1 package Math::BigFloat;
4 # Mike grinned. 'Two down, infinity to go' - Mike Nostrus in 'Before and After'
7 # The following hash values are internally used:
8 # _e : exponent (ref to $CALC object)
9 # _m : mantissa (ref to $CALC object)
11 # sign : +,-,+inf,-inf, or "NaN" if not a number
19 @ISA = qw/Math::BigInt/;
23 # $_trap_inf/$_trap_nan are internal and should never be accessed from outside
24 use vars qw/$AUTOLOAD $accuracy $precision $div_scale $round_mode $rnd_mode
25 $upgrade $downgrade $_trap_nan $_trap_inf/;
26 my $class = "Math::BigFloat";
29 '<=>' => sub { my $rc = $_[2] ?
30 ref($_[0])->bcmp($_[1],$_[0]) :
31 ref($_[0])->bcmp($_[0],$_[1]);
32 $rc = 1 unless defined $rc;
35 # we need '>=' to get things like "1 >= NaN" right:
36 '>=' => sub { my $rc = $_[2] ?
37 ref($_[0])->bcmp($_[1],$_[0]) :
38 ref($_[0])->bcmp($_[0],$_[1]);
39 # if there was a NaN involved, return false
40 return '' unless defined $rc;
43 'int' => sub { $_[0]->as_number() }, # 'trunc' to bigint
46 ##############################################################################
47 # global constants, flags and assorted stuff
49 # the following are public, but their usage is not recommended. Use the
50 # accessor methods instead.
52 # class constants, use Class->constant_name() to access
53 # one of 'even', 'odd', '+inf', '-inf', 'zero', 'trunc' or 'common'
61 # the package we are using for our private parts, defaults to:
62 # Math::BigInt->config()->{lib}
63 my $MBI = 'Math::BigInt::Calc';
65 # are NaNs ok? (otherwise it dies when encountering an NaN) set w/ config()
67 # the same for infinity
70 # constant for easier life
73 my $IMPORT = 0; # was import() called yet? used to make require work
75 # some digits of accuracy for blog(undef,10); which we use in blog() for speed
77 '2.3025850929940456840179914546843642076011014886287729760333279009675726097';
78 my $LOG_10_A = length($LOG_10)-1;
81 '0.6931471805599453094172321214581765680755001343602552541206800094933936220';
82 my $LOG_2_A = length($LOG_2)-1;
83 my $HALF = '0.5'; # made into an object if nec.
85 ##############################################################################
86 # the old code had $rnd_mode, so we need to support it, too
88 sub TIESCALAR { my ($class) = @_; bless \$round_mode, $class; }
89 sub FETCH { return $round_mode; }
90 sub STORE { $rnd_mode = $_[0]->round_mode($_[1]); }
94 # when someone sets $rnd_mode, we catch this and check the value to see
95 # whether it is valid or not.
96 $rnd_mode = 'even'; tie $rnd_mode, 'Math::BigFloat';
98 # we need both of them in this package:
99 *as_int = \&as_number;
102 ##############################################################################
105 # valid method aliases for AUTOLOAD
106 my %methods = map { $_ => 1 }
107 qw / fadd fsub fmul fdiv fround ffround fsqrt fmod fstr fsstr fpow fnorm
108 fint facmp fcmp fzero fnan finf finc fdec ffac fneg
109 fceil ffloor frsft flsft fone flog froot fexp
111 # valid methods that can be handed up (for AUTOLOAD)
112 my %hand_ups = map { $_ => 1 }
113 qw / is_nan is_inf is_negative is_positive is_pos is_neg
114 accuracy precision div_scale round_mode fabs fnot
115 objectify upgrade downgrade
120 sub _method_alias { exists $methods{$_[0]||''}; }
121 sub _method_hand_up { exists $hand_ups{$_[0]||''}; }
124 ##############################################################################
129 # create a new BigFloat object from a string or another bigfloat object.
132 # sign => sign (+/-), or "NaN"
134 my ($class,$wanted,@r) = @_;
136 # avoid numify-calls by not using || on $wanted!
137 return $class->bzero() if !defined $wanted; # default to 0
138 return $wanted->copy() if UNIVERSAL::isa($wanted,'Math::BigFloat');
140 $class->import() if $IMPORT == 0; # make require work
142 my $self = {}; bless $self, $class;
143 # shortcut for bigints and its subclasses
144 if ((ref($wanted)) && UNIVERSAL::can( $wanted, "as_number"))
146 $self->{_m} = $wanted->as_number()->{value}; # get us a bigint copy
147 $self->{_e} = $MBI->_zero();
149 $self->{sign} = $wanted->sign();
150 return $self->bnorm();
152 # else: got a string or something masquerading as number (with overload)
154 # handle '+inf', '-inf' first
155 if ($wanted =~ /^[+-]?inf\z/)
157 return $downgrade->new($wanted) if $downgrade;
159 $self->{sign} = $wanted; # set a default sign for bstr()
160 return $self->binf($wanted);
163 # shortcut for simple forms like '12' that neither have trailing nor leading
165 if ($wanted =~ /^([+-]?)([1-9][0-9]*[1-9])$/)
167 $self->{_e} = $MBI->_zero();
169 $self->{sign} = $1 || '+';
170 $self->{_m} = $MBI->_new($2);
171 return $self->round(@r) if !$downgrade;
174 my ($mis,$miv,$mfv,$es,$ev) = Math::BigInt::_split($wanted);
180 Carp::croak ("$wanted is not a number initialized to $class");
183 return $downgrade->bnan() if $downgrade;
185 $self->{_e} = $MBI->_zero();
187 $self->{_m} = $MBI->_zero();
188 $self->{sign} = $nan;
192 # make integer from mantissa by adjusting exp, then convert to int
193 $self->{_e} = $MBI->_new($$ev); # exponent
194 $self->{_es} = $$es || '+';
195 my $mantissa = "$$miv$$mfv"; # create mant.
196 $mantissa =~ s/^0+(\d)/$1/; # strip leading zeros
197 $self->{_m} = $MBI->_new($mantissa); # create mant.
199 # 3.123E0 = 3123E-3, and 3.123E-2 => 3123E-5
200 if (CORE::length($$mfv) != 0)
202 my $len = $MBI->_new( CORE::length($$mfv));
203 ($self->{_e}, $self->{_es}) =
204 _e_sub ($self->{_e}, $len, $self->{_es}, '+');
206 # we can only have trailing zeros on the mantissa if $$mfv eq ''
209 # Use a regexp to count the trailing zeros in $$miv instead of _zeros()
210 # because that is faster, especially when _m is not stored in base 10.
211 my $zeros = 0; $zeros = CORE::length($1) if $$miv =~ /[1-9](0*)$/;
214 my $z = $MBI->_new($zeros);
215 # turn '120e2' into '12e3'
216 $MBI->_rsft ( $self->{_m}, $z, 10);
217 ($self->{_e}, $self->{_es}) =
218 _e_add ( $self->{_e}, $z, $self->{_es}, '+');
221 $self->{sign} = $$mis;
223 # for something like 0Ey, set y to 1, and -0 => +0
224 # Check $$miv for being '0' and $$mfv eq '', because otherwise _m could not
225 # have become 0. That's faster than to call $MBI->_is_zero().
226 $self->{sign} = '+', $self->{_e} = $MBI->_one()
227 if $$miv eq '0' and $$mfv eq '';
229 return $self->round(@r) if !$downgrade;
231 # if downgrade, inf, NaN or integers go down
233 if ($downgrade && $self->{_es} eq '+')
235 if ($MBI->_is_zero( $self->{_e} ))
237 return $downgrade->new($$mis . $MBI->_str( $self->{_m} ));
239 return $downgrade->new($self->bsstr());
241 $self->bnorm()->round(@r); # first normalize, then round
246 # if two arguments, the first one is the class to "swallow" subclasses
250 sign => $_[1]->{sign},
252 _m => $MBI->_copy($_[1]->{_m}),
253 _e => $MBI->_copy($_[1]->{_e}),
256 $self->{_a} = $_[1]->{_a} if defined $_[1]->{_a};
257 $self->{_p} = $_[1]->{_p} if defined $_[1]->{_p};
262 sign => $_[0]->{sign},
264 _m => $MBI->_copy($_[0]->{_m}),
265 _e => $MBI->_copy($_[0]->{_e}),
268 $self->{_a} = $_[0]->{_a} if defined $_[0]->{_a};
269 $self->{_p} = $_[0]->{_p} if defined $_[0]->{_p};
275 # used by parent class bone() to initialize number to NaN
281 my $class = ref($self);
282 Carp::croak ("Tried to set $self to NaN in $class\::_bnan()");
285 $IMPORT=1; # call our import only once
286 $self->{_m} = $MBI->_zero();
287 $self->{_e} = $MBI->_zero();
293 # used by parent class bone() to initialize number to +-inf
299 my $class = ref($self);
300 Carp::croak ("Tried to set $self to +-inf in $class\::_binf()");
303 $IMPORT=1; # call our import only once
304 $self->{_m} = $MBI->_zero();
305 $self->{_e} = $MBI->_zero();
311 # used by parent class bone() to initialize number to 1
313 $IMPORT=1; # call our import only once
314 $self->{_m} = $MBI->_one();
315 $self->{_e} = $MBI->_zero();
321 # used by parent class bone() to initialize number to 0
323 $IMPORT=1; # call our import only once
324 $self->{_m} = $MBI->_zero();
325 $self->{_e} = $MBI->_one();
331 my ($self,$class) = @_;
332 return if $class =~ /^Math::BigInt/; # we aren't one of these
333 UNIVERSAL::isa($self,$class);
338 # return (later set?) configuration data as hash ref
339 my $class = shift || 'Math::BigFloat';
341 if (@_ == 1 && ref($_[0]) ne 'HASH')
343 my $cfg = $class->SUPER::config();
344 return $cfg->{$_[0]};
347 my $cfg = $class->SUPER::config(@_);
349 # now we need only to override the ones that are different from our parent
350 $cfg->{class} = $class;
355 ##############################################################################
360 # (ref to BFLOAT or num_str ) return num_str
361 # Convert number from internal format to (non-scientific) string format.
362 # internal format is always normalized (no leading zeros, "-0" => "+0")
363 my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
365 if ($x->{sign} !~ /^[+-]$/)
367 return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN
371 my $es = '0'; my $len = 1; my $cad = 0; my $dot = '.';
374 my $not_zero = !($x->{sign} eq '+' && $MBI->_is_zero($x->{_m}));
377 $es = $MBI->_str($x->{_m});
378 $len = CORE::length($es);
379 my $e = $MBI->_num($x->{_e});
380 $e = -$e if $x->{_es} eq '-';
384 # if _e is bigger than a scalar, the following will blow your memory
387 my $r = abs($e) - $len;
388 $es = '0.'. ('0' x $r) . $es; $cad = -($len+$r);
392 substr($es,$e,0) = '.'; $cad = $MBI->_num($x->{_e});
393 $cad = -$cad if $x->{_es} eq '-';
399 $es .= '0' x $e; $len += $e; $cad = 0;
403 $es = '-'.$es if $x->{sign} eq '-';
404 # if set accuracy or precision, pad with zeros on the right side
405 if ((defined $x->{_a}) && ($not_zero))
407 # 123400 => 6, 0.1234 => 4, 0.001234 => 4
408 my $zeros = $x->{_a} - $cad; # cad == 0 => 12340
409 $zeros = $x->{_a} - $len if $cad != $len;
410 $es .= $dot.'0' x $zeros if $zeros > 0;
412 elsif ((($x->{_p} || 0) < 0))
414 # 123400 => 6, 0.1234 => 4, 0.001234 => 6
415 my $zeros = -$x->{_p} + $cad;
416 $es .= $dot.'0' x $zeros if $zeros > 0;
423 # (ref to BFLOAT or num_str ) return num_str
424 # Convert number from internal format to scientific string format.
425 # internal format is always normalized (no leading zeros, "-0E0" => "+0E0")
426 my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
428 if ($x->{sign} !~ /^[+-]$/)
430 return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN
433 my $sep = 'e'.$x->{_es};
434 my $sign = $x->{sign}; $sign = '' if $sign eq '+';
435 $sign . $MBI->_str($x->{_m}) . $sep . $MBI->_str($x->{_e});
440 # Convert a Perl scalar number from a BigFloat object.
441 # Create a string and let Perl's atoi()/atof() handle the rest.
442 my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
443 return 0 + $x->bsstr();
446 ##############################################################################
447 # public stuff (usually prefixed with "b")
451 # (BINT or num_str) return BINT
452 # negate number or make a negated number from string
453 my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
455 return $x if $x->modify('bneg');
457 # for +0 do not negate (to have always normalized +0). Does nothing for 'NaN'
458 $x->{sign} =~ tr/+-/-+/ unless ($x->{sign} eq '+' && $MBI->_is_zero($x->{_m}));
463 # XXX TODO this must be overwritten and return NaN for non-integer values
464 # band(), bior(), bxor(), too
467 # $class->SUPER::bnot($class,@_);
472 # Compares 2 values. Returns one of undef, <0, =0, >0. (suitable for sort)
475 my ($self,$x,$y) = (ref($_[0]),@_);
477 # objectify is costly, so avoid it
478 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
480 ($self,$x,$y) = objectify(2,@_);
483 return $upgrade->bcmp($x,$y) if defined $upgrade &&
484 ((!$x->isa($self)) || (!$y->isa($self)));
486 # Handle all 'nan' cases.
488 return undef if ($x->{sign} eq $nan) || ($y->{sign} eq $nan);
490 # Handle all '+inf' and '-inf' cases.
492 return 0 if ($x->{sign} eq '+inf' && $y->{sign} eq '+inf' ||
493 $x->{sign} eq '-inf' && $y->{sign} eq '-inf');
494 return +1 if $x->{sign} eq '+inf'; # x = +inf and y < +inf
495 return -1 if $x->{sign} eq '-inf'; # x = -inf and y > -inf
496 return -1 if $y->{sign} eq '+inf'; # x < +inf and y = +inf
497 return +1 if $y->{sign} eq '-inf'; # x > -inf and y = -inf
499 # Handle all cases with opposite signs.
501 return +1 if $x->{sign} eq '+' && $y->{sign} eq '-'; # also does 0 <=> -y
502 return -1 if $x->{sign} eq '-' && $y->{sign} eq '+'; # also does -x <=> 0
504 # Handle all remaining zero cases.
506 my $xz = $x->is_zero();
507 my $yz = $y->is_zero();
508 return 0 if $xz && $yz; # 0 <=> 0
509 return -1 if $xz && $y->{sign} eq '+'; # 0 <=> +y
510 return +1 if $yz && $x->{sign} eq '+'; # +x <=> 0
512 # Both arguments are now finite, non-zero numbers with the same sign.
516 # The next step is to compare the exponents, but since each mantissa is an
517 # integer of arbitrary value, the exponents must be normalized by the length
518 # of the mantissas before we can compare them.
520 my $mxl = $MBI->_len($x->{_m});
521 my $myl = $MBI->_len($y->{_m});
523 # If the mantissas have the same length, there is no point in normalizing the
524 # exponents by the length of the mantissas, so treat that as a special case.
528 # First handle the two cases where the exponents have different signs.
530 if ($x->{_es} eq '+' && $y->{_es} eq '-') {
534 elsif ($x->{_es} eq '-' && $y->{_es} eq '+') {
538 # Then handle the case where the exponents have the same sign.
541 $cmp = $MBI->_acmp($x->{_e}, $y->{_e});
542 $cmp = -$cmp if $x->{_es} eq '-';
545 # Adjust for the sign, which is the same for x and y, and bail out if
548 $cmp = -$cmp if $x->{sign} eq '-'; # 124 > 123, but -124 < -123
553 # We must normalize each exponent by the length of the corresponding
554 # mantissa. Life is a lot easier if we first make both exponents
555 # non-negative. We do this by adding the same positive value to both
556 # exponent. This is safe, because when comparing the exponents, only the
557 # relative difference is important.
562 if ($x->{_es} eq '+') {
564 # If the exponent of x is >= 0 and the exponent of y is >= 0, there is no
565 # need to do anything special.
567 if ($y->{_es} eq '+') {
568 $ex = $MBI->_copy($x->{_e});
569 $ey = $MBI->_copy($y->{_e});
572 # If the exponent of x is >= 0 and the exponent of y is < 0, add the
573 # absolute value of the exponent of y to both.
