5 * One Ring to rule them all, One Ring to find them
7 * [p.v of _The Lord of the Rings_, opening poem]
8 * [p.50 of _The Lord of the Rings_, I/iii: "The Shadow of the Past"]
9 * [p.254 of _The Lord of the Rings_, II/ii: "The Council of Elrond"]
12 /* This file contains functions for executing a regular expression. See
13 * also regcomp.c which funnily enough, contains functions for compiling
14 * a regular expression.
16 * This file is also copied at build time to ext/re/re_exec.c, where
17 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
18 * This causes the main functions to be compiled under new names and with
19 * debugging support added, which makes "use re 'debug'" work.
22 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
23 * confused with the original package (see point 3 below). Thanks, Henry!
26 /* Additional note: this code is very heavily munged from Henry's version
27 * in places. In some spots I've traded clarity for efficiency, so don't
28 * blame Henry for some of the lack of readability.
31 /* The names of the functions have been changed from regcomp and
32 * regexec to pregcomp and pregexec in order to avoid conflicts
33 * with the POSIX routines of the same names.
36 #ifdef PERL_EXT_RE_BUILD
41 * pregcomp and pregexec -- regsub and regerror are not used in perl
43 * Copyright (c) 1986 by University of Toronto.
44 * Written by Henry Spencer. Not derived from licensed software.
46 * Permission is granted to anyone to use this software for any
47 * purpose on any computer system, and to redistribute it freely,
48 * subject to the following restrictions:
50 * 1. The author is not responsible for the consequences of use of
51 * this software, no matter how awful, even if they arise
54 * 2. The origin of this software must not be misrepresented, either
55 * by explicit claim or by omission.
57 * 3. Altered versions must be plainly marked as such, and must not
58 * be misrepresented as being the original software.
60 **** Alterations to Henry's code are...
62 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
63 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
64 **** by Larry Wall and others
66 **** You may distribute under the terms of either the GNU General Public
67 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGEXEC_C
77 #ifdef PERL_IN_XSUB_RE
83 #include "invlist_inline.h"
84 #include "unicode_constants.h"
86 static const char b_utf8_locale_required[] =
87 "Use of \\b{} or \\B{} for non-UTF-8 locale is wrong."
88 " Assuming a UTF-8 locale";
90 #define CHECK_AND_WARN_NON_UTF8_CTYPE_LOCALE_IN_BOUND \
92 if (! IN_UTF8_CTYPE_LOCALE) { \
93 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE), \
94 b_utf8_locale_required); \
98 static const char sets_utf8_locale_required[] =
99 "Use of (?[ ]) for non-UTF-8 locale is wrong. Assuming a UTF-8 locale";
101 #define CHECK_AND_WARN_NON_UTF8_CTYPE_LOCALE_IN_SETS(n) \
103 if (! IN_UTF8_CTYPE_LOCALE && ANYOFL_UTF8_LOCALE_REQD(FLAGS(n))) { \
104 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE), \
105 sets_utf8_locale_required); \
110 /* At least one required character in the target string is expressible only in
112 static const char non_utf8_target_but_utf8_required[]
113 = "Can't match, because target string needs to be in UTF-8\n";
116 #define NON_UTF8_TARGET_BUT_UTF8_REQUIRED(target) STMT_START { \
117 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ "%s", non_utf8_target_but_utf8_required));\
122 #define STATIC static
129 #define CHR_SVLEN(sv) (utf8_target ? sv_len_utf8(sv) : SvCUR(sv))
131 #define HOPc(pos,off) \
132 (char *)(reginfo->is_utf8_target \
133 ? reghop3((U8*)pos, off, \
134 (U8*)(off >= 0 ? reginfo->strend : reginfo->strbeg)) \
137 /* like HOPMAYBE3 but backwards. lim must be +ve. Returns NULL on overshoot */
138 #define HOPBACK3(pos, off, lim) \
139 (reginfo->is_utf8_target \
140 ? reghopmaybe3((U8*)pos, (SSize_t)0-off, (U8*)(lim)) \
141 : (pos - off >= lim) \
145 #define HOPBACKc(pos, off) ((char*)HOPBACK3(pos, off, reginfo->strbeg))
147 #define HOP3(pos,off,lim) (reginfo->is_utf8_target ? reghop3((U8*)(pos), off, (U8*)(lim)) : (U8*)(pos + off))
148 #define HOP3c(pos,off,lim) ((char*)HOP3(pos,off,lim))
150 /* lim must be +ve. Returns NULL on overshoot */
151 #define HOPMAYBE3(pos,off,lim) \
152 (reginfo->is_utf8_target \
153 ? reghopmaybe3((U8*)pos, off, (U8*)(lim)) \
154 : ((U8*)pos + off <= lim) \
158 /* like HOP3, but limits the result to <= lim even for the non-utf8 case.
159 * off must be >=0; args should be vars rather than expressions */
160 #define HOP3lim(pos,off,lim) (reginfo->is_utf8_target \
161 ? reghop3((U8*)(pos), off, (U8*)(lim)) \
162 : (U8*)((pos + off) > lim ? lim : (pos + off)))
163 #define HOP3clim(pos,off,lim) ((char*)HOP3lim(pos,off,lim))
165 #define HOP4(pos,off,llim, rlim) (reginfo->is_utf8_target \
166 ? reghop4((U8*)(pos), off, (U8*)(llim), (U8*)(rlim)) \
168 #define HOP4c(pos,off,llim, rlim) ((char*)HOP4(pos,off,llim, rlim))
170 #define PLACEHOLDER /* Something for the preprocessor to grab onto */
171 /* TODO: Combine JUMPABLE and HAS_TEXT to cache OP(rn) */
173 /* for use after a quantifier and before an EXACT-like node -- japhy */
174 /* it would be nice to rework regcomp.sym to generate this stuff. sigh
176 * NOTE that *nothing* that affects backtracking should be in here, specifically
177 * VERBS must NOT be included. JUMPABLE is used to determine if we can ignore a
178 * node that is in between two EXACT like nodes when ascertaining what the required
179 * "follow" character is. This should probably be moved to regex compile time
180 * although it may be done at run time beause of the REF possibility - more
181 * investigation required. -- demerphq
183 #define JUMPABLE(rn) ( \
185 (OP(rn) == CLOSE && \
186 !EVAL_CLOSE_PAREN_IS(cur_eval,ARG(rn)) ) || \
188 OP(rn) == SUSPEND || OP(rn) == IFMATCH || \
189 OP(rn) == PLUS || OP(rn) == MINMOD || \
191 (PL_regkind[OP(rn)] == CURLY && ARG1(rn) > 0) \
193 #define IS_EXACT(rn) (PL_regkind[OP(rn)] == EXACT)
195 #define HAS_TEXT(rn) ( IS_EXACT(rn) || PL_regkind[OP(rn)] == REF )
198 Search for mandatory following text node; for lookahead, the text must
199 follow but for lookbehind (rn->flags != 0) we skip to the next step.
201 #define FIND_NEXT_IMPT(rn) STMT_START { \
202 while (JUMPABLE(rn)) { \
203 const OPCODE type = OP(rn); \
204 if (type == SUSPEND || PL_regkind[type] == CURLY) \
205 rn = NEXTOPER(NEXTOPER(rn)); \
206 else if (type == PLUS) \
208 else if (type == IFMATCH) \
209 rn = (rn->flags == 0) ? NEXTOPER(NEXTOPER(rn)) : rn + ARG(rn); \
210 else rn += NEXT_OFF(rn); \
214 #define SLAB_FIRST(s) (&(s)->states[0])
215 #define SLAB_LAST(s) (&(s)->states[PERL_REGMATCH_SLAB_SLOTS-1])
217 static void S_setup_eval_state(pTHX_ regmatch_info *const reginfo);
218 static void S_cleanup_regmatch_info_aux(pTHX_ void *arg);
219 static regmatch_state * S_push_slab(pTHX);
221 #define REGCP_PAREN_ELEMS 3
222 #define REGCP_OTHER_ELEMS 3
223 #define REGCP_FRAME_ELEMS 1
224 /* REGCP_FRAME_ELEMS are not part of the REGCP_OTHER_ELEMS and
225 * are needed for the regexp context stack bookkeeping. */
228 S_regcppush(pTHX_ const regexp *rex, I32 parenfloor, U32 maxopenparen _pDEPTH)
230 const int retval = PL_savestack_ix;
231 const int paren_elems_to_push =
232 (maxopenparen - parenfloor) * REGCP_PAREN_ELEMS;
233 const UV total_elems = paren_elems_to_push + REGCP_OTHER_ELEMS;
234 const UV elems_shifted = total_elems << SAVE_TIGHT_SHIFT;
236 DECLARE_AND_GET_RE_DEBUG_FLAGS;
238 PERL_ARGS_ASSERT_REGCPPUSH;
240 if (paren_elems_to_push < 0)
241 Perl_croak(aTHX_ "panic: paren_elems_to_push, %i < 0, maxopenparen: %i parenfloor: %i REGCP_PAREN_ELEMS: %u",
242 (int)paren_elems_to_push, (int)maxopenparen,
243 (int)parenfloor, (unsigned)REGCP_PAREN_ELEMS);
245 if ((elems_shifted >> SAVE_TIGHT_SHIFT) != total_elems)
246 Perl_croak(aTHX_ "panic: paren_elems_to_push offset %" UVuf
247 " out of range (%lu-%ld)",
249 (unsigned long)maxopenparen,
252 SSGROW(total_elems + REGCP_FRAME_ELEMS);
255 if ((int)maxopenparen > (int)parenfloor)
256 Perl_re_exec_indentf( aTHX_
257 "rex=0x%" UVxf " offs=0x%" UVxf ": saving capture indices:\n",
263 for (p = parenfloor+1; p <= (I32)maxopenparen; p++) {
264 /* REGCP_PARENS_ELEMS are pushed per pairs of parentheses. */
265 SSPUSHIV(rex->offs[p].end);
266 SSPUSHIV(rex->offs[p].start);
267 SSPUSHINT(rex->offs[p].start_tmp);
268 DEBUG_BUFFERS_r(Perl_re_exec_indentf( aTHX_
269 " \\%" UVuf ": %" IVdf "(%" IVdf ")..%" IVdf "\n",
272 (IV)rex->offs[p].start,
273 (IV)rex->offs[p].start_tmp,
277 /* REGCP_OTHER_ELEMS are pushed in any case, parentheses or no. */
278 SSPUSHINT(maxopenparen);
279 SSPUSHINT(rex->lastparen);
280 SSPUSHINT(rex->lastcloseparen);
281 SSPUSHUV(SAVEt_REGCONTEXT | elems_shifted); /* Magic cookie. */
286 /* These are needed since we do not localize EVAL nodes: */
287 #define REGCP_SET(cp) \
289 Perl_re_exec_indentf( aTHX_ \
290 "Setting an EVAL scope, savestack=%" IVdf ",\n", \
291 depth, (IV)PL_savestack_ix \
296 #define REGCP_UNWIND(cp) \
298 if (cp != PL_savestack_ix) \
299 Perl_re_exec_indentf( aTHX_ \
300 "Clearing an EVAL scope, savestack=%" \
301 IVdf "..%" IVdf "\n", \
302 depth, (IV)(cp), (IV)PL_savestack_ix \
307 /* set the start and end positions of capture ix */
308 #define CLOSE_CAPTURE(ix, s, e) \
309 rex->offs[ix].start = s; \
310 rex->offs[ix].end = e; \
311 if (ix > rex->lastparen) \
312 rex->lastparen = ix; \
313 rex->lastcloseparen = ix; \
314 DEBUG_BUFFERS_r(Perl_re_exec_indentf( aTHX_ \
315 "CLOSE: rex=0x%" UVxf " offs=0x%" UVxf ": \\%" UVuf ": set %" IVdf "..%" IVdf " max: %" UVuf "\n", \
320 (IV)rex->offs[ix].start, \
321 (IV)rex->offs[ix].end, \
325 #define UNWIND_PAREN(lp, lcp) \
326 DEBUG_BUFFERS_r(Perl_re_exec_indentf( aTHX_ \
327 "UNWIND_PAREN: rex=0x%" UVxf " offs=0x%" UVxf ": invalidate (%" UVuf "..%" UVuf "] set lcp: %" UVuf "\n", \
332 (UV)(rex->lastparen), \
335 for (n = rex->lastparen; n > lp; n--) \
336 rex->offs[n].end = -1; \
337 rex->lastparen = n; \
338 rex->lastcloseparen = lcp;
