3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by Larry Wall
7 * You may distribute under the terms of either the GNU General Public
8 * License or the Artistic License, as specified in the README file.
13 * 'I wonder what the Entish is for "yes" and "no",' he thought.
16 * [p.480 of _The Lord of the Rings_, III/iv: "Treebeard"]
22 * This file contains the code that creates, manipulates and destroys
23 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
24 * structure of an SV, so their creation and destruction is handled
25 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
26 * level functions (eg. substr, split, join) for each of the types are
39 /* Missing proto on LynxOS */
40 char *gconvert(double, int, int, char *);
44 # define SNPRINTF_G(nv, buffer, size, ndig) \
45 quadmath_snprintf(buffer, size, "%.*Qg", (int)ndig, (NV)(nv))
47 # define SNPRINTF_G(nv, buffer, size, ndig) \
48 PERL_UNUSED_RESULT(Gconvert((NV)(nv), (int)ndig, 0, buffer))
51 #ifndef SV_COW_THRESHOLD
52 # define SV_COW_THRESHOLD 0 /* COW iff len > K */
54 #ifndef SV_COWBUF_THRESHOLD
55 # define SV_COWBUF_THRESHOLD 1250 /* COW iff len > K */
57 #ifndef SV_COW_MAX_WASTE_THRESHOLD
58 # define SV_COW_MAX_WASTE_THRESHOLD 80 /* COW iff (len - cur) < K */
60 #ifndef SV_COWBUF_WASTE_THRESHOLD
61 # define SV_COWBUF_WASTE_THRESHOLD 80 /* COW iff (len - cur) < K */
63 #ifndef SV_COW_MAX_WASTE_FACTOR_THRESHOLD
64 # define SV_COW_MAX_WASTE_FACTOR_THRESHOLD 2 /* COW iff len < (cur * K) */
66 #ifndef SV_COWBUF_WASTE_FACTOR_THRESHOLD
67 # define SV_COWBUF_WASTE_FACTOR_THRESHOLD 2 /* COW iff len < (cur * K) */
69 /* Work around compiler warnings about unsigned >= THRESHOLD when thres-
72 # define GE_COW_THRESHOLD(cur) ((cur) >= SV_COW_THRESHOLD)
74 # define GE_COW_THRESHOLD(cur) 1
76 #if SV_COWBUF_THRESHOLD
77 # define GE_COWBUF_THRESHOLD(cur) ((cur) >= SV_COWBUF_THRESHOLD)
79 # define GE_COWBUF_THRESHOLD(cur) 1
81 #if SV_COW_MAX_WASTE_THRESHOLD
82 # define GE_COW_MAX_WASTE_THRESHOLD(cur,len) (((len)-(cur)) < SV_COW_MAX_WASTE_THRESHOLD)
84 # define GE_COW_MAX_WASTE_THRESHOLD(cur,len) 1
86 #if SV_COWBUF_WASTE_THRESHOLD
87 # define GE_COWBUF_WASTE_THRESHOLD(cur,len) (((len)-(cur)) < SV_COWBUF_WASTE_THRESHOLD)
89 # define GE_COWBUF_WASTE_THRESHOLD(cur,len) 1
91 #if SV_COW_MAX_WASTE_FACTOR_THRESHOLD
92 # define GE_COW_MAX_WASTE_FACTOR_THRESHOLD(cur,len) ((len) < SV_COW_MAX_WASTE_FACTOR_THRESHOLD * (cur))
94 # define GE_COW_MAX_WASTE_FACTOR_THRESHOLD(cur,len) 1
96 #if SV_COWBUF_WASTE_FACTOR_THRESHOLD
97 # define GE_COWBUF_WASTE_FACTOR_THRESHOLD(cur,len) ((len) < SV_COWBUF_WASTE_FACTOR_THRESHOLD * (cur))
99 # define GE_COWBUF_WASTE_FACTOR_THRESHOLD(cur,len) 1
102 #define CHECK_COW_THRESHOLD(cur,len) (\
103 GE_COW_THRESHOLD((cur)) && \
104 GE_COW_MAX_WASTE_THRESHOLD((cur),(len)) && \
105 GE_COW_MAX_WASTE_FACTOR_THRESHOLD((cur),(len)) \
107 #define CHECK_COWBUF_THRESHOLD(cur,len) (\
108 GE_COWBUF_THRESHOLD((cur)) && \
109 GE_COWBUF_WASTE_THRESHOLD((cur),(len)) && \
110 GE_COWBUF_WASTE_FACTOR_THRESHOLD((cur),(len)) \
113 #ifdef PERL_UTF8_CACHE_ASSERT
114 /* if adding more checks watch out for the following tests:
115 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
116 * lib/utf8.t lib/Unicode/Collate/t/index.t
119 # define ASSERT_UTF8_CACHE(cache) \
120 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
121 assert((cache)[2] <= (cache)[3]); \
122 assert((cache)[3] <= (cache)[1]);} \
125 # define ASSERT_UTF8_CACHE(cache) NOOP
128 static const char S_destroy[] = "DESTROY";
129 #define S_destroy_len (sizeof(S_destroy)-1)
131 /* ============================================================================
133 =for apidoc_section $SV
134 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
135 sv, av, hv...) contains type and reference count information, and for
136 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
137 contains fields specific to each type. Some types store all they need
138 in the head, so don't have a body.
140 In all but the most memory-paranoid configurations (ex: PURIFY), heads
141 and bodies are allocated out of arenas, which by default are
142 approximately 4K chunks of memory parcelled up into N heads or bodies.
143 Sv-bodies are allocated by their sv-type, guaranteeing size
144 consistency needed to allocate safely from arrays.
146 For SV-heads, the first slot in each arena is reserved, and holds a
147 link to the next arena, some flags, and a note of the number of slots.
148 Snaked through each arena chain is a linked list of free items; when
149 this becomes empty, an extra arena is allocated and divided up into N
150 items which are threaded into the free list.
152 SV-bodies are similar, but they use arena-sets by default, which
153 separate the link and info from the arena itself, and reclaim the 1st
154 slot in the arena. SV-bodies are further described later.
156 The following global variables are associated with arenas:
158 PL_sv_arenaroot pointer to list of SV arenas
159 PL_sv_root pointer to list of free SV structures
161 PL_body_arenas head of linked-list of body arenas
162 PL_body_roots[] array of pointers to list of free bodies of svtype
163 arrays are indexed by the svtype needed
165 A few special SV heads are not allocated from an arena, but are
166 instead directly created in the interpreter structure, eg PL_sv_undef.
167 The size of arenas can be changed from the default by setting
168 PERL_ARENA_SIZE appropriately at compile time.
170 The SV arena serves the secondary purpose of allowing still-live SVs
171 to be located and destroyed during final cleanup.
173 At the lowest level, the macros new_SV() and del_SV() grab and free
174 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
175 to return the SV to the free list with error checking.) new_SV() calls
176 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
177 SVs in the free list have their SvTYPE field set to all ones.
179 At the time of very final cleanup, sv_free_arenas() is called from
180 perl_destruct() to physically free all the arenas allocated since the
181 start of the interpreter.
183 The internal function visit() scans the SV arenas list, and calls a specified
184 function for each SV it finds which is still live - ie which has an SvTYPE
185 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
186 following functions (specified as [function that calls visit()] / [function
187 called by visit() for each SV]):
189 sv_report_used() / do_report_used()
190 dump all remaining SVs (debugging aid)
192 sv_clean_objs() / do_clean_objs(),do_clean_named_objs(),
193 do_clean_named_io_objs(),do_curse()
194 Attempt to free all objects pointed to by RVs,
195 try to do the same for all objects indir-
196 ectly referenced by typeglobs too, and
197 then do a final sweep, cursing any
198 objects that remain. Called once from
199 perl_destruct(), prior to calling sv_clean_all()
202 sv_clean_all() / do_clean_all()
203 SvREFCNT_dec(sv) each remaining SV, possibly
204 triggering an sv_free(). It also sets the
205 SVf_BREAK flag on the SV to indicate that the
206 refcnt has been artificially lowered, and thus
207 stopping sv_free() from giving spurious warnings
208 about SVs which unexpectedly have a refcnt
209 of zero. called repeatedly from perl_destruct()
210 until there are no SVs left.
212 =head2 Arena allocator API Summary
214 Private API to rest of sv.c
218 new_XPVNV(), del_XPVGV(),
223 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
227 * ========================================================================= */
230 * "A time to plant, and a time to uproot what was planted..."
234 # define MEM_LOG_NEW_SV(sv, file, line, func) \
235 Perl_mem_log_new_sv(sv, file, line, func)
236 # define MEM_LOG_DEL_SV(sv, file, line, func) \
237 Perl_mem_log_del_sv(sv, file, line, func)
239 # define MEM_LOG_NEW_SV(sv, file, line, func) NOOP
240 # define MEM_LOG_DEL_SV(sv, file, line, func) NOOP
243 #ifdef DEBUG_LEAKING_SCALARS
244 # define FREE_SV_DEBUG_FILE(sv) STMT_START { \
245 if ((sv)->sv_debug_file) PerlMemShared_free((sv)->sv_debug_file); \
247 # define DEBUG_SV_SERIAL(sv) \
248 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%" UVxf ": (%05ld) del_SV\n", \
249 PTR2UV(sv), (long)(sv)->sv_debug_serial))
251 # define FREE_SV_DEBUG_FILE(sv)
252 # define DEBUG_SV_SERIAL(sv) NOOP
256 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
257 # define SvARENA_CHAIN_SET(sv,val) (sv)->sv_u.svu_rv = MUTABLE_SV((val))
258 /* Whilst I'd love to do this, it seems that things like to check on
260 # define POISON_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
262 # define POISON_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
263 PoisonNew(&SvREFCNT(sv), 1, U32)
265 # define SvARENA_CHAIN(sv) SvANY(sv)
266 # define SvARENA_CHAIN_SET(sv,val) SvANY(sv) = (void *)(val)
267 # define POISON_SV_HEAD(sv)
270 /* Mark an SV head as unused, and add to free list.
272 * If SVf_BREAK is set, skip adding it to the free list, as this SV had
273 * its refcount artificially decremented during global destruction, so
274 * there may be dangling pointers to it. The last thing we want in that
275 * case is for it to be reused. */
277 #define plant_SV(p) \
279 const U32 old_flags = SvFLAGS(p); \
280 MEM_LOG_DEL_SV(p, __FILE__, __LINE__, FUNCTION__); \
281 DEBUG_SV_SERIAL(p); \
282 FREE_SV_DEBUG_FILE(p); \
284 SvFLAGS(p) = SVTYPEMASK; \
285 if (!(old_flags & SVf_BREAK)) { \
286 SvARENA_CHAIN_SET(p, PL_sv_root); \
292 #define uproot_SV(p) \
295 PL_sv_root = MUTABLE_SV(SvARENA_CHAIN(p)); \
300 /* make some more SVs by adding another arena */
306 char *chunk; /* must use New here to match call to */
307 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
308 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
313 /* new_SV(): return a new, empty SV head */
315 #ifdef DEBUG_LEAKING_SCALARS
316 /* provide a real function for a debugger to play with */
318 S_new_SV(pTHX_ const char *file, int line, const char *func)
325 sv = S_more_sv(aTHX);
329 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
330 sv->sv_debug_line = (U16) (PL_parser && PL_parser->copline != NOLINE
336 sv->sv_debug_inpad = 0;
337 sv->sv_debug_parent = NULL;
338 sv->sv_debug_file = PL_curcop ? savesharedpv(CopFILE(PL_curcop)): NULL;
340 sv->sv_debug_serial = PL_sv_serial++;
342 MEM_LOG_NEW_SV(sv, file, line, func);
343 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%" UVxf ": (%05ld) new_SV (from %s:%d [%s])\n",
344 PTR2UV(sv), (long)sv->sv_debug_serial, file, line, func));
348 # define new_SV(p) (p)=S_new_SV(aTHX_ __FILE__, __LINE__, FUNCTION__)
356 (p) = S_more_sv(aTHX); \
360 MEM_LOG_NEW_SV(p, __FILE__, __LINE__, FUNCTION__); \
365 /* del_SV(): return an empty SV head to the free list */
378 S_del_sv(pTHX_ SV *p)
380 PERL_ARGS_ASSERT_DEL_SV;
385 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
386 const SV * const sv = sva + 1;
387 const SV * const svend = &sva[SvREFCNT(sva)];
388 if (p >= sv && p < svend) {
394 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
395 "Attempt to free non-arena SV: 0x%" UVxf
396 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
403 #else /* ! DEBUGGING */
405 #define del_SV(p) plant_SV(p)
407 #endif /* DEBUGGING */
411 =for apidoc_section $SV
413 =for apidoc sv_add_arena
415 Given a chunk of memory, link it to the head of the list of arenas,
416 and split it into a list of free SVs.
422 S_sv_add_arena(pTHX_ char *const ptr, const U32 size, const U32 flags)
424 SV *const sva = MUTABLE_SV(ptr);
428 PERL_ARGS_ASSERT_SV_ADD_ARENA;
430 /* The first SV in an arena isn't an SV. */
431 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
432 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
433 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
435 PL_sv_arenaroot = sva;
436 PL_sv_root = sva + 1;
438 svend = &sva[SvREFCNT(sva) - 1];
441 SvARENA_CHAIN_SET(sv, (sv + 1));
445 /* Must always set typemask because it's always checked in on cleanup
446 when the arenas are walked looking for objects. */
447 SvFLAGS(sv) = SVTYPEMASK;
450 SvARENA_CHAIN_SET(sv, 0);
454 SvFLAGS(sv) = SVTYPEMASK;
457 /* visit(): call the named function for each non-free SV in the arenas
458 * whose flags field matches the flags/mask args. */
461 S_visit(pTHX_ SVFUNC_t f, const U32 flags, const U32 mask)
466 PERL_ARGS_ASSERT_VISIT;
468 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
469 const SV * const svend = &sva[SvREFCNT(sva)];
471 for (sv = sva + 1; sv < svend; ++sv) {
472 if (SvTYPE(sv) != (svtype)SVTYPEMASK
473 && (sv->sv_flags & mask) == flags
486 /* called by sv_report_used() for each live SV */
489 do_report_used(pTHX_ SV *const sv)
491 if (SvTYPE(sv) != (svtype)SVTYPEMASK) {
492 PerlIO_printf(Perl_debug_log, "****\n");
499 =for apidoc sv_report_used
501 Dump the contents of all SVs not yet freed (debugging aid).
507 Perl_sv_report_used(pTHX)
510 visit(do_report_used, 0, 0);
516 /* called by sv_clean_objs() for each live SV */
519 do_clean_objs(pTHX_ SV *const ref)
523 SV * const target = SvRV(ref);
524 if (SvOBJECT(target)) {
525 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
526 if (SvWEAKREF(ref)) {
527 sv_del_backref(target, ref);
533 SvREFCNT_dec_NN(target);
540 /* clear any slots in a GV which hold objects - except IO;
541 * called by sv_clean_objs() for each live GV */
544 do_clean_named_objs(pTHX_ SV *const sv)
547 assert(SvTYPE(sv) == SVt_PVGV);
548 assert(isGV_with_GP(sv));
552 /* freeing GP entries may indirectly free the current GV;
553 * hold onto it while we mess with the GP slots */
556 if ( ((obj = GvSV(sv) )) && SvOBJECT(obj)) {
557 DEBUG_D((PerlIO_printf(Perl_debug_log,
558 "Cleaning named glob SV object:\n "), sv_dump(obj)));
560 SvREFCNT_dec_NN(obj);
562 if ( ((obj = MUTABLE_SV(GvAV(sv)) )) && SvOBJECT(obj)) {
563 DEBUG_D((PerlIO_printf(Perl_debug_log,
564 "Cleaning named glob AV object:\n "), sv_dump(obj)));
566 SvREFCNT_dec_NN(obj);
568 if ( ((obj = MUTABLE_SV(GvHV(sv)) )) && SvOBJECT(obj)) {
569 DEBUG_D((PerlIO_printf(Perl_debug_log,
570 "Cleaning named glob HV object:\n "), sv_dump(obj)));
572 SvREFCNT_dec_NN(obj);
574 if ( ((obj = MUTABLE_SV(GvCV(sv)) )) && SvOBJECT(obj)) {
575 DEBUG_D((PerlIO_printf(Perl_debug_log,
576 "Cleaning named glob CV object:\n "), sv_dump(obj)));
578 SvREFCNT_dec_NN(obj);
580 SvREFCNT_dec_NN(sv); /* undo the inc above */
583 /* clear any IO slots in a GV which hold objects (except stderr, defout);
584 * called by sv_clean_objs() for each live GV */
587 do_clean_named_io_objs(pTHX_ SV *const sv)
590 assert(SvTYPE(sv) == SVt_PVGV);
591 assert(isGV_with_GP(sv));
592 if (!GvGP(sv) || sv == (SV*)PL_stderrgv || sv == (SV*)PL_defoutgv)
596 if ( ((obj = MUTABLE_SV(GvIO(sv)) )) && SvOBJECT(obj)) {
597 DEBUG_D((PerlIO_printf(Perl_debug_log,
598 "Cleaning named glob IO object:\n "), sv_dump(obj)));
600 SvREFCNT_dec_NN(obj);
602 SvREFCNT_dec_NN(sv); /* undo the inc above */
605 /* Void wrapper to pass to visit() */
607 do_curse(pTHX_ SV * const sv) {
608 if ((PL_stderrgv && GvGP(PL_stderrgv) && (SV*)GvIO(PL_stderrgv) == sv)
609 || (PL_defoutgv && GvGP(PL_defoutgv) && (SV*)GvIO(PL_defoutgv) == sv))
615 =for apidoc sv_clean_objs
617 Attempt to destroy all objects not yet freed.
623 Perl_sv_clean_objs(pTHX)
626 PL_in_clean_objs = TRUE;
627 visit(do_clean_objs, SVf_ROK, SVf_ROK);
628 /* Some barnacles may yet remain, clinging to typeglobs.