576 $ex = $MBI->_copy($x->{_e});
577 $ex = $MBI->_add($ex, $y->{_e}); # ex + |ey|
578 $ey = $MBI->_zero(); # -ex + |ey| = 0
583 # If the exponent of x is < 0 and the exponent of y is >= 0, add the
584 # absolute value of the exponent of x to both.
586 if ($y->{_es} eq '+') {
587 $ex = $MBI->_zero(); # -ex + |ex| = 0
588 $ey = $MBI->_copy($y->{_e});
589 $ey = $MBI->_add($ey, $x->{_e}); # ey + |ex|
592 # If the exponent of x is < 0 and the exponent of y is < 0, add the
593 # absolute values of both exponents to both exponents.
596 $ex = $MBI->_copy($y->{_e}); # -ex + |ey| + |ex| = |ey|
597 $ey = $MBI->_copy($x->{_e}); # -ey + |ex| + |ey| = |ex|
602 # Now we can normalize the exponents by adding lengths of the mantissas.
604 $MBI->_add($ex, $MBI->_new($mxl));
605 $MBI->_add($ey, $MBI->_new($myl));
607 # We're done if the exponents are different.
609 $cmp = $MBI->_acmp($ex, $ey);
610 $cmp = -$cmp if $x->{sign} eq '-'; # 124 > 123, but -124 < -123
613 # Compare the mantissas, but first normalize them by padding the shorter
614 # mantissa with zeros (shift left) until it has the same length as the longer
621 $my = $MBI->_lsft($MBI->_copy($my), $MBI->_new($mxl - $myl), 10);
622 } elsif ($mxl < $myl) {
623 $mx = $MBI->_lsft($MBI->_copy($mx), $MBI->_new($myl - $mxl), 10);
626 $cmp = $MBI->_acmp($mx, $my);
627 $cmp = -$cmp if $x->{sign} eq '-'; # 124 > 123, but -124 < -123
634 # Compares 2 values, ignoring their signs.
635 # Returns one of undef, <0, =0, >0. (suitable for sort)
638 my ($self,$x,$y) = (ref($_[0]),@_);
639 # objectify is costly, so avoid it
640 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
642 ($self,$x,$y) = objectify(2,@_);
645 return $upgrade->bacmp($x,$y) if defined $upgrade &&
646 ((!$x->isa($self)) || (!$y->isa($self)));
648 # handle +-inf and NaN's
649 if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/)
651 return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
652 return 0 if ($x->is_inf() && $y->is_inf());
653 return 1 if ($x->is_inf() && !$y->is_inf());
658 my $xz = $x->is_zero();
659 my $yz = $y->is_zero();
660 return 0 if $xz && $yz; # 0 <=> 0
661 return -1 if $xz && !$yz; # 0 <=> +y
662 return 1 if $yz && !$xz; # +x <=> 0
664 # adjust so that exponents are equal
665 my $lxm = $MBI->_len($x->{_m});
666 my $lym = $MBI->_len($y->{_m});
667 my ($xes,$yes) = (1,1);
668 $xes = -1 if $x->{_es} ne '+';
669 $yes = -1 if $y->{_es} ne '+';
670 # the numify somewhat limits our length, but makes it much faster
671 my $lx = $lxm + $xes * $MBI->_num($x->{_e});
672 my $ly = $lym + $yes * $MBI->_num($y->{_e});
674 return $l <=> 0 if $l != 0;
676 # lengths (corrected by exponent) are equal
677 # so make mantissa equal-length by padding with zero (shift left)
678 my $diff = $lxm - $lym;
679 my $xm = $x->{_m}; # not yet copy it
683 $ym = $MBI->_copy($y->{_m});
684 $ym = $MBI->_lsft($ym, $MBI->_new($diff), 10);
688 $xm = $MBI->_copy($x->{_m});
689 $xm = $MBI->_lsft($xm, $MBI->_new(-$diff), 10);
691 $MBI->_acmp($xm,$ym);
696 # add second arg (BFLOAT or string) to first (BFLOAT) (modifies first)
697 # return result as BFLOAT
700 my ($self,$x,$y,@r) = (ref($_[0]),@_);
701 # objectify is costly, so avoid it
702 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
704 ($self,$x,$y,@r) = objectify(2,@_);
707 return $x if $x->modify('badd');
709 # inf and NaN handling
710 if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
713 return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
715 if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
717 # +inf++inf or -inf+-inf => same, rest is NaN
718 return $x if $x->{sign} eq $y->{sign};
721 # +-inf + something => +inf; something +-inf => +-inf
722 $x->{sign} = $y->{sign}, return $x if $y->{sign} =~ /^[+-]inf$/;
726 return $upgrade->badd($x,$y,@r) if defined $upgrade &&
727 ((!$x->isa($self)) || (!$y->isa($self)));
729 $r[3] = $y; # no push!
731 # speed: no add for 0+y or x+0
732 return $x->bround(@r) if $y->is_zero(); # x+0
733 if ($x->is_zero()) # 0+y
735 # make copy, clobbering up x (modify in place!)
736 $x->{_e} = $MBI->_copy($y->{_e});
737 $x->{_es} = $y->{_es};
738 $x->{_m} = $MBI->_copy($y->{_m});
739 $x->{sign} = $y->{sign} || $nan;
740 return $x->round(@r);
743 # take lower of the two e's and adapt m1 to it to match m2
745 $e = $MBI->_zero() if !defined $e; # if no BFLOAT?
746 $e = $MBI->_copy($e); # make copy (didn't do it yet)
750 ($e,$es) = _e_sub($e, $x->{_e}, $y->{_es} || '+', $x->{_es});
752 my $add = $MBI->_copy($y->{_m});
754 if ($es eq '-') # < 0
756 $MBI->_lsft( $x->{_m}, $e, 10);
757 ($x->{_e},$x->{_es}) = _e_add($x->{_e}, $e, $x->{_es}, $es);
759 elsif (!$MBI->_is_zero($e)) # > 0
761 $MBI->_lsft($add, $e, 10);
763 # else: both e are the same, so just leave them
765 if ($x->{sign} eq $y->{sign})
768 $x->{_m} = $MBI->_add($x->{_m}, $add);
772 ($x->{_m}, $x->{sign}) =
773 _e_add($x->{_m}, $add, $x->{sign}, $y->{sign});
776 # delete trailing zeros, then round
777 $x->bnorm()->round(@r);
780 # sub bsub is inherited from Math::BigInt!
784 # increment arg by one
785 my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
787 return $x if $x->modify('binc');
789 if ($x->{_es} eq '-')
791 return $x->badd($self->bone(),@r); # digits after dot
794 if (!$MBI->_is_zero($x->{_e})) # _e == 0 for NaN, inf, -inf
796 # 1e2 => 100, so after the shift below _m has a '0' as last digit
797 $x->{_m} = $MBI->_lsft($x->{_m}, $x->{_e},10); # 1e2 => 100
798 $x->{_e} = $MBI->_zero(); # normalize
800 # we know that the last digit of $x will be '1' or '9', depending on the
804 if ($x->{sign} eq '+')
806 $MBI->_inc($x->{_m});
807 return $x->bnorm()->bround(@r);
809 elsif ($x->{sign} eq '-')
811 $MBI->_dec($x->{_m});
812 $x->{sign} = '+' if $MBI->_is_zero($x->{_m}); # -1 +1 => -0 => +0
813 return $x->bnorm()->bround(@r);
815 # inf, nan handling etc
816 $x->badd($self->bone(),@r); # badd() does round
821 # decrement arg by one
822 my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
824 return $x if $x->modify('bdec');
826 if ($x->{_es} eq '-')
828 return $x->badd($self->bone('-'),@r); # digits after dot
831 if (!$MBI->_is_zero($x->{_e}))
833 $x->{_m} = $MBI->_lsft($x->{_m}, $x->{_e},10); # 1e2 => 100
834 $x->{_e} = $MBI->_zero(); # normalize
838 my $zero = $x->is_zero();
840 if (($x->{sign} eq '-') || $zero)
842 $MBI->_inc($x->{_m});
843 $x->{sign} = '-' if $zero; # 0 => 1 => -1
844 $x->{sign} = '+' if $MBI->_is_zero($x->{_m}); # -1 +1 => -0 => +0
845 return $x->bnorm()->round(@r);
848 elsif ($x->{sign} eq '+')
850 $MBI->_dec($x->{_m});
851 return $x->bnorm()->round(@r);
853 # inf, nan handling etc
854 $x->badd($self->bone('-'),@r); # does round
861 my ($self,$x,$base,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
863 return $x if $x->modify('blog');
865 # $base > 0, $base != 1; if $base == undef default to $base == e
868 # we need to limit the accuracy to protect against overflow
871 ($x,@params) = $x->_find_round_parameters($a,$p,$r);
873 # also takes care of the "error in _find_round_parameters?" case
874 return $x->bnan() if $x->{sign} ne '+' || $x->is_zero();
876 # no rounding at all, so must use fallback
877 if (scalar @params == 0)
879 # simulate old behaviour
880 $params[0] = $self->div_scale(); # and round to it as accuracy
881 $params[1] = undef; # P = undef
882 $scale = $params[0]+4; # at least four more for proper round
883 $params[2] = $r; # round mode by caller or undef
884 $fallback = 1; # to clear a/p afterwards
888 # the 4 below is empirical, and there might be cases where it is not
890 $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
893 return $x->bzero(@params) if $x->is_one();
894 # base not defined => base == Euler's number e
897 # make object, since we don't feed it through objectify() to still get the
898 # case of $base == undef
899 $base = $self->new($base) unless ref($base);
900 # $base > 0; $base != 1
901 return $x->bnan() if $base->is_zero() || $base->is_one() ||
902 $base->{sign} ne '+';
903 # if $x == $base, we know the result must be 1.0
904 if ($x->bcmp($base) == 0)
906 $x->bone('+',@params);
909 # clear a/p after round, since user did not request it
910 delete $x->{_a}; delete $x->{_p};
916 # when user set globals, they would interfere with our calculation, so
917 # disable them and later re-enable them
919 my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
920 my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
921 # we also need to disable any set A or P on $x (_find_round_parameters took
922 # them already into account), since these would interfere, too
923 delete $x->{_a}; delete $x->{_p};
924 # need to disable $upgrade in BigInt, to avoid deep recursion
925 local $Math::BigInt::upgrade = undef;
926 local $Math::BigFloat::downgrade = undef;
928 # upgrade $x if $x is not a BigFloat (handle BigInt input)
930 if (!$x->isa('Math::BigFloat'))
932 $x = Math::BigFloat->new($x);
938 # If the base is defined and an integer, try to calculate integer result
939 # first. This is very fast, and in case the real result was found, we can
941 if (defined $base && $base->is_int() && $x->is_int())
943 my $i = $MBI->_copy( $x->{_m} );
944 $MBI->_lsft( $i, $x->{_e}, 10 ) unless $MBI->_is_zero($x->{_e});
945 my $int = Math::BigInt->bzero();
947 $int->blog($base->as_number());
949 if ($base->as_number()->bpow($int) == $x)
951 # found result, return it
952 $x->{_m} = $int->{value};
953 $x->{_e} = $MBI->_zero();
962 # base is undef, so base should be e (Euler's number), so first calculate the
963 # log to base e (using reduction by 10 (and probably 2)):
964 $self->_log_10($x,$scale);
966 # and if a different base was requested, convert it
969 $base = Math::BigFloat->new($base) unless $base->isa('Math::BigFloat');
970 # not ln, but some other base (don't modify $base)
971 $x->bdiv( $base->copy()->blog(undef,$scale), $scale );
975 # shortcut to not run through _find_round_parameters again
976 if (defined $params[0])
978 $x->bround($params[0],$params[2]); # then round accordingly
982 $x->bfround($params[1],$params[2]); # then round accordingly
986 # clear a/p after round, since user did not request it
987 delete $x->{_a}; delete $x->{_p};
990 $$abr = $ab; $$pbr = $pb;
997 # Given D (digits in decimal), compute N so that N! (N factorial) is
998 # at least D digits long. D should be at least 50.
1001 # two constants for the Ramanujan estimate of ln(N!)
1002 my $lg2 = log(2 * 3.14159265) / 2;
1005 # D = 50 => N => 42, so L = 40 and R = 50
1006 my $l = 40; my $r = $d;
1008 # Otherwise this does not work under -Mbignum and we do not yet have "no bignum;" :(
1009 $l = $l->numify if ref($l);
1010 $r = $r->numify if ref($r);
1011 $lg2 = $lg2->numify if ref($lg2);
1012 $lg10 = $lg10->numify if ref($lg10);
1014 # binary search for the right value (could this be written as the reverse of lg(n!)?)
1017 my $n = int(($r - $l) / 2) + $l;
1019 int(($n * log($n) - $n + log( $n * (1 + 4*$n*(1+2*$n)) ) / 6 + $lg2) / $lg10);
1020 $ramanujan > $d ? $r = $n : $l = $n;
1027 # Calculate n over k (binomial coefficient or "choose" function) as integer.
1029 my ($self,$x,$y,@r) = (ref($_[0]),@_);
1031 # objectify is costly, so avoid it
1032 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
1034 ($self,$x,$y,@r) = objectify(2,@_);
1037 return $x if $x->modify('bnok');
1039 return $x->bnan() if $x->is_nan() || $y->is_nan();
1040 return $x->binf() if $x->is_inf();
1042 my $u = $x->as_int();
1043 $u->bnok($y->as_int());
1045 $x->{_m} = $u->{value};
1046 $x->{_e} = $MBI->_zero();
1054 # Calculate e ** X (Euler's number to the power of X)
1055 my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
1057 return $x if $x->modify('bexp');
1059 return $x->binf() if $x->{sign} eq '+inf';
1060 return $x->bzero() if $x->{sign} eq '-inf';
1062 # we need to limit the accuracy to protect against overflow
1064 my ($scale,@params);
1065 ($x,@params) = $x->_find_round_parameters($a,$p,$r);
1067 # also takes care of the "error in _find_round_parameters?" case
1068 return $x if $x->{sign} eq 'NaN';
1070 # no rounding at all, so must use fallback
1071 if (scalar @params == 0)
1073 # simulate old behaviour
1074 $params[0] = $self->div_scale(); # and round to it as accuracy
1075 $params[1] = undef; # P = undef
1076 $scale = $params[0]+4; # at least four more for proper round
1077 $params[2] = $r; # round mode by caller or undef
1078 $fallback = 1; # to clear a/p afterwards
1082 # the 4 below is empirical, and there might be cases where it's not enough...
1083 $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
1086 return $x->bone(@params) if $x->is_zero();
1088 if (!$x->isa('Math::BigFloat'))
1090 $x = Math::BigFloat->new($x);
1094 # when user set globals, they would interfere with our calculation, so
1095 # disable them and later re-enable them
1097 my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
1098 my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
1099 # we also need to disable any set A or P on $x (_find_round_parameters took
1100 # them already into account), since these would interfere, too
1101 delete $x->{_a}; delete $x->{_p};
1102 # need to disable $upgrade in BigInt, to avoid deep recursion
1103 local $Math::BigInt::upgrade = undef;
1104 local $Math::BigFloat::downgrade = undef;
1106 my $x_org = $x->copy();
1108 # We use the following Taylor series:
1111 # e = 1 + --- + --- + --- + --- ...
1114 # The difference for each term is X and N, which would result in:
1115 # 2 copy, 2 mul, 2 add, 1 inc, 1 div operations per term
1117 # But it is faster to compute exp(1) and then raising it to the
1118 # given power, esp. if $x is really big and an integer because:
1120 # * The numerator is always 1, making the computation faster
1121 # * the series converges faster in the case of x == 1
1122 # * We can also easily check when we have reached our limit: when the
1123 # term to be added is smaller than "1E$scale", we can stop - f.i.
1124 # scale == 5, and we have 1/40320, then we stop since 1/40320 < 1E-5.
1125 # * we can compute the *exact* result by simulating bigrat math:
1127 # 1 1 gcd(3,4) = 1 1*24 + 1*6 5
1128 # - + - = ---------- = --
1131 # We do not compute the gcd() here, but simple do:
1133 # - + - = --------- = --
1137 # a c a*d + c*b and note that c is always 1 and d = (b*f)
1141 # This leads to: which can be reduced by b to:
1142 # a 1 a*b*f + b a*f + 1
1143 # - + - = --------- = -------
1146 # The first terms in the series are:
1148 # 1 1 1 1 1 1 1 1 13700
1149 # -- + -- + -- + -- + -- + --- + --- + ---- = -----
1150 # 1 1 2 6 24 120 720 5040 5040
1152 # Note that we cannot simple reduce 13700/5040 to 685/252, but must keep A and B!
