4 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
5 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
7 * You may distribute under the terms of either the GNU General Public
8 * License or the Artistic License, as specified in the README file.
13 * 'You see: Mr. Drogo, he married poor Miss Primula Brandybuck. She was
14 * our Mr. Bilbo's first cousin on the mother's side (her mother being the
15 * youngest of the Old Took's daughters); and Mr. Drogo was his second
16 * cousin. So Mr. Frodo is his first *and* second cousin, once removed
17 * either way, as the saying is, if you follow me.' --the Gaffer
19 * [p.23 of _The Lord of the Rings_, I/i: "A Long-Expected Party"]
22 /* This file contains the functions that create, manipulate and optimize
23 * the OP structures that hold a compiled perl program.
25 * Note that during the build of miniperl, a temporary copy of this file
26 * is made, called opmini.c.
28 * A Perl program is compiled into a tree of OP nodes. Each op contains:
29 * * structural OP pointers to its children and siblings (op_sibling,
30 * op_first etc) that define the tree structure;
31 * * execution order OP pointers (op_next, plus sometimes op_other,
32 * op_lastop etc) that define the execution sequence plus variants;
33 * * a pointer to the C "pp" function that would execute the op;
34 * * any data specific to that op.
35 * For example, an OP_CONST op points to the pp_const() function and to an
36 * SV containing the constant value. When pp_const() is executed, its job
37 * is to push that SV onto the stack.
39 * OPs are mainly created by the newFOO() functions, which are mainly
40 * called from the parser (in perly.y) as the code is parsed. For example
41 * the Perl code $a + $b * $c would cause the equivalent of the following
42 * to be called (oversimplifying a bit):
44 * newBINOP(OP_ADD, flags,
46 * newBINOP(OP_MULTIPLY, flags, newSVREF($b), newSVREF($c))
49 * As the parser reduces low-level rules, it creates little op subtrees;
50 * as higher-level rules are resolved, these subtrees get joined together
51 * as branches on a bigger subtree, until eventually a top-level rule like
52 * a subroutine definition is reduced, at which point there is one large
55 * The execution order pointers (op_next) are generated as the subtrees
56 * are joined together. Consider this sub-expression: A*B + C/D: at the
57 * point when it's just been parsed, the op tree looks like:
65 * with the intended execution order being:
67 * [PREV] => A => B => [*] => C => D => [/] => [+] => [NEXT]
69 * At this point all the nodes' op_next pointers will have been set,
71 * * we don't know what the [NEXT] node will be yet;
72 * * we don't know what the [PREV] node will be yet, but when it gets
73 * created and needs its op_next set, it needs to be set to point to
74 * A, which is non-obvious.
75 * To handle both those cases, we temporarily set the top node's
76 * op_next to point to the first node to be executed in this subtree (A in
77 * this case). This means that initially a subtree's op_next chain,
78 * starting from the top node, will visit each node in execution sequence
79 * then point back at the top node.
80 * When we embed this subtree in a larger tree, its top op_next is used
81 * to get the start node, then is set to point to its new neighbour.
82 * For example the two separate [*],A,B and [/],C,D subtrees would
84 * [*] => A; A => B; B => [*]
86 * [/] => C; C => D; D => [/]
87 * When these two subtrees were joined together to make the [+] subtree,
88 * [+]'s op_next was set to [*]'s op_next, i.e. A; then [*]'s op_next was
89 * set to point to [/]'s op_next, i.e. C.
91 * This op_next linking is done by the LINKLIST() macro and its underlying
92 * op_linklist() function. Given a top-level op, if its op_next is
93 * non-null, it's already been linked, so leave it. Otherwise link it with
94 * its children as described above, possibly recursively if any of the
95 * children have a null op_next.
97 * In summary: given a subtree, its top-level node's op_next will either
99 * NULL: the subtree hasn't been LINKLIST()ed yet;
100 * fake: points to the start op for this subtree;
101 * real: once the subtree has been embedded into a larger tree
106 Here's an older description from Larry.
108 Perl's compiler is essentially a 3-pass compiler with interleaved phases:
112 An execution-order pass
114 The bottom-up pass is represented by all the "newOP" routines and
115 the ck_ routines. The bottom-upness is actually driven by yacc.
116 So at the point that a ck_ routine fires, we have no idea what the
117 context is, either upward in the syntax tree, or either forward or
118 backward in the execution order. (The bottom-up parser builds that
119 part of the execution order it knows about, but if you follow the "next"
120 links around, you'll find it's actually a closed loop through the
123 Whenever the bottom-up parser gets to a node that supplies context to
124 its components, it invokes that portion of the top-down pass that applies
125 to that part of the subtree (and marks the top node as processed, so
126 if a node further up supplies context, it doesn't have to take the
127 plunge again). As a particular subcase of this, as the new node is
128 built, it takes all the closed execution loops of its subcomponents
129 and links them into a new closed loop for the higher level node. But
130 it's still not the real execution order.
132 The actual execution order is not known till we get a grammar reduction
133 to a top-level unit like a subroutine or file that will be called by
134 "name" rather than via a "next" pointer. At that point, we can call
135 into peep() to do that code's portion of the 3rd pass. It has to be
136 recursive, but it's recursive on basic blocks, not on tree nodes.
139 /* To implement user lexical pragmas, there needs to be a way at run time to
140 get the compile time state of %^H for that block. Storing %^H in every
141 block (or even COP) would be very expensive, so a different approach is
142 taken. The (running) state of %^H is serialised into a tree of HE-like
143 structs. Stores into %^H are chained onto the current leaf as a struct
144 refcounted_he * with the key and the value. Deletes from %^H are saved
145 with a value of PL_sv_placeholder. The state of %^H at any point can be
146 turned back into a regular HV by walking back up the tree from that point's
147 leaf, ignoring any key you've already seen (placeholder or not), storing
148 the rest into the HV structure, then removing the placeholders. Hence
149 memory is only used to store the %^H deltas from the enclosing COP, rather
150 than the entire %^H on each COP.
152 To cause actions on %^H to write out the serialisation records, it has
153 magic type 'H'. This magic (itself) does nothing, but its presence causes
154 the values to gain magic type 'h', which has entries for set and clear.
155 C<Perl_magic_sethint> updates C<PL_compiling.cop_hints_hash> with a store
156 record, with deletes written by C<Perl_magic_clearhint>. C<SAVEHINTS>
157 saves the current C<PL_compiling.cop_hints_hash> on the save stack, so that
158 it will be correctly restored when any inner compiling scope is exited.
164 #include "keywords.h"
167 #include "invlist_inline.h"
169 #define CALL_PEEP(o) PL_peepp(aTHX_ o)
170 #define CALL_RPEEP(o) PL_rpeepp(aTHX_ o)
171 #define CALL_OPFREEHOOK(o) if (PL_opfreehook) PL_opfreehook(aTHX_ o)
173 static const char array_passed_to_stat[] = "Array passed to stat will be coerced to a scalar";
175 /* remove any leading "empty" ops from the op_next chain whose first
176 * node's address is stored in op_p. Store the updated address of the
177 * first node in op_p.
181 S_prune_chain_head(OP** op_p)
184 && ( (*op_p)->op_type == OP_NULL
185 || (*op_p)->op_type == OP_SCOPE
186 || (*op_p)->op_type == OP_SCALAR
187 || (*op_p)->op_type == OP_LINESEQ)
189 *op_p = (*op_p)->op_next;
193 /* See the explanatory comments above struct opslab in op.h. */
195 #ifdef PERL_DEBUG_READONLY_OPS
196 # define PERL_SLAB_SIZE 128
197 # define PERL_MAX_SLAB_SIZE 4096
198 # include <sys/mman.h>
201 #ifndef PERL_SLAB_SIZE
202 # define PERL_SLAB_SIZE 64
204 #ifndef PERL_MAX_SLAB_SIZE
205 # define PERL_MAX_SLAB_SIZE 2048
208 /* rounds up to nearest pointer */
209 #define SIZE_TO_PSIZE(x) (((x) + sizeof(I32 *) - 1)/sizeof(I32 *))
212 (assert(((char *)(p) - (char *)(o)) % sizeof(I32**) == 0), \
213 ((size_t)((I32 **)(p) - (I32**)(o))))
215 /* requires double parens and aTHX_ */
216 #define DEBUG_S_warn(args) \
218 PerlIO_printf(Perl_debug_log, "%s", SvPVx_nolen(Perl_mess args)) \
221 /* opslot_size includes the size of the slot header, and an op can't be smaller than BASEOP */
222 #define OPSLOT_SIZE_BASE (SIZE_TO_PSIZE(sizeof(OPSLOT)))
224 /* the number of bytes to allocate for a slab with sz * sizeof(I32 **) space for op */
225 #define OpSLABSizeBytes(sz) \
226 ((sz) * sizeof(I32 *) + STRUCT_OFFSET(OPSLAB, opslab_slots))
228 /* malloc a new op slab (suitable for attaching to PL_compcv).
229 * sz is in units of pointers from the beginning of opslab_opslots */
232 S_new_slab(pTHX_ OPSLAB *head, size_t sz)
235 size_t sz_bytes = OpSLABSizeBytes(sz);
237 /* opslot_offset is only U16 */
238 assert(sz < U16_MAX);
239 /* room for at least one op */
240 assert(sz >= OPSLOT_SIZE_BASE);
242 #ifdef PERL_DEBUG_READONLY_OPS
243 slab = (OPSLAB *) mmap(0, sz_bytes,
244 PROT_READ|PROT_WRITE,
245 MAP_ANON|MAP_PRIVATE, -1, 0);
246 DEBUG_m(PerlIO_printf(Perl_debug_log, "mapped %lu at %p\n",
247 (unsigned long) sz, slab));
248 if (slab == MAP_FAILED) {
249 perror("mmap failed");
253 slab = (OPSLAB *)PerlMemShared_malloc(sz_bytes);
254 Zero(slab, sz_bytes, char);
256 slab->opslab_size = (U16)sz;
259 /* The context is unused in non-Windows */
262 slab->opslab_free_space = sz;
263 slab->opslab_head = head ? head : slab;
264 DEBUG_S_warn((aTHX_ "allocated new op slab sz 0x%x, %p, head slab %p",
265 (unsigned int)slab->opslab_size, (void*)slab,
266 (void*)(slab->opslab_head)));
270 #define OPSLOT_SIZE_TO_INDEX(sz) ((sz) - OPSLOT_SIZE_BASE)
272 #define link_freed_op(slab, o) S_link_freed_op(aTHX_ slab, o)
274 S_link_freed_op(pTHX_ OPSLAB *slab, OP *o) {
275 U16 sz = OpSLOT(o)->opslot_size;
276 U16 index = OPSLOT_SIZE_TO_INDEX(sz);
278 assert(sz >= OPSLOT_SIZE_BASE);
279 /* make sure the array is large enough to include ops this large */
280 if (!slab->opslab_freed) {
281 /* we don't have a free list array yet, make a new one */
282 slab->opslab_freed_size = index+1;
283 slab->opslab_freed = (OP**)PerlMemShared_calloc((slab->opslab_freed_size), sizeof(OP*));
285 if (!slab->opslab_freed)
288 else if (index >= slab->opslab_freed_size) {
289 /* It's probably not worth doing exponential expansion here, the number of op sizes
292 /* We already have a list that isn't large enough, expand it */
293 size_t newsize = index+1;
294 OP **p = (OP **)PerlMemShared_realloc(slab->opslab_freed, newsize * sizeof(OP*));
299 Zero(p+slab->opslab_freed_size, newsize - slab->opslab_freed_size, OP *);
301 slab->opslab_freed = p;
302 slab->opslab_freed_size = newsize;
305 o->op_next = slab->opslab_freed[index];
306 slab->opslab_freed[index] = o;
309 /* Returns a sz-sized block of memory (suitable for holding an op) from
310 * a free slot in the chain of op slabs attached to PL_compcv.
311 * Allocates a new slab if necessary.
312 * if PL_compcv isn't compiling, malloc() instead.
316 Perl_Slab_Alloc(pTHX_ size_t sz)
318 OPSLAB *head_slab; /* first slab in the chain */
322 size_t sz_in_p; /* size in pointer units, including the OPSLOT header */
324 /* We only allocate ops from the slab during subroutine compilation.
325 We find the slab via PL_compcv, hence that must be non-NULL. It could
326 also be pointing to a subroutine which is now fully set up (CvROOT()
327 pointing to the top of the optree for that sub), or a subroutine
328 which isn't using the slab allocator. If our sanity checks aren't met,
329 don't use a slab, but allocate the OP directly from the heap. */
330 if (!PL_compcv || CvROOT(PL_compcv)
331 || (CvSTART(PL_compcv) && !CvSLABBED(PL_compcv)))
333 o = (OP*)PerlMemShared_calloc(1, sz);
337 /* While the subroutine is under construction, the slabs are accessed via
338 CvSTART(), to avoid needing to expand PVCV by one pointer for something
339 unneeded at runtime. Once a subroutine is constructed, the slabs are
340 accessed via CvROOT(). So if CvSTART() is NULL, no slab has been
341 allocated yet. See the commit message for 8be227ab5eaa23f2 for more
343 if (!CvSTART(PL_compcv)) {
345 (OP *)(head_slab = S_new_slab(aTHX_ NULL, PERL_SLAB_SIZE));
346 CvSLABBED_on(PL_compcv);
347 head_slab->opslab_refcnt = 2; /* one for the CV; one for the new OP */
349 else ++(head_slab = (OPSLAB *)CvSTART(PL_compcv))->opslab_refcnt;
351 sz_in_p = SIZE_TO_PSIZE(sz + OPSLOT_HEADER);
353 /* The head slab for each CV maintains a free list of OPs. In particular, constant folding
354 will free up OPs, so it makes sense to re-use them where possible. A
355 freed up slot is used in preference to a new allocation. */
356 if (head_slab->opslab_freed &&
357 OPSLOT_SIZE_TO_INDEX(sz_in_p) < head_slab->opslab_freed_size) {
360 /* look for a large enough size with any freed ops */
361 for (base_index = OPSLOT_SIZE_TO_INDEX(sz_in_p);
362 base_index < head_slab->opslab_freed_size && !head_slab->opslab_freed[base_index];
366 if (base_index < head_slab->opslab_freed_size) {
367 /* found a freed op */
368 o = head_slab->opslab_freed[base_index];
370 DEBUG_S_warn((aTHX_ "realloced op at %p, slab %p, head slab %p",
371 (void *)o, (void *)OpMySLAB(o), (void *)head_slab));
372 head_slab->opslab_freed[base_index] = o->op_next;
379 #define INIT_OPSLOT(s) \
380 slot->opslot_offset = DIFF(&slab2->opslab_slots, slot) ; \
381 slot->opslot_size = s; \
382 slab2->opslab_free_space -= s; \
383 o = &slot->opslot_op; \
386 /* The partially-filled slab is next in the chain. */
387 slab2 = head_slab->opslab_next ? head_slab->opslab_next : head_slab;
388 if (slab2->opslab_free_space < sz_in_p) {
389 /* Remaining space is too small. */
390 /* If we can fit a BASEOP, add it to the free chain, so as not
392 if (slab2->opslab_free_space >= OPSLOT_SIZE_BASE) {
393 slot = &slab2->opslab_slots;
394 INIT_OPSLOT(slab2->opslab_free_space);
395 o->op_type = OP_FREED;
396 DEBUG_S_warn((aTHX_ "linked unused op space at %p, slab %p, head slab %p",
397 (void *)o, (void *)slab2, (void *)head_slab));
398 link_freed_op(head_slab, o);
401 /* Create a new slab. Make this one twice as big. */
402 slab2 = S_new_slab(aTHX_ head_slab,
403 slab2->opslab_size > PERL_MAX_SLAB_SIZE / 2
405 : slab2->opslab_size * 2);
406 slab2->opslab_next = head_slab->opslab_next;
407 head_slab->opslab_next = slab2;
409 assert(slab2->opslab_size >= sz_in_p);
411 /* Create a new op slot */
412 slot = OpSLOToff(slab2, slab2->opslab_free_space - sz_in_p);
413 assert(slot >= &slab2->opslab_slots);
414 INIT_OPSLOT(sz_in_p);
415 DEBUG_S_warn((aTHX_ "allocating op at %p, slab %p, head slab %p",
416 (void*)o, (void*)slab2, (void*)head_slab));
419 /* moresib == 0, op_sibling == 0 implies a solitary unattached op */
420 assert(!o->op_moresib);
421 assert(!o->op_sibparent);
428 #ifdef PERL_DEBUG_READONLY_OPS
430 Perl_Slab_to_ro(pTHX_ OPSLAB *slab)
432 PERL_ARGS_ASSERT_SLAB_TO_RO;
434 if (slab->opslab_readonly) return;
435 slab->opslab_readonly = 1;
436 for (; slab; slab = slab->opslab_next) {
437 /*DEBUG_U(PerlIO_printf(Perl_debug_log,"mprotect ->ro %lu at %p\n",
438 (unsigned long) slab->opslab_size, (void *)slab));*/
439 if (mprotect(slab, OpSLABSizeBytes(slab->opslab_size), PROT_READ))
440 Perl_warn(aTHX_ "mprotect for %p %lu failed with %d", (void *)slab,
441 (unsigned long)slab->opslab_size, errno);
446 Perl_Slab_to_rw(pTHX_ OPSLAB *const slab)
450 PERL_ARGS_ASSERT_SLAB_TO_RW;
452 if (!slab->opslab_readonly) return;
454 for (; slab2; slab2 = slab2->opslab_next) {
455 /*DEBUG_U(PerlIO_printf(Perl_debug_log,"mprotect ->rw %lu at %p\n",
456 (unsigned long) size, (void *)slab2));*/
457 if (mprotect((void *)slab2, OpSLABSizeBytes(slab2->opslab_size),
458 PROT_READ|PROT_WRITE)) {
459 Perl_warn(aTHX_ "mprotect RW for %p %lu failed with %d", (void *)slab,
460 (unsigned long)slab2->opslab_size, errno);
463 slab->opslab_readonly = 0;
467 # define Slab_to_rw(op) NOOP
470 /* This cannot possibly be right, but it was copied from the old slab
471 allocator, to which it was originally added, without explanation, in
474 # define PerlMemShared PerlMem
477 /* make freed ops die if they're inadvertently executed */
482 DIE(aTHX_ "panic: freed op 0x%p called\n", PL_op);
487 /* Return the block of memory used by an op to the free list of
488 * the OP slab associated with that op.