629 * Run the non-IO destructors first: they may want to output
630 * error messages, close files etc */
631 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
632 visit(do_clean_named_io_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
633 /* And if there are some very tenacious barnacles clinging to arrays,
634 closures, or what have you.... */
635 visit(do_curse, SVs_OBJECT, SVs_OBJECT);
636 olddef = PL_defoutgv;
637 PL_defoutgv = NULL; /* disable skip of PL_defoutgv */
638 if (olddef && isGV_with_GP(olddef))
639 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olddef));
640 olderr = PL_stderrgv;
641 PL_stderrgv = NULL; /* disable skip of PL_stderrgv */
642 if (olderr && isGV_with_GP(olderr))
643 do_clean_named_io_objs(aTHX_ MUTABLE_SV(olderr));
644 SvREFCNT_dec(olddef);
645 PL_in_clean_objs = FALSE;
648 /* called by sv_clean_all() for each live SV */
651 do_clean_all(pTHX_ SV *const sv)
653 if (sv == (const SV *) PL_fdpid || sv == (const SV *)PL_strtab) {
654 /* don't clean pid table and strtab */
657 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%" UVxf "\n", PTR2UV(sv)) ));
658 SvFLAGS(sv) |= SVf_BREAK;
663 =for apidoc sv_clean_all
665 Decrement the refcnt of each remaining SV, possibly triggering a
666 cleanup. This function may have to be called multiple times to free
667 SVs which are in complex self-referential hierarchies.
673 Perl_sv_clean_all(pTHX)
676 PL_in_clean_all = TRUE;
677 cleaned = visit(do_clean_all, 0,0);
682 ARENASETS: a meta-arena implementation which separates arena-info
683 into struct arena_set, which contains an array of struct
684 arena_descs, each holding info for a single arena. By separating
685 the meta-info from the arena, we recover the 1st slot, formerly
686 borrowed for list management. The arena_set is about the size of an
687 arena, avoiding the needless malloc overhead of a naive linked-list.
689 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
690 memory in the last arena-set (1/2 on average). In trade, we get
691 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
692 smaller types). The recovery of the wasted space allows use of
693 small arenas for large, rare body types, by changing array* fields
694 in body_details_by_type[] below.
697 char *arena; /* the raw storage, allocated aligned */
698 size_t size; /* its size ~4k typ */
699 svtype utype; /* bodytype stored in arena */
704 /* Get the maximum number of elements in set[] such that struct arena_set
705 will fit within PERL_ARENA_SIZE, which is probably just under 4K, and
706 therefore likely to be 1 aligned memory page. */
708 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
709 - 2 * sizeof(int)) / sizeof (struct arena_desc))
712 struct arena_set* next;
713 unsigned int set_size; /* ie ARENAS_PER_SET */
714 unsigned int curr; /* index of next available arena-desc */
715 struct arena_desc set[ARENAS_PER_SET];
719 =for apidoc sv_free_arenas
721 Deallocate the memory used by all arenas. Note that all the individual SV
722 heads and bodies within the arenas must already have been freed.
728 Perl_sv_free_arenas(pTHX)
734 /* Free arenas here, but be careful about fake ones. (We assume
735 contiguity of the fake ones with the corresponding real ones.) */
737 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
738 svanext = MUTABLE_SV(SvANY(sva));
739 while (svanext && SvFAKE(svanext))
740 svanext = MUTABLE_SV(SvANY(svanext));
747 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
750 struct arena_set *current = aroot;
753 assert(aroot->set[i].arena);
754 Safefree(aroot->set[i].arena);
762 i = PERL_ARENA_ROOTS_SIZE;
764 PL_body_roots[i] = 0;
771 Here are mid-level routines that manage the allocation of bodies out
772 of the various arenas. There are 4 kinds of arenas:
774 1. SV-head arenas, which are discussed and handled above
775 2. regular body arenas
776 3. arenas for reduced-size bodies
779 Arena types 2 & 3 are chained by body-type off an array of
780 arena-root pointers, which is indexed by svtype. Some of the
781 larger/less used body types are malloced singly, since a large
782 unused block of them is wasteful. Also, several svtypes dont have
783 bodies; the data fits into the sv-head itself. The arena-root
784 pointer thus has a few unused root-pointers (which may be hijacked
785 later for arena type 4)
787 3 differs from 2 as an optimization; some body types have several
788 unused fields in the front of the structure (which are kept in-place
789 for consistency). These bodies can be allocated in smaller chunks,
790 because the leading fields arent accessed. Pointers to such bodies
791 are decremented to point at the unused 'ghost' memory, knowing that
792 the pointers are used with offsets to the real memory.
794 Allocation of SV-bodies is similar to SV-heads, differing as follows;
795 the allocation mechanism is used for many body types, so is somewhat
796 more complicated, it uses arena-sets, and has no need for still-live
799 At the outermost level, (new|del)_X*V macros return bodies of the
800 appropriate type. These macros call either (new|del)_body_type or
801 (new|del)_body_allocated macro pairs, depending on specifics of the
802 type. Most body types use the former pair, the latter pair is used to
803 allocate body types with "ghost fields".
805 "ghost fields" are fields that are unused in certain types, and
806 consequently don't need to actually exist. They are declared because
807 they're part of a "base type", which allows use of functions as
808 methods. The simplest examples are AVs and HVs, 2 aggregate types
809 which don't use the fields which support SCALAR semantics.
811 For these types, the arenas are carved up into appropriately sized
812 chunks, we thus avoid wasted memory for those unaccessed members.
813 When bodies are allocated, we adjust the pointer back in memory by the
814 size of the part not allocated, so it's as if we allocated the full
815 structure. (But things will all go boom if you write to the part that
816 is "not there", because you'll be overwriting the last members of the
817 preceding structure in memory.)
819 We calculate the correction using the STRUCT_OFFSET macro on the first
820 member present. If the allocated structure is smaller (no initial NV
821 actually allocated) then the net effect is to subtract the size of the NV
822 from the pointer, to return a new pointer as if an initial NV were actually
823 allocated. (We were using structures named *_allocated for this, but
824 this turned out to be a subtle bug, because a structure without an NV
825 could have a lower alignment constraint, but the compiler is allowed to
826 optimised accesses based on the alignment constraint of the actual pointer
827 to the full structure, for example, using a single 64 bit load instruction
828 because it "knows" that two adjacent 32 bit members will be 8-byte aligned.)
830 This is the same trick as was used for NV and IV bodies. Ironically it
831 doesn't need to be used for NV bodies any more, because NV is now at
832 the start of the structure. IV bodies, and also in some builds NV bodies,
833 don't need it either, because they are no longer allocated.
835 In turn, the new_body_* allocators call S_new_body(), which invokes
836 new_body_inline macro, which takes a lock, and takes a body off the
837 linked list at PL_body_roots[sv_type], calling Perl_more_bodies() if
838 necessary to refresh an empty list. Then the lock is released, and
839 the body is returned.
841 Perl_more_bodies allocates a new arena, and carves it up into an array of N
842 bodies, which it strings into a linked list. It looks up arena-size
843 and body-size from the body_details table described below, thus
844 supporting the multiple body-types.
846 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
847 the (new|del)_X*V macros are mapped directly to malloc/free.
849 For each sv-type, struct body_details bodies_by_type[] carries
850 parameters which control these aspects of SV handling:
852 Arena_size determines whether arenas are used for this body type, and if
853 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
854 zero, forcing individual mallocs and frees.
856 Body_size determines how big a body is, and therefore how many fit into
857 each arena. Offset carries the body-pointer adjustment needed for
858 "ghost fields", and is used in *_allocated macros.
860 But its main purpose is to parameterize info needed in
861 Perl_sv_upgrade(). The info here dramatically simplifies the function
862 vs the implementation in 5.8.8, making it table-driven. All fields
863 are used for this, except for arena_size.
865 For the sv-types that have no bodies, arenas are not used, so those
866 PL_body_roots[sv_type] are unused, and can be overloaded. In
867 something of a special case, SVt_NULL is borrowed for HE arenas;
868 PL_body_roots[HE_SVSLOT=SVt_NULL] is filled by S_more_he, but the
869 bodies_by_type[SVt_NULL] slot is not used, as the table is not
874 struct body_details {
875 U8 body_size; /* Size to allocate */
876 U8 copy; /* Size of structure to copy (may be shorter) */
877 U8 offset; /* Size of unalloced ghost fields to first alloced field*/
878 PERL_BITFIELD8 type : 4; /* We have space for a sanity check. */
879 PERL_BITFIELD8 cant_upgrade : 1;/* Cannot upgrade this type */
880 PERL_BITFIELD8 zero_nv : 1; /* zero the NV when upgrading from this */
881 PERL_BITFIELD8 arena : 1; /* Allocated from an arena */
882 U32 arena_size; /* Size of arena to allocate */
885 #define ALIGNED_TYPE_NAME(name) name##_aligned
886 #define ALIGNED_TYPE(name) \
891 } ALIGNED_TYPE_NAME(name);
893 ALIGNED_TYPE(regexp);
907 /* With -DPURFIY we allocate everything directly, and don't use arenas.
908 This seems a rather elegant way to simplify some of the code below. */
909 #define HASARENA FALSE
911 #define HASARENA TRUE
913 #define NOARENA FALSE
915 /* Size the arenas to exactly fit a given number of bodies. A count
916 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
917 simplifying the default. If count > 0, the arena is sized to fit
918 only that many bodies, allowing arenas to be used for large, rare
919 bodies (XPVFM, XPVIO) without undue waste. The arena size is
920 limited by PERL_ARENA_SIZE, so we can safely oversize the
923 #define FIT_ARENA0(body_size) \
924 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
925 #define FIT_ARENAn(count,body_size) \
926 ( count * body_size <= PERL_ARENA_SIZE) \
927 ? count * body_size \
928 : FIT_ARENA0 (body_size)
929 #define FIT_ARENA(count,body_size) \
931 ? FIT_ARENAn (count, body_size) \
932 : FIT_ARENA0 (body_size))
934 /* Calculate the length to copy. Specifically work out the length less any
935 final padding the compiler needed to add. See the comment in sv_upgrade
936 for why copying the padding proved to be a bug. */
938 #define copy_length(type, last_member) \
939 STRUCT_OFFSET(type, last_member) \
940 + sizeof (((type*)SvANY((const SV *)0))->last_member)
942 static const struct body_details bodies_by_type[] = {
943 /* HEs use this offset for their arena. */
944 { 0, 0, 0, SVt_NULL, FALSE, NONV, NOARENA, 0 },
946 /* IVs are in the head, so the allocation size is 0. */
948 sizeof(IV), /* This is used to copy out the IV body. */
949 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
950 NOARENA /* IVS don't need an arena */, 0
955 STRUCT_OFFSET(XPVNV, xnv_u),
956 SVt_NV, FALSE, HADNV, NOARENA, 0 },
958 { sizeof(NV), sizeof(NV),
959 STRUCT_OFFSET(XPVNV, xnv_u),
960 SVt_NV, FALSE, HADNV, HASARENA, FIT_ARENA(0, sizeof(NV)) },
963 { sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur),
964 copy_length(XPV, xpv_len) - STRUCT_OFFSET(XPV, xpv_cur),
965 + STRUCT_OFFSET(XPV, xpv_cur),
966 SVt_PV, FALSE, NONV, HASARENA,
967 FIT_ARENA(0, sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur)) },
969 { sizeof(XINVLIST) - STRUCT_OFFSET(XPV, xpv_cur),
970 copy_length(XINVLIST, is_offset) - STRUCT_OFFSET(XPV, xpv_cur),
971 + STRUCT_OFFSET(XPV, xpv_cur),
972 SVt_INVLIST, TRUE, NONV, HASARENA,
973 FIT_ARENA(0, sizeof(XINVLIST) - STRUCT_OFFSET(XPV, xpv_cur)) },
975 { sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur),
976 copy_length(XPVIV, xiv_u) - STRUCT_OFFSET(XPV, xpv_cur),
977 + STRUCT_OFFSET(XPV, xpv_cur),
978 SVt_PVIV, FALSE, NONV, HASARENA,
979 FIT_ARENA(0, sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur)) },
981 { sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur),
982 copy_length(XPVNV, xnv_u) - STRUCT_OFFSET(XPV, xpv_cur),
983 + STRUCT_OFFSET(XPV, xpv_cur),
984 SVt_PVNV, FALSE, HADNV, HASARENA,
985 FIT_ARENA(0, sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur)) },
987 { sizeof(XPVMG), copy_length(XPVMG, xnv_u), 0, SVt_PVMG, FALSE, HADNV,
988 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
990 { sizeof(ALIGNED_TYPE_NAME(regexp)),
993 SVt_REGEXP, TRUE, NONV, HASARENA,
994 FIT_ARENA(0, sizeof(ALIGNED_TYPE_NAME(regexp)))
997 { sizeof(ALIGNED_TYPE_NAME(XPVGV)), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
998 HASARENA, FIT_ARENA(0, sizeof(ALIGNED_TYPE_NAME(XPVGV))) },
1000 { sizeof(ALIGNED_TYPE_NAME(XPVLV)), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
1001 HASARENA, FIT_ARENA(0, sizeof(ALIGNED_TYPE_NAME(XPVLV))) },
1003 { sizeof(ALIGNED_TYPE_NAME(XPVAV)),
1004 copy_length(XPVAV, xav_alloc),
1006 SVt_PVAV, TRUE, NONV, HASARENA,
1007 FIT_ARENA(0, sizeof(ALIGNED_TYPE_NAME(XPVAV))) },
1009 { sizeof(ALIGNED_TYPE_NAME(XPVHV)),
1010 copy_length(XPVHV, xhv_max),
1012 SVt_PVHV, TRUE, NONV, HASARENA,
1013 FIT_ARENA(0, sizeof(ALIGNED_TYPE_NAME(XPVHV))) },
1015 { sizeof(ALIGNED_TYPE_NAME(XPVCV)),
1018 SVt_PVCV, TRUE, NONV, HASARENA,
1019 FIT_ARENA(0, sizeof(ALIGNED_TYPE_NAME(XPVCV))) },
1021 { sizeof(ALIGNED_TYPE_NAME(XPVFM)),
1024 SVt_PVFM, TRUE, NONV, NOARENA,
1025 FIT_ARENA(20, sizeof(ALIGNED_TYPE_NAME(XPVFM))) },
1027 { sizeof(ALIGNED_TYPE_NAME(XPVIO)),
1030 SVt_PVIO, TRUE, NONV, HASARENA,
1031 FIT_ARENA(24, sizeof(ALIGNED_TYPE_NAME(XPVIO))) },
1034 #define new_body_allocated(sv_type) \
1035 (void *)((char *)S_new_body(aTHX_ sv_type) \
1036 - bodies_by_type[sv_type].offset)
1038 /* return a thing to the free list */
1040 #define del_body(thing, root) \
1042 void ** const thing_copy = (void **)thing; \
1043 *thing_copy = *root; \
1044 *root = (void*)thing_copy; \
1048 #if !(NVSIZE <= IVSIZE)
1049 # define new_XNV() safemalloc(sizeof(XPVNV))
1051 #define new_XPVNV() safemalloc(sizeof(XPVNV))
1052 #define new_XPVMG() safemalloc(sizeof(XPVMG))
1054 #define del_XPVGV(p) safefree(p)
1058 #if !(NVSIZE <= IVSIZE)
1059 # define new_XNV() new_body_allocated(SVt_NV)
1061 #define new_XPVNV() new_body_allocated(SVt_PVNV)
1062 #define new_XPVMG() new_body_allocated(SVt_PVMG)
1064 #define del_XPVGV(p) del_body(p + bodies_by_type[SVt_PVGV].offset, \
1065 &PL_body_roots[SVt_PVGV])
1069 /* no arena for you! */
1071 #define new_NOARENA(details) \
1072 safemalloc((details)->body_size + (details)->offset)
1073 #define new_NOARENAZ(details) \
1074 safecalloc((details)->body_size + (details)->offset, 1)
1077 Perl_more_bodies (pTHX_ const svtype sv_type, const size_t body_size,
1078 const size_t arena_size)
1080 void ** const root = &PL_body_roots[sv_type];
1081 struct arena_desc *adesc;
1082 struct arena_set *aroot = (struct arena_set *) PL_body_arenas;
1086 const size_t good_arena_size = Perl_malloc_good_size(arena_size);
1087 #if defined(DEBUGGING)
1088 static bool done_sanity_check;
1090 if (!done_sanity_check) {
1091 unsigned int i = SVt_LAST;
1093 done_sanity_check = TRUE;
1096 assert (bodies_by_type[i].type == i);
1102 /* may need new arena-set to hold new arena */
1103 if (!aroot || aroot->curr >= aroot->set_size) {
1104 struct arena_set *newroot;
1105 Newxz(newroot, 1, struct arena_set);
1106 newroot->set_size = ARENAS_PER_SET;
1107 newroot->next = aroot;
1109 PL_body_arenas = (void *) newroot;
1110 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
1113 /* ok, now have arena-set with at least 1 empty/available arena-desc */
1114 curr = aroot->curr++;
1115 adesc = &(aroot->set[curr]);
1116 assert(!adesc->arena);
1118 Newx(adesc->arena, good_arena_size, char);
1119 adesc->size = good_arena_size;
1120 adesc->utype = sv_type;
1121 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %" UVuf "\n",
1122 curr, (void*)adesc->arena, (UV)good_arena_size));
1124 start = (char *) adesc->arena;
1126 /* Get the address of the byte after the end of the last body we can fit.