342 S_regcppop(pTHX_ regexp *rex, U32 *maxopenparen_p _pDEPTH)
346 DECLARE_AND_GET_RE_DEBUG_FLAGS;
348 PERL_ARGS_ASSERT_REGCPPOP;
350 /* Pop REGCP_OTHER_ELEMS before the parentheses loop starts. */
352 assert((i & SAVE_MASK) == SAVEt_REGCONTEXT); /* Check that the magic cookie is there. */
353 i >>= SAVE_TIGHT_SHIFT; /* Parentheses elements to pop. */
354 rex->lastcloseparen = SSPOPINT;
355 rex->lastparen = SSPOPINT;
356 *maxopenparen_p = SSPOPINT;
358 i -= REGCP_OTHER_ELEMS;
359 /* Now restore the parentheses context. */
361 if (i || rex->lastparen + 1 <= rex->nparens)
362 Perl_re_exec_indentf( aTHX_
363 "rex=0x%" UVxf " offs=0x%" UVxf ": restoring capture indices to:\n",
369 paren = *maxopenparen_p;
370 for ( ; i > 0; i -= REGCP_PAREN_ELEMS) {
372 rex->offs[paren].start_tmp = SSPOPINT;
373 rex->offs[paren].start = SSPOPIV;
375 if (paren <= rex->lastparen)
376 rex->offs[paren].end = tmps;
377 DEBUG_BUFFERS_r( Perl_re_exec_indentf( aTHX_
378 " \\%" UVuf ": %" IVdf "(%" IVdf ")..%" IVdf "%s\n",
381 (IV)rex->offs[paren].start,
382 (IV)rex->offs[paren].start_tmp,
383 (IV)rex->offs[paren].end,
384 (paren > rex->lastparen ? "(skipped)" : ""));
389 /* It would seem that the similar code in regtry()
390 * already takes care of this, and in fact it is in
391 * a better location to since this code can #if 0-ed out
392 * but the code in regtry() is needed or otherwise tests
393 * requiring null fields (pat.t#187 and split.t#{13,14}
394 * (as of patchlevel 7877) will fail. Then again,
395 * this code seems to be necessary or otherwise
396 * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
397 * --jhi updated by dapm */
398 for (i = rex->lastparen + 1; i <= rex->nparens; i++) {
399 if (i > *maxopenparen_p)
400 rex->offs[i].start = -1;
401 rex->offs[i].end = -1;
402 DEBUG_BUFFERS_r( Perl_re_exec_indentf( aTHX_
403 " \\%" UVuf ": %s ..-1 undeffing\n",
406 (i > *maxopenparen_p) ? "-1" : " "
412 /* restore the parens and associated vars at savestack position ix,
413 * but without popping the stack */
416 S_regcp_restore(pTHX_ regexp *rex, I32 ix, U32 *maxopenparen_p _pDEPTH)
418 I32 tmpix = PL_savestack_ix;
419 PERL_ARGS_ASSERT_REGCP_RESTORE;
421 PL_savestack_ix = ix;
422 regcppop(rex, maxopenparen_p);
423 PL_savestack_ix = tmpix;
426 #define regcpblow(cp) LEAVE_SCOPE(cp) /* Ignores regcppush()ed data. */
428 #ifndef PERL_IN_XSUB_RE
431 Perl_isFOO_lc(pTHX_ const U8 classnum, const U8 character)
433 /* Returns a boolean as to whether or not 'character' is a member of the
434 * Posix character class given by 'classnum' that should be equivalent to a
435 * value in the typedef '_char_class_number'.
437 * Ideally this could be replaced by a just an array of function pointers
438 * to the C library functions that implement the macros this calls.
439 * However, to compile, the precise function signatures are required, and
440 * these may vary from platform to platform. To avoid having to figure
441 * out what those all are on each platform, I (khw) am using this method,
442 * which adds an extra layer of function call overhead (unless the C
443 * optimizer strips it away). But we don't particularly care about
444 * performance with locales anyway. */
446 switch ((_char_class_number) classnum) {
447 case _CC_ENUM_ALPHANUMERIC: return isALPHANUMERIC_LC(character);
448 case _CC_ENUM_ALPHA: return isALPHA_LC(character);
449 case _CC_ENUM_ASCII: return isASCII_LC(character);
450 case _CC_ENUM_BLANK: return isBLANK_LC(character);
451 case _CC_ENUM_CASED: return isLOWER_LC(character)
452 || isUPPER_LC(character);
453 case _CC_ENUM_CNTRL: return isCNTRL_LC(character);
454 case _CC_ENUM_DIGIT: return isDIGIT_LC(character);
455 case _CC_ENUM_GRAPH: return isGRAPH_LC(character);
456 case _CC_ENUM_LOWER: return isLOWER_LC(character);
457 case _CC_ENUM_PRINT: return isPRINT_LC(character);
458 case _CC_ENUM_PUNCT: return isPUNCT_LC(character);
459 case _CC_ENUM_SPACE: return isSPACE_LC(character);
460 case _CC_ENUM_UPPER: return isUPPER_LC(character);
461 case _CC_ENUM_WORDCHAR: return isWORDCHAR_LC(character);
462 case _CC_ENUM_XDIGIT: return isXDIGIT_LC(character);
463 default: /* VERTSPACE should never occur in locales */
464 Perl_croak(aTHX_ "panic: isFOO_lc() has an unexpected character class '%d'", classnum);
467 NOT_REACHED; /* NOTREACHED */
473 PERL_STATIC_INLINE I32
474 S_foldEQ_latin1_s2_folded(const char *s1, const char *s2, I32 len)
476 /* Compare non-UTF-8 using Unicode (Latin1) semantics. s2 must already be
477 * folded. Works on all folds representable without UTF-8, except for
478 * LATIN_SMALL_LETTER_SHARP_S, and does not check for this. Nor does it
479 * check that the strings each have at least 'len' characters.
481 * There is almost an identical API function where s2 need not be folded:
482 * Perl_foldEQ_latin1() */
484 const U8 *a = (const U8 *)s1;
485 const U8 *b = (const U8 *)s2;
487 PERL_ARGS_ASSERT_FOLDEQ_LATIN1_S2_FOLDED;
492 assert(! isUPPER_L1(*b));
493 if (toLOWER_L1(*a) != *b) {
502 S_isFOO_utf8_lc(pTHX_ const U8 classnum, const U8* character, const U8* e)
504 /* Returns a boolean as to whether or not the (well-formed) UTF-8-encoded
505 * 'character' is a member of the Posix character class given by 'classnum'
506 * that should be equivalent to a value in the typedef
507 * '_char_class_number'.
509 * This just calls isFOO_lc on the code point for the character if it is in
510 * the range 0-255. Outside that range, all characters use Unicode
511 * rules, ignoring any locale. So use the Unicode function if this class
512 * requires an inversion list, and use the Unicode macro otherwise. */
515 PERL_ARGS_ASSERT_ISFOO_UTF8_LC;
517 if (UTF8_IS_INVARIANT(*character)) {
518 return isFOO_lc(classnum, *character);
520 else if (UTF8_IS_DOWNGRADEABLE_START(*character)) {
521 return isFOO_lc(classnum,
522 EIGHT_BIT_UTF8_TO_NATIVE(*character, *(character + 1)));
525 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(character, e);
527 switch ((_char_class_number) classnum) {
528 case _CC_ENUM_SPACE: return is_XPERLSPACE_high(character);
529 case _CC_ENUM_BLANK: return is_HORIZWS_high(character);
530 case _CC_ENUM_XDIGIT: return is_XDIGIT_high(character);
531 case _CC_ENUM_VERTSPACE: return is_VERTWS_high(character);
533 return _invlist_contains_cp(PL_XPosix_ptrs[classnum],
534 utf8_to_uvchr_buf(character, e, NULL));
537 return FALSE; /* Things like CNTRL are always below 256 */
541 S_find_span_end(U8 * s, const U8 * send, const U8 span_byte)
543 /* Returns the position of the first byte in the sequence between 's' and
544 * 'send-1' inclusive that isn't 'span_byte'; returns 'send' if none found.
547 PERL_ARGS_ASSERT_FIND_SPAN_END;
551 if ((STRLEN) (send - s) >= PERL_WORDSIZE
552 + PERL_WORDSIZE * PERL_IS_SUBWORD_ADDR(s)
553 - (PTR2nat(s) & PERL_WORD_BOUNDARY_MASK))
555 PERL_UINTMAX_T span_word;
557 /* Process per-byte until reach word boundary. XXX This loop could be
558 * eliminated if we knew that this platform had fast unaligned reads */
559 while (PTR2nat(s) & PERL_WORD_BOUNDARY_MASK) {
560 if (*s != span_byte) {
566 /* Create a word filled with the bytes we are spanning */
567 span_word = PERL_COUNT_MULTIPLIER * span_byte;
569 /* Process per-word as long as we have at least a full word left */
572 /* Keep going if the whole word is composed of 'span_byte's */
573 if ((* (PERL_UINTMAX_T *) s) == span_word) {
578 /* Here, at least one byte in the word isn't 'span_byte'. */
586 /* This xor leaves 1 bits only in those non-matching bytes */
587 span_word ^= * (PERL_UINTMAX_T *) s;
589 /* Make sure the upper bit of each non-matching byte is set. This
590 * makes each such byte look like an ASCII platform variant byte */
591 span_word |= span_word << 1;
592 span_word |= span_word << 2;
593 span_word |= span_word << 4;
595 /* That reduces the problem to what this function solves */
596 return s + variant_byte_number(span_word);
600 } while (s + PERL_WORDSIZE <= send);
603 /* Process the straggler bytes beyond the final word boundary */
605 if (*s != span_byte) {
615 S_find_next_masked(U8 * s, const U8 * send, const U8 byte, const U8 mask)
617 /* Returns the position of the first byte in the sequence between 's'
618 * and 'send-1' inclusive that when ANDed with 'mask' yields 'byte';
619 * returns 'send' if none found. It uses word-level operations instead of
620 * byte to speed up the process */
622 PERL_ARGS_ASSERT_FIND_NEXT_MASKED;
625 assert((byte & mask) == byte);
629 if ((STRLEN) (send - s) >= PERL_WORDSIZE
630 + PERL_WORDSIZE * PERL_IS_SUBWORD_ADDR(s)
631 - (PTR2nat(s) & PERL_WORD_BOUNDARY_MASK))
633 PERL_UINTMAX_T word, mask_word;
635 while (PTR2nat(s) & PERL_WORD_BOUNDARY_MASK) {
636 if (((*s) & mask) == byte) {
642 word = PERL_COUNT_MULTIPLIER * byte;
643 mask_word = PERL_COUNT_MULTIPLIER * mask;
646 PERL_UINTMAX_T masked = (* (PERL_UINTMAX_T *) s) & mask_word;
648 /* If 'masked' contains bytes with the bit pattern of 'byte' within
649 * it, xoring with 'word' will leave each of the 8 bits in such
650 * bytes be 0, and no byte containing any other bit pattern will be
654 /* This causes the most significant bit to be set to 1 for any
655 * bytes in the word that aren't completely 0 */
656 masked |= masked << 1;
657 masked |= masked << 2;
658 masked |= masked << 4;
660 /* The msbits are the same as what marks a byte as variant, so we
661 * can use this mask. If all msbits are 1, the word doesn't
663 if ((masked & PERL_VARIANTS_WORD_MASK) == PERL_VARIANTS_WORD_MASK) {
668 /* Here, the msbit of bytes in the word that aren't 'byte' are 1,
669 * and any that are, are 0. Complement and re-AND to swap that */
671 masked &= PERL_VARIANTS_WORD_MASK;
673 /* This reduces the problem to that solved by this function */
674 s += variant_byte_number(masked);
677 } while (s + PERL_WORDSIZE <= send);
683 if (((*s) & mask) == byte) {
693 S_find_span_end_mask(U8 * s, const U8 * send, const U8 span_byte, const U8 mask)
695 /* Returns the position of the first byte in the sequence between 's' and
696 * 'send-1' inclusive that when ANDed with 'mask' isn't 'span_byte'.