492 Perl_Slab_Free(pTHX_ void *op)
494 OP * const o = (OP *)op;
497 PERL_ARGS_ASSERT_SLAB_FREE;
500 o->op_ppaddr = S_pp_freed;
503 if (!o->op_slabbed) {
505 PerlMemShared_free(op);
510 /* If this op is already freed, our refcount will get screwy. */
511 assert(o->op_type != OP_FREED);
512 o->op_type = OP_FREED;
513 link_freed_op(slab, o);
514 DEBUG_S_warn((aTHX_ "freeing op at %p, slab %p, head slab %p",
515 (void*)o, (void *)OpMySLAB(o), (void*)slab));
516 OpslabREFCNT_dec_padok(slab);
520 Perl_opslab_free_nopad(pTHX_ OPSLAB *slab)
522 const bool havepad = !!PL_comppad;
523 PERL_ARGS_ASSERT_OPSLAB_FREE_NOPAD;
526 PAD_SAVE_SETNULLPAD();
532 /* Free a chain of OP slabs. Should only be called after all ops contained
533 * in it have been freed. At this point, its reference count should be 1,
534 * because OpslabREFCNT_dec() skips doing rc-- when it detects that rc == 1,
535 * and just directly calls opslab_free().
536 * (Note that the reference count which PL_compcv held on the slab should
537 * have been removed once compilation of the sub was complete).
543 Perl_opslab_free(pTHX_ OPSLAB *slab)
546 PERL_ARGS_ASSERT_OPSLAB_FREE;
548 DEBUG_S_warn((aTHX_ "freeing slab %p", (void*)slab));
549 assert(slab->opslab_refcnt == 1);
550 PerlMemShared_free(slab->opslab_freed);
552 slab2 = slab->opslab_next;
554 slab->opslab_refcnt = ~(size_t)0;
556 #ifdef PERL_DEBUG_READONLY_OPS
557 DEBUG_m(PerlIO_printf(Perl_debug_log, "Deallocate slab at %p\n",
559 if (munmap(slab, OpSLABSizeBytes(slab->opslab_size))) {
560 perror("munmap failed");
564 PerlMemShared_free(slab);
570 /* like opslab_free(), but first calls op_free() on any ops in the slab
571 * not marked as OP_FREED
575 Perl_opslab_force_free(pTHX_ OPSLAB *slab)
579 size_t savestack_count = 0;
581 PERL_ARGS_ASSERT_OPSLAB_FORCE_FREE;
584 OPSLOT *slot = OpSLOToff(slab2, slab2->opslab_free_space);
585 OPSLOT *end = OpSLOToff(slab2, slab2->opslab_size);
587 slot = (OPSLOT*) ((I32**)slot + slot->opslot_size) )
589 if (slot->opslot_op.op_type != OP_FREED
590 && !(slot->opslot_op.op_savefree
596 assert(slot->opslot_op.op_slabbed);
597 op_free(&slot->opslot_op);
598 if (slab->opslab_refcnt == 1) goto free;
601 } while ((slab2 = slab2->opslab_next));
602 /* > 1 because the CV still holds a reference count. */
603 if (slab->opslab_refcnt > 1) { /* still referenced by the savestack */
605 assert(savestack_count == slab->opslab_refcnt-1);
607 /* Remove the CV’s reference count. */
608 slab->opslab_refcnt--;
615 #ifdef PERL_DEBUG_READONLY_OPS
617 Perl_op_refcnt_inc(pTHX_ OP *o)
620 OPSLAB *const slab = o->op_slabbed ? OpSLAB(o) : NULL;
621 if (slab && slab->opslab_readonly) {
634 Perl_op_refcnt_dec(pTHX_ OP *o)
637 OPSLAB *const slab = o->op_slabbed ? OpSLAB(o) : NULL;
639 PERL_ARGS_ASSERT_OP_REFCNT_DEC;
641 if (slab && slab->opslab_readonly) {
643 result = --o->op_targ;
646 result = --o->op_targ;
652 * In the following definition, the ", (OP*)0" is just to make the compiler
653 * think the expression is of the right type: croak actually does a Siglongjmp.
655 #define CHECKOP(type,o) \
656 ((PL_op_mask && PL_op_mask[type]) \
657 ? ( op_free((OP*)o), \
658 Perl_croak(aTHX_ "'%s' trapped by operation mask", PL_op_desc[type]), \
660 : PL_check[type](aTHX_ (OP*)o))
662 #define RETURN_UNLIMITED_NUMBER (PERL_INT_MAX / 2)
664 #define OpTYPE_set(o,type) \
666 o->op_type = (OPCODE)type; \
667 o->op_ppaddr = PL_ppaddr[type]; \
671 S_no_fh_allowed(pTHX_ OP *o)
673 PERL_ARGS_ASSERT_NO_FH_ALLOWED;
675 yyerror(Perl_form(aTHX_ "Missing comma after first argument to %s function",
681 S_too_few_arguments_pv(pTHX_ OP *o, const char* name, U32 flags)
683 PERL_ARGS_ASSERT_TOO_FEW_ARGUMENTS_PV;
684 yyerror_pv(Perl_form(aTHX_ "Not enough arguments for %s", name), flags);
689 S_too_many_arguments_pv(pTHX_ OP *o, const char *name, U32 flags)
691 PERL_ARGS_ASSERT_TOO_MANY_ARGUMENTS_PV;
693 yyerror_pv(Perl_form(aTHX_ "Too many arguments for %s", name), flags);
698 S_bad_type_pv(pTHX_ I32 n, const char *t, const OP *o, const OP *kid)
700 PERL_ARGS_ASSERT_BAD_TYPE_PV;
702 yyerror_pv(Perl_form(aTHX_ "Type of arg %d to %s must be %s (not %s)",
703 (int)n, PL_op_desc[(o)->op_type], t, OP_DESC(kid)), 0);
707 S_bad_type_gv(pTHX_ I32 n, GV *gv, const OP *kid, const char *t)
709 SV * const namesv = cv_name((CV *)gv, NULL, 0);
710 PERL_ARGS_ASSERT_BAD_TYPE_GV;
712 yyerror_pv(Perl_form(aTHX_ "Type of arg %d to %" SVf " must be %s (not %s)",
713 (int)n, SVfARG(namesv), t, OP_DESC(kid)), SvUTF8(namesv));
717 S_no_bareword_allowed(pTHX_ OP *o)
719 PERL_ARGS_ASSERT_NO_BAREWORD_ALLOWED;
721 qerror(Perl_mess(aTHX_
722 "Bareword \"%" SVf "\" not allowed while \"strict subs\" in use",
724 o->op_private &= ~OPpCONST_STRICT; /* prevent warning twice about the same OP */
727 /* "register" allocation */
730 Perl_allocmy(pTHX_ const char *const name, const STRLEN len, const U32 flags)
733 const bool is_our = (PL_parser->in_my == KEY_our);
735 PERL_ARGS_ASSERT_ALLOCMY;
737 if (flags & ~SVf_UTF8)
738 Perl_croak(aTHX_ "panic: allocmy illegal flag bits 0x%" UVxf,
741 /* complain about "my $<special_var>" etc etc */
745 || ( (flags & SVf_UTF8)
746 && isIDFIRST_utf8_safe((U8 *)name+1, name + len))
747 || (name[1] == '_' && len > 2)))
749 const char * const type =
750 PL_parser->in_my == KEY_sigvar ? "subroutine signature" :
751 PL_parser->in_my == KEY_state ? "\"state\"" : "\"my\"";
753 if (!(flags & SVf_UTF8 && UTF8_IS_START(name[1]))
755 && (!isPRINT(name[1]) || memCHRs("\t\n\r\f", name[1]))) {
756 /* diag_listed_as: Can't use global %s in %s */
757 yyerror(Perl_form(aTHX_ "Can't use global %c^%c%.*s in %s",
758 name[0], toCTRL(name[1]),
759 (int)(len - 2), name + 2,
762 yyerror_pv(Perl_form(aTHX_ "Can't use global %.*s in %s",
764 type), flags & SVf_UTF8);
768 /* allocate a spare slot and store the name in that slot */
770 off = pad_add_name_pvn(name, len,
771 (is_our ? padadd_OUR :
772 PL_parser->in_my == KEY_state ? padadd_STATE : 0),
773 PL_parser->in_my_stash,
775 /* $_ is always in main::, even with our */
776 ? (PL_curstash && !memEQs(name,len,"$_")
782 /* anon sub prototypes contains state vars should always be cloned,
783 * otherwise the state var would be shared between anon subs */
785 if (PL_parser->in_my == KEY_state && CvANON(PL_compcv))
786 CvCLONE_on(PL_compcv);
792 =head1 Optree Manipulation Functions
794 =for apidoc alloccopstash
796 Available only under threaded builds, this function allocates an entry in
797 C<PL_stashpad> for the stash passed to it.
804 Perl_alloccopstash(pTHX_ HV *hv)
806 PADOFFSET off = 0, o = 1;
807 bool found_slot = FALSE;
809 PERL_ARGS_ASSERT_ALLOCCOPSTASH;
811 if (PL_stashpad[PL_stashpadix] == hv) return PL_stashpadix;
813 for (; o < PL_stashpadmax; ++o) {
814 if (PL_stashpad[o] == hv) return PL_stashpadix = o;
815 if (!PL_stashpad[o] || SvTYPE(PL_stashpad[o]) != SVt_PVHV)
816 found_slot = TRUE, off = o;
819 Renew(PL_stashpad, PL_stashpadmax + 10, HV *);
820 Zero(PL_stashpad + PL_stashpadmax, 10, HV *);
821 off = PL_stashpadmax;
822 PL_stashpadmax += 10;
825 PL_stashpad[PL_stashpadix = off] = hv;
830 /* free the body of an op without examining its contents.
831 * Always use this rather than FreeOp directly */
834 S_op_destroy(pTHX_ OP *o)
844 Free an op and its children. Only use this when an op is no longer linked
851 Perl_op_free(pTHX_ OP *o)
856 bool went_up = FALSE; /* whether we reached the current node by
857 following the parent pointer from a child, and
858 so have already seen this node */
860 if (!o || o->op_type == OP_FREED)
863 if (o->op_private & OPpREFCOUNTED) {
864 /* if base of tree is refcounted, just decrement */
865 switch (o->op_type) {
875 refcnt = OpREFCNT_dec(o);
878 /* Need to find and remove any pattern match ops from
879 * the list we maintain for reset(). */
880 find_and_forget_pmops(o);
893 /* free child ops before ourself, (then free ourself "on the
896 if (!went_up && o->op_flags & OPf_KIDS) {
897 next_op = cUNOPo->op_first;
901 /* find the next node to visit, *then* free the current node
902 * (can't rely on o->op_* fields being valid after o has been
905 /* The next node to visit will be either the sibling, or the
906 * parent if no siblings left, or NULL if we've worked our way
907 * back up to the top node in the tree */
908 next_op = (o == top_op) ? NULL : o->op_sibparent;
909 went_up = cBOOL(!OpHAS_SIBLING(o)); /* parents are already visited */
911 /* Now process the current node */
913 /* Though ops may be freed twice, freeing the op after its slab is a
915 assert(!o->op_slabbed || OpSLAB(o)->opslab_refcnt != ~(size_t)0);
916 /* During the forced freeing of ops after compilation failure, kidops
917 may be freed before their parents. */
918 if (!o || o->op_type == OP_FREED)
923 /* an op should only ever acquire op_private flags that we know about.
924 * If this fails, you may need to fix something in regen/op_private.
925 * Don't bother testing if:
926 * * the op_ppaddr doesn't match the op; someone may have
927 * overridden the op and be doing strange things with it;
928 * * we've errored, as op flags are often left in an
929 * inconsistent state then. Note that an error when
930 * compiling the main program leaves PL_parser NULL, so
931 * we can't spot faults in the main code, only
932 * evaled/required code */
934 if ( o->op_ppaddr == PL_ppaddr[type]
936 && !PL_parser->error_count)
938 assert(!(o->op_private & ~PL_op_private_valid[type]));
943 /* Call the op_free hook if it has been set. Do it now so that it's called
944 * at the right time for refcounted ops, but still before all of the kids
949 type = (OPCODE)o->op_targ;
952 Slab_to_rw(OpSLAB(o));
954 /* COP* is not cleared by op_clear() so that we may track line
955 * numbers etc even after null() */
956 if (type == OP_NEXTSTATE || type == OP_DBSTATE) {
968 /* S_op_clear_gv(): free a GV attached to an OP */
972 void S_op_clear_gv(pTHX_ OP *o, PADOFFSET *ixp)
974 void S_op_clear_gv(pTHX_ OP *o, SV**svp)
978 GV *gv = (o->op_type == OP_GV || o->op_type == OP_GVSV
979 || o->op_type == OP_MULTIDEREF)
982 ? ((GV*)PAD_SVl(*ixp)) : NULL;
984 ? (GV*)(*svp) : NULL;
986 /* It's possible during global destruction that the GV is freed
987 before the optree. Whilst the SvREFCNT_inc is happy to bump from
988 0 to 1 on a freed SV, the corresponding SvREFCNT_dec from 1 to 0
989 will trigger an assertion failure, because the entry to sv_clear
990 checks that the scalar is not already freed. A check of for
991 !SvIS_FREED(gv) turns out to be invalid, because during global
992 destruction the reference count can be forced down to zero
993 (with SVf_BREAK set). In which case raising to 1 and then
994 dropping to 0 triggers cleanup before it should happen. I
995 *think* that this might actually be a general, systematic,
996 weakness of the whole idea of SVf_BREAK, in that code *is*
997 allowed to raise and lower references during global destruction,
998 so any *valid* code that happens to do this during global
999 destruction might well trigger premature cleanup. */
1000 bool still_valid = gv && SvREFCNT(gv);
1003 SvREFCNT_inc_simple_void(gv);
1006 pad_swipe(*ixp, TRUE);
1014 int try_downgrade = SvREFCNT(gv) == 2;
1015 SvREFCNT_dec_NN(gv);
1017 gv_try_downgrade(gv);
1023 Perl_op_clear(pTHX_ OP *o)
1027 PERL_ARGS_ASSERT_OP_CLEAR;
1029 switch (o->op_type) {
1030 case OP_NULL: /* Was holding old type, if any. */
1033 case OP_ENTEREVAL: /* Was holding hints. */
1034 case OP_ARGDEFELEM: /* Was holding signature index. */
1038 if (!(o->op_flags & OPf_REF) || !OP_IS_STAT(o->op_type))
1045 S_op_clear_gv(aTHX_ o, &(cPADOPx(o)->op_padix));
1047 S_op_clear_gv(aTHX_ o, &(cSVOPx(o)->op_sv));
1050 case OP_METHOD_REDIR:
1051 case OP_METHOD_REDIR_SUPER:
1053 if (cMETHOPx(o)->op_rclass_targ) {
1054 pad_swipe(cMETHOPx(o)->op_rclass_targ, 1);
1055 cMETHOPx(o)->op_rclass_targ = 0;
1058 SvREFCNT_dec(cMETHOPx(o)->op_rclass_sv);
1059 cMETHOPx(o)->op_rclass_sv = NULL;
1062 case OP_METHOD_NAMED:
1063 case OP_METHOD_SUPER:
1064 SvREFCNT_dec(cMETHOPx(o)->op_u.op_meth_sv);
1065 cMETHOPx(o)->op_u.op_meth_sv = NULL;
1068 pad_swipe(o->op_targ, 1);
1075 SvREFCNT_dec(cSVOPo->op_sv);
1076 cSVOPo->op_sv = NULL;
1079 Even if op_clear does a pad_free for the target of the op,
1080 pad_free doesn't actually remove the sv that exists in the pad;
1081 instead it lives on. This results in that it could be reused as
1082 a target later on when the pad was reallocated.