1127 Remember, this is integer division: */
1128 end = start + good_arena_size / body_size * body_size;
1130 /* computed count doesn't reflect the 1st slot reservation */
1131 #if defined(MYMALLOC) || defined(HAS_MALLOC_GOOD_SIZE)
1132 DEBUG_m(PerlIO_printf(Perl_debug_log,
1133 "arena %p end %p arena-size %d (from %d) type %d "
1135 (void*)start, (void*)end, (int)good_arena_size,
1136 (int)arena_size, sv_type, (int)body_size,
1137 (int)good_arena_size / (int)body_size));
1139 DEBUG_m(PerlIO_printf(Perl_debug_log,
1140 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1141 (void*)start, (void*)end,
1142 (int)arena_size, sv_type, (int)body_size,
1143 (int)good_arena_size / (int)body_size));
1145 *root = (void *)start;
1148 /* Where the next body would start: */
1149 char * const next = start + body_size;
1152 /* This is the last body: */
1153 assert(next == end);
1155 *(void **)start = 0;
1159 *(void**) start = (void *)next;
1164 /* grab a new thing from the free list, allocating more if necessary.
1165 The inline version is used for speed in hot routines, and the
1166 function using it serves the rest (unless PURIFY).
1168 #define new_body_inline(xpv, sv_type) \
1170 void ** const r3wt = &PL_body_roots[sv_type]; \
1171 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1172 ? *((void **)(r3wt)) : Perl_more_bodies(aTHX_ sv_type, \
1173 bodies_by_type[sv_type].body_size,\
1174 bodies_by_type[sv_type].arena_size)); \
1175 *(r3wt) = *(void**)(xpv); \
1181 S_new_body(pTHX_ const svtype sv_type)
1184 new_body_inline(xpv, sv_type);
1190 static const struct body_details fake_rv =
1191 { 0, 0, 0, SVt_IV, FALSE, NONV, NOARENA, 0 };
1194 =for apidoc sv_upgrade
1196 Upgrade an SV to a more complex form. Generally adds a new body type to the
1197 SV, then copies across as much information as possible from the old body.
1198 It croaks if the SV is already in a more complex form than requested. You
1199 generally want to use the C<SvUPGRADE> macro wrapper, which checks the type
1200 before calling C<sv_upgrade>, and hence does not croak. See also
1207 Perl_sv_upgrade(pTHX_ SV *const sv, svtype new_type)
1211 const svtype old_type = SvTYPE(sv);
1212 const struct body_details *new_type_details;
1213 const struct body_details *old_type_details
1214 = bodies_by_type + old_type;
1215 SV *referent = NULL;
1217 PERL_ARGS_ASSERT_SV_UPGRADE;
1219 if (old_type == new_type)
1222 /* This clause was purposefully added ahead of the early return above to
1223 the shared string hackery for (sort {$a <=> $b} keys %hash), with the
1224 inference by Nick I-S that it would fix other troublesome cases. See
1225 changes 7162, 7163 (f130fd4589cf5fbb24149cd4db4137c8326f49c1 and parent)
1227 Given that shared hash key scalars are no longer PVIV, but PV, there is
1228 no longer need to unshare so as to free up the IVX slot for its proper
1229 purpose. So it's safe to move the early return earlier. */
1231 if (new_type > SVt_PVMG && SvIsCOW(sv)) {
1232 sv_force_normal_flags(sv, 0);
1235 old_body = SvANY(sv);
1237 /* Copying structures onto other structures that have been neatly zeroed
1238 has a subtle gotcha. Consider XPVMG
1240 +------+------+------+------+------+-------+-------+
1241 | NV | CUR | LEN | IV | MAGIC | STASH |
1242 +------+------+------+------+------+-------+-------+
1243 0 4 8 12 16 20 24 28
1245 where NVs are aligned to 8 bytes, so that sizeof that structure is
1246 actually 32 bytes long, with 4 bytes of padding at the end:
1248 +------+------+------+------+------+-------+-------+------+
1249 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1250 +------+------+------+------+------+-------+-------+------+
1251 0 4 8 12 16 20 24 28 32
1253 so what happens if you allocate memory for this structure:
1255 +------+------+------+------+------+-------+-------+------+------+...
1256 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1257 +------+------+------+------+------+-------+-------+------+------+...
1258 0 4 8 12 16 20 24 28 32 36
1260 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1261 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1262 started out as zero once, but it's quite possible that it isn't. So now,
1263 rather than a nicely zeroed GP, you have it pointing somewhere random.
1266 (In fact, GP ends up pointing at a previous GP structure, because the
1267 principle cause of the padding in XPVMG getting garbage is a copy of
1268 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1269 this happens to be moot because XPVGV has been re-ordered, with GP
1270 no longer after STASH)
1272 So we are careful and work out the size of used parts of all the
1280 referent = SvRV(sv);
1281 old_type_details = &fake_rv;
1282 if (new_type == SVt_NV)
1283 new_type = SVt_PVNV;
1285 if (new_type < SVt_PVIV) {
1286 new_type = (new_type == SVt_NV)
1287 ? SVt_PVNV : SVt_PVIV;
1292 if (new_type < SVt_PVNV) {
1293 new_type = SVt_PVNV;
1297 assert(new_type > SVt_PV);
1298 STATIC_ASSERT_STMT(SVt_IV < SVt_PV);
1299 STATIC_ASSERT_STMT(SVt_NV < SVt_PV);
1306 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1307 there's no way that it can be safely upgraded, because perl.c
1308 expects to Safefree(SvANY(PL_mess_sv)) */
1309 assert(sv != PL_mess_sv);
1312 if (UNLIKELY(old_type_details->cant_upgrade))
1313 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1314 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1317 if (UNLIKELY(old_type > new_type))
1318 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1319 (int)old_type, (int)new_type);
1321 new_type_details = bodies_by_type + new_type;
1323 SvFLAGS(sv) &= ~SVTYPEMASK;
1324 SvFLAGS(sv) |= new_type;
1326 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1327 the return statements above will have triggered. */
1328 assert (new_type != SVt_NULL);
1331 assert(old_type == SVt_NULL);
1332 SET_SVANY_FOR_BODYLESS_IV(sv);
1336 assert(old_type == SVt_NULL);
1337 #if NVSIZE <= IVSIZE
1338 SET_SVANY_FOR_BODYLESS_NV(sv);
1340 SvANY(sv) = new_XNV();
1346 assert(new_type_details->body_size);
1349 assert(new_type_details->arena);
1350 assert(new_type_details->arena_size);
1351 /* This points to the start of the allocated area. */
1352 new_body_inline(new_body, new_type);
1353 Zero(new_body, new_type_details->body_size, char);
1354 new_body = ((char *)new_body) - new_type_details->offset;
1356 /* We always allocated the full length item with PURIFY. To do this
1357 we fake things so that arena is false for all 16 types.. */
1358 new_body = new_NOARENAZ(new_type_details);
1360 SvANY(sv) = new_body;
1361 if (new_type == SVt_PVAV) {
1365 if (old_type_details->body_size) {
1368 /* It will have been zeroed when the new body was allocated.
1369 Lets not write to it, in case it confuses a write-back
1375 #ifndef NODEFAULT_SHAREKEYS
1376 HvSHAREKEYS_on(sv); /* key-sharing on by default */
1378 /* start with PERL_HASH_DEFAULT_HvMAX+1 buckets: */
1379 HvMAX(sv) = PERL_HASH_DEFAULT_HvMAX;
1382 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1383 The target created by newSVrv also is, and it can have magic.
1384 However, it never has SvPVX set.
1386 if (old_type == SVt_IV) {
1388 } else if (old_type >= SVt_PV) {
1389 assert(SvPVX_const(sv) == 0);
1392 if (old_type >= SVt_PVMG) {
1393 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1394 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1396 sv->sv_u.svu_array = NULL; /* or svu_hash */
1401 /* XXX Is this still needed? Was it ever needed? Surely as there is
1402 no route from NV to PVIV, NOK can never be true */
1403 assert(!SvNOKp(sv));
1417 assert(new_type_details->body_size);
1418 /* We always allocated the full length item with PURIFY. To do this
1419 we fake things so that arena is false for all 16 types.. */
1420 if(new_type_details->arena) {
1421 /* This points to the start of the allocated area. */
1422 new_body_inline(new_body, new_type);
1423 Zero(new_body, new_type_details->body_size, char);
1424 new_body = ((char *)new_body) - new_type_details->offset;
1426 new_body = new_NOARENAZ(new_type_details);
1428 SvANY(sv) = new_body;
1430 if (old_type_details->copy) {
1431 /* There is now the potential for an upgrade from something without
1432 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1433 int offset = old_type_details->offset;
1434 int length = old_type_details->copy;
1436 if (new_type_details->offset > old_type_details->offset) {
1437 const int difference
1438 = new_type_details->offset - old_type_details->offset;
1439 offset += difference;
1440 length -= difference;
1442 assert (length >= 0);
1444 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1448 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1449 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1450 * correct 0.0 for us. Otherwise, if the old body didn't have an
1451 * NV slot, but the new one does, then we need to initialise the
1452 * freshly created NV slot with whatever the correct bit pattern is
1454 if (old_type_details->zero_nv && !new_type_details->zero_nv
1455 && !isGV_with_GP(sv))
1459 if (UNLIKELY(new_type == SVt_PVIO)) {
1460 IO * const io = MUTABLE_IO(sv);
1461 GV *iogv = gv_fetchpvs("IO::File::", GV_ADD, SVt_PVHV);
1464 /* Clear the stashcache because a new IO could overrule a package
1466 DEBUG_o(Perl_deb(aTHX_ "sv_upgrade clearing PL_stashcache\n"));
1467 hv_clear(PL_stashcache);
1469 SvSTASH_set(io, MUTABLE_HV(SvREFCNT_inc(GvHV(iogv))));
1470 IoPAGE_LEN(sv) = 60;
1472 if (old_type < SVt_PV) {
1473 /* referent will be NULL unless the old type was SVt_IV emulating
1475 sv->sv_u.svu_rv = referent;
1479 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1480 (unsigned long)new_type);
1483 /* if this is zero, this is a body-less SVt_NULL, SVt_IV/SVt_RV,
1484 and sometimes SVt_NV */
1485 if (old_type_details->body_size) {
1489 /* Note that there is an assumption that all bodies of types that
1490 can be upgraded came from arenas. Only the more complex non-
1491 upgradable types are allowed to be directly malloc()ed. */
1492 assert(old_type_details->arena);
1493 del_body((void*)((char*)old_body + old_type_details->offset),
1494 &PL_body_roots[old_type]);
1500 =for apidoc sv_backoff
1502 Remove any string offset. You should normally use the C<SvOOK_off> macro
1508 /* prior to 5.000 stable, this function returned the new OOK-less SvFLAGS
1509 prior to 5.23.4 this function always returned 0
1513 Perl_sv_backoff(SV *const sv)
1516 const char * const s = SvPVX_const(sv);
1518 PERL_ARGS_ASSERT_SV_BACKOFF;
1521 assert(SvTYPE(sv) != SVt_PVHV);
1522 assert(SvTYPE(sv) != SVt_PVAV);
1524 SvOOK_offset(sv, delta);
1526 SvLEN_set(sv, SvLEN(sv) + delta);
1527 SvPV_set(sv, SvPVX(sv) - delta);
1528 SvFLAGS(sv) &= ~SVf_OOK;
1529 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1534 /* forward declaration */
1535 static void S_sv_uncow(pTHX_ SV * const sv, const U32 flags);
1541 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1542 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1543 Use the C<SvGROW> wrapper instead.
1550 Perl_sv_grow(pTHX_ SV *const sv, STRLEN newlen)
1554 PERL_ARGS_ASSERT_SV_GROW;
1558 if (SvTYPE(sv) < SVt_PV) {
1559 sv_upgrade(sv, SVt_PV);
1560 s = SvPVX_mutable(sv);
1562 else if (SvOOK(sv)) { /* pv is offset? */
1564 s = SvPVX_mutable(sv);
1565 if (newlen > SvLEN(sv))
1566 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1570 if (SvIsCOW(sv)) S_sv_uncow(aTHX_ sv, 0);
1571 s = SvPVX_mutable(sv);
1574 #ifdef PERL_COPY_ON_WRITE
1575 /* the new COW scheme uses SvPVX(sv)[SvLEN(sv)-1] (if spare)
1576 * to store the COW count. So in general, allocate one more byte than
1577 * asked for, to make it likely this byte is always spare: and thus
1578 * make more strings COW-able.
1580 * Only increment if the allocation isn't MEM_SIZE_MAX,
1581 * otherwise it will wrap to 0.
1583 if ( newlen != MEM_SIZE_MAX )
1587 #if defined(PERL_USE_MALLOC_SIZE) && defined(Perl_safesysmalloc_size)
1588 #define PERL_UNWARANTED_CHUMMINESS_WITH_MALLOC
1591 if (newlen > SvLEN(sv)) { /* need more room? */
1592 STRLEN minlen = SvCUR(sv);
1593 minlen += (minlen >> PERL_STRLEN_EXPAND_SHIFT) + 10;
1594 if (newlen < minlen)
1596 #ifndef PERL_UNWARANTED_CHUMMINESS_WITH_MALLOC
1598 /* Don't round up on the first allocation, as odds are pretty good that
1599 * the initial request is accurate as to what is really needed */
1601 STRLEN rounded = PERL_STRLEN_ROUNDUP(newlen);
1602 if (rounded > newlen)
1606 if (SvLEN(sv) && s) {
1607 s = (char*)saferealloc(s, newlen);
1610 s = (char*)safemalloc(newlen);
1611 if (SvPVX_const(sv) && SvCUR(sv)) {
1612 Move(SvPVX_const(sv), s, SvCUR(sv), char);
1616 #ifdef PERL_UNWARANTED_CHUMMINESS_WITH_MALLOC
1617 /* Do this here, do it once, do it right, and then we will never get
1618 called back into sv_grow() unless there really is some growing
1620 SvLEN_set(sv, Perl_safesysmalloc_size(s));
1622 SvLEN_set(sv, newlen);
1629 =for apidoc sv_setiv
1630 =for apidoc_item sv_setiv_mg
1632 These copy an integer into the given SV, upgrading first if necessary.
1634 They differ only in that C<sv_setiv_mg> handles 'set' magic; C<sv_setiv> does
1641 Perl_sv_setiv(pTHX_ SV *const sv, const IV i)
1643 PERL_ARGS_ASSERT_SV_SETIV;
1645 SV_CHECK_THINKFIRST_COW_DROP(sv);
1646 switch (SvTYPE(sv)) {
1649 sv_upgrade(sv, SVt_IV);
1652 sv_upgrade(sv, SVt_PVIV);
1656 if (!isGV_with_GP(sv))
1664 /* diag_listed_as: Can't coerce %s to %s in %s */
1665 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1667 NOT_REACHED; /* NOTREACHED */
1671 (void)SvIOK_only(sv); /* validate number */
1677 Perl_sv_setiv_mg(pTHX_ SV *const sv, const IV i)
1679 PERL_ARGS_ASSERT_SV_SETIV_MG;
1686 =for apidoc sv_setuv
1687 =for apidoc_item sv_setuv_mg
1689 These copy an unsigned integer into the given SV, upgrading first if necessary.
1692 They differ only in that C<sv_setuv_mg> handles 'set' magic; C<sv_setuv> does
1699 Perl_sv_setuv(pTHX_ SV *const sv, const UV u)
1701 PERL_ARGS_ASSERT_SV_SETUV;
1703 /* With the if statement to ensure that integers are stored as IVs whenever
1705 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1708 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1710 If you wish to remove the following if statement, so that this routine
1711 (and its callers) always return UVs, please benchmark to see what the
1712 effect is. Modern CPUs may be different. Or may not :-)
1714 if (u <= (UV)IV_MAX) {
1715 sv_setiv(sv, (IV)u);
1724 Perl_sv_setuv_mg(pTHX_ SV *const sv, const UV u)
1726 PERL_ARGS_ASSERT_SV_SETUV_MG;
1733 =for apidoc sv_setnv
1734 =for apidoc_item sv_setnv_mg
1736 These copy a double into the given SV, upgrading first if necessary.
1738 They differ only in that C<sv_setnv_mg> handles 'set' magic; C<sv_setnv> does
1745 Perl_sv_setnv(pTHX_ SV *const sv, const NV num)
1747 PERL_ARGS_ASSERT_SV_SETNV;
1749 SV_CHECK_THINKFIRST_COW_DROP(sv);
1750 switch (SvTYPE(sv)) {
1753 sv_upgrade(sv, SVt_NV);
1757 sv_upgrade(sv, SVt_PVNV);
1761 if (!isGV_with_GP(sv))
1769 /* diag_listed_as: Can't coerce %s to %s in %s */
1770 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1772 NOT_REACHED; /* NOTREACHED */
1777 (void)SvNOK_only(sv); /* validate number */
1782 Perl_sv_setnv_mg(pTHX_ SV *const sv, const NV num)
1784 PERL_ARGS_ASSERT_SV_SETNV_MG;
1790 /* Return a cleaned-up, printable version of sv, for non-numeric, or
1791 * not incrementable warning display.