1156 # set $x directly from a cached string form
1157 $x->{_m} = $MBI->_new(
1158 "27182818284590452353602874713526624977572470936999595749669676277240766303535476");
1161 $x->{_e} = $MBI->_new(79);
1165 # compute A and B so that e = A / B.
1167 # After some terms we end up with this, so we use it as a starting point:
1168 my $A = $MBI->_new("90933395208605785401971970164779391644753259799242");
1169 my $F = $MBI->_new(42); my $step = 42;
1171 # Compute how many steps we need to take to get $A and $B sufficiently big
1172 my $steps = _len_to_steps($scale - 4);
1173 # print STDERR "# Doing $steps steps for ", $scale-4, " digits\n";
1174 while ($step++ <= $steps)
1176 # calculate $a * $f + 1
1177 $A = $MBI->_mul($A, $F);
1178 $A = $MBI->_inc($A);
1180 $F = $MBI->_inc($F);
1182 # compute $B as factorial of $steps (this is faster than doing it manually)
1183 my $B = $MBI->_fac($MBI->_new($steps));
1185 # print "A ", $MBI->_str($A), "\nB ", $MBI->_str($B), "\n";
1187 # compute A/B with $scale digits in the result (truncate, not round)
1188 $A = $MBI->_lsft( $A, $MBI->_new($scale), 10);
1189 $A = $MBI->_div( $A, $B );
1194 $x->{_e} = $MBI->_new($scale);
1197 # $x contains now an estimate of e, with some surplus digits, so we can round
1198 if (!$x_org->is_one())
1200 # raise $x to the wanted power and round it in one step:
1201 $x->bpow($x_org, @params);
1205 # else just round the already computed result
1206 delete $x->{_a}; delete $x->{_p};
1207 # shortcut to not run through _find_round_parameters again
1208 if (defined $params[0])
1210 $x->bround($params[0],$params[2]); # then round accordingly
1214 $x->bfround($params[1],$params[2]); # then round accordingly
1219 # clear a/p after round, since user did not request it
1220 delete $x->{_a}; delete $x->{_p};
1223 $$abr = $ab; $$pbr = $pb;
1225 $x; # return modified $x
1230 # internal log function to calculate ln() based on Taylor series.
1231 # Modifies $x in place.
1232 my ($self,$x,$scale) = @_;
1234 # in case of $x == 1, result is 0
1235 return $x->bzero() if $x->is_one();
1237 # XXX TODO: rewrite this in a similar manner to bexp()
1239 # http://www.efunda.com/math/taylor_series/logarithmic.cfm?search_string=log
1243 # Taylor: | u 1 u^3 1 u^5 |
1244 # ln (x) = 2 | --- + - * --- + - * --- + ... | x > 0
1245 # |_ v 3 v^3 5 v^5 _|
1247 # This takes much more steps to calculate the result and is thus not used
1250 # Taylor: | u 1 u^2 1 u^3 |
1251 # ln (x) = 2 | --- + - * --- + - * --- + ... | x > 1/2
1252 # |_ x 2 x^2 3 x^3 _|
1254 my ($limit,$v,$u,$below,$factor,$two,$next,$over,$f);
1256 $v = $x->copy(); $v->binc(); # v = x+1
1257 $x->bdec(); $u = $x->copy(); # u = x-1; x = x-1
1258 $x->bdiv($v,$scale); # first term: u/v
1259 $below = $v->copy();
1261 $u *= $u; $v *= $v; # u^2, v^2
1262 $below->bmul($v); # u^3, v^3
1264 $factor = $self->new(3); $f = $self->new(2);
1266 my $steps = 0 if DEBUG;
1267 $limit = $self->new("1E-". ($scale-1));
1270 # we calculate the next term, and add it to the last
1271 # when the next term is below our limit, it won't affect the outcome
1272 # anymore, so we stop
1274 # calculating the next term simple from over/below will result in quite
1275 # a time hog if the input has many digits, since over and below will
1276 # accumulate more and more digits, and the result will also have many
1277 # digits, but in the end it is rounded to $scale digits anyway. So if we
1278 # round $over and $below first, we save a lot of time for the division
1279 # (not with log(1.2345), but try log (123**123) to see what I mean. This
1280 # can introduce a rounding error if the division result would be f.i.
1281 # 0.1234500000001 and we round it to 5 digits it would become 0.12346, but
1282 # if we truncated $over and $below we might get 0.12345. Does this matter
1283 # for the end result? So we give $over and $below 4 more digits to be
1284 # on the safe side (unscientific error handling as usual... :+D
1286 $next = $over->copy->bround($scale+4)->bdiv(
1287 $below->copy->bmul($factor)->bround($scale+4),
1291 ## $next = $over->copy()->bdiv($below->copy()->bmul($factor),$scale);
1293 last if $next->bacmp($limit) <= 0;
1295 delete $next->{_a}; delete $next->{_p};
1297 # calculate things for the next term
1298 $over *= $u; $below *= $v; $factor->badd($f);
1301 $steps++; print "step $steps = $x\n" if $steps % 10 == 0;
1304 print "took $steps steps\n" if DEBUG;
1305 $x->bmul($f); # $x *= 2
1310 # Internal log function based on reducing input to the range of 0.1 .. 9.99
1311 # and then "correcting" the result to the proper one. Modifies $x in place.
1312 my ($self,$x,$scale) = @_;
1314 # Taking blog() from numbers greater than 10 takes a *very long* time, so we
1315 # break the computation down into parts based on the observation that:
1316 # blog(X*Y) = blog(X) + blog(Y)
1317 # We set Y here to multiples of 10 so that $x becomes below 1 - the smaller
1318 # $x is the faster it gets. Since 2*$x takes about 10 times as
1319 # long, we make it faster by about a factor of 100 by dividing $x by 10.
1321 # The same observation is valid for numbers smaller than 0.1, e.g. computing
1322 # log(1) is fastest, and the further away we get from 1, the longer it takes.
1323 # So we also 'break' this down by multiplying $x with 10 and subtract the
1324 # log(10) afterwards to get the correct result.
1326 # To get $x even closer to 1, we also divide by 2 and then use log(2) to
1327 # correct for this. For instance if $x is 2.4, we use the formula:
1328 # blog(2.4 * 2) == blog (1.2) + blog(2)
1329 # and thus calculate only blog(1.2) and blog(2), which is faster in total
1330 # than calculating blog(2.4).
1332 # In addition, the values for blog(2) and blog(10) are cached.
1334 # Calculate nr of digits before dot:
1335 my $dbd = $MBI->_num($x->{_e});
1336 $dbd = -$dbd if $x->{_es} eq '-';
1337 $dbd += $MBI->_len($x->{_m});
1339 # more than one digit (e.g. at least 10), but *not* exactly 10 to avoid
1340 # infinite recursion
1342 my $calc = 1; # do some calculation?
1344 # disable the shortcut for 10, since we need log(10) and this would recurse
1346 if ($x->{_es} eq '+' && $MBI->_is_one($x->{_e}) && $MBI->_is_one($x->{_m}))
1348 $dbd = 0; # disable shortcut
1349 # we can use the cached value in these cases
1350 if ($scale <= $LOG_10_A)
1352 $x->bzero(); $x->badd($LOG_10); # modify $x in place
1353 $calc = 0; # no need to calc, but round
1355 # if we can't use the shortcut, we continue normally
1359 # disable the shortcut for 2, since we maybe have it cached
1360 if (($MBI->_is_zero($x->{_e}) && $MBI->_is_two($x->{_m})))
1362 $dbd = 0; # disable shortcut
1363 # we can use the cached value in these cases
1364 if ($scale <= $LOG_2_A)
1366 $x->bzero(); $x->badd($LOG_2); # modify $x in place
1367 $calc = 0; # no need to calc, but round
1369 # if we can't use the shortcut, we continue normally
1373 # if $x = 0.1, we know the result must be 0-log(10)
1374 if ($calc != 0 && $x->{_es} eq '-' && $MBI->_is_one($x->{_e}) &&
1375 $MBI->_is_one($x->{_m}))
1377 $dbd = 0; # disable shortcut
1378 # we can use the cached value in these cases
1379 if ($scale <= $LOG_10_A)
1381 $x->bzero(); $x->bsub($LOG_10);
1382 $calc = 0; # no need to calc, but round
1386 return if $calc == 0; # already have the result
1388 # default: these correction factors are undef and thus not used
1389 my $l_10; # value of ln(10) to A of $scale
1390 my $l_2; # value of ln(2) to A of $scale
1392 my $two = $self->new(2);
1394 # $x == 2 => 1, $x == 13 => 2, $x == 0.1 => 0, $x == 0.01 => -1
1395 # so don't do this shortcut for 1 or 0
1396 if (($dbd > 1) || ($dbd < 0))
1398 # convert our cached value to an object if not already (avoid doing this
1399 # at import() time, since not everybody needs this)
1400 $LOG_10 = $self->new($LOG_10,undef,undef) unless ref $LOG_10;
1402 #print "x = $x, dbd = $dbd, calc = $calc\n";
1403 # got more than one digit before the dot, or more than one zero after the
1405 # log(123) == log(1.23) + log(10) * 2
1406 # log(0.0123) == log(1.23) - log(10) * 2
1408 if ($scale <= $LOG_10_A)
1411 $l_10 = $LOG_10->copy(); # copy for mul
1415 # else: slower, compute and cache result
1416 # also disable downgrade for this code path
1417 local $Math::BigFloat::downgrade = undef;
1419 # shorten the time to calculate log(10) based on the following:
1420 # log(1.25 * 8) = log(1.25) + log(8)
1421 # = log(1.25) + log(2) + log(2) + log(2)
1423 # first get $l_2 (and possible compute and cache log(2))
1424 $LOG_2 = $self->new($LOG_2,undef,undef) unless ref $LOG_2;
1425 if ($scale <= $LOG_2_A)
1428 $l_2 = $LOG_2->copy(); # copy() for the mul below
1432 # else: slower, compute and cache result
1433 $l_2 = $two->copy(); $self->_log($l_2, $scale); # scale+4, actually
1434 $LOG_2 = $l_2->copy(); # cache the result for later
1435 # the copy() is for mul below
1439 # now calculate log(1.25):
1440 $l_10 = $self->new('1.25'); $self->_log($l_10, $scale); # scale+4, actually
1442 # log(1.25) + log(2) + log(2) + log(2):
1446 $LOG_10 = $l_10->copy(); # cache the result for later
1447 # the copy() is for mul below
1450 $dbd-- if ($dbd > 1); # 20 => dbd=2, so make it dbd=1
1451 $l_10->bmul( $self->new($dbd)); # log(10) * (digits_before_dot-1)
1458 ($x->{_e}, $x->{_es}) =
1459 _e_sub( $x->{_e}, $MBI->_new($dbd), $x->{_es}, $dbd_sign); # 123 => 1.23
1463 # Now: 0.1 <= $x < 10 (and possible correction in l_10)
1465 ### Since $x in the range 0.5 .. 1.5 is MUCH faster, we do a repeated div
1466 ### or mul by 2 (maximum times 3, since x < 10 and x > 0.1)
1468 $HALF = $self->new($HALF) unless ref($HALF);
1470 my $twos = 0; # default: none (0 times)
1471 while ($x->bacmp($HALF) <= 0) # X <= 0.5
1473 $twos--; $x->bmul($two);
1475 while ($x->bacmp($two) >= 0) # X >= 2
1477 $twos++; $x->bdiv($two,$scale+4); # keep all digits
1479 # $twos > 0 => did mul 2, < 0 => did div 2 (but we never did both)
1480 # So calculate correction factor based on ln(2):
1483 $LOG_2 = $self->new($LOG_2,undef,undef) unless ref $LOG_2;
1484 if ($scale <= $LOG_2_A)
1487 $l_2 = $LOG_2->copy(); # copy() for the mul below
1491 # else: slower, compute and cache result
1492 # also disable downgrade for this code path
1493 local $Math::BigFloat::downgrade = undef;
1494 $l_2 = $two->copy(); $self->_log($l_2, $scale); # scale+4, actually
1495 $LOG_2 = $l_2->copy(); # cache the result for later
1496 # the copy() is for mul below
1499 $l_2->bmul($twos); # * -2 => subtract, * 2 => add
1506 $self->_log($x,$scale); # need to do the "normal" way
1507 $x->badd($l_10) if defined $l_10; # correct it by ln(10)
1508 $x->badd($l_2) if defined $l_2; # and maybe by ln(2)
1510 # all done, $x contains now the result
1516 # (BFLOAT or num_str, BFLOAT or num_str) return BFLOAT
1517 # does not modify arguments, but returns new object
1518 # Lowest Common Multiplicator
1520 my ($self,@arg) = objectify(0,@_);
1521 my $x = $self->new(shift @arg);
1522 while (@arg) { $x = Math::BigInt::__lcm($x,shift @arg); }
1528 # (BINT or num_str, BINT or num_str) return BINT
1529 # does not modify arguments, but returns new object
1532 $y = __PACKAGE__->new($y) if !ref($y);
1534 my $x = $y->copy()->babs(); # keep arguments
1536 return $x->bnan() if $x->{sign} !~ /^[+-]$/ # x NaN?
1537 || !$x->is_int(); # only for integers now
1541 my $t = shift; $t = $self->new($t) if !ref($t);
1542 $y = $t->copy()->babs();
1544 return $x->bnan() if $y->{sign} !~ /^[+-]$/ # y NaN?
1545 || !$y->is_int(); # only for integers now
1547 # greatest common divisor
1548 while (! $y->is_zero())
1550 ($x,$y) = ($y->copy(), $x->copy()->bmod($y));
1553 last if $x->is_one();
1558 ##############################################################################
1562 # Internal helper sub to take two positive integers and their signs and
1563 # then add them. Input ($CALC,$CALC,('+'|'-'),('+'|'-')),
1564 # output ($CALC,('+'|'-'))
1565 my ($x,$y,$xs,$ys) = @_;
1567 # if the signs are equal we can add them (-5 + -3 => -(5 + 3) => -8)
1570 $x = $MBI->_add ($x, $y ); # a+b
1571 # the sign follows $xs
1575 my $a = $MBI->_acmp($x,$y);
1578 $x = $MBI->_sub ($x , $y); # abs sub
1582 $x = $MBI->_zero(); # result is 0
1587 $x = $MBI->_sub ( $y, $x, 1 ); # abs sub
1595 # Internal helper sub to take two positive integers and their signs and
1596 # then subtract them. Input ($CALC,$CALC,('+'|'-'),('+'|'-')),
1597 # output ($CALC,('+'|'-'))
1598 my ($x,$y,$xs,$ys) = @_;
1602 _e_add($x,$y,$xs,$ys); # call add (does subtract now)
1605 ###############################################################################
1606 # is_foo methods (is_negative, is_positive are inherited from BigInt)
1610 # return true if arg (BFLOAT or num_str) is an integer
1611 my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
1613 (($x->{sign} =~ /^[+-]$/) && # NaN and +-inf aren't
1614 ($x->{_es} eq '+')) ? 1 : 0; # 1e-1 => no integer
1619 # return true if arg (BFLOAT or num_str) is zero
1620 my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
1622 ($x->{sign} eq '+' && $MBI->_is_zero($x->{_m})) ? 1 : 0;
1627 # return true if arg (BFLOAT or num_str) is +1 or -1 if signis given
1628 my ($self,$x,$sign) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
1630 $sign = '+' if !defined $sign || $sign ne '-';
1632 ($x->{sign} eq $sign &&
1633 $MBI->_is_zero($x->{_e}) &&
1634 $MBI->_is_one($x->{_m}) ) ? 1 : 0;
1639 # return true if arg (BFLOAT or num_str) is odd or false if even
1640 my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
1642 (($x->{sign} =~ /^[+-]$/) && # NaN & +-inf aren't
1643 ($MBI->_is_zero($x->{_e})) &&
1644 ($MBI->_is_odd($x->{_m}))) ? 1 : 0;
1649 # return true if arg (BINT or num_str) is even or false if odd
1650 my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
1652 (($x->{sign} =~ /^[+-]$/) && # NaN & +-inf aren't
1653 ($x->{_es} eq '+') && # 123.45 isn't
1654 ($MBI->_is_even($x->{_m}))) ? 1 : 0; # but 1200 is
1659 # multiply two numbers
1662 my ($self,$x,$y,@r) = (ref($_[0]),@_);
1663 # objectify is costly, so avoid it
1664 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
1666 ($self,$x,$y,@r) = objectify(2,@_);
1669 return $x if $x->modify('bmul');
1671 return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
1674 if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
1676 return $x->bnan() if $x->is_zero() || $y->is_zero();
1677 # result will always be +-inf:
1678 # +inf * +/+inf => +inf, -inf * -/-inf => +inf
1679 # +inf * -/-inf => -inf, -inf * +/+inf => -inf
1680 return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/);
1681 return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/);
1682 return $x->binf('-');
1685 return $upgrade->bmul($x,$y,@r) if defined $upgrade &&
1686 ((!$x->isa($self)) || (!$y->isa($self)));
1688 # aEb * cEd = (a*c)E(b+d)
1689 $MBI->_mul($x->{_m},$y->{_m});
1690 ($x->{_e}, $x->{_es}) = _e_add($x->{_e}, $y->{_e}, $x->{_es}, $y->{_es});
1692 $r[3] = $y; # no push!