1085 pad_swipe(o->op_targ,1);
1095 if (o->op_flags & (OPf_SPECIAL|OPf_STACKED|OPf_KIDS))
1100 if ( (o->op_type == OP_TRANS || o->op_type == OP_TRANSR)
1101 && (o->op_private & OPpTRANS_USE_SVOP))
1104 if (cPADOPo->op_padix > 0) {
1105 pad_swipe(cPADOPo->op_padix, TRUE);
1106 cPADOPo->op_padix = 0;
1109 SvREFCNT_dec(cSVOPo->op_sv);
1110 cSVOPo->op_sv = NULL;
1114 PerlMemShared_free(cPVOPo->op_pv);
1115 cPVOPo->op_pv = NULL;
1119 op_free(cPMOPo->op_pmreplrootu.op_pmreplroot);
1123 if ( (o->op_private & OPpSPLIT_ASSIGN) /* @array = split */
1124 && !(o->op_flags & OPf_STACKED)) /* @{expr} = split */
1126 if (o->op_private & OPpSPLIT_LEX)
1127 pad_free(cPMOPo->op_pmreplrootu.op_pmtargetoff);
1130 pad_swipe(cPMOPo->op_pmreplrootu.op_pmtargetoff, TRUE);
1132 SvREFCNT_dec(MUTABLE_SV(cPMOPo->op_pmreplrootu.op_pmtargetgv));
1139 if (!(cPMOPo->op_pmflags & PMf_CODELIST_PRIVATE))
1140 op_free(cPMOPo->op_code_list);
1141 cPMOPo->op_code_list = NULL;
1142 forget_pmop(cPMOPo);
1143 cPMOPo->op_pmreplrootu.op_pmreplroot = NULL;
1144 /* we use the same protection as the "SAFE" version of the PM_ macros
1145 * here since sv_clean_all might release some PMOPs
1146 * after PL_regex_padav has been cleared
1147 * and the clearing of PL_regex_padav needs to
1148 * happen before sv_clean_all
1151 if(PL_regex_pad) { /* We could be in destruction */
1152 const IV offset = (cPMOPo)->op_pmoffset;
1153 ReREFCNT_dec(PM_GETRE(cPMOPo));
1154 PL_regex_pad[offset] = &PL_sv_undef;
1155 sv_catpvn_nomg(PL_regex_pad[0], (const char *)&offset,
1159 ReREFCNT_dec(PM_GETRE(cPMOPo));
1160 PM_SETRE(cPMOPo, NULL);
1166 PerlMemShared_free(cUNOP_AUXo->op_aux);
1169 case OP_MULTICONCAT:
1171 UNOP_AUX_item *aux = cUNOP_AUXo->op_aux;
1172 /* aux[PERL_MULTICONCAT_IX_PLAIN_PV] and/or
1173 * aux[PERL_MULTICONCAT_IX_UTF8_PV] point to plain and/or
1174 * utf8 shared strings */
1175 char *p1 = aux[PERL_MULTICONCAT_IX_PLAIN_PV].pv;
1176 char *p2 = aux[PERL_MULTICONCAT_IX_UTF8_PV].pv;
1178 PerlMemShared_free(p1);
1180 PerlMemShared_free(p2);
1181 PerlMemShared_free(aux);
1187 UNOP_AUX_item *items = cUNOP_AUXo->op_aux;
1188 UV actions = items->uv;
1190 bool is_hash = FALSE;
1193 switch (actions & MDEREF_ACTION_MASK) {
1196 actions = (++items)->uv;
1199 case MDEREF_HV_padhv_helem:
1202 case MDEREF_AV_padav_aelem:
1203 pad_free((++items)->pad_offset);
1206 case MDEREF_HV_gvhv_helem:
1209 case MDEREF_AV_gvav_aelem:
1211 S_op_clear_gv(aTHX_ o, &((++items)->pad_offset));
1213 S_op_clear_gv(aTHX_ o, &((++items)->sv));
1217 case MDEREF_HV_gvsv_vivify_rv2hv_helem:
1220 case MDEREF_AV_gvsv_vivify_rv2av_aelem:
1222 S_op_clear_gv(aTHX_ o, &((++items)->pad_offset));
1224 S_op_clear_gv(aTHX_ o, &((++items)->sv));
1226 goto do_vivify_rv2xv_elem;
1228 case MDEREF_HV_padsv_vivify_rv2hv_helem:
1231 case MDEREF_AV_padsv_vivify_rv2av_aelem:
1232 pad_free((++items)->pad_offset);
1233 goto do_vivify_rv2xv_elem;
1235 case MDEREF_HV_pop_rv2hv_helem:
1236 case MDEREF_HV_vivify_rv2hv_helem:
1239 do_vivify_rv2xv_elem:
1240 case MDEREF_AV_pop_rv2av_aelem:
1241 case MDEREF_AV_vivify_rv2av_aelem:
1243 switch (actions & MDEREF_INDEX_MASK) {
1244 case MDEREF_INDEX_none:
1247 case MDEREF_INDEX_const:
1251 pad_swipe((++items)->pad_offset, 1);
1253 SvREFCNT_dec((++items)->sv);
1259 case MDEREF_INDEX_padsv:
1260 pad_free((++items)->pad_offset);
1262 case MDEREF_INDEX_gvsv:
1264 S_op_clear_gv(aTHX_ o, &((++items)->pad_offset));
1266 S_op_clear_gv(aTHX_ o, &((++items)->sv));
1271 if (actions & MDEREF_FLAG_last)
1284 actions >>= MDEREF_SHIFT;
1287 /* start of malloc is at op_aux[-1], where the length is
1289 PerlMemShared_free(cUNOP_AUXo->op_aux - 1);
1294 if (o->op_targ > 0) {
1295 pad_free(o->op_targ);
1301 S_cop_free(pTHX_ COP* cop)
1303 PERL_ARGS_ASSERT_COP_FREE;
1306 if (! specialWARN(cop->cop_warnings))
1307 PerlMemShared_free(cop->cop_warnings);
1308 cophh_free(CopHINTHASH_get(cop));
1309 if (PL_curcop == cop)
1314 S_forget_pmop(pTHX_ PMOP *const o)
1316 HV * const pmstash = PmopSTASH(o);
1318 PERL_ARGS_ASSERT_FORGET_PMOP;
1320 if (pmstash && !SvIS_FREED(pmstash) && SvMAGICAL(pmstash)) {
1321 MAGIC * const mg = mg_find((const SV *)pmstash, PERL_MAGIC_symtab);
1323 PMOP **const array = (PMOP**) mg->mg_ptr;
1324 U32 count = mg->mg_len / sizeof(PMOP**);
1328 if (array[i] == o) {
1329 /* Found it. Move the entry at the end to overwrite it. */
1330 array[i] = array[--count];
1331 mg->mg_len = count * sizeof(PMOP**);
1332 /* Could realloc smaller at this point always, but probably
1333 not worth it. Probably worth free()ing if we're the
1336 Safefree(mg->mg_ptr);
1350 S_find_and_forget_pmops(pTHX_ OP *o)
1354 PERL_ARGS_ASSERT_FIND_AND_FORGET_PMOPS;
1357 switch (o->op_type) {
1362 forget_pmop((PMOP*)o);
1365 if (o->op_flags & OPf_KIDS) {
1366 o = cUNOPo->op_first;
1372 return; /* at top; no parents/siblings to try */
1373 if (OpHAS_SIBLING(o)) {
1374 o = o->op_sibparent; /* process next sibling */
1377 o = o->op_sibparent; /*try parent's next sibling */
1386 Neutralizes an op when it is no longer needed, but is still linked to from
1393 Perl_op_null(pTHX_ OP *o)
1396 PERL_ARGS_ASSERT_OP_NULL;
1398 if (o->op_type == OP_NULL)
1401 o->op_targ = o->op_type;
1402 OpTYPE_set(o, OP_NULL);
1406 Perl_op_refcnt_lock(pTHX)
1407 PERL_TSA_ACQUIRE(PL_op_mutex)
1411 PERL_UNUSED_CONTEXT;
1416 Perl_op_refcnt_unlock(pTHX)
1417 PERL_TSA_RELEASE(PL_op_mutex)
1421 PERL_UNUSED_CONTEXT;
1427 =for apidoc op_sibling_splice
1429 A general function for editing the structure of an existing chain of
1430 op_sibling nodes. By analogy with the perl-level C<splice()> function, allows
1431 you to delete zero or more sequential nodes, replacing them with zero or
1432 more different nodes. Performs the necessary op_first/op_last
1433 housekeeping on the parent node and op_sibling manipulation on the
1434 children. The last deleted node will be marked as the last node by
1435 updating the op_sibling/op_sibparent or op_moresib field as appropriate.
1437 Note that op_next is not manipulated, and nodes are not freed; that is the
1438 responsibility of the caller. It also won't create a new list op for an
1439 empty list etc; use higher-level functions like op_append_elem() for that.
1441 C<parent> is the parent node of the sibling chain. It may passed as C<NULL> if
1442 the splicing doesn't affect the first or last op in the chain.
1444 C<start> is the node preceding the first node to be spliced. Node(s)
1445 following it will be deleted, and ops will be inserted after it. If it is
1446 C<NULL>, the first node onwards is deleted, and nodes are inserted at the
1449 C<del_count> is the number of nodes to delete. If zero, no nodes are deleted.
1450 If -1 or greater than or equal to the number of remaining kids, all
1451 remaining kids are deleted.
1453 C<insert> is the first of a chain of nodes to be inserted in place of the nodes.
1454 If C<NULL>, no nodes are inserted.
1456 The head of the chain of deleted ops is returned, or C<NULL> if no ops were
1461 action before after returns
1462 ------ ----- ----- -------
1465 splice(P, A, 2, X-Y-Z) | | B-C
1469 splice(P, NULL, 1, X-Y) | | A
1473 splice(P, NULL, 3, NULL) | | A-B-C
1477 splice(P, B, 0, X-Y) | | NULL
1481 For lower-level direct manipulation of C<op_sibparent> and C<op_moresib>,
1482 see C<L</OpMORESIB_set>>, C<L</OpLASTSIB_set>>, C<L</OpMAYBESIB_set>>.
1488 Perl_op_sibling_splice(OP *parent, OP *start, int del_count, OP* insert)
1492 OP *last_del = NULL;
1493 OP *last_ins = NULL;
1496 first = OpSIBLING(start);
1500 first = cLISTOPx(parent)->op_first;
1502 assert(del_count >= -1);
1504 if (del_count && first) {
1506 while (--del_count && OpHAS_SIBLING(last_del))
1507 last_del = OpSIBLING(last_del);
1508 rest = OpSIBLING(last_del);
1509 OpLASTSIB_set(last_del, NULL);
1516 while (OpHAS_SIBLING(last_ins))
1517 last_ins = OpSIBLING(last_ins);
1518 OpMAYBESIB_set(last_ins, rest, NULL);
1524 OpMAYBESIB_set(start, insert, NULL);
1528 cLISTOPx(parent)->op_first = insert;
1530 parent->op_flags |= OPf_KIDS;
1532 parent->op_flags &= ~OPf_KIDS;
1536 /* update op_last etc */
1543 /* ought to use OP_CLASS(parent) here, but that can't handle
1544 * ex-foo OP_NULL ops. Also note that XopENTRYCUSTOM() can't
1546 type = parent->op_type;
1547 if (type == OP_CUSTOM) {
1549 type = XopENTRYCUSTOM(parent, xop_class);
1552 if (type == OP_NULL)
1553 type = parent->op_targ;
1554 type = PL_opargs[type] & OA_CLASS_MASK;
1557 lastop = last_ins ? last_ins : start ? start : NULL;
1558 if ( type == OA_BINOP
1559 || type == OA_LISTOP
1563 cLISTOPx(parent)->op_last = lastop;
1566 OpLASTSIB_set(lastop, parent);
1568 return last_del ? first : NULL;
1571 Perl_croak_nocontext("panic: op_sibling_splice(): NULL parent");
1575 =for apidoc op_parent
1577 Returns the parent OP of C<o>, if it has a parent. Returns C<NULL> otherwise.
1583 Perl_op_parent(OP *o)
1585 PERL_ARGS_ASSERT_OP_PARENT;
1586 while (OpHAS_SIBLING(o))
1588 return o->op_sibparent;
1591 /* replace the sibling following start with a new UNOP, which becomes
1592 * the parent of the original sibling; e.g.
1594 * op_sibling_newUNOP(P, A, unop-args...)
1602 * where U is the new UNOP.
1604 * parent and start args are the same as for op_sibling_splice();
1605 * type and flags args are as newUNOP().
1607 * Returns the new UNOP.
1611 S_op_sibling_newUNOP(pTHX_ OP *parent, OP *start, I32 type, I32 flags)
1615 kid = op_sibling_splice(parent, start, 1, NULL);
1616 newop = newUNOP(type, flags, kid);
1617 op_sibling_splice(parent, start, 0, newop);
1622 /* lowest-level newLOGOP-style function - just allocates and populates
1623 * the struct. Higher-level stuff should be done by S_new_logop() /
1624 * newLOGOP(). This function exists mainly to avoid op_first assignment
1625 * being spread throughout this file.
1629 Perl_alloc_LOGOP(pTHX_ I32 type, OP *first, OP* other)
1633 NewOp(1101, logop, 1, LOGOP);
1634 OpTYPE_set(logop, type);
1635 logop->op_first = first;
1636 logop->op_other = other;
1638 logop->op_flags = OPf_KIDS;
1639 while (kid && OpHAS_SIBLING(kid))
1640 kid = OpSIBLING(kid);
1642 OpLASTSIB_set(kid, (OP*)logop);
1647 /* Contextualizers */
1650 =for apidoc op_contextualize
1652 Applies a syntactic context to an op tree representing an expression.
1653 C<o> is the op tree, and C<context> must be C<G_SCALAR>, C<G_ARRAY>,
1654 or C<G_VOID> to specify the context to apply. The modified op tree
1661 Perl_op_contextualize(pTHX_ OP *o, I32 context)
1663 PERL_ARGS_ASSERT_OP_CONTEXTUALIZE;
1665 case G_SCALAR: return scalar(o);
1666 case G_ARRAY: return list(o);
1667 case G_VOID: return scalarvoid(o);
1669 Perl_croak(aTHX_ "panic: op_contextualize bad context %ld",
1676 =for apidoc op_linklist
1677 This function is the implementation of the L</LINKLIST> macro. It should
1678 not be called directly.