1792 * Originally part of S_not_a_number().
1793 * The return value may be != tmpbuf.
1797 S_sv_display(pTHX_ SV *const sv, char *tmpbuf, STRLEN tmpbuf_size) {
1800 PERL_ARGS_ASSERT_SV_DISPLAY;
1803 SV *dsv = newSVpvs_flags("", SVs_TEMP);
1804 pv = sv_uni_display(dsv, sv, 32, UNI_DISPLAY_ISPRINT);
1807 const char * const limit = tmpbuf + tmpbuf_size - 8;
1808 /* each *s can expand to 4 chars + "...\0",
1809 i.e. need room for 8 chars */
1811 const char *s = SvPVX_const(sv);
1812 const char * const end = s + SvCUR(sv);
1813 for ( ; s < end && d < limit; s++ ) {
1815 if (! isASCII(ch) && !isPRINT_LC(ch)) {
1819 /* Map to ASCII "equivalent" of Latin1 */
1820 ch = LATIN1_TO_NATIVE(NATIVE_TO_LATIN1(ch) & 127);
1826 else if (ch == '\r') {
1830 else if (ch == '\f') {
1834 else if (ch == '\\') {
1838 else if (ch == '\0') {
1842 else if (isPRINT_LC(ch))
1861 /* Print an "isn't numeric" warning, using a cleaned-up,
1862 * printable version of the offending string
1866 S_not_a_number(pTHX_ SV *const sv)
1871 PERL_ARGS_ASSERT_NOT_A_NUMBER;
1873 pv = sv_display(sv, tmpbuf, sizeof(tmpbuf));
1876 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1877 /* diag_listed_as: Argument "%s" isn't numeric%s */
1878 "Argument \"%s\" isn't numeric in %s", pv,
1881 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1882 /* diag_listed_as: Argument "%s" isn't numeric%s */
1883 "Argument \"%s\" isn't numeric", pv);
1887 S_not_incrementable(pTHX_ SV *const sv) {
1891 PERL_ARGS_ASSERT_NOT_INCREMENTABLE;
1893 pv = sv_display(sv, tmpbuf, sizeof(tmpbuf));
1895 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1896 "Argument \"%s\" treated as 0 in increment (++)", pv);
1900 =for apidoc looks_like_number
1902 Test if the content of an SV looks like a number (or is a number).
1903 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1904 non-numeric warning), even if your C<atof()> doesn't grok them. Get-magic is
1911 Perl_looks_like_number(pTHX_ SV *const sv)
1917 PERL_ARGS_ASSERT_LOOKS_LIKE_NUMBER;
1919 if (SvPOK(sv) || SvPOKp(sv)) {
1920 sbegin = SvPV_nomg_const(sv, len);
1923 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1924 numtype = grok_number(sbegin, len, NULL);
1925 return ((numtype & IS_NUMBER_TRAILING)) ? 0 : numtype;
1929 S_glob_2number(pTHX_ GV * const gv)
1931 PERL_ARGS_ASSERT_GLOB_2NUMBER;
1933 /* We know that all GVs stringify to something that is not-a-number,
1934 so no need to test that. */
1935 if (ckWARN(WARN_NUMERIC))
1937 SV *const buffer = sv_newmortal();
1938 gv_efullname3(buffer, gv, "*");
1939 not_a_number(buffer);
1941 /* We just want something true to return, so that S_sv_2iuv_common
1942 can tail call us and return true. */
1946 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1947 until proven guilty, assume that things are not that bad... */
1952 As 64 bit platforms often have an NV that doesn't preserve all bits of
1953 an IV (an assumption perl has been based on to date) it becomes necessary
1954 to remove the assumption that the NV always carries enough precision to
1955 recreate the IV whenever needed, and that the NV is the canonical form.
1956 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1957 precision as a side effect of conversion (which would lead to insanity
1958 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1959 1) to distinguish between IV/UV/NV slots that have a valid conversion cached
1960 where precision was lost, and IV/UV/NV slots that have a valid conversion
1961 which has lost no precision
1962 2) to ensure that if a numeric conversion to one form is requested that
1963 would lose precision, the precise conversion (or differently
1964 imprecise conversion) is also performed and cached, to prevent
1965 requests for different numeric formats on the same SV causing
1966 lossy conversion chains. (lossless conversion chains are perfectly
1971 SvIOKp is true if the IV slot contains a valid value
1972 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1973 SvNOKp is true if the NV slot contains a valid value
1974 SvNOK is true only if the NV value is accurate
1977 while converting from PV to NV, check to see if converting that NV to an
1978 IV(or UV) would lose accuracy over a direct conversion from PV to
1979 IV(or UV). If it would, cache both conversions, return NV, but mark
1980 SV as IOK NOKp (ie not NOK).
1982 While converting from PV to IV, check to see if converting that IV to an
1983 NV would lose accuracy over a direct conversion from PV to NV. If it
1984 would, cache both conversions, flag similarly.
1986 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1987 correctly because if IV & NV were set NV *always* overruled.
1988 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1989 changes - now IV and NV together means that the two are interchangeable:
1990 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1992 The benefit of this is that operations such as pp_add know that if
1993 SvIOK is true for both left and right operands, then integer addition
1994 can be used instead of floating point (for cases where the result won't
1995 overflow). Before, floating point was always used, which could lead to
1996 loss of precision compared with integer addition.
1998 * making IV and NV equal status should make maths accurate on 64 bit
2000 * may speed up maths somewhat if pp_add and friends start to use
2001 integers when possible instead of fp. (Hopefully the overhead in
2002 looking for SvIOK and checking for overflow will not outweigh the
2003 fp to integer speedup)
2004 * will slow down integer operations (callers of SvIV) on "inaccurate"
2005 values, as the change from SvIOK to SvIOKp will cause a call into
2006 sv_2iv each time rather than a macro access direct to the IV slot
2007 * should speed up number->string conversion on integers as IV is
2008 favoured when IV and NV are equally accurate
2010 ####################################################################
2011 You had better be using SvIOK_notUV if you want an IV for arithmetic:
2012 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
2013 On the other hand, SvUOK is true iff UV.
2014 ####################################################################
2016 Your mileage will vary depending your CPU's relative fp to integer
2020 #ifndef NV_PRESERVES_UV
2021 # define IS_NUMBER_UNDERFLOW_IV 1
2022 # define IS_NUMBER_UNDERFLOW_UV 2
2023 # define IS_NUMBER_IV_AND_UV 2
2024 # define IS_NUMBER_OVERFLOW_IV 4
2025 # define IS_NUMBER_OVERFLOW_UV 5
2027 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
2029 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
2031 S_sv_2iuv_non_preserve(pTHX_ SV *const sv
2037 PERL_ARGS_ASSERT_SV_2IUV_NON_PRESERVE;
2038 PERL_UNUSED_CONTEXT;
2040 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%" UVxf " NV=%" NVgf " inttype=%" UVXf "\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
2041 if (SvNVX(sv) < (NV)IV_MIN) {
2042 (void)SvIOKp_on(sv);
2044 SvIV_set(sv, IV_MIN);
2045 return IS_NUMBER_UNDERFLOW_IV;
2047 if (SvNVX(sv) > (NV)UV_MAX) {
2048 (void)SvIOKp_on(sv);
2051 SvUV_set(sv, UV_MAX);
2052 return IS_NUMBER_OVERFLOW_UV;
2054 (void)SvIOKp_on(sv);
2056 /* Can't use strtol etc to convert this string. (See truth table in
2058 if (SvNVX(sv) < IV_MAX_P1) {
2059 SvIV_set(sv, I_V(SvNVX(sv)));
2060 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2061 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
2063 /* Integer is imprecise. NOK, IOKp */
2065 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
2068 SvUV_set(sv, U_V(SvNVX(sv)));
2069 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2070 if (SvUVX(sv) == UV_MAX) {
2071 /* As we know that NVs don't preserve UVs, UV_MAX cannot
2072 possibly be preserved by NV. Hence, it must be overflow.
2074 return IS_NUMBER_OVERFLOW_UV;
2076 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
2078 /* Integer is imprecise. NOK, IOKp */
2080 return IS_NUMBER_OVERFLOW_IV;
2082 #endif /* !NV_PRESERVES_UV*/
2084 /* If numtype is infnan, set the NV of the sv accordingly.
2085 * If numtype is anything else, try setting the NV using Atof(PV). */
2087 S_sv_setnv(pTHX_ SV* sv, int numtype)
2089 bool pok = cBOOL(SvPOK(sv));
2092 if ((numtype & IS_NUMBER_INFINITY)) {
2093 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -NV_INF : NV_INF);
2098 if ((numtype & IS_NUMBER_NAN)) {
2099 SvNV_set(sv, NV_NAN);
2104 SvNV_set(sv, Atof(SvPVX_const(sv)));
2105 /* Purposefully no true nok here, since we don't want to blow
2106 * away the possible IOK/UV of an existing sv. */
2109 SvNOK_only(sv); /* No IV or UV please, this is pure infnan. */
2111 SvPOK_on(sv); /* PV is okay, though. */
2116 S_sv_2iuv_common(pTHX_ SV *const sv)
2118 PERL_ARGS_ASSERT_SV_2IUV_COMMON;
2121 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
2122 * without also getting a cached IV/UV from it at the same time
2123 * (ie PV->NV conversion should detect loss of accuracy and cache
2124 * IV or UV at same time to avoid this. */
2125 /* IV-over-UV optimisation - choose to cache IV if possible */
2127 if (SvTYPE(sv) == SVt_NV)
2128 sv_upgrade(sv, SVt_PVNV);
2130 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
2131 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
2132 certainly cast into the IV range at IV_MAX, whereas the correct
2133 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
2135 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
2136 if (Perl_isnan(SvNVX(sv))) {
2142 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2143 SvIV_set(sv, I_V(SvNVX(sv)));
2144 if (SvNVX(sv) == (NV) SvIVX(sv)
2145 #ifndef NV_PRESERVES_UV
2146 && SvIVX(sv) != IV_MIN /* avoid negating IV_MIN below */
2147 && (((UV)1 << NV_PRESERVES_UV_BITS) >
2148 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
2149 /* Don't flag it as "accurately an integer" if the number
2150 came from a (by definition imprecise) NV operation, and
2151 we're outside the range of NV integer precision */
2155 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
2157 /* scalar has trailing garbage, eg "42a" */
2159 DEBUG_c(PerlIO_printf(Perl_debug_log,
2160 "0x%" UVxf " iv(%" NVgf " => %" IVdf ") (precise)\n",
2166 /* IV not precise. No need to convert from PV, as NV
2167 conversion would already have cached IV if it detected
2168 that PV->IV would be better than PV->NV->IV
2169 flags already correct - don't set public IOK. */
2170 DEBUG_c(PerlIO_printf(Perl_debug_log,
2171 "0x%" UVxf " iv(%" NVgf " => %" IVdf ") (imprecise)\n",
2176 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
2177 but the cast (NV)IV_MIN rounds to a the value less (more
2178 negative) than IV_MIN which happens to be equal to SvNVX ??
2179 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
2180 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
2181 (NV)UVX == NVX are both true, but the values differ. :-(
2182 Hopefully for 2s complement IV_MIN is something like
2183 0x8000000000000000 which will be exact. NWC */
2186 SvUV_set(sv, U_V(SvNVX(sv)));
2188 (SvNVX(sv) == (NV) SvUVX(sv))
2189 #ifndef NV_PRESERVES_UV
2190 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
2191 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
2192 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
2193 /* Don't flag it as "accurately an integer" if the number
2194 came from a (by definition imprecise) NV operation, and
2195 we're outside the range of NV integer precision */
2201 DEBUG_c(PerlIO_printf(Perl_debug_log,
2202 "0x%" UVxf " 2iv(%" UVuf " => %" IVdf ") (as unsigned)\n",
2208 else if (SvPOKp(sv)) {
2211 const char *s = SvPVX_const(sv);
2212 const STRLEN cur = SvCUR(sv);
2214 /* short-cut for a single digit string like "1" */
2219 if (SvTYPE(sv) < SVt_PVIV)
2220 sv_upgrade(sv, SVt_PVIV);
2222 SvIV_set(sv, (IV)(c - '0'));
2227 numtype = grok_number(s, cur, &value);
2228 /* We want to avoid a possible problem when we cache an IV/ a UV which
2229 may be later translated to an NV, and the resulting NV is not
2230 the same as the direct translation of the initial string
2231 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
2232 be careful to ensure that the value with the .456 is around if the
2233 NV value is requested in the future).
2235 This means that if we cache such an IV/a UV, we need to cache the
2236 NV as well. Moreover, we trade speed for space, and do not
2237 cache the NV if we are sure it's not needed.
2240 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
2241 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2242 == IS_NUMBER_IN_UV) {
2243 /* It's definitely an integer, only upgrade to PVIV */
2244 if (SvTYPE(sv) < SVt_PVIV)
2245 sv_upgrade(sv, SVt_PVIV);
2247 } else if (SvTYPE(sv) < SVt_PVNV)
2248 sv_upgrade(sv, SVt_PVNV);
2250 if ((numtype & (IS_NUMBER_INFINITY | IS_NUMBER_NAN))) {
2251 if (ckWARN(WARN_NUMERIC) && ((numtype & IS_NUMBER_TRAILING)))
2253 S_sv_setnv(aTHX_ sv, numtype);
2257 /* If NVs preserve UVs then we only use the UV value if we know that
2258 we aren't going to call atof() below. If NVs don't preserve UVs
2259 then the value returned may have more precision than atof() will
2260 return, even though value isn't perfectly accurate. */
2261 if ((numtype & (IS_NUMBER_IN_UV
2262 #ifdef NV_PRESERVES_UV
2265 )) == IS_NUMBER_IN_UV) {
2266 /* This won't turn off the public IOK flag if it was set above */
2267 (void)SvIOKp_on(sv);
2269 if (!(numtype & IS_NUMBER_NEG)) {
2271 if (value <= (UV)IV_MAX) {
2272 SvIV_set(sv, (IV)value);
2274 /* it didn't overflow, and it was positive. */
2275 SvUV_set(sv, value);
2279 /* 2s complement assumption */
2280 if (value <= (UV)IV_MIN) {
2281 SvIV_set(sv, value == (UV)IV_MIN
2282 ? IV_MIN : -(IV)value);
2284 /* Too negative for an IV. This is a double upgrade, but
2285 I'm assuming it will be rare. */
2286 if (SvTYPE(sv) < SVt_PVNV)
2287 sv_upgrade(sv, SVt_PVNV);
2291 SvNV_set(sv, -(NV)value);
2292 SvIV_set(sv, IV_MIN);
2296 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2297 will be in the previous block to set the IV slot, and the next
2298 block to set the NV slot. So no else here. */
2300 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2301 != IS_NUMBER_IN_UV) {
2302 /* It wasn't an (integer that doesn't overflow the UV). */
2303 S_sv_setnv(aTHX_ sv, numtype);
2305 if (! numtype && ckWARN(WARN_NUMERIC))
2308 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%" UVxf " 2iv(%" NVgf ")\n",
2309 PTR2UV(sv), SvNVX(sv)));
2311 #ifdef NV_PRESERVES_UV
2312 (void)SvIOKp_on(sv);
2314 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
2315 if (Perl_isnan(SvNVX(sv))) {
2321 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2322 SvIV_set(sv, I_V(SvNVX(sv)));
2323 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2326 NOOP; /* Integer is imprecise. NOK, IOKp */
2328 /* UV will not work better than IV */
2330 if (SvNVX(sv) > (NV)UV_MAX) {
2332 /* Integer is inaccurate. NOK, IOKp, is UV */
2333 SvUV_set(sv, UV_MAX);
2335 SvUV_set(sv, U_V(SvNVX(sv)));
2336 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2337 NV preservse UV so can do correct comparison. */
2338 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2341 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2346 #else /* NV_PRESERVES_UV */
2347 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2348 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2349 /* The IV/UV slot will have been set from value returned by
2350 grok_number above. The NV slot has just been set using
2353 assert (SvIOKp(sv));
2355 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2356 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2357 /* Small enough to preserve all bits. */
2358 (void)SvIOKp_on(sv);
2360 SvIV_set(sv, I_V(SvNVX(sv)));
2361 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2363 /* Assumption: first non-preserved integer is < IV_MAX,
2364 this NV is in the preserved range, therefore: */
2365 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2367 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%" NVgf " U_V is 0x%" UVxf ", IV_MAX is 0x%" UVxf "\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2371 0 0 already failed to read UV.