697 * 'span_byte' should have been ANDed with 'mask' in the call of this
698 * function. Returns 'send' if none found. Works like find_span_end(),
699 * except for the AND */
701 PERL_ARGS_ASSERT_FIND_SPAN_END_MASK;
704 assert((span_byte & mask) == span_byte);
706 if ((STRLEN) (send - s) >= PERL_WORDSIZE
707 + PERL_WORDSIZE * PERL_IS_SUBWORD_ADDR(s)
708 - (PTR2nat(s) & PERL_WORD_BOUNDARY_MASK))
710 PERL_UINTMAX_T span_word, mask_word;
712 while (PTR2nat(s) & PERL_WORD_BOUNDARY_MASK) {
713 if (((*s) & mask) != span_byte) {
719 span_word = PERL_COUNT_MULTIPLIER * span_byte;
720 mask_word = PERL_COUNT_MULTIPLIER * mask;
723 PERL_UINTMAX_T masked = (* (PERL_UINTMAX_T *) s) & mask_word;
725 if (masked == span_word) {
737 masked |= masked << 1;
738 masked |= masked << 2;
739 masked |= masked << 4;
740 return s + variant_byte_number(masked);
744 } while (s + PERL_WORDSIZE <= send);
748 if (((*s) & mask) != span_byte) {
758 * pregexec and friends
761 #ifndef PERL_IN_XSUB_RE
763 - pregexec - match a regexp against a string
766 Perl_pregexec(pTHX_ REGEXP * const prog, char* stringarg, char *strend,
767 char *strbeg, SSize_t minend, SV *screamer, U32 nosave)
768 /* stringarg: the point in the string at which to begin matching */
769 /* strend: pointer to null at end of string */
770 /* strbeg: real beginning of string */
771 /* minend: end of match must be >= minend bytes after stringarg. */
772 /* screamer: SV being matched: only used for utf8 flag, pos() etc; string
773 * itself is accessed via the pointers above */
774 /* nosave: For optimizations. */
776 PERL_ARGS_ASSERT_PREGEXEC;
779 regexec_flags(prog, stringarg, strend, strbeg, minend, screamer, NULL,
780 nosave ? 0 : REXEC_COPY_STR);
786 /* re_intuit_start():
788 * Based on some optimiser hints, try to find the earliest position in the
789 * string where the regex could match.
791 * rx: the regex to match against
792 * sv: the SV being matched: only used for utf8 flag; the string
793 * itself is accessed via the pointers below. Note that on
794 * something like an overloaded SV, SvPOK(sv) may be false
795 * and the string pointers may point to something unrelated to
797 * strbeg: real beginning of string
798 * strpos: the point in the string at which to begin matching
799 * strend: pointer to the byte following the last char of the string
800 * flags currently unused; set to 0
801 * data: currently unused; set to NULL
803 * The basic idea of re_intuit_start() is to use some known information
804 * about the pattern, namely:
806 * a) the longest known anchored substring (i.e. one that's at a
807 * constant offset from the beginning of the pattern; but not
808 * necessarily at a fixed offset from the beginning of the
810 * b) the longest floating substring (i.e. one that's not at a constant
811 * offset from the beginning of the pattern);
812 * c) Whether the pattern is anchored to the string; either
813 * an absolute anchor: /^../, or anchored to \n: /^.../m,
814 * or anchored to pos(): /\G/;
815 * d) A start class: a real or synthetic character class which
816 * represents which characters are legal at the start of the pattern;
818 * to either quickly reject the match, or to find the earliest position
819 * within the string at which the pattern might match, thus avoiding
820 * running the full NFA engine at those earlier locations, only to
821 * eventually fail and retry further along.
823 * Returns NULL if the pattern can't match, or returns the address within
824 * the string which is the earliest place the match could occur.
826 * The longest of the anchored and floating substrings is called 'check'
827 * and is checked first. The other is called 'other' and is checked
828 * second. The 'other' substring may not be present. For example,
830 * /(abc|xyz)ABC\d{0,3}DEFG/
834 * check substr (float) = "DEFG", offset 6..9 chars
835 * other substr (anchored) = "ABC", offset 3..3 chars
838 * Be aware that during the course of this function, sometimes 'anchored'
839 * refers to a substring being anchored relative to the start of the
840 * pattern, and sometimes to the pattern itself being anchored relative to
841 * the string. For example:
843 * /\dabc/: "abc" is anchored to the pattern;
844 * /^\dabc/: "abc" is anchored to the pattern and the string;
845 * /\d+abc/: "abc" is anchored to neither the pattern nor the string;
846 * /^\d+abc/: "abc" is anchored to neither the pattern nor the string,
847 * but the pattern is anchored to the string.
851 Perl_re_intuit_start(pTHX_
854 const char * const strbeg,
858 re_scream_pos_data *data)
860 struct regexp *const prog = ReANY(rx);
861 SSize_t start_shift = prog->check_offset_min;
862 /* Should be nonnegative! */
863 SSize_t end_shift = 0;
864 /* current lowest pos in string where the regex can start matching */
865 char *rx_origin = strpos;
867 const bool utf8_target = (sv && SvUTF8(sv)) ? 1 : 0; /* if no sv we have to assume bytes */
868 U8 other_ix = 1 - prog->substrs->check_ix;
870 char *other_last = strpos;/* latest pos 'other' substr already checked to */
871 char *check_at = NULL; /* check substr found at this pos */
872 const I32 multiline = prog->extflags & RXf_PMf_MULTILINE;
873 RXi_GET_DECL(prog,progi);
874 regmatch_info reginfo_buf; /* create some info to pass to find_byclass */
875 regmatch_info *const reginfo = ®info_buf;
876 DECLARE_AND_GET_RE_DEBUG_FLAGS;
878 PERL_ARGS_ASSERT_RE_INTUIT_START;
879 PERL_UNUSED_ARG(flags);
880 PERL_UNUSED_ARG(data);
882 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
883 "Intuit: trying to determine minimum start position...\n"));
885 /* for now, assume that all substr offsets are positive. If at some point
886 * in the future someone wants to do clever things with lookbehind and
887 * -ve offsets, they'll need to fix up any code in this function
888 * which uses these offsets. See the thread beginning
889 * <20140113145929.GF27210@iabyn.com>
891 assert(prog->substrs->data[0].min_offset >= 0);
892 assert(prog->substrs->data[0].max_offset >= 0);
893 assert(prog->substrs->data[1].min_offset >= 0);
894 assert(prog->substrs->data[1].max_offset >= 0);
895 assert(prog->substrs->data[2].min_offset >= 0);
896 assert(prog->substrs->data[2].max_offset >= 0);
898 /* for now, assume that if both present, that the floating substring
899 * doesn't start before the anchored substring.
900 * If you break this assumption (e.g. doing better optimisations
901 * with lookahead/behind), then you'll need to audit the code in this
902 * function carefully first
905 ! ( (prog->anchored_utf8 || prog->anchored_substr)
906 && (prog->float_utf8 || prog->float_substr))
907 || (prog->float_min_offset >= prog->anchored_offset));
909 /* byte rather than char calculation for efficiency. It fails
910 * to quickly reject some cases that can't match, but will reject
911 * them later after doing full char arithmetic */
912 if (prog->minlen > strend - strpos) {
913 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
914 " String too short...\n"));
918 RXp_MATCH_UTF8_set(prog, utf8_target);
919 reginfo->is_utf8_target = cBOOL(utf8_target);
920 reginfo->info_aux = NULL;
921 reginfo->strbeg = strbeg;
922 reginfo->strend = strend;
923 reginfo->is_utf8_pat = cBOOL(RX_UTF8(rx));
925 /* not actually used within intuit, but zero for safety anyway */
926 reginfo->poscache_maxiter = 0;
929 if ((!prog->anchored_utf8 && prog->anchored_substr)
930 || (!prog->float_utf8 && prog->float_substr))
931 to_utf8_substr(prog);
932 check = prog->check_utf8;
934 if (!prog->check_substr && prog->check_utf8) {
935 if (! to_byte_substr(prog)) {
936 NON_UTF8_TARGET_BUT_UTF8_REQUIRED(fail);
939 check = prog->check_substr;
942 /* dump the various substring data */
943 DEBUG_OPTIMISE_MORE_r({
945 for (i=0; i<=2; i++) {
946 SV *sv = (utf8_target ? prog->substrs->data[i].utf8_substr
947 : prog->substrs->data[i].substr);
951 Perl_re_printf( aTHX_
952 " substrs[%d]: min=%" IVdf " max=%" IVdf " end shift=%" IVdf
953 " useful=%" IVdf " utf8=%d [%s]\n",
955 (IV)prog->substrs->data[i].min_offset,
956 (IV)prog->substrs->data[i].max_offset,
957 (IV)prog->substrs->data[i].end_shift,
964 if (prog->intflags & PREGf_ANCH) { /* Match at \G, beg-of-str or after \n */
966 /* ml_anch: check after \n?
968 * A note about PREGf_IMPLICIT: on an un-anchored pattern beginning
969 * with /.*.../, these flags will have been added by the
971 * /.*abc/, /.*abc/m: PREGf_IMPLICIT | PREGf_ANCH_MBOL
972 * /.*abc/s: PREGf_IMPLICIT | PREGf_ANCH_SBOL
974 ml_anch = (prog->intflags & PREGf_ANCH_MBOL)
975 && !(prog->intflags & PREGf_IMPLICIT);
977 if (!ml_anch && !(prog->intflags & PREGf_IMPLICIT)) {
978 /* we are only allowed to match at BOS or \G */
980 /* trivially reject if there's a BOS anchor and we're not at BOS.
982 * Note that we don't try to do a similar quick reject for
983 * \G, since generally the caller will have calculated strpos
984 * based on pos() and gofs, so the string is already correctly
985 * anchored by definition; and handling the exceptions would
986 * be too fiddly (e.g. REXEC_IGNOREPOS).
988 if ( strpos != strbeg
989 && (prog->intflags & PREGf_ANCH_SBOL))
991 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
992 " Not at start...\n"));
996 /* in the presence of an anchor, the anchored (relative to the
997 * start of the regex) substr must also be anchored relative
998 * to strpos. So quickly reject if substr isn't found there.
999 * This works for \G too, because the caller will already have
1000 * subtracted gofs from pos, and gofs is the offset from the
1001 * \G to the start of the regex. For example, in /.abc\Gdef/,
1002 * where substr="abcdef", pos()=3, gofs=4, offset_min=1:
1003 * caller will have set strpos=pos()-4; we look for the substr
1004 * at position pos()-4+1, which lines up with the "a" */
1006 if (prog->check_offset_min == prog->check_offset_max) {
1007 /* Substring at constant offset from beg-of-str... */
1008 SSize_t slen = SvCUR(check);
1009 char *s = HOP3c(strpos, prog->check_offset_min, strend);
1011 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1012 " Looking for check substr at fixed offset %" IVdf "...\n",
1013 (IV)prog->check_offset_min));
1015 if (SvTAIL(check)) {
1016 /* In this case, the regex is anchored at the end too.
1017 * Unless it's a multiline match, the lengths must match
1018 * exactly, give or take a \n. NB: slen >= 1 since
1019 * the last char of check is \n */
1021 && ( strend - s > slen
1022 || strend - s < slen - 1
1023 || (strend - s == slen && strend[-1] != '\n')))
1025 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1026 " String too long...\n"));
1029 /* Now should match s[0..slen-2] */
1032 if (slen && (strend - s < slen
1033 || *SvPVX_const(check) != *s
1034 || (slen > 1 && (memNE(SvPVX_const(check), s, slen)))))
1036 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1037 " String not equal...\n"));
1042 goto success_at_start;
1047 end_shift = prog->check_end_shift;
1049 #ifdef DEBUGGING /* 7/99: reports of failure (with the older version) */
1051 Perl_croak(aTHX_ "panic: end_shift: %" IVdf " pattern:\n%s\n ",
1052 (IV)end_shift, RX_PRECOMP(rx));
1057 /* This is the (re)entry point of the main loop in this function.
