3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 * 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
9 * "I wonder what the Entish is for 'yes' and 'no'," he thought.
12 * This file contains the code that creates, manipulates and destroys
13 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
14 * structure of an SV, so their creation and destruction is handled
15 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
16 * level functions (eg. substr, split, join) for each of the types are
28 /* Missing proto on LynxOS */
29 char *gconvert(double, int, int, char *);
32 #ifdef PERL_UTF8_CACHE_ASSERT
33 /* if adding more checks watch out for the following tests:
34 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
35 * lib/utf8.t lib/Unicode/Collate/t/index.t
38 # define ASSERT_UTF8_CACHE(cache) \
39 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
40 assert((cache)[2] <= (cache)[3]); \
41 assert((cache)[3] <= (cache)[1]);} \
44 # define ASSERT_UTF8_CACHE(cache) NOOP
47 #ifdef PERL_OLD_COPY_ON_WRITE
48 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
49 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
50 /* This is a pessimistic view. Scalar must be purely a read-write PV to copy-
54 /* ============================================================================
56 =head1 Allocation and deallocation of SVs.
58 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
59 sv, av, hv...) contains type and reference count information, and for
60 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
61 contains fields specific to each type. Some types store all they need
62 in the head, so don't have a body.
64 In all but the most memory-paranoid configuations (ex: PURIFY), heads
65 and bodies are allocated out of arenas, which by default are
66 approximately 4K chunks of memory parcelled up into N heads or bodies.
67 Sv-bodies are allocated by their sv-type, guaranteeing size
68 consistency needed to allocate safely from arrays.
70 For SV-heads, the first slot in each arena is reserved, and holds a
71 link to the next arena, some flags, and a note of the number of slots.
72 Snaked through each arena chain is a linked list of free items; when
73 this becomes empty, an extra arena is allocated and divided up into N
74 items which are threaded into the free list.
76 SV-bodies are similar, but they use arena-sets by default, which
77 separate the link and info from the arena itself, and reclaim the 1st
78 slot in the arena. SV-bodies are further described later.
80 The following global variables are associated with arenas:
82 PL_sv_arenaroot pointer to list of SV arenas
83 PL_sv_root pointer to list of free SV structures
85 PL_body_arenas head of linked-list of body arenas
86 PL_body_roots[] array of pointers to list of free bodies of svtype
87 arrays are indexed by the svtype needed
89 A few special SV heads are not allocated from an arena, but are
90 instead directly created in the interpreter structure, eg PL_sv_undef.
91 The size of arenas can be changed from the default by setting
92 PERL_ARENA_SIZE appropriately at compile time.
94 The SV arena serves the secondary purpose of allowing still-live SVs
95 to be located and destroyed during final cleanup.
97 At the lowest level, the macros new_SV() and del_SV() grab and free
98 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
99 to return the SV to the free list with error checking.) new_SV() calls
100 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
101 SVs in the free list have their SvTYPE field set to all ones.
103 At the time of very final cleanup, sv_free_arenas() is called from
104 perl_destruct() to physically free all the arenas allocated since the
105 start of the interpreter.
107 The function visit() scans the SV arenas list, and calls a specified
108 function for each SV it finds which is still live - ie which has an SvTYPE
109 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
110 following functions (specified as [function that calls visit()] / [function
111 called by visit() for each SV]):
113 sv_report_used() / do_report_used()
114 dump all remaining SVs (debugging aid)
116 sv_clean_objs() / do_clean_objs(),do_clean_named_objs()
117 Attempt to free all objects pointed to by RVs,
118 and, unless DISABLE_DESTRUCTOR_KLUDGE is defined,
119 try to do the same for all objects indirectly
120 referenced by typeglobs too. Called once from
121 perl_destruct(), prior to calling sv_clean_all()
124 sv_clean_all() / do_clean_all()
125 SvREFCNT_dec(sv) each remaining SV, possibly
126 triggering an sv_free(). It also sets the
127 SVf_BREAK flag on the SV to indicate that the
128 refcnt has been artificially lowered, and thus
129 stopping sv_free() from giving spurious warnings
130 about SVs which unexpectedly have a refcnt
131 of zero. called repeatedly from perl_destruct()
132 until there are no SVs left.
134 =head2 Arena allocator API Summary
136 Private API to rest of sv.c
140 new_XIV(), del_XIV(),
141 new_XNV(), del_XNV(),
146 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
150 ============================================================================ */
153 * "A time to plant, and a time to uproot what was planted..."
157 Perl_offer_nice_chunk(pTHX_ void *chunk, U32 chunk_size)
162 new_chunk = (void *)(chunk);
163 new_chunk_size = (chunk_size);
164 if (new_chunk_size > PL_nice_chunk_size) {
165 Safefree(PL_nice_chunk);
166 PL_nice_chunk = (char *) new_chunk;
167 PL_nice_chunk_size = new_chunk_size;
173 #ifdef DEBUG_LEAKING_SCALARS
174 # define FREE_SV_DEBUG_FILE(sv) Safefree((sv)->sv_debug_file)
176 # define FREE_SV_DEBUG_FILE(sv)
180 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
181 /* Whilst I'd love to do this, it seems that things like to check on
183 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
185 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
186 PoisonNew(&SvREFCNT(sv), 1, U32)
188 # define SvARENA_CHAIN(sv) SvANY(sv)
189 # define POSION_SV_HEAD(sv)
192 #define plant_SV(p) \
194 FREE_SV_DEBUG_FILE(p); \
196 SvARENA_CHAIN(p) = (void *)PL_sv_root; \
197 SvFLAGS(p) = SVTYPEMASK; \
202 #define uproot_SV(p) \
205 PL_sv_root = (SV*)SvARENA_CHAIN(p); \
210 /* make some more SVs by adding another arena */
219 sv_add_arena(PL_nice_chunk, PL_nice_chunk_size, 0);
220 PL_nice_chunk = NULL;
221 PL_nice_chunk_size = 0;
224 char *chunk; /* must use New here to match call to */
225 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
226 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
232 /* new_SV(): return a new, empty SV head */
234 #ifdef DEBUG_LEAKING_SCALARS
235 /* provide a real function for a debugger to play with */
244 sv = S_more_sv(aTHX);
248 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
249 sv->sv_debug_line = (U16) ((PL_copline == NOLINE) ?
250 (PL_curcop ? CopLINE(PL_curcop) : 0) : PL_copline);
251 sv->sv_debug_inpad = 0;
252 sv->sv_debug_cloned = 0;
253 sv->sv_debug_file = PL_curcop ? savepv(CopFILE(PL_curcop)): NULL;
257 # define new_SV(p) (p)=S_new_SV(aTHX)
265 (p) = S_more_sv(aTHX); \
273 /* del_SV(): return an empty SV head to the free list */
286 S_del_sv(pTHX_ SV *p)
292 for (sva = PL_sv_arenaroot; sva; sva = (SV *) SvANY(sva)) {
293 const SV * const sv = sva + 1;
294 const SV * const svend = &sva[SvREFCNT(sva)];
295 if (p >= sv && p < svend) {
301 if (ckWARN_d(WARN_INTERNAL))
302 Perl_warner(aTHX_ packWARN(WARN_INTERNAL),
303 "Attempt to free non-arena SV: 0x%"UVxf
304 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
311 #else /* ! DEBUGGING */
313 #define del_SV(p) plant_SV(p)
315 #endif /* DEBUGGING */
319 =head1 SV Manipulation Functions
321 =for apidoc sv_add_arena
323 Given a chunk of memory, link it to the head of the list of arenas,
324 and split it into a list of free SVs.
330 Perl_sv_add_arena(pTHX_ char *ptr, U32 size, U32 flags)
333 SV* const sva = (SV*)ptr;
337 /* The first SV in an arena isn't an SV. */
338 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
339 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
340 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
342 PL_sv_arenaroot = sva;
343 PL_sv_root = sva + 1;
345 svend = &sva[SvREFCNT(sva) - 1];
348 SvARENA_CHAIN(sv) = (void *)(SV*)(sv + 1);
352 /* Must always set typemask because it's awlays checked in on cleanup
353 when the arenas are walked looking for objects. */
354 SvFLAGS(sv) = SVTYPEMASK;
357 SvARENA_CHAIN(sv) = 0;
361 SvFLAGS(sv) = SVTYPEMASK;
364 /* visit(): call the named function for each non-free SV in the arenas
365 * whose flags field matches the flags/mask args. */
368 S_visit(pTHX_ SVFUNC_t f, U32 flags, U32 mask)
374 for (sva = PL_sv_arenaroot; sva; sva = (SV*)SvANY(sva)) {
375 register const SV * const svend = &sva[SvREFCNT(sva)];
377 for (sv = sva + 1; sv < svend; ++sv) {
378 if (SvTYPE(sv) != SVTYPEMASK
379 && (sv->sv_flags & mask) == flags
392 /* called by sv_report_used() for each live SV */
395 do_report_used(pTHX_ SV *sv)
397 if (SvTYPE(sv) != SVTYPEMASK) {
398 PerlIO_printf(Perl_debug_log, "****\n");
405 =for apidoc sv_report_used
407 Dump the contents of all SVs not yet freed. (Debugging aid).
413 Perl_sv_report_used(pTHX)
416 visit(do_report_used, 0, 0);
422 /* called by sv_clean_objs() for each live SV */
425 do_clean_objs(pTHX_ SV *ref)
430 SV * const target = SvRV(ref);
431 if (SvOBJECT(target)) {
432 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
433 if (SvWEAKREF(ref)) {
434 sv_del_backref(target, ref);
440 SvREFCNT_dec(target);
445 /* XXX Might want to check arrays, etc. */
448 /* called by sv_clean_objs() for each live SV */
450 #ifndef DISABLE_DESTRUCTOR_KLUDGE
452 do_clean_named_objs(pTHX_ SV *sv)
455 assert(SvTYPE(sv) == SVt_PVGV);
456 assert(isGV_with_GP(sv));
459 #ifdef PERL_DONT_CREATE_GVSV
462 SvOBJECT(GvSV(sv))) ||
463 (GvAV(sv) && SvOBJECT(GvAV(sv))) ||
464 (GvHV(sv) && SvOBJECT(GvHV(sv))) ||
465 (GvIO(sv) && SvOBJECT(GvIO(sv))) ||
466 (GvCV(sv) && SvOBJECT(GvCV(sv))) )
468 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning named glob object:\n "), sv_dump(sv)));
469 SvFLAGS(sv) |= SVf_BREAK;
477 =for apidoc sv_clean_objs
479 Attempt to destroy all objects not yet freed
485 Perl_sv_clean_objs(pTHX)
488 PL_in_clean_objs = TRUE;
489 visit(do_clean_objs, SVf_ROK, SVf_ROK);
490 #ifndef DISABLE_DESTRUCTOR_KLUDGE
491 /* some barnacles may yet remain, clinging to typeglobs */
492 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
494 PL_in_clean_objs = FALSE;
497 /* called by sv_clean_all() for each live SV */
500 do_clean_all(pTHX_ SV *sv)
503 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
504 SvFLAGS(sv) |= SVf_BREAK;
505 if (PL_comppad == (AV*)sv) {
513 =for apidoc sv_clean_all
515 Decrement the refcnt of each remaining SV, possibly triggering a
516 cleanup. This function may have to be called multiple times to free
517 SVs which are in complex self-referential hierarchies.
523 Perl_sv_clean_all(pTHX)
527 PL_in_clean_all = TRUE;
528 cleaned = visit(do_clean_all, 0,0);
529 PL_in_clean_all = FALSE;
534 ARENASETS: a meta-arena implementation which separates arena-info
535 into struct arena_set, which contains an array of struct
536 arena_descs, each holding info for a single arena. By separating
537 the meta-info from the arena, we recover the 1st slot, formerly
538 borrowed for list management. The arena_set is about the size of an
539 arena, avoiding the needless malloc overhead of a naive linked-list.
541 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
542 memory in the last arena-set (1/2 on average). In trade, we get
543 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
544 smaller types). The recovery of the wasted space allows use of
545 small arenas for large, rare body types,
548 char *arena; /* the raw storage, allocated aligned */
549 size_t size; /* its size ~4k typ */
550 U32 misc; /* type, and in future other things. */
555 /* Get the maximum number of elements in set[] such that struct arena_set
556 will fit within PERL_ARENA_SIZE, which is probabably just under 4K, and
557 therefore likely to be 1 aligned memory page. */
559 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
560 - 2 * sizeof(int)) / sizeof (struct arena_desc))
563 struct arena_set* next;
564 unsigned int set_size; /* ie ARENAS_PER_SET */
565 unsigned int curr; /* index of next available arena-desc */
566 struct arena_desc set[ARENAS_PER_SET];
570 =for apidoc sv_free_arenas
572 Deallocate the memory used by all arenas. Note that all the individual SV
573 heads and bodies within the arenas must already have been freed.
578 Perl_sv_free_arenas(pTHX)
585 /* Free arenas here, but be careful about fake ones. (We assume
586 contiguity of the fake ones with the corresponding real ones.) */
588 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
589 svanext = (SV*) SvANY(sva);
590 while (svanext && SvFAKE(svanext))
591 svanext = (SV*) SvANY(svanext);
598 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
601 struct arena_set *current = aroot;
604 assert(aroot->set[i].arena);
605 Safefree(aroot->set[i].arena);
613 i = PERL_ARENA_ROOTS_SIZE;
615 PL_body_roots[i] = 0;
617 Safefree(PL_nice_chunk);
618 PL_nice_chunk = NULL;
619 PL_nice_chunk_size = 0;
625 Here are mid-level routines that manage the allocation of bodies out
626 of the various arenas. There are 5 kinds of arenas:
628 1. SV-head arenas, which are discussed and handled above
629 2. regular body arenas
630 3. arenas for reduced-size bodies
632 5. pte arenas (thread related)
634 Arena types 2 & 3 are chained by body-type off an array of
635 arena-root pointers, which is indexed by svtype. Some of the
636 larger/less used body types are malloced singly, since a large
637 unused block of them is wasteful. Also, several svtypes dont have
638 bodies; the data fits into the sv-head itself. The arena-root
639 pointer thus has a few unused root-pointers (which may be hijacked
640 later for arena types 4,5)
642 3 differs from 2 as an optimization; some body types have several
643 unused fields in the front of the structure (which are kept in-place
644 for consistency). These bodies can be allocated in smaller chunks,
645 because the leading fields arent accessed. Pointers to such bodies
646 are decremented to point at the unused 'ghost' memory, knowing that
647 the pointers are used with offsets to the real memory.
649 HE, HEK arenas are managed separately, with separate code, but may
650 be merge-able later..