2372 0 1 already failed to read UV.
2373 1 0 you won't get here in this case. IV/UV
2374 slot set, public IOK, Atof() unneeded.
2375 1 1 already read UV.
2376 so there's no point in sv_2iuv_non_preserve() attempting
2377 to use atol, strtol, strtoul etc. */
2379 sv_2iuv_non_preserve (sv, numtype);
2381 sv_2iuv_non_preserve (sv);
2385 #endif /* NV_PRESERVES_UV */
2386 /* It might be more code efficient to go through the entire logic above
2387 and conditionally set with SvIOKp_on() rather than SvIOK(), but it
2388 gets complex and potentially buggy, so more programmer efficient
2389 to do it this way, by turning off the public flags: */
2391 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2395 if (isGV_with_GP(sv))
2396 return glob_2number(MUTABLE_GV(sv));
2398 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2400 if (SvTYPE(sv) < SVt_IV)
2401 /* Typically the caller expects that sv_any is not NULL now. */
2402 sv_upgrade(sv, SVt_IV);
2403 /* Return 0 from the caller. */
2410 =for apidoc sv_2iv_flags
2412 Return the integer value of an SV, doing any necessary string
2413 conversion. If C<flags> has the C<SV_GMAGIC> bit set, does an C<mg_get()> first.
2414 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2420 Perl_sv_2iv_flags(pTHX_ SV *const sv, const I32 flags)
2422 PERL_ARGS_ASSERT_SV_2IV_FLAGS;
2424 assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV
2425 && SvTYPE(sv) != SVt_PVFM);
2427 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2433 if (flags & SV_SKIP_OVERLOAD)
2435 tmpstr = AMG_CALLunary(sv, numer_amg);
2436 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2437 return SvIV(tmpstr);
2440 return PTR2IV(SvRV(sv));
2443 if (SvVALID(sv) || isREGEXP(sv)) {
2444 /* FBMs use the space for SvIVX and SvNVX for other purposes, so
2445 must not let them cache IVs.
2446 In practice they are extremely unlikely to actually get anywhere
2447 accessible by user Perl code - the only way that I'm aware of is when
2448 a constant subroutine which is used as the second argument to index.
2450 Regexps have no SvIVX and SvNVX fields.
2455 const char * const ptr =
2456 isREGEXP(sv) ? RX_WRAPPED((REGEXP*)sv) : SvPVX_const(sv);
2458 = grok_number(ptr, SvCUR(sv), &value);
2460 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2461 == IS_NUMBER_IN_UV) {
2462 /* It's definitely an integer */
2463 if (numtype & IS_NUMBER_NEG) {
2464 if (value < (UV)IV_MIN)
2467 if (value < (UV)IV_MAX)
2472 /* Quite wrong but no good choices. */
2473 if ((numtype & IS_NUMBER_INFINITY)) {
2474 return (numtype & IS_NUMBER_NEG) ? IV_MIN : IV_MAX;
2475 } else if ((numtype & IS_NUMBER_NAN)) {
2476 return 0; /* So wrong. */
2480 if (ckWARN(WARN_NUMERIC))
2483 return I_V(Atof(ptr));
2487 if (SvTHINKFIRST(sv)) {
2488 if (SvREADONLY(sv) && !SvOK(sv)) {
2489 if (ckWARN(WARN_UNINITIALIZED))
2496 if (S_sv_2iuv_common(aTHX_ sv))
2500 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%" UVxf " 2iv(%" IVdf ")\n",
2501 PTR2UV(sv),SvIVX(sv)));
2502 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2506 =for apidoc sv_2uv_flags
2508 Return the unsigned integer value of an SV, doing any necessary string
2509 conversion. If C<flags> has the C<SV_GMAGIC> bit set, does an C<mg_get()> first.
2510 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2512 =for apidoc Amnh||SV_GMAGIC
2518 Perl_sv_2uv_flags(pTHX_ SV *const sv, const I32 flags)
2520 PERL_ARGS_ASSERT_SV_2UV_FLAGS;
2522 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2528 if (flags & SV_SKIP_OVERLOAD)
2530 tmpstr = AMG_CALLunary(sv, numer_amg);
2531 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2532 return SvUV(tmpstr);
2535 return PTR2UV(SvRV(sv));
2538 if (SvVALID(sv) || isREGEXP(sv)) {
2539 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2540 the same flag bit as SVf_IVisUV, so must not let them cache IVs.
2541 Regexps have no SvIVX and SvNVX fields. */
2545 const char * const ptr =
2546 isREGEXP(sv) ? RX_WRAPPED((REGEXP*)sv) : SvPVX_const(sv);
2548 = grok_number(ptr, SvCUR(sv), &value);
2550 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2551 == IS_NUMBER_IN_UV) {
2552 /* It's definitely an integer */
2553 if (!(numtype & IS_NUMBER_NEG))
2557 /* Quite wrong but no good choices. */
2558 if ((numtype & IS_NUMBER_INFINITY)) {
2559 return UV_MAX; /* So wrong. */
2560 } else if ((numtype & IS_NUMBER_NAN)) {
2561 return 0; /* So wrong. */
2565 if (ckWARN(WARN_NUMERIC))
2568 return U_V(Atof(ptr));
2572 if (SvTHINKFIRST(sv)) {
2573 if (SvREADONLY(sv) && !SvOK(sv)) {
2574 if (ckWARN(WARN_UNINITIALIZED))
2581 if (S_sv_2iuv_common(aTHX_ sv))
2585 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%" UVxf " 2uv(%" UVuf ")\n",
2586 PTR2UV(sv),SvUVX(sv)));
2587 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2591 =for apidoc sv_2nv_flags
2593 Return the num value of an SV, doing any necessary string or integer
2594 conversion. If C<flags> has the C<SV_GMAGIC> bit set, does an C<mg_get()> first.
2595 Normally used via the C<SvNV(sv)> and C<SvNVx(sv)> macros.
2601 Perl_sv_2nv_flags(pTHX_ SV *const sv, const I32 flags)
2603 PERL_ARGS_ASSERT_SV_2NV_FLAGS;
2605 assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV
2606 && SvTYPE(sv) != SVt_PVFM);
2607 if (SvGMAGICAL(sv) || SvVALID(sv) || isREGEXP(sv)) {
2608 /* FBMs use the space for SvIVX and SvNVX for other purposes, and use
2609 the same flag bit as SVf_IVisUV, so must not let them cache NVs.
2610 Regexps have no SvIVX and SvNVX fields. */
2612 if (flags & SV_GMAGIC)
2616 if (SvPOKp(sv) && !SvIOKp(sv)) {
2617 ptr = SvPVX_const(sv);
2618 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2619 !grok_number(ptr, SvCUR(sv), NULL))
2625 return (NV)SvUVX(sv);
2627 return (NV)SvIVX(sv);
2632 assert(SvTYPE(sv) >= SVt_PVMG);
2633 /* This falls through to the report_uninit near the end of the
2635 } else if (SvTHINKFIRST(sv)) {
2640 if (flags & SV_SKIP_OVERLOAD)
2642 tmpstr = AMG_CALLunary(sv, numer_amg);
2643 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2644 return SvNV(tmpstr);
2647 return PTR2NV(SvRV(sv));
2649 if (SvREADONLY(sv) && !SvOK(sv)) {
2650 if (ckWARN(WARN_UNINITIALIZED))
2655 if (SvTYPE(sv) < SVt_NV) {
2656 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2657 sv_upgrade(sv, SVt_NV);
2658 CLANG_DIAG_IGNORE_STMT(-Wthread-safety);
2660 DECLARATION_FOR_LC_NUMERIC_MANIPULATION;
2661 STORE_LC_NUMERIC_SET_STANDARD();
2662 PerlIO_printf(Perl_debug_log,
2663 "0x%" UVxf " num(%" NVgf ")\n",
2664 PTR2UV(sv), SvNVX(sv));
2665 RESTORE_LC_NUMERIC();
2667 CLANG_DIAG_RESTORE_STMT;
2670 else if (SvTYPE(sv) < SVt_PVNV)
2671 sv_upgrade(sv, SVt_PVNV);
2676 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2677 #ifdef NV_PRESERVES_UV
2683 /* Only set the public NV OK flag if this NV preserves the IV */
2684 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2686 SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2687 : (SvIVX(sv) == I_V(SvNVX(sv))))
2693 else if (SvPOKp(sv)) {
2695 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2696 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2698 #ifdef NV_PRESERVES_UV
2699 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2700 == IS_NUMBER_IN_UV) {
2701 /* It's definitely an integer */
2702 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2704 S_sv_setnv(aTHX_ sv, numtype);
2711 SvNV_set(sv, Atof(SvPVX_const(sv)));
2712 /* Only set the public NV OK flag if this NV preserves the value in
2713 the PV at least as well as an IV/UV would.
2714 Not sure how to do this 100% reliably. */
2715 /* if that shift count is out of range then Configure's test is
2716 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2718 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2719 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2720 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2721 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2722 /* Can't use strtol etc to convert this string, so don't try.
2723 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2726 /* value has been set. It may not be precise. */
2727 if ((numtype & IS_NUMBER_NEG) && (value >= (UV)IV_MIN)) {
2728 /* 2s complement assumption for (UV)IV_MIN */
2729 SvNOK_on(sv); /* Integer is too negative. */
2734 if (numtype & IS_NUMBER_NEG) {
2735 /* -IV_MIN is undefined, but we should never reach
2736 * this point with both IS_NUMBER_NEG and value ==
2738 assert(value != (UV)IV_MIN);
2739 SvIV_set(sv, -(IV)value);
2740 } else if (value <= (UV)IV_MAX) {
2741 SvIV_set(sv, (IV)value);
2743 SvUV_set(sv, value);
2747 if (numtype & IS_NUMBER_NOT_INT) {
2748 /* I believe that even if the original PV had decimals,
2749 they are lost beyond the limit of the FP precision.
2750 However, neither is canonical, so both only get p
2751 flags. NWC, 2000/11/25 */
2752 /* Both already have p flags, so do nothing */
2754 const NV nv = SvNVX(sv);
2755 /* XXX should this spot have NAN_COMPARE_BROKEN, too? */
2756 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2757 if (SvIVX(sv) == I_V(nv)) {
2760 /* It had no "." so it must be integer. */
2764 /* between IV_MAX and NV(UV_MAX).
2765 Could be slightly > UV_MAX */
2767 if (numtype & IS_NUMBER_NOT_INT) {
2768 /* UV and NV both imprecise. */
2770 const UV nv_as_uv = U_V(nv);
2772 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2781 /* It might be more code efficient to go through the entire logic above
2782 and conditionally set with SvNOKp_on() rather than SvNOK(), but it
2783 gets complex and potentially buggy, so more programmer efficient
2784 to do it this way, by turning off the public flags: */
2786 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2787 #endif /* NV_PRESERVES_UV */
2790 if (isGV_with_GP(sv)) {
2791 glob_2number(MUTABLE_GV(sv));
2795 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2797 assert (SvTYPE(sv) >= SVt_NV);
2798 /* Typically the caller expects that sv_any is not NULL now. */
2799 /* XXX Ilya implies that this is a bug in callers that assume this
2800 and ideally should be fixed. */
2803 CLANG_DIAG_IGNORE_STMT(-Wthread-safety);
2805 DECLARATION_FOR_LC_NUMERIC_MANIPULATION;
2806 STORE_LC_NUMERIC_SET_STANDARD();
2807 PerlIO_printf(Perl_debug_log, "0x%" UVxf " 2nv(%" NVgf ")\n",
2808 PTR2UV(sv), SvNVX(sv));
2809 RESTORE_LC_NUMERIC();
2811 CLANG_DIAG_RESTORE_STMT;
2818 Return an SV with the numeric value of the source SV, doing any necessary
2819 reference or overload conversion. The caller is expected to have handled
2826 Perl_sv_2num(pTHX_ SV *const sv)
2828 PERL_ARGS_ASSERT_SV_2NUM;
2833 SV * const tmpsv = AMG_CALLunary(sv, numer_amg);
2834 TAINT_IF(tmpsv && SvTAINTED(tmpsv));
2835 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2836 return sv_2num(tmpsv);
2838 return sv_2mortal(newSVuv(PTR2UV(SvRV(sv))));
2841 /* int2str_table: lookup table containing string representations of all
2842 * two digit numbers. For example, int2str_table.arr[0] is "00" and
2843 * int2str_table.arr[12*2] is "12".
2845 * We are going to read two bytes at a time, so we have to ensure that
2846 * the array is aligned to a 2 byte boundary. That's why it was made a
2847 * union with a dummy U16 member. */
2848 static const union {
2851 } int2str_table = {{
2852 '0', '0', '0', '1', '0', '2', '0', '3', '0', '4', '0', '5', '0', '6',
2853 '0', '7', '0', '8', '0', '9', '1', '0', '1', '1', '1', '2', '1', '3',
2854 '1', '4', '1', '5', '1', '6', '1', '7', '1', '8', '1', '9', '2', '0',
2855 '2', '1', '2', '2', '2', '3', '2', '4', '2', '5', '2', '6', '2', '7',
2856 '2', '8', '2', '9', '3', '0', '3', '1', '3', '2', '3', '3', '3', '4',
2857 '3', '5', '3', '6', '3', '7', '3', '8', '3', '9', '4', '0', '4', '1',
2858 '4', '2', '4', '3', '4', '4', '4', '5', '4', '6', '4', '7', '4', '8',
2859 '4', '9', '5', '0', '5', '1', '5', '2', '5', '3', '5', '4', '5', '5',
2860 '5', '6', '5', '7', '5', '8', '5', '9', '6', '0', '6', '1', '6', '2',
2861 '6', '3', '6', '4', '6', '5', '6', '6', '6', '7', '6', '8', '6', '9',
2862 '7', '0', '7', '1', '7', '2', '7', '3', '7', '4', '7', '5', '7', '6',
2863 '7', '7', '7', '8', '7', '9', '8', '0', '8', '1', '8', '2', '8', '3',
2864 '8', '4', '8', '5', '8', '6', '8', '7', '8', '8', '8', '9', '9', '0',
2865 '9', '1', '9', '2', '9', '3', '9', '4', '9', '5', '9', '6', '9', '7',
2869 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2870 * UV as a string towards the end of buf, and return pointers to start and
2873 * We assume that buf is at least TYPE_CHARS(UV) long.
2876 PERL_STATIC_INLINE char *
2877 S_uiv_2buf(char *const buf, const IV iv, UV uv, const int is_uv, char **const peob)
2879 char *ptr = buf + TYPE_CHARS(UV);
2880 char * const ebuf = ptr;
2882 U16 *word_ptr, *word_table;
2884 PERL_ARGS_ASSERT_UIV_2BUF;
2886 /* ptr has to be properly aligned, because we will cast it to U16* */
2887 assert(PTR2nat(ptr) % 2 == 0);
2888 /* we are going to read/write two bytes at a time */
2889 word_ptr = (U16*)ptr;
2890 word_table = (U16*)int2str_table.arr;
2892 if (UNLIKELY(is_uv))
2898 /* Using 0- here to silence bogus warning from MS VC */
2899 uv = (UV) (0 - (UV) iv);
2904 *--word_ptr = word_table[uv % 100];
2907 ptr = (char*)word_ptr;
2910 *--ptr = (char)uv + '0';
2912 *--word_ptr = word_table[uv];
2913 ptr = (char*)word_ptr;
2923 /* Helper for sv_2pv_flags and sv_vcatpvfn_flags. If the NV is an
2924 * infinity or a not-a-number, writes the appropriate strings to the
2925 * buffer, including a zero byte. On success returns the written length,
2926 * excluding the zero byte, on failure (not an infinity, not a nan)
2927 * returns zero, assert-fails on maxlen being too short.
2929 * XXX for "Inf", "-Inf", and "NaN", we could have three read-only
2930 * shared string constants we point to, instead of generating a new
2931 * string for each instance. */
2933 S_infnan_2pv(NV nv, char* buffer, size_t maxlen, char plus) {
2935 assert(maxlen >= 4);
2936 if (Perl_isinf(nv)) {
2938 if (maxlen < 5) /* "-Inf\0" */
2948 else if (Perl_isnan(nv)) {
2952 /* XXX optionally output the payload mantissa bits as
2953 * "(unsigned)" (to match the nan("...") C99 function,
2954 * or maybe as "(0xhhh...)" would make more sense...
2955 * provide a format string so that the user can decide?