1685 Perl_op_linklist(pTHX_ OP *o)
1692 PERL_ARGS_ASSERT_OP_LINKLIST;
1695 /* Descend down the tree looking for any unprocessed subtrees to
1698 if (o->op_flags & OPf_KIDS) {
1699 o = cUNOPo->op_first;
1702 o->op_next = o; /* leaf node; link to self initially */
1705 /* if we're at the top level, there either weren't any children
1706 * to process, or we've worked our way back to the top. */
1710 /* o is now processed. Next, process any sibling subtrees */
1712 if (OpHAS_SIBLING(o)) {
1717 /* Done all the subtrees at this level. Go back up a level and
1718 * link the parent in with all its (processed) children.
1721 o = o->op_sibparent;
1722 assert(!o->op_next);
1723 prevp = &(o->op_next);
1724 kid = (o->op_flags & OPf_KIDS) ? cUNOPo->op_first : NULL;
1726 *prevp = kid->op_next;
1727 prevp = &(kid->op_next);
1728 kid = OpSIBLING(kid);
1736 S_scalarkids(pTHX_ OP *o)
1738 if (o && o->op_flags & OPf_KIDS) {
1740 for (kid = cLISTOPo->op_first; kid; kid = OpSIBLING(kid))
1747 S_scalarboolean(pTHX_ OP *o)
1749 PERL_ARGS_ASSERT_SCALARBOOLEAN;
1751 if ((o->op_type == OP_SASSIGN && cBINOPo->op_first->op_type == OP_CONST &&
1752 !(cBINOPo->op_first->op_flags & OPf_SPECIAL)) ||
1753 (o->op_type == OP_NOT && cUNOPo->op_first->op_type == OP_SASSIGN &&
1754 cBINOPx(cUNOPo->op_first)->op_first->op_type == OP_CONST &&
1755 !(cBINOPx(cUNOPo->op_first)->op_first->op_flags & OPf_SPECIAL))) {
1756 if (ckWARN(WARN_SYNTAX)) {
1757 const line_t oldline = CopLINE(PL_curcop);
1759 if (PL_parser && PL_parser->copline != NOLINE) {
1760 /* This ensures that warnings are reported at the first line
1761 of the conditional, not the last. */
1762 CopLINE_set(PL_curcop, PL_parser->copline);
1764 Perl_warner(aTHX_ packWARN(WARN_SYNTAX), "Found = in conditional, should be ==");
1765 CopLINE_set(PL_curcop, oldline);
1772 S_op_varname_subscript(pTHX_ const OP *o, int subscript_type)
1775 assert(o->op_type == OP_PADAV || o->op_type == OP_RV2AV ||
1776 o->op_type == OP_PADHV || o->op_type == OP_RV2HV);
1778 const char funny = o->op_type == OP_PADAV
1779 || o->op_type == OP_RV2AV ? '@' : '%';
1780 if (o->op_type == OP_RV2AV || o->op_type == OP_RV2HV) {
1782 if (cUNOPo->op_first->op_type != OP_GV
1783 || !(gv = cGVOPx_gv(cUNOPo->op_first)))
1785 return varname(gv, funny, 0, NULL, 0, subscript_type);
1788 varname(MUTABLE_GV(PL_compcv), funny, o->op_targ, NULL, 0, subscript_type);
1793 S_op_varname(pTHX_ const OP *o)
1795 return S_op_varname_subscript(aTHX_ o, 1);
1799 S_op_pretty(pTHX_ const OP *o, SV **retsv, const char **retpv)
1800 { /* or not so pretty :-) */
1801 if (o->op_type == OP_CONST) {
1803 if (SvPOK(*retsv)) {
1805 *retsv = sv_newmortal();
1806 pv_pretty(*retsv, SvPVX_const(sv), SvCUR(sv), 32, NULL, NULL,
1807 PERL_PV_PRETTY_DUMP |PERL_PV_ESCAPE_UNI_DETECT);
1809 else if (!SvOK(*retsv))
1812 else *retpv = "...";
1816 S_scalar_slice_warning(pTHX_ const OP *o)
1819 const bool h = o->op_type == OP_HSLICE
1820 || (o->op_type == OP_NULL && o->op_targ == OP_HSLICE);
1826 SV *keysv = NULL; /* just to silence compiler warnings */
1827 const char *key = NULL;
1829 if (!(o->op_private & OPpSLICEWARNING))
1831 if (PL_parser && PL_parser->error_count)
1832 /* This warning can be nonsensical when there is a syntax error. */
1835 kid = cLISTOPo->op_first;
1836 kid = OpSIBLING(kid); /* get past pushmark */
1837 /* weed out false positives: any ops that can return lists */
1838 switch (kid->op_type) {
1864 /* Don't warn if we have a nulled list either. */
1865 if (kid->op_type == OP_NULL && kid->op_targ == OP_LIST)
1868 assert(OpSIBLING(kid));
1869 name = S_op_varname(aTHX_ OpSIBLING(kid));
1870 if (!name) /* XS module fiddling with the op tree */
1872 S_op_pretty(aTHX_ kid, &keysv, &key);
1873 assert(SvPOK(name));
1874 sv_chop(name,SvPVX(name)+1);
1876 /* diag_listed_as: Scalar value @%s[%s] better written as $%s[%s] */
1877 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
1878 "Scalar value @%" SVf "%c%s%c better written as $%" SVf
1880 SVfARG(name), lbrack, key, rbrack, SVfARG(name),
1881 lbrack, key, rbrack);
1883 /* diag_listed_as: Scalar value @%s[%s] better written as $%s[%s] */
1884 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
1885 "Scalar value @%" SVf "%c%" SVf "%c better written as $%"
1887 SVfARG(name), lbrack, SVfARG(keysv), rbrack,
1888 SVfARG(name), lbrack, SVfARG(keysv), rbrack);
1893 /* apply scalar context to the o subtree */
1896 Perl_scalar(pTHX_ OP *o)
1901 OP *next_kid = NULL; /* what op (if any) to process next */
1904 /* assumes no premature commitment */
1905 if (!o || (PL_parser && PL_parser->error_count)
1906 || (o->op_flags & OPf_WANT)
1907 || o->op_type == OP_RETURN)
1912 o->op_flags = (o->op_flags & ~OPf_WANT) | OPf_WANT_SCALAR;
1914 switch (o->op_type) {
1916 scalar(cBINOPo->op_first);
1917 /* convert what initially looked like a list repeat into a
1918 * scalar repeat, e.g. $s = (1) x $n
1920 if (o->op_private & OPpREPEAT_DOLIST) {
1921 kid = cLISTOPx(cUNOPo->op_first)->op_first;
1922 assert(kid->op_type == OP_PUSHMARK);
1923 if (OpHAS_SIBLING(kid) && !OpHAS_SIBLING(OpSIBLING(kid))) {
1924 op_null(cLISTOPx(cUNOPo->op_first)->op_first);
1925 o->op_private &=~ OPpREPEAT_DOLIST;
1933 /* impose scalar context on everything except the condition */
1934 next_kid = OpSIBLING(cUNOPo->op_first);
1938 if (o->op_flags & OPf_KIDS)
1939 next_kid = cUNOPo->op_first; /* do all kids */
1942 /* the children of these ops are usually a list of statements,
1943 * except the leaves, whose first child is a corresponding enter
1948 kid = cLISTOPo->op_first;
1952 kid = cLISTOPo->op_first;
1954 kid = OpSIBLING(kid);
1957 OP *sib = OpSIBLING(kid);
1958 /* Apply void context to all kids except the last, which
1959 * is scalar (ignoring a trailing ex-nextstate in determining
1960 * if it's the last kid). E.g.
1961 * $scalar = do { void; void; scalar }
1962 * Except that 'when's are always scalar, e.g.
1963 * $scalar = do { given(..) {
1964 * when (..) { scalar }
1965 * when (..) { scalar }
1970 || ( !OpHAS_SIBLING(sib)
1971 && sib->op_type == OP_NULL
1972 && ( sib->op_targ == OP_NEXTSTATE
1973 || sib->op_targ == OP_DBSTATE )
1977 /* tail call optimise calling scalar() on the last kid */
1981 else if (kid->op_type == OP_LEAVEWHEN)
1987 NOT_REACHED; /* NOTREACHED */
1991 Perl_ck_warner(aTHX_ packWARN(WARN_VOID), "Useless use of sort in scalar context");
1997 /* Warn about scalar context */
1998 const char lbrack = o->op_type == OP_KVHSLICE ? '{' : '[';
1999 const char rbrack = o->op_type == OP_KVHSLICE ? '}' : ']';
2002 const char *key = NULL;
2004 /* This warning can be nonsensical when there is a syntax error. */
2005 if (PL_parser && PL_parser->error_count)
2008 if (!ckWARN(WARN_SYNTAX)) break;
2010 kid = cLISTOPo->op_first;
2011 kid = OpSIBLING(kid); /* get past pushmark */
2012 assert(OpSIBLING(kid));
2013 name = S_op_varname(aTHX_ OpSIBLING(kid));
2014 if (!name) /* XS module fiddling with the op tree */
2016 S_op_pretty(aTHX_ kid, &keysv, &key);
2017 assert(SvPOK(name));
2018 sv_chop(name,SvPVX(name)+1);
2020 /* diag_listed_as: %%s[%s] in scalar context better written as $%s[%s] */
2021 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
2022 "%%%" SVf "%c%s%c in scalar context better written "
2023 "as $%" SVf "%c%s%c",
2024 SVfARG(name), lbrack, key, rbrack, SVfARG(name),
2025 lbrack, key, rbrack);
2027 /* diag_listed_as: %%s[%s] in scalar context better written as $%s[%s] */
2028 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
2029 "%%%" SVf "%c%" SVf "%c in scalar context better "
2030 "written as $%" SVf "%c%" SVf "%c",
2031 SVfARG(name), lbrack, SVfARG(keysv), rbrack,
2032 SVfARG(name), lbrack, SVfARG(keysv), rbrack);
2036 /* If next_kid is set, someone in the code above wanted us to process
2037 * that kid and all its remaining siblings. Otherwise, work our way
2038 * back up the tree */
2042 return top_op; /* at top; no parents/siblings to try */
2043 if (OpHAS_SIBLING(o))
2044 next_kid = o->op_sibparent;
2046 o = o->op_sibparent; /*try parent's next sibling */
2047 switch (o->op_type) {
2053 /* should really restore PL_curcop to its old value, but
2054 * setting it to PL_compiling is better than do nothing */
2055 PL_curcop = &PL_compiling;
2064 /* apply void context to the optree arg */
2067 Perl_scalarvoid(pTHX_ OP *arg)
2073 PERL_ARGS_ASSERT_SCALARVOID;
2077 SV *useless_sv = NULL;
2078 const char* useless = NULL;
2079 OP * next_kid = NULL;
2081 if (o->op_type == OP_NEXTSTATE
2082 || o->op_type == OP_DBSTATE
2083 || (o->op_type == OP_NULL && (o->op_targ == OP_NEXTSTATE
2084 || o->op_targ == OP_DBSTATE)))
2085 PL_curcop = (COP*)o; /* for warning below */
2087 /* assumes no premature commitment */
2088 want = o->op_flags & OPf_WANT;
2089 if ((want && want != OPf_WANT_SCALAR)
2090 || (PL_parser && PL_parser->error_count)
2091 || o->op_type == OP_RETURN || o->op_type == OP_REQUIRE || o->op_type == OP_LEAVEWHEN)
2096 if ((o->op_private & OPpTARGET_MY)
2097 && (PL_opargs[o->op_type] & OA_TARGLEX))/* OPp share the meaning */
2099 /* newASSIGNOP has already applied scalar context, which we
2100 leave, as if this op is inside SASSIGN. */
2104 o->op_flags = (o->op_flags & ~OPf_WANT) | OPf_WANT_VOID;
2106 switch (o->op_type) {
2108 if (!(PL_opargs[o->op_type] & OA_FOLDCONST))
2112 if (o->op_flags & OPf_STACKED)
2114 if (o->op_type == OP_REPEAT)
2115 scalar(cBINOPo->op_first);
2118 if ((o->op_flags & OPf_STACKED) &&
2119 !(o->op_private & OPpCONCAT_NESTED))
2123 if (o->op_private == 4)
2158 case OP_GETSOCKNAME:
2159 case OP_GETPEERNAME:
2164 case OP_GETPRIORITY:
2189 useless = OP_DESC(o);
2199 case OP_AELEMFAST_LEX:
2203 if (!(o->op_private & (OPpLVAL_INTRO|OPpOUR_INTRO)))
2204 /* Otherwise it's "Useless use of grep iterator" */
2205 useless = OP_DESC(o);
2209 if (!(o->op_private & OPpSPLIT_ASSIGN))
2210 useless = OP_DESC(o);
2214 kid = cUNOPo->op_first;
2215 if (kid->op_type != OP_MATCH && kid->op_type != OP_SUBST &&
2216 kid->op_type != OP_TRANS && kid->op_type != OP_TRANSR) {
2219 useless = "negative pattern binding (!~)";
2223 if (cPMOPo->op_pmflags & PMf_NONDESTRUCT)
2224 useless = "non-destructive substitution (s///r)";
2228 useless = "non-destructive transliteration (tr///r)";
2235 if (!(o->op_private & (OPpLVAL_INTRO|OPpOUR_INTRO)) &&
2236 (!OpHAS_SIBLING(o) || OpSIBLING(o)->op_type != OP_READLINE))
2237 useless = "a variable";
2242 if (cSVOPo->op_private & OPpCONST_STRICT)
2243 no_bareword_allowed(o);
2245 if (ckWARN(WARN_VOID)) {
2247 /* don't warn on optimised away booleans, eg
2248 * use constant Foo, 5; Foo || print; */
2249 if (cSVOPo->op_private & OPpCONST_SHORTCIRCUIT)
2251 /* the constants 0 and 1 are permitted as they are
2252 conventionally used as dummies in constructs like
2253 1 while some_condition_with_side_effects; */
2254 else if (SvNIOK(sv) && ((nv = SvNV(sv)) == 0.0 || nv == 1.0))
2256 else if (SvPOK(sv)) {
2257 SV * const dsv = newSVpvs("");
2259 = Perl_newSVpvf(aTHX_
2261 pv_pretty(dsv, SvPVX_const(sv),
2262 SvCUR(sv), 32, NULL, NULL,
2264 | PERL_PV_ESCAPE_NOCLEAR
2265 | PERL_PV_ESCAPE_UNI_DETECT));
2266 SvREFCNT_dec_NN(dsv);
2268 else if (SvOK(sv)) {
2269 useless_sv = Perl_newSVpvf(aTHX_ "a constant (%" SVf ")", SVfARG(sv));
2272 useless = "a constant (undef)";
2275 op_null(o); /* don't execute or even remember it */
2279 OpTYPE_set(o, OP_PREINC); /* pre-increment is faster */
2283 OpTYPE_set(o, OP_PREDEC); /* pre-decrement is faster */
2287 OpTYPE_set(o, OP_I_PREINC); /* pre-increment is faster */
2291 OpTYPE_set(o, OP_I_PREDEC); /* pre-decrement is faster */
2296 UNOP *refgen, *rv2cv;
2299 if ((o->op_private & ~OPpASSIGN_BACKWARDS) != 2)
2302 rv2gv = ((BINOP *)o)->op_last;
2303 if (!rv2gv || rv2gv->op_type != OP_RV2GV)
2306 refgen = (UNOP *)((BINOP *)o)->op_first;
2308 if (!refgen || (refgen->op_type != OP_REFGEN
2309 && refgen->op_type != OP_SREFGEN))
2312 exlist = (LISTOP *)refgen->op_first;
2313 if (!exlist || exlist->op_type != OP_NULL
2314 || exlist->op_targ != OP_LIST)
2317 if (exlist->op_first->op_type != OP_PUSHMARK
2318 && exlist->op_first != exlist->op_last)
2321 rv2cv = (UNOP*)exlist->op_last;
2323 if (rv2cv->op_type != OP_RV2CV)
2326 assert ((rv2gv->op_private & OPpDONT_INIT_GV) == 0);
2327 assert ((o->op_private & OPpASSIGN_CV_TO_GV) == 0);
2328 assert ((rv2cv->op_private & OPpMAY_RETURN_CONSTANT) == 0);
2330 o->op_private |= OPpASSIGN_CV_TO_GV;
2331 rv2gv->op_private |= OPpDONT_INIT_GV;
2332 rv2cv->op_private |= OPpMAY_RETURN_CONSTANT;
2344 kid = cLOGOPo->op_first;
2345 if (kid->op_type == OP_NOT
2346 && (kid->op_flags & OPf_KIDS)) {
2347 if (o->op_type == OP_AND) {
2348 OpTYPE_set(o, OP_OR);
2350 OpTYPE_set(o, OP_AND);
2360 next_kid = OpSIBLING(cUNOPo->op_first);
2364 if (o->op_flags & OPf_STACKED)
2371 if (!(o->op_flags & OPf_KIDS))
2382 next_kid = cLISTOPo->op_first;
2385 /* If the first kid after pushmark is something that the padrange
2386 optimisation would reject, then null the list and the pushmark.
