) {
566 if ((PL_stderrgv && GvGP(PL_stderrgv) && (SV*)GvIO(PL_stderrgv) == sv)
567 || (PL_defoutgv && GvGP(PL_defoutgv) && (SV*)GvIO(PL_defoutgv) == sv))
573 =for apidoc sv_clean_objs
575 Attempt to destroy all objects not yet freed.
581 Perl_sv_clean_objs(pTHX)
585 PL_in_clean_objs = TRUE;
586 visit(do_clean_objs, SVf_ROK, SVf_ROK);
587 /* Some barnacles may yet remain, clinging to typeglobs.
588 * Run the non-IO destructors first: they may want to output
589 * error messages, close files etc */
590 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
591 visit(do_clean_named_io_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
592 /* And if there are some very tenacious barnacles clinging to arrays,
593 closures, or what have you.... */
594 visit(do_curse, SVs_OBJECT, SVs_OBJECT);
595 olddef = PL_defoutgv;
596 PL_defoutgv = NULL; /* disable skip of PL_defoutgv */
597 if (olddef && isGV_with_GP(olddef))
598 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olddef));
599 olderr = PL_stderrgv;
600 PL_stderrgv = NULL; /* disable skip of PL_stderrgv */
601 if (olderr && isGV_with_GP(olderr))
602 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olderr));
603 SvREFCNT_dec(olddef);
604 PL_in_clean_objs = FALSE;
607 /* called by sv_clean_all() for each live SV */
610 do_clean_all(pTHX_ SV *const sv)
613 if (sv == (const SV *) PL_fdpid || sv == (const SV *)PL_strtab) {
614 /* don't clean pid table and strtab */
617 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
618 SvFLAGS(sv) |= SVf_BREAK;
623 =for apidoc sv_clean_all
625 Decrement the refcnt of each remaining SV, possibly triggering a
626 cleanup. This function may have to be called multiple times to free
627 SVs which are in complex self-referential hierarchies.
633 Perl_sv_clean_all(pTHX)
637 PL_in_clean_all = TRUE;
638 cleaned = visit(do_clean_all, 0,0);
643 ARENASETS: a meta-arena implementation which separates arena-info
644 into struct arena_set, which contains an array of struct
645 arena_descs, each holding info for a single arena. By separating
646 the meta-info from the arena, we recover the 1st slot, formerly
647 borrowed for list management. The arena_set is about the size of an
648 arena, avoiding the needless malloc overhead of a naive linked-list.
650 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
651 memory in the last arena-set (1/2 on average). In trade, we get
652 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
653 smaller types). The recovery of the wasted space allows use of
654 small arenas for large, rare body types, by changing array* fields
655 in body_details_by_type[] below.
658 char *arena; /* the raw storage, allocated aligned */
659 size_t size; /* its size ~4k typ */
660 svtype utype; /* bodytype stored in arena */
665 /* Get the maximum number of elements in set[] such that struct arena_set
666 will fit within PERL_ARENA_SIZE, which is probably just under 4K, and
667 therefore likely to be 1 aligned memory page. */
669 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
670 - 2 * sizeof(int)) / sizeof (struct arena_desc))
673 struct arena_set* next;
674 unsigned int set_size; /* ie ARENAS_PER_SET */
675 unsigned int curr; /* index of next available arena-desc */
676 struct arena_desc set[ARENAS_PER_SET];
680 =for apidoc sv_free_arenas
682 Deallocate the memory used by all arenas. Note that all the individual SV
683 heads and bodies within the arenas must already have been freed.
688 Perl_sv_free_arenas(pTHX)
695 /* Free arenas here, but be careful about fake ones. (We assume
696 contiguity of the fake ones with the corresponding real ones.) */
698 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
699 svanext = MUTABLE_SV(SvANY(sva));
700 while (svanext && SvFAKE(svanext))
701 svanext = MUTABLE_SV(SvANY(svanext));
708 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
711 struct arena_set *current = aroot;
714 assert(aroot->set[i].arena);
715 Safefree(aroot->set[i].arena);
723 i = PERL_ARENA_ROOTS_SIZE;
725 PL_body_roots[i] = 0;
732 Here are mid-level routines that manage the allocation of bodies out
733 of the various arenas. There are 5 kinds of arenas:
735 1. SV-head arenas, which are discussed and handled above
736 2. regular body arenas
737 3. arenas for reduced-size bodies
740 Arena types 2 & 3 are chained by body-type off an array of
741 arena-root pointers, which is indexed by svtype. Some of the
742 larger/less used body types are malloced singly, since a large
743 unused block of them is wasteful. Also, several svtypes dont have
744 bodies; the data fits into the sv-head itself. The arena-root
745 pointer thus has a few unused root-pointers (which may be hijacked
746 later for arena types 4,5)
748 3 differs from 2 as an optimization; some body types have several
749 unused fields in the front of the structure (which are kept in-place
750 for consistency). These bodies can be allocated in smaller chunks,
751 because the leading fields arent accessed. Pointers to such bodies
752 are decremented to point at the unused 'ghost' memory, knowing that
753 the pointers are used with offsets to the real memory.
756 =head1 SV-Body Allocation
758 Allocation of SV-bodies is similar to SV-heads, differing as follows;
759 the allocation mechanism is used for many body types, so is somewhat
760 more complicated, it uses arena-sets, and has no need for still-live
763 At the outermost level, (new|del)_X*V macros return bodies of the
764 appropriate type. These macros call either (new|del)_body_type or
765 (new|del)_body_allocated macro pairs, depending on specifics of the
766 type. Most body types use the former pair, the latter pair is used to
767 allocate body types with "ghost fields".
769 "ghost fields" are fields that are unused in certain types, and
770 consequently don't need to actually exist. They are declared because
771 they're part of a "base type", which allows use of functions as
772 methods. The simplest examples are AVs and HVs, 2 aggregate types
773 which don't use the fields which support SCALAR semantics.
775 For these types, the arenas are carved up into appropriately sized
776 chunks, we thus avoid wasted memory for those unaccessed members.
777 When bodies are allocated, we adjust the pointer back in memory by the
778 size of the part not allocated, so it's as if we allocated the full
779 structure. (But things will all go boom if you write to the part that
780 is "not there", because you'll be overwriting the last members of the
781 preceding structure in memory.)
783 We calculate the correction using the STRUCT_OFFSET macro on the first
784 member present. If the allocated structure is smaller (no initial NV
785 actually allocated) then the net effect is to subtract the size of the NV
786 from the pointer, to return a new pointer as if an initial NV were actually
787 allocated. (We were using structures named *_allocated for this, but
788 this turned out to be a subtle bug, because a structure without an NV
789 could have a lower alignment constraint, but the compiler is allowed to
790 optimised accesses based on the alignment constraint of the actual pointer
791 to the full structure, for example, using a single 64 bit load instruction
792 because it "knows" that two adjacent 32 bit members will be 8-byte aligned.)
794 This is the same trick as was used for NV and IV bodies. Ironically it
795 doesn't need to be used for NV bodies any more, because NV is now at
796 the start of the structure. IV bodies don't need it either, because
797 they are no longer allocated.
799 In turn, the new_body_* allocators call S_new_body(), which invokes
800 new_body_inline macro, which takes a lock, and takes a body off the
801 linked list at PL_body_roots[sv_type], calling Perl_more_bodies() if
802 necessary to refresh an empty list. Then the lock is released, and
803 the body is returned.
805 Perl_more_bodies allocates a new arena, and carves it up into an array of N
806 bodies, which it strings into a linked list. It looks up arena-size
807 and body-size from the body_details table described below, thus
808 supporting the multiple body-types.
810 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
811 the (new|del)_X*V macros are mapped directly to malloc/free.
813 For each sv-type, struct body_details bodies_by_type[] carries
814 parameters which control these aspects of SV handling:
816 Arena_size determines whether arenas are used for this body type, and if
817 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
818 zero, forcing individual mallocs and frees.
820 Body_size determines how big a body is, and therefore how many fit into
821 each arena. Offset carries the body-pointer adjustment needed for
822 "ghost fields", and is used in *_allocated macros.
824 But its main purpose is to parameterize info needed in
825 Perl_sv_upgrade(). The info here dramatically simplifies the function
826 vs the implementation in 5.8.8, making it table-driven. All fields
827 are used for this, except for arena_size.
829 For the sv-types that have no bodies, arenas are not used, so those
830 PL_body_roots[sv_type] are unused, and can be overloaded. In
831 something of a special case, SVt_NULL is borrowed for HE arenas;
832 PL_body_roots[HE_SVSLOT=SVt_NULL] is filled by S_more_he, but the
833 bodies_by_type[SVt_NULL] slot is not used, as the table is not
838 struct body_details {
839 U8 body_size; /* Size to allocate */
840 U8 copy; /* Size of structure to copy (may be shorter) */
842 unsigned int type : 4; /* We have space for a sanity check. */
843 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
844 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
845 unsigned int arena : 1; /* Allocated from an arena */
846 size_t arena_size; /* Size of arena to allocate */
854 /* With -DPURFIY we allocate everything directly, and don't use arenas.
855 This seems a rather elegant way to simplify some of the code below. */
856 #define HASARENA FALSE
858 #define HASARENA TRUE
860 #define NOARENA FALSE
862 /* Size the arenas to exactly fit a given number of bodies. A count
863 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
864 simplifying the default. If count > 0, the arena is sized to fit
865 only that many bodies, allowing arenas to be used for large, rare
866 bodies (XPVFM, XPVIO) without undue waste. The arena size is
867 limited by PERL_ARENA_SIZE, so we can safely oversize the
870 #define FIT_ARENA0(body_size) \
871 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
872 #define FIT_ARENAn(count,body_size) \
873 ( count * body_size <= PERL_ARENA_SIZE) \
874 ? count * body_size \
875 : FIT_ARENA0 (body_size)
876 #define FIT_ARENA(count,body_size) \
878 ? FIT_ARENAn (count, body_size) \
879 : FIT_ARENA0 (body_size)
881 /* Calculate the length to copy. Specifically work out the length less any
882 final padding the compiler needed to add. See the comment in sv_upgrade
883 for why copying the padding proved to be a bug. */
885 #define copy_length(type, last_member) \
886 STRUCT_OFFSET(type, last_member) \
887 + sizeof (((type*)SvANY((const SV *)0))->last_member)
889 static const struct body_details bodies_by_type[] = {
890 /* HEs use this offset for their arena. */
891 { 0, 0, 0, SVt_NULL, FALSE, NONV, NOARENA, 0 },
893 /* IVs are in the head, so the allocation size is 0. */
895 sizeof(IV), /* This is used to copy out the IV body. */
896 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
897 NOARENA /* IVS don't need an arena */, 0
900 { sizeof(NV), sizeof(NV),
901 STRUCT_OFFSET(XPVNV, xnv_u),
902 SVt_NV, FALSE, HADNV, HASARENA, FIT_ARENA(0, sizeof(NV)) },
904 { sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur),
905 copy_length(XPV, xpv_len) - STRUCT_OFFSET(XPV, xpv_cur),
906 + STRUCT_OFFSET(XPV, xpv_cur),
907 SVt_PV, FALSE, NONV, HASARENA,
908 FIT_ARENA(0, sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur)) },
910 { sizeof(XINVLIST) - STRUCT_OFFSET(XPV, xpv_cur),
911 copy_length(XINVLIST, is_offset) - STRUCT_OFFSET(XPV, xpv_cur),
912 + STRUCT_OFFSET(XPV, xpv_cur),
913 SVt_INVLIST, TRUE, NONV, HASARENA,
914 FIT_ARENA(0, sizeof(XINVLIST) - STRUCT_OFFSET(XPV, xpv_cur)) },
916 { sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur),
917 copy_length(XPVIV, xiv_u) - STRUCT_OFFSET(XPV, xpv_cur),
918 + STRUCT_OFFSET(XPV, xpv_cur),
919 SVt_PVIV, FALSE, NONV, HASARENA,
920 FIT_ARENA(0, sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur)) },
922 { sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur),
923 copy_length(XPVNV, xnv_u) - STRUCT_OFFSET(XPV, xpv_cur),
924 + STRUCT_OFFSET(XPV, xpv_cur),
925 SVt_PVNV, FALSE, HADNV, HASARENA,
926 FIT_ARENA(0, sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur)) },
928 { sizeof(XPVMG), copy_length(XPVMG, xnv_u), 0, SVt_PVMG, FALSE, HADNV,
929 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
934 SVt_REGEXP, TRUE, NONV, HASARENA,
935 FIT_ARENA(0, sizeof(regexp))
938 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
939 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
941 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
942 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
945 copy_length(XPVAV, xav_alloc),
947 SVt_PVAV, TRUE, NONV, HASARENA,
948 FIT_ARENA(0, sizeof(XPVAV)) },
951 copy_length(XPVHV, xhv_max),
953 SVt_PVHV, TRUE, NONV, HASARENA,
954 FIT_ARENA(0, sizeof(XPVHV)) },
959 SVt_PVCV, TRUE, NONV, HASARENA,
960 FIT_ARENA(0, sizeof(XPVCV)) },
965 SVt_PVFM, TRUE, NONV, NOARENA,
966 FIT_ARENA(20, sizeof(XPVFM)) },
971 SVt_PVIO, TRUE, NONV, HASARENA,
972 FIT_ARENA(24, sizeof(XPVIO)) },
975 #define new_body_allocated(sv_type) \
976 (void *)((char *)S_new_body(aTHX_ sv_type) \
977 - bodies_by_type[sv_type].offset)
979 /* return a thing to the free list */
981 #define del_body(thing, root) \
983 void ** const thing_copy = (void **)thing; \
984 *thing_copy = *root; \
985 *root = (void*)thing_copy; \
990 #define new_XNV() safemalloc(sizeof(XPVNV))
991 #define new_XPVNV() safemalloc(sizeof(XPVNV))
992 #define new_XPVMG() safemalloc(sizeof(XPVMG))
994 #define del_XPVGV(p) safefree(p)
998 #define new_XNV() new_body_allocated(SVt_NV)
999 #define new_XPVNV() new_body_allocated(SVt_PVNV)
1000 #define new_XPVMG() new_body_allocated(SVt_PVMG)
1002 #define del_XPVGV(p) del_body(p + bodies_by_type[SVt_PVGV].offset, \
1003 &PL_body_roots[SVt_PVGV])
1007 /* no arena for you! */
1009 #define new_NOARENA(details) \
1010 safemalloc((details)->body_size + (details)->offset)
1011 #define new_NOARENAZ(details) \
1012 safecalloc((details)->body_size + (details)->offset, 1)
1015 Perl_more_bodies (pTHX_ const svtype sv_type, const size_t body_size,
1016 const size_t arena_size)
1019 void ** const root = &PL_body_roots[sv_type];
1020 struct arena_desc *adesc;
1021 struct arena_set *aroot = (struct arena_set *) PL_body_arenas;
1025 const size_t good_arena_size = Perl_malloc_good_size(arena_size);
1026 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1027 static bool done_sanity_check;
1029 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1030 * variables like done_sanity_check. */
1031 if (!done_sanity_check) {
1032 unsigned int i = SVt_LAST;
1034 done_sanity_check = TRUE;
1037 assert (bodies_by_type[i].type == i);
1043 /* may need new arena-set to hold new arena */
1044 if (!aroot || aroot->curr >= aroot->set_size) {
1045 struct arena_set *newroot;
1046 Newxz(newroot, 1, struct arena_set);
1047 newroot->set_size = ARENAS_PER_SET;
1048 newroot->next = aroot;
1050 PL_body_arenas = (void *) newroot;
1051 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
1054 /* ok, now have arena-set with at least 1 empty/available arena-desc */
1055 curr = aroot->curr++;
1056 adesc = &(aroot->set[curr]);
1057 assert(!adesc->arena);
1059 Newx(adesc->arena, good_arena_size, char);
1060 adesc->size = good_arena_size;
1061 adesc->utype = sv_type;
1062 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %"UVuf"\n",
1063 curr, (void*)adesc->arena, (UV)good_arena_size));
1065 start = (char *) adesc->arena;
1067 /* Get the address of the byte after the end of the last body we can fit.