2956 * NOTE: would affect the maxlen and assert() logic.*/
2961 assert((s == buffer + 3) || (s == buffer + 4));
2967 =for apidoc sv_2pv_flags
2969 Returns a pointer to the string value of an SV, and sets C<*lp> to its length.
2970 If flags has the C<SV_GMAGIC> bit set, does an C<mg_get()> first. Coerces C<sv> to a
2971 string if necessary. Normally invoked via the C<SvPV_flags> macro.
2972 C<sv_2pv()> and C<sv_2pv_nomg> usually end up here too.
2978 Perl_sv_2pv_flags(pTHX_ SV *const sv, STRLEN *const lp, const U32 flags)
2982 PERL_ARGS_ASSERT_SV_2PV_FLAGS;
2984 assert (SvTYPE(sv) != SVt_PVAV && SvTYPE(sv) != SVt_PVHV
2985 && SvTYPE(sv) != SVt_PVFM);
2986 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
2991 if (flags & SV_SKIP_OVERLOAD)
2993 tmpstr = AMG_CALLunary(sv, string_amg);
2994 TAINT_IF(tmpstr && SvTAINTED(tmpstr));
2995 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2997 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
3001 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
3002 if (flags & SV_CONST_RETURN) {
3003 pv = (char *) SvPVX_const(tmpstr);
3005 pv = (flags & SV_MUTABLE_RETURN)
3006 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
3009 *lp = SvCUR(tmpstr);
3011 pv = sv_2pv_flags(tmpstr, lp, flags);
3024 SV *const referent = SvRV(sv);
3028 retval = buffer = savepvn("NULLREF", len);
3029 } else if (SvTYPE(referent) == SVt_REGEXP &&
3030 (!(PL_curcop->cop_hints & HINT_NO_AMAGIC) ||
3031 amagic_is_enabled(string_amg))) {
3032 REGEXP * const re = (REGEXP *)MUTABLE_PTR(referent);
3036 /* If the regex is UTF-8 we want the containing scalar to
3037 have an UTF-8 flag too */
3044 *lp = RX_WRAPLEN(re);
3046 return RX_WRAPPED(re);
3048 const char *const typestring = sv_reftype(referent, 0);
3049 const STRLEN typelen = strlen(typestring);
3050 UV addr = PTR2UV(referent);
3051 const char *stashname = NULL;
3052 STRLEN stashnamelen = 0; /* hush, gcc */
3053 const char *buffer_end;
3055 if (SvOBJECT(referent)) {
3056 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
3059 stashname = HEK_KEY(name);
3060 stashnamelen = HEK_LEN(name);
3062 if (HEK_UTF8(name)) {
3068 stashname = "__ANON__";
3071 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
3072 + 2 * sizeof(UV) + 2 /* )\0 */;
3074 len = typelen + 3 /* (0x */
3075 + 2 * sizeof(UV) + 2 /* )\0 */;
3078 Newx(buffer, len, char);
3079 buffer_end = retval = buffer + len;
3081 /* Working backwards */
3085 *--retval = PL_hexdigit[addr & 15];
3086 } while (addr >>= 4);
3092 memcpy(retval, typestring, typelen);
3096 retval -= stashnamelen;
3097 memcpy(retval, stashname, stashnamelen);
3099 /* retval may not necessarily have reached the start of the
3101 assert (retval >= buffer);
3103 len = buffer_end - retval - 1; /* -1 for that \0 */
3115 if (flags & SV_MUTABLE_RETURN)
3116 return SvPVX_mutable(sv);
3117 if (flags & SV_CONST_RETURN)
3118 return (char *)SvPVX_const(sv);
3123 /* I'm assuming that if both IV and NV are equally valid then
3124 converting the IV is going to be more efficient */
3125 const U32 isUIOK = SvIsUV(sv);
3126 /* The purpose of this union is to ensure that arr is aligned on
3127 a 2 byte boundary, because that is what uiv_2buf() requires */
3129 char arr[TYPE_CHARS(UV)];
3135 if (SvTYPE(sv) < SVt_PVIV)
3136 sv_upgrade(sv, SVt_PVIV);
3137 ptr = uiv_2buf(buf.arr, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
3139 /* inlined from sv_setpvn */
3140 s = SvGROW_mutable(sv, len + 1);
3141 Move(ptr, s, len, char);
3146 else if (SvNOK(sv)) {
3147 if (SvTYPE(sv) < SVt_PVNV)
3148 sv_upgrade(sv, SVt_PVNV);
3149 if (SvNVX(sv) == 0.0
3150 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
3151 && !Perl_isnan(SvNVX(sv))
3154 s = SvGROW_mutable(sv, 2);
3159 STRLEN size = 5; /* "-Inf\0" */
3161 s = SvGROW_mutable(sv, size);
3162 len = S_infnan_2pv(SvNVX(sv), s, size, 0);
3168 /* some Xenix systems wipe out errno here */
3177 5 + /* exponent digits */
3181 s = SvGROW_mutable(sv, size);
3182 #ifndef USE_LOCALE_NUMERIC
3183 SNPRINTF_G(SvNVX(sv), s, SvLEN(sv), NV_DIG);
3189 DECLARATION_FOR_LC_NUMERIC_MANIPULATION;
3190 STORE_LC_NUMERIC_SET_TO_NEEDED();
3192 local_radix = _NOT_IN_NUMERIC_STANDARD;
3193 if (local_radix && SvCUR(PL_numeric_radix_sv) > 1) {
3194 size += SvCUR(PL_numeric_radix_sv) - 1;
3195 s = SvGROW_mutable(sv, size);
3198 SNPRINTF_G(SvNVX(sv), s, SvLEN(sv), NV_DIG);
3200 /* If the radix character is UTF-8, and actually is in the
3201 * output, turn on the UTF-8 flag for the scalar */
3203 && SvUTF8(PL_numeric_radix_sv)
3204 && instr(s, SvPVX_const(PL_numeric_radix_sv)))
3209 RESTORE_LC_NUMERIC();
3212 /* We don't call SvPOK_on(), because it may come to
3213 * pass that the locale changes so that the
3214 * stringification we just did is no longer correct. We
3215 * will have to re-stringify every time it is needed */
3222 else if (isGV_with_GP(sv)) {
3223 GV *const gv = MUTABLE_GV(sv);
3224 SV *const buffer = sv_newmortal();
3226 gv_efullname3(buffer, gv, "*");
3228 assert(SvPOK(buffer));
3234 *lp = SvCUR(buffer);
3235 return SvPVX(buffer);
3240 if (flags & SV_UNDEF_RETURNS_NULL)
3242 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
3244 /* Typically the caller expects that sv_any is not NULL now. */
3245 if (!SvREADONLY(sv) && SvTYPE(sv) < SVt_PV)
3246 sv_upgrade(sv, SVt_PV);
3251 const STRLEN len = s - SvPVX_const(sv);
3256 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%" UVxf " 2pv(%s)\n",
3257 PTR2UV(sv),SvPVX_const(sv)));
3258 if (flags & SV_CONST_RETURN)
3259 return (char *)SvPVX_const(sv);
3260 if (flags & SV_MUTABLE_RETURN)
3261 return SvPVX_mutable(sv);
3266 =for apidoc sv_copypv
3267 =for apidoc_item sv_copypv_nomg
3268 =for apidoc_item sv_copypv_flags
3270 These copy a stringified representation of the source SV into the
3271 destination SV. They automatically perform coercion of numeric values into
3272 strings. Guaranteed to preserve the C<UTF8> flag even from overloaded objects.
3273 Similar in nature to C<sv_2pv[_flags]> but they operate directly on an SV
3274 instead of just the string. Mostly they use C<L</sv_2pv_flags>> to do the
3275 work, except when that would lose the UTF-8'ness of the PV.
3277 The three forms differ only in whether or not they perform 'get magic' on
3278 C<sv>. C<sv_copypv_nomg> skips 'get magic'; C<sv_copypv> performs it; and
3279 C<sv_copypv_flags> either performs it (if the C<SV_GMAGIC> bit is set in
3280 C<flags>) or doesn't (if that bit is cleared).
3286 Perl_sv_copypv_flags(pTHX_ SV *const dsv, SV *const ssv, const I32 flags)
3291 PERL_ARGS_ASSERT_SV_COPYPV_FLAGS;
3293 s = SvPV_flags_const(ssv,len,(flags & SV_GMAGIC));
3294 sv_setpvn(dsv,s,len);
3302 =for apidoc sv_2pvbyte
3304 Returns a pointer to the byte-encoded representation of the SV, and set C<*lp>
3305 to its length. If the SV is marked as being encoded as UTF-8, it will
3306 downgrade it to a byte string as a side-effect, if possible. If the SV cannot
3307 be downgraded, this croaks.
3309 Processes 'get' magic.
3311 Usually accessed via the C<SvPVbyte> macro.
3317 Perl_sv_2pvbyte_flags(pTHX_ SV *sv, STRLEN *const lp, const U32 flags)
3319 PERL_ARGS_ASSERT_SV_2PVBYTE_FLAGS;
3321 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
3323 if (((SvREADONLY(sv) || SvFAKE(sv)) && !SvIsCOW(sv))
3324 || isGV_with_GP(sv) || SvROK(sv)) {
3325 SV *sv2 = sv_newmortal();
3326 sv_copypv_nomg(sv2,sv);
3329 sv_utf8_downgrade_nomg(sv,0);
3330 return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv);
3334 =for apidoc sv_2pvutf8
3336 Return a pointer to the UTF-8-encoded representation of the SV, and set C<*lp>
3337 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
3339 Usually accessed via the C<SvPVutf8> macro.
3345 Perl_sv_2pvutf8_flags(pTHX_ SV *sv, STRLEN *const lp, const U32 flags)
3347 PERL_ARGS_ASSERT_SV_2PVUTF8_FLAGS;
3349 if (SvGMAGICAL(sv) && (flags & SV_GMAGIC))
3351 if (((SvREADONLY(sv) || SvFAKE(sv)) && !SvIsCOW(sv))
3352 || isGV_with_GP(sv) || SvROK(sv)) {
3353 SV *sv2 = sv_newmortal();
3354 sv_copypv_nomg(sv2,sv);
3357 sv_utf8_upgrade_nomg(sv);
3358 return lp ? SvPV_nomg(sv,*lp) : SvPV_nomg_nolen(sv);
3363 =for apidoc sv_2bool
3365 This macro is only used by C<sv_true()> or its macro equivalent, and only if
3366 the latter's argument is neither C<SvPOK>, C<SvIOK> nor C<SvNOK>.
3367 It calls C<sv_2bool_flags> with the C<SV_GMAGIC> flag.
3369 =for apidoc sv_2bool_flags
3371 This function is only used by C<sv_true()> and friends, and only if
3372 the latter's argument is neither C<SvPOK>, C<SvIOK> nor C<SvNOK>. If the flags
3373 contain C<SV_GMAGIC>, then it does an C<mg_get()> first.
3380 Perl_sv_2bool_flags(pTHX_ SV *sv, I32 flags)
3382 PERL_ARGS_ASSERT_SV_2BOOL_FLAGS;
3385 if(flags & SV_GMAGIC) SvGETMAGIC(sv);
3391 SV * const tmpsv = AMG_CALLunary(sv, bool__amg);
3392 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv)))) {
3395 if(SvGMAGICAL(sv)) {
3397 goto restart; /* call sv_2bool */
3399 /* expanded SvTRUE_common(sv, (flags = 0, goto restart)) */
3400 else if(!SvOK(sv)) {
3403 else if(SvPOK(sv)) {
3404 svb = SvPVXtrue(sv);
3406 else if((SvFLAGS(sv) & (SVf_IOK|SVf_NOK))) {
3407 svb = (SvIOK(sv) && SvIVX(sv) != 0)
3408 || (SvNOK(sv) && SvNVX(sv) != 0.0);
3412 goto restart; /* call sv_2bool_nomg */
3422 RX_WRAPLEN(sv) > 1 || (RX_WRAPLEN(sv) && *RX_WRAPPED(sv) != '0');
3424 if (SvNOK(sv) && !SvPOK(sv))
3425 return SvNVX(sv) != 0.0;
3427 return SvTRUE_common(sv, isGV_with_GP(sv) ? 1 : 0);
3431 =for apidoc sv_utf8_upgrade
3432 =for apidoc_item sv_utf8_upgrade_nomg
3433 =for apidoc_item sv_utf8_upgrade_flags
3434 =for apidoc_item sv_utf8_upgrade_flags_grow
3436 These convert the PV of an SV to its UTF-8-encoded form.
3437 The SV is forced to string form if it is not already.
3438 They always set the C<SvUTF8> flag to avoid future validity checks even if the
3439 whole string is the same in UTF-8 as not.
3440 They return the number of bytes in the converted string
3442 The forms differ in just two ways. The main difference is whether or not they
3443 perform 'get magic' on C<sv>. C<sv_utf8_upgrade_nomg> skips 'get magic';
3444 C<sv_utf8_upgrade> performs it; and C<sv_utf8_upgrade_flags> and
3445 C<sv_utf8_upgrade_flags_grow> either perform it (if the C<SV_GMAGIC> bit is set
3446 in C<flags>) or don't (if that bit is cleared).
3448 The other difference is that C<sv_utf8_upgrade_flags_grow> has an additional
3449 parameter, C<extra>, which allows the caller to specify an amount of space to
3450 be reserved as spare beyond what is needed for the actual conversion. This is
3451 used when the caller knows it will soon be needing yet more space, and it is
3452 more efficient to request space from the system in a single call.
3453 This form is otherwise identical to C<sv_utf8_upgrade_flags>.
3455 These are not a general purpose byte encoding to Unicode interface: use the
3456 Encode extension for that.
3458 The C<SV_FORCE_UTF8_UPGRADE> flag is now ignored.
3460 =for apidoc Amnh||SV_GMAGIC|
3461 =for apidoc Amnh||SV_FORCE_UTF8_UPGRADE|
3465 If the routine itself changes the string, it adds a trailing C<NUL>. Such a
3466 C<NUL> isn't guaranteed due to having other routines do the work in some input
3467 cases, or if the input is already flagged as being in utf8.
3472 Perl_sv_utf8_upgrade_flags_grow(pTHX_ SV *const sv, const I32 flags, STRLEN extra)
3474 PERL_ARGS_ASSERT_SV_UTF8_UPGRADE_FLAGS_GROW;
3476 if (sv == &PL_sv_undef)
3478 if (!SvPOK_nog(sv)) {
3480 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
3481 (void) sv_2pv_flags(sv,&len, flags);
3483 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3487 (void) SvPV_force_flags(sv,len,flags & SV_GMAGIC);
3491 /* SVt_REGEXP's shouldn't be upgraded to UTF8 - they're already
3492 * compiled and individual nodes will remain non-utf8 even if the
3493 * stringified version of the pattern gets upgraded. Whether the
3494 * PVX of a REGEXP should be grown or we should just croak, I don't
3496 if (SvUTF8(sv) || isREGEXP(sv)) {
3497 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3502 S_sv_uncow(aTHX_ sv, 0);
3505 if (SvCUR(sv) == 0) {
3506 if (extra) SvGROW(sv, extra + 1); /* Make sure is room for a trailing
3508 } else { /* Assume Latin-1/EBCDIC */
3509 /* This function could be much more efficient if we
3510 * had a FLAG in SVs to signal if there are any variant
3511 * chars in the PV. Given that there isn't such a flag
3512 * make the loop as fast as possible. */
3513 U8 * s = (U8 *) SvPVX_const(sv);
3516 if (is_utf8_invariant_string_loc(s, SvCUR(sv), (const U8 **) &t)) {
3518 /* utf8 conversion not needed because all are invariants. Mark
3519 * as UTF-8 even if no variant - saves scanning loop */
3521 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3525 /* Here, there is at least one variant (t points to the first one), so
3526 * the string should be converted to utf8. Everything from 's' to
3527 * 't - 1' will occupy only 1 byte each on output.
3529 * Note that the incoming SV may not have a trailing '\0', as certain
3530 * code in pp_formline can send us partially built SVs.
3532 * There are two main ways to convert. One is to create a new string
3533 * and go through the input starting from the beginning, appending each
3534 * converted value onto the new string as we go along. Going this
3535 * route, it's probably best to initially allocate enough space in the
3536 * string rather than possibly running out of space and having to
3537 * reallocate and then copy what we've done so far. Since everything
3538 * from 's' to 't - 1' is invariant, the destination can be initialized
3539 * with these using a fast memory copy. To be sure to allocate enough
3540 * space, one could use the worst case scenario, where every remaining
3541 * byte expands to two under UTF-8, or one could parse it and count
3542 * exactly how many do expand.
3544 * The other way is to unconditionally parse the remainder of the
3545 * string to figure out exactly how big the expanded string will be,
3546 * growing if needed. Then start at the end of the string and place
3547 * the character there at the end of the unfilled space in the expanded
3548 * one, working backwards until reaching 't'.