1695 $x->{sign} = $x->{sign} ne $y->{sign} ? '-' : '+';
1696 $x->bnorm->round(@r);
1701 # multiply two numbers and add the third to the result
1704 my ($self,$x,$y,$z,@r) = objectify(3,@_);
1706 return $x if $x->modify('bmuladd');
1708 return $x->bnan() if (($x->{sign} eq $nan) ||
1709 ($y->{sign} eq $nan) ||
1710 ($z->{sign} eq $nan));
1713 if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
1715 return $x->bnan() if $x->is_zero() || $y->is_zero();
1716 # result will always be +-inf:
1717 # +inf * +/+inf => +inf, -inf * -/-inf => +inf
1718 # +inf * -/-inf => -inf, -inf * +/+inf => -inf
1719 return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/);
1720 return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/);
1721 return $x->binf('-');
1724 return $upgrade->bmul($x,$y,@r) if defined $upgrade &&
1725 ((!$x->isa($self)) || (!$y->isa($self)));
1727 # aEb * cEd = (a*c)E(b+d)
1728 $MBI->_mul($x->{_m},$y->{_m});
1729 ($x->{_e}, $x->{_es}) = _e_add($x->{_e}, $y->{_e}, $x->{_es}, $y->{_es});
1731 $r[3] = $y; # no push!
1734 $x->{sign} = $x->{sign} ne $y->{sign} ? '-' : '+';
1736 # z=inf handling (z=NaN handled above)
1737 $x->{sign} = $z->{sign}, return $x if $z->{sign} =~ /^[+-]inf$/;
1739 # take lower of the two e's and adapt m1 to it to match m2
1741 $e = $MBI->_zero() if !defined $e; # if no BFLOAT?
1742 $e = $MBI->_copy($e); # make copy (didn't do it yet)
1746 ($e,$es) = _e_sub($e, $x->{_e}, $z->{_es} || '+', $x->{_es});
1748 my $add = $MBI->_copy($z->{_m});
1750 if ($es eq '-') # < 0
1752 $MBI->_lsft( $x->{_m}, $e, 10);
1753 ($x->{_e},$x->{_es}) = _e_add($x->{_e}, $e, $x->{_es}, $es);
1755 elsif (!$MBI->_is_zero($e)) # > 0
1757 $MBI->_lsft($add, $e, 10);
1759 # else: both e are the same, so just leave them
1761 if ($x->{sign} eq $z->{sign})
1764 $x->{_m} = $MBI->_add($x->{_m}, $add);
1768 ($x->{_m}, $x->{sign}) =
1769 _e_add($x->{_m}, $add, $x->{sign}, $z->{sign});
1772 # delete trailing zeros, then round
1773 $x->bnorm()->round(@r);
1778 # (dividend: BFLOAT or num_str, divisor: BFLOAT or num_str) return
1779 # (BFLOAT,BFLOAT) (quo,rem) or BFLOAT (only rem)
1782 my ($self,$x,$y,$a,$p,$r) = (ref($_[0]),@_);
1783 # objectify is costly, so avoid it
1784 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
1786 ($self,$x,$y,$a,$p,$r) = objectify(2,@_);
1789 return $x if $x->modify('bdiv');
1791 return $self->_div_inf($x,$y)
1792 if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/) || $y->is_zero());
1794 # x== 0 # also: or y == 1 or y == -1
1795 return wantarray ? ($x,$self->bzero()) : $x if $x->is_zero();
1798 return $upgrade->bdiv($upgrade->new($x),$y,$a,$p,$r) if defined $upgrade;
1800 # we need to limit the accuracy to protect against overflow
1802 my (@params,$scale);
1803 ($x,@params) = $x->_find_round_parameters($a,$p,$r,$y);
1805 return $x if $x->is_nan(); # error in _find_round_parameters?
1807 # no rounding at all, so must use fallback
1808 if (scalar @params == 0)
1810 # simulate old behaviour
1811 $params[0] = $self->div_scale(); # and round to it as accuracy
1812 $scale = $params[0]+4; # at least four more for proper round
1813 $params[2] = $r; # round mode by caller or undef
1814 $fallback = 1; # to clear a/p afterwards
1818 # the 4 below is empirical, and there might be cases where it is not
1820 $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
1823 my $rem; $rem = $self->bzero() if wantarray;
1825 $y = $self->new($y) unless $y->isa('Math::BigFloat');
1827 my $lx = $MBI->_len($x->{_m}); my $ly = $MBI->_len($y->{_m});
1828 $scale = $lx if $lx > $scale;
1829 $scale = $ly if $ly > $scale;
1830 my $diff = $ly - $lx;
1831 $scale += $diff if $diff > 0; # if lx << ly, but not if ly << lx!
1833 # already handled inf/NaN/-inf above:
1835 # check that $y is not 1 nor -1 and cache the result:
1836 my $y_not_one = !($MBI->_is_zero($y->{_e}) && $MBI->_is_one($y->{_m}));
1838 # flipping the sign of $y will also flip the sign of $x for the special
1839 # case of $x->bsub($x); so we can catch it below:
1840 my $xsign = $x->{sign};
1841 $y->{sign} =~ tr/+-/-+/;
1843 if ($xsign ne $x->{sign})
1845 # special case of $x /= $x results in 1
1846 $x->bone(); # "fixes" also sign of $y, since $x is $y
1850 # correct $y's sign again
1851 $y->{sign} =~ tr/+-/-+/;
1852 # continue with normal div code:
1854 # make copy of $x in case of list context for later remainder calculation
1855 if (wantarray && $y_not_one)
1860 $x->{sign} = $x->{sign} ne $y->sign() ? '-' : '+';
1862 # check for / +-1 ( +/- 1E0)
1865 # promote BigInts and it's subclasses (except when already a BigFloat)
1866 $y = $self->new($y) unless $y->isa('Math::BigFloat');
1868 # calculate the result to $scale digits and then round it
1869 # a * 10 ** b / c * 10 ** d => a/c * 10 ** (b-d)
1870 $MBI->_lsft($x->{_m},$MBI->_new($scale),10);
1871 $MBI->_div ($x->{_m},$y->{_m}); # a/c
1873 # correct exponent of $x
1874 ($x->{_e},$x->{_es}) = _e_sub($x->{_e}, $y->{_e}, $x->{_es}, $y->{_es});
1875 # correct for 10**scale
1876 ($x->{_e},$x->{_es}) = _e_sub($x->{_e}, $MBI->_new($scale), $x->{_es}, '+');
1877 $x->bnorm(); # remove trailing 0's
1879 } # end else $x != $y
1881 # shortcut to not run through _find_round_parameters again
1882 if (defined $params[0])
1884 delete $x->{_a}; # clear before round
1885 $x->bround($params[0],$params[2]); # then round accordingly
1889 delete $x->{_p}; # clear before round
1890 $x->bfround($params[1],$params[2]); # then round accordingly
1894 # clear a/p after round, since user did not request it
1895 delete $x->{_a}; delete $x->{_p};
1903 $rem->bmod($y,@params); # copy already done
1907 # clear a/p after round, since user did not request it
1908 delete $rem->{_a}; delete $rem->{_p};
1917 # (dividend: BFLOAT or num_str, divisor: BFLOAT or num_str) return remainder
1920 my ($self,$x,$y,$a,$p,$r) = (ref($_[0]),@_);
1921 # objectify is costly, so avoid it
1922 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
1924 ($self,$x,$y,$a,$p,$r) = objectify(2,@_);
1927 return $x if $x->modify('bmod');
1929 # handle NaN, inf, -inf
1930 if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
1932 my ($d,$re) = $self->SUPER::_div_inf($x,$y);
1933 $x->{sign} = $re->{sign};
1934 $x->{_e} = $re->{_e};
1935 $x->{_m} = $re->{_m};
1936 return $x->round($a,$p,$r,$y);
1940 return $x->bnan() if $x->is_zero();
1944 return $x->bzero() if $x->is_zero()
1946 # check that $y == +1 or $y == -1:
1947 ($MBI->_is_zero($y->{_e}) && $MBI->_is_one($y->{_m})));
1949 my $cmp = $x->bacmp($y); # equal or $x < $y?
1950 return $x->bzero($a,$p) if $cmp == 0; # $x == $y => result 0
1952 # only $y of the operands negative?
1953 my $neg = 0; $neg = 1 if $x->{sign} ne $y->{sign};
1955 $x->{sign} = $y->{sign}; # calc sign first
1956 return $x->round($a,$p,$r) if $cmp < 0 && $neg == 0; # $x < $y => result $x
1958 my $ym = $MBI->_copy($y->{_m});
1961 $MBI->_lsft( $ym, $y->{_e}, 10)
1962 if $y->{_es} eq '+' && !$MBI->_is_zero($y->{_e});
1964 # if $y has digits after dot
1965 my $shifty = 0; # correct _e of $x by this
1966 if ($y->{_es} eq '-') # has digits after dot
1968 # 123 % 2.5 => 1230 % 25 => 5 => 0.5
1969 $shifty = $MBI->_num($y->{_e}); # no more digits after dot
1970 $MBI->_lsft($x->{_m}, $y->{_e}, 10);# 123 => 1230, $y->{_m} is already 25
1972 # $ym is now mantissa of $y based on exponent 0
1974 my $shiftx = 0; # correct _e of $x by this
1975 if ($x->{_es} eq '-') # has digits after dot
1977 # 123.4 % 20 => 1234 % 200
1978 $shiftx = $MBI->_num($x->{_e}); # no more digits after dot
1979 $MBI->_lsft($ym, $x->{_e}, 10); # 123 => 1230
1981 # 123e1 % 20 => 1230 % 20
1982 if ($x->{_es} eq '+' && !$MBI->_is_zero($x->{_e}))
1984 $MBI->_lsft( $x->{_m}, $x->{_e},10); # es => '+' here
1987 $x->{_e} = $MBI->_new($shiftx);
1989 $x->{_es} = '-' if $shiftx != 0 || $shifty != 0;
1990 $MBI->_add( $x->{_e}, $MBI->_new($shifty)) if $shifty != 0;
1992 # now mantissas are equalized, exponent of $x is adjusted, so calc result
1994 $x->{_m} = $MBI->_mod( $x->{_m}, $ym);
1996 $x->{sign} = '+' if $MBI->_is_zero($x->{_m}); # fix sign for -0
1999 if ($neg != 0) # one of them negative => correct in place
2002 $x->{_m} = $r->{_m};
2003 $x->{_e} = $r->{_e};
2004 $x->{_es} = $r->{_es};
2005 $x->{sign} = '+' if $MBI->_is_zero($x->{_m}); # fix sign for -0
2009 $x->round($a,$p,$r,$y); # round and return
2014 # calculate $y'th root of $x
2017 my ($self,$x,$y,$a,$p,$r) = (ref($_[0]),@_);
2018 # objectify is costly, so avoid it
2019 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
2021 ($self,$x,$y,$a,$p,$r) = objectify(2,@_);
2024 return $x if $x->modify('broot');
2026 # NaN handling: $x ** 1/0, x or y NaN, or y inf/-inf or y == 0
2027 return $x->bnan() if $x->{sign} !~ /^\+/ || $y->is_zero() ||
2028 $y->{sign} !~ /^\+$/;
2030 return $x if $x->is_zero() || $x->is_one() || $x->is_inf() || $y->is_one();
2032 # we need to limit the accuracy to protect against overflow
2034 my (@params,$scale);
2035 ($x,@params) = $x->_find_round_parameters($a,$p,$r);
2037 return $x if $x->is_nan(); # error in _find_round_parameters?
2039 # no rounding at all, so must use fallback
2040 if (scalar @params == 0)
2042 # simulate old behaviour
2043 $params[0] = $self->div_scale(); # and round to it as accuracy
2044 $scale = $params[0]+4; # at least four more for proper round
2045 $params[2] = $r; # round mode by caller or undef
2046 $fallback = 1; # to clear a/p afterwards
2050 # the 4 below is empirical, and there might be cases where it is not
2052 $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
2055 # when user set globals, they would interfere with our calculation, so
2056 # disable them and later re-enable them
2058 my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
2059 my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
2060 # we also need to disable any set A or P on $x (_find_round_parameters took
2061 # them already into account), since these would interfere, too
2062 delete $x->{_a}; delete $x->{_p};
2063 # need to disable $upgrade in BigInt, to avoid deep recursion
2064 local $Math::BigInt::upgrade = undef; # should be really parent class vs MBI
2066 # remember sign and make $x positive, since -4 ** (1/2) => -2
2067 my $sign = 0; $sign = 1 if $x->{sign} eq '-'; $x->{sign} = '+';
2070 if ($y->isa('Math::BigFloat'))
2072 $is_two = ($y->{sign} eq '+' && $MBI->_is_two($y->{_m}) && $MBI->_is_zero($y->{_e}));
2076 $is_two = ($y == 2);
2079 # normal square root if $y == 2:
2082 $x->bsqrt($scale+4);
2084 elsif ($y->is_one('-'))
2087 my $u = $self->bone()->bdiv($x,$scale);
2088 # copy private parts over
2089 $x->{_m} = $u->{_m};
2090 $x->{_e} = $u->{_e};
2091 $x->{_es} = $u->{_es};
2095 # calculate the broot() as integer result first, and if it fits, return
2096 # it rightaway (but only if $x and $y are integer):
2098 my $done = 0; # not yet
2099 if ($y->is_int() && $x->is_int())
2101 my $i = $MBI->_copy( $x->{_m} );
2102 $MBI->_lsft( $i, $x->{_e}, 10 ) unless $MBI->_is_zero($x->{_e});
2103 my $int = Math::BigInt->bzero();
2105 $int->broot($y->as_number());
2107 if ($int->copy()->bpow($y) == $x)
2109 # found result, return it
2110 $x->{_m} = $int->{value};
2111 $x->{_e} = $MBI->_zero();
2119 my $u = $self->bone()->bdiv($y,$scale+4);
2120 delete $u->{_a}; delete $u->{_p}; # otherwise it conflicts
2121 $x->bpow($u,$scale+4); # el cheapo
2124 $x->bneg() if $sign == 1;
2126 # shortcut to not run through _find_round_parameters again
2127 if (defined $params[0])
2129 $x->bround($params[0],$params[2]); # then round accordingly
2133 $x->bfround($params[1],$params[2]); # then round accordingly
2137 # clear a/p after round, since user did not request it
2138 delete $x->{_a}; delete $x->{_p};
2141 $$abr = $ab; $$pbr = $pb;
2147 # calculate square root
2148 my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
2150 return $x if $x->modify('bsqrt');
2152 return $x->bnan() if $x->{sign} !~ /^[+]/; # NaN, -inf or < 0
2153 return $x if $x->{sign} eq '+inf'; # sqrt(inf) == inf
2154 return $x->round($a,$p,$r) if $x->is_zero() || $x->is_one();
2156 # we need to limit the accuracy to protect against overflow
2158 my (@params,$scale);
2159 ($x,@params) = $x->_find_round_parameters($a,$p,$r);
2161 return $x if $x->is_nan(); # error in _find_round_parameters?