652 PTE arenas are not sv-bodies, but they share these mid-level
653 mechanics, so are considered here. The new mid-level mechanics rely
654 on the sv_type of the body being allocated, so we just reserve one
655 of the unused body-slots for PTEs, then use it in those (2) PTE
656 contexts below (line ~10k)
659 /* get_arena(size): this creates custom-sized arenas
660 TBD: export properly for hv.c: S_more_he().
663 Perl_get_arena(pTHX_ size_t arena_size, U32 misc)
666 struct arena_desc* adesc;
667 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
670 /* shouldnt need this
671 if (!arena_size) arena_size = PERL_ARENA_SIZE;
674 /* may need new arena-set to hold new arena */
675 if (!aroot || aroot->curr >= aroot->set_size) {
676 struct arena_set *newroot;
677 Newxz(newroot, 1, struct arena_set);
678 newroot->set_size = ARENAS_PER_SET;
679 newroot->next = aroot;
681 PL_body_arenas = (void *) newroot;
682 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
685 /* ok, now have arena-set with at least 1 empty/available arena-desc */
686 curr = aroot->curr++;
687 adesc = &(aroot->set[curr]);
688 assert(!adesc->arena);
690 Newx(adesc->arena, arena_size, char);
691 adesc->size = arena_size;
693 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %d\n",
694 curr, (void*)adesc->arena, arena_size));
700 /* return a thing to the free list */
702 #define del_body(thing, root) \
704 void ** const thing_copy = (void **)thing;\
705 *thing_copy = *root; \
706 *root = (void*)thing_copy; \
711 =head1 SV-Body Allocation
713 Allocation of SV-bodies is similar to SV-heads, differing as follows;
714 the allocation mechanism is used for many body types, so is somewhat
715 more complicated, it uses arena-sets, and has no need for still-live
718 At the outermost level, (new|del)_X*V macros return bodies of the
719 appropriate type. These macros call either (new|del)_body_type or
720 (new|del)_body_allocated macro pairs, depending on specifics of the
721 type. Most body types use the former pair, the latter pair is used to
722 allocate body types with "ghost fields".
724 "ghost fields" are fields that are unused in certain types, and
725 consequently dont need to actually exist. They are declared because
726 they're part of a "base type", which allows use of functions as
727 methods. The simplest examples are AVs and HVs, 2 aggregate types
728 which don't use the fields which support SCALAR semantics.
730 For these types, the arenas are carved up into *_allocated size
731 chunks, we thus avoid wasted memory for those unaccessed members.
732 When bodies are allocated, we adjust the pointer back in memory by the
733 size of the bit not allocated, so it's as if we allocated the full
734 structure. (But things will all go boom if you write to the part that
735 is "not there", because you'll be overwriting the last members of the
736 preceding structure in memory.)
738 We calculate the correction using the STRUCT_OFFSET macro. For
739 example, if xpv_allocated is the same structure as XPV then the two
740 OFFSETs sum to zero, and the pointer is unchanged. If the allocated
741 structure is smaller (no initial NV actually allocated) then the net
742 effect is to subtract the size of the NV from the pointer, to return a
743 new pointer as if an initial NV were actually allocated.
745 This is the same trick as was used for NV and IV bodies. Ironically it
746 doesn't need to be used for NV bodies any more, because NV is now at
747 the start of the structure. IV bodies don't need it either, because
748 they are no longer allocated.
750 In turn, the new_body_* allocators call S_new_body(), which invokes
751 new_body_inline macro, which takes a lock, and takes a body off the
752 linked list at PL_body_roots[sv_type], calling S_more_bodies() if
753 necessary to refresh an empty list. Then the lock is released, and
754 the body is returned.
756 S_more_bodies calls get_arena(), and carves it up into an array of N
757 bodies, which it strings into a linked list. It looks up arena-size
758 and body-size from the body_details table described below, thus
759 supporting the multiple body-types.
761 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
762 the (new|del)_X*V macros are mapped directly to malloc/free.
768 For each sv-type, struct body_details bodies_by_type[] carries
769 parameters which control these aspects of SV handling:
771 Arena_size determines whether arenas are used for this body type, and if
772 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
773 zero, forcing individual mallocs and frees.
775 Body_size determines how big a body is, and therefore how many fit into
776 each arena. Offset carries the body-pointer adjustment needed for
777 *_allocated body types, and is used in *_allocated macros.
779 But its main purpose is to parameterize info needed in
780 Perl_sv_upgrade(). The info here dramatically simplifies the function
781 vs the implementation in 5.8.7, making it table-driven. All fields
782 are used for this, except for arena_size.
784 For the sv-types that have no bodies, arenas are not used, so those
785 PL_body_roots[sv_type] are unused, and can be overloaded. In
786 something of a special case, SVt_NULL is borrowed for HE arenas;
787 PL_body_roots[SVt_NULL] is filled by S_more_he, but the
788 bodies_by_type[SVt_NULL] slot is not used, as the table is not
791 PTEs also use arenas, but are never seen in Perl_sv_upgrade.
792 Nonetheless, they get their own slot in bodies_by_type[SVt_NULL], so
793 they can just use the same allocation semantics. At first, PTEs were
794 also overloaded to a non-body sv-type, but this yielded hard-to-find
795 malloc bugs, so was simplified by claiming a new slot. This choice
796 has no consequence at this time.
800 struct body_details {
801 U8 body_size; /* Size to allocate */
802 U8 copy; /* Size of structure to copy (may be shorter) */
804 unsigned int type : 4; /* We have space for a sanity check. */
805 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
806 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
807 unsigned int arena : 1; /* Allocated from an arena */
808 size_t arena_size; /* Size of arena to allocate */
816 /* With -DPURFIY we allocate everything directly, and don't use arenas.
817 This seems a rather elegant way to simplify some of the code below. */
818 #define HASARENA FALSE
820 #define HASARENA TRUE
822 #define NOARENA FALSE
824 /* Size the arenas to exactly fit a given number of bodies. A count
825 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
826 simplifying the default. If count > 0, the arena is sized to fit
827 only that many bodies, allowing arenas to be used for large, rare
828 bodies (XPVFM, XPVIO) without undue waste. The arena size is
829 limited by PERL_ARENA_SIZE, so we can safely oversize the
832 #define FIT_ARENA0(body_size) \
833 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
834 #define FIT_ARENAn(count,body_size) \
835 ( count * body_size <= PERL_ARENA_SIZE) \
836 ? count * body_size \
837 : FIT_ARENA0 (body_size)
838 #define FIT_ARENA(count,body_size) \
840 ? FIT_ARENAn (count, body_size) \
841 : FIT_ARENA0 (body_size)
843 /* A macro to work out the offset needed to subtract from a pointer to (say)
850 to make its members accessible via a pointer to (say)
860 #define relative_STRUCT_OFFSET(longer, shorter, member) \
861 (STRUCT_OFFSET(shorter, member) - STRUCT_OFFSET(longer, member))
863 /* Calculate the length to copy. Specifically work out the length less any
864 final padding the compiler needed to add. See the comment in sv_upgrade
865 for why copying the padding proved to be a bug. */
867 #define copy_length(type, last_member) \
868 STRUCT_OFFSET(type, last_member) \
869 + sizeof (((type*)SvANY((SV*)0))->last_member)
871 static const struct body_details bodies_by_type[] = {
872 { sizeof(HE), 0, 0, SVt_NULL,
873 FALSE, NONV, NOARENA, FIT_ARENA(0, sizeof(HE)) },
875 /* The bind placeholder pretends to be an RV for now.
876 Also it's marked as "can't upgrade" top stop anyone using it before it's
878 { 0, 0, 0, SVt_BIND, TRUE, NONV, NOARENA, 0 },
880 /* IVs are in the head, so the allocation size is 0.
881 However, the slot is overloaded for PTEs. */
882 { sizeof(struct ptr_tbl_ent), /* This is used for PTEs. */
883 sizeof(IV), /* This is used to copy out the IV body. */
884 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
885 NOARENA /* IVS don't need an arena */,
886 /* But PTEs need to know the size of their arena */
887 FIT_ARENA(0, sizeof(struct ptr_tbl_ent))
890 /* 8 bytes on most ILP32 with IEEE doubles */
891 { sizeof(NV), sizeof(NV), 0, SVt_NV, FALSE, HADNV, HASARENA,
892 FIT_ARENA(0, sizeof(NV)) },
894 /* RVs are in the head now. */
895 { 0, 0, 0, SVt_RV, FALSE, NONV, NOARENA, 0 },
897 /* 8 bytes on most ILP32 with IEEE doubles */
898 { sizeof(xpv_allocated),
899 copy_length(XPV, xpv_len)
900 - relative_STRUCT_OFFSET(xpv_allocated, XPV, xpv_cur),
901 + relative_STRUCT_OFFSET(xpv_allocated, XPV, xpv_cur),
902 SVt_PV, FALSE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpv_allocated)) },
905 { sizeof(xpviv_allocated),
906 copy_length(XPVIV, xiv_u)
907 - relative_STRUCT_OFFSET(xpviv_allocated, XPVIV, xpv_cur),
908 + relative_STRUCT_OFFSET(xpviv_allocated, XPVIV, xpv_cur),
909 SVt_PVIV, FALSE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpviv_allocated)) },
912 { sizeof(XPVNV), copy_length(XPVNV, xiv_u), 0, SVt_PVNV, FALSE, HADNV,
913 HASARENA, FIT_ARENA(0, sizeof(XPVNV)) },
916 { sizeof(XPVMG), copy_length(XPVMG, xmg_stash), 0, SVt_PVMG, FALSE, HADNV,
917 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
920 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
921 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
924 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
925 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
927 { sizeof(xpvav_allocated),
928 copy_length(XPVAV, xmg_stash)
929 - relative_STRUCT_OFFSET(xpvav_allocated, XPVAV, xav_fill),
930 + relative_STRUCT_OFFSET(xpvav_allocated, XPVAV, xav_fill),
931 SVt_PVAV, TRUE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpvav_allocated)) },
933 { sizeof(xpvhv_allocated),
934 copy_length(XPVHV, xmg_stash)
935 - relative_STRUCT_OFFSET(xpvhv_allocated, XPVHV, xhv_fill),
936 + relative_STRUCT_OFFSET(xpvhv_allocated, XPVHV, xhv_fill),
937 SVt_PVHV, TRUE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpvhv_allocated)) },
940 { sizeof(xpvcv_allocated), sizeof(xpvcv_allocated),
941 + relative_STRUCT_OFFSET(xpvcv_allocated, XPVCV, xpv_cur),
942 SVt_PVCV, TRUE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpvcv_allocated)) },
944 { sizeof(xpvfm_allocated), sizeof(xpvfm_allocated),
945 + relative_STRUCT_OFFSET(xpvfm_allocated, XPVFM, xpv_cur),
946 SVt_PVFM, TRUE, NONV, NOARENA, FIT_ARENA(20, sizeof(xpvfm_allocated)) },
948 /* XPVIO is 84 bytes, fits 48x */
949 { sizeof(XPVIO), sizeof(XPVIO), 0, SVt_PVIO, TRUE, HADNV,
950 HASARENA, FIT_ARENA(24, sizeof(XPVIO)) },
953 #define new_body_type(sv_type) \
954 (void *)((char *)S_new_body(aTHX_ sv_type))
956 #define del_body_type(p, sv_type) \
957 del_body(p, &PL_body_roots[sv_type])
960 #define new_body_allocated(sv_type) \
961 (void *)((char *)S_new_body(aTHX_ sv_type) \
962 - bodies_by_type[sv_type].offset)
964 #define del_body_allocated(p, sv_type) \
965 del_body(p + bodies_by_type[sv_type].offset, &PL_body_roots[sv_type])
968 #define my_safemalloc(s) (void*)safemalloc(s)
969 #define my_safecalloc(s) (void*)safecalloc(s, 1)
970 #define my_safefree(p) safefree((char*)p)
974 #define new_XNV() my_safemalloc(sizeof(XPVNV))
975 #define del_XNV(p) my_safefree(p)
977 #define new_XPVNV() my_safemalloc(sizeof(XPVNV))
978 #define del_XPVNV(p) my_safefree(p)
980 #define new_XPVAV() my_safemalloc(sizeof(XPVAV))
981 #define del_XPVAV(p) my_safefree(p)
983 #define new_XPVHV() my_safemalloc(sizeof(XPVHV))
984 #define del_XPVHV(p) my_safefree(p)
986 #define new_XPVMG() my_safemalloc(sizeof(XPVMG))
987 #define del_XPVMG(p) my_safefree(p)
989 #define new_XPVGV() my_safemalloc(sizeof(XPVGV))
990 #define del_XPVGV(p) my_safefree(p)
994 #define new_XNV() new_body_type(SVt_NV)
995 #define del_XNV(p) del_body_type(p, SVt_NV)
997 #define new_XPVNV() new_body_type(SVt_PVNV)
998 #define del_XPVNV(p) del_body_type(p, SVt_PVNV)
1000 #define new_XPVAV() new_body_allocated(SVt_PVAV)
1001 #define del_XPVAV(p) del_body_allocated(p, SVt_PVAV)
1003 #define new_XPVHV() new_body_allocated(SVt_PVHV)
1004 #define del_XPVHV(p) del_body_allocated(p, SVt_PVHV)
1006 #define new_XPVMG() new_body_type(SVt_PVMG)
1007 #define del_XPVMG(p) del_body_type(p, SVt_PVMG)
1009 #define new_XPVGV() new_body_type(SVt_PVGV)
1010 #define del_XPVGV(p) del_body_type(p, SVt_PVGV)
1014 /* no arena for you! */
1016 #define new_NOARENA(details) \
1017 my_safemalloc((details)->body_size + (details)->offset)
1018 #define new_NOARENAZ(details) \
1019 my_safecalloc((details)->body_size + (details)->offset)
1022 S_more_bodies (pTHX_ svtype sv_type)
1025 void ** const root = &PL_body_roots[sv_type];
1026 const struct body_details * const bdp = &bodies_by_type[sv_type];
1027 const size_t body_size = bdp->body_size;
1030 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1031 static bool done_sanity_check;
1033 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1034 * variables like done_sanity_check. */
1035 if (!done_sanity_check) {
1036 unsigned int i = SVt_LAST;
1038 done_sanity_check = TRUE;
1041 assert (bodies_by_type[i].type == i);
1045 assert(bdp->arena_size);
1047 start = (char*) Perl_get_arena(aTHX_ bdp->arena_size, sv_type);
1049 end = start + bdp->arena_size - body_size;
1051 /* computed count doesnt reflect the 1st slot reservation */
1052 DEBUG_m(PerlIO_printf(Perl_debug_log,
1053 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1054 (void*)start, (void*)end,
1055 (int)bdp->arena_size, sv_type, (int)body_size,
1056 (int)bdp->arena_size / (int)body_size));
1058 *root = (void *)start;
1060 while (start < end) {
1061 char * const next = start + body_size;
1062 *(void**) start = (void *)next;
1065 *(void **)start = 0;
1070 /* grab a new thing from the free list, allocating more if necessary.
1071 The inline version is used for speed in hot routines, and the
1072 function using it serves the rest (unless PURIFY).
1074 #define new_body_inline(xpv, sv_type) \
1076 void ** const r3wt = &PL_body_roots[sv_type]; \
1077 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1078 ? *((void **)(r3wt)) : more_bodies(sv_type)); \
1079 *(r3wt) = *(void**)(xpv); \
1085 S_new_body(pTHX_ svtype sv_type)
1089 new_body_inline(xpv, sv_type);
1096 =for apidoc sv_upgrade
1098 Upgrade an SV to a more complex form. Generally adds a new body type to the
1099 SV, then copies across as much information as possible from the old body.
1100 You generally want to use the C<SvUPGRADE> macro wrapper. See also C<svtype>.
1106 Perl_sv_upgrade(pTHX_ register SV *sv, svtype new_type)
1111 const svtype old_type = SvTYPE(sv);
1112 const struct body_details *new_type_details;
1113 const struct body_details *const old_type_details
1114 = bodies_by_type + old_type;
1116 if (new_type != SVt_PV && SvIsCOW(sv)) {
1117 sv_force_normal_flags(sv, 0);
1120 if (old_type == new_type)
1123 if (old_type > new_type)
1124 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1125 (int)old_type, (int)new_type);
1128 old_body = SvANY(sv);
1130 /* Copying structures onto other structures that have been neatly zeroed
1131 has a subtle gotcha. Consider XPVMG
1133 +------+------+------+------+------+-------+-------+
1134 | NV | CUR | LEN | IV | MAGIC | STASH |
1135 +------+------+------+------+------+-------+-------+
1136 0 4 8 12 16 20 24 28
1138 where NVs are aligned to 8 bytes, so that sizeof that structure is
1139 actually 32 bytes long, with 4 bytes of padding at the end:
1141 +------+------+------+------+------+-------+-------+------+
1142 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1143 +------+------+------+------+------+-------+-------+------+
1144 0 4 8 12 16 20 24 28 32
1146 so what happens if you allocate memory for this structure:
1148 +------+------+------+------+------+-------+-------+------+------+...