2388 if ((kid = cLISTOPo->op_first)->op_type == OP_PUSHMARK
2389 && ( !(kid = OpSIBLING(kid))
2390 || ( kid->op_type != OP_PADSV
2391 && kid->op_type != OP_PADAV
2392 && kid->op_type != OP_PADHV)
2393 || kid->op_private & ~OPpLVAL_INTRO
2394 || !(kid = OpSIBLING(kid))
2395 || ( kid->op_type != OP_PADSV
2396 && kid->op_type != OP_PADAV
2397 && kid->op_type != OP_PADHV)
2398 || kid->op_private & ~OPpLVAL_INTRO)
2400 op_null(cUNOPo->op_first); /* NULL the pushmark */
2401 op_null(o); /* NULL the list */
2413 /* mortalise it, in case warnings are fatal. */
2414 Perl_ck_warner(aTHX_ packWARN(WARN_VOID),
2415 "Useless use of %" SVf " in void context",
2416 SVfARG(sv_2mortal(useless_sv)));
2419 Perl_ck_warner(aTHX_ packWARN(WARN_VOID),
2420 "Useless use of %s in void context",
2425 /* if a kid hasn't been nominated to process, continue with the
2426 * next sibling, or if no siblings left, go back to the parent's
2427 * siblings and so on
2431 return arg; /* at top; no parents/siblings to try */
2432 if (OpHAS_SIBLING(o))
2433 next_kid = o->op_sibparent;
2435 o = o->op_sibparent; /*try parent's next sibling */
2445 S_listkids(pTHX_ OP *o)
2447 if (o && o->op_flags & OPf_KIDS) {
2449 for (kid = cLISTOPo->op_first; kid; kid = OpSIBLING(kid))
2456 /* apply list context to the o subtree */
2459 Perl_list(pTHX_ OP *o)
2464 OP *next_kid = NULL; /* what op (if any) to process next */
2468 /* assumes no premature commitment */
2469 if (!o || (o->op_flags & OPf_WANT)
2470 || (PL_parser && PL_parser->error_count)
2471 || o->op_type == OP_RETURN)
2476 if ((o->op_private & OPpTARGET_MY)
2477 && (PL_opargs[o->op_type] & OA_TARGLEX))/* OPp share the meaning */
2479 goto do_next; /* As if inside SASSIGN */
2482 o->op_flags = (o->op_flags & ~OPf_WANT) | OPf_WANT_LIST;
2484 switch (o->op_type) {
2486 if (o->op_private & OPpREPEAT_DOLIST
2487 && !(o->op_flags & OPf_STACKED))
2489 list(cBINOPo->op_first);
2490 kid = cBINOPo->op_last;
2491 /* optimise away (.....) x 1 */
2492 if (kid->op_type == OP_CONST && SvIOK(kSVOP_sv)
2493 && SvIVX(kSVOP_sv) == 1)
2495 op_null(o); /* repeat */
2496 op_null(cUNOPx(cBINOPo->op_first)->op_first);/* pushmark */
2498 op_free(op_sibling_splice(o, cBINOPo->op_first, 1, NULL));
2506 /* impose list context on everything except the condition */
2507 next_kid = OpSIBLING(cUNOPo->op_first);
2511 if (!(o->op_flags & OPf_KIDS))
2513 /* possibly flatten 1..10 into a constant array */
2514 if (!o->op_next && cUNOPo->op_first->op_type == OP_FLOP) {
2515 list(cBINOPo->op_first);
2516 gen_constant_list(o);
2519 next_kid = cUNOPo->op_first; /* do all kids */
2523 if (cLISTOPo->op_first->op_type == OP_PUSHMARK) {
2524 op_null(cUNOPo->op_first); /* NULL the pushmark */
2525 op_null(o); /* NULL the list */
2527 if (o->op_flags & OPf_KIDS)
2528 next_kid = cUNOPo->op_first; /* do all kids */
2531 /* the children of these ops are usually a list of statements,
2532 * except the leaves, whose first child is a corresponding enter
2536 kid = cLISTOPo->op_first;
2540 kid = cLISTOPo->op_first;
2542 kid = OpSIBLING(kid);
2545 OP *sib = OpSIBLING(kid);
2546 /* Apply void context to all kids except the last, which
2548 * @a = do { void; void; list }
2549 * Except that 'when's are always list context, e.g.
2550 * @a = do { given(..) {
2551 * when (..) { list }
2552 * when (..) { list }
2557 /* tail call optimise calling list() on the last kid */
2561 else if (kid->op_type == OP_LEAVEWHEN)
2567 NOT_REACHED; /* NOTREACHED */
2572 /* If next_kid is set, someone in the code above wanted us to process
2573 * that kid and all its remaining siblings. Otherwise, work our way
2574 * back up the tree */
2578 return top_op; /* at top; no parents/siblings to try */
2579 if (OpHAS_SIBLING(o))
2580 next_kid = o->op_sibparent;
2582 o = o->op_sibparent; /*try parent's next sibling */
2583 switch (o->op_type) {
2589 /* should really restore PL_curcop to its old value, but
2590 * setting it to PL_compiling is better than do nothing */
2591 PL_curcop = &PL_compiling;
2603 S_scalarseq(pTHX_ OP *o)
2606 const OPCODE type = o->op_type;
2608 if (type == OP_LINESEQ || type == OP_SCOPE ||
2609 type == OP_LEAVE || type == OP_LEAVETRY)
2612 for (kid = cLISTOPo->op_first; kid; kid = sib) {
2613 if ((sib = OpSIBLING(kid))
2614 && ( OpHAS_SIBLING(sib) || sib->op_type != OP_NULL
2615 || ( sib->op_targ != OP_NEXTSTATE
2616 && sib->op_targ != OP_DBSTATE )))
2621 PL_curcop = &PL_compiling;
2623 o->op_flags &= ~OPf_PARENS;
2624 if (PL_hints & HINT_BLOCK_SCOPE)
2625 o->op_flags |= OPf_PARENS;
2628 o = newOP(OP_STUB, 0);
2633 S_modkids(pTHX_ OP *o, I32 type)
2635 if (o && o->op_flags & OPf_KIDS) {
2637 for (kid = cLISTOPo->op_first; kid; kid = OpSIBLING(kid))
2638 op_lvalue(kid, type);
2644 /* for a helem/hslice/kvslice, if its a fixed hash, croak on invalid
2645 * const fields. Also, convert CONST keys to HEK-in-SVs.
2646 * rop is the op that retrieves the hash;
2647 * key_op is the first key
2648 * real if false, only check (and possibly croak); don't update op
2652 S_check_hash_fields_and_hekify(pTHX_ UNOP *rop, SVOP *key_op, int real)
2658 /* find the padsv corresponding to $lex->{} or @{$lex}{} */
2660 if (rop->op_first->op_type == OP_PADSV)
2661 /* @$hash{qw(keys here)} */
2662 rop = (UNOP*)rop->op_first;
2664 /* @{$hash}{qw(keys here)} */
2665 if (rop->op_first->op_type == OP_SCOPE
2666 && cLISTOPx(rop->op_first)->op_last->op_type == OP_PADSV)
2668 rop = (UNOP*)cLISTOPx(rop->op_first)->op_last;
2675 lexname = NULL; /* just to silence compiler warnings */
2676 fields = NULL; /* just to silence compiler warnings */
2680 && (lexname = padnamelist_fetch(PL_comppad_name, rop->op_targ),
2681 SvPAD_TYPED(lexname))
2682 && (fields = (GV**)hv_fetchs(PadnameTYPE(lexname), "FIELDS", FALSE))
2683 && isGV(*fields) && GvHV(*fields);
2685 for (; key_op; key_op = (SVOP*)OpSIBLING(key_op)) {
2687 if (key_op->op_type != OP_CONST)
2689 svp = cSVOPx_svp(key_op);
2691 /* make sure it's not a bareword under strict subs */
2692 if (key_op->op_private & OPpCONST_BARE &&
2693 key_op->op_private & OPpCONST_STRICT)
2695 no_bareword_allowed((OP*)key_op);
2698 /* Make the CONST have a shared SV */
2699 if ( !SvIsCOW_shared_hash(sv = *svp)
2700 && SvTYPE(sv) < SVt_PVMG
2706 const char * const key = SvPV_const(sv, *(STRLEN*)&keylen);
2707 SV *nsv = newSVpvn_share(key, SvUTF8(sv) ? -keylen : keylen, 0);
2708 SvREFCNT_dec_NN(sv);
2713 && !hv_fetch_ent(GvHV(*fields), *svp, FALSE, 0))
2715 Perl_croak(aTHX_ "No such class field \"%" SVf "\" "
2716 "in variable %" PNf " of type %" HEKf,
2717 SVfARG(*svp), PNfARG(lexname),
2718 HEKfARG(HvNAME_HEK(PadnameTYPE(lexname))));
2723 /* info returned by S_sprintf_is_multiconcatable() */
2725 struct sprintf_ismc_info {
2726 SSize_t nargs; /* num of args to sprintf (not including the format) */
2727 char *start; /* start of raw format string */
2728 char *end; /* bytes after end of raw format string */
2729 STRLEN total_len; /* total length (in bytes) of format string, not
2730 including '%s' and half of '%%' */
2731 STRLEN variant; /* number of bytes by which total_len_p would grow
2732 if upgraded to utf8 */
2733 bool utf8; /* whether the format is utf8 */
2737 /* is the OP_SPRINTF o suitable for converting into a multiconcat op?
2738 * i.e. its format argument is a const string with only '%s' and '%%'
2739 * formats, and the number of args is known, e.g.
2740 * sprintf "a=%s f=%s", $a[0], scalar(f());
2742 * sprintf "i=%d a=%s f=%s", $i, @a, f();
2744 * If successful, the sprintf_ismc_info struct pointed to by info will be
2749 S_sprintf_is_multiconcatable(pTHX_ OP *o,struct sprintf_ismc_info *info)
2751 OP *pm, *constop, *kid;
2754 SSize_t nargs, nformats;
2755 STRLEN cur, total_len, variant;
2758 /* if sprintf's behaviour changes, die here so that someone
2759 * can decide whether to enhance this function or skip optimising
2760 * under those new circumstances */
2761 assert(!(o->op_flags & OPf_STACKED));
2762 assert(!(PL_opargs[OP_SPRINTF] & OA_TARGLEX));
2763 assert(!(o->op_private & ~OPpARG4_MASK));
2765 pm = cUNOPo->op_first;
2766 if (pm->op_type != OP_PUSHMARK) /* weird coreargs stuff */
2768 constop = OpSIBLING(pm);
2769 if (!constop || constop->op_type != OP_CONST)
2771 sv = cSVOPx_sv(constop);
2772 if (SvMAGICAL(sv) || !SvPOK(sv))
2778 /* Scan format for %% and %s and work out how many %s there are.
2779 * Abandon if other format types are found.
2786 for (p = s; p < e; p++) {
2789 if (!UTF8_IS_INVARIANT(*p))
2795 return FALSE; /* lone % at end gives "Invalid conversion" */
2804 if (!nformats || nformats > PERL_MULTICONCAT_MAXARG)
2807 utf8 = cBOOL(SvUTF8(sv));
2811 /* scan args; they must all be in scalar cxt */
2814 kid = OpSIBLING(constop);
2817 if ((kid->op_flags & OPf_WANT) != OPf_WANT_SCALAR)
2820 kid = OpSIBLING(kid);
2823 if (nargs != nformats)
2824 return FALSE; /* e.g. sprintf("%s%s", $a); */
2827 info->nargs = nargs;
2830 info->total_len = total_len;
2831 info->variant = variant;
2839 /* S_maybe_multiconcat():
2841 * given an OP_STRINGIFY, OP_SASSIGN, OP_CONCAT or OP_SPRINTF op, possibly
2842 * convert it (and its children) into an OP_MULTICONCAT. See the code
2843 * comments just before pp_multiconcat() for the full details of what
2844 * OP_MULTICONCAT supports.
2846 * Basically we're looking for an optree with a chain of OP_CONCATS down
2847 * the LHS (or an OP_SPRINTF), with possibly an OP_SASSIGN, and/or
2848 * OP_STRINGIFY, and/or OP_CONCAT acting as '.=' at its head, e.g.
2856 * STRINGIFY -- PADSV[$x]
2859 * ex-PUSHMARK -- CONCAT/S
2861 * CONCAT/S -- PADSV[$d]
2863 * CONCAT -- CONST["-"]
2865 * PADSV[$a] -- PADSV[$b]
2867 * Note that at this stage the OP_SASSIGN may have already been optimised
2868 * away with OPpTARGET_MY set on the OP_STRINGIFY or OP_CONCAT.
2872 S_maybe_multiconcat(pTHX_ OP *o)
2874 OP *lastkidop; /* the right-most of any kids unshifted onto o */
2875 OP *topop; /* the top-most op in the concat tree (often equals o,
2876 unless there are assign/stringify ops above it */
2877 OP *parentop; /* the parent op of topop (or itself if no parent) */
2878 OP *targmyop; /* the op (if any) with the OPpTARGET_MY flag */
2879 OP *targetop; /* the op corresponding to target=... or target.=... */
2880 OP *stringop; /* the OP_STRINGIFY op, if any */
2881 OP *nextop; /* used for recreating the op_next chain without consts */
2882 OP *kid; /* general-purpose op pointer */
2884 UNOP_AUX_item *lenp;
2885 char *const_str, *p;
2886 struct sprintf_ismc_info sprintf_info;
2888 /* store info about each arg in args[];
2889 * toparg is the highest used slot; argp is a general
2890 * pointer to args[] slots */
2892 void *p; /* initially points to const sv (or null for op);
2893 later, set to SvPV(constsv), with ... */
2894 STRLEN len; /* ... len set to SvPV(..., len) */
2895 } *argp, *toparg, args[PERL_MULTICONCAT_MAXARG*2 + 1];
2899 SSize_t nadjconst = 0; /* adjacent consts - may be demoted to args */
2902 bool kid_is_last = FALSE; /* most args will be the RHS kid of a concat op;
2903 the last-processed arg will the LHS of one,
2904 as args are processed in reverse order */
2905 U8 stacked_last = 0; /* whether the last seen concat op was STACKED */
2906 STRLEN total_len = 0; /* sum of the lengths of the const segments */
2907 U8 flags = 0; /* what will become the op_flags and ... */
2908 U8 private_flags = 0; /* ... op_private of the multiconcat op */
2909 bool is_sprintf = FALSE; /* we're optimising an sprintf */
2910 bool is_targable = FALSE; /* targetop is an OPpTARGET_MY candidate */
2911 bool prev_was_const = FALSE; /* previous arg was a const */
2913 /* -----------------------------------------------------------------
2916 * Examine the optree non-destructively to determine whether it's
2917 * suitable to be converted into an OP_MULTICONCAT. Accumulate
2918 * information about the optree in args[].