1068 Remember, this is integer division: */
1069 end = start + good_arena_size / body_size * body_size;
1071 /* computed count doesn't reflect the 1st slot reservation */
1072 #if defined(MYMALLOC) || defined(HAS_MALLOC_GOOD_SIZE)
1073 DEBUG_m(PerlIO_printf(Perl_debug_log,
1074 "arena %p end %p arena-size %d (from %d) type %d "
1076 (void*)start, (void*)end, (int)good_arena_size,
1077 (int)arena_size, sv_type, (int)body_size,
1078 (int)good_arena_size / (int)body_size));
1080 DEBUG_m(PerlIO_printf(Perl_debug_log,
1081 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1082 (void*)start, (void*)end,
1083 (int)arena_size, sv_type, (int)body_size,
1084 (int)good_arena_size / (int)body_size));
1086 *root = (void *)start;
1089 /* Where the next body would start: */
1090 char * const next = start + body_size;
1093 /* This is the last body: */
1094 assert(next == end);
1096 *(void **)start = 0;
1100 *(void**) start = (void *)next;
1105 /* grab a new thing from the free list, allocating more if necessary.
1106 The inline version is used for speed in hot routines, and the
1107 function using it serves the rest (unless PURIFY).
1109 #define new_body_inline(xpv, sv_type) \
1111 void ** const r3wt = &PL_body_roots[sv_type]; \
1112 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1113 ? *((void **)(r3wt)) : Perl_more_bodies(aTHX_ sv_type, \
1114 bodies_by_type[sv_type].body_size,\
1115 bodies_by_type[sv_type].arena_size)); \
1116 *(r3wt) = *(void**)(xpv); \
1122 S_new_body(pTHX_ const svtype sv_type)
1126 new_body_inline(xpv, sv_type);
1132 static const struct body_details fake_rv =
1133 { 0, 0, 0, SVt_IV, FALSE, NONV, NOARENA, 0 };
1136 =for apidoc sv_upgrade
1138 Upgrade an SV to a more complex form. Generally adds a new body type to the
1139 SV, then copies across as much information as possible from the old body.
1140 It croaks if the SV is already in a more complex form than requested. You
1141 generally want to use the C<SvUPGRADE> macro wrapper, which checks the type
1142 before calling C<sv_upgrade>, and hence does not croak. See also
1149 Perl_sv_upgrade(pTHX_ SV *const sv, svtype new_type)
1154 const svtype old_type = SvTYPE(sv);
1155 const struct body_details *new_type_details;
1156 const struct body_details *old_type_details
1157 = bodies_by_type + old_type;
1158 SV *referant = NULL;
1160 PERL_ARGS_ASSERT_SV_UPGRADE;
1162 if (old_type == new_type)
1165 /* This clause was purposefully added ahead of the early return above to
1166 the shared string hackery for (sort {$a <=> $b} keys %hash), with the
1167 inference by Nick I-S that it would fix other troublesome cases. See
1168 changes 7162, 7163 (f130fd4589cf5fbb24149cd4db4137c8326f49c1 and parent)
1170 Given that shared hash key scalars are no longer PVIV, but PV, there is
1171 no longer need to unshare so as to free up the IVX slot for its proper
1172 purpose. So it's safe to move the early return earlier. */
1174 if (new_type > SVt_PVMG && SvIsCOW(sv)) {
1175 sv_force_normal_flags(sv, 0);
1178 old_body = SvANY(sv);
1180 /* Copying structures onto other structures that have been neatly zeroed
1181 has a subtle gotcha. Consider XPVMG
1183 +------+------+------+------+------+-------+-------+
1184 | NV | CUR | LEN | IV | MAGIC | STASH |
1185 +------+------+------+------+------+-------+-------+
1186 0 4 8 12 16 20 24 28
1188 where NVs are aligned to 8 bytes, so that sizeof that structure is
1189 actually 32 bytes long, with 4 bytes of padding at the end:
1191 +------+------+------+------+------+-------+-------+------+
1192 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1193 +------+------+------+------+------+-------+-------+------+
1194 0 4 8 12 16 20 24 28 32
1196 so what happens if you allocate memory for this structure:
1198 +------+------+------+------+------+-------+-------+------+------+...
1199 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1200 +------+------+------+------+------+-------+-------+------+------+...
1201 0 4 8 12 16 20 24 28 32 36
1203 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1204 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1205 started out as zero once, but it's quite possible that it isn't. So now,
1206 rather than a nicely zeroed GP, you have it pointing somewhere random.
1209 (In fact, GP ends up pointing at a previous GP structure, because the
1210 principle cause of the padding in XPVMG getting garbage is a copy of
1211 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1212 this happens to be moot because XPVGV has been re-ordered, with GP
1213 no longer after STASH)
1215 So we are careful and work out the size of used parts of all the
1223 referant = SvRV(sv);
1224 old_type_details = &fake_rv;
1225 if (new_type == SVt_NV)
1226 new_type = SVt_PVNV;
1228 if (new_type < SVt_PVIV) {
1229 new_type = (new_type == SVt_NV)
1230 ? SVt_PVNV : SVt_PVIV;
1235 if (new_type < SVt_PVNV) {
1236 new_type = SVt_PVNV;
1240 assert(new_type > SVt_PV);
1241 assert(SVt_IV < SVt_PV);
1242 assert(SVt_NV < SVt_PV);
1249 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1250 there's no way that it can be safely upgraded, because perl.c
1251 expects to Safefree(SvANY(PL_mess_sv)) */
1252 assert(sv != PL_mess_sv);
1253 /* This flag bit is used to mean other things in other scalar types.
1254 Given that it only has meaning inside the pad, it shouldn't be set
1255 on anything that can get upgraded. */
1256 assert(!SvPAD_TYPED(sv));
1259 if (UNLIKELY(old_type_details->cant_upgrade))
1260 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1261 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1264 if (UNLIKELY(old_type > new_type))
1265 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1266 (int)old_type, (int)new_type);
1268 new_type_details = bodies_by_type + new_type;
1270 SvFLAGS(sv) &= ~SVTYPEMASK;
1271 SvFLAGS(sv) |= new_type;
1273 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1274 the return statements above will have triggered. */
1275 assert (new_type != SVt_NULL);
1278 assert(old_type == SVt_NULL);
1279 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1283 assert(old_type == SVt_NULL);
1284 SvANY(sv) = new_XNV();
1289 assert(new_type_details->body_size);
1292 assert(new_type_details->arena);
1293 assert(new_type_details->arena_size);
1294 /* This points to the start of the allocated area. */
1295 new_body_inline(new_body, new_type);
1296 Zero(new_body, new_type_details->body_size, char);
1297 new_body = ((char *)new_body) - new_type_details->offset;
1299 /* We always allocated the full length item with PURIFY. To do this
1300 we fake things so that arena is false for all 16 types.. */
1301 new_body = new_NOARENAZ(new_type_details);
1303 SvANY(sv) = new_body;
1304 if (new_type == SVt_PVAV) {
1308 if (old_type_details->body_size) {
1311 /* It will have been zeroed when the new body was allocated.
1312 Lets not write to it, in case it confuses a write-back
1318 #ifndef NODEFAULT_SHAREKEYS
1319 HvSHAREKEYS_on(sv); /* key-sharing on by default */
1321 /* start with PERL_HASH_DEFAULT_HvMAX+1 buckets: */
1322 HvMAX(sv) = PERL_HASH_DEFAULT_HvMAX;
1325 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1326 The target created by newSVrv also is, and it can have magic.
1327 However, it never has SvPVX set.
1329 if (old_type == SVt_IV) {
1331 } else if (old_type >= SVt_PV) {
1332 assert(SvPVX_const(sv) == 0);
1335 if (old_type >= SVt_PVMG) {
1336 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1337 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1339 sv->sv_u.svu_array = NULL; /* or svu_hash */
1344 /* XXX Is this still needed? Was it ever needed? Surely as there is
1345 no route from NV to PVIV, NOK can never be true */
1346 assert(!SvNOKp(sv));
1359 assert(new_type_details->body_size);
1360 /* We always allocated the full length item with PURIFY. To do this
1361 we fake things so that arena is false for all 16 types.. */
1362 if(new_type_details->arena) {
1363 /* This points to the start of the allocated area. */
1364 new_body_inline(new_body, new_type);
1365 Zero(new_body, new_type_details->body_size, char);
1366 new_body = ((char *)new_body) - new_type_details->offset;
1368 new_body = new_NOARENAZ(new_type_details);
1370 SvANY(sv) = new_body;
1372 if (old_type_details->copy) {
1373 /* There is now the potential for an upgrade from something without
1374 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1375 int offset = old_type_details->offset;
1376 int length = old_type_details->copy;
1378 if (new_type_details->offset > old_type_details->offset) {
1379 const int difference
1380 = new_type_details->offset - old_type_details->offset;
1381 offset += difference;
1382 length -= difference;
1384 assert (length >= 0);
1386 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1390 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1391 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1392 * correct 0.0 for us. Otherwise, if the old body didn't have an
1393 * NV slot, but the new one does, then we need to initialise the
1394 * freshly created NV slot with whatever the correct bit pattern is
1396 if (old_type_details->zero_nv && !new_type_details->zero_nv
1397 && !isGV_with_GP(sv))
1401 if (UNLIKELY(new_type == SVt_PVIO)) {
1402 IO * const io = MUTABLE_IO(sv);
1403 GV *iogv = gv_fetchpvs("IO::File::", GV_ADD, SVt_PVHV);
1406 /* Clear the stashcache because a new IO could overrule a package
1408 DEBUG_o(Perl_deb(aTHX_ "sv_upgrade clearing PL_stashcache\n"));
1409 hv_clear(PL_stashcache);
1411 SvSTASH_set(io, MUTABLE_HV(SvREFCNT_inc(GvHV(iogv))));
1412 IoPAGE_LEN(sv) = 60;
1414 if (UNLIKELY(new_type == SVt_REGEXP))
1415 sv->sv_u.svu_rx = (regexp *)new_body;
1416 else if (old_type < SVt_PV) {
1417 /* referant will be NULL unless the old type was SVt_IV emulating
1419 sv->sv_u.svu_rv = referant;
1423 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1424 (unsigned long)new_type);
1427 if (old_type > SVt_IV) {
1431 /* Note that there is an assumption that all bodies of types that
1432 can be upgraded came from arenas. Only the more complex non-
1433 upgradable types are allowed to be directly malloc()ed. */
1434 assert(old_type_details->arena);
1435 del_body((void*)((char*)old_body + old_type_details->offset),
1436 &PL_body_roots[old_type]);
1442 =for apidoc sv_backoff
1444 Remove any string offset. You should normally use the C<SvOOK_off> macro
1451 Perl_sv_backoff(pTHX_ SV *const sv)
1454 const char * const s = SvPVX_const(sv);
1456 PERL_ARGS_ASSERT_SV_BACKOFF;
1457 PERL_UNUSED_CONTEXT;
1460 assert(SvTYPE(sv) != SVt_PVHV);
1461 assert(SvTYPE(sv) != SVt_PVAV);
1463 SvOOK_offset(sv, delta);
1465 SvLEN_set(sv, SvLEN(sv) + delta);
1466 SvPV_set(sv, SvPVX(sv) - delta);
1467 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1468 SvFLAGS(sv) &= ~SVf_OOK;
1475 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1476 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1477 Use the C<SvGROW> wrapper instead.
1482 static void S_sv_uncow(pTHX_ SV * const sv, const U32 flags);
1485 Perl_sv_grow(pTHX_ SV *const sv, STRLEN newlen)
1489 PERL_ARGS_ASSERT_SV_GROW;
1493 if (SvTYPE(sv) < SVt_PV) {
1494 sv_upgrade(sv, SVt_PV);
1495 s = SvPVX_mutable(sv);
1497 else if (SvOOK(sv)) { /* pv is offset? */
1499 s = SvPVX_mutable(sv);
1500 if (newlen > SvLEN(sv))
1501 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1505 if (SvIsCOW(sv)) S_sv_uncow(aTHX_ sv, 0);
1506 s = SvPVX_mutable(sv);
1509 #ifdef PERL_NEW_COPY_ON_WRITE
1510 /* the new COW scheme uses SvPVX(sv)[SvLEN(sv)-1] (if spare)
1511 * to store the COW count. So in general, allocate one more byte than
1512 * asked for, to make it likely this byte is always spare: and thus
1513 * make more strings COW-able.