1149 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1150 +------+------+------+------+------+-------+-------+------+------+...
1151 0 4 8 12 16 20 24 28 32 36
1153 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1154 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1155 started out as zero once, but it's quite possible that it isn't. So now,
1156 rather than a nicely zeroed GP, you have it pointing somewhere random.
1159 (In fact, GP ends up pointing at a previous GP structure, because the
1160 principle cause of the padding in XPVMG getting garbage is a copy of
1161 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1162 this happens to be moot because XPVGV has been re-ordered, with GP
1163 no longer after STASH)
1165 So we are careful and work out the size of used parts of all the
1172 if (new_type < SVt_PVIV) {
1173 new_type = (new_type == SVt_NV)
1174 ? SVt_PVNV : SVt_PVIV;
1178 if (new_type < SVt_PVNV) {
1179 new_type = SVt_PVNV;
1185 assert(new_type > SVt_PV);
1186 assert(SVt_IV < SVt_PV);
1187 assert(SVt_NV < SVt_PV);
1194 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1195 there's no way that it can be safely upgraded, because perl.c
1196 expects to Safefree(SvANY(PL_mess_sv)) */
1197 assert(sv != PL_mess_sv);
1198 /* This flag bit is used to mean other things in other scalar types.
1199 Given that it only has meaning inside the pad, it shouldn't be set
1200 on anything that can get upgraded. */
1201 assert(!SvPAD_TYPED(sv));
1204 if (old_type_details->cant_upgrade)
1205 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1206 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1208 new_type_details = bodies_by_type + new_type;
1210 SvFLAGS(sv) &= ~SVTYPEMASK;
1211 SvFLAGS(sv) |= new_type;
1213 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1214 the return statements above will have triggered. */
1215 assert (new_type != SVt_NULL);
1218 assert(old_type == SVt_NULL);
1219 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1223 assert(old_type == SVt_NULL);
1224 SvANY(sv) = new_XNV();
1228 assert(old_type == SVt_NULL);
1229 SvANY(sv) = &sv->sv_u.svu_rv;
1234 assert(new_type_details->body_size);
1237 assert(new_type_details->arena);
1238 assert(new_type_details->arena_size);
1239 /* This points to the start of the allocated area. */
1240 new_body_inline(new_body, new_type);
1241 Zero(new_body, new_type_details->body_size, char);
1242 new_body = ((char *)new_body) - new_type_details->offset;
1244 /* We always allocated the full length item with PURIFY. To do this
1245 we fake things so that arena is false for all 16 types.. */
1246 new_body = new_NOARENAZ(new_type_details);
1248 SvANY(sv) = new_body;
1249 if (new_type == SVt_PVAV) {
1255 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1256 The target created by newSVrv also is, and it can have magic.
1257 However, it never has SvPVX set.
1259 if (old_type >= SVt_RV) {
1260 assert(SvPVX_const(sv) == 0);
1263 if (old_type >= SVt_PVMG) {
1264 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1265 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1267 sv->sv_u.svu_array = NULL; /* or svu_hash */
1273 /* XXX Is this still needed? Was it ever needed? Surely as there is
1274 no route from NV to PVIV, NOK can never be true */
1275 assert(!SvNOKp(sv));
1286 assert(new_type_details->body_size);
1287 /* We always allocated the full length item with PURIFY. To do this
1288 we fake things so that arena is false for all 16 types.. */
1289 if(new_type_details->arena) {
1290 /* This points to the start of the allocated area. */
1291 new_body_inline(new_body, new_type);
1292 Zero(new_body, new_type_details->body_size, char);
1293 new_body = ((char *)new_body) - new_type_details->offset;
1295 new_body = new_NOARENAZ(new_type_details);
1297 SvANY(sv) = new_body;
1299 if (old_type_details->copy) {
1300 /* There is now the potential for an upgrade from something without
1301 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1302 int offset = old_type_details->offset;
1303 int length = old_type_details->copy;
1305 if (new_type_details->offset > old_type_details->offset) {
1306 const int difference
1307 = new_type_details->offset - old_type_details->offset;
1308 offset += difference;
1309 length -= difference;
1311 assert (length >= 0);
1313 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1317 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1318 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1319 * correct 0.0 for us. Otherwise, if the old body didn't have an
1320 * NV slot, but the new one does, then we need to initialise the
1321 * freshly created NV slot with whatever the correct bit pattern is
1323 if (old_type_details->zero_nv && !new_type_details->zero_nv)
1327 if (new_type == SVt_PVIO)
1328 IoPAGE_LEN(sv) = 60;
1329 if (old_type < SVt_RV)
1333 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1334 (unsigned long)new_type);
1337 if (old_type_details->arena) {
1338 /* If there was an old body, then we need to free it.
1339 Note that there is an assumption that all bodies of types that
1340 can be upgraded came from arenas. Only the more complex non-
1341 upgradable types are allowed to be directly malloc()ed. */
1343 my_safefree(old_body);
1345 del_body((void*)((char*)old_body + old_type_details->offset),
1346 &PL_body_roots[old_type]);
1352 =for apidoc sv_backoff
1354 Remove any string offset. You should normally use the C<SvOOK_off> macro
1361 Perl_sv_backoff(pTHX_ register SV *sv)
1363 PERL_UNUSED_CONTEXT;
1365 assert(SvTYPE(sv) != SVt_PVHV);
1366 assert(SvTYPE(sv) != SVt_PVAV);
1368 const char * const s = SvPVX_const(sv);
1369 SvLEN_set(sv, SvLEN(sv) + SvIVX(sv));
1370 SvPV_set(sv, SvPVX(sv) - SvIVX(sv));
1372 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1374 SvFLAGS(sv) &= ~SVf_OOK;
1381 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1382 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1383 Use the C<SvGROW> wrapper instead.
1389 Perl_sv_grow(pTHX_ register SV *sv, register STRLEN newlen)
1393 if (PL_madskills && newlen >= 0x100000) {
1394 PerlIO_printf(Perl_debug_log,
1395 "Allocation too large: %"UVxf"\n", (UV)newlen);
1397 #ifdef HAS_64K_LIMIT
1398 if (newlen >= 0x10000) {
1399 PerlIO_printf(Perl_debug_log,
1400 "Allocation too large: %"UVxf"\n", (UV)newlen);
1403 #endif /* HAS_64K_LIMIT */
1406 if (SvTYPE(sv) < SVt_PV) {
1407 sv_upgrade(sv, SVt_PV);
1408 s = SvPVX_mutable(sv);
1410 else if (SvOOK(sv)) { /* pv is offset? */
1412 s = SvPVX_mutable(sv);
1413 if (newlen > SvLEN(sv))
1414 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1415 #ifdef HAS_64K_LIMIT
1416 if (newlen >= 0x10000)
1421 s = SvPVX_mutable(sv);
1423 if (newlen > SvLEN(sv)) { /* need more room? */
1424 newlen = PERL_STRLEN_ROUNDUP(newlen);
1425 if (SvLEN(sv) && s) {
1427 const STRLEN l = malloced_size((void*)SvPVX_const(sv));
1433 s = (char*)saferealloc(s, newlen);
1436 s = (char*)safemalloc(newlen);
1437 if (SvPVX_const(sv) && SvCUR(sv)) {
1438 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1442 SvLEN_set(sv, newlen);
1448 =for apidoc sv_setiv
1450 Copies an integer into the given SV, upgrading first if necessary.
1451 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1457 Perl_sv_setiv(pTHX_ register SV *sv, IV i)
1460 SV_CHECK_THINKFIRST_COW_DROP(sv);
1461 switch (SvTYPE(sv)) {
1463 sv_upgrade(sv, SVt_IV);
1466 sv_upgrade(sv, SVt_PVNV);
1470 sv_upgrade(sv, SVt_PVIV);
1479 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1483 (void)SvIOK_only(sv); /* validate number */
1489 =for apidoc sv_setiv_mg
1491 Like C<sv_setiv>, but also handles 'set' magic.
1497 Perl_sv_setiv_mg(pTHX_ register SV *sv, IV i)
1504 =for apidoc sv_setuv
1506 Copies an unsigned integer into the given SV, upgrading first if necessary.
1507 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1513 Perl_sv_setuv(pTHX_ register SV *sv, UV u)
1515 /* With these two if statements:
1516 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1519 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1521 If you wish to remove them, please benchmark to see what the effect is
1523 if (u <= (UV)IV_MAX) {
1524 sv_setiv(sv, (IV)u);
1533 =for apidoc sv_setuv_mg
1535 Like C<sv_setuv>, but also handles 'set' magic.
1541 Perl_sv_setuv_mg(pTHX_ register SV *sv, UV u)
1548 =for apidoc sv_setnv
1550 Copies a double into the given SV, upgrading first if necessary.
1551 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1557 Perl_sv_setnv(pTHX_ register SV *sv, NV num)
1560 SV_CHECK_THINKFIRST_COW_DROP(sv);
1561 switch (SvTYPE(sv)) {
1564 sv_upgrade(sv, SVt_NV);
1569 sv_upgrade(sv, SVt_PVNV);
1578 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1583 (void)SvNOK_only(sv); /* validate number */
1588 =for apidoc sv_setnv_mg
1590 Like C<sv_setnv>, but also handles 'set' magic.
1596 Perl_sv_setnv_mg(pTHX_ register SV *sv, NV num)
1602 /* Print an "isn't numeric" warning, using a cleaned-up,
1603 * printable version of the offending string
1607 S_not_a_number(pTHX_ SV *sv)
1615 dsv = sv_2mortal(newSVpvs(""));
1616 pv = sv_uni_display(dsv, sv, 10, 0);
1619 const char * const limit = tmpbuf + sizeof(tmpbuf) - 8;
1620 /* each *s can expand to 4 chars + "...\0",
1621 i.e. need room for 8 chars */
1623 const char *s = SvPVX_const(sv);
1624 const char * const end = s + SvCUR(sv);
1625 for ( ; s < end && d < limit; s++ ) {
1627 if (ch & 128 && !isPRINT_LC(ch)) {
1636 else if (ch == '\r') {
1640 else if (ch == '\f') {
1644 else if (ch == '\\') {
1648 else if (ch == '\0') {
1652 else if (isPRINT_LC(ch))
1669 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1670 "Argument \"%s\" isn't numeric in %s", pv,
1673 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1674 "Argument \"%s\" isn't numeric", pv);
1678 =for apidoc looks_like_number
1680 Test if the content of an SV looks like a number (or is a number).
1681 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1682 non-numeric warning), even if your atof() doesn't grok them.
1688 Perl_looks_like_number(pTHX_ SV *sv)
1690 register const char *sbegin;
1694 sbegin = SvPVX_const(sv);
1697 else if (SvPOKp(sv))
1698 sbegin = SvPV_const(sv, len);
1700 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1701 return grok_number(sbegin, len, NULL);
1705 S_glob_2number(pTHX_ GV * const gv)
1707 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1708 SV *const buffer = sv_newmortal();
1710 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1713 gv_efullname3(buffer, gv, "*");
1714 SvFLAGS(gv) |= wasfake;
1716 /* We know that all GVs stringify to something that is not-a-number,
1717 so no need to test that. */
1718 if (ckWARN(WARN_NUMERIC))
1719 not_a_number(buffer);
1720 /* We just want something true to return, so that S_sv_2iuv_common
1721 can tail call us and return true. */
1726 S_glob_2pv(pTHX_ GV * const gv, STRLEN * const len)
1728 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1729 SV *const buffer = sv_newmortal();
1731 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1734 gv_efullname3(buffer, gv, "*");
1735 SvFLAGS(gv) |= wasfake;
1737 assert(SvPOK(buffer));
1739 *len = SvCUR(buffer);
1741 return SvPVX(buffer);
1744 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1745 until proven guilty, assume that things are not that bad... */
1750 As 64 bit platforms often have an NV that doesn't preserve all bits of
1751 an IV (an assumption perl has been based on to date) it becomes necessary
1752 to remove the assumption that the NV always carries enough precision to
1753 recreate the IV whenever needed, and that the NV is the canonical form.
1754 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1755 precision as a side effect of conversion (which would lead to insanity
1756 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1757 1) to distinguish between IV/UV/NV slots that have cached a valid
1758 conversion where precision was lost and IV/UV/NV slots that have a
1759 valid conversion which has lost no precision
1760 2) to ensure that if a numeric conversion to one form is requested that
1761 would lose precision, the precise conversion (or differently
1762 imprecise conversion) is also performed and cached, to prevent
1763 requests for different numeric formats on the same SV causing
1764 lossy conversion chains. (lossless conversion chains are perfectly
1769 SvIOKp is true if the IV slot contains a valid value
1770 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1771 SvNOKp is true if the NV slot contains a valid value
1772 SvNOK is true only if the NV value is accurate
1775 while converting from PV to NV, check to see if converting that NV to an
1776 IV(or UV) would lose accuracy over a direct conversion from PV to
1777 IV(or UV). If it would, cache both conversions, return NV, but mark
1778 SV as IOK NOKp (ie not NOK).
1780 While converting from PV to IV, check to see if converting that IV to an
1781 NV would lose accuracy over a direct conversion from PV to NV. If it
1782 would, cache both conversions, flag similarly.
1784 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1785 correctly because if IV & NV were set NV *always* overruled.
1786 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1787 changes - now IV and NV together means that the two are interchangeable:
1788 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1790 The benefit of this is that operations such as pp_add know that if
1791 SvIOK is true for both left and right operands, then integer addition
1792 can be used instead of floating point (for cases where the result won't
1793 overflow). Before, floating point was always used, which could lead to
1794 loss of precision compared with integer addition.
1796 * making IV and NV equal status should make maths accurate on 64 bit
1798 * may speed up maths somewhat if pp_add and friends start to use
1799 integers when possible instead of fp. (Hopefully the overhead in
1800 looking for SvIOK and checking for overflow will not outweigh the
1801 fp to integer speedup)
1802 * will slow down integer operations (callers of SvIV) on "inaccurate"
1803 values, as the change from SvIOK to SvIOKp will cause a call into
1804 sv_2iv each time rather than a macro access direct to the IV slot
1805 * should speed up number->string conversion on integers as IV is
1806 favoured when IV and NV are equally accurate
1808 ####################################################################
1809 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1810 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1811 On the other hand, SvUOK is true iff UV.