1058 * The goal of this loop is to:
1059 * 1) find the "check" substring in the region rx_origin..strend
1060 * (adjusted by start_shift / end_shift). If not found, reject
1062 * 2) If it exists, look for the "other" substr too if defined; for
1063 * example, if the check substr maps to the anchored substr, then
1064 * check the floating substr, and vice-versa. If not found, go
1065 * back to (1) with rx_origin suitably incremented.
1066 * 3) If we find an rx_origin position that doesn't contradict
1067 * either of the substrings, then check the possible additional
1068 * constraints on rx_origin of /^.../m or a known start class.
1069 * If these fail, then depending on which constraints fail, jump
1070 * back to here, or to various other re-entry points further along
1071 * that skip some of the first steps.
1072 * 4) If we pass all those tests, update the BmUSEFUL() count on the
1073 * substring. If the start position was determined to be at the
1074 * beginning of the string - so, not rejected, but not optimised,
1075 * since we have to run regmatch from position 0 - decrement the
1076 * BmUSEFUL() count. Otherwise increment it.
1080 /* first, look for the 'check' substring */
1086 DEBUG_OPTIMISE_MORE_r({
1087 Perl_re_printf( aTHX_
1088 " At restart: rx_origin=%" IVdf " Check offset min: %" IVdf
1089 " Start shift: %" IVdf " End shift %" IVdf
1090 " Real end Shift: %" IVdf "\n",
1091 (IV)(rx_origin - strbeg),
1092 (IV)prog->check_offset_min,
1095 (IV)prog->check_end_shift);
1098 end_point = HOPBACK3(strend, end_shift, rx_origin);
1101 start_point = HOPMAYBE3(rx_origin, start_shift, end_point);
1106 /* If the regex is absolutely anchored to either the start of the
1107 * string (SBOL) or to pos() (ANCH_GPOS), then
1108 * check_offset_max represents an upper bound on the string where
1109 * the substr could start. For the ANCH_GPOS case, we assume that
1110 * the caller of intuit will have already set strpos to
1111 * pos()-gofs, so in this case strpos + offset_max will still be
1112 * an upper bound on the substr.
1115 && prog->intflags & PREGf_ANCH
1116 && prog->check_offset_max != SSize_t_MAX)
1118 SSize_t check_len = SvCUR(check) - !!SvTAIL(check);
1119 const char * const anchor =
1120 (prog->intflags & PREGf_ANCH_GPOS ? strpos : strbeg);
1121 SSize_t targ_len = (char*)end_point - anchor;
1123 if (check_len > targ_len) {
1124 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1125 "Target string too short to match required substring...\n"));
1129 /* do a bytes rather than chars comparison. It's conservative;
1130 * so it skips doing the HOP if the result can't possibly end
1131 * up earlier than the old value of end_point.
1133 assert(anchor + check_len <= (char *)end_point);
1134 if (prog->check_offset_max + check_len < targ_len) {
1135 end_point = HOP3lim((U8*)anchor,
1136 prog->check_offset_max,
1137 end_point - check_len
1140 if (end_point < start_point)
1145 check_at = fbm_instr( start_point, end_point,
1146 check, multiline ? FBMrf_MULTILINE : 0);
1148 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1149 " doing 'check' fbm scan, [%" IVdf "..%" IVdf "] gave %" IVdf "\n",
1150 (IV)((char*)start_point - strbeg),
1151 (IV)((char*)end_point - strbeg),
1152 (IV)(check_at ? check_at - strbeg : -1)
1155 /* Update the count-of-usability, remove useless subpatterns,
1159 RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
1160 SvPVX_const(check), RE_SV_DUMPLEN(check), 30);
1161 Perl_re_printf( aTHX_ " %s %s substr %s%s%s",
1162 (check_at ? "Found" : "Did not find"),
1163 (check == (utf8_target ? prog->anchored_utf8 : prog->anchored_substr)
1164 ? "anchored" : "floating"),
1167 (check_at ? " at offset " : "...\n") );
1172 /* set rx_origin to the minimum position where the regex could start
1173 * matching, given the constraint of the just-matched check substring.
1174 * But don't set it lower than previously.
1177 if (check_at - rx_origin > prog->check_offset_max)
1178 rx_origin = HOP3c(check_at, -prog->check_offset_max, rx_origin);
1179 /* Finish the diagnostic message */
1180 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1181 "%ld (rx_origin now %" IVdf ")...\n",
1182 (long)(check_at - strbeg),
1183 (IV)(rx_origin - strbeg)
1188 /* now look for the 'other' substring if defined */
1190 if (prog->substrs->data[other_ix].utf8_substr
1191 || prog->substrs->data[other_ix].substr)
1193 /* Take into account the "other" substring. */
1197 struct reg_substr_datum *other;
1200 other = &prog->substrs->data[other_ix];
1201 if (!utf8_target && !other->substr) {
1202 if (!to_byte_substr(prog)) {
1203 NON_UTF8_TARGET_BUT_UTF8_REQUIRED(fail);
1207 /* if "other" is anchored:
1208 * we've previously found a floating substr starting at check_at.
1209 * This means that the regex origin must lie somewhere
1210 * between min (rx_origin): HOP3(check_at, -check_offset_max)
1211 * and max: HOP3(check_at, -check_offset_min)
1212 * (except that min will be >= strpos)
1213 * So the fixed substr must lie somewhere between
1214 * HOP3(min, anchored_offset)
1215 * HOP3(max, anchored_offset) + SvCUR(substr)
1218 /* if "other" is floating
1219 * Calculate last1, the absolute latest point where the
1220 * floating substr could start in the string, ignoring any
1221 * constraints from the earlier fixed match. It is calculated
1224 * strend - prog->minlen (in chars) is the absolute latest
1225 * position within the string where the origin of the regex
1226 * could appear. The latest start point for the floating
1227 * substr is float_min_offset(*) on from the start of the
1228 * regex. last1 simply combines thee two offsets.
1230 * (*) You might think the latest start point should be
1231 * float_max_offset from the regex origin, and technically
1232 * you'd be correct. However, consider
1234 * Here, float min, max are 3,5 and minlen is 7.
1235 * This can match either
1239 * In the first case, the regex matches minlen chars; in the
1240 * second, minlen+1, in the third, minlen+2.
1241 * In the first case, the floating offset is 3 (which equals
1242 * float_min), in the second, 4, and in the third, 5 (which
1243 * equals float_max). In all cases, the floating string bcd
1244 * can never start more than 4 chars from the end of the
1245 * string, which equals minlen - float_min. As the substring
1246 * starts to match more than float_min from the start of the
1247 * regex, it makes the regex match more than minlen chars,
1248 * and the two cancel each other out. So we can always use
1249 * float_min - minlen, rather than float_max - minlen for the
1250 * latest position in the string.
1252 * Note that -minlen + float_min_offset is equivalent (AFAIKT)
1253 * to CHR_SVLEN(must) - !!SvTAIL(must) + prog->float_end_shift
1256 assert(prog->minlen >= other->min_offset);
1257 last1 = HOP3c(strend,
1258 other->min_offset - prog->minlen, strbeg);
1260 if (other_ix) {/* i.e. if (other-is-float) */
1261 /* last is the latest point where the floating substr could
1262 * start, *given* any constraints from the earlier fixed
1263 * match. This constraint is that the floating string starts
1264 * <= float_max_offset chars from the regex origin (rx_origin).
1265 * If this value is less than last1, use it instead.
1267 assert(rx_origin <= last1);
1269 /* this condition handles the offset==infinity case, and
1270 * is a short-cut otherwise. Although it's comparing a
1271 * byte offset to a char length, it does so in a safe way,
1272 * since 1 char always occupies 1 or more bytes,
1273 * so if a string range is (last1 - rx_origin) bytes,
1274 * it will be less than or equal to (last1 - rx_origin)
1275 * chars; meaning it errs towards doing the accurate HOP3
1276 * rather than just using last1 as a short-cut */
1277 (last1 - rx_origin) < other->max_offset
1279 : (char*)HOP3lim(rx_origin, other->max_offset, last1);
1282 assert(strpos + start_shift <= check_at);
1283 last = HOP4c(check_at, other->min_offset - start_shift,
1287 s = HOP3c(rx_origin, other->min_offset, strend);
1288 if (s < other_last) /* These positions already checked */
1291 must = utf8_target ? other->utf8_substr : other->substr;
1292 assert(SvPOK(must));
1295 char *to = last + SvCUR(must) - (SvTAIL(must)!=0);
1301 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1302 " skipping 'other' fbm scan: %" IVdf " > %" IVdf "\n",
1303 (IV)(from - strbeg),
1309 (unsigned char*)from,
1312 multiline ? FBMrf_MULTILINE : 0
1314 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1315 " doing 'other' fbm scan, [%" IVdf "..%" IVdf "] gave %" IVdf "\n",
1316 (IV)(from - strbeg),
1318 (IV)(s ? s - strbeg : -1)
1324 RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
1325 SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
1326 Perl_re_printf( aTHX_ " %s %s substr %s%s",
1327 s ? "Found" : "Contradicts",
1328 other_ix ? "floating" : "anchored",
1329 quoted, RE_SV_TAIL(must));
1334 /* last1 is latest possible substr location. If we didn't
1335 * find it before there, we never will */
1336 if (last >= last1) {
1337 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1338 "; giving up...\n"));
1342 /* try to find the check substr again at a later
1343 * position. Maybe next time we'll find the "other" substr
1345 other_last = HOP3c(last, 1, strend) /* highest failure */;
1347 other_ix /* i.e. if other-is-float */
1348 ? HOP3c(rx_origin, 1, strend)
1349 : HOP4c(last, 1 - other->min_offset, strbeg, strend);
1350 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1351 "; about to retry %s at offset %ld (rx_origin now %" IVdf ")...\n",
1352 (other_ix ? "floating" : "anchored"),
1353 (long)(HOP3c(check_at, 1, strend) - strbeg),
1354 (IV)(rx_origin - strbeg)
1359 if (other_ix) { /* if (other-is-float) */
1360 /* other_last is set to s, not s+1, since its possible for
1361 * a floating substr to fail first time, then succeed
1362 * second time at the same floating position; e.g.:
1363 * "-AB--AABZ" =~ /\wAB\d*Z/
1364 * The first time round, anchored and float match at
1365 * "-(AB)--AAB(Z)" then fail on the initial \w character
1366 * class. Second time round, they match at "-AB--A(AB)(Z)".
1371 rx_origin = HOP3c(s, -other->min_offset, strbeg);
1372 other_last = HOP3c(s, 1, strend);
1374 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1375 " at offset %ld (rx_origin now %" IVdf ")...\n",
1377 (IV)(rx_origin - strbeg)
1383 DEBUG_OPTIMISE_MORE_r(
1384 Perl_re_printf( aTHX_
1385 " Check-only match: offset min:%" IVdf " max:%" IVdf
1386 " check_at:%" IVdf " rx_origin:%" IVdf " rx_origin-check_at:%" IVdf
1387 " strend:%" IVdf "\n",
1388 (IV)prog->check_offset_min,
1389 (IV)prog->check_offset_max,
1390 (IV)(check_at-strbeg),
1391 (IV)(rx_origin-strbeg),
1392 (IV)(rx_origin-check_at),
1398 postprocess_substr_matches:
1400 /* handle the extra constraint of /^.../m if present */
1402 if (ml_anch && rx_origin != strbeg && rx_origin[-1] != '\n') {
1405 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1406 " looking for /^/m anchor"));
1408 /* we have failed the constraint of a \n before rx_origin.
1409 * Find the next \n, if any, even if it's beyond the current
1410 * anchored and/or floating substrings. Whether we should be
1411 * scanning ahead for the next \n or the next substr is debatable.
1412 * On the one hand you'd expect rare substrings to appear less
1413 * often than \n's. On the other hand, searching for \n means
1414 * we're effectively flipping between check_substr and "\n" on each
1415 * iteration as the current "rarest" string candidate, which
1416 * means for example that we'll quickly reject the whole string if
1417 * hasn't got a \n, rather than trying every substr position
1421 s = HOP3c(strend, - prog->minlen, strpos);
1422 if (s <= rx_origin ||
1423 ! ( rx_origin = (char *)memchr(rx_origin, '\n', s - rx_origin)))
1425 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1426 " Did not find /%s^%s/m...\n",
1427 PL_colors[0], PL_colors[1]));
1431 /* earliest possible origin is 1 char after the \n.