2163 # no rounding at all, so must use fallback
2164 if (scalar @params == 0)
2166 # simulate old behaviour
2167 $params[0] = $self->div_scale(); # and round to it as accuracy
2168 $scale = $params[0]+4; # at least four more for proper round
2169 $params[2] = $r; # round mode by caller or undef
2170 $fallback = 1; # to clear a/p afterwards
2174 # the 4 below is empirical, and there might be cases where it is not
2176 $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
2179 # when user set globals, they would interfere with our calculation, so
2180 # disable them and later re-enable them
2182 my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
2183 my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
2184 # we also need to disable any set A or P on $x (_find_round_parameters took
2185 # them already into account), since these would interfere, too
2186 delete $x->{_a}; delete $x->{_p};
2187 # need to disable $upgrade in BigInt, to avoid deep recursion
2188 local $Math::BigInt::upgrade = undef; # should be really parent class vs MBI
2190 my $i = $MBI->_copy( $x->{_m} );
2191 $MBI->_lsft( $i, $x->{_e}, 10 ) unless $MBI->_is_zero($x->{_e});
2192 my $xas = Math::BigInt->bzero();
2195 my $gs = $xas->copy()->bsqrt(); # some guess
2197 if (($x->{_es} ne '-') # guess can't be accurate if there are
2198 # digits after the dot
2199 && ($xas->bacmp($gs * $gs) == 0)) # guess hit the nail on the head?
2201 # exact result, copy result over to keep $x
2202 $x->{_m} = $gs->{value}; $x->{_e} = $MBI->_zero(); $x->{_es} = '+';
2204 # shortcut to not run through _find_round_parameters again
2205 if (defined $params[0])
2207 $x->bround($params[0],$params[2]); # then round accordingly
2211 $x->bfround($params[1],$params[2]); # then round accordingly
2215 # clear a/p after round, since user did not request it
2216 delete $x->{_a}; delete $x->{_p};
2218 # re-enable A and P, upgrade is taken care of by "local"
2219 ${"$self\::accuracy"} = $ab; ${"$self\::precision"} = $pb;
2223 # sqrt(2) = 1.4 because sqrt(2*100) = 1.4*10; so we can increase the accuracy
2224 # of the result by multiplying the input by 100 and then divide the integer
2225 # result of sqrt(input) by 10. Rounding afterwards returns the real result.
2227 # The following steps will transform 123.456 (in $x) into 123456 (in $y1)
2228 my $y1 = $MBI->_copy($x->{_m});
2230 my $length = $MBI->_len($y1);
2232 # Now calculate how many digits the result of sqrt(y1) would have
2233 my $digits = int($length / 2);
2235 # But we need at least $scale digits, so calculate how many are missing
2236 my $shift = $scale - $digits;
2238 # This happens if the input had enough digits
2239 # (we take care of integer guesses above)
2240 $shift = 0 if $shift < 0;
2242 # Multiply in steps of 100, by shifting left two times the "missing" digits
2243 my $s2 = $shift * 2;
2245 # We now make sure that $y1 has the same odd or even number of digits than
2246 # $x had. So when _e of $x is odd, we must shift $y1 by one digit left,
2247 # because we always must multiply by steps of 100 (sqrt(100) is 10) and not
2248 # steps of 10. The length of $x does not count, since an even or odd number
2249 # of digits before the dot is not changed by adding an even number of digits
2250 # after the dot (the result is still odd or even digits long).
2251 $s2++ if $MBI->_is_odd($x->{_e});
2253 $MBI->_lsft( $y1, $MBI->_new($s2), 10);
2255 # now take the square root and truncate to integer
2256 $y1 = $MBI->_sqrt($y1);
2258 # By "shifting" $y1 right (by creating a negative _e) we calculate the final
2259 # result, which is than later rounded to the desired scale.
2261 # calculate how many zeros $x had after the '.' (or before it, depending
2262 # on sign of $dat, the result should have half as many:
2263 my $dat = $MBI->_num($x->{_e});
2264 $dat = -$dat if $x->{_es} eq '-';
2269 # no zeros after the dot (e.g. 1.23, 0.49 etc)
2270 # preserve half as many digits before the dot than the input had
2271 # (but round this "up")
2272 $dat = int(($dat+1)/2);
2276 $dat = int(($dat)/2);
2278 $dat -= $MBI->_len($y1);
2282 $x->{_e} = $MBI->_new( $dat );
2287 $x->{_e} = $MBI->_new( $dat );
2293 # shortcut to not run through _find_round_parameters again
2294 if (defined $params[0])
2296 $x->bround($params[0],$params[2]); # then round accordingly
2300 $x->bfround($params[1],$params[2]); # then round accordingly
2304 # clear a/p after round, since user did not request it
2305 delete $x->{_a}; delete $x->{_p};
2308 $$abr = $ab; $$pbr = $pb;
2314 # (BFLOAT or num_str, BFLOAT or num_str) return BFLOAT
2315 # compute factorial number, modifies first argument
2318 my ($self,$x,@r) = (ref($_[0]),@_);
2319 # objectify is costly, so avoid it
2320 ($self,$x,@r) = objectify(1,@_) if !ref($x);
2323 return $x if $x->modify('bfac') || $x->{sign} eq '+inf';
2326 if (($x->{sign} ne '+') || # inf, NaN, <0 etc => NaN
2327 ($x->{_es} ne '+')); # digits after dot?
2329 # use BigInt's bfac() for faster calc
2330 if (! $MBI->_is_zero($x->{_e}))
2332 $MBI->_lsft($x->{_m}, $x->{_e},10); # change 12e1 to 120e0
2333 $x->{_e} = $MBI->_zero(); # normalize
2336 $MBI->_fac($x->{_m}); # calculate factorial
2337 $x->bnorm()->round(@r); # norm again and round result
2342 # Calculate a power where $y is a non-integer, like 2 ** 0.3
2346 # if $y == 0.5, it is sqrt($x)
2347 $HALF = $self->new($HALF) unless ref($HALF);
2348 return $x->bsqrt(@r,$y) if $y->bcmp($HALF) == 0;
2351 # a ** x == e ** (x * ln a)
2355 # Taylor: | u u^2 u^3 |
2356 # x ** y = 1 + | --- + --- + ----- + ... |
2359 # we need to limit the accuracy to protect against overflow
2361 my ($scale,@params);
2362 ($x,@params) = $x->_find_round_parameters(@r);
2364 return $x if $x->is_nan(); # error in _find_round_parameters?
2366 # no rounding at all, so must use fallback
2367 if (scalar @params == 0)
2369 # simulate old behaviour
2370 $params[0] = $self->div_scale(); # and round to it as accuracy
2371 $params[1] = undef; # disable P
2372 $scale = $params[0]+4; # at least four more for proper round
2373 $params[2] = $r[2]; # round mode by caller or undef
2374 $fallback = 1; # to clear a/p afterwards
2378 # the 4 below is empirical, and there might be cases where it is not
2380 $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
2383 # when user set globals, they would interfere with our calculation, so
2384 # disable them and later re-enable them
2386 my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
2387 my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
2388 # we also need to disable any set A or P on $x (_find_round_parameters took
2389 # them already into account), since these would interfere, too
2390 delete $x->{_a}; delete $x->{_p};
2391 # need to disable $upgrade in BigInt, to avoid deep recursion
2392 local $Math::BigInt::upgrade = undef;
2394 my ($limit,$v,$u,$below,$factor,$next,$over);
2396 $u = $x->copy()->blog(undef,$scale)->bmul($y);
2397 $v = $self->bone(); # 1
2398 $factor = $self->new(2); # 2
2399 $x->bone(); # first term: 1
2401 $below = $v->copy();
2404 $limit = $self->new("1E-". ($scale-1));
2408 # we calculate the next term, and add it to the last
2409 # when the next term is below our limit, it won't affect the outcome
2410 # anymore, so we stop:
2411 $next = $over->copy()->bdiv($below,$scale);
2412 last if $next->bacmp($limit) <= 0;
2414 # calculate things for the next term
2415 $over *= $u; $below *= $factor; $factor->binc();
2417 last if $x->{sign} !~ /^[-+]$/;
2422 # shortcut to not run through _find_round_parameters again
2423 if (defined $params[0])
2425 $x->bround($params[0],$params[2]); # then round accordingly
2429 $x->bfround($params[1],$params[2]); # then round accordingly
2433 # clear a/p after round, since user did not request it
2434 delete $x->{_a}; delete $x->{_p};
2437 $$abr = $ab; $$pbr = $pb;
2443 # (BFLOAT or num_str, BFLOAT or num_str) return BFLOAT
2444 # compute power of two numbers, second arg is used as integer
2445 # modifies first argument
2448 my ($self,$x,$y,$a,$p,$r) = (ref($_[0]),@_);
2449 # objectify is costly, so avoid it
2450 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
2452 ($self,$x,$y,$a,$p,$r) = objectify(2,@_);
2455 return $x if $x->modify('bpow');
2457 return $x->bnan() if $x->{sign} eq $nan || $y->{sign} eq $nan;
2458 return $x if $x->{sign} =~ /^[+-]inf$/;
2460 # cache the result of is_zero
2461 my $y_is_zero = $y->is_zero();
2462 return $x->bone() if $y_is_zero;
2463 return $x if $x->is_one() || $y->is_one();
2465 my $x_is_zero = $x->is_zero();
2466 return $x->_pow($y,$a,$p,$r) if !$x_is_zero && !$y->is_int(); # non-integer power
2468 my $y1 = $y->as_number()->{value}; # make MBI part
2471 if ($x->{sign} eq '-' && $MBI->_is_one($x->{_m}) && $MBI->_is_zero($x->{_e}))
2473 # if $x == -1 and odd/even y => +1/-1 because +-1 ^ (+-1) => +-1
2474 return $MBI->_is_odd($y1) ? $x : $x->babs(1);
2478 return $x if $y->{sign} eq '+'; # 0**y => 0 (if not y <= 0)
2479 # 0 ** -y => 1 / (0 ** y) => 1 / 0! (1 / 0 => +inf)
2484 $new_sign = $MBI->_is_odd($y1) ? '-' : '+' if $x->{sign} ne '+';
2486 # calculate $x->{_m} ** $y and $x->{_e} * $y separately (faster)
2487 $x->{_m} = $MBI->_pow( $x->{_m}, $y1);
2488 $x->{_e} = $MBI->_mul ($x->{_e}, $y1);
2490 $x->{sign} = $new_sign;
2492 if ($y->{sign} eq '-')
2494 # modify $x in place!
2495 my $z = $x->copy(); $x->bone();
2496 return scalar $x->bdiv($z,$a,$p,$r); # round in one go (might ignore y's A!)
2498 $x->round($a,$p,$r,$y);
2503 # takes a very large number to a very large exponent in a given very
2504 # large modulus, quickly, thanks to binary exponentiation. Supports
2505 # negative exponents.
2506 my ($self,$num,$exp,$mod,@r) = objectify(3,@_);
2508 return $num if $num->modify('bmodpow');
2510 # check modulus for valid values
2511 return $num->bnan() if ($mod->{sign} ne '+' # NaN, - , -inf, +inf
2512 || $mod->is_zero());
2514 # check exponent for valid values
2515 if ($exp->{sign} =~ /\w/)
2517 # i.e., if it's NaN, +inf, or -inf...
2518 return $num->bnan();
2521 $num->bmodinv ($mod) if ($exp->{sign} eq '-');
2523 # check num for valid values (also NaN if there was no inverse but $exp < 0)
2524 return $num->bnan() if $num->{sign} !~ /^[+-]$/;
2526 # $mod is positive, sign on $exp is ignored, result also positive
2528 # XXX TODO: speed it up when all three numbers are integers
2529 $num->bpow($exp)->bmod($mod);
2532 ###############################################################################
2533 # trigonometric functions
2535 # helper function for bpi() and batan2(), calculates arcus tanges (1/x)
2539 # return a/b so that a/b approximates atan(1/x) to at least limit digits
2540 my ($self, $x, $limit) = @_;
2542 # Taylor: x^3 x^5 x^7 x^9
2543 # atan = x - --- + --- - --- + --- - ...
2547 # atan 1/x = - - ------- + ------- - ------- + ...
2548 # x x^3 * 3 x^5 * 5 x^7 * 7
2551 # atan 1/x = - - --------- + ---------- - ----------- + ...
2552 # 5 3 * 125 5 * 3125 7 * 78125
2554 # Subtraction/addition of a rational:
2557 # - +- - = ----------
2562 # a 1 a * d * c +- b
2563 # ----- +- ------------------ = ----------------
2566 # since b1 = b0 * (d-2) * c
2568 # a 1 a * d +- b / c
2569 # ----- +- ------------------ = ----------------
2576 # stop if length($u) > limit
2583 my $a = $MBI->_one();
2584 my $b = $MBI->_copy($x);
2586 my $x2 = $MBI->_mul( $MBI->_copy($x), $b); # x2 = x * x
2587 my $d = $MBI->_new( 3 ); # d = 3
2588 my $c = $MBI->_mul( $MBI->_copy($x), $x2); # c = x ^ 3
2589 my $two = $MBI->_new( 2 );
2591 # run the first step unconditionally
2592 my $u = $MBI->_mul( $MBI->_copy($d), $c);
2593 $a = $MBI->_mul($a, $u);
2594 $a = $MBI->_sub($a, $b);
2595 $b = $MBI->_mul($b, $u);
2596 $d = $MBI->_add($d, $two);
2597 $c = $MBI->_mul($c, $x2);
2599 # a is now a * (d-3) * c
2600 # b is now b * (d-2) * c
2602 # run the second step unconditionally
2603 $u = $MBI->_mul( $MBI->_copy($d), $c);
2604 $a = $MBI->_mul($a, $u);
2605 $a = $MBI->_add($a, $b);
2606 $b = $MBI->_mul($b, $u);
2607 $d = $MBI->_add($d, $two);
2608 $c = $MBI->_mul($c, $x2);
2610 # a is now a * (d-3) * (d-5) * c * c
2611 # b is now b * (d-2) * (d-4) * c * c
2613 # so we can remove c * c from both a and b to shorten the numbers involved:
2614 $a = $MBI->_div($a, $x2);
2615 $b = $MBI->_div($b, $x2);
2616 $a = $MBI->_div($a, $x2);
2617 $b = $MBI->_div($b, $x2);
2620 my $sign = 0; # 0 => -, 1 => +
2624 # if (($i++ % 100) == 0)
2626 # print "a=",$MBI->_str($a),"\n";
2627 # print "b=",$MBI->_str($b),"\n";
2629 # print "d=",$MBI->_str($d),"\n";
2630 # print "x2=",$MBI->_str($x2),"\n";
2631 # print "c=",$MBI->_str($c),"\n";
2633 my $u = $MBI->_mul( $MBI->_copy($d), $c);
2634 # use _alen() for libs like GMP where _len() would be O(N^2)
2635 last if $MBI->_alen($u) > $limit;
2636 my ($bc,$r) = $MBI->_div( $MBI->_copy($b), $c);
2637 if ($MBI->_is_zero($r))
2639 # b / c is an integer, so we can remove c from all terms
2640 # this happens almost every time:
2641 $a = $MBI->_mul($a, $d);
2642 $a = $MBI->_sub($a, $bc) if $sign == 0;
2643 $a = $MBI->_add($a, $bc) if $sign == 1;
2644 $b = $MBI->_mul($b, $d);
2648 # b / c is not an integer, so we keep c in the terms
2649 # this happens very rarely, for instance for x = 5, this happens only
2650 # at the following steps:
2651 # 1, 5, 14, 32, 72, 157, 340, ...