1812 ####################################################################
1814 Your mileage will vary depending your CPU's relative fp to integer
1818 #ifndef NV_PRESERVES_UV
1819 # define IS_NUMBER_UNDERFLOW_IV 1
1820 # define IS_NUMBER_UNDERFLOW_UV 2
1821 # define IS_NUMBER_IV_AND_UV 2
1822 # define IS_NUMBER_OVERFLOW_IV 4
1823 # define IS_NUMBER_OVERFLOW_UV 5
1825 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1827 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1829 S_sv_2iuv_non_preserve(pTHX_ register SV *sv, I32 numtype)
1832 PERL_UNUSED_ARG(numtype); /* Used only under DEBUGGING? */
1833 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1834 if (SvNVX(sv) < (NV)IV_MIN) {
1835 (void)SvIOKp_on(sv);
1837 SvIV_set(sv, IV_MIN);
1838 return IS_NUMBER_UNDERFLOW_IV;
1840 if (SvNVX(sv) > (NV)UV_MAX) {
1841 (void)SvIOKp_on(sv);
1844 SvUV_set(sv, UV_MAX);
1845 return IS_NUMBER_OVERFLOW_UV;
1847 (void)SvIOKp_on(sv);
1849 /* Can't use strtol etc to convert this string. (See truth table in
1851 if (SvNVX(sv) <= (UV)IV_MAX) {
1852 SvIV_set(sv, I_V(SvNVX(sv)));
1853 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1854 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1856 /* Integer is imprecise. NOK, IOKp */
1858 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
1861 SvUV_set(sv, U_V(SvNVX(sv)));
1862 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
1863 if (SvUVX(sv) == UV_MAX) {
1864 /* As we know that NVs don't preserve UVs, UV_MAX cannot
1865 possibly be preserved by NV. Hence, it must be overflow.
1867 return IS_NUMBER_OVERFLOW_UV;
1869 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
1871 /* Integer is imprecise. NOK, IOKp */
1873 return IS_NUMBER_OVERFLOW_IV;
1875 #endif /* !NV_PRESERVES_UV*/
1878 S_sv_2iuv_common(pTHX_ SV *sv) {
1881 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
1882 * without also getting a cached IV/UV from it at the same time
1883 * (ie PV->NV conversion should detect loss of accuracy and cache
1884 * IV or UV at same time to avoid this. */
1885 /* IV-over-UV optimisation - choose to cache IV if possible */
1887 if (SvTYPE(sv) == SVt_NV)
1888 sv_upgrade(sv, SVt_PVNV);
1890 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
1891 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
1892 certainly cast into the IV range at IV_MAX, whereas the correct
1893 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
1895 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
1896 if (Perl_isnan(SvNVX(sv))) {
1902 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
1903 SvIV_set(sv, I_V(SvNVX(sv)));
1904 if (SvNVX(sv) == (NV) SvIVX(sv)
1905 #ifndef NV_PRESERVES_UV
1906 && (((UV)1 << NV_PRESERVES_UV_BITS) >
1907 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
1908 /* Don't flag it as "accurately an integer" if the number
1909 came from a (by definition imprecise) NV operation, and
1910 we're outside the range of NV integer precision */
1913 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
1914 DEBUG_c(PerlIO_printf(Perl_debug_log,
1915 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
1921 /* IV not precise. No need to convert from PV, as NV
1922 conversion would already have cached IV if it detected
1923 that PV->IV would be better than PV->NV->IV
1924 flags already correct - don't set public IOK. */
1925 DEBUG_c(PerlIO_printf(Perl_debug_log,
1926 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
1931 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
1932 but the cast (NV)IV_MIN rounds to a the value less (more
1933 negative) than IV_MIN which happens to be equal to SvNVX ??
1934 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
1935 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
1936 (NV)UVX == NVX are both true, but the values differ. :-(
1937 Hopefully for 2s complement IV_MIN is something like
1938 0x8000000000000000 which will be exact. NWC */
1941 SvUV_set(sv, U_V(SvNVX(sv)));
1943 (SvNVX(sv) == (NV) SvUVX(sv))
1944 #ifndef NV_PRESERVES_UV
1945 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
1946 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
1947 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
1948 /* Don't flag it as "accurately an integer" if the number
1949 came from a (by definition imprecise) NV operation, and
1950 we're outside the range of NV integer precision */
1955 DEBUG_c(PerlIO_printf(Perl_debug_log,
1956 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
1962 else if (SvPOKp(sv) && SvLEN(sv)) {
1964 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
1965 /* We want to avoid a possible problem when we cache an IV/ a UV which
1966 may be later translated to an NV, and the resulting NV is not
1967 the same as the direct translation of the initial string
1968 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
1969 be careful to ensure that the value with the .456 is around if the
1970 NV value is requested in the future).
1972 This means that if we cache such an IV/a UV, we need to cache the
1973 NV as well. Moreover, we trade speed for space, and do not
1974 cache the NV if we are sure it's not needed.
1977 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
1978 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
1979 == IS_NUMBER_IN_UV) {
1980 /* It's definitely an integer, only upgrade to PVIV */
1981 if (SvTYPE(sv) < SVt_PVIV)
1982 sv_upgrade(sv, SVt_PVIV);
1984 } else if (SvTYPE(sv) < SVt_PVNV)
1985 sv_upgrade(sv, SVt_PVNV);
1987 /* If NVs preserve UVs then we only use the UV value if we know that
1988 we aren't going to call atof() below. If NVs don't preserve UVs
1989 then the value returned may have more precision than atof() will
1990 return, even though value isn't perfectly accurate. */
1991 if ((numtype & (IS_NUMBER_IN_UV
1992 #ifdef NV_PRESERVES_UV
1995 )) == IS_NUMBER_IN_UV) {
1996 /* This won't turn off the public IOK flag if it was set above */
1997 (void)SvIOKp_on(sv);
1999 if (!(numtype & IS_NUMBER_NEG)) {
2001 if (value <= (UV)IV_MAX) {
2002 SvIV_set(sv, (IV)value);
2004 /* it didn't overflow, and it was positive. */
2005 SvUV_set(sv, value);
2009 /* 2s complement assumption */
2010 if (value <= (UV)IV_MIN) {
2011 SvIV_set(sv, -(IV)value);
2013 /* Too negative for an IV. This is a double upgrade, but
2014 I'm assuming it will be rare. */
2015 if (SvTYPE(sv) < SVt_PVNV)
2016 sv_upgrade(sv, SVt_PVNV);
2020 SvNV_set(sv, -(NV)value);
2021 SvIV_set(sv, IV_MIN);
2025 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2026 will be in the previous block to set the IV slot, and the next
2027 block to set the NV slot. So no else here. */
2029 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2030 != IS_NUMBER_IN_UV) {
2031 /* It wasn't an (integer that doesn't overflow the UV). */
2032 SvNV_set(sv, Atof(SvPVX_const(sv)));
2034 if (! numtype && ckWARN(WARN_NUMERIC))
2037 #if defined(USE_LONG_DOUBLE)
2038 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2039 PTR2UV(sv), SvNVX(sv)));
2041 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2042 PTR2UV(sv), SvNVX(sv)));
2045 #ifdef NV_PRESERVES_UV
2046 (void)SvIOKp_on(sv);
2048 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2049 SvIV_set(sv, I_V(SvNVX(sv)));
2050 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2053 NOOP; /* Integer is imprecise. NOK, IOKp */
2055 /* UV will not work better than IV */
2057 if (SvNVX(sv) > (NV)UV_MAX) {
2059 /* Integer is inaccurate. NOK, IOKp, is UV */
2060 SvUV_set(sv, UV_MAX);
2062 SvUV_set(sv, U_V(SvNVX(sv)));
2063 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2064 NV preservse UV so can do correct comparison. */
2065 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2068 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2073 #else /* NV_PRESERVES_UV */
2074 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2075 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2076 /* The IV/UV slot will have been set from value returned by
2077 grok_number above. The NV slot has just been set using
2080 assert (SvIOKp(sv));
2082 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2083 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2084 /* Small enough to preserve all bits. */
2085 (void)SvIOKp_on(sv);
2087 SvIV_set(sv, I_V(SvNVX(sv)));
2088 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2090 /* Assumption: first non-preserved integer is < IV_MAX,
2091 this NV is in the preserved range, therefore: */
2092 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2094 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2098 0 0 already failed to read UV.
2099 0 1 already failed to read UV.
2100 1 0 you won't get here in this case. IV/UV
2101 slot set, public IOK, Atof() unneeded.
2102 1 1 already read UV.
2103 so there's no point in sv_2iuv_non_preserve() attempting
2104 to use atol, strtol, strtoul etc. */
2105 sv_2iuv_non_preserve (sv, numtype);
2108 #endif /* NV_PRESERVES_UV */
2112 if (isGV_with_GP(sv))
2113 return glob_2number((GV *)sv);
2115 if (!(SvFLAGS(sv) & SVs_PADTMP)) {
2116 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2119 if (SvTYPE(sv) < SVt_IV)
2120 /* Typically the caller expects that sv_any is not NULL now. */
2121 sv_upgrade(sv, SVt_IV);
2122 /* Return 0 from the caller. */
2129 =for apidoc sv_2iv_flags
2131 Return the integer value of an SV, doing any necessary string
2132 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2133 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2139 Perl_sv_2iv_flags(pTHX_ register SV *sv, I32 flags)
2144 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2145 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2146 cache IVs just in case. In practice it seems that they never
2147 actually anywhere accessible by user Perl code, let alone get used
2148 in anything other than a string context. */
2149 if (flags & SV_GMAGIC)
2154 return I_V(SvNVX(sv));
2156 if (SvPOKp(sv) && SvLEN(sv)) {
2159 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2161 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2162 == IS_NUMBER_IN_UV) {
2163 /* It's definitely an integer */
2164 if (numtype & IS_NUMBER_NEG) {
2165 if (value < (UV)IV_MIN)
2168 if (value < (UV)IV_MAX)
2173 if (ckWARN(WARN_NUMERIC))
2176 return I_V(Atof(SvPVX_const(sv)));
2181 assert(SvTYPE(sv) >= SVt_PVMG);
2182 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2183 } else if (SvTHINKFIRST(sv)) {
2187 SV * const tmpstr=AMG_CALLun(sv,numer);
2188 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2189 return SvIV(tmpstr);
2192 return PTR2IV(SvRV(sv));
2195 sv_force_normal_flags(sv, 0);
2197 if (SvREADONLY(sv) && !SvOK(sv)) {
2198 if (ckWARN(WARN_UNINITIALIZED))
2204 if (S_sv_2iuv_common(aTHX_ sv))
2207 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2208 PTR2UV(sv),SvIVX(sv)));
2209 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2213 =for apidoc sv_2uv_flags
2215 Return the unsigned integer value of an SV, doing any necessary string
2216 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2217 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2223 Perl_sv_2uv_flags(pTHX_ register SV *sv, I32 flags)
2228 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2229 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2230 cache IVs just in case. */
2231 if (flags & SV_GMAGIC)
2236 return U_V(SvNVX(sv));
2237 if (SvPOKp(sv) && SvLEN(sv)) {
2240 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2242 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2243 == IS_NUMBER_IN_UV) {
2244 /* It's definitely an integer */
2245 if (!(numtype & IS_NUMBER_NEG))
2249 if (ckWARN(WARN_NUMERIC))
2252 return U_V(Atof(SvPVX_const(sv)));
2257 assert(SvTYPE(sv) >= SVt_PVMG);
2258 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2259 } else if (SvTHINKFIRST(sv)) {
2263 SV *const tmpstr = AMG_CALLun(sv,numer);
2264 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2265 return SvUV(tmpstr);
2268 return PTR2UV(SvRV(sv));
2271 sv_force_normal_flags(sv, 0);
2273 if (SvREADONLY(sv) && !SvOK(sv)) {
2274 if (ckWARN(WARN_UNINITIALIZED))
2280 if (S_sv_2iuv_common(aTHX_ sv))
2284 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2285 PTR2UV(sv),SvUVX(sv)));
2286 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2292 Return the num value of an SV, doing any necessary string or integer
2293 conversion, magic etc. Normally used via the C<SvNV(sv)> and C<SvNVx(sv)>
2300 Perl_sv_2nv(pTHX_ register SV *sv)
2305 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2306 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2307 cache IVs just in case. */
2311 if ((SvPOKp(sv) && SvLEN(sv)) && !SvIOKp(sv)) {
2312 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2313 !grok_number(SvPVX_const(sv), SvCUR(sv), NULL))
2315 return Atof(SvPVX_const(sv));
2319 return (NV)SvUVX(sv);
2321 return (NV)SvIVX(sv);
2326 assert(SvTYPE(sv) >= SVt_PVMG);
2327 /* This falls through to the report_uninit near the end of the
2329 } else if (SvTHINKFIRST(sv)) {
2333 SV *const tmpstr = AMG_CALLun(sv,numer);
2334 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2335 return SvNV(tmpstr);
2338 return PTR2NV(SvRV(sv));
2341 sv_force_normal_flags(sv, 0);
2343 if (SvREADONLY(sv) && !SvOK(sv)) {
2344 if (ckWARN(WARN_UNINITIALIZED))
2349 if (SvTYPE(sv) < SVt_NV) {
2350 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2351 sv_upgrade(sv, SVt_NV);
2352 #ifdef USE_LONG_DOUBLE
2354 STORE_NUMERIC_LOCAL_SET_STANDARD();
2355 PerlIO_printf(Perl_debug_log,
2356 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2357 PTR2UV(sv), SvNVX(sv));
2358 RESTORE_NUMERIC_LOCAL();
2362 STORE_NUMERIC_LOCAL_SET_STANDARD();
2363 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2364 PTR2UV(sv), SvNVX(sv));
2365 RESTORE_NUMERIC_LOCAL();
2369 else if (SvTYPE(sv) < SVt_PVNV)
2370 sv_upgrade(sv, SVt_PVNV);
2375 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2376 #ifdef NV_PRESERVES_UV
2379 /* Only set the public NV OK flag if this NV preserves the IV */
2380 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2381 if (SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2382 : (SvIVX(sv) == I_V(SvNVX(sv))))
2388 else if (SvPOKp(sv) && SvLEN(sv)) {
2390 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2391 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2393 #ifdef NV_PRESERVES_UV
2394 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2395 == IS_NUMBER_IN_UV) {
2396 /* It's definitely an integer */
2397 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2399 SvNV_set(sv, Atof(SvPVX_const(sv)));
2402 SvNV_set(sv, Atof(SvPVX_const(sv)));
2403 /* Only set the public NV OK flag if this NV preserves the value in
2404 the PV at least as well as an IV/UV would.
2405 Not sure how to do this 100% reliably. */
2406 /* if that shift count is out of range then Configure's test is
2407 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2409 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2410 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2411 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2412 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2413 /* Can't use strtol etc to convert this string, so don't try.
2414 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2417 /* value has been set. It may not be precise. */
2418 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2419 /* 2s complement assumption for (UV)IV_MIN */
2420 SvNOK_on(sv); /* Integer is too negative. */
2425 if (numtype & IS_NUMBER_NEG) {
2426 SvIV_set(sv, -(IV)value);
2427 } else if (value <= (UV)IV_MAX) {
2428 SvIV_set(sv, (IV)value);
2430 SvUV_set(sv, value);
2434 if (numtype & IS_NUMBER_NOT_INT) {
2435 /* I believe that even if the original PV had decimals,
2436 they are lost beyond the limit of the FP precision.
2437 However, neither is canonical, so both only get p
2438 flags. NWC, 2000/11/25 */
2439 /* Both already have p flags, so do nothing */
2441 const NV nv = SvNVX(sv);
2442 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2443 if (SvIVX(sv) == I_V(nv)) {
2446 /* It had no "." so it must be integer. */
2450 /* between IV_MAX and NV(UV_MAX).