1514 * If the new size is a big power of two, don't bother: we assume the
1515 * caller wanted a nice 2^N sized block and will be annoyed at getting
1521 if (newlen > SvLEN(sv)) { /* need more room? */
1522 STRLEN minlen = SvCUR(sv);
1523 minlen += (minlen >> PERL_STRLEN_EXPAND_SHIFT) + 10;
1524 if (newlen < minlen)
1526 #ifndef Perl_safesysmalloc_size
1527 newlen = PERL_STRLEN_ROUNDUP(newlen);
1529 if (SvLEN(sv) && s) {
1530 s = (char*)saferealloc(s, newlen);
1533 s = (char*)safemalloc(newlen);
1534 if (SvPVX_const(sv) && SvCUR(sv)) {
1535 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1539 #ifdef Perl_safesysmalloc_size
1540 /* Do this here, do it once, do it right, and then we will never get
1541 called back into sv_grow() unless there really is some growing
1543 SvLEN_set(sv, Perl_safesysmalloc_size(s));
1545 SvLEN_set(sv, newlen);
1552 =for apidoc sv_setiv
1554 Copies an integer into the given SV, upgrading first if necessary.
1555 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1561 Perl_sv_setiv(pTHX_ SV *const sv, const IV i)
1565 PERL_ARGS_ASSERT_SV_SETIV;
1567 SV_CHECK_THINKFIRST_COW_DROP(sv);
1568 switch (SvTYPE(sv)) {
1571 sv_upgrade(sv, SVt_IV);
1574 sv_upgrade(sv, SVt_PVIV);
1578 if (!isGV_with_GP(sv))
1585 /* diag_listed_as: Can't coerce %s to %s in %s */
1586 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1590 (void)SvIOK_only(sv); /* validate number */
1596 =for apidoc sv_setiv_mg
1598 Like C<sv_setiv>, but also handles 'set' magic.
1604 Perl_sv_setiv_mg(pTHX_ SV *const sv, const IV i)
1606 PERL_ARGS_ASSERT_SV_SETIV_MG;
1613 =for apidoc sv_setuv
1615 Copies an unsigned integer into the given SV, upgrading first if necessary.
1616 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1622 Perl_sv_setuv(pTHX_ SV *const sv, const UV u)
1624 PERL_ARGS_ASSERT_SV_SETUV;
1626 /* With the if statement to ensure that integers are stored as IVs whenever
1628 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1631 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1633 If you wish to remove the following if statement, so that this routine
1634 (and its callers) always return UVs, please benchmark to see what the
1635 effect is. Modern CPUs may be different. Or may not :-)
1637 if (u <= (UV)IV_MAX) {
1638 sv_setiv(sv, (IV)u);
1647 =for apidoc sv_setuv_mg
1649 Like C<sv_setuv>, but also handles 'set' magic.
1655 Perl_sv_setuv_mg(pTHX_ SV *const sv, const UV u)
1657 PERL_ARGS_ASSERT_SV_SETUV_MG;
1664 =for apidoc sv_setnv
1666 Copies a double into the given SV, upgrading first if necessary.
1667 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1673 Perl_sv_setnv(pTHX_ SV *const sv, const NV num)
1677 PERL_ARGS_ASSERT_SV_SETNV;
1679 SV_CHECK_THINKFIRST_COW_DROP(sv);
1680 switch (SvTYPE(sv)) {
1683 sv_upgrade(sv, SVt_NV);
1687 sv_upgrade(sv, SVt_PVNV);
1691 if (!isGV_with_GP(sv))
1698 /* diag_listed_as: Can't coerce %s to %s in %s */
1699 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1704 (void)SvNOK_only(sv); /* validate number */
1709 =for apidoc sv_setnv_mg
1711 Like C<sv_setnv>, but also handles 'set' magic.
1717 Perl_sv_setnv_mg(pTHX_ SV *const sv, const NV num)
1719 PERL_ARGS_ASSERT_SV_SETNV_MG;
1725 /* Return a cleaned-up, printable version of sv, for non-numeric, or
1726 * not incrementable warning display.
1727 * Originally part of S_not_a_number().
1728 * The return value may be != tmpbuf.
1732 S_sv_display(pTHX_ SV *const sv, char *tmpbuf, STRLEN tmpbuf_size) {
1735 PERL_ARGS_ASSERT_SV_DISPLAY;
1738 SV *dsv = newSVpvs_flags("", SVs_TEMP);
1739 pv = sv_uni_display(dsv, sv, 10, UNI_DISPLAY_ISPRINT);
1742 const char * const limit = tmpbuf + tmpbuf_size - 8;
1743 /* each *s can expand to 4 chars + "...\0",
1744 i.e. need room for 8 chars */
1746 const char *s = SvPVX_const(sv);
1747 const char * const end = s + SvCUR(sv);
1748 for ( ; s < end && d < limit; s++ ) {
1750 if (! isASCII(ch) && !isPRINT_LC(ch)) {
1754 /* Map to ASCII "equivalent" of Latin1 */
1755 ch = LATIN1_TO_NATIVE(NATIVE_TO_LATIN1(ch) & 127);
1761 else if (ch == '\r') {
1765 else if (ch == '\f') {
1769 else if (ch == '\\') {
1773 else if (ch == '\0') {
1777 else if (isPRINT_LC(ch))
1796 /* Print an "isn't numeric" warning, using a cleaned-up,
1797 * printable version of the offending string
1801 S_not_a_number(pTHX_ SV *const sv)
1807 PERL_ARGS_ASSERT_NOT_A_NUMBER;
1809 pv = sv_display(sv, tmpbuf, sizeof(tmpbuf));
1812 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1813 /* diag_listed_as: Argument "%s" isn't numeric%s */
1814 "Argument \"%s\" isn't numeric in %s", pv,
1817 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1818 /* diag_listed_as: Argument "%s" isn't numeric%s */
1819 "Argument \"%s\" isn't numeric", pv);
1823 S_not_incrementable(pTHX_ SV *const sv) {
1828 PERL_ARGS_ASSERT_NOT_INCREMENTABLE;
1830 pv = sv_display(sv, tmpbuf, sizeof(tmpbuf));
1832 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1833 "Argument \"%s\" treated as 0 in increment (++)", pv);
1837 =for apidoc looks_like_number
1839 Test if the content of an SV looks like a number (or is a number).
1840 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1841 non-numeric warning), even if your atof() doesn't grok them. Get-magic is
1848 Perl_looks_like_number(pTHX_ SV *const sv)
1853 PERL_ARGS_ASSERT_LOOKS_LIKE_NUMBER;
1855 if (SvPOK(sv) || SvPOKp(sv)) {
1856 sbegin = SvPV_nomg_const(sv, len);
1859 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1860 return grok_number(sbegin, len, NULL);
1864 S_glob_2number(pTHX_ GV * const gv)
1866 PERL_ARGS_ASSERT_GLOB_2NUMBER;
1868 /* We know that all GVs stringify to something that is not-a-number,
1869 so no need to test that. */
1870 if (ckWARN(WARN_NUMERIC))
1872 SV *const buffer = sv_newmortal();
1873 gv_efullname3(buffer, gv, "*");
1874 not_a_number(buffer);
1876 /* We just want something true to return, so that S_sv_2iuv_common
1877 can tail call us and return true. */
1881 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1882 until proven guilty, assume that things are not that bad... */
1887 As 64 bit platforms often have an NV that doesn't preserve all bits of
1888 an IV (an assumption perl has been based on to date) it becomes necessary
1889 to remove the assumption that the NV always carries enough precision to
1890 recreate the IV whenever needed, and that the NV is the canonical form.
1891 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1892 precision as a side effect of conversion (which would lead to insanity
1893 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1894 1) to distinguish between IV/UV/NV slots that have cached a valid
1895 conversion where precision was lost and IV/UV/NV slots that have a
1896 valid conversion which has lost no precision
1897 2) to ensure that if a numeric conversion to one form is requested that
1898 would lose precision, the precise conversion (or differently
1899 imprecise conversion) is also performed and cached, to prevent
1900 requests for different numeric formats on the same SV causing
1901 lossy conversion chains. (lossless conversion chains are perfectly
1906 SvIOKp is true if the IV slot contains a valid value
1907 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1908 SvNOKp is true if the NV slot contains a valid value
1909 SvNOK is true only if the NV value is accurate
1912 while converting from PV to NV, check to see if converting that NV to an
1913 IV(or UV) would lose accuracy over a direct conversion from PV to
1914 IV(or UV). If it would, cache both conversions, return NV, but mark
1915 SV as IOK NOKp (ie not NOK).
1917 While converting from PV to IV, check to see if converting that IV to an
1918 NV would lose accuracy over a direct conversion from PV to NV. If it
1919 would, cache both conversions, flag similarly.
1921 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1922 correctly because if IV & NV were set NV *always* overruled.
1923 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1924 changes - now IV and NV together means that the two are interchangeable:
1925 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1927 The benefit of this is that operations such as pp_add know that if
1928 SvIOK is true for both left and right operands, then integer addition
1929 can be used instead of floating point (for cases where the result won't
1930 overflow). Before, floating point was always used, which could lead to
1931 loss of precision compared with integer addition.
1933 * making IV and NV equal status should make maths accurate on 64 bit
1935 * may speed up maths somewhat if pp_add and friends start to use
1936 integers when possible instead of fp. (Hopefully the overhead in
1937 looking for SvIOK and checking for overflow will not outweigh the
1938 fp to integer speedup)
1939 * will slow down integer operations (callers of SvIV) on "inaccurate"
1940 values, as the change from SvIOK to SvIOKp will cause a call into
1941 sv_2iv each time rather than a macro access direct to the IV slot
1942 * should speed up number->string conversion on integers as IV is
1943 favoured when IV and NV are equally accurate
1945 ####################################################################
1946 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1947 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1948 On the other hand, SvUOK is true iff UV.
1949 ####################################################################
1951 Your mileage will vary depending your CPU's relative fp to integer
1955 #ifndef NV_PRESERVES_UV
1956 # define IS_NUMBER_UNDERFLOW_IV 1
1957 # define IS_NUMBER_UNDERFLOW_UV 2
1958 # define IS_NUMBER_IV_AND_UV 2
1959 # define IS_NUMBER_OVERFLOW_IV 4
1960 # define IS_NUMBER_OVERFLOW_UV 5
1962 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1964 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1966 S_sv_2iuv_non_preserve(pTHX_ SV *const sv
1974 PERL_ARGS_ASSERT_SV_2IUV_NON_PRESERVE;
1976 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1977 if (SvNVX(sv) < (NV)IV_MIN) {
1978 (void)SvIOKp_on(sv);
1980 SvIV_set(sv, IV_MIN);
1981 return IS_NUMBER_UNDERFLOW_IV;
1983 if (SvNVX(sv) > (NV)UV_MAX) {
1984 (void)SvIOKp_on(sv);
1987 SvUV_set(sv, UV_MAX);
1988 return IS_NUMBER_OVERFLOW_UV;
1990 (void)SvIOKp_on(sv);
1992 /* Can't use strtol etc to convert this string. (See truth table in
1994 if (SvNVX(sv) <= (UV)IV_MAX) {
1995 SvIV_set(sv, I_V(SvNVX(sv)));
1996 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1997 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1999 /* Integer is imprecise. NOK, IOKp */
2001 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
2004 SvUV_set(sv, U_V(SvNVX(sv)));
2005 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2006 if (SvUVX(sv) == UV_MAX) {
2007 /* As we know that NVs don't preserve UVs, UV_MAX cannot
2008 possibly be preserved by NV. Hence, it must be overflow.
2010 return IS_NUMBER_OVERFLOW_UV;
2012 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
2014 /* Integer is imprecise. NOK, IOKp */
2016 return IS_NUMBER_OVERFLOW_IV;
2018 #endif /* !NV_PRESERVES_UV*/
2021 S_sv_2iuv_common(pTHX_ SV *const sv)
2025 PERL_ARGS_ASSERT_SV_2IUV_COMMON;
2028 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
2029 * without also getting a cached IV/UV from it at the same time
2030 * (ie PV->NV conversion should detect loss of accuracy and cache
2031 * IV or UV at same time to avoid this. */
2032 /* IV-over-UV optimisation - choose to cache IV if possible */
2034 if (SvTYPE(sv) == SVt_NV)
2035 sv_upgrade(sv, SVt_PVNV);
2037 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
2038 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
2039 certainly cast into the IV range at IV_MAX, whereas the correct
2040 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
2042 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
2043 if (Perl_isnan(SvNVX(sv))) {
2049 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2050 SvIV_set(sv, I_V(SvNVX(sv)));
2051 if (SvNVX(sv) == (NV) SvIVX(sv)
2052 #ifndef NV_PRESERVES_UV
2053 && (((UV)1 << NV_PRESERVES_UV_BITS) >
2054 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
2055 /* Don't flag it as "accurately an integer" if the number
2056 came from a (by definition imprecise) NV operation, and
2057 we're outside the range of NV integer precision */
2061 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
2063 /* scalar has trailing garbage, eg "42a" */
2065 DEBUG_c(PerlIO_printf(Perl_debug_log,
2066 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
2072 /* IV not precise. No need to convert from PV, as NV
2073 conversion would already have cached IV if it detected
2074 that PV->IV would be better than PV->NV->IV
2075 flags already correct - don't set public IOK. */
2076 DEBUG_c(PerlIO_printf(Perl_debug_log,
2077 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
2082 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
2083 but the cast (NV)IV_MIN rounds to a the value less (more
2084 negative) than IV_MIN which happens to be equal to SvNVX ??