3550 * The problem with assuming the worst case scenario is that for very
3551 * long strings, we could allocate much more memory than actually
3552 * needed, which can create performance problems. If we have to parse
3553 * anyway, the second method is the winner as it may avoid an extra
3554 * copy. The code used to use the first method under some
3555 * circumstances, but now that there is faster variant counting on
3556 * ASCII platforms, the second method is used exclusively, eliminating
3557 * some code that no longer has to be maintained. */
3560 /* Count the total number of variants there are. We can start
3561 * just beyond the first one, which is known to be at 't' */
3562 const Size_t invariant_length = t - s;
3563 U8 * e = (U8 *) SvEND(sv);
3565 /* The length of the left overs, plus 1. */
3566 const Size_t remaining_length_p1 = e - t;
3568 /* We expand by 1 for the variant at 't' and one for each remaining
3569 * variant (we start looking at 't+1') */
3570 Size_t expansion = 1 + variant_under_utf8_count(t + 1, e);
3572 /* +1 = trailing NUL */
3573 Size_t need = SvCUR(sv) + expansion + extra + 1;
3576 /* Grow if needed */
3577 if (SvLEN(sv) < need) {
3578 t = invariant_length + (U8*) SvGROW(sv, need);
3579 e = t + remaining_length_p1;
3581 SvCUR_set(sv, invariant_length + remaining_length_p1 + expansion);
3583 /* Set the NUL at the end */
3584 d = (U8 *) SvEND(sv);
3587 /* Having decremented d, it points to the position to put the
3588 * very last byte of the expanded string. Go backwards through
3589 * the string, copying and expanding as we go, stopping when we
3590 * get to the part that is invariant the rest of the way down */
3594 if (NATIVE_BYTE_IS_INVARIANT(*e)) {
3597 *d-- = UTF8_EIGHT_BIT_LO(*e);
3598 *d-- = UTF8_EIGHT_BIT_HI(*e);
3603 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3604 /* Update pos. We do it at the end rather than during
3605 * the upgrade, to avoid slowing down the common case
3606 * (upgrade without pos).
3607 * pos can be stored as either bytes or characters. Since
3608 * this was previously a byte string we can just turn off
3609 * the bytes flag. */
3610 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3612 mg->mg_flags &= ~MGf_BYTES;
3614 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3615 magic_setutf8(sv,mg); /* clear UTF8 cache */
3625 =for apidoc sv_utf8_downgrade
3626 =for apidoc_item sv_utf8_downgrade_flags
3627 =for apidoc_item sv_utf8_downgrade_nomg
3629 These attempt to convert the PV of an SV from characters to bytes. If the PV
3630 contains a character that cannot fit in a byte, this conversion will fail; in
3631 this case, C<FALSE> is returned if C<fail_ok> is true; otherwise they croak.
3633 They are not a general purpose Unicode to byte encoding interface:
3634 use the C<Encode> extension for that.
3636 They differ only in that:
3638 C<sv_utf8_downgrade> processes 'get' magic on C<sv>.
3640 C<sv_utf8_downgrade_nomg> does not.
3642 C<sv_utf8_downgrade_flags> has an additional C<flags> parameter in which you can specify
3643 C<SV_GMAGIC> to process 'get' magic, or leave it cleared to not proccess 'get' magic.
3649 Perl_sv_utf8_downgrade_flags(pTHX_ SV *const sv, const bool fail_ok, const U32 flags)
3651 PERL_ARGS_ASSERT_SV_UTF8_DOWNGRADE_FLAGS;
3653 if (SvPOKp(sv) && SvUTF8(sv)) {
3657 U32 mg_flags = flags & SV_GMAGIC;
3660 S_sv_uncow(aTHX_ sv, 0);
3662 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3664 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3665 if (mg && mg->mg_len > 0 && mg->mg_flags & MGf_BYTES) {
3666 mg->mg_len = sv_pos_b2u_flags(sv, mg->mg_len,
3667 mg_flags|SV_CONST_RETURN);
3668 mg_flags = 0; /* sv_pos_b2u does get magic */
3670 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3671 magic_setutf8(sv,mg); /* clear UTF8 cache */
3674 s = (U8 *) SvPV_flags(sv, len, mg_flags);
3676 if (!utf8_to_bytes(s, &len)) {
3681 Perl_croak(aTHX_ "Wide character in %s",
3684 Perl_croak(aTHX_ "Wide character");
3695 =for apidoc sv_utf8_encode
3697 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3698 flag off so that it looks like octets again.
3704 Perl_sv_utf8_encode(pTHX_ SV *const sv)
3706 PERL_ARGS_ASSERT_SV_UTF8_ENCODE;
3708 if (SvREADONLY(sv)) {
3709 sv_force_normal_flags(sv, 0);
3711 (void) sv_utf8_upgrade(sv);
3716 =for apidoc sv_utf8_decode
3718 If the PV of the SV is an octet sequence in Perl's extended UTF-8
3719 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3720 so that it looks like a character. If the PV contains only single-byte
3721 characters, the C<SvUTF8> flag stays off.
3722 Scans PV for validity and returns FALSE if the PV is invalid UTF-8.
3728 Perl_sv_utf8_decode(pTHX_ SV *const sv)
3730 PERL_ARGS_ASSERT_SV_UTF8_DECODE;
3733 const U8 *start, *c, *first_variant;
3735 /* The octets may have got themselves encoded - get them back as
3738 if (!sv_utf8_downgrade(sv, TRUE))
3741 /* it is actually just a matter of turning the utf8 flag on, but
3742 * we want to make sure everything inside is valid utf8 first.
3744 c = start = (const U8 *) SvPVX_const(sv);
3745 if (! is_utf8_invariant_string_loc(c, SvCUR(sv), &first_variant)) {
3746 if (!is_utf8_string(first_variant, SvCUR(sv) - (first_variant -c)))
3750 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
3751 /* XXX Is this dead code? XS_utf8_decode calls SvSETMAGIC
3752 after this, clearing pos. Does anything on CPAN
3754 /* adjust pos to the start of a UTF8 char sequence */
3755 MAGIC * mg = mg_find(sv, PERL_MAGIC_regex_global);
3757 I32 pos = mg->mg_len;
3759 for (c = start + pos; c > start; c--) {
3760 if (UTF8_IS_START(*c))
3763 mg->mg_len = c - start;
3766 if ((mg = mg_find(sv, PERL_MAGIC_utf8)))
3767 magic_setutf8(sv,mg); /* clear UTF8 cache */
3774 =for apidoc sv_setsv
3775 =for apidoc_item sv_setsv_flags
3776 =for apidoc_item sv_setsv_mg
3777 =for apidoc_item sv_setsv_nomg
3779 These copy the contents of the source SV C<ssv> into the destination SV C<dsv>.
3780 C<ssv> may be destroyed if it is mortal, so don't use these functions if
3781 the source SV needs to be reused.
3782 Loosely speaking, they perform a copy-by-value, obliterating any previous
3783 content of the destination.
3785 They differ only in that:
3787 C<sv_setsv> calls 'get' magic on C<ssv>, but skips 'set' magic on C<dsv>.
3789 C<sv_setsv_mg> calls both 'get' magic on C<ssv> and 'set' magic on C<dsv>.
3791 C<sv_setsv_nomg> skips all magic.
3793 C<sv_setsv_flags> has a C<flags> parameter which you can use to specify any
3794 combination of magic handling, and also you can specify C<SV_NOSTEAL> so that
3795 the buffers of temps will not be stolen.
3797 You probably want to instead use one of the assortment of wrappers, such as
3798 C<L</SvSetSV>>, C<L</SvSetSV_nosteal>>, C<L</SvSetMagicSV>> and
3799 C<L</SvSetMagicSV_nosteal>>.
3801 C<sv_setsv_flags> is the primary function for copying scalars, and most other
3802 copy-ish functions and macros use it underneath.
3804 =for apidoc Amnh||SV_NOSTEAL
3810 S_glob_assign_glob(pTHX_ SV *const dsv, SV *const ssv, const int dtype)
3812 I32 mro_changes = 0; /* 1 = method, 2 = isa, 3 = recursive isa */
3813 HV *old_stash = NULL;
3815 PERL_ARGS_ASSERT_GLOB_ASSIGN_GLOB;
3817 if (dtype != SVt_PVGV && !isGV_with_GP(dsv)) {
3818 const char * const name = GvNAME(ssv);
3819 const STRLEN len = GvNAMELEN(ssv);
3821 if (dtype >= SVt_PV) {
3827 SvUPGRADE(dsv, SVt_PVGV);
3828 (void)SvOK_off(dsv);
3829 isGV_with_GP_on(dsv);
3831 GvSTASH(dsv) = GvSTASH(ssv);
3833 Perl_sv_add_backref(aTHX_ MUTABLE_SV(GvSTASH(dsv)), dsv);
3834 gv_name_set(MUTABLE_GV(dsv), name, len,
3835 GV_ADD | (GvNAMEUTF8(ssv) ? SVf_UTF8 : 0 ));
3836 SvFAKE_on(dsv); /* can coerce to non-glob */
3839 if(GvGP(MUTABLE_GV(ssv))) {
3840 /* If source has method cache entry, clear it */
3842 SvREFCNT_dec(GvCV(ssv));
3843 GvCV_set(ssv, NULL);
3846 /* If source has a real method, then a method is
3849 GvCV((const GV *)ssv) && GvSTASH(dsv) && HvENAME(GvSTASH(dsv))
3855 /* If dest already had a real method, that's a change as well */
3857 !mro_changes && GvGP(MUTABLE_GV(dsv)) && GvCVu((const GV *)dsv)
3858 && GvSTASH(dsv) && HvENAME(GvSTASH(dsv))
3863 /* We don't need to check the name of the destination if it was not a
3864 glob to begin with. */
3865 if(dtype == SVt_PVGV) {
3866 const char * const name = GvNAME((const GV *)dsv);
3867 const STRLEN len = GvNAMELEN(dsv);
3868 if(memEQs(name, len, "ISA")
3869 /* The stash may have been detached from the symbol table, so
3871 && GvSTASH(dsv) && HvENAME(GvSTASH(dsv))
3875 if ((len > 1 && name[len-2] == ':' && name[len-1] == ':')
3876 || (len == 1 && name[0] == ':')) {
3879 /* Set aside the old stash, so we can reset isa caches on
3881 if((old_stash = GvHV(dsv)))
3882 /* Make sure we do not lose it early. */
3883 SvREFCNT_inc_simple_void_NN(
3884 sv_2mortal((SV *)old_stash)
3889 SvREFCNT_inc_simple_void_NN(sv_2mortal(dsv));
3892 /* freeing dsv's GP might free ssv (e.g. *x = $x),
3893 * so temporarily protect it */
3895 SAVEFREESV(SvREFCNT_inc_simple_NN(ssv));
3896 gp_free(MUTABLE_GV(dsv));
3897 GvINTRO_off(dsv); /* one-shot flag */
3898 GvGP_set(dsv, gp_ref(GvGP(ssv)));
3903 if (GvIMPORTED(dsv) != GVf_IMPORTED
3904 && CopSTASH_ne(PL_curcop, GvSTASH(dsv)))
3909 if(mro_changes == 2) {
3910 if (GvAV((const GV *)ssv)) {
3912 SV * const sref = (SV *)GvAV((const GV *)dsv);
3913 if (SvSMAGICAL(sref) && (mg = mg_find(sref, PERL_MAGIC_isa))) {
3914 if (SvTYPE(mg->mg_obj) != SVt_PVAV) {
3915 AV * const ary = newAV();
3916 av_push(ary, mg->mg_obj); /* takes the refcount */
3917 mg->mg_obj = (SV *)ary;
3919 av_push((AV *)mg->mg_obj, SvREFCNT_inc_simple_NN(dsv));
3921 else sv_magic(sref, dsv, PERL_MAGIC_isa, NULL, 0);
3923 mro_isa_changed_in(GvSTASH(dsv));
3925 else if(mro_changes == 3) {
3926 HV * const stash = GvHV(dsv);
3927 if(old_stash ? (HV *)HvENAME_get(old_stash) : stash)
3933 else if(mro_changes) mro_method_changed_in(GvSTASH(dsv));
3934 if (GvIO(dsv) && dtype == SVt_PVGV) {
3935 DEBUG_o(Perl_deb(aTHX_
3936 "glob_assign_glob clearing PL_stashcache\n"));
3937 /* It's a cache. It will rebuild itself quite happily.
3938 It's a lot of effort to work out exactly which key (or keys)
3939 might be invalidated by the creation of the this file handle.
3941 hv_clear(PL_stashcache);
3947 Perl_gv_setref(pTHX_ SV *const dsv, SV *const ssv)
3949 SV * const sref = SvRV(ssv);
3951 const int intro = GvINTRO(dsv);
3954 const U32 stype = SvTYPE(sref);
3956 PERL_ARGS_ASSERT_GV_SETREF;
3959 GvINTRO_off(dsv); /* one-shot flag */
3960 GvLINE(dsv) = CopLINE(PL_curcop);
3961 GvEGV(dsv) = MUTABLE_GV(dsv);
3966 location = (SV **) &(GvGP(dsv)->gp_cv); /* XXX bypassing GvCV_set */
3967 import_flag = GVf_IMPORTED_CV;
3970 location = (SV **) &GvHV(dsv);
3971 import_flag = GVf_IMPORTED_HV;
3974 location = (SV **) &GvAV(dsv);
3975 import_flag = GVf_IMPORTED_AV;
3978 location = (SV **) &GvIOp(dsv);
3981 location = (SV **) &GvFORM(dsv);
3984 location = &GvSV(dsv);
3985 import_flag = GVf_IMPORTED_SV;
3988 if (stype == SVt_PVCV) {
3989 /*if (GvCVGEN(dsv) && (GvCV(dsv) != (const CV *)sref || GvCVGEN(dsv))) {*/
3991 SvREFCNT_dec(GvCV(dsv));
3992 GvCV_set(dsv, NULL);
3993 GvCVGEN(dsv) = 0; /* Switch off cacheness. */
3996 /* SAVEt_GVSLOT takes more room on the savestack and has more
3997 overhead in leave_scope than SAVEt_GENERIC_SV. But for CVs
3998 leave_scope needs access to the GV so it can reset method
3999 caches. We must use SAVEt_GVSLOT whenever the type is
4000 SVt_PVCV, even if the stash is anonymous, as the stash may
4001 gain a name somehow before leave_scope. */
4002 if (stype == SVt_PVCV) {
4003 /* There is no save_pushptrptrptr. Creating it for this
4004 one call site would be overkill. So inline the ss add
4008 SS_ADD_PTR(location);
4009 SS_ADD_PTR(SvREFCNT_inc(*location));
4010 SS_ADD_UV(SAVEt_GVSLOT);
4013 else SAVEGENERICSV(*location);
4016 if (stype == SVt_PVCV && (*location != sref || GvCVGEN(dsv))) {
4017 CV* const cv = MUTABLE_CV(*location);
4019 if (!GvCVGEN((const GV *)dsv) &&
4020 (CvROOT(cv) || CvXSUB(cv)) &&
4021 /* redundant check that avoids creating the extra SV
4022 most of the time: */
4023 (CvCONST(cv) || ckWARN(WARN_REDEFINE)))
4025 SV * const new_const_sv =
4026 CvCONST((const CV *)sref)
4027 ? cv_const_sv((const CV *)sref)
4029 HV * const stash = GvSTASH((const GV *)dsv);
4030 report_redefined_cv(
4033 ? Perl_newSVpvf(aTHX_
4034 "%" HEKf "::%" HEKf,
4035 HEKfARG(HvNAME_HEK(stash)),
4036 HEKfARG(GvENAME_HEK(MUTABLE_GV(dsv))))
4037 : Perl_newSVpvf(aTHX_
4039 HEKfARG(GvENAME_HEK(MUTABLE_GV(dsv))))
4042 CvCONST((const CV *)sref) ? &new_const_sv : NULL
4046 cv_ckproto_len_flags(cv, (const GV *)dsv,
4047 SvPOK(sref) ? CvPROTO(sref) : NULL,
4048 SvPOK(sref) ? CvPROTOLEN(sref) : 0,
4049 SvPOK(sref) ? SvUTF8(sref) : 0);
4051 GvCVGEN(dsv) = 0; /* Switch off cacheness. */
4053 if(GvSTASH(dsv)) { /* sub foo { 1 } sub bar { 2 } *bar = \&foo */
4054 if (intro && GvREFCNT(dsv) > 1) {
4055 /* temporary remove extra savestack's ref */
4057 gv_method_changed(dsv);
4060 else gv_method_changed(dsv);
4063 *location = SvREFCNT_inc_simple_NN(sref);
4064 if (import_flag && !(GvFLAGS(dsv) & import_flag)
4065 && CopSTASH_ne(PL_curcop, GvSTASH(dsv))) {
4066 GvFLAGS(dsv) |= import_flag;
4069 if (stype == SVt_PVHV) {
4070 const char * const name = GvNAME((GV*)dsv);
4071 const STRLEN len = GvNAMELEN(dsv);
4074 (len > 1 && name[len-2] == ':' && name[len-1] == ':')
4075 || (len == 1 && name[0] == ':')
4077 && (!dref || HvENAME_get(dref))
4080 (HV *)sref, (HV *)dref,
4086 stype == SVt_PVAV && sref != dref
4087 && memEQs(GvNAME((GV*)dsv), GvNAMELEN((GV*)dsv), "ISA")
4088 /* The stash may have been detached from the symbol table, so
4089 check its name before doing anything. */
4090 && GvSTASH(dsv) && HvENAME(GvSTASH(dsv))
4093 MAGIC * const omg = dref && SvSMAGICAL(dref)
4094 ? mg_find(dref, PERL_MAGIC_isa)
4096 if (SvSMAGICAL(sref) && (mg = mg_find(sref, PERL_MAGIC_isa))) {
4097 if (SvTYPE(mg->mg_obj) != SVt_PVAV) {
4098 AV * const ary = newAV();
4099 av_push(ary, mg->mg_obj); /* takes the refcount */
4100 mg->mg_obj = (SV *)ary;
4103 if (SvTYPE(omg->mg_obj) == SVt_PVAV) {
4104 SV **svp = AvARRAY((AV *)omg->mg_obj);
4105 I32 items = AvFILLp((AV *)omg->mg_obj) + 1;
4109 SvREFCNT_inc_simple_NN(*svp++)
4115 SvREFCNT_inc_simple_NN(omg->mg_obj)
4119 av_push((AV *)mg->mg_obj,SvREFCNT_inc_simple_NN(dsv));
4125 sref, omg ? omg->mg_obj : dsv, PERL_MAGIC_isa, NULL, 0
4127 for (i = 0; i <= AvFILL(sref); ++i) {
4128 SV **elem = av_fetch ((AV*)sref, i, 0);
4131 *elem, sref, PERL_MAGIC_isaelem, NULL, i
4135 mg = mg_find(sref, PERL_MAGIC_isa);
4137 /* Since the *ISA assignment could have affected more than
4138 one stash, don't call mro_isa_changed_in directly, but let
4139 magic_clearisa do it for us, as it already has the logic for
4140 dealing with globs vs arrays of globs. */
4142 Perl_magic_clearisa(aTHX_ NULL, mg);
4144 else if (stype == SVt_PVIO) {
4145 DEBUG_o(Perl_deb(aTHX_ "gv_setref clearing PL_stashcache\n"));
4146 /* It's a cache. It will rebuild itself quite happily.