2451 Could be slightly > UV_MAX */
2453 if (numtype & IS_NUMBER_NOT_INT) {
2454 /* UV and NV both imprecise. */
2456 const UV nv_as_uv = U_V(nv);
2458 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2467 #endif /* NV_PRESERVES_UV */
2470 if (isGV_with_GP(sv)) {
2471 glob_2number((GV *)sv);
2475 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2477 assert (SvTYPE(sv) >= SVt_NV);
2478 /* Typically the caller expects that sv_any is not NULL now. */
2479 /* XXX Ilya implies that this is a bug in callers that assume this
2480 and ideally should be fixed. */
2483 #if defined(USE_LONG_DOUBLE)
2485 STORE_NUMERIC_LOCAL_SET_STANDARD();
2486 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2487 PTR2UV(sv), SvNVX(sv));
2488 RESTORE_NUMERIC_LOCAL();
2492 STORE_NUMERIC_LOCAL_SET_STANDARD();
2493 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2494 PTR2UV(sv), SvNVX(sv));
2495 RESTORE_NUMERIC_LOCAL();
2501 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2502 * UV as a string towards the end of buf, and return pointers to start and
2505 * We assume that buf is at least TYPE_CHARS(UV) long.
2509 S_uiv_2buf(char *buf, IV iv, UV uv, int is_uv, char **peob)
2511 char *ptr = buf + TYPE_CHARS(UV);
2512 char * const ebuf = ptr;
2525 *--ptr = '0' + (char)(uv % 10);
2534 =for apidoc sv_2pv_flags
2536 Returns a pointer to the string value of an SV, and sets *lp to its length.
2537 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a string
2539 Normally invoked via the C<SvPV_flags> macro. C<sv_2pv()> and C<sv_2pv_nomg>
2540 usually end up here too.
2546 Perl_sv_2pv_flags(pTHX_ register SV *sv, STRLEN *lp, I32 flags)
2556 if (SvGMAGICAL(sv)) {
2557 if (flags & SV_GMAGIC)
2562 if (flags & SV_MUTABLE_RETURN)
2563 return SvPVX_mutable(sv);
2564 if (flags & SV_CONST_RETURN)
2565 return (char *)SvPVX_const(sv);
2568 if (SvIOKp(sv) || SvNOKp(sv)) {
2569 char tbuf[64]; /* Must fit sprintf/Gconvert of longest IV/NV */
2574 ? my_snprintf(tbuf, sizeof(tbuf), "%"UVuf, (UV)SvUVX(sv))
2575 : my_snprintf(tbuf, sizeof(tbuf), "%"IVdf, (IV)SvIVX(sv));
2577 Gconvert(SvNVX(sv), NV_DIG, 0, tbuf);
2584 #ifdef FIXNEGATIVEZERO
2585 if (len == 2 && tbuf[0] == '-' && tbuf[1] == '0') {
2591 SvUPGRADE(sv, SVt_PV);
2594 s = SvGROW_mutable(sv, len + 1);
2597 return (char*)memcpy(s, tbuf, len + 1);
2603 assert(SvTYPE(sv) >= SVt_PVMG);
2604 /* This falls through to the report_uninit near the end of the
2606 } else if (SvTHINKFIRST(sv)) {
2610 SV *const tmpstr = AMG_CALLun(sv,string);
2611 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2613 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2617 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2618 if (flags & SV_CONST_RETURN) {
2619 pv = (char *) SvPVX_const(tmpstr);
2621 pv = (flags & SV_MUTABLE_RETURN)
2622 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2625 *lp = SvCUR(tmpstr);
2627 pv = sv_2pv_flags(tmpstr, lp, flags);
2641 const SV *const referent = (SV*)SvRV(sv);
2645 retval = buffer = savepvn("NULLREF", len);
2646 } else if (SvTYPE(referent) == SVt_PVMG
2647 && ((SvFLAGS(referent) &
2648 (SVs_OBJECT|SVf_OK|SVs_GMG|SVs_SMG|SVs_RMG))
2649 == (SVs_OBJECT|SVs_SMG))
2650 && (mg = mg_find(referent, PERL_MAGIC_qr)))
2655 (str) = CALLREG_AS_STR(mg,lp,&flags,&haseval);
2660 PL_reginterp_cnt += haseval;
2663 const char *const typestr = sv_reftype(referent, 0);
2664 const STRLEN typelen = strlen(typestr);
2665 UV addr = PTR2UV(referent);
2666 const char *stashname = NULL;
2667 STRLEN stashnamelen = 0; /* hush, gcc */
2668 const char *buffer_end;
2670 if (SvOBJECT(referent)) {
2671 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2674 stashname = HEK_KEY(name);
2675 stashnamelen = HEK_LEN(name);
2677 if (HEK_UTF8(name)) {
2683 stashname = "__ANON__";
2686 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2687 + 2 * sizeof(UV) + 2 /* )\0 */;
2689 len = typelen + 3 /* (0x */
2690 + 2 * sizeof(UV) + 2 /* )\0 */;
2693 Newx(buffer, len, char);
2694 buffer_end = retval = buffer + len;
2696 /* Working backwards */
2700 *--retval = PL_hexdigit[addr & 15];
2701 } while (addr >>= 4);
2707 memcpy(retval, typestr, typelen);
2711 retval -= stashnamelen;
2712 memcpy(retval, stashname, stashnamelen);
2714 /* retval may not neccesarily have reached the start of the
2716 assert (retval >= buffer);
2718 len = buffer_end - retval - 1; /* -1 for that \0 */
2726 if (SvREADONLY(sv) && !SvOK(sv)) {
2727 if (ckWARN(WARN_UNINITIALIZED))
2734 if (SvIOK(sv) || ((SvIOKp(sv) && !SvNOKp(sv)))) {
2735 /* I'm assuming that if both IV and NV are equally valid then
2736 converting the IV is going to be more efficient */
2737 const U32 isUIOK = SvIsUV(sv);
2738 char buf[TYPE_CHARS(UV)];
2741 if (SvTYPE(sv) < SVt_PVIV)
2742 sv_upgrade(sv, SVt_PVIV);
2743 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2744 /* inlined from sv_setpvn */
2745 SvGROW_mutable(sv, (STRLEN)(ebuf - ptr + 1));
2746 Move(ptr,SvPVX_mutable(sv),ebuf - ptr,char);
2747 SvCUR_set(sv, ebuf - ptr);
2751 else if (SvNOKp(sv)) {
2752 const int olderrno = errno;
2753 if (SvTYPE(sv) < SVt_PVNV)
2754 sv_upgrade(sv, SVt_PVNV);
2755 /* The +20 is pure guesswork. Configure test needed. --jhi */
2756 s = SvGROW_mutable(sv, NV_DIG + 20);
2757 /* some Xenix systems wipe out errno here */
2759 if (SvNVX(sv) == 0.0)
2760 my_strlcpy(s, "0", SvLEN(sv));
2764 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2767 #ifdef FIXNEGATIVEZERO
2768 if (*s == '-' && s[1] == '0' && !s[2])
2769 my_strlcpy(s, "0", SvLEN(s));
2778 if (isGV_with_GP(sv))
2779 return glob_2pv((GV *)sv, lp);
2781 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2785 if (SvTYPE(sv) < SVt_PV)
2786 /* Typically the caller expects that sv_any is not NULL now. */
2787 sv_upgrade(sv, SVt_PV);
2791 const STRLEN len = s - SvPVX_const(sv);
2797 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
2798 PTR2UV(sv),SvPVX_const(sv)));
2799 if (flags & SV_CONST_RETURN)
2800 return (char *)SvPVX_const(sv);
2801 if (flags & SV_MUTABLE_RETURN)
2802 return SvPVX_mutable(sv);
2807 =for apidoc sv_copypv
2809 Copies a stringified representation of the source SV into the
2810 destination SV. Automatically performs any necessary mg_get and
2811 coercion of numeric values into strings. Guaranteed to preserve
2812 UTF8 flag even from overloaded objects. Similar in nature to
2813 sv_2pv[_flags] but operates directly on an SV instead of just the
2814 string. Mostly uses sv_2pv_flags to do its work, except when that
2815 would lose the UTF-8'ness of the PV.
2821 Perl_sv_copypv(pTHX_ SV *dsv, register SV *ssv)
2824 const char * const s = SvPV_const(ssv,len);
2825 sv_setpvn(dsv,s,len);
2833 =for apidoc sv_2pvbyte
2835 Return a pointer to the byte-encoded representation of the SV, and set *lp
2836 to its length. May cause the SV to be downgraded from UTF-8 as a
2839 Usually accessed via the C<SvPVbyte> macro.
2845 Perl_sv_2pvbyte(pTHX_ register SV *sv, STRLEN *lp)
2847 sv_utf8_downgrade(sv,0);
2848 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
2852 =for apidoc sv_2pvutf8
2854 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
2855 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
2857 Usually accessed via the C<SvPVutf8> macro.
2863 Perl_sv_2pvutf8(pTHX_ register SV *sv, STRLEN *lp)
2865 sv_utf8_upgrade(sv);
2866 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
2871 =for apidoc sv_2bool
2873 This function is only called on magical items, and is only used by
2874 sv_true() or its macro equivalent.
2880 Perl_sv_2bool(pTHX_ register SV *sv)
2889 SV * const tmpsv = AMG_CALLun(sv,bool_);
2890 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2891 return (bool)SvTRUE(tmpsv);
2893 return SvRV(sv) != 0;
2896 register XPV* const Xpvtmp = (XPV*)SvANY(sv);
2898 (*sv->sv_u.svu_pv > '0' ||
2899 Xpvtmp->xpv_cur > 1 ||
2900 (Xpvtmp->xpv_cur && *sv->sv_u.svu_pv != '0')))
2907 return SvIVX(sv) != 0;
2910 return SvNVX(sv) != 0.0;
2912 if (isGV_with_GP(sv))
2922 =for apidoc sv_utf8_upgrade
2924 Converts the PV of an SV to its UTF-8-encoded form.
2925 Forces the SV to string form if it is not already.
2926 Always sets the SvUTF8 flag to avoid future validity checks even
2927 if all the bytes have hibit clear.
2929 This is not as a general purpose byte encoding to Unicode interface:
2930 use the Encode extension for that.
2932 =for apidoc sv_utf8_upgrade_flags
2934 Converts the PV of an SV to its UTF-8-encoded form.
2935 Forces the SV to string form if it is not already.
2936 Always sets the SvUTF8 flag to avoid future validity checks even
2937 if all the bytes have hibit clear. If C<flags> has C<SV_GMAGIC> bit set,
2938 will C<mg_get> on C<sv> if appropriate, else not. C<sv_utf8_upgrade> and
2939 C<sv_utf8_upgrade_nomg> are implemented in terms of this function.
2941 This is not as a general purpose byte encoding to Unicode interface:
2942 use the Encode extension for that.
2948 Perl_sv_utf8_upgrade_flags(pTHX_ register SV *sv, I32 flags)
2951 if (sv == &PL_sv_undef)
2955 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
2956 (void) sv_2pv_flags(sv,&len, flags);
2960 (void) SvPV_force(sv,len);
2969 sv_force_normal_flags(sv, 0);
2972 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING))
2973 sv_recode_to_utf8(sv, PL_encoding);
2974 else { /* Assume Latin-1/EBCDIC */
2975 /* This function could be much more efficient if we
2976 * had a FLAG in SVs to signal if there are any hibit
2977 * chars in the PV. Given that there isn't such a flag
2978 * make the loop as fast as possible. */
2979 const U8 * const s = (U8 *) SvPVX_const(sv);
2980 const U8 * const e = (U8 *) SvEND(sv);
2985 /* Check for hi bit */
2986 if (!NATIVE_IS_INVARIANT(ch)) {
2987 STRLEN len = SvCUR(sv) + 1; /* Plus the \0 */
2988 U8 * const recoded = bytes_to_utf8((U8*)s, &len);
2990 SvPV_free(sv); /* No longer using what was there before. */
2991 SvPV_set(sv, (char*)recoded);
2992 SvCUR_set(sv, len - 1);
2993 SvLEN_set(sv, len); /* No longer know the real size. */
2997 /* Mark as UTF-8 even if no hibit - saves scanning loop */
3004 =for apidoc sv_utf8_downgrade
3006 Attempts to convert the PV of an SV from characters to bytes.
3007 If the PV contains a character beyond byte, this conversion will fail;
3008 in this case, either returns false or, if C<fail_ok> is not
3011 This is not as a general purpose Unicode to byte encoding interface:
3012 use the Encode extension for that.
3018 Perl_sv_utf8_downgrade(pTHX_ register SV* sv, bool fail_ok)
3021 if (SvPOKp(sv) && SvUTF8(sv)) {
3027 sv_force_normal_flags(sv, 0);
3029 s = (U8 *) SvPV(sv, len);
3030 if (!utf8_to_bytes(s, &len)) {
3035 Perl_croak(aTHX_ "Wide character in %s",
3038 Perl_croak(aTHX_ "Wide character");
3049 =for apidoc sv_utf8_encode
3051 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3052 flag off so that it looks like octets again.
3058 Perl_sv_utf8_encode(pTHX_ register SV *sv)
3061 sv_force_normal_flags(sv, 0);
3063 if (SvREADONLY(sv)) {
3064 Perl_croak(aTHX_ PL_no_modify);
3066 (void) sv_utf8_upgrade(sv);
3071 =for apidoc sv_utf8_decode
3073 If the PV of the SV is an octet sequence in UTF-8
3074 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3075 so that it looks like a character. If the PV contains only single-byte
3076 characters, the C<SvUTF8> flag stays being off.
3077 Scans PV for validity and returns false if the PV is invalid UTF-8.
3083 Perl_sv_utf8_decode(pTHX_ register SV *sv)
3089 /* The octets may have got themselves encoded - get them back as
3092 if (!sv_utf8_downgrade(sv, TRUE))
3095 /* it is actually just a matter of turning the utf8 flag on, but
3096 * we want to make sure everything inside is valid utf8 first.
3098 c = (const U8 *) SvPVX_const(sv);
3099 if (!is_utf8_string(c, SvCUR(sv)+1))
3101 e = (const U8 *) SvEND(sv);
3104 if (!UTF8_IS_INVARIANT(ch)) {
3114 =for apidoc sv_setsv
3116 Copies the contents of the source SV C<ssv> into the destination SV
3117 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3118 function if the source SV needs to be reused. Does not handle 'set' magic.
3119 Loosely speaking, it performs a copy-by-value, obliterating any previous
3120 content of the destination.
3122 You probably want to use one of the assortment of wrappers, such as
3123 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3124 C<SvSetMagicSV_nosteal>.
3126 =for apidoc sv_setsv_flags
3128 Copies the contents of the source SV C<ssv> into the destination SV
3129 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3130 function if the source SV needs to be reused. Does not handle 'set' magic.
3131 Loosely speaking, it performs a copy-by-value, obliterating any previous
3132 content of the destination.
3133 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3134 C<ssv> if appropriate, else not. If the C<flags> parameter has the
3135 C<NOSTEAL> bit set then the buffers of temps will not be stolen. <sv_setsv>
3136 and C<sv_setsv_nomg> are implemented in terms of this function.
3138 You probably want to use one of the assortment of wrappers, such as
3139 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3140 C<SvSetMagicSV_nosteal>.
3142 This is the primary function for copying scalars, and most other
3143 copy-ish functions and macros use this underneath.