2085 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
2086 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
2087 (NV)UVX == NVX are both true, but the values differ. :-(
2088 Hopefully for 2s complement IV_MIN is something like
2089 0x8000000000000000 which will be exact. NWC */
2092 SvUV_set(sv, U_V(SvNVX(sv)));
2094 (SvNVX(sv) == (NV) SvUVX(sv))
2095 #ifndef NV_PRESERVES_UV
2096 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
2097 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
2098 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
2099 /* Don't flag it as "accurately an integer" if the number
2100 came from a (by definition imprecise) NV operation, and
2101 we're outside the range of NV integer precision */
2107 DEBUG_c(PerlIO_printf(Perl_debug_log,
2108 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
2114 else if (SvPOKp(sv)) {
2116 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2117 /* We want to avoid a possible problem when we cache an IV/ a UV which
2118 may be later translated to an NV, and the resulting NV is not
2119 the same as the direct translation of the initial string
2120 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
2121 be careful to ensure that the value with the .456 is around if the
2122 NV value is requested in the future).
2124 This means that if we cache such an IV/a UV, we need to cache the
2125 NV as well. Moreover, we trade speed for space, and do not
2126 cache the NV if we are sure it's not needed.
2129 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
2130 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2131 == IS_NUMBER_IN_UV) {
2132 /* It's definitely an integer, only upgrade to PVIV */
2133 if (SvTYPE(sv) < SVt_PVIV)
2134 sv_upgrade(sv, SVt_PVIV);
2136 } else if (SvTYPE(sv) < SVt_PVNV)
2137 sv_upgrade(sv, SVt_PVNV);
2139 /* If NVs preserve UVs then we only use the UV value if we know that
2140 we aren't going to call atof() below. If NVs don't preserve UVs
2141 then the value returned may have more precision than atof() will
2142 return, even though value isn't perfectly accurate. */
2143 if ((numtype & (IS_NUMBER_IN_UV
2144 #ifdef NV_PRESERVES_UV
2147 )) == IS_NUMBER_IN_UV) {
2148 /* This won't turn off the public IOK flag if it was set above */
2149 (void)SvIOKp_on(sv);
2151 if (!(numtype & IS_NUMBER_NEG)) {
2153 if (value <= (UV)IV_MAX) {
2154 SvIV_set(sv, (IV)value);
2156 /* it didn't overflow, and it was positive. */
2157 SvUV_set(sv, value);
2161 /* 2s complement assumption */
2162 if (value <= (UV)IV_MIN) {
2163 SvIV_set(sv, -(IV)value);
2165 /* Too negative for an IV. This is a double upgrade, but
2166 I'm assuming it will be rare. */
2167 if (SvTYPE(sv) < SVt_PVNV)
2168 sv_upgrade(sv, SVt_PVNV);
2172 SvNV_set(sv, -(NV)value);
2173 SvIV_set(sv, IV_MIN);
2177 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2178 will be in the previous block to set the IV slot, and the next
2179 block to set the NV slot. So no else here. */
2181 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2182 != IS_NUMBER_IN_UV) {
2183 /* It wasn't an (integer that doesn't overflow the UV). */
2184 SvNV_set(sv, Atof(SvPVX_const(sv)));
2186 if (! numtype && ckWARN(WARN_NUMERIC))
2189 #if defined(USE_LONG_DOUBLE)
2190 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2191 PTR2UV(sv), SvNVX(sv)));
2193 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2194 PTR2UV(sv), SvNVX(sv)));
2197 #ifdef NV_PRESERVES_UV
2198 (void)SvIOKp_on(sv);
2200 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2201 SvIV_set(sv, I_V(SvNVX(sv)));
2202 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2205 NOOP; /* Integer is imprecise. NOK, IOKp */
2207 /* UV will not work better than IV */
2209 if (SvNVX(sv) > (NV)UV_MAX) {
2211 /* Integer is inaccurate. NOK, IOKp, is UV */
2212 SvUV_set(sv, UV_MAX);
2214 SvUV_set(sv, U_V(SvNVX(sv)));
2215 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2216 NV preservse UV so can do correct comparison. */
2217 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2220 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2225 #else /* NV_PRESERVES_UV */
2226 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2227 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2228 /* The IV/UV slot will have been set from value returned by
2229 grok_number above. The NV slot has just been set using
2232 assert (SvIOKp(sv));
2234 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2235 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2236 /* Small enough to preserve all bits. */
2237 (void)SvIOKp_on(sv);
2239 SvIV_set(sv, I_V(SvNVX(sv)));
2240 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2242 /* Assumption: first non-preserved integer is < IV_MAX,
2243 this NV is in the preserved range, therefore: */
2244 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2246 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2250 0 0 already failed to read UV.
2251 0 1 already failed to read UV.
2252 1 0 you won't get here in this case. IV/UV
2253 slot set, public IOK, Atof() unneeded.
2254 1 1 already read UV.
2255 so there's no point in sv_2iuv_non_preserve() attempting
2256 to use atol, strtol, strtoul etc. */
2258 sv_2iuv_non_preserve (sv, numtype);
2260 sv_2iuv_non_preserve (sv);
2264 #endif /* NV_PRESERVES_UV */
2265 /* It might be more code efficient to go through the entire logic above
2266 and conditionally set with SvIOKp_on() rather than SvIOK(), but it
2267 gets complex and potentially buggy, so more programmer efficient
2268 to do it this way, by turning off the public flags: */
2270 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2274 if (isGV_with_GP(sv))
2275 return glob_2number(MUTABLE_GV(sv));
2277 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2279 if (SvTYPE(sv) < SVt_IV)
2280 /* Typically the caller expects that sv_any is not NULL now. */
2281 sv_upgrade(sv, SVt_IV);
2282 /* Return 0 from the caller. */
2289 =for apidoc sv_2iv_flags
2291 Return the integer value of an SV, doing any necessary string
2292 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2293 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2299 Perl_sv_2iv_flags(pTHX_ SV *const sv, const I32 flags)
2303 PERL_ARGS_ASSERT_SV_2IV_FLAGS;
2305 assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV
2306 && SvTYPE(sv) != SVt_PVFM);
2308 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2314 if (flags & SV_SKIP_OVERLOAD)
2316 tmpstr = AMG_CALLunary(sv, numer_amg);
2317 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2318 return SvIV(tmpstr);
2321 return PTR2IV(SvRV(sv));
2324 if (SvVALID(sv) || isREGEXP(sv)) {
2325 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2326 the same flag bit as SVf_IVisUV, so must not let them cache IVs.
2327 In practice they are extremely unlikely to actually get anywhere
2328 accessible by user Perl code - the only way that I'm aware of is when
2329 a constant subroutine which is used as the second argument to index.
2331 Regexps have no SvIVX and SvNVX fields.
2333 assert(isREGEXP(sv) || SvPOKp(sv));
2336 const char * const ptr =
2337 isREGEXP(sv) ? RX_WRAPPED((REGEXP*)sv) : SvPVX_const(sv);
2339 = grok_number(ptr, SvCUR(sv), &value);
2341 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2342 == IS_NUMBER_IN_UV) {
2343 /* It's definitely an integer */
2344 if (numtype & IS_NUMBER_NEG) {
2345 if (value < (UV)IV_MIN)
2348 if (value < (UV)IV_MAX)
2353 if (ckWARN(WARN_NUMERIC))
2356 return I_V(Atof(ptr));
2360 if (SvTHINKFIRST(sv)) {
2361 #ifdef PERL_OLD_COPY_ON_WRITE
2363 sv_force_normal_flags(sv, 0);
2366 if (SvREADONLY(sv) && !SvOK(sv)) {
2367 if (ckWARN(WARN_UNINITIALIZED))
2374 if (S_sv_2iuv_common(aTHX_ sv))
2378 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2379 PTR2UV(sv),SvIVX(sv)));
2380 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2384 =for apidoc sv_2uv_flags
2386 Return the unsigned integer value of an SV, doing any necessary string
2387 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2388 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2394 Perl_sv_2uv_flags(pTHX_ SV *const sv, const I32 flags)
2398 PERL_ARGS_ASSERT_SV_2UV_FLAGS;
2400 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2406 if (flags & SV_SKIP_OVERLOAD)
2408 tmpstr = AMG_CALLunary(sv, numer_amg);
2409 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2410 return SvUV(tmpstr);
2413 return PTR2UV(SvRV(sv));
2416 if (SvVALID(sv) || isREGEXP(sv)) {
2417 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2418 the same flag bit as SVf_IVisUV, so must not let them cache IVs.
2419 Regexps have no SvIVX and SvNVX fields. */
2420 assert(isREGEXP(sv) || SvPOKp(sv));
2423 const char * const ptr =
2424 isREGEXP(sv) ? RX_WRAPPED((REGEXP*)sv) : SvPVX_const(sv);
2426 = grok_number(ptr, SvCUR(sv), &value);
2428 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2429 == IS_NUMBER_IN_UV) {
2430 /* It's definitely an integer */
2431 if (!(numtype & IS_NUMBER_NEG))
2435 if (ckWARN(WARN_NUMERIC))
2438 return U_V(Atof(ptr));
2442 if (SvTHINKFIRST(sv)) {
2443 #ifdef PERL_OLD_COPY_ON_WRITE
2445 sv_force_normal_flags(sv, 0);
2448 if (SvREADONLY(sv) && !SvOK(sv)) {
2449 if (ckWARN(WARN_UNINITIALIZED))
2456 if (S_sv_2iuv_common(aTHX_ sv))
2460 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2461 PTR2UV(sv),SvUVX(sv)));
2462 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2466 =for apidoc sv_2nv_flags
2468 Return the num value of an SV, doing any necessary string or integer
2469 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2470 Normally used via the C<SvNV(sv)> and C<SvNVx(sv)> macros.
2476 Perl_sv_2nv_flags(pTHX_ SV *const sv, const I32 flags)
2480 PERL_ARGS_ASSERT_SV_2NV_FLAGS;
2482 assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV
2483 && SvTYPE(sv) != SVt_PVFM);
2484 if (SvGMAGICAL(sv) || SvVALID(sv) || isREGEXP(sv)) {
2485 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2486 the same flag bit as SVf_IVisUV, so must not let them cache NVs.
2487 Regexps have no SvIVX and SvNVX fields. */
2489 if (flags & SV_GMAGIC)
2493 if (SvPOKp(sv) && !SvIOKp(sv)) {
2494 ptr = SvPVX_const(sv);
2496 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2497 !grok_number(ptr, SvCUR(sv), NULL))
2503 return (NV)SvUVX(sv);
2505 return (NV)SvIVX(sv);
2511 ptr = RX_WRAPPED((REGEXP *)sv);
2514 assert(SvTYPE(sv) >= SVt_PVMG);
2515 /* This falls through to the report_uninit near the end of the
2517 } else if (SvTHINKFIRST(sv)) {
2522 if (flags & SV_SKIP_OVERLOAD)
2524 tmpstr = AMG_CALLunary(sv, numer_amg);
2525 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2526 return SvNV(tmpstr);
2529 return PTR2NV(SvRV(sv));
2531 #ifdef PERL_OLD_COPY_ON_WRITE
2533 sv_force_normal_flags(sv, 0);
2536 if (SvREADONLY(sv) && !SvOK(sv)) {
2537 if (ckWARN(WARN_UNINITIALIZED))
2542 if (SvTYPE(sv) < SVt_NV) {
2543 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2544 sv_upgrade(sv, SVt_NV);
2545 #ifdef USE_LONG_DOUBLE
2547 STORE_NUMERIC_LOCAL_SET_STANDARD();
2548 PerlIO_printf(Perl_debug_log,
2549 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2550 PTR2UV(sv), SvNVX(sv));
2551 RESTORE_NUMERIC_LOCAL();
2555 STORE_NUMERIC_LOCAL_SET_STANDARD();
2556 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2557 PTR2UV(sv), SvNVX(sv));
2558 RESTORE_NUMERIC_LOCAL();
2562 else if (SvTYPE(sv) < SVt_PVNV)
2563 sv_upgrade(sv, SVt_PVNV);
2568 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2569 #ifdef NV_PRESERVES_UV
2575 /* Only set the public NV OK flag if this NV preserves the IV */
2576 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2578 SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2579 : (SvIVX(sv) == I_V(SvNVX(sv))))
2585 else if (SvPOKp(sv)) {
2587 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2588 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2590 #ifdef NV_PRESERVES_UV
2591 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2592 == IS_NUMBER_IN_UV) {
2593 /* It's definitely an integer */
2594 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2596 SvNV_set(sv, Atof(SvPVX_const(sv)));
2602 SvNV_set(sv, Atof(SvPVX_const(sv)));
2603 /* Only set the public NV OK flag if this NV preserves the value in
2604 the PV at least as well as an IV/UV would.
2605 Not sure how to do this 100% reliably. */
2606 /* if that shift count is out of range then Configure's test is
2607 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2609 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2610 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2611 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2612 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2613 /* Can't use strtol etc to convert this string, so don't try.
2614 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2617 /* value has been set. It may not be precise. */
2618 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2619 /* 2s complement assumption for (UV)IV_MIN */
2620 SvNOK_on(sv); /* Integer is too negative. */
2625 if (numtype & IS_NUMBER_NEG) {
2626 SvIV_set(sv, -(IV)value);
2627 } else if (value <= (UV)IV_MAX) {
2628 SvIV_set(sv, (IV)value);
2630 SvUV_set(sv, value);
2634 if (numtype & IS_NUMBER_NOT_INT) {
2635 /* I believe that even if the original PV had decimals,
2636 they are lost beyond the limit of the FP precision.
2637 However, neither is canonical, so both only get p
2638 flags. NWC, 2000/11/25 */
2639 /* Both already have p flags, so do nothing */
2641 const NV nv = SvNVX(sv);
2642 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2643 if (SvIVX(sv) == I_V(nv)) {
2646 /* It had no "." so it must be integer. */
2650 /* between IV_MAX and NV(UV_MAX).