4147 It's a lot of effort to work out exactly which key (or keys)
4148 might be invalidated by the creation of the this file handle.
4150 hv_clear(PL_stashcache);
4154 if (!intro) SvREFCNT_dec(dref);
4163 #ifdef PERL_DEBUG_READONLY_COW
4164 # include <sys/mman.h>
4166 # ifndef PERL_MEMORY_DEBUG_HEADER_SIZE
4167 # define PERL_MEMORY_DEBUG_HEADER_SIZE 0
4171 Perl_sv_buf_to_ro(pTHX_ SV *sv)
4173 struct perl_memory_debug_header * const header =
4174 (struct perl_memory_debug_header *)(SvPVX(sv)-PERL_MEMORY_DEBUG_HEADER_SIZE);
4175 const MEM_SIZE len = header->size;
4176 PERL_ARGS_ASSERT_SV_BUF_TO_RO;
4177 # ifdef PERL_TRACK_MEMPOOL
4178 if (!header->readonly) header->readonly = 1;
4180 if (mprotect(header, len, PROT_READ))
4181 Perl_warn(aTHX_ "mprotect RW for COW string %p %lu failed with %d",
4182 header, len, errno);
4186 S_sv_buf_to_rw(pTHX_ SV *sv)
4188 struct perl_memory_debug_header * const header =
4189 (struct perl_memory_debug_header *)(SvPVX(sv)-PERL_MEMORY_DEBUG_HEADER_SIZE);
4190 const MEM_SIZE len = header->size;
4191 PERL_ARGS_ASSERT_SV_BUF_TO_RW;
4192 if (mprotect(header, len, PROT_READ|PROT_WRITE))
4193 Perl_warn(aTHX_ "mprotect for COW string %p %lu failed with %d",
4194 header, len, errno);
4195 # ifdef PERL_TRACK_MEMPOOL
4196 header->readonly = 0;
4201 # define sv_buf_to_ro(sv) NOOP
4202 # define sv_buf_to_rw(sv) NOOP
4206 Perl_sv_setsv_flags(pTHX_ SV *dsv, SV* ssv, const I32 flags)
4211 unsigned int both_type;
4213 PERL_ARGS_ASSERT_SV_SETSV_FLAGS;
4215 if (UNLIKELY( ssv == dsv ))
4218 if (UNLIKELY( !ssv ))
4221 stype = SvTYPE(ssv);
4222 dtype = SvTYPE(dsv);
4223 both_type = (stype | dtype);
4225 /* with these values, we can check that both SVs are NULL/IV (and not
4226 * freed) just by testing the or'ed types */
4227 STATIC_ASSERT_STMT(SVt_NULL == 0);
4228 STATIC_ASSERT_STMT(SVt_IV == 1);
4229 if (both_type <= 1) {
4230 /* both src and dst are UNDEF/IV/RV, so we can do a lot of
4236 /* minimal subset of SV_CHECK_THINKFIRST_COW_DROP(dsv) */
4237 if (SvREADONLY(dsv))
4238 Perl_croak_no_modify();
4241 sv_unref_flags(dsv, 0);
4246 assert(!SvGMAGICAL(ssv));
4247 assert(!SvGMAGICAL(dsv));
4249 sflags = SvFLAGS(ssv);
4250 if (sflags & (SVf_IOK|SVf_ROK)) {
4251 SET_SVANY_FOR_BODYLESS_IV(dsv);
4252 new_dflags = SVt_IV;
4254 if (sflags & SVf_ROK) {
4255 dsv->sv_u.svu_rv = SvREFCNT_inc(SvRV(ssv));
4256 new_dflags |= SVf_ROK;
4259 /* both src and dst are <= SVt_IV, so sv_any points to the
4260 * head; so access the head directly
4262 assert( &(ssv->sv_u.svu_iv)
4263 == &(((XPVIV*) SvANY(ssv))->xiv_iv));
4264 assert( &(dsv->sv_u.svu_iv)
4265 == &(((XPVIV*) SvANY(dsv))->xiv_iv));
4266 dsv->sv_u.svu_iv = ssv->sv_u.svu_iv;
4267 new_dflags |= (SVf_IOK|SVp_IOK|(sflags & SVf_IVisUV));
4271 new_dflags = dtype; /* turn off everything except the type */
4273 SvFLAGS(dsv) = new_dflags;
4274 SvREFCNT_dec(old_rv);
4279 if (UNLIKELY(both_type == SVTYPEMASK)) {
4280 if (SvIS_FREED(dsv)) {
4281 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
4282 " to a freed scalar %p", SVfARG(ssv), (void *)dsv);
4284 if (SvIS_FREED(ssv)) {
4285 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
4286 (void*)ssv, (void*)dsv);
4292 SV_CHECK_THINKFIRST_COW_DROP(dsv);
4293 dtype = SvTYPE(dsv); /* THINKFIRST may have changed type */
4295 /* There's a lot of redundancy below but we're going for speed here */
4300 if (LIKELY( dtype != SVt_PVGV && dtype != SVt_PVLV )) {
4301 (void)SvOK_off(dsv);
4309 /* For performance, we inline promoting to type SVt_IV. */
4310 /* We're starting from SVt_NULL, so provided that define is
4311 * actual 0, we don't have to unset any SV type flags
4312 * to promote to SVt_IV. */
4313 STATIC_ASSERT_STMT(SVt_NULL == 0);
4314 SET_SVANY_FOR_BODYLESS_IV(dsv);
4315 SvFLAGS(dsv) |= SVt_IV;
4319 sv_upgrade(dsv, SVt_PVIV);
4323 goto end_of_first_switch;
4325 (void)SvIOK_only(dsv);
4326 SvIV_set(dsv, SvIVX(ssv));
4329 /* SvTAINTED can only be true if the SV has taint magic, which in
4330 turn means that the SV type is PVMG (or greater). This is the
4331 case statement for SVt_IV, so this cannot be true (whatever gcov
4333 assert(!SvTAINTED(ssv));
4338 if (dtype < SVt_PV && dtype != SVt_IV)
4339 sv_upgrade(dsv, SVt_IV);
4343 if (LIKELY( SvNOK(ssv) )) {
4347 sv_upgrade(dsv, SVt_NV);
4351 sv_upgrade(dsv, SVt_PVNV);
4355 goto end_of_first_switch;
4357 SvNV_set(dsv, SvNVX(ssv));
4358 (void)SvNOK_only(dsv);
4359 /* SvTAINTED can only be true if the SV has taint magic, which in
4360 turn means that the SV type is PVMG (or greater). This is the
4361 case statement for SVt_NV, so this cannot be true (whatever gcov
4363 assert(!SvTAINTED(ssv));
4370 sv_upgrade(dsv, SVt_PV);
4373 if (dtype < SVt_PVIV)
4374 sv_upgrade(dsv, SVt_PVIV);
4377 if (dtype < SVt_PVNV)
4378 sv_upgrade(dsv, SVt_PVNV);
4382 invlist_clone(ssv, dsv);
4386 const char * const type = sv_reftype(ssv,0);
4388 /* diag_listed_as: Bizarre copy of %s */
4389 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_DESC(PL_op));
4391 Perl_croak(aTHX_ "Bizarre copy of %s", type);
4393 NOT_REACHED; /* NOTREACHED */
4397 if (dtype < SVt_REGEXP)
4398 sv_upgrade(dsv, SVt_REGEXP);
4404 if (SvGMAGICAL(ssv) && (flags & SV_GMAGIC)) {
4406 if (SvTYPE(ssv) != stype)
4407 stype = SvTYPE(ssv);
4409 if (isGV_with_GP(ssv) && dtype <= SVt_PVLV) {
4410 glob_assign_glob(dsv, ssv, dtype);
4413 if (stype == SVt_PVLV)
4415 if (isREGEXP(ssv)) goto upgregexp;
4416 SvUPGRADE(dsv, SVt_PVNV);
4419 SvUPGRADE(dsv, (svtype)stype);
4421 end_of_first_switch:
4423 /* dsv may have been upgraded. */
4424 dtype = SvTYPE(dsv);
4425 sflags = SvFLAGS(ssv);
4427 if (UNLIKELY( dtype == SVt_PVCV )) {
4428 /* Assigning to a subroutine sets the prototype. */
4431 const char *const ptr = SvPV_const(ssv, len);
4433 SvGROW(dsv, len + 1);
4434 Copy(ptr, SvPVX(dsv), len + 1, char);
4435 SvCUR_set(dsv, len);
4437 SvFLAGS(dsv) |= sflags & SVf_UTF8;
4438 CvAUTOLOAD_off(dsv);
4443 else if (UNLIKELY(dtype == SVt_PVAV || dtype == SVt_PVHV
4444 || dtype == SVt_PVFM))
4446 const char * const type = sv_reftype(dsv,0);
4448 /* diag_listed_as: Cannot copy to %s */
4449 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_DESC(PL_op));
4451 Perl_croak(aTHX_ "Cannot copy to %s", type);
4452 } else if (sflags & SVf_ROK) {
4453 if (isGV_with_GP(dsv)
4454 && SvTYPE(SvRV(ssv)) == SVt_PVGV && isGV_with_GP(SvRV(ssv))) {
4457 if (GvIMPORTED(dsv) != GVf_IMPORTED
4458 && CopSTASH_ne(PL_curcop, GvSTASH(dsv)))
4465 glob_assign_glob(dsv, ssv, dtype);
4469 if (dtype >= SVt_PV) {
4470 if (isGV_with_GP(dsv)) {
4471 gv_setref(dsv, ssv);
4474 if (SvPVX_const(dsv)) {
4480 (void)SvOK_off(dsv);
4481 SvRV_set(dsv, SvREFCNT_inc(SvRV(ssv)));
4482 SvFLAGS(dsv) |= sflags & SVf_ROK;
4483 assert(!(sflags & SVp_NOK));
4484 assert(!(sflags & SVp_IOK));
4485 assert(!(sflags & SVf_NOK));
4486 assert(!(sflags & SVf_IOK));
4488 else if (isGV_with_GP(dsv)) {
4489 if (!(sflags & SVf_OK)) {
4490 Perl_ck_warner(aTHX_ packWARN(WARN_MISC),
4491 "Undefined value assigned to typeglob");
4494 GV *gv = gv_fetchsv_nomg(ssv, GV_ADD, SVt_PVGV);
4495 if (dsv != (const SV *)gv) {
4496 const char * const name = GvNAME((const GV *)dsv);
4497 const STRLEN len = GvNAMELEN(dsv);
4498 HV *old_stash = NULL;
4499 bool reset_isa = FALSE;
4500 if ((len > 1 && name[len-2] == ':' && name[len-1] == ':')
4501 || (len == 1 && name[0] == ':')) {
4502 /* Set aside the old stash, so we can reset isa caches
4503 on its subclasses. */
4504 if((old_stash = GvHV(dsv))) {
4505 /* Make sure we do not lose it early. */
4506 SvREFCNT_inc_simple_void_NN(
4507 sv_2mortal((SV *)old_stash)
4514 SvREFCNT_inc_simple_void_NN(sv_2mortal(dsv));
4515 gp_free(MUTABLE_GV(dsv));
4517 GvGP_set(dsv, gp_ref(GvGP(gv)));
4520 HV * const stash = GvHV(dsv);
4522 old_stash ? (HV *)HvENAME_get(old_stash) : stash
4532 else if ((dtype == SVt_REGEXP || dtype == SVt_PVLV)
4533 && (stype == SVt_REGEXP || isREGEXP(ssv))) {
4534 reg_temp_copy((REGEXP*)dsv, (REGEXP*)ssv);
4536 else if (sflags & SVp_POK) {
4537 const STRLEN cur = SvCUR(ssv);
4538 const STRLEN len = SvLEN(ssv);
4541 * We have three basic ways to copy the string:
4547 * Which we choose is based on various factors. The following
4548 * things are listed in order of speed, fastest to slowest:
4550 * - Copying a short string
4551 * - Copy-on-write bookkeeping
4553 * - Copying a long string
4555 * We swipe the string (steal the string buffer) if the SV on the
4556 * rhs is about to be freed anyway (TEMP and refcnt==1). This is a
4557 * big win on long strings. It should be a win on short strings if
4558 * SvPVX_const(dsv) has to be allocated. If not, it should not
4559 * slow things down, as SvPVX_const(ssv) would have been freed
4562 * We also steal the buffer from a PADTMP (operator target) if it
4563 * is ‘long enough’. For short strings, a swipe does not help
4564 * here, as it causes more malloc calls the next time the target
4565 * is used. Benchmarks show that even if SvPVX_const(dsv) has to
4566 * be allocated it is still not worth swiping PADTMPs for short
4567 * strings, as the savings here are small.
4569 * If swiping is not an option, then we see whether it is
4570 * worth using copy-on-write. If the lhs already has a buf-
4571 * fer big enough and the string is short, we skip it and fall back
4572 * to method 3, since memcpy is faster for short strings than the
4573 * later bookkeeping overhead that copy-on-write entails.
4575 * If the rhs is not a copy-on-write string yet, then we also
4576 * consider whether the buffer is too large relative to the string
4577 * it holds. Some operations such as readline allocate a large
4578 * buffer in the expectation of reusing it. But turning such into
4579 * a COW buffer is counter-productive because it increases memory
4580 * usage by making readline allocate a new large buffer the sec-
4581 * ond time round. So, if the buffer is too large, again, we use
4584 * Finally, if there is no buffer on the left, or the buffer is too
4585 * small, then we use copy-on-write and make both SVs share the
4590 /* Whichever path we take through the next code, we want this true,
4591 and doing it now facilitates the COW check. */
4592 (void)SvPOK_only(dsv);
4596 /* slated for free anyway (and not COW)? */
4597 (sflags & (SVs_TEMP|SVf_IsCOW)) == SVs_TEMP
4598 /* or a swipable TARG */
4600 (SVs_PADTMP|SVf_READONLY|SVf_PROTECT|SVf_IsCOW))
4602 /* whose buffer is worth stealing */
4603 && CHECK_COWBUF_THRESHOLD(cur,len)
4606 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
4607 (!(flags & SV_NOSTEAL)) &&
4608 /* and we're allowed to steal temps */
4609 SvREFCNT(ssv) == 1 && /* and no other references to it? */
4610 len) /* and really is a string */
4611 { /* Passes the swipe test. */
4612 if (SvPVX_const(dsv)) /* we know that dtype >= SVt_PV */
4614 SvPV_set(dsv, SvPVX_mutable(ssv));
4615 SvLEN_set(dsv, SvLEN(ssv));
4616 SvCUR_set(dsv, SvCUR(ssv));
4619 (void)SvOK_off(ssv); /* NOTE: nukes most SvFLAGS on ssv */
4620 SvPV_set(ssv, NULL);
4625 else if (flags & SV_COW_SHARED_HASH_KEYS
4627 #ifdef PERL_COPY_ON_WRITE
4630 ( (CHECK_COWBUF_THRESHOLD(cur,len) || SvLEN(dsv) < cur+1)
4631 /* If this is a regular (non-hek) COW, only so
4632 many COW "copies" are possible. */
4633 && CowREFCNT(ssv) != SV_COW_REFCNT_MAX ))
4634 : ( (sflags & CAN_COW_MASK) == CAN_COW_FLAGS