1432 * (since *rx_origin == '\n', it's safe to ++ here rather than
1433 * HOP(rx_origin, 1)) */
1436 if (prog->substrs->check_ix == 0 /* check is anchored */
1437 || rx_origin >= HOP3c(check_at, - prog->check_offset_min, strpos))
1439 /* Position contradicts check-string; either because
1440 * check was anchored (and thus has no wiggle room),
1441 * or check was float and rx_origin is above the float range */
1442 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1443 " Found /%s^%s/m, about to restart lookup for check-string with rx_origin %ld...\n",
1444 PL_colors[0], PL_colors[1], (long)(rx_origin - strbeg)));
1448 /* if we get here, the check substr must have been float,
1449 * is in range, and we may or may not have had an anchored
1450 * "other" substr which still contradicts */
1451 assert(prog->substrs->check_ix); /* check is float */
1453 if (utf8_target ? prog->anchored_utf8 : prog->anchored_substr) {
1454 /* whoops, the anchored "other" substr exists, so we still
1455 * contradict. On the other hand, the float "check" substr
1456 * didn't contradict, so just retry the anchored "other"
1458 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1459 " Found /%s^%s/m, rescanning for anchored from offset %" IVdf " (rx_origin now %" IVdf ")...\n",
1460 PL_colors[0], PL_colors[1],
1461 (IV)(rx_origin - strbeg + prog->anchored_offset),
1462 (IV)(rx_origin - strbeg)
1464 goto do_other_substr;
1467 /* success: we don't contradict the found floating substring
1468 * (and there's no anchored substr). */
1469 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1470 " Found /%s^%s/m with rx_origin %ld...\n",
1471 PL_colors[0], PL_colors[1], (long)(rx_origin - strbeg)));
1474 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1475 " (multiline anchor test skipped)\n"));
1481 /* if we have a starting character class, then test that extra constraint.
1482 * (trie stclasses are too expensive to use here, we are better off to
1483 * leave it to regmatch itself) */
1485 if (progi->regstclass && PL_regkind[OP(progi->regstclass)]!=TRIE) {
1486 const U8* const str = (U8*)STRING(progi->regstclass);
1488 /* XXX this value could be pre-computed */
1489 const SSize_t cl_l = (PL_regkind[OP(progi->regstclass)] == EXACT
1490 ? (reginfo->is_utf8_pat
1491 ? (SSize_t)utf8_distance(str + STR_LEN(progi->regstclass), str)
1492 : (SSize_t)STR_LEN(progi->regstclass))
1496 /* latest pos that a matching float substr constrains rx start to */
1497 char *rx_max_float = NULL;
1499 /* if the current rx_origin is anchored, either by satisfying an
1500 * anchored substring constraint, or a /^.../m constraint, then we
1501 * can reject the current origin if the start class isn't found
1502 * at the current position. If we have a float-only match, then
1503 * rx_origin is constrained to a range; so look for the start class
1504 * in that range. if neither, then look for the start class in the
1505 * whole rest of the string */
1507 /* XXX DAPM it's not clear what the minlen test is for, and why
1508 * it's not used in the floating case. Nothing in the test suite
1509 * causes minlen == 0 here. See <20140313134639.GS12844@iabyn.com>.
1510 * Here are some old comments, which may or may not be correct:
1512 * minlen == 0 is possible if regstclass is \b or \B,
1513 * and the fixed substr is ''$.
1514 * Since minlen is already taken into account, rx_origin+1 is
1515 * before strend; accidentally, minlen >= 1 guaranties no false
1516 * positives at rx_origin + 1 even for \b or \B. But (minlen? 1 :
1517 * 0) below assumes that regstclass does not come from lookahead...
1518 * If regstclass takes bytelength more than 1: If charlength==1, OK.
1519 * This leaves EXACTF-ish only, which are dealt with in
1523 if (prog->anchored_substr || prog->anchored_utf8 || ml_anch)
1524 endpos = HOP3clim(rx_origin, (prog->minlen ? cl_l : 0), strend);
1525 else if (prog->float_substr || prog->float_utf8) {
1526 rx_max_float = HOP3c(check_at, -start_shift, strbeg);
1527 endpos = HOP3clim(rx_max_float, cl_l, strend);
1532 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1533 " looking for class: start_shift: %" IVdf " check_at: %" IVdf
1534 " rx_origin: %" IVdf " endpos: %" IVdf "\n",
1535 (IV)start_shift, (IV)(check_at - strbeg),
1536 (IV)(rx_origin - strbeg), (IV)(endpos - strbeg)));
1538 s = find_byclass(prog, progi->regstclass, rx_origin, endpos,
1541 if (endpos == strend) {
1542 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
1543 " Could not match STCLASS...\n") );
1546 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
1547 " This position contradicts STCLASS...\n") );
1548 if ((prog->intflags & PREGf_ANCH) && !ml_anch
1549 && !(prog->intflags & PREGf_IMPLICIT))
1552 /* Contradict one of substrings */
1553 if (prog->anchored_substr || prog->anchored_utf8) {
1554 if (prog->substrs->check_ix == 1) { /* check is float */
1555 /* Have both, check_string is floating */
1556 assert(rx_origin + start_shift <= check_at);
1557 if (rx_origin + start_shift != check_at) {
1558 /* not at latest position float substr could match:
1559 * Recheck anchored substring, but not floating.
1560 * The condition above is in bytes rather than
1561 * chars for efficiency. It's conservative, in
1562 * that it errs on the side of doing 'goto
1563 * do_other_substr'. In this case, at worst,
1564 * an extra anchored search may get done, but in
1565 * practice the extra fbm_instr() is likely to
1566 * get skipped anyway. */
1567 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
1568 " about to retry anchored at offset %ld (rx_origin now %" IVdf ")...\n",
1569 (long)(other_last - strbeg),
1570 (IV)(rx_origin - strbeg)
1572 goto do_other_substr;
1580 /* In the presence of ml_anch, we might be able to
1581 * find another \n without breaking the current float
1584 /* strictly speaking this should be HOP3c(..., 1, ...),
1585 * but since we goto a block of code that's going to
1586 * search for the next \n if any, its safe here */
1588 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
1589 " about to look for /%s^%s/m starting at rx_origin %ld...\n",
1590 PL_colors[0], PL_colors[1],
1591 (long)(rx_origin - strbeg)) );
1592 goto postprocess_substr_matches;
1595 /* strictly speaking this can never be true; but might
1596 * be if we ever allow intuit without substrings */
1597 if (!(utf8_target ? prog->float_utf8 : prog->float_substr))
1600 rx_origin = rx_max_float;
1603 /* at this point, any matching substrings have been
1604 * contradicted. Start again... */
1606 rx_origin = HOP3c(rx_origin, 1, strend);
1608 /* uses bytes rather than char calculations for efficiency.
1609 * It's conservative: it errs on the side of doing 'goto restart',
1610 * where there is code that does a proper char-based test */
1611 if (rx_origin + start_shift + end_shift > strend) {
1612 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
1613 " Could not match STCLASS...\n") );
1616 DEBUG_EXECUTE_r( Perl_re_printf( aTHX_
1617 " about to look for %s substr starting at offset %ld (rx_origin now %" IVdf ")...\n",
1618 (prog->substrs->check_ix ? "floating" : "anchored"),
1619 (long)(rx_origin + start_shift - strbeg),
1620 (IV)(rx_origin - strbeg)
1627 if (rx_origin != s) {
1628 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1629 " By STCLASS: moving %ld --> %ld\n",
1630 (long)(rx_origin - strbeg), (long)(s - strbeg))
1634 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1635 " Does not contradict STCLASS...\n");
1640 /* Decide whether using the substrings helped */
1642 if (rx_origin != strpos) {
1643 /* Fixed substring is found far enough so that the match
1644 cannot start at strpos. */
1646 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ " try at offset...\n"));
1647 ++BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr); /* hooray/5 */
1650 /* The found rx_origin position does not prohibit matching at
1651 * strpos, so calling intuit didn't gain us anything. Decrement
1652 * the BmUSEFUL() count on the check substring, and if we reach
1654 if (!(prog->intflags & PREGf_NAUGHTY)
1656 prog->check_utf8 /* Could be deleted already */
1657 && --BmUSEFUL(prog->check_utf8) < 0
1658 && (prog->check_utf8 == prog->float_utf8)
1660 prog->check_substr /* Could be deleted already */
1661 && --BmUSEFUL(prog->check_substr) < 0
1662 && (prog->check_substr == prog->float_substr)
1665 /* If flags & SOMETHING - do not do it many times on the same match */
1666 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ " ... Disabling check substring...\n"));
1667 /* XXX Does the destruction order has to change with utf8_target? */
1668 SvREFCNT_dec(utf8_target ? prog->check_utf8 : prog->check_substr);
1669 SvREFCNT_dec(utf8_target ? prog->check_substr : prog->check_utf8);
1670 prog->check_substr = prog->check_utf8 = NULL; /* disable */
1671 prog->float_substr = prog->float_utf8 = NULL; /* clear */
1672 check = NULL; /* abort */
1673 /* XXXX This is a remnant of the old implementation. It
1674 looks wasteful, since now INTUIT can use many
1675 other heuristics. */
1676 prog->extflags &= ~RXf_USE_INTUIT;
1680 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
1681 "Intuit: %sSuccessfully guessed:%s match at offset %ld\n",
1682 PL_colors[4], PL_colors[5], (long)(rx_origin - strbeg)) );
1686 fail_finish: /* Substring not found */
1687 if (prog->check_substr || prog->check_utf8) /* could be removed already */
1688 BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr) += 5; /* hooray */
1690 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_ "%sMatch rejected by optimizer%s\n",
1691 PL_colors[4], PL_colors[5]));
1696 #define DECL_TRIE_TYPE(scan) \
1697 const enum { trie_plain, trie_utf8, trie_utf8_fold, trie_latin_utf8_fold, \
1698 trie_utf8_exactfa_fold, trie_latin_utf8_exactfa_fold, \
1699 trie_utf8l, trie_flu8, trie_flu8_latin } \
1700 trie_type = ((scan->flags == EXACT) \
1701 ? (utf8_target ? trie_utf8 : trie_plain) \
1702 : (scan->flags == EXACTL) \
1703 ? (utf8_target ? trie_utf8l : trie_plain) \
1704 : (scan->flags == EXACTFAA) \
1706 ? trie_utf8_exactfa_fold \
1707 : trie_latin_utf8_exactfa_fold) \
1708 : (scan->flags == EXACTFLU8 \
1711 : trie_flu8_latin) \
1714 : trie_latin_utf8_fold)))
1716 /* 'uscan' is set to foldbuf, and incremented, so below the end of uscan is
1717 * 'foldbuf+sizeof(foldbuf)' */
1718 #define REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc, uc_end, uscan, len, uvc, charid, foldlen, foldbuf, uniflags) \
1721 U8 flags = FOLD_FLAGS_FULL; \
1722 switch (trie_type) { \
1724 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; \
1725 if (UTF8_IS_ABOVE_LATIN1(*uc)) { \
1726 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(uc, uc_end); \
1728 goto do_trie_utf8_fold; \
1729 case trie_utf8_exactfa_fold: \
1730 flags |= FOLD_FLAGS_NOMIX_ASCII; \
1732 case trie_utf8_fold: \
1733 do_trie_utf8_fold: \
1734 if ( foldlen>0 ) { \
1735 uvc = utf8n_to_uvchr( (const U8*) uscan, foldlen, &len, uniflags ); \
1740 uvc = _toFOLD_utf8_flags( (const U8*) uc, uc_end, foldbuf, &foldlen, \
1742 len = UTF8_SAFE_SKIP(uc, uc_end); \
1743 skiplen = UVCHR_SKIP( uvc ); \
1744 foldlen -= skiplen; \
1745 uscan = foldbuf + skiplen; \
1748 case trie_flu8_latin: \
1749 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; \
1750 goto do_trie_latin_utf8_fold; \
1751 case trie_latin_utf8_exactfa_fold: \
1752 flags |= FOLD_FLAGS_NOMIX_ASCII; \
1754 case trie_latin_utf8_fold: \
1755 do_trie_latin_utf8_fold: \
1756 if ( foldlen>0 ) { \
1757 uvc = utf8n_to_uvchr( (const U8*) uscan, foldlen, &len, uniflags ); \
1763 uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, flags); \
1764 skiplen = UVCHR_SKIP( uvc ); \
1765 foldlen -= skiplen; \
1766 uscan = foldbuf + skiplen; \
1770 _CHECK_AND_WARN_PROBLEMATIC_LOCALE; \
1771 if (utf8_target && UTF8_IS_ABOVE_LATIN1(*uc)) { \
1772 _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(uc, uc_end); \
1776 uvc = utf8n_to_uvchr( (const U8*) uc, uc_end - uc, &len, uniflags ); \
1783 charid = trie->charmap[ uvc ]; \
1787 if (widecharmap) { \
1788 SV** const svpp = hv_fetch(widecharmap, \
1789 (char*)&uvc, sizeof(UV), 0); \
1791 charid = (U16)SvIV(*svpp); \
1796 #define DUMP_EXEC_POS(li,s,doutf8,depth) \
1797 dump_exec_pos(li,s,(reginfo->strend),(reginfo->strbeg), \
1798 startpos, doutf8, depth)
1800 #define REXEC_FBC_UTF8_SCAN(CODE) \
1802 while (s < strend) { \
1804 s += UTF8_SAFE_SKIP(s, reginfo->strend); \
1808 #define REXEC_FBC_NON_UTF8_SCAN(CODE) \
1810 while (s < strend) { \
1816 #define REXEC_FBC_UTF8_CLASS_SCAN(COND) \
1818 while (s < strend) { \
1819 REXEC_FBC_UTF8_CLASS_SCAN_GUTS(COND) \
1823 #define REXEC_FBC_NON_UTF8_CLASS_SCAN(COND) \
1825 while (s < strend) { \
1826 REXEC_FBC_NON_UTF8_CLASS_SCAN_GUTS(COND) \
1830 #define REXEC_FBC_UTF8_CLASS_SCAN_GUTS(COND) \
1833 s += UTF8_SAFE_SKIP(s, reginfo->strend); \
1834 previous_occurrence_end = s; \
1840 #define REXEC_FBC_NON_UTF8_CLASS_SCAN_GUTS(COND) \
1844 previous_occurrence_end = s; \
1850 /* We keep track of where the next character should start after an occurrence
1851 * of the one we're looking for. Knowing that, we can see right away if the
1852 * next occurrence is adjacent to the previous. When 'doevery' is FALSE, we
1853 * don't accept the 2nd and succeeding adjacent occurrences */
1854 #define FBC_CHECK_AND_TRY \
1856 || s != previous_occurrence_end) \
1857 && ( reginfo->intuit \
1858 || (s <= reginfo->strend && regtry(reginfo, &s)))) \
1864 /* These differ from the above macros in that they call a function which
1865 * returns the next occurrence of the thing being looked for in 's'; and
1866 * 'strend' if there is no such occurrence. */
1867 #define REXEC_FBC_UTF8_FIND_NEXT_SCAN(f) \
1868 while (s < strend) { \
1870 if (s >= strend) { \
1876 previous_occurrence_end = s; \
1879 #define REXEC_FBC_NON_UTF8_FIND_NEXT_SCAN(f) \
1880 while (s < strend) { \
1882 if (s >= strend) { \
1888 previous_occurrence_end = s; \
1891 /* This differs from the above macros in that it is passed a single byte that
1892 * is known to begin the next occurrence of the thing being looked for in 's'.