2928 assert( o->op_type == OP_SASSIGN
2929 || o->op_type == OP_CONCAT
2930 || o->op_type == OP_SPRINTF
2931 || o->op_type == OP_STRINGIFY);
2933 Zero(&sprintf_info, 1, struct sprintf_ismc_info);
2935 /* first see if, at the top of the tree, there is an assign,
2936 * append and/or stringify */
2938 if (topop->op_type == OP_SASSIGN) {
2940 if (o->op_ppaddr != PL_ppaddr[OP_SASSIGN])
2942 if (o->op_private & (OPpASSIGN_BACKWARDS|OPpASSIGN_CV_TO_GV))
2944 assert(!(o->op_private & ~OPpARG2_MASK)); /* barf on unknown flags */
2947 topop = cBINOPo->op_first;
2948 targetop = OpSIBLING(topop);
2949 if (!targetop) /* probably some sort of syntax error */
2952 /* don't optimise away assign in 'local $foo = ....' */
2953 if ( (targetop->op_private & OPpLVAL_INTRO)
2954 /* these are the common ops which do 'local', but
2956 && ( targetop->op_type == OP_GVSV
2957 || targetop->op_type == OP_RV2SV
2958 || targetop->op_type == OP_AELEM
2959 || targetop->op_type == OP_HELEM
2964 else if ( topop->op_type == OP_CONCAT
2965 && (topop->op_flags & OPf_STACKED)
2966 && (!(topop->op_private & OPpCONCAT_NESTED))
2971 /* OPpTARGET_MY shouldn't be able to be set here. If it is,
2972 * decide what to do about it */
2973 assert(!(o->op_private & OPpTARGET_MY));
2975 /* barf on unknown flags */
2976 assert(!(o->op_private & ~(OPpARG2_MASK|OPpTARGET_MY)));
2977 private_flags |= OPpMULTICONCAT_APPEND;
2978 targetop = cBINOPo->op_first;
2980 topop = OpSIBLING(targetop);
2982 /* $x .= <FOO> gets optimised to rcatline instead */
2983 if (topop->op_type == OP_READLINE)
2988 /* Can targetop (the LHS) if it's a padsv, be optimised
2989 * away and use OPpTARGET_MY instead?
2991 if ( (targetop->op_type == OP_PADSV)
2992 && !(targetop->op_private & OPpDEREF)
2993 && !(targetop->op_private & OPpPAD_STATE)
2994 /* we don't support 'my $x .= ...' */
2995 && ( o->op_type == OP_SASSIGN
2996 || !(targetop->op_private & OPpLVAL_INTRO))
3001 if (topop->op_type == OP_STRINGIFY) {
3002 if (topop->op_ppaddr != PL_ppaddr[OP_STRINGIFY])
3006 /* barf on unknown flags */
3007 assert(!(o->op_private & ~(OPpARG4_MASK|OPpTARGET_MY)));
3009 if ((topop->op_private & OPpTARGET_MY)) {
3010 if (o->op_type == OP_SASSIGN)
3011 return; /* can't have two assigns */
3015 private_flags |= OPpMULTICONCAT_STRINGIFY;
3017 topop = cBINOPx(topop)->op_first;
3018 assert(OP_TYPE_IS_OR_WAS_NN(topop, OP_PUSHMARK));
3019 topop = OpSIBLING(topop);
3022 if (topop->op_type == OP_SPRINTF) {
3023 if (topop->op_ppaddr != PL_ppaddr[OP_SPRINTF])
3025 if (S_sprintf_is_multiconcatable(aTHX_ topop, &sprintf_info)) {
3026 nargs = sprintf_info.nargs;
3027 total_len = sprintf_info.total_len;
3028 variant = sprintf_info.variant;
3029 utf8 = sprintf_info.utf8;
3031 private_flags |= OPpMULTICONCAT_FAKE;
3033 /* we have an sprintf op rather than a concat optree.
3034 * Skip most of the code below which is associated with
3035 * processing that optree. We also skip phase 2, determining
3036 * whether its cost effective to optimise, since for sprintf,
3037 * multiconcat is *always* faster */
3040 /* note that even if the sprintf itself isn't multiconcatable,
3041 * the expression as a whole may be, e.g. in
3042 * $x .= sprintf("%d",...)
3043 * the sprintf op will be left as-is, but the concat/S op may
3044 * be upgraded to multiconcat
3047 else if (topop->op_type == OP_CONCAT) {
3048 if (topop->op_ppaddr != PL_ppaddr[OP_CONCAT])
3051 if ((topop->op_private & OPpTARGET_MY)) {
3052 if (o->op_type == OP_SASSIGN || targmyop)
3053 return; /* can't have two assigns */
3058 /* Is it safe to convert a sassign/stringify/concat op into
3060 assert((PL_opargs[OP_SASSIGN] & OA_CLASS_MASK) == OA_BINOP);
3061 assert((PL_opargs[OP_CONCAT] & OA_CLASS_MASK) == OA_BINOP);
3062 assert((PL_opargs[OP_STRINGIFY] & OA_CLASS_MASK) == OA_LISTOP);
3063 assert((PL_opargs[OP_SPRINTF] & OA_CLASS_MASK) == OA_LISTOP);
3064 STATIC_ASSERT_STMT( STRUCT_OFFSET(BINOP, op_last)
3065 == STRUCT_OFFSET(UNOP_AUX, op_aux));
3066 STATIC_ASSERT_STMT( STRUCT_OFFSET(LISTOP, op_last)
3067 == STRUCT_OFFSET(UNOP_AUX, op_aux));
3069 /* Now scan the down the tree looking for a series of
3070 * CONCAT/OPf_STACKED ops on the LHS (with the last one not
3071 * stacked). For example this tree:
3076 * CONCAT/STACKED -- EXPR5
3078 * CONCAT/STACKED -- EXPR4
3084 * corresponds to an expression like
3086 * (EXPR1 . EXPR2 . EXPR3 . EXPR4 . EXPR5)
3088 * Record info about each EXPR in args[]: in particular, whether it is
3089 * a stringifiable OP_CONST and if so what the const sv is.
3091 * The reason why the last concat can't be STACKED is the difference
3094 * ((($a .= $a) .= $a) .= $a) .= $a
3097 * $a . $a . $a . $a . $a
3099 * The main difference between the optrees for those two constructs
3100 * is the presence of the last STACKED. As well as modifying $a,
3101 * the former sees the changed $a between each concat, so if $s is
3102 * initially 'a', the first returns 'a' x 16, while the latter returns
3103 * 'a' x 5. And pp_multiconcat can't handle that kind of thing.
3113 if ( kid->op_type == OP_CONCAT
3117 k1 = cUNOPx(kid)->op_first;
3119 /* shouldn't happen except maybe after compile err? */
3123 /* avoid turning (A . B . ($lex = C) ...) into (A . B . C ...) */
3124 if (kid->op_private & OPpTARGET_MY)
3127 stacked_last = (kid->op_flags & OPf_STACKED);
3139 if ( nargs + nadjconst > PERL_MULTICONCAT_MAXARG - 2
3140 || (argp - args + 1) > (PERL_MULTICONCAT_MAXARG*2 + 1) - 2)
3142 /* At least two spare slots are needed to decompose both
3143 * concat args. If there are no slots left, continue to
3144 * examine the rest of the optree, but don't push new values
3145 * on args[]. If the optree as a whole is legal for conversion
3146 * (in particular that the last concat isn't STACKED), then
3147 * the first PERL_MULTICONCAT_MAXARG elements of the optree
3148 * can be converted into an OP_MULTICONCAT now, with the first
3149 * child of that op being the remainder of the optree -
3150 * which may itself later be converted to a multiconcat op
3154 /* the last arg is the rest of the optree */
3159 else if ( argop->op_type == OP_CONST
3160 && ((sv = cSVOPx_sv(argop)))
3161 /* defer stringification until runtime of 'constant'
3162 * things that might stringify variantly, e.g. the radix
3163 * point of NVs, or overloaded RVs */
3164 && (SvPOK(sv) || SvIOK(sv))
3165 && (!SvGMAGICAL(sv))
3167 if (argop->op_private & OPpCONST_STRICT)
3168 no_bareword_allowed(argop);
3170 utf8 |= cBOOL(SvUTF8(sv));
3173 /* this const may be demoted back to a plain arg later;
3174 * make sure we have enough arg slots left */
3176 prev_was_const = !prev_was_const;
3181 prev_was_const = FALSE;
3191 return; /* we don't support ((A.=B).=C)...) */
3193 /* look for two adjacent consts and don't fold them together:
3196 * $o->concat("a")->concat("b")
3199 * (but $o .= "a" . "b" should still fold)
3202 bool seen_nonconst = FALSE;
3203 for (argp = toparg; argp >= args; argp--) {
3204 if (argp->p == NULL) {
3205 seen_nonconst = TRUE;
3211 /* both previous and current arg were constants;
3212 * leave the current OP_CONST as-is */
3220 /* -----------------------------------------------------------------
3223 * At this point we have determined that the optree *can* be converted
3224 * into a multiconcat. Having gathered all the evidence, we now decide
3225 * whether it *should*.
3229 /* we need at least one concat action, e.g.:
3235 * otherwise we could be doing something like $x = "foo", which
3236 * if treated as a concat, would fail to COW.
3238 if (nargs + nconst + cBOOL(private_flags & OPpMULTICONCAT_APPEND) < 2)
3241 /* Benchmarking seems to indicate that we gain if:
3242 * * we optimise at least two actions into a single multiconcat
3243 * (e.g concat+concat, sassign+concat);
3244 * * or if we can eliminate at least 1 OP_CONST;
3245 * * or if we can eliminate a padsv via OPpTARGET_MY
3249 /* eliminated at least one OP_CONST */
3251 /* eliminated an OP_SASSIGN */
3252 || o->op_type == OP_SASSIGN
3253 /* eliminated an OP_PADSV */
3254 || (!targmyop && is_targable)
3256 /* definitely a net gain to optimise */
3259 /* ... if not, what else? */
3261 /* special-case '$lex1 = expr . $lex1' (where expr isn't lex1):
3262 * multiconcat is faster (due to not creating a temporary copy of
3263 * $lex1), whereas for a general $lex1 = $lex2 . $lex3, concat is
3269 && topop->op_type == OP_CONCAT
3271 PADOFFSET t = targmyop->op_targ;
3272 OP *k1 = cBINOPx(topop)->op_first;
3273 OP *k2 = cBINOPx(topop)->op_last;
3274 if ( k2->op_type == OP_PADSV
3276 && ( k1->op_type != OP_PADSV
3277 || k1->op_targ != t)
3282 /* need at least two concats */
3283 if (nargs + nconst + cBOOL(private_flags & OPpMULTICONCAT_APPEND) < 3)
3288 /* -----------------------------------------------------------------
3291 * At this point the optree has been verified as ok to be optimised
3292 * into an OP_MULTICONCAT. Now start changing things.
3297 /* stringify all const args and determine utf8ness */
3300 for (argp = args; argp <= toparg; argp++) {
3301 SV *sv = (SV*)argp->p;
3303 continue; /* not a const op */
3304 if (utf8 && !SvUTF8(sv))
3305 sv_utf8_upgrade_nomg(sv);
3306 argp->p = SvPV_nomg(sv, argp->len);
3307 total_len += argp->len;
3309 /* see if any strings would grow if converted to utf8 */
3311 variant += variant_under_utf8_count((U8 *) argp->p,
3312 (U8 *) argp->p + argp->len);
3316 /* create and populate aux struct */
3320 aux = (UNOP_AUX_item*)PerlMemShared_malloc(
3321 sizeof(UNOP_AUX_item)
3323 PERL_MULTICONCAT_HEADER_SIZE
3324 + ((nargs + 1) * (variant ? 2 : 1))
3327 const_str = (char *)PerlMemShared_malloc(total_len ? total_len : 1);
3329 /* Extract all the non-const expressions from the concat tree then
3330 * dispose of the old tree, e.g. convert the tree from this:
3334 * STRINGIFY -- TARGET
3336 * ex-PUSHMARK -- CONCAT
3351 * ex-PUSHMARK -- EXPR1 -- EXPR2 -- EXPR3 -- EXPR4 -- EXPR5 -- TARGET
3353 * except that if EXPRi is an OP_CONST, it's discarded.
3355 * During the conversion process, EXPR ops are stripped from the tree
3356 * and unshifted onto o. Finally, any of o's remaining original
3357 * childen are discarded and o is converted into an OP_MULTICONCAT.
3359 * In this middle of this, o may contain both: unshifted args on the
3360 * left, and some remaining original args on the right. lastkidop
3361 * is set to point to the right-most unshifted arg to delineate
3362 * between the two sets.
3367 /* create a copy of the format with the %'s removed, and record
3368 * the sizes of the const string segments in the aux struct */
3370 lenp = aux + PERL_MULTICONCAT_IX_LENGTHS;
3372 p = sprintf_info.start;
3375 for (; p < sprintf_info.end; p++) {
3379 (lenp++)->ssize = q - oldq;
3386 lenp->ssize = q - oldq;
3387 assert((STRLEN)(q - const_str) == total_len);
3389 /* Attach all the args (i.e. the kids of the sprintf) to o (which
3390 * may or may not be topop) The pushmark and const ops need to be
3391 * kept in case they're an op_next entry point.
3393 lastkidop = cLISTOPx(topop)->op_last;
3394 kid = cUNOPx(topop)->op_first; /* pushmark */
3396 op_null(OpSIBLING(kid)); /* const */
3398 kid = op_sibling_splice(topop, NULL, -1, NULL); /* cut all args */
3399 op_sibling_splice(o, NULL, 0, kid); /* and attach to o */
3400 lastkidop->op_next = o;
3405 lenp = aux + PERL_MULTICONCAT_IX_LENGTHS;
3409 /* Concatenate all const strings into const_str.
3410 * Note that args[] contains the RHS args in reverse order, so
3411 * we scan args[] from top to bottom to get constant strings
3414 for (argp = toparg; argp >= args; argp--) {
3416 /* not a const op */
3417 (++lenp)->ssize = -1;
3419 STRLEN l = argp->len;
3420 Copy(argp->p, p, l, char);
3422 if (lenp->ssize == -1)
3433 for (argp = args; argp <= toparg; argp++) {
3434 /* only keep non-const args, except keep the first-in-next-chain
3435 * arg no matter what it is (but nulled if OP_CONST), because it
3436 * may be the entry point to this subtree from the previous
3439 bool last = (argp == toparg);
3442 /* set prev to the sibling *before* the arg to be cut out,
3443 * e.g. when cutting EXPR:
3448 * prev= CONCAT -- EXPR
3451 if (argp == args && kid->op_type != OP_CONCAT) {
3452 /* in e.g. '$x .= f(1)' there's no RHS concat tree
3453 * so the expression to be cut isn't kid->op_last but
3456 /* find the op before kid */
3458 o2 = cUNOPx(parentop)->op_first;
3459 while (o2 && o2 != kid) {
3467 else if (kid == o && lastkidop)
3468 prev = last ? lastkidop : OpSIBLING(lastkidop);
3470 prev = last ? NULL : cUNOPx(kid)->op_first;
3472 if (!argp->p || last) {
3474 OP *aop = op_sibling_splice(kid, prev, 1, NULL);
3475 /* and unshift to front of o */
3476 op_sibling_splice(o, NULL, 0, aop);
3477 /* record the right-most op added to o: later we will
3478 * free anything to the right of it */
3481 aop->op_next = nextop;
3484 /* null the const at start of op_next chain */
3488 nextop = prev->op_next;
3491 /* the last two arguments are both attached to the same concat op */
3492 if (argp < toparg - 1)
3497 /* Populate the aux struct */
3499 aux[PERL_MULTICONCAT_IX_NARGS].ssize = nargs;
3500 aux[PERL_MULTICONCAT_IX_PLAIN_PV].pv = utf8 ? NULL : const_str;
3501 aux[PERL_MULTICONCAT_IX_PLAIN_LEN].ssize = utf8 ? 0 : total_len;
3502 aux[PERL_MULTICONCAT_IX_UTF8_PV].pv = const_str;
3503 aux[PERL_MULTICONCAT_IX_UTF8_LEN].ssize = total_len;
3505 /* if variant > 0, calculate a variant const string and lengths where
3506 * the utf8 version of the string will take 'variant' more bytes than
3510 char *p = const_str;
3511 STRLEN ulen = total_len + variant;
3512 UNOP_AUX_item *lens = aux + PERL_MULTICONCAT_IX_LENGTHS;
3513 UNOP_AUX_item *ulens = lens + (nargs + 1);
3514 char *up = (char*)PerlMemShared_malloc(ulen);
3517 aux[PERL_MULTICONCAT_IX_UTF8_PV].pv = up;
3518 aux[PERL_MULTICONCAT_IX_UTF8_LEN].ssize = ulen;
3520 for (n = 0; n < (nargs + 1); n++) {
3522 char * orig_up = up;
3523 for (i = (lens++)->ssize; i > 0; i--) {
3525 append_utf8_from_native_byte(c, (U8**)&up);
3527 (ulens++)->ssize = (i < 0) ? i : up - orig_up;
3532 /* if there was a top(ish)-level OP_STRINGIFY, we need to keep
3533 * that op's first child - an ex-PUSHMARK - because the op_next of
3534 * the previous op may point to it (i.e. it's the entry point for
3539 ? op_sibling_splice(o, lastkidop, 1, NULL)
3540 : op_sibling_splice(stringop, NULL, 1, NULL);
3541 assert(OP_TYPE_IS_OR_WAS_NN(pmop, OP_PUSHMARK));
3542 op_sibling_splice(o, NULL, 0, pmop);
3549 * target .= A.B.C...