2651 Could be slightly > UV_MAX */
2653 if (numtype & IS_NUMBER_NOT_INT) {
2654 /* UV and NV both imprecise. */
2656 const UV nv_as_uv = U_V(nv);
2658 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2667 /* It might be more code efficient to go through the entire logic above
2668 and conditionally set with SvNOKp_on() rather than SvNOK(), but it
2669 gets complex and potentially buggy, so more programmer efficient
2670 to do it this way, by turning off the public flags: */
2672 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2673 #endif /* NV_PRESERVES_UV */
2676 if (isGV_with_GP(sv)) {
2677 glob_2number(MUTABLE_GV(sv));
2681 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2683 assert (SvTYPE(sv) >= SVt_NV);
2684 /* Typically the caller expects that sv_any is not NULL now. */
2685 /* XXX Ilya implies that this is a bug in callers that assume this
2686 and ideally should be fixed. */
2689 #if defined(USE_LONG_DOUBLE)
2691 STORE_NUMERIC_LOCAL_SET_STANDARD();
2692 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2693 PTR2UV(sv), SvNVX(sv));
2694 RESTORE_NUMERIC_LOCAL();
2698 STORE_NUMERIC_LOCAL_SET_STANDARD();
2699 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2700 PTR2UV(sv), SvNVX(sv));
2701 RESTORE_NUMERIC_LOCAL();
2710 Return an SV with the numeric value of the source SV, doing any necessary
2711 reference or overload conversion. You must use the C<SvNUM(sv)> macro to
2712 access this function.
2718 Perl_sv_2num(pTHX_ SV *const sv)
2720 PERL_ARGS_ASSERT_SV_2NUM;
2725 SV * const tmpsv = AMG_CALLunary(sv, numer_amg);
2726 TAINT_IF(tmpsv && SvTAINTED(tmpsv));
2727 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2728 return sv_2num(tmpsv);
2730 return sv_2mortal(newSVuv(PTR2UV(SvRV(sv))));
2733 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2734 * UV as a string towards the end of buf, and return pointers to start and
2737 * We assume that buf is at least TYPE_CHARS(UV) long.
2741 S_uiv_2buf(char *const buf, const IV iv, UV uv, const int is_uv, char **const peob)
2743 char *ptr = buf + TYPE_CHARS(UV);
2744 char * const ebuf = ptr;
2747 PERL_ARGS_ASSERT_UIV_2BUF;
2759 *--ptr = '0' + (char)(uv % 10);
2768 =for apidoc sv_2pv_flags
2770 Returns a pointer to the string value of an SV, and sets *lp to its length.
2771 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a
2772 string if necessary. Normally invoked via the C<SvPV_flags> macro.
2773 C<sv_2pv()> and C<sv_2pv_nomg> usually end up here too.
2779 Perl_sv_2pv_flags(pTHX_ SV *const sv, STRLEN *const lp, const I32 flags)
2784 PERL_ARGS_ASSERT_SV_2PV_FLAGS;
2786 assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV
2787 && SvTYPE(sv) != SVt_PVFM);
2788 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2793 if (flags & SV_SKIP_OVERLOAD)
2795 tmpstr = AMG_CALLunary(sv, string_amg);
2796 TAINT_IF(tmpstr && SvTAINTED(tmpstr));
2797 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2799 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2803 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2804 if (flags & SV_CONST_RETURN) {
2805 pv = (char *) SvPVX_const(tmpstr);
2807 pv = (flags & SV_MUTABLE_RETURN)
2808 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2811 *lp = SvCUR(tmpstr);
2813 pv = sv_2pv_flags(tmpstr, lp, flags);
2826 SV *const referent = SvRV(sv);
2830 retval = buffer = savepvn("NULLREF", len);
2831 } else if (SvTYPE(referent) == SVt_REGEXP &&
2832 (!(PL_curcop->cop_hints & HINT_NO_AMAGIC) ||
2833 amagic_is_enabled(string_amg))) {
2834 REGEXP * const re = (REGEXP *)MUTABLE_PTR(referent);
2838 /* If the regex is UTF-8 we want the containing scalar to
2839 have an UTF-8 flag too */
2846 *lp = RX_WRAPLEN(re);
2848 return RX_WRAPPED(re);
2850 const char *const typestr = sv_reftype(referent, 0);
2851 const STRLEN typelen = strlen(typestr);
2852 UV addr = PTR2UV(referent);
2853 const char *stashname = NULL;
2854 STRLEN stashnamelen = 0; /* hush, gcc */
2855 const char *buffer_end;
2857 if (SvOBJECT(referent)) {
2858 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2861 stashname = HEK_KEY(name);
2862 stashnamelen = HEK_LEN(name);
2864 if (HEK_UTF8(name)) {
2870 stashname = "__ANON__";
2873 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2874 + 2 * sizeof(UV) + 2 /* )\0 */;
2876 len = typelen + 3 /* (0x */
2877 + 2 * sizeof(UV) + 2 /* )\0 */;
2880 Newx(buffer, len, char);
2881 buffer_end = retval = buffer + len;
2883 /* Working backwards */
2887 *--retval = PL_hexdigit[addr & 15];
2888 } while (addr >>= 4);
2894 memcpy(retval, typestr, typelen);
2898 retval -= stashnamelen;
2899 memcpy(retval, stashname, stashnamelen);
2901 /* retval may not necessarily have reached the start of the
2903 assert (retval >= buffer);
2905 len = buffer_end - retval - 1; /* -1 for that \0 */
2917 if (flags & SV_MUTABLE_RETURN)
2918 return SvPVX_mutable(sv);
2919 if (flags & SV_CONST_RETURN)
2920 return (char *)SvPVX_const(sv);
2925 /* I'm assuming that if both IV and NV are equally valid then
2926 converting the IV is going to be more efficient */
2927 const U32 isUIOK = SvIsUV(sv);
2928 char buf[TYPE_CHARS(UV)];
2932 if (SvTYPE(sv) < SVt_PVIV)
2933 sv_upgrade(sv, SVt_PVIV);
2934 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2936 /* inlined from sv_setpvn */
2937 s = SvGROW_mutable(sv, len + 1);
2938 Move(ptr, s, len, char);
2943 else if (SvNOK(sv)) {
2944 if (SvTYPE(sv) < SVt_PVNV)
2945 sv_upgrade(sv, SVt_PVNV);
2946 if (SvNVX(sv) == 0.0) {
2947 s = SvGROW_mutable(sv, 2);
2952 /* The +20 is pure guesswork. Configure test needed. --jhi */
2953 s = SvGROW_mutable(sv, NV_DIG + 20);
2954 /* some Xenix systems wipe out errno here */
2956 #ifndef USE_LOCALE_NUMERIC
2957 V_Gconvert(SvNVX(sv), NV_DIG, 0, s);
2961 DECLARE_STORE_LC_NUMERIC_SET_TO_NEEDED();
2962 V_Gconvert(SvNVX(sv), NV_DIG, 0, s);
2964 /* If the radix character is UTF-8, and actually is in the
2965 * output, turn on the UTF-8 flag for the scalar */
2966 if (PL_numeric_local
2967 && PL_numeric_radix_sv && SvUTF8(PL_numeric_radix_sv)
2968 && instr(s, SvPVX_const(PL_numeric_radix_sv)))
2972 RESTORE_LC_NUMERIC();
2975 /* We don't call SvPOK_on(), because it may come to pass that the
2976 * locale changes so that the stringification we just did is no
2977 * longer correct. We will have to re-stringify every time it is
2984 else if (isGV_with_GP(sv)) {
2985 GV *const gv = MUTABLE_GV(sv);
2986 SV *const buffer = sv_newmortal();
2988 gv_efullname3(buffer, gv, "*");
2990 assert(SvPOK(buffer));
2994 *lp = SvCUR(buffer);
2995 return SvPVX(buffer);
2997 else if (isREGEXP(sv)) {
2998 if (lp) *lp = RX_WRAPLEN((REGEXP *)sv);
2999 return RX_WRAPPED((REGEXP *)sv);
3004 if (flags & SV_UNDEF_RETURNS_NULL)
3006 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
3008 /* Typically the caller expects that sv_any is not NULL now. */
3009 if (!SvREADONLY(sv) && SvTYPE(sv) < SVt_PV)
3010 sv_upgrade(sv, SVt_PV);
3015 const STRLEN len = s - SvPVX_const(sv);
3020 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
3021 PTR2UV(sv),SvPVX_const(sv)));
3022 if (flags & SV_CONST_RETURN)
3023 return (char *)SvPVX_const(sv);
3024 if (flags & SV_MUTABLE_RETURN)
3025 return SvPVX_mutable(sv);
3030 =for apidoc sv_copypv
3032 Copies a stringified representation of the source SV into the
3033 destination SV. Automatically performs any necessary mg_get and
3034 coercion of numeric values into strings. Guaranteed to preserve
3035 UTF8 flag even from overloaded objects. Similar in nature to
3036 sv_2pv[_flags] but operates directly on an SV instead of just the
3037 string. Mostly uses sv_2pv_flags to do its work, except when that
3038 would lose the UTF-8'ness of the PV.
3040 =for apidoc sv_copypv_nomg
3042 Like sv_copypv, but doesn't invoke get magic first.
3044 =for apidoc sv_copypv_flags
3046 Implementation of sv_copypv and sv_copypv_nomg. Calls get magic iff flags
3053 Perl_sv_copypv(pTHX_ SV *const dsv, SV *const ssv)
3055 PERL_ARGS_ASSERT_SV_COPYPV;
3057 sv_copypv_flags(dsv, ssv, 0);
3061 Perl_sv_copypv_flags(pTHX_ SV *const dsv, SV *const ssv, const I32 flags)
3066 PERL_ARGS_ASSERT_SV_COPYPV_FLAGS;
3068 if ((flags & SV_GMAGIC) && SvGMAGICAL(ssv))
3070 s = SvPV_nomg_const(ssv,len);
3071 sv_setpvn(dsv,s,len);
3079 =for apidoc sv_2pvbyte
3081 Return a pointer to the byte-encoded representation of the SV, and set *lp
3082 to its length. May cause the SV to be downgraded from UTF-8 as a
3085 Usually accessed via the C<SvPVbyte> macro.
3091 Perl_sv_2pvbyte(pTHX_ SV *sv, STRLEN *const lp)
3093 PERL_ARGS_ASSERT_SV_2PVBYTE;
3096 if (((SvREADONLY(sv) || SvFAKE(sv)) && !SvIsCOW(sv))
3097 || isGV_with_GP(sv) || SvROK(sv)) {
3098 SV *sv2 = sv_newmortal();
3099 sv_copypv_nomg(sv2,sv);
3102 sv_utf8_downgrade(sv,0);
3103 return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv);
3107 =for apidoc sv_2pvutf8
3109 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
3110 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
3112 Usually accessed via the C<SvPVutf8> macro.
3118 Perl_sv_2pvutf8(pTHX_ SV *sv, STRLEN *const lp)
3120 PERL_ARGS_ASSERT_SV_2PVUTF8;
3122 if (((SvREADONLY(sv) || SvFAKE(sv)) && !SvIsCOW(sv))
3123 || isGV_with_GP(sv) || SvROK(sv))
3124 sv = sv_mortalcopy(sv);
3127 sv_utf8_upgrade_nomg(sv);
3128 return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv);
3133 =for apidoc sv_2bool
3135 This macro is only used by sv_true() or its macro equivalent, and only if
3136 the latter's argument is neither SvPOK, SvIOK nor SvNOK.
3137 It calls sv_2bool_flags with the SV_GMAGIC flag.
3139 =for apidoc sv_2bool_flags
3141 This function is only used by sv_true() and friends, and only if
3142 the latter's argument is neither SvPOK, SvIOK nor SvNOK. If the flags
3143 contain SV_GMAGIC, then it does an mg_get() first.
3150 Perl_sv_2bool_flags(pTHX_ SV *sv, I32 flags)
3154 PERL_ARGS_ASSERT_SV_2BOOL_FLAGS;
3157 if(flags & SV_GMAGIC) SvGETMAGIC(sv);
3163 SV * const tmpsv = AMG_CALLunary(sv, bool__amg);
3164 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv)))) {
3167 if(SvGMAGICAL(sv)) {
3169 goto restart; /* call sv_2bool */
3171 /* expanded SvTRUE_common(sv, (flags = 0, goto restart)) */
3172 else if(!SvOK(sv)) {
3175 else if(SvPOK(sv)) {
3176 svb = SvPVXtrue(sv);
3178 else if((SvFLAGS(sv) & (SVf_IOK|SVf_NOK))) {
3179 svb = (SvIOK(sv) && SvIVX(sv) != 0)
3180 || (SvNOK(sv) && SvNVX(sv) != 0.0);
3184 goto restart; /* call sv_2bool_nomg */
3189 return SvRV(sv) != 0;
3193 RX_WRAPLEN(sv) > 1 || (RX_WRAPLEN(sv) && *RX_WRAPPED(sv) != '0');
3194 return SvTRUE_common(sv, isGV_with_GP(sv) ? 1 : 0);
3198 =for apidoc sv_utf8_upgrade
3200 Converts the PV of an SV to its UTF-8-encoded form.
3201 Forces the SV to string form if it is not already.
3202 Will C<mg_get> on C<sv> if appropriate.
3203 Always sets the SvUTF8 flag to avoid future validity checks even
3204 if the whole string is the same in UTF-8 as not.
3205 Returns the number of bytes in the converted string
3207 This is not a general purpose byte encoding to Unicode interface:
3208 use the Encode extension for that.
3210 =for apidoc sv_utf8_upgrade_nomg
3212 Like sv_utf8_upgrade, but doesn't do magic on C<sv>.
3214 =for apidoc sv_utf8_upgrade_flags
3216 Converts the PV of an SV to its UTF-8-encoded form.
3217 Forces the SV to string form if it is not already.
3218 Always sets the SvUTF8 flag to avoid future validity checks even
3219 if all the bytes are invariant in UTF-8.
3220 If C<flags> has C<SV_GMAGIC> bit set,
3221 will C<mg_get> on C<sv> if appropriate, else not.
3223 If C<flags> has SV_FORCE_UTF8_UPGRADE set, this function assumes that the PV
3224 will expand when converted to UTF-8, and skips the extra work of checking for
3225 that. Typically this flag is used by a routine that has already parsed the
3226 string and found such characters, and passes this information on so that the
3227 work doesn't have to be repeated.