1893 * It does a memchr to find the next occurrence of 'byte', before trying 'COND'
1894 * at that position. */
1895 #define REXEC_FBC_FIND_NEXT_UTF8_BYTE_SCAN(byte, COND) \
1896 while (s < strend) { \
1897 s = (char *) memchr(s, byte, strend -s); \
1899 s = (char *) strend; \
1905 s += UTF8_SAFE_SKIP(s, reginfo->strend); \
1906 previous_occurrence_end = s; \
1913 /* The four macros below are slightly different versions of the same logic.
1915 * The first is for /a and /aa when the target string is UTF-8. This can only
1916 * match ascii, but it must advance based on UTF-8. The other three handle
1917 * the non-UTF-8 and the more generic UTF-8 cases. In all four, we are
1918 * looking for the boundary (or non-boundary) between a word and non-word
1919 * character. The utf8 and non-utf8 cases have the same logic, but the details
1920 * must be different. Find the "wordness" of the character just prior to this
1921 * one, and compare it with the wordness of this one. If they differ, we have
1922 * a boundary. At the beginning of the string, pretend that the previous
1923 * character was a new-line.
1925 * All these macros uncleanly have side-effects with each other and outside
1926 * variables. So far it's been too much trouble to clean-up
1928 * TEST_NON_UTF8 is the macro or function to call to test if its byte input is
1929 * a word character or not.
1930 * IF_SUCCESS is code to do if it finds that we are at a boundary between
1932 * IF_FAIL is code to do if we aren't at a boundary between word/non-word
1934 * Exactly one of the two IF_FOO parameters is a no-op, depending on whether we
1935 * are looking for a boundary or for a non-boundary. If we are looking for a
1936 * boundary, we want IF_FAIL to be the no-op, and for IF_SUCCESS to go out and
1937 * see if this tentative match actually works, and if so, to quit the loop
1938 * here. And vice-versa if we are looking for a non-boundary.
1940 * 'tmp' below in the next four macros in the REXEC_FBC_UTF8_SCAN and
1941 * REXEC_FBC_UTF8_SCAN loops is a loop invariant, a bool giving the return of
1942 * TEST_NON_UTF8(s-1). To see this, note that that's what it is defined to be
1943 * at entry to the loop, and to get to the IF_FAIL branch, tmp must equal
1944 * TEST_NON_UTF8(s), and in the opposite branch, IF_SUCCESS, tmp is that
1945 * complement. But in that branch we complement tmp, meaning that at the
1946 * bottom of the loop tmp is always going to be equal to TEST_NON_UTF8(s),
1947 * which means at the top of the loop in the next iteration, it is
1948 * TEST_NON_UTF8(s-1) */
1949 #define FBC_UTF8_A(TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \
1950 tmp = (s != reginfo->strbeg) ? UCHARAT(s - 1) : '\n'; \
1951 tmp = TEST_NON_UTF8(tmp); \
1952 REXEC_FBC_UTF8_SCAN( /* advances s while s < strend */ \
1953 if (tmp == ! TEST_NON_UTF8((U8) *s)) { \
1955 IF_SUCCESS; /* Is a boundary if values for s-1 and s differ */ \
1962 /* Like FBC_UTF8_A, but TEST_UV is a macro which takes a UV as its input, and
1963 * TEST_UTF8 is a macro that for the same input code points returns identically
1964 * to TEST_UV, but takes a pointer to a UTF-8 encoded string instead (and an
1965 * end pointer as well) */
1966 #define FBC_UTF8(TEST_UV, TEST_UTF8, IF_SUCCESS, IF_FAIL) \
1967 if (s == reginfo->strbeg) { \
1970 else { /* Back-up to the start of the previous character */ \
1971 U8 * const r = reghop3((U8*)s, -1, (U8*)reginfo->strbeg); \
1972 tmp = utf8n_to_uvchr(r, (U8*) reginfo->strend - r, \
1973 0, UTF8_ALLOW_DEFAULT); \
1975 tmp = TEST_UV(tmp); \
1976 REXEC_FBC_UTF8_SCAN(/* advances s while s < strend */ \
1977 if (tmp == ! (TEST_UTF8((U8 *) s, (U8 *) reginfo->strend))) { \
1986 /* Like the above two macros, for a UTF-8 target string. UTF8_CODE is the
1987 * complete code for handling UTF-8. Common to the BOUND and NBOUND cases,
1988 * set-up by the FBC_BOUND, etc macros below */
1989 #define FBC_BOUND_COMMON_UTF8(UTF8_CODE, TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \
1991 /* Here, things have been set up by the previous code so that tmp is the \
1992 * return of TEST_NON_UTF8(s-1). We also have to check if this matches \
1993 * against the EOS, which we treat as a \n */ \
1994 if (tmp == ! TEST_NON_UTF8('\n')) { \
2001 /* Same as the macro above, but the target isn't UTF-8 */
2002 #define FBC_BOUND_COMMON_NON_UTF8(TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \
2003 tmp = (s != reginfo->strbeg) ? UCHARAT(s - 1) : '\n'; \
2004 tmp = TEST_NON_UTF8(tmp); \
2005 REXEC_FBC_NON_UTF8_SCAN(/* advances s while s < strend */ \
2006 if (tmp == ! TEST_NON_UTF8(UCHARAT(s))) { \
2014 /* Here, things have been set up by the previous code so that tmp is \
2015 * the return of TEST_NON_UTF8(s-1). We also have to check if this \
2016 * matches against the EOS, which we treat as a \n */ \
2017 if (tmp == ! TEST_NON_UTF8('\n')) { \
2024 /* This is the macro to use when we want to see if something that looks like it
2025 * could match, actually does, and if so exits the loop. It needs to be used
2026 * only for bounds checking macros, as it allows for matching beyond the end of
2027 * string (which should be zero length without having to look at the string
2029 #define REXEC_FBC_TRYIT \
2030 if (reginfo->intuit || (s <= reginfo->strend && regtry(reginfo, &s))) \
2033 /* The only difference between the BOUND and NBOUND cases is that
2034 * REXEC_FBC_TRYIT is called when matched in BOUND, and when non-matched in
2035 * NBOUND. This is accomplished by passing it as either the if or else clause,
2036 * with the other one being empty (PLACEHOLDER is defined as empty).
2038 * The TEST_FOO parameters are for operating on different forms of input, but
2039 * all should be ones that return identically for the same underlying code
2042 #define FBC_BOUND_UTF8(TEST_NON_UTF8, TEST_UV, TEST_UTF8) \
2043 FBC_BOUND_COMMON_UTF8( \
2044 FBC_UTF8(TEST_UV, TEST_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER), \
2045 TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
2047 #define FBC_BOUND_NON_UTF8(TEST_NON_UTF8) \
2048 FBC_BOUND_COMMON_NON_UTF8(TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
2050 #define FBC_BOUND_A_UTF8(TEST_NON_UTF8) \
2051 FBC_BOUND_COMMON_UTF8( \
2052 FBC_UTF8_A(TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER),\
2053 TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
2055 #define FBC_BOUND_A_NON_UTF8(TEST_NON_UTF8) \
2056 FBC_BOUND_COMMON_NON_UTF8(TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
2058 #define FBC_NBOUND_UTF8(TEST_NON_UTF8, TEST_UV, TEST_UTF8) \
2059 FBC_BOUND_COMMON_UTF8( \
2060 FBC_UTF8(TEST_UV, TEST_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), \
2061 TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
2063 #define FBC_NBOUND_NON_UTF8(TEST_NON_UTF8) \
2064 FBC_BOUND_COMMON_NON_UTF8(TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
2066 #define FBC_NBOUND_A_UTF8(TEST_NON_UTF8) \
2067 FBC_BOUND_COMMON_UTF8( \
2068 FBC_UTF8_A(TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), \
2069 TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
2071 #define FBC_NBOUND_A_NON_UTF8(TEST_NON_UTF8) \
2072 FBC_BOUND_COMMON_NON_UTF8(TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
2076 S_get_break_val_cp_checked(SV* const invlist, const UV cp_in) {
2077 IV cp_out = _invlist_search(invlist, cp_in);
2078 assert(cp_out >= 0);
2081 # define _generic_GET_BREAK_VAL_CP_CHECKED(invlist, invmap, cp) \
2082 invmap[S_get_break_val_cp_checked(invlist, cp)]
2084 # define _generic_GET_BREAK_VAL_CP_CHECKED(invlist, invmap, cp) \
2085 invmap[_invlist_search(invlist, cp)]
2088 /* Takes a pointer to an inversion list, a pointer to its corresponding
2089 * inversion map, and a code point, and returns the code point's value
2090 * according to the two arrays. It assumes that all code points have a value.