3555 if (o->op_type == OP_SASSIGN) {
3556 /* Move the target subtree from being the last of o's children
3557 * to being the last of o's preserved children.
3558 * Note the difference between 'target = ...' and 'target .= ...':
3559 * for the former, target is executed last; for the latter,
3562 kid = OpSIBLING(lastkidop);
3563 op_sibling_splice(o, kid, 1, NULL); /* cut target op */
3564 op_sibling_splice(o, lastkidop, 0, targetop); /* and paste */
3565 lastkidop->op_next = kid->op_next;
3566 lastkidop = targetop;
3569 /* Move the target subtree from being the first of o's
3570 * original children to being the first of *all* o's children.
3573 op_sibling_splice(o, lastkidop, 1, NULL); /* cut target op */
3574 op_sibling_splice(o, NULL, 0, targetop); /* and paste*/
3577 /* if the RHS of .= doesn't contain a concat (e.g.
3578 * $x .= "foo"), it gets missed by the "strip ops from the
3579 * tree and add to o" loop earlier */
3580 assert(topop->op_type != OP_CONCAT);
3582 /* in e.g. $x .= "$y", move the $y expression
3583 * from being a child of OP_STRINGIFY to being the
3584 * second child of the OP_CONCAT
3586 assert(cUNOPx(stringop)->op_first == topop);
3587 op_sibling_splice(stringop, NULL, 1, NULL);
3588 op_sibling_splice(o, cUNOPo->op_first, 0, topop);
3590 assert(topop == OpSIBLING(cBINOPo->op_first));
3599 * my $lex = A.B.C...
3602 * The original padsv op is kept but nulled in case it's the
3603 * entry point for the optree (which it will be for
3606 private_flags |= OPpTARGET_MY;
3607 private_flags |= (targetop->op_private & OPpLVAL_INTRO);
3608 o->op_targ = targetop->op_targ;
3609 targetop->op_targ = 0;
3613 flags |= OPf_STACKED;
3615 else if (targmyop) {
3616 private_flags |= OPpTARGET_MY;
3617 if (o != targmyop) {
3618 o->op_targ = targmyop->op_targ;
3619 targmyop->op_targ = 0;
3623 /* detach the emaciated husk of the sprintf/concat optree and free it */
3625 kid = op_sibling_splice(o, lastkidop, 1, NULL);
3631 /* and convert o into a multiconcat */
3633 o->op_flags = (flags|OPf_KIDS|stacked_last
3634 |(o->op_flags & (OPf_WANT|OPf_PARENS)));
3635 o->op_private = private_flags;
3636 o->op_type = OP_MULTICONCAT;
3637 o->op_ppaddr = PL_ppaddr[OP_MULTICONCAT];
3638 cUNOP_AUXo->op_aux = aux;
3642 /* do all the final processing on an optree (e.g. running the peephole
3643 * optimiser on it), then attach it to cv (if cv is non-null)
3647 S_process_optree(pTHX_ CV *cv, OP *optree, OP* start)
3651 /* XXX for some reason, evals, require and main optrees are
3652 * never attached to their CV; instead they just hang off
3653 * PL_main_root + PL_main_start or PL_eval_root + PL_eval_start
3654 * and get manually freed when appropriate */
3656 startp = &CvSTART(cv);
3658 startp = PL_in_eval? &PL_eval_start : &PL_main_start;
3661 optree->op_private |= OPpREFCOUNTED;
3662 OpREFCNT_set(optree, 1);
3663 optimize_optree(optree);
3665 finalize_optree(optree);
3666 S_prune_chain_head(startp);
3669 /* now that optimizer has done its work, adjust pad values */
3670 pad_tidy(optree->op_type == OP_LEAVEWRITE ? padtidy_FORMAT
3671 : CvCLONE(cv) ? padtidy_SUBCLONE : padtidy_SUB);
3677 =for apidoc optimize_optree
3679 This function applies some optimisations to the optree in top-down order.
3680 It is called before the peephole optimizer, which processes ops in
3681 execution order. Note that finalize_optree() also does a top-down scan,
3682 but is called *after* the peephole optimizer.
3688 Perl_optimize_optree(pTHX_ OP* o)
3690 PERL_ARGS_ASSERT_OPTIMIZE_OPTREE;
3693 SAVEVPTR(PL_curcop);
3701 /* helper for optimize_optree() which optimises one op then recurses
3702 * to optimise any children.
3706 S_optimize_op(pTHX_ OP* o)
3710 PERL_ARGS_ASSERT_OPTIMIZE_OP;
3713 OP * next_kid = NULL;
3715 assert(o->op_type != OP_FREED);
3717 switch (o->op_type) {
3720 PL_curcop = ((COP*)o); /* for warnings */
3728 S_maybe_multiconcat(aTHX_ o);
3732 if (cPMOPo->op_pmreplrootu.op_pmreplroot) {
3733 /* we can't assume that op_pmreplroot->op_sibparent == o
3734 * and that it is thus possible to walk back up the tree
3735 * past op_pmreplroot. So, although we try to avoid
3736 * recursing through op trees, do it here. After all,
3737 * there are unlikely to be many nested s///e's within
3738 * the replacement part of a s///e.
3740 optimize_op(cPMOPo->op_pmreplrootu.op_pmreplroot);
3748 if (o->op_flags & OPf_KIDS)
3749 next_kid = cUNOPo->op_first;
3751 /* if a kid hasn't been nominated to process, continue with the
3752 * next sibling, or if no siblings left, go back to the parent's
3753 * siblings and so on
3757 return; /* at top; no parents/siblings to try */
3758 if (OpHAS_SIBLING(o))
3759 next_kid = o->op_sibparent;
3761 o = o->op_sibparent; /*try parent's next sibling */
3764 /* this label not yet used. Goto here if any code above sets
3774 =for apidoc finalize_optree
3776 This function finalizes the optree. Should be called directly after
3777 the complete optree is built. It does some additional
3778 checking which can't be done in the normal C<ck_>xxx functions and makes
3779 the tree thread-safe.
3784 Perl_finalize_optree(pTHX_ OP* o)
3786 PERL_ARGS_ASSERT_FINALIZE_OPTREE;
3789 SAVEVPTR(PL_curcop);
3797 /* Relocate sv to the pad for thread safety.
3798 * Despite being a "constant", the SV is written to,
3799 * for reference counts, sv_upgrade() etc. */
3800 PERL_STATIC_INLINE void
3801 S_op_relocate_sv(pTHX_ SV** svp, PADOFFSET* targp)
3804 PERL_ARGS_ASSERT_OP_RELOCATE_SV;
3806 ix = pad_alloc(OP_CONST, SVf_READONLY);
3807 SvREFCNT_dec(PAD_SVl(ix));
3808 PAD_SETSV(ix, *svp);
3809 /* XXX I don't know how this isn't readonly already. */
3810 if (!SvIsCOW(PAD_SVl(ix))) SvREADONLY_on(PAD_SVl(ix));
3817 =for apidoc traverse_op_tree
3819 Return the next op in a depth-first traversal of the op tree,
3820 returning NULL when the traversal is complete.
3822 The initial call must supply the root of the tree as both top and o.
3824 For now it's static, but it may be exposed to the API in the future.
3830 S_traverse_op_tree(pTHX_ OP *top, OP *o) {
3833 PERL_ARGS_ASSERT_TRAVERSE_OP_TREE;
3835 if ((o->op_flags & OPf_KIDS) && cUNOPo->op_first) {
3836 return cUNOPo->op_first;
3838 else if ((sib = OpSIBLING(o))) {
3842 OP *parent = o->op_sibparent;
3843 assert(!(o->op_moresib));
3844 while (parent && parent != top) {
3845 OP *sib = OpSIBLING(parent);
3848 parent = parent->op_sibparent;
3856 S_finalize_op(pTHX_ OP* o)
3859 PERL_ARGS_ASSERT_FINALIZE_OP;
3862 assert(o->op_type != OP_FREED);
3864 switch (o->op_type) {
3867 PL_curcop = ((COP*)o); /* for warnings */
3870 if (OpHAS_SIBLING(o)) {
3871 OP *sib = OpSIBLING(o);
3872 if (( sib->op_type == OP_NEXTSTATE || sib->op_type == OP_DBSTATE)
3873 && ckWARN(WARN_EXEC)
3874 && OpHAS_SIBLING(sib))
3876 const OPCODE type = OpSIBLING(sib)->op_type;
3877 if (type != OP_EXIT && type != OP_WARN && type != OP_DIE) {
3878 const line_t oldline = CopLINE(PL_curcop);
3879 CopLINE_set(PL_curcop, CopLINE((COP*)sib));
3880 Perl_warner(aTHX_ packWARN(WARN_EXEC),
3881 "Statement unlikely to be reached");
3882 Perl_warner(aTHX_ packWARN(WARN_EXEC),
3883 "\t(Maybe you meant system() when you said exec()?)\n");
3884 CopLINE_set(PL_curcop, oldline);
3891 if ((o->op_private & OPpEARLY_CV) && ckWARN(WARN_PROTOTYPE)) {
3892 GV * const gv = cGVOPo_gv;
3893 if (SvTYPE(gv) == SVt_PVGV && GvCV(gv) && SvPVX_const(GvCV(gv))) {
3894 /* XXX could check prototype here instead of just carping */
3895 SV * const sv = sv_newmortal();
3896 gv_efullname3(sv, gv, NULL);
3897 Perl_warner(aTHX_ packWARN(WARN_PROTOTYPE),
3898 "%" SVf "() called too early to check prototype",
3905 if (cSVOPo->op_private & OPpCONST_STRICT)
3906 no_bareword_allowed(o);
3910 op_relocate_sv(&cSVOPo->op_sv, &o->op_targ);
3915 /* Relocate all the METHOP's SVs to the pad for thread safety. */
3916 case OP_METHOD_NAMED:
3917 case OP_METHOD_SUPER:
3918 case OP_METHOD_REDIR:
3919 case OP_METHOD_REDIR_SUPER:
3920 op_relocate_sv(&cMETHOPx(o)->op_u.op_meth_sv, &o->op_targ);
3929 if ((key_op = cSVOPx(((BINOP*)o)->op_last))->op_type != OP_CONST)
3932 rop = (UNOP*)((BINOP*)o)->op_first;
3937 S_scalar_slice_warning(aTHX_ o);
3941 kid = OpSIBLING(cLISTOPo->op_first);
3942 if (/* I bet there's always a pushmark... */
3943 OP_TYPE_ISNT_AND_WASNT_NN(kid, OP_LIST)
3944 && OP_TYPE_ISNT_NN(kid, OP_CONST))
3949 key_op = (SVOP*)(kid->op_type == OP_CONST
3951 : OpSIBLING(kLISTOP->op_first));
3953 rop = (UNOP*)((LISTOP*)o)->op_last;
3956 if (o->op_private & OPpLVAL_INTRO || rop->op_type != OP_RV2HV)
3958 S_check_hash_fields_and_hekify(aTHX_ rop, key_op, 1);
3962 if (o->op_targ != OP_HSLICE && o->op_targ != OP_ASLICE)
3966 S_scalar_slice_warning(aTHX_ o);
3970 if (cPMOPo->op_pmreplrootu.op_pmreplroot)
3971 finalize_op(cPMOPo->op_pmreplrootu.op_pmreplroot);
3979 if (o->op_flags & OPf_KIDS) {
3982 /* check that op_last points to the last sibling, and that
3983 * the last op_sibling/op_sibparent field points back to the
3984 * parent, and that the only ops with KIDS are those which are
3985 * entitled to them */
3986 U32 type = o->op_type;
3990 if (type == OP_NULL) {
3992 /* ck_glob creates a null UNOP with ex-type GLOB
3993 * (which is a list op. So pretend it wasn't a listop */
3994 if (type == OP_GLOB)
3997 family = PL_opargs[type] & OA_CLASS_MASK;
3999 has_last = ( family == OA_BINOP
4000 || family == OA_LISTOP
4001 || family == OA_PMOP
4002 || family == OA_LOOP
4004 assert( has_last /* has op_first and op_last, or ...
4005 ... has (or may have) op_first: */
4006 || family == OA_UNOP
4007 || family == OA_UNOP_AUX
4008 || family == OA_LOGOP
4009 || family == OA_BASEOP_OR_UNOP
4010 || family == OA_FILESTATOP
4011 || family == OA_LOOPEXOP
4012 || family == OA_METHOP
4013 || type == OP_CUSTOM
4014 || type == OP_NULL /* new_logop does this */
4017 for (kid = cUNOPo->op_first; kid; kid = OpSIBLING(kid)) {
4018 if (!OpHAS_SIBLING(kid)) {
4020 assert(kid == cLISTOPo->op_last);
4021 assert(kid->op_sibparent == o);
4026 } while (( o = traverse_op_tree(top, o)) != NULL);
4030 S_mark_padname_lvalue(pTHX_ PADNAME *pn)
4033 PadnameLVALUE_on(pn);
4034 while (PadnameOUTER(pn) && PARENT_PAD_INDEX(pn)) {
4036 /* RT #127786: cv can be NULL due to an eval within the DB package
4037 * called from an anon sub - anon subs don't have CvOUTSIDE() set
4038 * unless they contain an eval, but calling eval within DB
4039 * pretends the eval was done in the caller's scope.
4043 assert(CvPADLIST(cv));
4045 PadlistNAMESARRAY(CvPADLIST(cv))[PARENT_PAD_INDEX(pn)];
4046 assert(PadnameLEN(pn));
4047 PadnameLVALUE_on(pn);
4052 S_vivifies(const OPCODE type)
4055 case OP_RV2AV: case OP_ASLICE:
4056 case OP_RV2HV: case OP_KVASLICE:
4057 case OP_RV2SV: case OP_HSLICE:
4058 case OP_AELEMFAST: case OP_KVHSLICE:
4067 /* apply lvalue reference (aliasing) context to the optree o.
4070 * o would be the list ($x,$y) and type would be OP_AASSIGN.
4071 * It may descend and apply this to children too, for example in
4072 * \( $cond ? $x, $y) = (...)