2652 $a = $MBI->_mul($a, $u);
2653 $a = $MBI->_sub($a, $b) if $sign == 0;
2654 $a = $MBI->_add($a, $b) if $sign == 1;
2655 $b = $MBI->_mul($b, $u);
2657 $d = $MBI->_add($d, $two);
2658 $c = $MBI->_mul($c, $x2);
2663 # print "Took $step steps for ", $MBI->_str($x),"\n";
2664 # print "a=",$MBI->_str($a),"\n"; print "b=",$MBI->_str($b),"\n";
2665 # return a/b so that a/b approximates atan(1/x)
2678 # called like Math::BigFloat::bpi(10);
2679 $n = $self; $self = $class;
2680 # called like Math::BigFloat->bpi();
2681 $n = undef if $n eq 'Math::BigFloat';
2683 $self = ref($self) if ref($self);
2684 my $fallback = defined $n ? 0 : 1;
2685 $n = 40 if !defined $n || $n < 1;
2687 # after 黃見利 (Hwang Chien-Lih) (1997)
2688 # pi/4 = 183 * atan(1/239) + 32 * atan(1/1023) – 68 * atan(1/5832)
2689 # + 12 * atan(1/110443) - 12 * atan(1/4841182) - 100 * atan(1/6826318)
2691 # a few more to prevent rounding errors
2694 my ($a,$b) = $self->_atan_inv( $MBI->_new(239),$n);
2695 my ($c,$d) = $self->_atan_inv( $MBI->_new(1023),$n);
2696 my ($e,$f) = $self->_atan_inv( $MBI->_new(5832),$n);
2697 my ($g,$h) = $self->_atan_inv( $MBI->_new(110443),$n);
2698 my ($i,$j) = $self->_atan_inv( $MBI->_new(4841182),$n);
2699 my ($k,$l) = $self->_atan_inv( $MBI->_new(6826318),$n);
2701 $MBI->_mul($a, $MBI->_new(732));
2702 $MBI->_mul($c, $MBI->_new(128));
2703 $MBI->_mul($e, $MBI->_new(272));
2704 $MBI->_mul($g, $MBI->_new(48));
2705 $MBI->_mul($i, $MBI->_new(48));
2706 $MBI->_mul($k, $MBI->_new(400));
2708 my $x = $self->bone(); $x->{_m} = $a; my $x_d = $self->bone(); $x_d->{_m} = $b;
2709 my $y = $self->bone(); $y->{_m} = $c; my $y_d = $self->bone(); $y_d->{_m} = $d;
2710 my $z = $self->bone(); $z->{_m} = $e; my $z_d = $self->bone(); $z_d->{_m} = $f;
2711 my $u = $self->bone(); $u->{_m} = $g; my $u_d = $self->bone(); $u_d->{_m} = $h;
2712 my $v = $self->bone(); $v->{_m} = $i; my $v_d = $self->bone(); $v_d->{_m} = $j;
2713 my $w = $self->bone(); $w->{_m} = $k; my $w_d = $self->bone(); $w_d->{_m} = $l;
2721 delete $x->{_a}; delete $y->{_a}; delete $z->{_a};
2722 delete $u->{_a}; delete $v->{_a}; delete $w->{_a};
2723 $x->badd($y)->bsub($z)->badd($u)->bsub($v)->bsub($w);
2726 delete $x->{_a} if $fallback == 1;
2732 # Calculate a cosinus of x.
2733 my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
2735 # Taylor: x^2 x^4 x^6 x^8
2736 # cos = 1 - --- + --- - --- + --- ...
2739 # we need to limit the accuracy to protect against overflow
2741 my ($scale,@params);
2742 ($x,@params) = $x->_find_round_parameters(@r);
2744 # constant object or error in _find_round_parameters?
2745 return $x if $x->modify('bcos') || $x->is_nan();
2747 return $x->bone(@r) if $x->is_zero();
2749 # no rounding at all, so must use fallback
2750 if (scalar @params == 0)
2752 # simulate old behaviour
2753 $params[0] = $self->div_scale(); # and round to it as accuracy
2754 $params[1] = undef; # disable P
2755 $scale = $params[0]+4; # at least four more for proper round
2756 $params[2] = $r[2]; # round mode by caller or undef
2757 $fallback = 1; # to clear a/p afterwards
2761 # the 4 below is empirical, and there might be cases where it is not
2763 $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
2766 # when user set globals, they would interfere with our calculation, so
2767 # disable them and later re-enable them
2769 my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
2770 my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
2771 # we also need to disable any set A or P on $x (_find_round_parameters took
2772 # them already into account), since these would interfere, too
2773 delete $x->{_a}; delete $x->{_p};
2774 # need to disable $upgrade in BigInt, to avoid deep recursion
2775 local $Math::BigInt::upgrade = undef;
2778 my $over = $x * $x; # X ^ 2
2779 my $x2 = $over->copy(); # X ^ 2; difference between terms
2780 my $sign = 1; # start with -=
2781 my $below = $self->new(2); my $factorial = $self->new(3);
2782 $x->bone(); delete $x->{_a}; delete $x->{_p};
2784 my $limit = $self->new("1E-". ($scale-1));
2788 # we calculate the next term, and add it to the last
2789 # when the next term is below our limit, it won't affect the outcome
2790 # anymore, so we stop:
2791 my $next = $over->copy()->bdiv($below,$scale);
2792 last if $next->bacmp($limit) <= 0;
2802 $sign = 1-$sign; # alternate
2803 # calculate things for the next term
2804 $over->bmul($x2); # $x*$x
2805 $below->bmul($factorial); $factorial->binc(); # n*(n+1)
2806 $below->bmul($factorial); $factorial->binc(); # n*(n+1)
2809 # shortcut to not run through _find_round_parameters again
2810 if (defined $params[0])
2812 $x->bround($params[0],$params[2]); # then round accordingly
2816 $x->bfround($params[1],$params[2]); # then round accordingly
2820 # clear a/p after round, since user did not request it
2821 delete $x->{_a}; delete $x->{_p};
2824 $$abr = $ab; $$pbr = $pb;
2830 # Calculate a sinus of x.
2831 my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
2833 # taylor: x^3 x^5 x^7 x^9
2834 # sin = x - --- + --- - --- + --- ...
2837 # we need to limit the accuracy to protect against overflow
2839 my ($scale,@params);
2840 ($x,@params) = $x->_find_round_parameters(@r);
2842 # constant object or error in _find_round_parameters?
2843 return $x if $x->modify('bsin') || $x->is_nan();
2845 return $x->bzero(@r) if $x->is_zero();
2847 # no rounding at all, so must use fallback
2848 if (scalar @params == 0)
2850 # simulate old behaviour
2851 $params[0] = $self->div_scale(); # and round to it as accuracy
2852 $params[1] = undef; # disable P
2853 $scale = $params[0]+4; # at least four more for proper round
2854 $params[2] = $r[2]; # round mode by caller or undef
2855 $fallback = 1; # to clear a/p afterwards
2859 # the 4 below is empirical, and there might be cases where it is not
2861 $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
2864 # when user set globals, they would interfere with our calculation, so
2865 # disable them and later re-enable them
2867 my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
2868 my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
2869 # we also need to disable any set A or P on $x (_find_round_parameters took
2870 # them already into account), since these would interfere, too
2871 delete $x->{_a}; delete $x->{_p};
2872 # need to disable $upgrade in BigInt, to avoid deep recursion
2873 local $Math::BigInt::upgrade = undef;
2876 my $over = $x * $x; # X ^ 2
2877 my $x2 = $over->copy(); # X ^ 2; difference between terms
2878 $over->bmul($x); # X ^ 3 as starting value
2879 my $sign = 1; # start with -=
2880 my $below = $self->new(6); my $factorial = $self->new(4);
2881 delete $x->{_a}; delete $x->{_p};
2883 my $limit = $self->new("1E-". ($scale-1));
2887 # we calculate the next term, and add it to the last
2888 # when the next term is below our limit, it won't affect the outcome
2889 # anymore, so we stop:
2890 my $next = $over->copy()->bdiv($below,$scale);
2891 last if $next->bacmp($limit) <= 0;
2901 $sign = 1-$sign; # alternate
2902 # calculate things for the next term
2903 $over->bmul($x2); # $x*$x
2904 $below->bmul($factorial); $factorial->binc(); # n*(n+1)
2905 $below->bmul($factorial); $factorial->binc(); # n*(n+1)
2908 # shortcut to not run through _find_round_parameters again
2909 if (defined $params[0])
2911 $x->bround($params[0],$params[2]); # then round accordingly
2915 $x->bfround($params[1],$params[2]); # then round accordingly
2919 # clear a/p after round, since user did not request it
2920 delete $x->{_a}; delete $x->{_p};
2923 $$abr = $ab; $$pbr = $pb;
2929 # calculate arcus tangens of ($y/$x)
2932 my ($self,$y,$x,@r) = (ref($_[0]),@_);
2933 # objectify is costly, so avoid it
2934 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
2936 ($self,$y,$x,@r) = objectify(2,@_);
2939 return $y if $y->modify('batan2');
2941 return $y->bnan() if ($y->{sign} eq $nan) || ($x->{sign} eq $nan);
2947 return $y->bzero(@r) if ($x->is_inf('+') && !$y->is_inf()) || ($y->is_zero() && $x->{sign} eq '+');
2950 # != 0 -inf result is +- pi
2951 if ($x->is_inf() || $y->is_inf())
2954 my $pi = $self->bpi(@r);
2957 # upgrade to BigRat etc.
2958 return $upgrade->new($y)->batan2($upgrade->new($x),@r) if defined $upgrade;
2959 if ($x->{sign} eq '-inf')
2962 $MBI->_mul($pi->{_m}, $MBI->_new(3));
2963 $MBI->_div($pi->{_m}, $MBI->_new(4));
2965 elsif ($x->{sign} eq '+inf')
2968 $MBI->_div($pi->{_m}, $MBI->_new(4));
2973 $MBI->_div($pi->{_m}, $MBI->_new(2));
2975 $y->{sign} = substr($y->{sign},0,1); # keep +/-
2977 # modify $y in place
2978 $y->{_m} = $pi->{_m};
2979 $y->{_e} = $pi->{_e};
2980 $y->{_es} = $pi->{_es};
2981 # keep the sign of $y
2985 return $upgrade->new($y)->batan2($upgrade->new($x),@r) if defined $upgrade;
2992 my $pi = $self->bpi(@r);
2993 # modify $y in place
2994 $y->{_m} = $pi->{_m};
2995 $y->{_e} = $pi->{_e};
2996 $y->{_es} = $pi->{_es};
3002 # +y 0 result is PI/2
3003 # -y 0 result is -PI/2
3007 my $pi = $self->bpi(@r);
3008 # modify $y in place
3009 $y->{_m} = $pi->{_m};
3010 $y->{_e} = $pi->{_e};
3011 $y->{_es} = $pi->{_es};
3012 # -y => -PI/2, +y => PI/2
3013 $MBI->_div($y->{_m}, $MBI->_new(2));
3017 # we need to limit the accuracy to protect against overflow
3019 my ($scale,@params);
3020 ($y,@params) = $y->_find_round_parameters(@r);
3022 # error in _find_round_parameters?
3023 return $y if $y->is_nan();
3025 # no rounding at all, so must use fallback
3026 if (scalar @params == 0)
3028 # simulate old behaviour
3029 $params[0] = $self->div_scale(); # and round to it as accuracy
3030 $params[1] = undef; # disable P
3031 $scale = $params[0]+4; # at least four more for proper round
3032 $params[2] = $r[2]; # round mode by caller or undef
3033 $fallback = 1; # to clear a/p afterwards
3037 # the 4 below is empirical, and there might be cases where it is not
3039 $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
3042 # inlined is_one() && is_one('-')
3043 if ($MBI->_is_one($y->{_m}) && $MBI->_is_zero($y->{_e}))
3045 # shortcut: 1 1 result is PI/4
3046 # inlined is_one() && is_one('-')
3047 if ($MBI->_is_one($x->{_m}) && $MBI->_is_zero($x->{_e}))
3050 my $pi_4 = $self->bpi( $scale - 3);
3051 # modify $y in place
3052 $y->{_m} = $pi_4->{_m};
3053 $y->{_e} = $pi_4->{_e};
3054 $y->{_es} = $pi_4->{_es};
3059 $y->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-';
3060 $MBI->_div($y->{_m}, $MBI->_new(4));
3063 # shortcut: 1 int(X) result is _atan_inv(X)
3066 if ($x->{_es} eq '+')
3068 my $x1 = $MBI->_copy($x->{_m});
3069 $MBI->_lsft($x1, $x->{_e},10) unless $MBI->_is_zero($x->{_e});
3071 my ($a,$b) = $self->_atan_inv($x1, $scale);
3072 my $y_sign = $y->{sign};
3074 $y->bone(); $y->{_m} = $a; my $y_d = $self->bone(); $y_d->{_m} = $b;
3076 $y->{sign} = $y_sign;
3081 # handle all other cases
3086 # -x -y -PI/2 to -PI
3088 my $y_sign = $y->{sign};
3091 $y->bdiv($x, $scale) unless $x->is_one();
3095 $y->{sign} = $y_sign;
3102 # Calculate a arcus tangens of x.
3106 # taylor: x^3 x^5 x^7 x^9
3107 # atan = x - --- + --- - --- + --- ...
3110 # we need to limit the accuracy to protect against overflow
3112 my ($scale,@params);
3113 ($x,@params) = $x->_find_round_parameters(@r);
3115 # constant object or error in _find_round_parameters?
3116 return $x if $x->modify('batan') || $x->is_nan();
3118 if ($x->{sign} =~ /^[+-]inf\z/)
3120 # +inf result is PI/2
3121 # -inf result is -PI/2
3123 my $pi = $self->bpi(@r);
3124 # modify $x in place
3125 $x->{_m} = $pi->{_m};
3126 $x->{_e} = $pi->{_e};
3127 $x->{_es} = $pi->{_es};
3128 # -y => -PI/2, +y => PI/2
3129 $x->{sign} = substr($x->{sign},0,1); # +inf => +
3130 $MBI->_div($x->{_m}, $MBI->_new(2));
3134 return $x->bzero(@r) if $x->is_zero();
3136 # no rounding at all, so must use fallback
3137 if (scalar @params == 0)
3139 # simulate old behaviour
3140 $params[0] = $self->div_scale(); # and round to it as accuracy
3141 $params[1] = undef; # disable P
3142 $scale = $params[0]+4; # at least four more for proper round
3143 $params[2] = $r[2]; # round mode by caller or undef
3144 $fallback = 1; # to clear a/p afterwards
3148 # the 4 below is empirical, and there might be cases where it is not
3150 $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
3154 # inlined is_one() && is_one('-')
3155 if ($MBI->_is_one($x->{_m}) && $MBI->_is_zero($x->{_e}))
3157 my $pi = $self->bpi($scale - 3);
3158 # modify $x in place
3159 $x->{_m} = $pi->{_m};
3160 $x->{_e} = $pi->{_e};
3161 $x->{_es} = $pi->{_es};
3162 # leave the sign of $x alone (+1 => +PI/4, -1 => -PI/4)
3163 $MBI->_div($x->{_m}, $MBI->_new(4));
3167 # This series is only valid if -1 < x < 1, so for other x we need to
3168 # to calculate PI/2 - atan(1/x):
3169 my $one = $MBI->_new(1);
3171 if ($x->{_es} eq '+' && ($MBI->_acmp($x->{_m},$one) >= 0))
3174 $pi = $self->bpi($scale - 3);
3175 $MBI->_div($pi->{_m}, $MBI->_new(2));
3177 my $x_copy = $x->copy();
3178 # modify $x in place
3179 $x->bone(); $x->bdiv($x_copy,$scale);
3182 # when user set globals, they would interfere with our calculation, so
3183 # disable them and later re-enable them
3185 my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
3186 my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
3187 # we also need to disable any set A or P on $x (_find_round_parameters took
3188 # them already into account), since these would interfere, too
3189 delete $x->{_a}; delete $x->{_p};
3190 # need to disable $upgrade in BigInt, to avoid deep recursion
3191 local $Math::BigInt::upgrade = undef;
3194 my $over = $x * $x; # X ^ 2
3195 my $x2 = $over->copy(); # X ^ 2; difference between terms
3196 $over->bmul($x); # X ^ 3 as starting value
3197 my $sign = 1; # start with -=
3198 my $below = $self->new(3);
3199 my $two = $self->new(2);
3200 delete $x->{_a}; delete $x->{_p};
3202 my $limit = $self->new("1E-". ($scale-1));
3206 # we calculate the next term, and add it to the last
3207 # when the next term is below our limit, it won't affect the outcome
3208 # anymore, so we stop:
3209 my $next = $over->copy()->bdiv($below,$scale);
3210 last if $next->bacmp($limit) <= 0;
3220 $sign = 1-$sign; # alternate
3221 # calculate things for the next term
3222 $over->bmul($x2); # $x*$x
3223 $below->badd($two); # n += 2
3228 my $x_copy = $x->copy();
3229 # modify $x in place
3230 $x->{_m} = $pi->{_m};
3231 $x->{_e} = $pi->{_e};
3232 $x->{_es} = $pi->{_es};
3237 # shortcut to not run through _find_round_parameters again
3238 if (defined $params[0])
3240 $x->bround($params[0],$params[2]); # then round accordingly
3244 $x->bfround($params[1],$params[2]); # then round accordingly
3248 # clear a/p after round, since user did not request it
3249 delete $x->{_a}; delete $x->{_p};
3252 $$abr = $ab; $$pbr = $pb;
3256 ###############################################################################
3257 # rounding functions
3261 # precision: round to the $Nth digit left (+$n) or right (-$n) from the '.'
3262 # $n == 0 means round to integer
3263 # expects and returns normalized numbers!