3149 S_glob_assign_glob(pTHX_ SV *dstr, SV *sstr, const int dtype)
3151 if (dtype != SVt_PVGV) {
3152 const char * const name = GvNAME(sstr);
3153 const STRLEN len = GvNAMELEN(sstr);
3155 if (dtype >= SVt_PV) {
3161 SvUPGRADE(dstr, SVt_PVGV);
3162 (void)SvOK_off(dstr);
3163 /* FIXME - why are we doing this, then turning it off and on again
3165 isGV_with_GP_on(dstr);
3167 GvSTASH(dstr) = GvSTASH(sstr);
3169 Perl_sv_add_backref(aTHX_ (SV*)GvSTASH(dstr), dstr);
3170 gv_name_set((GV *)dstr, name, len, GV_ADD);
3171 SvFAKE_on(dstr); /* can coerce to non-glob */
3174 #ifdef GV_UNIQUE_CHECK
3175 if (GvUNIQUE((GV*)dstr)) {
3176 Perl_croak(aTHX_ PL_no_modify);
3181 isGV_with_GP_off(dstr);
3182 (void)SvOK_off(dstr);
3183 isGV_with_GP_on(dstr);
3184 GvINTRO_off(dstr); /* one-shot flag */
3185 GvGP(dstr) = gp_ref(GvGP(sstr));
3186 if (SvTAINTED(sstr))
3188 if (GvIMPORTED(dstr) != GVf_IMPORTED
3189 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3191 GvIMPORTED_on(dstr);
3198 S_glob_assign_ref(pTHX_ SV *dstr, SV *sstr) {
3199 SV * const sref = SvREFCNT_inc(SvRV(sstr));
3201 const int intro = GvINTRO(dstr);
3204 const U32 stype = SvTYPE(sref);
3207 #ifdef GV_UNIQUE_CHECK
3208 if (GvUNIQUE((GV*)dstr)) {
3209 Perl_croak(aTHX_ PL_no_modify);
3214 GvINTRO_off(dstr); /* one-shot flag */
3215 GvLINE(dstr) = CopLINE(PL_curcop);
3216 GvEGV(dstr) = (GV*)dstr;
3221 location = (SV **) &GvCV(dstr);
3222 import_flag = GVf_IMPORTED_CV;
3225 location = (SV **) &GvHV(dstr);
3226 import_flag = GVf_IMPORTED_HV;
3229 location = (SV **) &GvAV(dstr);
3230 import_flag = GVf_IMPORTED_AV;
3233 location = (SV **) &GvIOp(dstr);
3236 location = (SV **) &GvFORM(dstr);
3238 location = &GvSV(dstr);
3239 import_flag = GVf_IMPORTED_SV;
3242 if (stype == SVt_PVCV) {
3243 if (GvCVGEN(dstr) && GvCV(dstr) != (CV*)sref) {
3244 SvREFCNT_dec(GvCV(dstr));
3246 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3247 PL_sub_generation++;
3250 SAVEGENERICSV(*location);
3254 if (stype == SVt_PVCV && *location != sref) {
3255 CV* const cv = (CV*)*location;
3257 if (!GvCVGEN((GV*)dstr) &&
3258 (CvROOT(cv) || CvXSUB(cv)))
3260 /* Redefining a sub - warning is mandatory if
3261 it was a const and its value changed. */
3262 if (CvCONST(cv) && CvCONST((CV*)sref)
3263 && cv_const_sv(cv) == cv_const_sv((CV*)sref)) {
3265 /* They are 2 constant subroutines generated from
3266 the same constant. This probably means that
3267 they are really the "same" proxy subroutine
3268 instantiated in 2 places. Most likely this is
3269 when a constant is exported twice. Don't warn.
3272 else if (ckWARN(WARN_REDEFINE)
3274 && (!CvCONST((CV*)sref)
3275 || sv_cmp(cv_const_sv(cv),
3276 cv_const_sv((CV*)sref))))) {
3277 Perl_warner(aTHX_ packWARN(WARN_REDEFINE),
3280 ? "Constant subroutine %s::%s redefined"
3281 : "Subroutine %s::%s redefined"),
3282 HvNAME_get(GvSTASH((GV*)dstr)),
3283 GvENAME((GV*)dstr));
3287 cv_ckproto_len(cv, (GV*)dstr,
3288 SvPOK(sref) ? SvPVX_const(sref) : NULL,
3289 SvPOK(sref) ? SvCUR(sref) : 0);
3291 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3292 GvASSUMECV_on(dstr);
3293 PL_sub_generation++;
3296 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3297 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3298 GvFLAGS(dstr) |= import_flag;
3303 if (SvTAINTED(sstr))
3309 Perl_sv_setsv_flags(pTHX_ SV *dstr, register SV *sstr, I32 flags)
3312 register U32 sflags;
3314 register svtype stype;
3319 if (SvIS_FREED(dstr)) {
3320 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
3321 " to a freed scalar %p", SVfARG(sstr), (void *)dstr);
3323 SV_CHECK_THINKFIRST_COW_DROP(dstr);
3325 sstr = &PL_sv_undef;
3326 if (SvIS_FREED(sstr)) {
3327 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
3328 (void*)sstr, (void*)dstr);
3330 stype = SvTYPE(sstr);
3331 dtype = SvTYPE(dstr);
3333 (void)SvAMAGIC_off(dstr);
3336 /* need to nuke the magic */
3338 SvRMAGICAL_off(dstr);
3341 /* There's a lot of redundancy below but we're going for speed here */
3346 if (dtype != SVt_PVGV) {
3347 (void)SvOK_off(dstr);
3355 sv_upgrade(dstr, SVt_IV);
3360 sv_upgrade(dstr, SVt_PVIV);
3363 goto end_of_first_switch;
3365 (void)SvIOK_only(dstr);
3366 SvIV_set(dstr, SvIVX(sstr));
3369 /* SvTAINTED can only be true if the SV has taint magic, which in
3370 turn means that the SV type is PVMG (or greater). This is the
3371 case statement for SVt_IV, so this cannot be true (whatever gcov
3373 assert(!SvTAINTED(sstr));
3383 sv_upgrade(dstr, SVt_NV);
3388 sv_upgrade(dstr, SVt_PVNV);
3391 goto end_of_first_switch;
3393 SvNV_set(dstr, SvNVX(sstr));
3394 (void)SvNOK_only(dstr);
3395 /* SvTAINTED can only be true if the SV has taint magic, which in
3396 turn means that the SV type is PVMG (or greater). This is the
3397 case statement for SVt_NV, so this cannot be true (whatever gcov
3399 assert(!SvTAINTED(sstr));
3406 sv_upgrade(dstr, SVt_RV);
3409 #ifdef PERL_OLD_COPY_ON_WRITE
3410 if ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS) {
3411 if (dtype < SVt_PVIV)
3412 sv_upgrade(dstr, SVt_PVIV);
3419 sv_upgrade(dstr, SVt_PV);
3422 if (dtype < SVt_PVIV)
3423 sv_upgrade(dstr, SVt_PVIV);
3426 if (dtype < SVt_PVNV)
3427 sv_upgrade(dstr, SVt_PVNV);
3431 const char * const type = sv_reftype(sstr,0);
3433 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_NAME(PL_op));
3435 Perl_croak(aTHX_ "Bizarre copy of %s", type);
3439 /* case SVt_BIND: */
3442 if (isGV_with_GP(sstr) && dtype <= SVt_PVGV) {
3443 glob_assign_glob(dstr, sstr, dtype);
3446 /* SvVALID means that this PVGV is playing at being an FBM. */
3450 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
3452 if (SvTYPE(sstr) != stype) {
3453 stype = SvTYPE(sstr);
3454 if (isGV_with_GP(sstr) && stype == SVt_PVGV && dtype <= SVt_PVGV) {
3455 glob_assign_glob(dstr, sstr, dtype);
3460 if (stype == SVt_PVLV)
3461 SvUPGRADE(dstr, SVt_PVNV);
3463 SvUPGRADE(dstr, (svtype)stype);
3465 end_of_first_switch:
3467 /* dstr may have been upgraded. */
3468 dtype = SvTYPE(dstr);
3469 sflags = SvFLAGS(sstr);
3471 if (dtype == SVt_PVCV || dtype == SVt_PVFM) {
3472 /* Assigning to a subroutine sets the prototype. */
3475 const char *const ptr = SvPV_const(sstr, len);
3477 SvGROW(dstr, len + 1);
3478 Copy(ptr, SvPVX(dstr), len + 1, char);
3479 SvCUR_set(dstr, len);
3481 SvFLAGS(dstr) |= sflags & SVf_UTF8;
3485 } else if (dtype == SVt_PVAV || dtype == SVt_PVHV) {
3486 const char * const type = sv_reftype(dstr,0);
3488 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_NAME(PL_op));
3490 Perl_croak(aTHX_ "Cannot copy to %s", type);
3491 } else if (sflags & SVf_ROK) {
3492 if (isGV_with_GP(dstr) && dtype == SVt_PVGV
3493 && SvTYPE(SvRV(sstr)) == SVt_PVGV) {
3496 if (GvIMPORTED(dstr) != GVf_IMPORTED
3497 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3499 GvIMPORTED_on(dstr);
3504 glob_assign_glob(dstr, sstr, dtype);
3508 if (dtype >= SVt_PV) {
3509 if (dtype == SVt_PVGV) {
3510 glob_assign_ref(dstr, sstr);
3513 if (SvPVX_const(dstr)) {
3519 (void)SvOK_off(dstr);
3520 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
3521 SvFLAGS(dstr) |= sflags & SVf_ROK;
3522 assert(!(sflags & SVp_NOK));
3523 assert(!(sflags & SVp_IOK));
3524 assert(!(sflags & SVf_NOK));
3525 assert(!(sflags & SVf_IOK));
3527 else if (dtype == SVt_PVGV && isGV_with_GP(dstr)) {
3528 if (!(sflags & SVf_OK)) {
3529 if (ckWARN(WARN_MISC))
3530 Perl_warner(aTHX_ packWARN(WARN_MISC),
3531 "Undefined value assigned to typeglob");
3534 GV *gv = gv_fetchsv(sstr, GV_ADD, SVt_PVGV);
3535 if (dstr != (SV*)gv) {
3538 GvGP(dstr) = gp_ref(GvGP(gv));
3542 else if (sflags & SVp_POK) {
3546 * Check to see if we can just swipe the string. If so, it's a
3547 * possible small lose on short strings, but a big win on long ones.
3548 * It might even be a win on short strings if SvPVX_const(dstr)
3549 * has to be allocated and SvPVX_const(sstr) has to be freed.
3550 * Likewise if we can set up COW rather than doing an actual copy, we
3551 * drop to the else clause, as the swipe code and the COW setup code
3552 * have much in common.
3555 /* Whichever path we take through the next code, we want this true,
3556 and doing it now facilitates the COW check. */
3557 (void)SvPOK_only(dstr);
3560 /* If we're already COW then this clause is not true, and if COW
3561 is allowed then we drop down to the else and make dest COW
3562 with us. If caller hasn't said that we're allowed to COW
3563 shared hash keys then we don't do the COW setup, even if the
3564 source scalar is a shared hash key scalar. */
3565 (((flags & SV_COW_SHARED_HASH_KEYS)
3566 ? (sflags & (SVf_FAKE|SVf_READONLY)) != (SVf_FAKE|SVf_READONLY)
3567 : 1 /* If making a COW copy is forbidden then the behaviour we
3568 desire is as if the source SV isn't actually already
3569 COW, even if it is. So we act as if the source flags
3570 are not COW, rather than actually testing them. */
3572 #ifndef PERL_OLD_COPY_ON_WRITE
3573 /* The change that added SV_COW_SHARED_HASH_KEYS makes the logic
3574 when PERL_OLD_COPY_ON_WRITE is defined a little wrong.
3575 Conceptually PERL_OLD_COPY_ON_WRITE being defined should
3576 override SV_COW_SHARED_HASH_KEYS, because it means "always COW"
3577 but in turn, it's somewhat dead code, never expected to go
3578 live, but more kept as a placeholder on how to do it better
3579 in a newer implementation. */
3580 /* If we are COW and dstr is a suitable target then we drop down
3581 into the else and make dest a COW of us. */
3582 || (SvFLAGS(dstr) & CAN_COW_MASK) != CAN_COW_FLAGS
3587 (sflags & SVs_TEMP) && /* slated for free anyway? */
3588 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
3589 (!(flags & SV_NOSTEAL)) &&
3590 /* and we're allowed to steal temps */
3591 SvREFCNT(sstr) == 1 && /* and no other references to it? */
3592 SvLEN(sstr) && /* and really is a string */
3593 /* and won't be needed again, potentially */
3594 !(PL_op && PL_op->op_type == OP_AASSIGN))
3595 #ifdef PERL_OLD_COPY_ON_WRITE
3596 && !((sflags & CAN_COW_MASK) == CAN_COW_FLAGS
3597 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
3598 && SvTYPE(sstr) >= SVt_PVIV)
3601 /* Failed the swipe test, and it's not a shared hash key either.
3602 Have to copy the string. */
3603 STRLEN len = SvCUR(sstr);
3604 SvGROW(dstr, len + 1); /* inlined from sv_setpvn */
3605 Move(SvPVX_const(sstr),SvPVX(dstr),len,char);
3606 SvCUR_set(dstr, len);
3607 *SvEND(dstr) = '\0';
3609 /* If PERL_OLD_COPY_ON_WRITE is not defined, then isSwipe will always
3611 /* Either it's a shared hash key, or it's suitable for
3612 copy-on-write or we can swipe the string. */
3614 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
3618 #ifdef PERL_OLD_COPY_ON_WRITE
3620 /* I believe I should acquire a global SV mutex if
3621 it's a COW sv (not a shared hash key) to stop
3622 it going un copy-on-write.
3623 If the source SV has gone un copy on write between up there
3624 and down here, then (assert() that) it is of the correct
3625 form to make it copy on write again */
3626 if ((sflags & (SVf_FAKE | SVf_READONLY))
3627 != (SVf_FAKE | SVf_READONLY)) {
3628 SvREADONLY_on(sstr);
3630 /* Make the source SV into a loop of 1.
3631 (about to become 2) */
3632 SV_COW_NEXT_SV_SET(sstr, sstr);
3636 /* Initial code is common. */
3637 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
3642 /* making another shared SV. */
3643 STRLEN cur = SvCUR(sstr);
3644 STRLEN len = SvLEN(sstr);
3645 #ifdef PERL_OLD_COPY_ON_WRITE
3647 assert (SvTYPE(dstr) >= SVt_PVIV);
3648 /* SvIsCOW_normal */
3649 /* splice us in between source and next-after-source. */
3650 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
3651 SV_COW_NEXT_SV_SET(sstr, dstr);
3652 SvPV_set(dstr, SvPVX_mutable(sstr));
3656 /* SvIsCOW_shared_hash */
3657 DEBUG_C(PerlIO_printf(Perl_debug_log,
3658 "Copy on write: Sharing hash\n"));
3660 assert (SvTYPE(dstr) >= SVt_PV);
3662 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
3664 SvLEN_set(dstr, len);
3665 SvCUR_set(dstr, cur);
3666 SvREADONLY_on(dstr);
3668 /* Relesase a global SV mutex. */
3671 { /* Passes the swipe test. */
3672 SvPV_set(dstr, SvPVX_mutable(sstr));
3673 SvLEN_set(dstr, SvLEN(sstr));
3674 SvCUR_set(dstr, SvCUR(sstr));
3677 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
3678 SvPV_set(sstr, NULL);
3684 if (sflags & SVp_NOK) {
3685 SvNV_set(dstr, SvNVX(sstr));
3687 if (sflags & SVp_IOK) {
3689 SvIV_set(dstr, SvIVX(sstr));
3690 /* Must do this otherwise some other overloaded use of 0x80000000
3691 gets confused. I guess SVpbm_VALID */
3692 if (sflags & SVf_IVisUV)
3695 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8);
3697 const MAGIC * const smg = SvVSTRING_mg(sstr);
3699 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
3700 smg->mg_ptr, smg->mg_len);
3701 SvRMAGICAL_on(dstr);
3705 else if (sflags & (SVp_IOK|SVp_NOK)) {
3706 (void)SvOK_off(dstr);
3707 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK);
3708 if (sflags & SVp_IOK) {
3709 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
3710 SvIV_set(dstr, SvIVX(sstr));
3712 if (sflags & SVp_NOK) {
3713 SvNV_set(dstr, SvNVX(sstr));
3717 if (isGV_with_GP(sstr)) {
3718 /* This stringification rule for globs is spread in 3 places.