3229 Returns the number of bytes in the converted string.
3231 This is not a general purpose byte encoding to Unicode interface:
3232 use the Encode extension for that.
3234 =for apidoc sv_utf8_upgrade_flags_grow
3236 Like sv_utf8_upgrade_flags, but has an additional parameter C<extra>, which is
3237 the number of unused bytes the string of 'sv' is guaranteed to have free after
3238 it upon return. This allows the caller to reserve extra space that it intends
3239 to fill, to avoid extra grows.
3241 C<sv_utf8_upgrade>, C<sv_utf8_upgrade_nomg>, and C<sv_utf8_upgrade_flags>
3242 are implemented in terms of this function.
3244 Returns the number of bytes in the converted string (not including the spares).
3248 (One might think that the calling routine could pass in the position of the
3249 first variant character when it has set SV_FORCE_UTF8_UPGRADE, so it wouldn't
3250 have to be found again. But that is not the case, because typically when the
3251 caller is likely to use this flag, it won't be calling this routine unless it
3252 finds something that won't fit into a byte. Otherwise it tries to not upgrade
3253 and just use bytes. But some things that do fit into a byte are variants in
3254 utf8, and the caller may not have been keeping track of these.)
3256 If the routine itself changes the string, it adds a trailing NUL. Such a NUL
3257 isn't guaranteed due to having other routines do the work in some input cases,
3258 or if the input is already flagged as being in utf8.
3260 The speed of this could perhaps be improved for many cases if someone wanted to
3261 write a fast function that counts the number of variant characters in a string,
3262 especially if it could return the position of the first one.
3267 Perl_sv_utf8_upgrade_flags_grow(pTHX_ SV *const sv, const I32 flags, STRLEN extra)
3271 PERL_ARGS_ASSERT_SV_UTF8_UPGRADE_FLAGS_GROW;
3273 if (sv == &PL_sv_undef)
3275 if (!SvPOK_nog(sv)) {
3277 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
3278 (void) sv_2pv_flags(sv,&len, flags);
3280 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3284 (void) SvPV_force_flags(sv,len,flags & SV_GMAGIC);
3289 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3294 S_sv_uncow(aTHX_ sv, 0);
3297 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING)) {
3298 sv_recode_to_utf8(sv, PL_encoding);
3299 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3303 if (SvCUR(sv) == 0) {
3304 if (extra) SvGROW(sv, extra);
3305 } else { /* Assume Latin-1/EBCDIC */
3306 /* This function could be much more efficient if we
3307 * had a FLAG in SVs to signal if there are any variant
3308 * chars in the PV. Given that there isn't such a flag
3309 * make the loop as fast as possible (although there are certainly ways
3310 * to speed this up, eg. through vectorization) */
3311 U8 * s = (U8 *) SvPVX_const(sv);
3312 U8 * e = (U8 *) SvEND(sv);
3314 STRLEN two_byte_count = 0;
3316 if (flags & SV_FORCE_UTF8_UPGRADE) goto must_be_utf8;
3318 /* See if really will need to convert to utf8. We mustn't rely on our
3319 * incoming SV being well formed and having a trailing '\0', as certain
3320 * code in pp_formline can send us partially built SVs. */
3324 if (NATIVE_BYTE_IS_INVARIANT(ch)) continue;
3326 t--; /* t already incremented; re-point to first variant */
3331 /* utf8 conversion not needed because all are invariants. Mark as
3332 * UTF-8 even if no variant - saves scanning loop */
3334 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3339 /* Here, the string should be converted to utf8, either because of an
3340 * input flag (two_byte_count = 0), or because a character that
3341 * requires 2 bytes was found (two_byte_count = 1). t points either to
3342 * the beginning of the string (if we didn't examine anything), or to
3343 * the first variant. In either case, everything from s to t - 1 will
3344 * occupy only 1 byte each on output.
3346 * There are two main ways to convert. One is to create a new string
3347 * and go through the input starting from the beginning, appending each
3348 * converted value onto the new string as we go along. It's probably
3349 * best to allocate enough space in the string for the worst possible
3350 * case rather than possibly running out of space and having to
3351 * reallocate and then copy what we've done so far. Since everything
3352 * from s to t - 1 is invariant, the destination can be initialized
3353 * with these using a fast memory copy
3355 * The other way is to figure out exactly how big the string should be
3356 * by parsing the entire input. Then you don't have to make it big
3357 * enough to handle the worst possible case, and more importantly, if
3358 * the string you already have is large enough, you don't have to
3359 * allocate a new string, you can copy the last character in the input
3360 * string to the final position(s) that will be occupied by the
3361 * converted string and go backwards, stopping at t, since everything
3362 * before that is invariant.
3364 * There are advantages and disadvantages to each method.
3366 * In the first method, we can allocate a new string, do the memory
3367 * copy from the s to t - 1, and then proceed through the rest of the
3368 * string byte-by-byte.
3370 * In the second method, we proceed through the rest of the input
3371 * string just calculating how big the converted string will be. Then
3372 * there are two cases:
3373 * 1) if the string has enough extra space to handle the converted
3374 * value. We go backwards through the string, converting until we
3375 * get to the position we are at now, and then stop. If this
3376 * position is far enough along in the string, this method is
3377 * faster than the other method. If the memory copy were the same
3378 * speed as the byte-by-byte loop, that position would be about
3379 * half-way, as at the half-way mark, parsing to the end and back
3380 * is one complete string's parse, the same amount as starting
3381 * over and going all the way through. Actually, it would be
3382 * somewhat less than half-way, as it's faster to just count bytes
3383 * than to also copy, and we don't have the overhead of allocating
3384 * a new string, changing the scalar to use it, and freeing the
3385 * existing one. But if the memory copy is fast, the break-even
3386 * point is somewhere after half way. The counting loop could be
3387 * sped up by vectorization, etc, to move the break-even point
3388 * further towards the beginning.
3389 * 2) if the string doesn't have enough space to handle the converted
3390 * value. A new string will have to be allocated, and one might
3391 * as well, given that, start from the beginning doing the first
3392 * method. We've spent extra time parsing the string and in
3393 * exchange all we've gotten is that we know precisely how big to
3394 * make the new one. Perl is more optimized for time than space,
3395 * so this case is a loser.
3396 * So what I've decided to do is not use the 2nd method unless it is
3397 * guaranteed that a new string won't have to be allocated, assuming
3398 * the worst case. I also decided not to put any more conditions on it
3399 * than this, for now. It seems likely that, since the worst case is
3400 * twice as big as the unknown portion of the string (plus 1), we won't
3401 * be guaranteed enough space, causing us to go to the first method,
3402 * unless the string is short, or the first variant character is near
3403 * the end of it. In either of these cases, it seems best to use the
3404 * 2nd method. The only circumstance I can think of where this would
3405 * be really slower is if the string had once had much more data in it
3406 * than it does now, but there is still a substantial amount in it */
3409 STRLEN invariant_head = t - s;
3410 STRLEN size = invariant_head + (e - t) * 2 + 1 + extra;
3411 if (SvLEN(sv) < size) {
3413 /* Here, have decided to allocate a new string */
3418 Newx(dst, size, U8);
3420 /* If no known invariants at the beginning of the input string,
3421 * set so starts from there. Otherwise, can use memory copy to
3422 * get up to where we are now, and then start from here */
3424 if (invariant_head <= 0) {
3427 Copy(s, dst, invariant_head, char);
3428 d = dst + invariant_head;
3432 append_utf8_from_native_byte(*t, &d);
3436 SvPV_free(sv); /* No longer using pre-existing string */
3437 SvPV_set(sv, (char*)dst);
3438 SvCUR_set(sv, d - dst);
3439 SvLEN_set(sv, size);
3442 /* Here, have decided to get the exact size of the string.
3443 * Currently this happens only when we know that there is
3444 * guaranteed enough space to fit the converted string, so
3445 * don't have to worry about growing. If two_byte_count is 0,
3446 * then t points to the first byte of the string which hasn't
3447 * been examined yet. Otherwise two_byte_count is 1, and t
3448 * points to the first byte in the string that will expand to
3449 * two. Depending on this, start examining at t or 1 after t.
3452 U8 *d = t + two_byte_count;
3455 /* Count up the remaining bytes that expand to two */
3458 const U8 chr = *d++;
3459 if (! NATIVE_BYTE_IS_INVARIANT(chr)) two_byte_count++;
3462 /* The string will expand by just the number of bytes that
3463 * occupy two positions. But we are one afterwards because of
3464 * the increment just above. This is the place to put the
3465 * trailing NUL, and to set the length before we decrement */
3467 d += two_byte_count;
3468 SvCUR_set(sv, d - s);
3472 /* Having decremented d, it points to the position to put the
3473 * very last byte of the expanded string. Go backwards through
3474 * the string, copying and expanding as we go, stopping when we
3475 * get to the part that is invariant the rest of the way down */
3479 if (NATIVE_BYTE_IS_INVARIANT(*e)) {
3482 *d-- = UTF8_EIGHT_BIT_LO(*e);
3483 *d-- = UTF8_EIGHT_BIT_HI(*e);
3489 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3490 /* Update pos. We do it at the end rather than during
3491 * the upgrade, to avoid slowing down the common case
3492 * (upgrade without pos).
3493 * pos can be stored as either bytes or characters. Since
3494 * this was previously a byte string we can just turn off
3495 * the bytes flag. */
3496 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3498 mg->mg_flags &= ~MGf_BYTES;
3500 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3501 magic_setutf8(sv,mg); /* clear UTF8 cache */
3506 /* Mark as UTF-8 even if no variant - saves scanning loop */
3512 =for apidoc sv_utf8_downgrade
3514 Attempts to convert the PV of an SV from characters to bytes.
3515 If the PV contains a character that cannot fit
3516 in a byte, this conversion will fail;
3517 in this case, either returns false or, if C<fail_ok> is not
3520 This is not a general purpose Unicode to byte encoding interface:
3521 use the Encode extension for that.
3527 Perl_sv_utf8_downgrade(pTHX_ SV *const sv, const bool fail_ok)
3531 PERL_ARGS_ASSERT_SV_UTF8_DOWNGRADE;
3533 if (SvPOKp(sv) && SvUTF8(sv)) {
3537 int mg_flags = SV_GMAGIC;
3540 S_sv_uncow(aTHX_ sv, 0);
3542 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3544 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3545 if (mg && mg->mg_len > 0 && mg->mg_flags & MGf_BYTES) {
3546 mg->mg_len = sv_pos_b2u_flags(sv, mg->mg_len,
3547 SV_GMAGIC|SV_CONST_RETURN);
3548 mg_flags = 0; /* sv_pos_b2u does get magic */
3550 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3551 magic_setutf8(sv,mg); /* clear UTF8 cache */
3554 s = (U8 *) SvPV_flags(sv, len, mg_flags);
3556 if (!utf8_to_bytes(s, &len)) {
3561 Perl_croak(aTHX_ "Wide character in %s",
3564 Perl_croak(aTHX_ "Wide character");
3575 =for apidoc sv_utf8_encode
3577 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3578 flag off so that it looks like octets again.
3584 Perl_sv_utf8_encode(pTHX_ SV *const sv)
3586 PERL_ARGS_ASSERT_SV_UTF8_ENCODE;
3588 if (SvREADONLY(sv)) {
3589 sv_force_normal_flags(sv, 0);
3591 (void) sv_utf8_upgrade(sv);
3596 =for apidoc sv_utf8_decode
3598 If the PV of the SV is an octet sequence in UTF-8
3599 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3600 so that it looks like a character. If the PV contains only single-byte
3601 characters, the C<SvUTF8> flag stays off.
3602 Scans PV for validity and returns false if the PV is invalid UTF-8.
3608 Perl_sv_utf8_decode(pTHX_ SV *const sv)
3610 PERL_ARGS_ASSERT_SV_UTF8_DECODE;
3613 const U8 *start, *c;
3616 /* The octets may have got themselves encoded - get them back as
3619 if (!sv_utf8_downgrade(sv, TRUE))
3622 /* it is actually just a matter of turning the utf8 flag on, but
3623 * we want to make sure everything inside is valid utf8 first.
3625 c = start = (const U8 *) SvPVX_const(sv);
3626 if (!is_utf8_string(c, SvCUR(sv)))
3628 e = (const U8 *) SvEND(sv);
3631 if (!UTF8_IS_INVARIANT(ch)) {
3636 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3637 /* XXX Is this dead code? XS_utf8_decode calls SvSETMAGIC
3638 after this, clearing pos. Does anything on CPAN
3640 /* adjust pos to the start of a UTF8 char sequence */
3641 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3643 I32 pos = mg->mg_len;
3645 for (c = start + pos; c > start; c--) {
3646 if (UTF8_IS_START(*c))
3649 mg->mg_len = c - start;
3652 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3653 magic_setutf8(sv,mg); /* clear UTF8 cache */
3660 =for apidoc sv_setsv
3662 Copies the contents of the source SV C<ssv> into the destination SV
3663 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3664 function if the source SV needs to be reused. Does not handle 'set' magic on
3665 destination SV. Calls 'get' magic on source SV. Loosely speaking, it
3666 performs a copy-by-value, obliterating any previous content of the
3669 You probably want to use one of the assortment of wrappers, such as
3670 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3671 C<SvSetMagicSV_nosteal>.
3673 =for apidoc sv_setsv_flags
3675 Copies the contents of the source SV C<ssv> into the destination SV
3676 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3677 function if the source SV needs to be reused. Does not handle 'set' magic.
3678 Loosely speaking, it performs a copy-by-value, obliterating any previous
3679 content of the destination.
3680 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3681 C<ssv> if appropriate, else not. If the C<flags>
3682 parameter has the C<SV_NOSTEAL> bit set then the
3683 buffers of temps will not be stolen. <sv_setsv>
3684 and C<sv_setsv_nomg> are implemented in terms of this function.
3686 You probably want to use one of the assortment of wrappers, such as
3687 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3688 C<SvSetMagicSV_nosteal>.
3690 This is the primary function for copying scalars, and most other
3691 copy-ish functions and macros use this underneath.