2091 * This is used as the base macro for macros for particular properties */
2092 #define _generic_GET_BREAK_VAL_CP(invlist, invmap, cp) \
2093 _generic_GET_BREAK_VAL_CP_CHECKED(invlist, invmap, cp)
2095 /* Same as above, but takes begin, end ptrs to a UTF-8 encoded string instead
2096 * of a code point, returning the value for the first code point in the string.
2097 * And it takes the particular macro name that finds the desired value given a
2098 * code point. Merely convert the UTF-8 to code point and call the cp macro */
2099 #define _generic_GET_BREAK_VAL_UTF8(cp_macro, pos, strend) \
2100 (__ASSERT_(pos < strend) \
2101 /* Note assumes is valid UTF-8 */ \
2102 (cp_macro(utf8_to_uvchr_buf((pos), (strend), NULL))))
2104 /* Returns the GCB value for the input code point */
2105 #define getGCB_VAL_CP(cp) \
2106 _generic_GET_BREAK_VAL_CP( \
2111 /* Returns the GCB value for the first code point in the UTF-8 encoded string
2112 * bounded by pos and strend */
2113 #define getGCB_VAL_UTF8(pos, strend) \
2114 _generic_GET_BREAK_VAL_UTF8(getGCB_VAL_CP, pos, strend)
2116 /* Returns the LB value for the input code point */
2117 #define getLB_VAL_CP(cp) \
2118 _generic_GET_BREAK_VAL_CP( \
2123 /* Returns the LB value for the first code point in the UTF-8 encoded string
2124 * bounded by pos and strend */
2125 #define getLB_VAL_UTF8(pos, strend) \
2126 _generic_GET_BREAK_VAL_UTF8(getLB_VAL_CP, pos, strend)
2129 /* Returns the SB value for the input code point */
2130 #define getSB_VAL_CP(cp) \
2131 _generic_GET_BREAK_VAL_CP( \
2136 /* Returns the SB value for the first code point in the UTF-8 encoded string
2137 * bounded by pos and strend */
2138 #define getSB_VAL_UTF8(pos, strend) \
2139 _generic_GET_BREAK_VAL_UTF8(getSB_VAL_CP, pos, strend)
2141 /* Returns the WB value for the input code point */
2142 #define getWB_VAL_CP(cp) \
2143 _generic_GET_BREAK_VAL_CP( \
2148 /* Returns the WB value for the first code point in the UTF-8 encoded string
2149 * bounded by pos and strend */
2150 #define getWB_VAL_UTF8(pos, strend) \
2151 _generic_GET_BREAK_VAL_UTF8(getWB_VAL_CP, pos, strend)
2153 /* We know what class REx starts with. Try to find this position... */
2154 /* if reginfo->intuit, its a dryrun */
2155 /* annoyingly all the vars in this routine have different names from their counterparts
2156 in regmatch. /grrr */
2158 S_find_byclass(pTHX_ regexp * prog, const regnode *c, char *s,
2159 const char *strend, regmatch_info *reginfo)
2162 /* TRUE if x+ need not match at just the 1st pos of run of x's */
2163 const I32 doevery = (prog->intflags & PREGf_SKIP) == 0;
2165 char *pat_string; /* The pattern's exactish string */
2166 char *pat_end; /* ptr to end char of pat_string */
2167 re_fold_t folder; /* Function for computing non-utf8 folds */
2168 const U8 *fold_array; /* array for folding ords < 256 */
2175 /* In some cases we accept only the first occurence of 'x' in a sequence of
2176 * them. This variable points to just beyond the end of the previous
2177 * occurrence of 'x', hence we can tell if we are in a sequence. (Having
2178 * it point to beyond the 'x' allows us to work for UTF-8 without having to
2180 char * previous_occurrence_end = 0;
2182 I32 tmp; /* Scratch variable */
2183 const bool utf8_target = reginfo->is_utf8_target;
2184 UV utf8_fold_flags = 0;
2185 const bool is_utf8_pat = reginfo->is_utf8_pat;
2186 bool to_complement = FALSE; /* Invert the result? Taking the xor of this
2187 with a result inverts that result, as 0^1 =
2189 _char_class_number classnum;
2191 RXi_GET_DECL(prog,progi);
2193 PERL_ARGS_ASSERT_FIND_BYCLASS;
2195 /* We know what class it must start with. The case statements below have
2196 * encoded the OP, and the UTF8ness of the target ('t8' for is UTF-8; 'tb'
2197 * for it isn't; 'b' stands for byte), and the UTF8ness of the pattern
2198 * ('p8' and 'pb'. */
2199 switch (with_tp_UTF8ness(OP(c), utf8_target, is_utf8_pat)) {
2201 case ANYOFPOSIXL_t8_pb:
2202 case ANYOFPOSIXL_t8_p8:
2205 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2206 CHECK_AND_WARN_NON_UTF8_CTYPE_LOCALE_IN_SETS(c);
2214 REXEC_FBC_UTF8_CLASS_SCAN(
2215 reginclass(prog, c, (U8*)s, (U8*) strend, 1 /* is utf8 */));
2218 case ANYOFPOSIXL_tb_pb:
2219 case ANYOFPOSIXL_tb_p8:
2222 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2223 CHECK_AND_WARN_NON_UTF8_CTYPE_LOCALE_IN_SETS(c);
2231 if (ANYOF_FLAGS(c) & ~ ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
2232 /* We know that s is in the bitmap range since the target isn't
2233 * UTF-8, so what happens for out-of-range values is not relevant,
2234 * so exclude that from the flags */
2235 REXEC_FBC_NON_UTF8_CLASS_SCAN(reginclass(prog,c, (U8*)s, (U8*)s+1,
2239 REXEC_FBC_NON_UTF8_CLASS_SCAN(ANYOF_BITMAP_TEST(c, *((U8*)s)));
2243 case ANYOFM_tb_pb: /* ARG() is the base byte; FLAGS() the mask byte */
2245 REXEC_FBC_NON_UTF8_FIND_NEXT_SCAN(
2246 (char *) find_next_masked((U8 *) s, (U8 *) strend,
2247 (U8) ARG(c), FLAGS(c)));
2252 /* UTF-8ness doesn't matter because only matches UTF-8 invariants. But
2253 * we do anyway for performance reasons, as otherwise we would have to
2254 * examine all the continuation characters */
2255 REXEC_FBC_UTF8_FIND_NEXT_SCAN(
2256 (char *) find_next_masked((U8 *) s, (U8 *) strend,
2257 (U8) ARG(c), FLAGS(c)));
2262 REXEC_FBC_NON_UTF8_FIND_NEXT_SCAN(
2263 (char *) find_span_end_mask((U8 *) s, (U8 *) strend,
2264 (U8) ARG(c), FLAGS(c)));
2268 case NANYOFM_t8_p8: /* UTF-8ness does matter because can match UTF-8
2270 REXEC_FBC_UTF8_FIND_NEXT_SCAN(
2271 (char *) find_span_end_mask((U8 *) s, (U8 *) strend,
2272 (U8) ARG(c), FLAGS(c)));
2275 /* These nodes all require at least one code point to be in UTF-8 to
2285 case EXACTFLU8_tb_pb:
2286 case EXACTFLU8_tb_p8:
2287 case EXACTFU_REQ8_tb_pb:
2288 case EXACTFU_REQ8_tb_p8:
2293 REXEC_FBC_UTF8_CLASS_SCAN(
2294 ( (U8) NATIVE_UTF8_TO_I8(*s) >= ANYOF_FLAGS(c)
2295 && reginclass(prog, c, (U8*)s, (U8*) strend, 1 /* is utf8 */)));
2301 /* We know what the first byte of any matched string should be. */
2302 U8 first_byte = FLAGS(c);
2304 REXEC_FBC_FIND_NEXT_UTF8_BYTE_SCAN(first_byte,
2305 reginclass(prog, c, (U8*)s, (U8*) strend, 1 /* is utf8 */));
2311 REXEC_FBC_UTF8_CLASS_SCAN(
2312 ( inRANGE(NATIVE_UTF8_TO_I8(*s),
2313 LOWEST_ANYOF_HRx_BYTE(ANYOF_FLAGS(c)),
2314 HIGHEST_ANYOF_HRx_BYTE(ANYOF_FLAGS(c)))
2315 && reginclass(prog, c, (U8*)s, (U8*) strend,
2321 REXEC_FBC_UTF8_CLASS_SCAN(
2322 ( strend -s >= FLAGS(c)
2323 && memEQ(s, ((struct regnode_anyofhs *) c)->string, FLAGS(c))
2324 && reginclass(prog, c, (U8*)s, (U8*) strend, 1 /* is utf8 */)));
2329 REXEC_FBC_NON_UTF8_CLASS_SCAN(withinCOUNT((U8) *s,
2330 ANYOFRbase(c), ANYOFRdelta(c)));
2335 REXEC_FBC_UTF8_CLASS_SCAN(
2336 ( NATIVE_UTF8_TO_I8(*s) >= ANYOF_FLAGS(c)
2337 && withinCOUNT(utf8_to_uvchr_buf((U8 *) s,
2340 ANYOFRbase(c), ANYOFRdelta(c))));
2345 REXEC_FBC_NON_UTF8_CLASS_SCAN(withinCOUNT((U8) *s,
2346 ANYOFRbase(c), ANYOFRdelta(c)));
2351 { /* We know what the first byte of any matched string should be */
2352 U8 first_byte = FLAGS(c);
2354 REXEC_FBC_FIND_NEXT_UTF8_BYTE_SCAN(first_byte,
2355 withinCOUNT(utf8_to_uvchr_buf((U8 *) s,
2358 ANYOFRbase(c), ANYOFRdelta(c)));
2362 case EXACTFAA_tb_pb:
2364 /* Latin1 folds are not affected by /a, except it excludes the sharp s,
2365 * which these functions don't handle anyway */
2366 fold_array = PL_fold_latin1;
2367 folder = foldEQ_latin1_s2_folded;
2368 goto do_exactf_non_utf8;
2371 fold_array = PL_fold;
2373 goto do_exactf_non_utf8;
2376 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2378 if (IN_UTF8_CTYPE_LOCALE) {
2379 utf8_fold_flags = FOLDEQ_LOCALE;
2380 goto do_exactf_utf8;
2383 fold_array = PL_fold_locale;
2384 folder = foldEQ_locale;
2385 goto do_exactf_non_utf8;
2388 /* Any 'ss' in the pattern should have been replaced by regcomp, so we
2389 * don't have to worry here about this single special case in the
2391 fold_array = PL_fold_latin1;
2392 folder = foldEQ_latin1_s2_folded;
2396 do_exactf_non_utf8: /* Neither pattern nor string are UTF8, and there
2397 are no glitches with fold-length differences
2398 between the target string and pattern */
2400 /* The idea in the non-utf8 EXACTF* cases is to first find the first
2401 * character of the EXACTF* node and then, if necessary,
2402 * case-insensitively compare the full text of the node. c1 is the
2403 * first character. c2 is its fold. This logic will not work for
2404 * Unicode semantics and the german sharp ss, which hence should not be
2405 * compiled into a node that gets here. */
2406 pat_string = STRINGs(c);
2407 ln = STR_LENs(c); /* length to match in octets/bytes */
2409 /* We know that we have to match at least 'ln' bytes (which is the same
2410 * as characters, since not utf8). If we have to match 3 characters,
2411 * and there are only 2 availabe, we know without trying that it will
2412 * fail; so don't start a match past the required minimum number from
2414 e = HOP3c(strend, -((SSize_t)ln), s);
2419 c2 = fold_array[c1];
2420 if (c1 == c2) { /* If char and fold are the same */
2422 s = (char *) memchr(s, c1, e + 1 - s);
2427 /* Check that the rest of the node matches */
2428 if ( (ln == 1 || folder(s + 1, pat_string + 1, ln - 1))
2429 && (reginfo->intuit || regtry(reginfo, &s)) )
2437 U8 bits_differing = c1 ^ c2;
2439 /* If the folds differ in one bit position only, we can mask to
2440 * match either of them, and can use this faster find method. Both
2441 * ASCII and EBCDIC tend to have their case folds differ in only
2442 * one position, so this is very likely */
2443 if (LIKELY(PL_bitcount[bits_differing] == 1)) {
2444 bits_differing = ~ bits_differing;
2446 s = (char *) find_next_masked((U8 *) s, (U8 *) e + 1,
2447 (c1 & bits_differing), bits_differing);
2452 if ( (ln == 1 || folder(s + 1, pat_string + 1, ln - 1))
2453 && (reginfo->intuit || regtry(reginfo, &s)) )
2460 else { /* Otherwise, stuck with looking byte-at-a-time. This
2461 should actually happen only in EXACTFL nodes */
2463 if ( (*(U8*)s == c1 || *(U8*)s == c2)
2464 && (ln == 1 || folder(s + 1, pat_string + 1, ln - 1))
2465 && (reginfo->intuit || regtry(reginfo, &s)) )
2475 case EXACTFAA_tb_p8:
2476 case EXACTFAA_t8_p8:
2477 utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII
2478 |FOLDEQ_S2_ALREADY_FOLDED
2479 |FOLDEQ_S2_FOLDS_SANE;
2480 goto do_exactf_utf8;
2482 case EXACTFAA_NO_TRIE_tb_pb:
2483 case EXACTFAA_NO_TRIE_t8_pb:
2484 case EXACTFAA_t8_pb:
2486 /* Here, and elsewhere in this file, the reason we can't consider a
2487 * non-UTF-8 pattern already folded in the presence of a UTF-8 target
2488 * is because any MICRO SIGN in the pattern won't be folded. Since the
2489 * fold of the MICRO SIGN requires UTF-8 to represent, we can consider
2490 * a non-UTF-8 pattern folded when matching a non-UTF-8 target */
2491 utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
2492 goto do_exactf_utf8;
2497 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2498 utf8_fold_flags = FOLDEQ_LOCALE;
2499 goto do_exactf_utf8;
2501 case EXACTFLU8_t8_pb:
2502 case EXACTFLU8_t8_p8:
2503 utf8_fold_flags = FOLDEQ_LOCALE | FOLDEQ_S2_ALREADY_FOLDED
2504 | FOLDEQ_S2_FOLDS_SANE;
2505 goto do_exactf_utf8;
2507 case EXACTFU_REQ8_t8_p8:
2508 utf8_fold_flags = FOLDEQ_S2_ALREADY_FOLDED;
2509 goto do_exactf_utf8;
2514 utf8_fold_flags = FOLDEQ_S2_ALREADY_FOLDED;
2515 goto do_exactf_utf8;
2517 /* The following are problematic even though pattern isn't UTF-8. Use
2518 * full functionality normally not done except for UTF-8. */
2520 case EXACTFUP_tb_pb:
2521 case EXACTFUP_t8_pb:
2527 /* If one of the operands is in utf8, we can't use the simpler
2528 * folding above, due to the fact that many different characters
2529 * can have the same fold, or portion of a fold, or different-
2531 pat_string = STRINGs(c);
2532 ln = STR_LENs(c); /* length to match in octets/bytes */
2533 pat_end = pat_string + ln;
2534 lnc = is_utf8_pat /* length to match in characters */
2535 ? utf8_length((U8 *) pat_string, (U8 *) pat_end)
2538 /* We have 'lnc' characters to match in the pattern, but because of
2539 * multi-character folding, each character in the target can match
2540 * up to 3 characters (Unicode guarantees it will never exceed
2541 * this) if it is utf8-encoded; and up to 2 if not (based on the
2542 * fact that the Latin 1 folds are already determined, and the only
2543 * multi-char fold in that range is the sharp-s folding to 'ss'.