3264 my $x = shift; my $self = ref($x) || $x; $x = $self->new(shift) if !ref($x);
3266 my ($scale,$mode) = $x->_scale_p(@_);
3267 return $x if !defined $scale || $x->modify('bfround'); # no-op
3269 # never round a 0, +-inf, NaN
3272 $x->{_p} = $scale if !defined $x->{_p} || $x->{_p} < $scale; # -3 < -2
3275 return $x if $x->{sign} !~ /^[+-]$/;
3277 # don't round if x already has lower precision
3278 return $x if (defined $x->{_p} && $x->{_p} < 0 && $scale < $x->{_p});
3280 $x->{_p} = $scale; # remember round in any case
3281 delete $x->{_a}; # and clear A
3284 # round right from the '.'
3286 return $x if $x->{_es} eq '+'; # e >= 0 => nothing to round
3288 $scale = -$scale; # positive for simplicity
3289 my $len = $MBI->_len($x->{_m}); # length of mantissa
3291 # the following poses a restriction on _e, but if _e is bigger than a
3292 # scalar, you got other problems (memory etc) anyway
3293 my $dad = -(0+ ($x->{_es}.$MBI->_num($x->{_e}))); # digits after dot
3294 my $zad = 0; # zeros after dot
3295 $zad = $dad - $len if (-$dad < -$len); # for 0.00..00xxx style
3297 # print "scale $scale dad $dad zad $zad len $len\n";
3298 # number bsstr len zad dad
3299 # 0.123 123e-3 3 0 3
3300 # 0.0123 123e-4 3 1 4
3303 # 1.2345 12345e-4 5 0 4
3305 # do not round after/right of the $dad
3306 return $x if $scale > $dad; # 0.123, scale >= 3 => exit
3308 # round to zero if rounding inside the $zad, but not for last zero like:
3309 # 0.0065, scale -2, round last '0' with following '65' (scale == zad case)
3310 return $x->bzero() if $scale < $zad;
3311 if ($scale == $zad) # for 0.006, scale -3 and trunc
3317 # adjust round-point to be inside mantissa
3320 $scale = $scale-$zad;
3324 my $dbd = $len - $dad; $dbd = 0 if $dbd < 0; # digits before dot
3325 $scale = $dbd+$scale;
3331 # round left from the '.'
3333 # 123 => 100 means length(123) = 3 - $scale (2) => 1
3335 my $dbt = $MBI->_len($x->{_m});
3337 my $dbd = $dbt + ($x->{_es} . $MBI->_num($x->{_e}));
3338 # should be the same, so treat it as this
3339 $scale = 1 if $scale == 0;
3340 # shortcut if already integer
3341 return $x if $scale == 1 && $dbt <= $dbd;
3342 # maximum digits before dot
3347 # not enough digits before dot, so round to zero
3350 elsif ( $scale == $dbd )
3357 $scale = $dbd - $scale;
3360 # pass sign to bround for rounding modes '+inf' and '-inf'
3361 my $m = bless { sign => $x->{sign}, value => $x->{_m} }, 'Math::BigInt';
3362 $m->bround($scale,$mode);
3363 $x->{_m} = $m->{value}; # get our mantissa back
3369 # accuracy: preserve $N digits, and overwrite the rest with 0's
3370 my $x = shift; my $self = ref($x) || $x; $x = $self->new(shift) if !ref($x);
3372 if (($_[0] || 0) < 0)
3374 require Carp; Carp::croak ('bround() needs positive accuracy');
3377 my ($scale,$mode) = $x->_scale_a(@_);
3378 return $x if !defined $scale || $x->modify('bround'); # no-op
3380 # scale is now either $x->{_a}, $accuracy, or the user parameter
3381 # test whether $x already has lower accuracy, do nothing in this case
3382 # but do round if the accuracy is the same, since a math operation might
3383 # want to round a number with A=5 to 5 digits afterwards again
3384 return $x if defined $x->{_a} && $x->{_a} < $scale;
3386 # scale < 0 makes no sense
3387 # scale == 0 => keep all digits
3388 # never round a +-inf, NaN
3389 return $x if ($scale <= 0) || $x->{sign} !~ /^[+-]$/;
3391 # 1: never round a 0
3392 # 2: if we should keep more digits than the mantissa has, do nothing
3393 if ($x->is_zero() || $MBI->_len($x->{_m}) <= $scale)
3395 $x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale;
3399 # pass sign to bround for '+inf' and '-inf' rounding modes
3400 my $m = bless { sign => $x->{sign}, value => $x->{_m} }, 'Math::BigInt';
3402 $m->bround($scale,$mode); # round mantissa
3403 $x->{_m} = $m->{value}; # get our mantissa back
3404 $x->{_a} = $scale; # remember rounding
3405 delete $x->{_p}; # and clear P
3406 $x->bnorm(); # del trailing zeros gen. by bround()
3411 # round towards minus infinity
3412 my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
3414 return $x if $x->modify('bfloor');
3416 return $x if $x->{sign} !~ /^[+-]$/; # nan, +inf, -inf
3418 # if $x has digits after dot
3419 if ($x->{_es} eq '-')
3421 $x->{_m} = $MBI->_rsft($x->{_m},$x->{_e},10); # cut off digits after dot
3422 $x->{_e} = $MBI->_zero(); # trunc/norm
3423 $x->{_es} = '+'; # abs e
3424 $MBI->_inc($x->{_m}) if $x->{sign} eq '-'; # increment if negative
3426 $x->round($a,$p,$r);
3431 # round towards plus infinity
3432 my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
3434 return $x if $x->modify('bceil');
3435 return $x if $x->{sign} !~ /^[+-]$/; # nan, +inf, -inf
3437 # if $x has digits after dot
3438 if ($x->{_es} eq '-')
3440 $x->{_m} = $MBI->_rsft($x->{_m},$x->{_e},10); # cut off digits after dot
3441 $x->{_e} = $MBI->_zero(); # trunc/norm
3442 $x->{_es} = '+'; # abs e
3443 $MBI->_inc($x->{_m}) if $x->{sign} eq '+'; # increment if positive
3445 $x->round($a,$p,$r);
3450 # round towards zero
3451 my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
3453 return $x if $x->modify('bint');
3454 return $x if $x->{sign} !~ /^[+-]$/; # nan, +inf, -inf
3456 # if $x has digits after the decimal point
3457 if ($x->{_es} eq '-')
3459 $x->{_m} = $MBI->_rsft($x->{_m},$x->{_e},10); # cut off digits after dot
3460 $x->{_e} = $MBI->_zero(); # truncate/normalize
3461 $x->{_es} = '+'; # abs e
3463 $x->round($a,$p,$r);
3468 # shift right by $y (divide by power of $n)
3471 my ($self,$x,$y,$n,$a,$p,$r) = (ref($_[0]),@_);
3472 # objectify is costly, so avoid it
3473 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
3475 ($self,$x,$y,$n,$a,$p,$r) = objectify(2,@_);
3478 return $x if $x->modify('brsft');
3479 return $x if $x->{sign} !~ /^[+-]$/; # nan, +inf, -inf
3481 $n = 2 if !defined $n; $n = $self->new($n);
3484 return $x->blsft($y->copy()->babs(),$n) if $y->{sign} =~ /^-/;
3486 # the following call to bdiv() will return either quo or (quo,remainder):
3487 $x->bdiv($n->bpow($y),$a,$p,$r,$y);
3492 # shift left by $y (multiply by power of $n)
3495 my ($self,$x,$y,$n,$a,$p,$r) = (ref($_[0]),@_);
3496 # objectify is costly, so avoid it
3497 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
3499 ($self,$x,$y,$n,$a,$p,$r) = objectify(2,@_);
3502 return $x if $x->modify('blsft');
3503 return $x if $x->{sign} !~ /^[+-]$/; # nan, +inf, -inf
3505 $n = 2 if !defined $n; $n = $self->new($n);
3508 return $x->brsft($y->copy()->babs(),$n) if $y->{sign} =~ /^-/;
3510 $x->bmul($n->bpow($y),$a,$p,$r,$y);
3513 ###############################################################################
3517 # going through AUTOLOAD for every DESTROY is costly, avoid it by empty sub
3522 # make fxxx and bxxx both work by selectively mapping fxxx() to MBF::bxxx()
3523 # or falling back to MBI::bxxx()
3524 my $name = $AUTOLOAD;
3526 $name =~ s/(.*):://; # split package
3527 my $c = $1 || $class;
3529 $c->import() if $IMPORT == 0;
3530 if (!_method_alias($name))
3534 # delayed load of Carp and avoid recursion
3536 Carp::croak ("$c: Can't call a method without name");
3538 if (!_method_hand_up($name))
3540 # delayed load of Carp and avoid recursion
3542 Carp::croak ("Can't call $c\-\>$name, not a valid method");
3544 # try one level up, but subst. bxxx() for fxxx() since MBI only got bxxx()
3546 return &{"Math::BigInt"."::$name"}(@_);
3548 my $bname = $name; $bname =~ s/^f/b/;
3556 # return a copy of the exponent
3557 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
3559 if ($x->{sign} !~ /^[+-]$/)
3561 my $s = $x->{sign}; $s =~ s/^[+-]//;
3562 return Math::BigInt->new($s); # -inf, +inf => +inf
3564 Math::BigInt->new( $x->{_es} . $MBI->_str($x->{_e}));
3569 # return a copy of the mantissa
3570 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
3572 if ($x->{sign} !~ /^[+-]$/)
3574 my $s = $x->{sign}; $s =~ s/^[+]//;
3575 return Math::BigInt->new($s); # -inf, +inf => +inf
3577 my $m = Math::BigInt->new( $MBI->_str($x->{_m}));
3578 $m->bneg() if $x->{sign} eq '-';
3585 # return a copy of both the exponent and the mantissa
3586 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
3588 if ($x->{sign} !~ /^[+-]$/)
3590 my $s = $x->{sign}; $s =~ s/^[+]//; my $se = $s; $se =~ s/^[-]//;
3591 return ($self->new($s),$self->new($se)); # +inf => inf and -inf,+inf => inf
3593 my $m = Math::BigInt->bzero();
3594 $m->{value} = $MBI->_copy($x->{_m});
3595 $m->bneg() if $x->{sign} eq '-';
3596 ($m, Math::BigInt->new( $x->{_es} . $MBI->_num($x->{_e}) ));
3599 ##############################################################################
3600 # private stuff (internal use only)
3606 my $lib = ''; my @a;
3607 my $lib_kind = 'try';
3609 for ( my $i = 0; $i < $l ; $i++)
3611 if ( $_[$i] eq ':constant' )
3613 # This causes overlord er load to step in. 'binary' and 'integer'
3614 # are handled by BigInt.
3615 overload::constant float => sub { $self->new(shift); };
3617 elsif ($_[$i] eq 'upgrade')
3619 # this causes upgrading
3620 $upgrade = $_[$i+1]; # or undef to disable
3623 elsif ($_[$i] eq 'downgrade')
3625 # this causes downgrading
3626 $downgrade = $_[$i+1]; # or undef to disable
3629 elsif ($_[$i] =~ /^(lib|try|only)\z/)
3631 # alternative library
3632 $lib = $_[$i+1] || ''; # default Calc
3633 $lib_kind = $1; # lib, try or only
3636 elsif ($_[$i] eq 'with')
3638 # alternative class for our private parts()
3639 # XXX: no longer supported
3640 # $MBI = $_[$i+1] || 'Math::BigInt';
3649 $lib =~ tr/a-zA-Z0-9,://cd; # restrict to sane characters
3650 # let use Math::BigInt lib => 'GMP'; use Math::BigFloat; still work
3651 my $mbilib = eval { Math::BigInt->config()->{lib} };
3652 if ((defined $mbilib) && ($MBI eq 'Math::BigInt::Calc'))
3654 # MBI already loaded
3655 Math::BigInt->import( $lib_kind, "$lib,$mbilib", 'objectify');
3659 # MBI not loaded, or with ne "Math::BigInt::Calc"
3660 $lib .= ",$mbilib" if defined $mbilib;
3661 $lib =~ s/^,//; # don't leave empty
3663 # replacement library can handle lib statement, but also could ignore it
3665 # Perl < 5.6.0 dies with "out of memory!" when eval() and ':constant' is
3666 # used in the same script, or eval inside import(). So we require MBI:
3667 require Math::BigInt;
3668 Math::BigInt->import( $lib_kind => $lib, 'objectify' );
3672 require Carp; Carp::croak ("Couldn't load $lib: $! $@");
3674 # find out which one was actually loaded
3675 $MBI = Math::BigInt->config()->{lib};
3677 # register us with MBI to get notified of future lib changes
3678 Math::BigInt::_register_callback( $self, sub { $MBI = $_[0]; } );
3680 $self->export_to_level(1,$self,@a); # export wanted functions
3685 # adjust m and e so that m is smallest possible
3686 my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
3688 return $x if $x->{sign} !~ /^[+-]$/; # inf, nan etc
3690 my $zeros = $MBI->_zeros($x->{_m}); # correct for trailing zeros
3693 my $z = $MBI->_new($zeros);
3694 $x->{_m} = $MBI->_rsft ($x->{_m}, $z, 10);
3695 if ($x->{_es} eq '-')
3697 if ($MBI->_acmp($x->{_e},$z) >= 0)
3699 $x->{_e} = $MBI->_sub ($x->{_e}, $z);
3700 $x->{_es} = '+' if $MBI->_is_zero($x->{_e});
3704 $x->{_e} = $MBI->_sub ( $MBI->_copy($z), $x->{_e});
3710 $x->{_e} = $MBI->_add ($x->{_e}, $z);
3715 # $x can only be 0Ey if there are no trailing zeros ('0' has 0 trailing
3716 # zeros). So, for something like 0Ey, set y to 1, and -0 => +0
3717 $x->{sign} = '+', $x->{_es} = '+', $x->{_e} = $MBI->_one()
3718 if $MBI->_is_zero($x->{_m});
3721 $x; # MBI bnorm is no-op, so do not call it
3724 ##############################################################################
3728 # return number as hexadecimal string (only for integers defined)
3729 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
3731 return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
3732 return '0x0' if $x->is_zero();
3734 return $nan if $x->{_es} ne '+'; # how to do 1e-1 in hex!?
3736 my $z = $MBI->_copy($x->{_m});
3737 if (! $MBI->_is_zero($x->{_e})) # > 0
3739 $MBI->_lsft( $z, $x->{_e},10);
3741 $z = Math::BigInt->new( $x->{sign} . $MBI->_num($z));
3747 # return number as binary digit string (only for integers defined)
3748 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
3750 return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
3751 return '0b0' if $x->is_zero();
3753 return $nan if $x->{_es} ne '+'; # how to do 1e-1 in hex!?
3755 my $z = $MBI->_copy($x->{_m});
3756 if (! $MBI->_is_zero($x->{_e})) # > 0
3758 $MBI->_lsft( $z, $x->{_e},10);
3760 $z = Math::BigInt->new( $x->{sign} . $MBI->_num($z));
3766 # return number as octal digit string (only for integers defined)
3767 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
3769 return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
3770 return '0' if $x->is_zero();
3772 return $nan if $x->{_es} ne '+'; # how to do 1e-1 in hex!?