3697 S_glob_assign_glob(pTHX_ SV *const dstr, SV *const sstr, const int dtype)
3699 I32 mro_changes = 0; /* 1 = method, 2 = isa, 3 = recursive isa */
3700 HV *old_stash = NULL;
3702 PERL_ARGS_ASSERT_GLOB_ASSIGN_GLOB;
3704 if (dtype != SVt_PVGV && !isGV_with_GP(dstr)) {
3705 const char * const name = GvNAME(sstr);
3706 const STRLEN len = GvNAMELEN(sstr);
3708 if (dtype >= SVt_PV) {
3714 SvUPGRADE(dstr, SVt_PVGV);
3715 (void)SvOK_off(dstr);
3716 isGV_with_GP_on(dstr);
3718 GvSTASH(dstr) = GvSTASH(sstr);
3720 Perl_sv_add_backref(aTHX_ MUTABLE_SV(GvSTASH(dstr)), dstr);
3721 gv_name_set(MUTABLE_GV(dstr), name, len,
3722 GV_ADD | (GvNAMEUTF8(sstr) ? SVf_UTF8 : 0 ));
3723 SvFAKE_on(dstr); /* can coerce to non-glob */
3726 if(GvGP(MUTABLE_GV(sstr))) {
3727 /* If source has method cache entry, clear it */
3729 SvREFCNT_dec(GvCV(sstr));
3730 GvCV_set(sstr, NULL);
3733 /* If source has a real method, then a method is
3736 GvCV((const GV *)sstr) && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3742 /* If dest already had a real method, that's a change as well */
3744 !mro_changes && GvGP(MUTABLE_GV(dstr)) && GvCVu((const GV *)dstr)
3745 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3750 /* We don't need to check the name of the destination if it was not a
3751 glob to begin with. */
3752 if(dtype == SVt_PVGV) {
3753 const char * const name = GvNAME((const GV *)dstr);
3756 /* The stash may have been detached from the symbol table, so
3758 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3762 const STRLEN len = GvNAMELEN(dstr);
3763 if ((len > 1 && name[len-2] == ':' && name[len-1] == ':')
3764 || (len == 1 && name[0] == ':')) {
3767 /* Set aside the old stash, so we can reset isa caches on
3769 if((old_stash = GvHV(dstr)))
3770 /* Make sure we do not lose it early. */
3771 SvREFCNT_inc_simple_void_NN(
3772 sv_2mortal((SV *)old_stash)
3778 gp_free(MUTABLE_GV(dstr));
3779 GvINTRO_off(dstr); /* one-shot flag */
3780 GvGP_set(dstr, gp_ref(GvGP(sstr)));
3781 if (SvTAINTED(sstr))
3783 if (GvIMPORTED(dstr) != GVf_IMPORTED
3784 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3786 GvIMPORTED_on(dstr);
3789 if(mro_changes == 2) {
3790 if (GvAV((const GV *)sstr)) {
3792 SV * const sref = (SV *)GvAV((const GV *)dstr);
3793 if (SvSMAGICAL(sref) && (mg = mg_find(sref, PERL_MAGIC_isa))) {
3794 if (SvTYPE(mg->mg_obj) != SVt_PVAV) {
3795 AV * const ary = newAV();
3796 av_push(ary, mg->mg_obj); /* takes the refcount */
3797 mg->mg_obj = (SV *)ary;
3799 av_push((AV *)mg->mg_obj, SvREFCNT_inc_simple_NN(dstr));
3801 else sv_magic(sref, dstr, PERL_MAGIC_isa, NULL, 0);
3803 mro_isa_changed_in(GvSTASH(dstr));
3805 else if(mro_changes == 3) {
3806 HV * const stash = GvHV(dstr);
3807 if(old_stash ? (HV *)HvENAME_get(old_stash) : stash)
3813 else if(mro_changes) mro_method_changed_in(GvSTASH(dstr));
3814 if (GvIO(dstr) && dtype == SVt_PVGV) {
3815 DEBUG_o(Perl_deb(aTHX_
3816 "glob_assign_glob clearing PL_stashcache\n"));
3817 /* It's a cache. It will rebuild itself quite happily.
3818 It's a lot of effort to work out exactly which key (or keys)
3819 might be invalidated by the creation of the this file handle.
3821 hv_clear(PL_stashcache);
3827 S_glob_assign_ref(pTHX_ SV *const dstr, SV *const sstr)
3829 SV * const sref = SvRV(sstr);
3831 const int intro = GvINTRO(dstr);
3834 const U32 stype = SvTYPE(sref);
3836 PERL_ARGS_ASSERT_GLOB_ASSIGN_REF;
3839 GvINTRO_off(dstr); /* one-shot flag */
3840 GvLINE(dstr) = CopLINE(PL_curcop);
3841 GvEGV(dstr) = MUTABLE_GV(dstr);
3846 location = (SV **) &(GvGP(dstr)->gp_cv); /* XXX bypassing GvCV_set */
3847 import_flag = GVf_IMPORTED_CV;
3850 location = (SV **) &GvHV(dstr);
3851 import_flag = GVf_IMPORTED_HV;
3854 location = (SV **) &GvAV(dstr);
3855 import_flag = GVf_IMPORTED_AV;
3858 location = (SV **) &GvIOp(dstr);
3861 location = (SV **) &GvFORM(dstr);
3864 location = &GvSV(dstr);
3865 import_flag = GVf_IMPORTED_SV;
3868 if (stype == SVt_PVCV) {
3869 /*if (GvCVGEN(dstr) && (GvCV(dstr) != (const CV *)sref || GvCVGEN(dstr))) {*/
3870 if (GvCVGEN(dstr)) {
3871 SvREFCNT_dec(GvCV(dstr));
3872 GvCV_set(dstr, NULL);
3873 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3876 /* SAVEt_GVSLOT takes more room on the savestack and has more
3877 overhead in leave_scope than SAVEt_GENERIC_SV. But for CVs
3878 leave_scope needs access to the GV so it can reset method
3879 caches. We must use SAVEt_GVSLOT whenever the type is
3880 SVt_PVCV, even if the stash is anonymous, as the stash may
3881 gain a name somehow before leave_scope. */
3882 if (stype == SVt_PVCV) {
3883 /* There is no save_pushptrptrptr. Creating it for this
3884 one call site would be overkill. So inline the ss add
3888 SS_ADD_PTR(location);
3889 SS_ADD_PTR(SvREFCNT_inc(*location));
3890 SS_ADD_UV(SAVEt_GVSLOT);
3893 else SAVEGENERICSV(*location);
3896 if (stype == SVt_PVCV && (*location != sref || GvCVGEN(dstr))) {
3897 CV* const cv = MUTABLE_CV(*location);
3899 if (!GvCVGEN((const GV *)dstr) &&
3900 (CvROOT(cv) || CvXSUB(cv)) &&
3901 /* redundant check that avoids creating the extra SV
3902 most of the time: */
3903 (CvCONST(cv) || ckWARN(WARN_REDEFINE)))
3905 SV * const new_const_sv =
3906 CvCONST((const CV *)sref)
3907 ? cv_const_sv((const CV *)sref)
3909 report_redefined_cv(
3910 sv_2mortal(Perl_newSVpvf(aTHX_
3913 HvNAME_HEK(GvSTASH((const GV *)dstr))
3915 HEKfARG(GvENAME_HEK(MUTABLE_GV(dstr)))
3918 CvCONST((const CV *)sref) ? &new_const_sv : NULL
3922 cv_ckproto_len_flags(cv, (const GV *)dstr,
3923 SvPOK(sref) ? CvPROTO(sref) : NULL,
3924 SvPOK(sref) ? CvPROTOLEN(sref) : 0,
3925 SvPOK(sref) ? SvUTF8(sref) : 0);
3927 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3928 GvASSUMECV_on(dstr);
3929 if(GvSTASH(dstr)) gv_method_changed(dstr); /* sub foo { 1 } sub bar { 2 } *bar = \&foo */
3931 *location = SvREFCNT_inc_simple_NN(sref);
3932 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3933 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3934 GvFLAGS(dstr) |= import_flag;
3936 if (stype == SVt_PVHV) {
3937 const char * const name = GvNAME((GV*)dstr);
3938 const STRLEN len = GvNAMELEN(dstr);
3941 (len > 1 && name[len-2] == ':' && name[len-1] == ':')
3942 || (len == 1 && name[0] == ':')
3944 && (!dref || HvENAME_get(dref))
3947 (HV *)sref, (HV *)dref,
3953 stype == SVt_PVAV && sref != dref
3954 && strEQ(GvNAME((GV*)dstr), "ISA")
3955 /* The stash may have been detached from the symbol table, so
3956 check its name before doing anything. */
3957 && GvSTASH(dstr) && HvENAME(GvSTASH(dstr))
3960 MAGIC * const omg = dref && SvSMAGICAL(dref)
3961 ? mg_find(dref, PERL_MAGIC_isa)
3963 if (SvSMAGICAL(sref) && (mg = mg_find(sref, PERL_MAGIC_isa))) {
3964 if (SvTYPE(mg->mg_obj) != SVt_PVAV) {
3965 AV * const ary = newAV();
3966 av_push(ary, mg->mg_obj); /* takes the refcount */
3967 mg->mg_obj = (SV *)ary;
3970 if (SvTYPE(omg->mg_obj) == SVt_PVAV) {
3971 SV **svp = AvARRAY((AV *)omg->mg_obj);
3972 I32 items = AvFILLp((AV *)omg->mg_obj) + 1;
3976 SvREFCNT_inc_simple_NN(*svp++)
3982 SvREFCNT_inc_simple_NN(omg->mg_obj)
3986 av_push((AV *)mg->mg_obj,SvREFCNT_inc_simple_NN(dstr));
3991 sref, omg ? omg->mg_obj : dstr, PERL_MAGIC_isa, NULL, 0
3993 mg = mg_find(sref, PERL_MAGIC_isa);
3995 /* Since the *ISA assignment could have affected more than
3996 one stash, don't call mro_isa_changed_in directly, but let
3997 magic_clearisa do it for us, as it already has the logic for
3998 dealing with globs vs arrays of globs. */
4000 Perl_magic_clearisa(aTHX_ NULL, mg);
4002 else if (stype == SVt_PVIO) {
4003 DEBUG_o(Perl_deb(aTHX_ "glob_assign_ref clearing PL_stashcache\n"));
4004 /* It's a cache. It will rebuild itself quite happily.
4005 It's a lot of effort to work out exactly which key (or keys)
4006 might be invalidated by the creation of the this file handle.