4076 S_lvref(pTHX_ OP *o, I32 type)
4082 switch (o->op_type) {
4084 o = OpSIBLING(cUNOPo->op_first);
4091 if (cUNOPo->op_first->op_type != OP_GV) goto badref;
4092 o->op_flags |= OPf_STACKED;
4093 if (o->op_flags & OPf_PARENS) {
4094 if (o->op_private & OPpLVAL_INTRO) {
4095 yyerror(Perl_form(aTHX_ "Can't modify reference to "
4096 "localized parenthesized array in list assignment"));
4100 OpTYPE_set(o, OP_LVAVREF);
4101 o->op_private &= OPpLVAL_INTRO|OPpPAD_STATE;
4102 o->op_flags |= OPf_MOD|OPf_REF;
4105 o->op_private |= OPpLVREF_AV;
4109 kid = cUNOPo->op_first;
4110 if (kid->op_type == OP_NULL)
4111 kid = cUNOPx(OpSIBLING(kUNOP->op_first))
4113 o->op_private = OPpLVREF_CV;
4114 if (kid->op_type == OP_GV)
4115 o->op_flags |= OPf_STACKED;
4116 else if (kid->op_type == OP_PADCV) {
4117 o->op_targ = kid->op_targ;
4119 op_free(cUNOPo->op_first);
4120 cUNOPo->op_first = NULL;
4121 o->op_flags &=~ OPf_KIDS;
4127 if (o->op_flags & OPf_PARENS) {
4129 yyerror(Perl_form(aTHX_ "Can't modify reference to "
4130 "parenthesized hash in list assignment"));
4133 o->op_private |= OPpLVREF_HV;
4137 if (cUNOPo->op_first->op_type != OP_GV) goto badref;
4138 o->op_flags |= OPf_STACKED;
4142 if (o->op_flags & OPf_PARENS) goto parenhash;
4143 o->op_private |= OPpLVREF_HV;
4146 PAD_COMPNAME_GEN_set(o->op_targ, PERL_INT_MAX);
4150 PAD_COMPNAME_GEN_set(o->op_targ, PERL_INT_MAX);
4151 if (o->op_flags & OPf_PARENS) goto slurpy;
4152 o->op_private |= OPpLVREF_AV;
4157 o->op_private |= OPpLVREF_ELEM;
4158 o->op_flags |= OPf_STACKED;
4163 OpTYPE_set(o, OP_LVREFSLICE);
4164 o->op_private &= OPpLVAL_INTRO;
4168 if (o->op_flags & OPf_SPECIAL) /* do BLOCK */
4170 else if (!(o->op_flags & OPf_KIDS))
4173 /* the code formerly only recursed into the first child of
4174 * a non ex-list OP_NULL. if we ever encounter such a null op with
4175 * more than one child, need to decide whether its ok to process
4176 * *all* its kids or not */
4177 assert(o->op_targ == OP_LIST
4178 || !(OpHAS_SIBLING(cBINOPo->op_first)));
4181 o = cLISTOPo->op_first;
4185 if (o->op_flags & OPf_PARENS)
4190 /* diag_listed_as: Can't modify reference to %s in %s assignment */
4191 yyerror(Perl_form(aTHX_ "Can't modify reference to %s in %s",
4192 o->op_type == OP_NULL && o->op_flags & OPf_SPECIAL
4199 OpTYPE_set(o, OP_LVREF);
4201 OPpLVAL_INTRO|OPpLVREF_ELEM|OPpLVREF_TYPE|OPpPAD_STATE;
4202 if (type == OP_ENTERLOOP)
4203 o->op_private |= OPpLVREF_ITER;
4208 return; /* at top; no parents/siblings to try */
4209 if (OpHAS_SIBLING(o)) {
4210 o = o->op_sibparent;
4213 o = o->op_sibparent; /*try parent's next sibling */
4219 PERL_STATIC_INLINE bool
4220 S_potential_mod_type(I32 type)
4222 /* Types that only potentially result in modification. */
4223 return type == OP_GREPSTART || type == OP_ENTERSUB
4224 || type == OP_REFGEN || type == OP_LEAVESUBLV;
4229 =for apidoc op_lvalue
4231 Propagate lvalue ("modifiable") context to an op and its children.
4232 C<type> represents the context type, roughly based on the type of op that
4233 would do the modifying, although C<local()> is represented by C<OP_NULL>,
4234 because it has no op type of its own (it is signalled by a flag on
4237 This function detects things that can't be modified, such as C<$x+1>, and
4238 generates errors for them. For example, C<$x+1 = 2> would cause it to be
4239 called with an op of type C<OP_ADD> and a C<type> argument of C<OP_SASSIGN>.
4241 It also flags things that need to behave specially in an lvalue context,
4242 such as C<$$x = 5> which might have to vivify a reference in C<$x>.
4246 Perl_op_lvalue_flags() is a non-API lower-level interface to
4247 op_lvalue(). The flags param has these bits:
4248 OP_LVALUE_NO_CROAK: return rather than croaking on error
4253 Perl_op_lvalue_flags(pTHX_ OP *o, I32 type, U32 flags)
4257 if (!o || (PL_parser && PL_parser->error_count))
4262 /* -1 = error on localize, 0 = ignore localize, 1 = ok to localize */
4264 OP *next_kid = NULL;
4266 if ((o->op_private & OPpTARGET_MY)
4267 && (PL_opargs[o->op_type] & OA_TARGLEX))/* OPp share the meaning */
4272 /* elements of a list might be in void context because the list is
4273 in scalar context or because they are attribute sub calls */
4274 if ((o->op_flags & OPf_WANT) == OPf_WANT_VOID)
4277 if (type == OP_PRTF || type == OP_SPRINTF) type = OP_ENTERSUB;
4279 switch (o->op_type) {
4285 if ((o->op_flags & OPf_PARENS))
4290 if ((type == OP_UNDEF || type == OP_REFGEN || type == OP_LOCK) &&
4291 !(o->op_flags & OPf_STACKED)) {
4292 OpTYPE_set(o, OP_RV2CV); /* entersub => rv2cv */
4293 assert(cUNOPo->op_first->op_type == OP_NULL);
4294 op_null(((LISTOP*)cUNOPo->op_first)->op_first);/* disable pushmark */
4297 else { /* lvalue subroutine call */
4298 o->op_private |= OPpLVAL_INTRO;
4299 PL_modcount = RETURN_UNLIMITED_NUMBER;
4300 if (S_potential_mod_type(type)) {
4301 o->op_private |= OPpENTERSUB_INARGS;
4304 else { /* Compile-time error message: */
4305 OP *kid = cUNOPo->op_first;
4310 if (kid->op_type != OP_PUSHMARK) {
4311 if (kid->op_type != OP_NULL || kid->op_targ != OP_LIST)
4313 "panic: unexpected lvalue entersub "
4314 "args: type/targ %ld:%" UVuf,
4315 (long)kid->op_type, (UV)kid->op_targ);
4316 kid = kLISTOP->op_first;
4318 while (OpHAS_SIBLING(kid))
4319 kid = OpSIBLING(kid);
4320 if (!(kid->op_type == OP_NULL && kid->op_targ == OP_RV2CV)) {
4321 break; /* Postpone until runtime */
4324 kid = kUNOP->op_first;
4325 if (kid->op_type == OP_NULL && kid->op_targ == OP_RV2SV)
4326 kid = kUNOP->op_first;
4327 if (kid->op_type == OP_NULL)
4329 "Unexpected constant lvalue entersub "
4330 "entry via type/targ %ld:%" UVuf,
4331 (long)kid->op_type, (UV)kid->op_targ);
4332 if (kid->op_type != OP_GV) {
4339 : SvROK(gv) && SvTYPE(SvRV(gv)) == SVt_PVCV
4340 ? MUTABLE_CV(SvRV(gv))
4346 if (flags & OP_LVALUE_NO_CROAK)
4349 namesv = cv_name(cv, NULL, 0);
4350 yyerror_pv(Perl_form(aTHX_ "Can't modify non-lvalue "
4351 "subroutine call of &%" SVf " in %s",
4352 SVfARG(namesv), PL_op_desc[type]),
4360 if (flags & OP_LVALUE_NO_CROAK) return NULL;
4361 /* grep, foreach, subcalls, refgen */
4362 if (S_potential_mod_type(type))
4364 yyerror(Perl_form(aTHX_ "Can't modify %s in %s",
4365 (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL)
4368 type ? PL_op_desc[type] : "local"));
4381 case OP_RIGHT_SHIFT:
4390 if (!(o->op_flags & OPf_STACKED))
4396 if (o->op_flags & OPf_STACKED) {
4400 if (!(o->op_private & OPpREPEAT_DOLIST))
4403 const I32 mods = PL_modcount;
4404 /* we recurse rather than iterate here because we need to
4405 * calculate and use the delta applied to PL_modcount by the
4406 * first child. So in something like
4407 * ($x, ($y) x 3) = split;
4408 * split knows that 4 elements are wanted
4410 modkids(cBINOPo->op_first, type);
4411 if (type != OP_AASSIGN)
4413 kid = cBINOPo->op_last;
4414 if (kid->op_type == OP_CONST && SvIOK(kSVOP_sv)) {
4415 const IV iv = SvIV(kSVOP_sv);
4416 if (PL_modcount != RETURN_UNLIMITED_NUMBER)
4418 mods + (PL_modcount - mods) * (iv < 0 ? 0 : iv);
4421 PL_modcount = RETURN_UNLIMITED_NUMBER;
4427 next_kid = OpSIBLING(cUNOPo->op_first);
4432 if (type == OP_REFGEN && o->op_flags & OPf_PARENS) {
4433 PL_modcount = RETURN_UNLIMITED_NUMBER;
4434 /* Treat \(@foo) like ordinary list, but still mark it as modi-
4435 fiable since some contexts need to know. */
4436 o->op_flags |= OPf_MOD;
4441 if (scalar_mod_type(o, type))
4443 ref(cUNOPo->op_first, o->op_type);
4450 /* Do not apply the lvsub flag for rv2[ah]v in scalar context. */
4451 if (type == OP_LEAVESUBLV && (
4452 (o->op_type != OP_RV2AV && o->op_type != OP_RV2HV)
4453 || (o->op_flags & OPf_WANT) != OPf_WANT_SCALAR
4455 o->op_private |= OPpMAYBE_LVSUB;
4459 PL_modcount = RETURN_UNLIMITED_NUMBER;
4465 if (type == OP_LEAVESUBLV)
4466 o->op_private |= OPpMAYBE_LVSUB;
4470 if (type == OP_LEAVESUBLV
4471 && (o->op_private & OPpAVHVSWITCH_MASK) + OP_EACH == OP_KEYS)
4472 o->op_private |= OPpMAYBE_LVSUB;
4476 PL_hints |= HINT_BLOCK_SCOPE;
4477 if (type == OP_LEAVESUBLV)
4478 o->op_private |= OPpMAYBE_LVSUB;
4483 ref(cUNOPo->op_first, o->op_type);
4487 PL_hints |= HINT_BLOCK_SCOPE;
4497 case OP_AELEMFAST_LEX:
4504 PL_modcount = RETURN_UNLIMITED_NUMBER;
4505 if (type == OP_REFGEN && o->op_flags & OPf_PARENS)
4507 /* Treat \(@foo) like ordinary list, but still mark it as modi-
4508 fiable since some contexts need to know. */
4509 o->op_flags |= OPf_MOD;
4512 if (scalar_mod_type(o, type))
4514 if ((o->op_flags & OPf_WANT) != OPf_WANT_SCALAR
4515 && type == OP_LEAVESUBLV)
4516 o->op_private |= OPpMAYBE_LVSUB;
4520 if (!type) /* local() */
4521 Perl_croak(aTHX_ "Can't localize lexical variable %" PNf,
4522 PNfARG(PAD_COMPNAME(o->op_targ)));
4523 if (!(o->op_private & OPpLVAL_INTRO)
4524 || ( type != OP_SASSIGN && type != OP_AASSIGN
4525 && PadnameIsSTATE(PAD_COMPNAME_SV(o->op_targ)) ))
4526 S_mark_padname_lvalue(aTHX_ PAD_COMPNAME_SV(o->op_targ));
4534 if (type != OP_LEAVESUBLV && !scalar_mod_type(NULL, type))
4538 if (o->op_private == 4) /* don't allow 4 arg substr as lvalue */
4544 if (type == OP_LEAVESUBLV)
4545 o->op_private |= OPpMAYBE_LVSUB;
4546 if (o->op_flags & OPf_KIDS && OpHAS_SIBLING(cBINOPo->op_first)) {
4547 /* we recurse rather than iterate here because the child
4548 * needs to be processed with a different 'type' parameter */
4550 /* substr and vec */
4551 /* If this op is in merely potential (non-fatal) modifiable
4552 context, then apply OP_ENTERSUB context to
4553 the kid op (to avoid croaking). Other-
4554 wise pass this op’s own type so the correct op is mentioned
4555 in error messages. */
4556 op_lvalue(OpSIBLING(cBINOPo->op_first),
4557 S_potential_mod_type(type)
4565 ref(cBINOPo->op_first, o->op_type);
4566 if (type == OP_ENTERSUB &&
4567 !(o->op_private & (OPpLVAL_INTRO | OPpDEREF)))
4568 o->op_private |= OPpLVAL_DEFER;
4569 if (type == OP_LEAVESUBLV)
4570 o->op_private |= OPpMAYBE_LVSUB;
4577 o->op_private |= OPpLVALUE;
4583 if (o->op_flags & OPf_KIDS)
4584 next_kid = cLISTOPo->op_last;
4589 if (o->op_flags & OPf_SPECIAL) /* do BLOCK */
4591 else if (!(o->op_flags & OPf_KIDS))
4594 if (o->op_targ != OP_LIST) {
4595 OP *sib = OpSIBLING(cLISTOPo->op_first);
4596 /* OP_TRANS and OP_TRANSR with argument have a weird optree
4603 * compared with things like OP_MATCH which have the argument
4609 * so handle specially to correctly get "Can't modify" croaks etc
4612 if (sib && (sib->op_type == OP_TRANS || sib->op_type == OP_TRANSR))
4614 /* this should trigger a "Can't modify transliteration" err */
4615 op_lvalue(sib, type);
4617 next_kid = cBINOPo->op_first;
4618 /* we assume OP_NULLs which aren't ex-list have no more than 2
4619 * children. If this assumption is wrong, increase the scan
4621 assert( !OpHAS_SIBLING(next_kid)
4622 || !OpHAS_SIBLING(OpSIBLING(next_kid)));
4628 next_kid = cLISTOPo->op_first;
4636 if (type == OP_LEAVESUBLV
4637 || !S_vivifies(cLOGOPo->op_first->op_type))
4638 next_kid = cLOGOPo->op_first;
4639 else if (type == OP_LEAVESUBLV
4640 || !S_vivifies(OpSIBLING(cLOGOPo->op_first)->op_type))
4641 next_kid = OpSIBLING(cLOGOPo->op_first);
4645 if (type == OP_NULL) { /* local */
4647 if (!FEATURE_MYREF_IS_ENABLED)
4648 Perl_croak(aTHX_ "The experimental declared_refs "
4649 "feature is not enabled");
4650 Perl_ck_warner_d(aTHX_
4651 packWARN(WARN_EXPERIMENTAL__DECLARED_REFS),
4652 "Declaring references is experimental");
4653 next_kid = cUNOPo->op_first;
4656 if (type != OP_AASSIGN && type != OP_SASSIGN
4657 && type != OP_ENTERLOOP)
4659 /* Don’t bother applying lvalue context to the ex-list. */
4660 kid = cUNOPx(cUNOPo->op_first)->op_first;
4661 assert (!OpHAS_SIBLING(kid));
4664 if (type == OP_NULL) /* local */
4666 if (type != OP_AASSIGN) goto nomod;
4667 kid = cUNOPo->op_first;
4670 const U8 ec = PL_parser ? PL_parser->error_count : 0;
4671 S_lvref(aTHX_ kid, type);
4672 if (!PL_parser || PL_parser->error_count == ec) {
4673 if (!FEATURE_REFALIASING_IS_ENABLED)
4675 "Experimental aliasing via reference not enabled");
4676 Perl_ck_warner_d(aTHX_
4677 packWARN(WARN_EXPERIMENTAL__REFALIASING),
4678 "Aliasing via reference is experimental");