3719 This feels bad. FIXME. */
3720 const U32 wasfake = sflags & SVf_FAKE;
3722 /* FAKE globs can get coerced, so need to turn this off
3723 temporarily if it is on. */
3725 gv_efullname3(dstr, (GV *)sstr, "*");
3726 SvFLAGS(sstr) |= wasfake;
3729 (void)SvOK_off(dstr);
3731 if (SvTAINTED(sstr))
3736 =for apidoc sv_setsv_mg
3738 Like C<sv_setsv>, but also handles 'set' magic.
3744 Perl_sv_setsv_mg(pTHX_ SV *dstr, register SV *sstr)
3746 sv_setsv(dstr,sstr);
3750 #ifdef PERL_OLD_COPY_ON_WRITE
3752 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
3754 STRLEN cur = SvCUR(sstr);
3755 STRLEN len = SvLEN(sstr);
3756 register char *new_pv;
3759 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
3760 (void*)sstr, (void*)dstr);
3767 if (SvTHINKFIRST(dstr))
3768 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
3769 else if (SvPVX_const(dstr))
3770 Safefree(SvPVX_const(dstr));
3774 SvUPGRADE(dstr, SVt_PVIV);
3776 assert (SvPOK(sstr));
3777 assert (SvPOKp(sstr));
3778 assert (!SvIOK(sstr));
3779 assert (!SvIOKp(sstr));
3780 assert (!SvNOK(sstr));
3781 assert (!SvNOKp(sstr));
3783 if (SvIsCOW(sstr)) {
3785 if (SvLEN(sstr) == 0) {
3786 /* source is a COW shared hash key. */
3787 DEBUG_C(PerlIO_printf(Perl_debug_log,
3788 "Fast copy on write: Sharing hash\n"));
3789 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
3792 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
3794 assert ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS);
3795 SvUPGRADE(sstr, SVt_PVIV);
3796 SvREADONLY_on(sstr);
3798 DEBUG_C(PerlIO_printf(Perl_debug_log,
3799 "Fast copy on write: Converting sstr to COW\n"));
3800 SV_COW_NEXT_SV_SET(dstr, sstr);
3802 SV_COW_NEXT_SV_SET(sstr, dstr);
3803 new_pv = SvPVX_mutable(sstr);
3806 SvPV_set(dstr, new_pv);
3807 SvFLAGS(dstr) = (SVt_PVIV|SVf_POK|SVp_POK|SVf_FAKE|SVf_READONLY);
3810 SvLEN_set(dstr, len);
3811 SvCUR_set(dstr, cur);
3820 =for apidoc sv_setpvn
3822 Copies a string into an SV. The C<len> parameter indicates the number of
3823 bytes to be copied. If the C<ptr> argument is NULL the SV will become
3824 undefined. Does not handle 'set' magic. See C<sv_setpvn_mg>.
3830 Perl_sv_setpvn(pTHX_ register SV *sv, register const char *ptr, register STRLEN len)
3833 register char *dptr;
3835 SV_CHECK_THINKFIRST_COW_DROP(sv);
3841 /* len is STRLEN which is unsigned, need to copy to signed */
3844 Perl_croak(aTHX_ "panic: sv_setpvn called with negative strlen");
3846 SvUPGRADE(sv, SVt_PV);
3848 dptr = SvGROW(sv, len + 1);
3849 Move(ptr,dptr,len,char);
3852 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3857 =for apidoc sv_setpvn_mg
3859 Like C<sv_setpvn>, but also handles 'set' magic.
3865 Perl_sv_setpvn_mg(pTHX_ register SV *sv, register const char *ptr, register STRLEN len)
3867 sv_setpvn(sv,ptr,len);
3872 =for apidoc sv_setpv
3874 Copies a string into an SV. The string must be null-terminated. Does not
3875 handle 'set' magic. See C<sv_setpv_mg>.
3881 Perl_sv_setpv(pTHX_ register SV *sv, register const char *ptr)
3884 register STRLEN len;
3886 SV_CHECK_THINKFIRST_COW_DROP(sv);
3892 SvUPGRADE(sv, SVt_PV);
3894 SvGROW(sv, len + 1);
3895 Move(ptr,SvPVX(sv),len+1,char);
3897 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3902 =for apidoc sv_setpv_mg
3904 Like C<sv_setpv>, but also handles 'set' magic.
3910 Perl_sv_setpv_mg(pTHX_ register SV *sv, register const char *ptr)
3917 =for apidoc sv_usepvn_flags
3919 Tells an SV to use C<ptr> to find its string value. Normally the
3920 string is stored inside the SV but sv_usepvn allows the SV to use an
3921 outside string. The C<ptr> should point to memory that was allocated
3922 by C<malloc>. The string length, C<len>, must be supplied. By default
3923 this function will realloc (i.e. move) the memory pointed to by C<ptr>,
3924 so that pointer should not be freed or used by the programmer after
3925 giving it to sv_usepvn, and neither should any pointers from "behind"
3926 that pointer (e.g. ptr + 1) be used.
3928 If C<flags> & SV_SMAGIC is true, will call SvSETMAGIC. If C<flags> &
3929 SV_HAS_TRAILING_NUL is true, then C<ptr[len]> must be NUL, and the realloc
3930 will be skipped. (i.e. the buffer is actually at least 1 byte longer than
3931 C<len>, and already meets the requirements for storing in C<SvPVX>)
3937 Perl_sv_usepvn_flags(pTHX_ SV *sv, char *ptr, STRLEN len, U32 flags)
3941 SV_CHECK_THINKFIRST_COW_DROP(sv);
3942 SvUPGRADE(sv, SVt_PV);
3945 if (flags & SV_SMAGIC)
3949 if (SvPVX_const(sv))
3953 if (flags & SV_HAS_TRAILING_NUL)
3954 assert(ptr[len] == '\0');
3957 allocate = (flags & SV_HAS_TRAILING_NUL)
3958 ? len + 1: PERL_STRLEN_ROUNDUP(len + 1);
3959 if (flags & SV_HAS_TRAILING_NUL) {
3960 /* It's long enough - do nothing.
3961 Specfically Perl_newCONSTSUB is relying on this. */
3964 /* Force a move to shake out bugs in callers. */
3965 char *new_ptr = (char*)safemalloc(allocate);
3966 Copy(ptr, new_ptr, len, char);
3967 PoisonFree(ptr,len,char);
3971 ptr = (char*) saferealloc (ptr, allocate);
3976 SvLEN_set(sv, allocate);
3977 if (!(flags & SV_HAS_TRAILING_NUL)) {
3980 (void)SvPOK_only_UTF8(sv); /* validate pointer */
3982 if (flags & SV_SMAGIC)
3986 #ifdef PERL_OLD_COPY_ON_WRITE
3987 /* Need to do this *after* making the SV normal, as we need the buffer
3988 pointer to remain valid until after we've copied it. If we let go too early,
3989 another thread could invalidate it by unsharing last of the same hash key
3990 (which it can do by means other than releasing copy-on-write Svs)
3991 or by changing the other copy-on-write SVs in the loop. */
3993 S_sv_release_COW(pTHX_ register SV *sv, const char *pvx, SV *after)
3995 { /* this SV was SvIsCOW_normal(sv) */
3996 /* we need to find the SV pointing to us. */
3997 SV *current = SV_COW_NEXT_SV(after);
3999 if (current == sv) {
4000 /* The SV we point to points back to us (there were only two of us
4002 Hence other SV is no longer copy on write either. */
4004 SvREADONLY_off(after);
4006 /* We need to follow the pointers around the loop. */
4008 while ((next = SV_COW_NEXT_SV(current)) != sv) {
4011 /* don't loop forever if the structure is bust, and we have
4012 a pointer into a closed loop. */
4013 assert (current != after);
4014 assert (SvPVX_const(current) == pvx);
4016 /* Make the SV before us point to the SV after us. */
4017 SV_COW_NEXT_SV_SET(current, after);
4023 =for apidoc sv_force_normal_flags
4025 Undo various types of fakery on an SV: if the PV is a shared string, make
4026 a private copy; if we're a ref, stop refing; if we're a glob, downgrade to
4027 an xpvmg; if we're a copy-on-write scalar, this is the on-write time when
4028 we do the copy, and is also used locally. If C<SV_COW_DROP_PV> is set
4029 then a copy-on-write scalar drops its PV buffer (if any) and becomes
4030 SvPOK_off rather than making a copy. (Used where this scalar is about to be
4031 set to some other value.) In addition, the C<flags> parameter gets passed to
4032 C<sv_unref_flags()> when unrefing. C<sv_force_normal> calls this function
4033 with flags set to 0.
4039 Perl_sv_force_normal_flags(pTHX_ register SV *sv, U32 flags)
4042 #ifdef PERL_OLD_COPY_ON_WRITE
4043 if (SvREADONLY(sv)) {
4044 /* At this point I believe I should acquire a global SV mutex. */
4046 const char * const pvx = SvPVX_const(sv);
4047 const STRLEN len = SvLEN(sv);
4048 const STRLEN cur = SvCUR(sv);
4049 /* next COW sv in the loop. If len is 0 then this is a shared-hash
4050 key scalar, so we mustn't attempt to call SV_COW_NEXT_SV(), as
4051 we'll fail an assertion. */
4052 SV * const next = len ? SV_COW_NEXT_SV(sv) : 0;
4055 PerlIO_printf(Perl_debug_log,
4056 "Copy on write: Force normal %ld\n",
4062 /* This SV doesn't own the buffer, so need to Newx() a new one: */
4065 if (flags & SV_COW_DROP_PV) {
4066 /* OK, so we don't need to copy our buffer. */
4069 SvGROW(sv, cur + 1);
4070 Move(pvx,SvPVX(sv),cur,char);
4075 sv_release_COW(sv, pvx, next);
4077 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4083 else if (IN_PERL_RUNTIME)
4084 Perl_croak(aTHX_ PL_no_modify);
4085 /* At this point I believe that I can drop the global SV mutex. */
4088 if (SvREADONLY(sv)) {
4090 const char * const pvx = SvPVX_const(sv);
4091 const STRLEN len = SvCUR(sv);
4096 SvGROW(sv, len + 1);
4097 Move(pvx,SvPVX(sv),len,char);
4099 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4101 else if (IN_PERL_RUNTIME)
4102 Perl_croak(aTHX_ PL_no_modify);
4106 sv_unref_flags(sv, flags);
4107 else if (SvFAKE(sv) && SvTYPE(sv) == SVt_PVGV)
4114 Efficient removal of characters from the beginning of the string buffer.
4115 SvPOK(sv) must be true and the C<ptr> must be a pointer to somewhere inside
4116 the string buffer. The C<ptr> becomes the first character of the adjusted
4117 string. Uses the "OOK hack".
4118 Beware: after this function returns, C<ptr> and SvPVX_const(sv) may no longer
4119 refer to the same chunk of data.
4125 Perl_sv_chop(pTHX_ register SV *sv, register const char *ptr)
4127 register STRLEN delta;
4128 if (!ptr || !SvPOKp(sv))
4130 delta = ptr - SvPVX_const(sv);
4131 SV_CHECK_THINKFIRST(sv);
4132 if (SvTYPE(sv) < SVt_PVIV)
4133 sv_upgrade(sv,SVt_PVIV);
4136 if (!SvLEN(sv)) { /* make copy of shared string */
4137 const char *pvx = SvPVX_const(sv);
4138 const STRLEN len = SvCUR(sv);
4139 SvGROW(sv, len + 1);
4140 Move(pvx,SvPVX(sv),len,char);
4144 /* Same SvOOK_on but SvOOK_on does a SvIOK_off
4145 and we do that anyway inside the SvNIOK_off
4147 SvFLAGS(sv) |= SVf_OOK;
4150 SvLEN_set(sv, SvLEN(sv) - delta);
4151 SvCUR_set(sv, SvCUR(sv) - delta);
4152 SvPV_set(sv, SvPVX(sv) + delta);
4153 SvIV_set(sv, SvIVX(sv) + delta);
4157 =for apidoc sv_catpvn
4159 Concatenates the string onto the end of the string which is in the SV. The
4160 C<len> indicates number of bytes to copy. If the SV has the UTF-8
4161 status set, then the bytes appended should be valid UTF-8.
4162 Handles 'get' magic, but not 'set' magic. See C<sv_catpvn_mg>.
4164 =for apidoc sv_catpvn_flags
4166 Concatenates the string onto the end of the string which is in the SV. The
4167 C<len> indicates number of bytes to copy. If the SV has the UTF-8
4168 status set, then the bytes appended should be valid UTF-8.
4169 If C<flags> has C<SV_GMAGIC> bit set, will C<mg_get> on C<dsv> if
4170 appropriate, else not. C<sv_catpvn> and C<sv_catpvn_nomg> are implemented
4171 in terms of this function.
4177 Perl_sv_catpvn_flags(pTHX_ register SV *dsv, register const char *sstr, register STRLEN slen, I32 flags)
4181 const char * const dstr = SvPV_force_flags(dsv, dlen, flags);
4183 SvGROW(dsv, dlen + slen + 1);
4185 sstr = SvPVX_const(dsv);
4186 Move(sstr, SvPVX(dsv) + dlen, slen, char);
4187 SvCUR_set(dsv, SvCUR(dsv) + slen);
4189 (void)SvPOK_only_UTF8(dsv); /* validate pointer */
4191 if (flags & SV_SMAGIC)
4196 =for apidoc sv_catsv
4198 Concatenates the string from SV C<ssv> onto the end of the string in
4199 SV C<dsv>. Modifies C<dsv> but not C<ssv>. Handles 'get' magic, but
4200 not 'set' magic. See C<sv_catsv_mg>.
4202 =for apidoc sv_catsv_flags
4204 Concatenates the string from SV C<ssv> onto the end of the string in
4205 SV C<dsv>. Modifies C<dsv> but not C<ssv>. If C<flags> has C<SV_GMAGIC>
4206 bit set, will C<mg_get> on the SVs if appropriate, else not. C<sv_catsv>
4207 and C<sv_catsv_nomg> are implemented in terms of this function.
4212 Perl_sv_catsv_flags(pTHX_ SV *dsv, register SV *ssv, I32 flags)
4217 const char *spv = SvPV_const(ssv, slen);
4219 /* sutf8 and dutf8 were type bool, but under USE_ITHREADS,
4220 gcc version 2.95.2 20000220 (Debian GNU/Linux) for
4221 Linux xxx 2.2.17 on sparc64 with gcc -O2, we erroneously
4222 get dutf8 = 0x20000000, (i.e. SVf_UTF8) even though
4223 dsv->sv_flags doesn't have that bit set.