4008 hv_clear(PL_stashcache);
4012 if (!intro) SvREFCNT_dec(dref);
4013 if (SvTAINTED(sstr))
4018 /* Work around compiler warnings about unsigned >= THRESHOLD when thres-
4020 #if SV_COW_THRESHOLD
4021 # define GE_COW_THRESHOLD(len) ((len) >= SV_COW_THRESHOLD)
4023 # define GE_COW_THRESHOLD(len) 1
4025 #if SV_COWBUF_THRESHOLD
4026 # define GE_COWBUF_THRESHOLD(len) ((len) >= SV_COWBUF_THRESHOLD)
4028 # define GE_COWBUF_THRESHOLD(len) 1
4031 #ifdef PERL_DEBUG_READONLY_COW
4032 # include <sys/mman.h>
4034 # ifndef PERL_MEMORY_DEBUG_HEADER_SIZE
4035 # define PERL_MEMORY_DEBUG_HEADER_SIZE 0
4039 Perl_sv_buf_to_ro(pTHX_ SV *sv)
4041 struct perl_memory_debug_header * const header =
4042 (struct perl_memory_debug_header *)(SvPVX(sv)-PERL_MEMORY_DEBUG_HEADER_SIZE);
4043 const MEM_SIZE len = header->size;
4044 PERL_ARGS_ASSERT_SV_BUF_TO_RO;
4045 # ifdef PERL_TRACK_MEMPOOL
4046 if (!header->readonly) header->readonly = 1;
4048 if (mprotect(header, len, PROT_READ))
4049 Perl_warn(aTHX_ "mprotect RW for COW string %p %lu failed with %d",
4050 header, len, errno);
4054 S_sv_buf_to_rw(pTHX_ SV *sv)
4056 struct perl_memory_debug_header * const header =
4057 (struct perl_memory_debug_header *)(SvPVX(sv)-PERL_MEMORY_DEBUG_HEADER_SIZE);
4058 const MEM_SIZE len = header->size;
4059 PERL_ARGS_ASSERT_SV_BUF_TO_RW;
4060 if (mprotect(header, len, PROT_READ|PROT_WRITE))
4061 Perl_warn(aTHX_ "mprotect for COW string %p %lu failed with %d",
4062 header, len, errno);
4063 # ifdef PERL_TRACK_MEMPOOL
4064 header->readonly = 0;
4069 # define sv_buf_to_ro(sv) NOOP
4070 # define sv_buf_to_rw(sv) NOOP
4074 Perl_sv_setsv_flags(pTHX_ SV *dstr, SV* sstr, const I32 flags)
4081 PERL_ARGS_ASSERT_SV_SETSV_FLAGS;
4086 if (SvIS_FREED(dstr)) {
4087 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
4088 " to a freed scalar %p", SVfARG(sstr), (void *)dstr);
4090 SV_CHECK_THINKFIRST_COW_DROP(dstr);
4092 sstr = &PL_sv_undef;
4093 if (SvIS_FREED(sstr)) {
4094 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
4095 (void*)sstr, (void*)dstr);
4097 stype = SvTYPE(sstr);
4098 dtype = SvTYPE(dstr);
4100 /* There's a lot of redundancy below but we're going for speed here */
4105 if (dtype != SVt_PVGV && dtype != SVt_PVLV) {
4106 (void)SvOK_off(dstr);
4114 sv_upgrade(dstr, SVt_IV);
4118 sv_upgrade(dstr, SVt_PVIV);
4122 goto end_of_first_switch;
4124 (void)SvIOK_only(dstr);
4125 SvIV_set(dstr, SvIVX(sstr));
4128 /* SvTAINTED can only be true if the SV has taint magic, which in
4129 turn means that the SV type is PVMG (or greater). This is the
4130 case statement for SVt_IV, so this cannot be true (whatever gcov
4132 assert(!SvTAINTED(sstr));
4137 if (dtype < SVt_PV && dtype != SVt_IV)
4138 sv_upgrade(dstr, SVt_IV);
4146 sv_upgrade(dstr, SVt_NV);
4150 sv_upgrade(dstr, SVt_PVNV);
4154 goto end_of_first_switch;
4156 SvNV_set(dstr, SvNVX(sstr));
4157 (void)SvNOK_only(dstr);
4158 /* SvTAINTED can only be true if the SV has taint magic, which in
4159 turn means that the SV type is PVMG (or greater). This is the
4160 case statement for SVt_NV, so this cannot be true (whatever gcov
4162 assert(!SvTAINTED(sstr));
4169 sv_upgrade(dstr, SVt_PV);
4172 if (dtype < SVt_PVIV)
4173 sv_upgrade(dstr, SVt_PVIV);
4176 if (dtype < SVt_PVNV)
4177 sv_upgrade(dstr, SVt_PVNV);
4181 const char * const type = sv_reftype(sstr,0);
4183 /* diag_listed_as: Bizarre copy of %s */
4184 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_DESC(PL_op));
4186 Perl_croak(aTHX_ "Bizarre copy of %s", type);
4192 if (dtype < SVt_REGEXP)
4194 if (dtype >= SVt_PV) {
4200 sv_upgrade(dstr, SVt_REGEXP);
4208 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
4210 if (SvTYPE(sstr) != stype)
4211 stype = SvTYPE(sstr);
4213 if (isGV_with_GP(sstr) && dtype <= SVt_PVLV) {
4214 glob_assign_glob(dstr, sstr, dtype);
4217 if (stype == SVt_PVLV)
4219 if (isREGEXP(sstr)) goto upgregexp;
4220 SvUPGRADE(dstr, SVt_PVNV);
4223 SvUPGRADE(dstr, (svtype)stype);
4225 end_of_first_switch:
4227 /* dstr may have been upgraded. */
4228 dtype = SvTYPE(dstr);
4229 sflags = SvFLAGS(sstr);
4231 if (dtype == SVt_PVCV) {
4232 /* Assigning to a subroutine sets the prototype. */
4235 const char *const ptr = SvPV_const(sstr, len);
4237 SvGROW(dstr, len + 1);
4238 Copy(ptr, SvPVX(dstr), len + 1, char);
4239 SvCUR_set(dstr, len);
4241 SvFLAGS(dstr) |= sflags & SVf_UTF8;
4242 CvAUTOLOAD_off(dstr);
4247 else if (dtype == SVt_PVAV || dtype == SVt_PVHV || dtype == SVt_PVFM) {
4248 const char * const type = sv_reftype(dstr,0);
4250 /* diag_listed_as: Cannot copy to %s */
4251 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_DESC(PL_op));
4253 Perl_croak(aTHX_ "Cannot copy to %s", type);
4254 } else if (sflags & SVf_ROK) {
4255 if (isGV_with_GP(dstr)
4256 && SvTYPE(SvRV(sstr)) == SVt_PVGV && isGV_with_GP(SvRV(sstr))) {
4259 if (GvIMPORTED(dstr) != GVf_IMPORTED
4260 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
4262 GvIMPORTED_on(dstr);
4267 glob_assign_glob(dstr, sstr, dtype);
4271 if (dtype >= SVt_PV) {
4272 if (isGV_with_GP(dstr)) {
4273 glob_assign_ref(dstr, sstr);
4276 if (SvPVX_const(dstr)) {
4282 (void)SvOK_off(dstr);
4283 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
4284 SvFLAGS(dstr) |= sflags & SVf_ROK;
4285 assert(!(sflags & SVp_NOK));
4286 assert(!(sflags & SVp_IOK));
4287 assert(!(sflags & SVf_NOK));
4288 assert(!(sflags & SVf_IOK));
4290 else if (isGV_with_GP(dstr)) {
4291 if (!(sflags & SVf_OK)) {
4292 Perl_ck_warner(aTHX_ packWARN(WARN_MISC),
4293 "Undefined value assigned to typeglob");
4296 GV *gv = gv_fetchsv_nomg(sstr, GV_ADD, SVt_PVGV);
4297 if (dstr != (const SV *)gv) {
4298 const char * const name = GvNAME((const GV *)dstr);
4299 const STRLEN len = GvNAMELEN(dstr);
4300 HV *old_stash = NULL;
4301 bool reset_isa = FALSE;
4302 if ((len > 1 && name[len-2] == ':' && name[len-1] == ':')
4303 || (len == 1 && name[0] == ':')) {
4304 /* Set aside the old stash, so we can reset isa caches
4305 on its subclasses. */
4306 if((old_stash = GvHV(dstr))) {
4307 /* Make sure we do not lose it early. */
4308 SvREFCNT_inc_simple_void_NN(
4309 sv_2mortal((SV *)old_stash)
4316 gp_free(MUTABLE_GV(dstr));
4317 GvGP_set(dstr, gp_ref(GvGP(gv)));
4320 HV * const stash = GvHV(dstr);
4322 old_stash ? (HV *)HvENAME_get(old_stash) : stash
4332 else if ((dtype == SVt_REGEXP || dtype == SVt_PVLV)
4333 && (stype == SVt_REGEXP || isREGEXP(sstr))) {
4334 reg_temp_copy((REGEXP*)dstr, (REGEXP*)sstr);
4336 else if (sflags & SVp_POK) {
4337 const STRLEN cur = SvCUR(sstr);
4338 const STRLEN len = SvLEN(sstr);
4341 * We have three basic ways to copy the string:
4347 * Which we choose is based on various factors. The following
4348 * things are listed in order of speed, fastest to slowest:
4350 * - Copying a short string
4351 * - Copy-on-write bookkeeping
4353 * - Copying a long string
4355 * We swipe the string (steal the string buffer) if the SV on the
4356 * rhs is about to be freed anyway (TEMP and refcnt==1). This is a
4357 * big win on long strings. It should be a win on short strings if
4358 * SvPVX_const(dstr) has to be allocated. If not, it should not
4359 * slow things down, as SvPVX_const(sstr) would have been freed
4362 * We also steal the buffer from a PADTMP (operator target) if it
4363 * is ‘long enough’. For short strings, a swipe does not help
4364 * here, as it causes more malloc calls the next time the target
4365 * is used. Benchmarks show that even if SvPVX_const(dstr) has to
4366 * be allocated it is still not worth swiping PADTMPs for short
4367 * strings, as the savings here are small.
4369 * If the rhs is already flagged as a copy-on-write string and COW
4370 * is possible here, we use copy-on-write and make both SVs share
4371 * the string buffer.
4373 * If the rhs is not flagged as copy-on-write, then we see whether
4374 * it is worth upgrading it to such. If the lhs already has a buf-
4375 * fer big enough and the string is short, we skip it and fall back
4376 * to method 3, since memcpy is faster for short strings than the
4377 * later bookkeeping overhead that copy-on-write entails.
4379 * If there is no buffer on the left, or the buffer is too small,
4380 * then we use copy-on-write.
4383 /* Whichever path we take through the next code, we want this true,
4384 and doing it now facilitates the COW check. */
4385 (void)SvPOK_only(dstr);
4389 /* slated for free anyway (and not COW)? */
4390 (sflags & (SVs_TEMP|SVf_IsCOW)) == SVs_TEMP
4391 /* or a swipable TARG */
4392 || ((sflags & (SVs_PADTMP|SVf_READONLY|SVf_IsCOW))
4394 /* whose buffer is worth stealing */
4395 && GE_COWBUF_THRESHOLD(cur)
4398 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
4399 (!(flags & SV_NOSTEAL)) &&
4400 /* and we're allowed to steal temps */
4401 SvREFCNT(sstr) == 1 && /* and no other references to it? */
4402 len) /* and really is a string */
4403 { /* Passes the swipe test. */
4404 if (SvPVX_const(dstr)) /* we know that dtype >= SVt_PV */
4406 SvPV_set(dstr, SvPVX_mutable(sstr));
4407 SvLEN_set(dstr, SvLEN(sstr));
4408 SvCUR_set(dstr, SvCUR(sstr));
4411 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
4412 SvPV_set(sstr, NULL);
4417 else if (flags & SV_COW_SHARED_HASH_KEYS
4419 #ifdef PERL_OLD_COPY_ON_WRITE
4420 ( sflags & SVf_IsCOW
4421 || ( (sflags & CAN_COW_MASK) == CAN_COW_FLAGS
4422 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
4423 && SvTYPE(sstr) >= SVt_PVIV && len
4426 #elif defined(PERL_NEW_COPY_ON_WRITE)
4429 ( (GE_COWBUF_THRESHOLD(cur) || SvLEN(dstr) < cur+1)
4430 /* If this is a regular (non-hek) COW, only so
4431 many COW "copies" are possible. */
4432 && CowREFCNT(sstr) != SV_COW_REFCNT_MAX ))
4433 : ( (sflags & CAN_COW_MASK) == CAN_COW_FLAGS
4434 && !(SvFLAGS(dstr) & SVf_BREAK)
4435 && GE_COW_THRESHOLD(cur) && cur+1 < len
4436 && (GE_COWBUF_THRESHOLD(cur) || SvLEN(dstr) < cur+1)
4440 && !(SvFLAGS(dstr) & SVf_BREAK)
4443 /* Either it's a shared hash key, or it's suitable for
4446 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
4451 if (!(sflags & SVf_IsCOW)) {
4453 # ifdef PERL_OLD_COPY_ON_WRITE
4454 /* Make the source SV into a loop of 1.
4455 (about to become 2) */
4456 SV_COW_NEXT_SV_SET(sstr, sstr);
4458 CowREFCNT(sstr) = 0;
4462 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
4468 # ifdef PERL_OLD_COPY_ON_WRITE
4469 assert (SvTYPE(dstr) >= SVt_PVIV);
4470 /* SvIsCOW_normal */
4471 /* splice us in between source and next-after-source. */
4472 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4473 SV_COW_NEXT_SV_SET(sstr, dstr);
4475 if (sflags & SVf_IsCOW) {
4480 SvPV_set(dstr, SvPVX_mutable(sstr));
4485 /* SvIsCOW_shared_hash */
4486 DEBUG_C(PerlIO_printf(Perl_debug_log,
4487 "Copy on write: Sharing hash\n"));
4489 assert (SvTYPE(dstr) >= SVt_PV);
4491 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
4493 SvLEN_set(dstr, len);
4494 SvCUR_set(dstr, cur);
4497 /* Failed the swipe test, and we cannot do copy-on-write either.
4498 Have to copy the string. */
4499 SvGROW(dstr, cur + 1); /* inlined from sv_setpvn */
4500 Move(SvPVX_const(sstr),SvPVX(dstr),cur,char);
4501 SvCUR_set(dstr, cur);
4502 *SvEND(dstr) = '\0';
4504 if (sflags & SVp_NOK) {
4505 SvNV_set(dstr, SvNVX(sstr));
4507 if (sflags & SVp_IOK) {
4508 SvIV_set(dstr, SvIVX(sstr));
4509 /* Must do this otherwise some other overloaded use of 0x80000000
4510 gets confused. I guess SVpbm_VALID */
4511 if (sflags & SVf_IVisUV)
4514 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8);
4516 const MAGIC * const smg = SvVSTRING_mg(sstr);
4518 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
4519 smg->mg_ptr, smg->mg_len);
4520 SvRMAGICAL_on(dstr);
4524 else if (sflags & (SVp_IOK|SVp_NOK)) {
4525 (void)SvOK_off(dstr);
4526 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK);
4527 if (sflags & SVp_IOK) {
4528 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
4529 SvIV_set(dstr, SvIVX(sstr));
4531 if (sflags & SVp_NOK) {
4532 SvNV_set(dstr, SvNVX(sstr));
4536 if (isGV_with_GP(sstr)) {
4537 gv_efullname3(dstr, MUTABLE_GV(sstr), "*");
4540 (void)SvOK_off(dstr);
4542 if (SvTAINTED(sstr))
4547 =for apidoc sv_setsv_mg
4549 Like C<sv_setsv>, but also handles 'set' magic.
4555 Perl_sv_setsv_mg(pTHX_ SV *const dstr, SV *const sstr)
4557 PERL_ARGS_ASSERT_SV_SETSV_MG;
4559 sv_setsv(dstr,sstr);
4564 # ifdef PERL_OLD_COPY_ON_WRITE
4565 # define SVt_COW SVt_PVIV
4567 # define SVt_COW SVt_PV
4570 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
4572 STRLEN cur = SvCUR(sstr);
4573 STRLEN len = SvLEN(sstr);
4575 #if defined(PERL_DEBUG_READONLY_COW) && defined(PERL_NEW_COPY_ON_WRITE)
4576 const bool already = cBOOL(SvIsCOW(sstr));
4579 PERL_ARGS_ASSERT_SV_SETSV_COW;
4582 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
4583 (void*)sstr, (void*)dstr);
4590 if (SvTHINKFIRST(dstr))
4591 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
4592 else if (SvPVX_const(dstr))
4593 Safefree(SvPVX_mutable(dstr));
4597 SvUPGRADE(dstr, SVt_COW);
4599 assert (SvPOK(sstr));
4600 assert (SvPOKp(sstr));
4601 # ifdef PERL_OLD_COPY_ON_WRITE
4602 assert (!SvIOK(sstr));
4603 assert (!SvIOKp(sstr));
4604 assert (!SvNOK(sstr));
4605 assert (!SvNOKp(sstr));
4608 if (SvIsCOW(sstr)) {
4610 if (SvLEN(sstr) == 0) {
4611 /* source is a COW shared hash key. */
4612 DEBUG_C(PerlIO_printf(Perl_debug_log,
4613 "Fast copy on write: Sharing hash\n"));
4614 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
4617 # ifdef PERL_OLD_COPY_ON_WRITE
4618 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4620 assert(SvCUR(sstr)+1 < SvLEN(sstr));
4621 assert(CowREFCNT(sstr) < SV_COW_REFCNT_MAX);