3774 my $z = $MBI->_copy($x->{_m});
3775 if (! $MBI->_is_zero($x->{_e})) # > 0
3777 $MBI->_lsft( $z, $x->{_e},10);
3779 $z = Math::BigInt->new( $x->{sign} . $MBI->_num($z));
3785 # return copy as a bigint representation of this BigFloat number
3786 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
3788 return $x if $x->modify('as_number');
3790 if (!$x->isa('Math::BigFloat'))
3792 # if the object can as_number(), use it
3793 return $x->as_number() if $x->can('as_number');
3794 # otherwise, get us a float and then a number
3795 $x = $x->can('as_float') ? $x->as_float() : $self->new(0+"$x");
3798 return Math::BigInt->binf($x->sign()) if $x->is_inf();
3799 return Math::BigInt->bnan() if $x->is_nan();
3801 my $z = $MBI->_copy($x->{_m});
3802 if ($x->{_es} eq '-') # < 0
3804 $MBI->_rsft( $z, $x->{_e},10);
3806 elsif (! $MBI->_is_zero($x->{_e})) # > 0
3808 $MBI->_lsft( $z, $x->{_e},10);
3810 $z = Math::BigInt->new( $x->{sign} . $MBI->_str($z));
3817 my $class = ref($x) || $x;
3818 $x = $class->new(shift) unless ref($x);
3820 return 1 if $MBI->_is_zero($x->{_m});
3822 my $len = $MBI->_len($x->{_m});
3823 $len += $MBI->_num($x->{_e}) if $x->{_es} eq '+';
3827 $t = $MBI->_num($x->{_e}) if $x->{_es} eq '-';
3841 Math::BigFloat - Arbitrary size floating point math package
3848 my $x = Math::BigFloat->new($str); # defaults to 0
3849 my $y = $x->copy(); # make a true copy
3850 my $nan = Math::BigFloat->bnan(); # create a NotANumber
3851 my $zero = Math::BigFloat->bzero(); # create a +0
3852 my $inf = Math::BigFloat->binf(); # create a +inf
3853 my $inf = Math::BigFloat->binf('-'); # create a -inf
3854 my $one = Math::BigFloat->bone(); # create a +1
3855 my $mone = Math::BigFloat->bone('-'); # create a -1
3857 my $pi = Math::BigFloat->bpi(100); # PI to 100 digits
3859 # the following examples compute their result to 100 digits accuracy:
3860 my $cos = Math::BigFloat->new(1)->bcos(100); # cosinus(1)
3861 my $sin = Math::BigFloat->new(1)->bsin(100); # sinus(1)
3862 my $atan = Math::BigFloat->new(1)->batan(100); # arcus tangens(1)
3864 my $atan2 = Math::BigFloat->new( 1 )->batan2( 1 ,100); # batan(1)
3865 my $atan2 = Math::BigFloat->new( 1 )->batan2( 8 ,100); # batan(1/8)
3866 my $atan2 = Math::BigFloat->new( -2 )->batan2( 1 ,100); # batan(-2)
3869 $x->is_zero(); # true if arg is +0
3870 $x->is_nan(); # true if arg is NaN
3871 $x->is_one(); # true if arg is +1
3872 $x->is_one('-'); # true if arg is -1
3873 $x->is_odd(); # true if odd, false for even
3874 $x->is_even(); # true if even, false for odd
3875 $x->is_pos(); # true if >= 0
3876 $x->is_neg(); # true if < 0
3877 $x->is_inf(sign); # true if +inf, or -inf (default is '+')
3879 $x->bcmp($y); # compare numbers (undef,<0,=0,>0)
3880 $x->bacmp($y); # compare absolutely (undef,<0,=0,>0)
3881 $x->sign(); # return the sign, either +,- or NaN
3882 $x->digit($n); # return the nth digit, counting from right
3883 $x->digit(-$n); # return the nth digit, counting from left
3885 # The following all modify their first argument. If you want to pre-
3886 # serve $x, use $z = $x->copy()->bXXX($y); See under L</CAVEATS> for
3887 # necessary when mixing $a = $b assignments with non-overloaded math.
3890 $x->bzero(); # set $i to 0
3891 $x->bnan(); # set $i to NaN
3892 $x->bone(); # set $x to +1
3893 $x->bone('-'); # set $x to -1
3894 $x->binf(); # set $x to inf
3895 $x->binf('-'); # set $x to -inf
3897 $x->bneg(); # negation
3898 $x->babs(); # absolute value
3899 $x->bnorm(); # normalize (no-op)
3900 $x->bnot(); # two's complement (bit wise not)
3901 $x->binc(); # increment x by 1
3902 $x->bdec(); # decrement x by 1
3904 $x->badd($y); # addition (add $y to $x)
3905 $x->bsub($y); # subtraction (subtract $y from $x)
3906 $x->bmul($y); # multiplication (multiply $x by $y)
3907 $x->bdiv($y); # divide, set $x to quotient
3908 # return (quo,rem) or quo if scalar
3910 $x->bmod($y); # modulus ($x % $y)
3911 $x->bpow($y); # power of arguments ($x ** $y)
3912 $x->bmodpow($exp,$mod); # modular exponentiation (($num**$exp) % $mod))
3913 $x->blsft($y, $n); # left shift by $y places in base $n
3914 $x->brsft($y, $n); # right shift by $y places in base $n
3915 # returns (quo,rem) or quo if in scalar context
3917 $x->blog(); # logarithm of $x to base e (Euler's number)
3918 $x->blog($base); # logarithm of $x to base $base (f.i. 2)
3919 $x->bexp(); # calculate e ** $x where e is Euler's number
3921 $x->band($y); # bit-wise and
3922 $x->bior($y); # bit-wise inclusive or
3923 $x->bxor($y); # bit-wise exclusive or
3924 $x->bnot(); # bit-wise not (two's complement)
3926 $x->bsqrt(); # calculate square-root
3927 $x->broot($y); # $y'th root of $x (e.g. $y == 3 => cubic root)
3928 $x->bfac(); # factorial of $x (1*2*3*4*..$x)
3930 $x->bround($N); # accuracy: preserve $N digits
3931 $x->bfround($N); # precision: round to the $Nth digit
3933 $x->bfloor(); # return integer less or equal than $x
3934 $x->bceil(); # return integer greater or equal than $x
3935 $x->bint(); # round towards zero
3937 # The following do not modify their arguments:
3939 bgcd(@values); # greatest common divisor
3940 blcm(@values); # lowest common multiplicator
3942 $x->bstr(); # return string
3943 $x->bsstr(); # return string in scientific notation
3945 $x->as_int(); # return $x as BigInt
3946 $x->exponent(); # return exponent as BigInt
3947 $x->mantissa(); # return mantissa as BigInt
3948 $x->parts(); # return (mantissa,exponent) as BigInt
3950 $x->length(); # number of digits (w/o sign and '.')
3951 ($l,$f) = $x->length(); # number of digits, and length of fraction
3953 $x->precision(); # return P of $x (or global, if P of $x undef)
3954 $x->precision($n); # set P of $x to $n
3955 $x->accuracy(); # return A of $x (or global, if A of $x undef)
3956 $x->accuracy($n); # set A $x to $n
3958 # these get/set the appropriate global value for all BigFloat objects
3959 Math::BigFloat->precision(); # Precision
3960 Math::BigFloat->accuracy(); # Accuracy
3961 Math::BigFloat->round_mode(); # rounding mode
3965 All operators (including basic math operations) are overloaded if you
3966 declare your big floating point numbers as
3968 $i = new Math::BigFloat '12_3.456_789_123_456_789E-2';
3970 Operations with overloaded operators preserve the arguments, which is
3971 exactly what you expect.
3975 Input to these routines are either BigFloat objects, or strings of the
3976 following four forms:
3990 C</^[+-]\d+E[+-]?\d+$/>
3994 C</^[+-]\d*\.\d+E[+-]?\d+$/>
3998 all with optional leading and trailing zeros and/or spaces. Additionally,
3999 numbers are allowed to have an underscore between any two digits.
4001 Empty strings as well as other illegal numbers results in 'NaN'.
4003 bnorm() on a BigFloat object is now effectively a no-op, since the numbers
4004 are always stored in normalized form. On a string, it creates a BigFloat
4009 Output values are BigFloat objects (normalized), except for bstr() and bsstr().
4011 The string output will always have leading and trailing zeros stripped and drop
4012 a plus sign. C<bstr()> will give you always the form with a decimal point,
4013 while C<bsstr()> (s for scientific) gives you the scientific notation.
4015 Input bstr() bsstr()
4017 ' -123 123 123' '-123123123' '-123123123E0'
4018 '00.0123' '0.0123' '123E-4'
4019 '123.45E-2' '1.2345' '12345E-4'
4020 '10E+3' '10000' '1E4'
4022 Some routines (C<is_odd()>, C<is_even()>, C<is_zero()>, C<is_one()>,
4023 C<is_nan()>) return true or false, while others (C<bcmp()>, C<bacmp()>)
4024 return either undef, <0, 0 or >0 and are suited for sort.
4026 Actual math is done by using the class defined with C<< with => Class; >>
4027 (which defaults to BigInts) to represent the mantissa and exponent.
4029 The sign C</^[+-]$/> is stored separately. The string 'NaN' is used to
4030 represent the result when input arguments are not numbers, as well as
4031 the result of dividing by zero.
4033 =head2 mantissa(), exponent() and parts()
4035 mantissa() and exponent() return the said parts of the BigFloat
4036 as BigInts such that:
4038 $m = $x->mantissa();
4039 $e = $x->exponent();
4040 $y = $m * ( 10 ** $e );
4041 print "ok\n" if $x == $y;
4043 C<< ($m,$e) = $x->parts(); >> is just a shortcut giving you both of them.
4045 A zero is represented and returned as C<0E1>, B<not> C<0E0> (after Knuth).
4047 Currently the mantissa is reduced as much as possible, favouring higher
4048 exponents over lower ones (e.g. returning 1e7 instead of 10e6 or 10000000e0).
4049 This might change in the future, so do not depend on it.
4051 =head2 Accuracy vs. Precision
4053 See also: L<Rounding|/Rounding>.
4055 Math::BigFloat supports both precision (rounding to a certain place before or
4056 after the dot) and accuracy (rounding to a certain number of digits). For a
4057 full documentation, examples and tips on these topics please see the large
4058 section about rounding in L<Math::BigInt>.
4060 Since things like C<sqrt(2)> or C<1 / 3> must presented with a limited
4061 accuracy lest a operation consumes all resources, each operation produces
4062 no more than the requested number of digits.
4064 If there is no global precision or accuracy set, B<and> the operation in
4065 question was not called with a requested precision or accuracy, B<and> the
4066 input $x has no accuracy or precision set, then a fallback parameter will
4067 be used. For historical reasons, it is called C<div_scale> and can be accessed
4070 $d = Math::BigFloat->div_scale(); # query
4071 Math::BigFloat->div_scale($n); # set to $n digits
4073 The default value for C<div_scale> is 40.
4075 In case the result of one operation has more digits than specified,
4076 it is rounded. The rounding mode taken is either the default mode, or the one
4077 supplied to the operation after the I<scale>:
4079 $x = Math::BigFloat->new(2);
4080 Math::BigFloat->accuracy(5); # 5 digits max
4081 $y = $x->copy()->bdiv(3); # will give 0.66667
4082 $y = $x->copy()->bdiv(3,6); # will give 0.666667
4083 $y = $x->copy()->bdiv(3,6,undef,'odd'); # will give 0.666667
4084 Math::BigFloat->round_mode('zero');
4085 $y = $x->copy()->bdiv(3,6); # will also give 0.666667
4087 Note that C<< Math::BigFloat->accuracy() >> and C<< Math::BigFloat->precision() >>
4088 set the global variables, and thus B<any> newly created number will be subject
4089 to the global rounding B<immediately>. This means that in the examples above, the
4090 C<3> as argument to C<bdiv()> will also get an accuracy of B<5>.
4092 It is less confusing to either calculate the result fully, and afterwards
4093 round it explicitly, or use the additional parameters to the math
4097 $x = Math::BigFloat->new(2);
4098 $y = $x->copy()->bdiv(3);
4099 print $y->bround(5),"\n"; # will give 0.66667
4104 $x = Math::BigFloat->new(2);
4105 $y = $x->copy()->bdiv(3,5); # will give 0.66667
4112 =item ffround ( +$scale )
4114 Rounds to the $scale'th place left from the '.', counting from the dot.
4115 The first digit is numbered 1.
4117 =item ffround ( -$scale )
4119 Rounds to the $scale'th place right from the '.', counting from the dot.
4123 Rounds to an integer.
4125 =item fround ( +$scale )
4127 Preserves accuracy to $scale digits from the left (aka significant digits)
4128 and pads the rest with zeros. If the number is between 1 and -1, the
4129 significant digits count from the first non-zero after the '.'
4131 =item fround ( -$scale ) and fround ( 0 )
4133 These are effectively no-ops.
4137 All rounding functions take as a second parameter a rounding mode from one of
4138 the following: 'even', 'odd', '+inf', '-inf', 'zero', 'trunc' or 'common'.
4140 The default rounding mode is 'even'. By using
4141 C<< Math::BigFloat->round_mode($round_mode); >> you can get and set the default
4142 mode for subsequent rounding. The usage of C<$Math::BigFloat::$round_mode> is
4143 no longer supported.
4144 The second parameter to the round functions then overrides the default
4147 The C<as_number()> function returns a BigInt from a Math::BigFloat. It uses
4148 'trunc' as rounding mode to make it equivalent to:
4153 You can override this by passing the desired rounding mode as parameter to
4156 $x = Math::BigFloat->new(2.5);
4157 $y = $x->as_number('odd'); # $y = 3
4161 Math::BigFloat supports all methods that Math::BigInt supports, except it
4162 calculates non-integer results when possible. Please see L<Math::BigInt>
4163 for a full description of each method. Below are just the most important
4170 $x->accuracy(5); # local for $x
4171 CLASS->accuracy(5); # global for all members of CLASS
4172 # Note: This also applies to new()!
4174 $A = $x->accuracy(); # read out accuracy that affects $x
4175 $A = CLASS->accuracy(); # read out global accuracy
4177 Set or get the global or local accuracy, aka how many significant digits the
4178 results have. If you set a global accuracy, then this also applies to new()!
4180 Warning! The accuracy I<sticks>, e.g. once you created a number under the
4181 influence of C<< CLASS->accuracy($A) >>, all results from math operations with
4182 that number will also be rounded.
4184 In most cases, you should probably round the results explicitly using one of
4185 L<Math::BigInt/round()>, L<Math::BigInt/bround()> or L<Math::BigInt/bfround()> or by passing the desired accuracy
4186 to the math operation as additional parameter:
4188 my $x = Math::BigInt->new(30000);
4189 my $y = Math::BigInt->new(7);
4190 print scalar $x->copy()->bdiv($y, 2); # print 4300
4191 print scalar $x->copy()->bdiv($y)->bround(2); # print 4300
4195 $x->precision(-2); # local for $x, round at the second
4196 # digit right of the dot
4197 $x->precision(2); # ditto, round at the second digit
4200 CLASS->precision(5); # Global for all members of CLASS
4201 # This also applies to new()!
4202 CLASS->precision(-5); # ditto
4204 $P = CLASS->precision(); # read out global precision
4205 $P = $x->precision(); # read out precision that affects $x
4207 Note: You probably want to use L</accuracy()> instead. With L</accuracy()> you
4208 set the number of digits each result should have, with L</precision()> you
4209 set the place where to round!
4213 $x->bexp($accuracy); # calculate e ** X
4215 Calculates the expression C<e ** $x> where C<e> is Euler's number.
4217 This method was added in v1.82 of Math::BigInt (April 2007).
4221 $x->bnok($y); # x over y (binomial coefficient n over k)
4223 Calculates the binomial coefficient n over k, also called the "choose"
4224 function. The result is equivalent to:
4230 This method was added in v1.84 of Math::BigInt (April 2007).
4234 print Math::BigFloat->bpi(100), "\n";
4236 Calculate PI to N digits (including the 3 before the dot). The result is
4237 rounded according to the current rounding mode, which defaults to "even".
4239 This method was added in v1.87 of Math::BigInt (June 2007).
4243 my $x = Math::BigFloat->new(1);
4244 print $x->bcos(100), "\n";
4246 Calculate the cosinus of $x, modifying $x in place.
4248 This method was added in v1.87 of Math::BigInt (June 2007).
4252 my $x = Math::BigFloat->new(1);
4253 print $x->bsin(100), "\n";
4255 Calculate the sinus of $x, modifying $x in place.
4257 This method was added in v1.87 of Math::BigInt (June 2007).
4261 my $y = Math::BigFloat->new(2);
4262 my $x = Math::BigFloat->new(3);
4263 print $y->batan2($x), "\n";
4265 Calculate the arcus tanges of C<$y> divided by C<$x>, modifying $y in place.
4266 See also L</batan()>.
4268 This method was added in v1.87 of Math::BigInt (June 2007).
4272 my $x = Math::BigFloat->new(1);
4273 print $x->batan(100), "\n";
4275 Calculate the arcus tanges of $x, modifying $x in place. See also L</batan2()>.
4277 This method was added in v1.87 of Math::BigInt (June 2007).
4283 Multiply $x by $y, and then add $z to the result.
4285 This method was added in v1.87 of Math::BigInt (June 2007).
4289 =head1 Autocreating constants
4291 After C<use Math::BigFloat ':constant'> all the floating point constants
4292 in the given scope are converted to C<Math::BigFloat>. This conversion
4293 happens at compile time.
4297 perl -MMath::BigFloat=:constant -e 'print 2E-100,"\n"'
4299 prints the value of C<2E-100>. Note that without conversion of
4300 constants the expression 2E-100 will be calculated as normal floating point
4303 Please note that ':constant' does not affect integer constants, nor binary
4304 nor hexadecimal constants. Use L<bignum> or L<Math::BigInt> to get this to