4224 Andy Dougherty 12 Oct 2001
4226 const I32 sutf8 = DO_UTF8(ssv);
4229 if (SvGMAGICAL(dsv) && (flags & SV_GMAGIC))
4231 dutf8 = DO_UTF8(dsv);
4233 if (dutf8 != sutf8) {
4235 /* Not modifying source SV, so taking a temporary copy. */
4236 SV* const csv = sv_2mortal(newSVpvn(spv, slen));
4238 sv_utf8_upgrade(csv);
4239 spv = SvPV_const(csv, slen);
4242 sv_utf8_upgrade_nomg(dsv);
4244 sv_catpvn_nomg(dsv, spv, slen);
4247 if (flags & SV_SMAGIC)
4252 =for apidoc sv_catpv
4254 Concatenates the string onto the end of the string which is in the SV.
4255 If the SV has the UTF-8 status set, then the bytes appended should be
4256 valid UTF-8. Handles 'get' magic, but not 'set' magic. See C<sv_catpv_mg>.
4261 Perl_sv_catpv(pTHX_ register SV *sv, register const char *ptr)
4264 register STRLEN len;
4270 junk = SvPV_force(sv, tlen);
4272 SvGROW(sv, tlen + len + 1);
4274 ptr = SvPVX_const(sv);
4275 Move(ptr,SvPVX(sv)+tlen,len+1,char);
4276 SvCUR_set(sv, SvCUR(sv) + len);
4277 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4282 =for apidoc sv_catpv_mg
4284 Like C<sv_catpv>, but also handles 'set' magic.
4290 Perl_sv_catpv_mg(pTHX_ register SV *sv, register const char *ptr)
4299 Creates a new SV. A non-zero C<len> parameter indicates the number of
4300 bytes of preallocated string space the SV should have. An extra byte for a
4301 trailing NUL is also reserved. (SvPOK is not set for the SV even if string
4302 space is allocated.) The reference count for the new SV is set to 1.
4304 In 5.9.3, newSV() replaces the older NEWSV() API, and drops the first
4305 parameter, I<x>, a debug aid which allowed callers to identify themselves.
4306 This aid has been superseded by a new build option, PERL_MEM_LOG (see
4307 L<perlhack/PERL_MEM_LOG>). The older API is still there for use in XS
4308 modules supporting older perls.
4314 Perl_newSV(pTHX_ STRLEN len)
4321 sv_upgrade(sv, SVt_PV);
4322 SvGROW(sv, len + 1);
4327 =for apidoc sv_magicext
4329 Adds magic to an SV, upgrading it if necessary. Applies the
4330 supplied vtable and returns a pointer to the magic added.
4332 Note that C<sv_magicext> will allow things that C<sv_magic> will not.
4333 In particular, you can add magic to SvREADONLY SVs, and add more than
4334 one instance of the same 'how'.
4336 If C<namlen> is greater than zero then a C<savepvn> I<copy> of C<name> is
4337 stored, if C<namlen> is zero then C<name> is stored as-is and - as another
4338 special case - if C<(name && namlen == HEf_SVKEY)> then C<name> is assumed
4339 to contain an C<SV*> and is stored as-is with its REFCNT incremented.
4341 (This is now used as a subroutine by C<sv_magic>.)
4346 Perl_sv_magicext(pTHX_ SV* sv, SV* obj, int how, const MGVTBL *vtable,
4347 const char* name, I32 namlen)
4352 SvUPGRADE(sv, SVt_PVMG);
4353 Newxz(mg, 1, MAGIC);
4354 mg->mg_moremagic = SvMAGIC(sv);
4355 SvMAGIC_set(sv, mg);
4357 /* Sometimes a magic contains a reference loop, where the sv and
4358 object refer to each other. To prevent a reference loop that
4359 would prevent such objects being freed, we look for such loops
4360 and if we find one we avoid incrementing the object refcount.
4362 Note we cannot do this to avoid self-tie loops as intervening RV must
4363 have its REFCNT incremented to keep it in existence.
4366 if (!obj || obj == sv ||
4367 how == PERL_MAGIC_arylen ||
4368 how == PERL_MAGIC_qr ||
4369 how == PERL_MAGIC_symtab ||
4370 (SvTYPE(obj) == SVt_PVGV &&
4371 (GvSV(obj) == sv || GvHV(obj) == (HV*)sv || GvAV(obj) == (AV*)sv ||
4372 GvCV(obj) == (CV*)sv || GvIOp(obj) == (IO*)sv ||
4373 GvFORM(obj) == (CV*)sv)))
4378 mg->mg_obj = SvREFCNT_inc_simple(obj);
4379 mg->mg_flags |= MGf_REFCOUNTED;
4382 /* Normal self-ties simply pass a null object, and instead of
4383 using mg_obj directly, use the SvTIED_obj macro to produce a
4384 new RV as needed. For glob "self-ties", we are tieing the PVIO
4385 with an RV obj pointing to the glob containing the PVIO. In
4386 this case, to avoid a reference loop, we need to weaken the
4390 if (how == PERL_MAGIC_tiedscalar && SvTYPE(sv) == SVt_PVIO &&
4391 obj && SvROK(obj) && GvIO(SvRV(obj)) == (IO*)sv)
4397 mg->mg_len = namlen;
4400 mg->mg_ptr = savepvn(name, namlen);
4401 else if (namlen == HEf_SVKEY)
4402 mg->mg_ptr = (char*)SvREFCNT_inc_simple_NN((SV*)name);
4404 mg->mg_ptr = (char *) name;
4406 mg->mg_virtual = (MGVTBL *) vtable;
4410 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK|SVf_POK);
4415 =for apidoc sv_magic
4417 Adds magic to an SV. First upgrades C<sv> to type C<SVt_PVMG> if necessary,
4418 then adds a new magic item of type C<how> to the head of the magic list.
4420 See C<sv_magicext> (which C<sv_magic> now calls) for a description of the
4421 handling of the C<name> and C<namlen> arguments.
4423 You need to use C<sv_magicext> to add magic to SvREADONLY SVs and also
4424 to add more than one instance of the same 'how'.
4430 Perl_sv_magic(pTHX_ register SV *sv, SV *obj, int how, const char *name, I32 namlen)
4433 const MGVTBL *vtable;
4436 #ifdef PERL_OLD_COPY_ON_WRITE
4438 sv_force_normal_flags(sv, 0);
4440 if (SvREADONLY(sv)) {
4442 /* its okay to attach magic to shared strings; the subsequent
4443 * upgrade to PVMG will unshare the string */
4444 !(SvFAKE(sv) && SvTYPE(sv) < SVt_PVMG)
4447 && how != PERL_MAGIC_regex_global
4448 && how != PERL_MAGIC_bm
4449 && how != PERL_MAGIC_fm
4450 && how != PERL_MAGIC_sv
4451 && how != PERL_MAGIC_backref
4454 Perl_croak(aTHX_ PL_no_modify);
4457 if (SvMAGICAL(sv) || (how == PERL_MAGIC_taint && SvTYPE(sv) >= SVt_PVMG)) {
4458 if (SvMAGIC(sv) && (mg = mg_find(sv, how))) {
4459 /* sv_magic() refuses to add a magic of the same 'how' as an
4462 if (how == PERL_MAGIC_taint) {
4464 /* Any scalar which already had taint magic on which someone
4465 (erroneously?) did SvIOK_on() or similar will now be
4466 incorrectly sporting public "OK" flags. */
4467 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK|SVf_POK);
4475 vtable = &PL_vtbl_sv;
4477 case PERL_MAGIC_overload:
4478 vtable = &PL_vtbl_amagic;
4480 case PERL_MAGIC_overload_elem:
4481 vtable = &PL_vtbl_amagicelem;
4483 case PERL_MAGIC_overload_table:
4484 vtable = &PL_vtbl_ovrld;
4487 vtable = &PL_vtbl_bm;
4489 case PERL_MAGIC_regdata:
4490 vtable = &PL_vtbl_regdata;
4492 case PERL_MAGIC_regdatum:
4493 vtable = &PL_vtbl_regdatum;
4495 case PERL_MAGIC_env:
4496 vtable = &PL_vtbl_env;
4499 vtable = &PL_vtbl_fm;
4501 case PERL_MAGIC_envelem:
4502 vtable = &PL_vtbl_envelem;
4504 case PERL_MAGIC_regex_global:
4505 vtable = &PL_vtbl_mglob;
4507 case PERL_MAGIC_isa:
4508 vtable = &PL_vtbl_isa;
4510 case PERL_MAGIC_isaelem:
4511 vtable = &PL_vtbl_isaelem;
4513 case PERL_MAGIC_nkeys:
4514 vtable = &PL_vtbl_nkeys;
4516 case PERL_MAGIC_dbfile:
4519 case PERL_MAGIC_dbline:
4520 vtable = &PL_vtbl_dbline;
4522 #ifdef USE_LOCALE_COLLATE
4523 case PERL_MAGIC_collxfrm:
4524 vtable = &PL_vtbl_collxfrm;
4526 #endif /* USE_LOCALE_COLLATE */
4527 case PERL_MAGIC_tied:
4528 vtable = &PL_vtbl_pack;
4530 case PERL_MAGIC_tiedelem:
4531 case PERL_MAGIC_tiedscalar:
4532 vtable = &PL_vtbl_packelem;
4535 vtable = &PL_vtbl_regexp;
4537 case PERL_MAGIC_hints:
4538 /* As this vtable is all NULL, we can reuse it. */
4539 case PERL_MAGIC_sig:
4540 vtable = &PL_vtbl_sig;
4542 case PERL_MAGIC_sigelem:
4543 vtable = &PL_vtbl_sigelem;
4545 case PERL_MAGIC_taint:
4546 vtable = &PL_vtbl_taint;
4548 case PERL_MAGIC_uvar:
4549 vtable = &PL_vtbl_uvar;
4551 case PERL_MAGIC_vec:
4552 vtable = &PL_vtbl_vec;
4554 case PERL_MAGIC_arylen_p:
4555 case PERL_MAGIC_rhash:
4556 case PERL_MAGIC_symtab:
4557 case PERL_MAGIC_vstring:
4560 case PERL_MAGIC_utf8:
4561 vtable = &PL_vtbl_utf8;
4563 case PERL_MAGIC_substr:
4564 vtable = &PL_vtbl_substr;
4566 case PERL_MAGIC_defelem:
4567 vtable = &PL_vtbl_defelem;
4569 case PERL_MAGIC_arylen:
4570 vtable = &PL_vtbl_arylen;
4572 case PERL_MAGIC_pos:
4573 vtable = &PL_vtbl_pos;
4575 case PERL_MAGIC_backref:
4576 vtable = &PL_vtbl_backref;
4578 case PERL_MAGIC_hintselem:
4579 vtable = &PL_vtbl_hintselem;
4581 case PERL_MAGIC_ext:
4582 /* Reserved for use by extensions not perl internals. */
4583 /* Useful for attaching extension internal data to perl vars. */
4584 /* Note that multiple extensions may clash if magical scalars */
4585 /* etc holding private data from one are passed to another. */
4589 Perl_croak(aTHX_ "Don't know how to handle magic of type \\%o", how);
4592 /* Rest of work is done else where */
4593 mg = sv_magicext(sv,obj,how,vtable,name,namlen);
4596 case PERL_MAGIC_taint:
4599 case PERL_MAGIC_ext:
4600 case PERL_MAGIC_dbfile:
4607 =for apidoc sv_unmagic
4609 Removes all magic of type C<type> from an SV.
4615 Perl_sv_unmagic(pTHX_ SV *sv, int type)
4619 if (SvTYPE(sv) < SVt_PVMG || !SvMAGIC(sv))
4621 mgp = &(((XPVMG*) SvANY(sv))->xmg_u.xmg_magic);
4622 for (mg = *mgp; mg; mg = *mgp) {
4623 if (mg->mg_type == type) {
4624 const MGVTBL* const vtbl = mg->mg_virtual;
4625 *mgp = mg->mg_moremagic;
4626 if (vtbl && vtbl->svt_free)
4627 CALL_FPTR(vtbl->svt_free)(aTHX_ sv, mg);
4628 if (mg->mg_ptr && mg->mg_type != PERL_MAGIC_regex_global) {
4630 Safefree(mg->mg_ptr);
4631 else if (mg->mg_len == HEf_SVKEY)
4632 SvREFCNT_dec((SV*)mg->mg_ptr);
4633 else if (mg->mg_type == PERL_MAGIC_utf8)
4634 Safefree(mg->mg_ptr);
4636 if (mg->mg_flags & MGf_REFCOUNTED)
4637 SvREFCNT_dec(mg->mg_obj);
4641 mgp = &mg->mg_moremagic;
4645 SvFLAGS(sv) |= (SvFLAGS(sv) & (SVp_IOK|SVp_NOK|SVp_POK)) >> PRIVSHIFT;
4646 SvMAGIC_set(sv, NULL);
4653 =for apidoc sv_rvweaken
4655 Weaken a reference: set the C<SvWEAKREF> flag on this RV; give the
4656 referred-to SV C<PERL_MAGIC_backref> magic if it hasn't already; and
4657 push a back-reference to this RV onto the array of backreferences
4658 associated with that magic. If the RV is magical, set magic will be
4659 called after the RV is cleared.
4665 Perl_sv_rvweaken(pTHX_ SV *sv)
4668 if (!SvOK(sv)) /* let undefs pass */
4671 Perl_croak(aTHX_ "Can't weaken a nonreference");
4672 else if (SvWEAKREF(sv)) {
4673 if (ckWARN(WARN_MISC))
4674 Perl_warner(aTHX_ packWARN(WARN_MISC), "Reference is already weak");
4678 Perl_sv_add_backref(aTHX_ tsv, sv);
4684 /* Give tsv backref magic if it hasn't already got it, then push a
4685 * back-reference to sv onto the array associated with the backref magic.
4689 Perl_sv_add_backref(pTHX_ SV *tsv, SV *sv)
4694 if (SvTYPE(tsv) == SVt_PVHV) {
4695 AV **const avp = Perl_hv_backreferences_p(aTHX_ (HV*)tsv);
4699 /* There is no AV in the offical place - try a fixup. */
4700 MAGIC *const mg = mg_find(tsv, PERL_MAGIC_backref);
4703 /* Aha. They've got it stowed in magic. Bring it back. */
4704 av = (AV*)mg->mg_obj;
4705 /* Stop mg_free decreasing the refernce count. */
4707 /* Stop mg_free even calling the destructor, given that
4708 there's no AV to free up. */
4710 sv_unmagic(tsv, PERL_MAGIC_backref);
4714 SvREFCNT_inc_simple_void(av);
4719 const MAGIC *const mg
4720 = SvMAGICAL(tsv) ? mg_find(tsv, PERL_MAGIC_backref) : NULL;
4722 av = (AV*)mg->mg_obj;
4726 sv_magic(tsv, (SV*)av, PERL_MAGIC_backref, NULL, 0);
4727 /* av now has a refcnt of 2, which avoids it getting freed
4728 * before us during global cleanup. The extra ref is removed
4729 * by magic_killbackrefs() when tsv is being freed */
4732 if (AvFILLp(av) >= AvMAX(av)) {
4733 av_extend(av, AvFILLp(av)+1);
4735 AvARRAY(av)[++AvFILLp(av)] = sv; /* av_push() */
4738 /* delete a back-reference to ourselves from the backref magic associated
4739 * with the SV we point to.
4743 S_sv_del_backref(pTHX_ SV *tsv, SV *sv)
4750 if (SvTYPE(tsv) == SVt_PVHV && SvOOK(tsv)) {