2544 * Thus, a pattern character can match as little as 1/3 of a string
2545 * character. Adjust lnc accordingly, rounding up, so that if we
2546 * need to match at least 4+1/3 chars, that really is 5. */
2547 expansion = (utf8_target) ? UTF8_MAX_FOLD_CHAR_EXPAND : 2;
2548 lnc = (lnc + expansion - 1) / expansion;
2550 /* As in the non-UTF8 case, if we have to match 3 characters, and
2551 * only 2 are left, it's guaranteed to fail, so don't start a match
2552 * that would require us to go beyond the end of the string */
2553 e = HOP3c(strend, -((SSize_t)lnc), s);
2555 /* XXX Note that we could recalculate e to stop the loop earlier,
2556 * as the worst case expansion above will rarely be met, and as we
2557 * go along we would usually find that e moves further to the left.
2558 * This would happen only after we reached the point in the loop
2559 * where if there were no expansion we should fail. Unclear if
2560 * worth the expense */
2563 char *my_strend= (char *)strend;
2564 if ( foldEQ_utf8_flags(s, &my_strend, 0, utf8_target,
2565 pat_string, NULL, ln, is_utf8_pat,
2567 && (reginfo->intuit || regtry(reginfo, &s)) )
2571 s += (utf8_target) ? UTF8_SAFE_SKIP(s, reginfo->strend) : 1;
2578 case BOUND_tb_pb: /* /d without utf8 target is /a */
2580 /* regcomp.c makes sure that these only have the traditional \b
2582 assert(FLAGS(c) == TRADITIONAL_BOUND);
2584 FBC_BOUND_A_NON_UTF8(isWORDCHAR_A);
2587 case BOUNDA_t8_pb: /* What /a matches is same under UTF-8 */
2589 /* regcomp.c makes sure that these only have the traditional \b
2591 assert(FLAGS(c) == TRADITIONAL_BOUND);
2593 FBC_BOUND_A_UTF8(isWORDCHAR_A);
2598 case NBOUND_tb_pb: /* /d without utf8 target is /a */
2600 /* regcomp.c makes sure that these only have the traditional \b
2602 assert(FLAGS(c) == TRADITIONAL_BOUND);
2604 FBC_NBOUND_A_NON_UTF8(isWORDCHAR_A);
2607 case NBOUNDA_t8_pb: /* What /a matches is same under UTF-8 */
2609 /* regcomp.c makes sure that these only have the traditional \b
2611 assert(FLAGS(c) == TRADITIONAL_BOUND);
2613 FBC_NBOUND_A_UTF8(isWORDCHAR_A);
2618 if ((bound_type) FLAGS(c) == TRADITIONAL_BOUND) {
2619 FBC_NBOUND_NON_UTF8(isWORDCHAR_L1);
2624 goto do_boundu_non_utf8;
2628 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2629 if (FLAGS(c) == TRADITIONAL_BOUND) {
2630 FBC_NBOUND_NON_UTF8(isWORDCHAR_LC);
2634 CHECK_AND_WARN_NON_UTF8_CTYPE_LOCALE_IN_BOUND;
2637 goto do_boundu_non_utf8;
2641 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2642 if (FLAGS(c) == TRADITIONAL_BOUND) {
2643 FBC_BOUND_NON_UTF8(isWORDCHAR_LC);
2647 CHECK_AND_WARN_NON_UTF8_CTYPE_LOCALE_IN_BOUND;
2649 goto do_boundu_non_utf8;
2653 if ((bound_type) FLAGS(c) == TRADITIONAL_BOUND) {
2654 FBC_BOUND_NON_UTF8(isWORDCHAR_L1);
2659 if (s == reginfo->strbeg) {
2660 if (reginfo->intuit || regtry(reginfo, &s))
2665 /* Didn't match. Try at the next position (if there is one) */
2667 if (UNLIKELY(s >= reginfo->strend)) {
2672 switch((bound_type) FLAGS(c)) {
2673 case TRADITIONAL_BOUND: /* Should have already been handled */
2678 /* Not utf8. Everything is a GCB except between CR and LF */
2679 while (s < strend) {
2680 if ((to_complement ^ ( UCHARAT(s - 1) != '\r'
2681 || UCHARAT(s) != '\n'))
2682 && (reginfo->intuit || regtry(reginfo, &s)))
2693 LB_enum before = getLB_VAL_CP((U8) *(s -1));
2694 while (s < strend) {
2695 LB_enum after = getLB_VAL_CP((U8) *s);
2696 if (to_complement ^ isLB(before,
2698 (U8*) reginfo->strbeg,
2700 (U8*) reginfo->strend,
2701 0 /* target not utf8 */ )
2702 && (reginfo->intuit || regtry(reginfo, &s)))
2715 SB_enum before = getSB_VAL_CP((U8) *(s -1));
2716 while (s < strend) {
2717 SB_enum after = getSB_VAL_CP((U8) *s);
2718 if ((to_complement ^ isSB(before,
2720 (U8*) reginfo->strbeg,
2722 (U8*) reginfo->strend,
2723 0 /* target not utf8 */ ))
2724 && (reginfo->intuit || regtry(reginfo, &s)))
2737 WB_enum previous = WB_UNKNOWN;
2738 WB_enum before = getWB_VAL_CP((U8) *(s -1));
2739 while (s < strend) {
2740 WB_enum after = getWB_VAL_CP((U8) *s);
2741 if ((to_complement ^ isWB(previous,
2744 (U8*) reginfo->strbeg,
2746 (U8*) reginfo->strend,
2747 0 /* target not utf8 */ ))
2748 && (reginfo->intuit || regtry(reginfo, &s)))
2759 /* Here are at the final position in the target string, which is a
2760 * boundary by definition, so matches, depending on other constraints.
2762 if ( reginfo->intuit
2763 || (s <= reginfo->strend && regtry(reginfo, &s)))
2772 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2773 if (FLAGS(c) == TRADITIONAL_BOUND) {
2774 FBC_BOUND_UTF8(isWORDCHAR_LC, isWORDCHAR_LC_uvchr,
2775 isWORDCHAR_LC_utf8_safe);
2779 CHECK_AND_WARN_NON_UTF8_CTYPE_LOCALE_IN_BOUND;
2782 goto do_boundu_utf8;
2786 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2787 if (FLAGS(c) == TRADITIONAL_BOUND) {
2788 FBC_NBOUND_UTF8(isWORDCHAR_LC, isWORDCHAR_LC_uvchr,
2789 isWORDCHAR_LC_utf8_safe);
2793 CHECK_AND_WARN_NON_UTF8_CTYPE_LOCALE_IN_BOUND;
2796 goto do_boundu_utf8;
2800 /* regcomp.c makes sure that these only have the traditional \b
2802 assert(FLAGS(c) == TRADITIONAL_BOUND);
2808 if ((bound_type) FLAGS(c) == TRADITIONAL_BOUND) {
2809 FBC_NBOUND_UTF8(isWORDCHAR_L1, isWORDCHAR_uni,
2810 isWORDCHAR_utf8_safe);
2815 goto do_boundu_utf8;
2819 /* regcomp.c makes sure that these only have the traditional \b
2821 assert(FLAGS(c) == TRADITIONAL_BOUND);
2827 if ((bound_type) FLAGS(c) == TRADITIONAL_BOUND) {
2828 FBC_BOUND_UTF8(isWORDCHAR_L1, isWORDCHAR_uni, isWORDCHAR_utf8_safe);
2833 if (s == reginfo->strbeg) {
2834 if (reginfo->intuit || regtry(reginfo, &s))
2839 /* Didn't match. Try at the next position (if there is one) */
2840 s += UTF8_SAFE_SKIP(s, reginfo->strend);
2841 if (UNLIKELY(s >= reginfo->strend)) {
2846 switch((bound_type) FLAGS(c)) {
2847 case TRADITIONAL_BOUND: /* Should have already been handled */
2853 GCB_enum before = getGCB_VAL_UTF8(
2855 (U8*)(reginfo->strbeg)),
2856 (U8*) reginfo->strend);
2857 while (s < strend) {
2858 GCB_enum after = getGCB_VAL_UTF8((U8*) s,
2859 (U8*) reginfo->strend);
2860 if ( (to_complement ^ isGCB(before,
2862 (U8*) reginfo->strbeg,
2864 1 /* target is utf8 */ ))
2865 && (reginfo->intuit || regtry(reginfo, &s)))
2870 s += UTF8_SAFE_SKIP(s, reginfo->strend);
2877 LB_enum before = getLB_VAL_UTF8(reghop3((U8*)s,
2879 (U8*)(reginfo->strbeg)),
2880 (U8*) reginfo->strend);
2881 while (s < strend) {
2882 LB_enum after = getLB_VAL_UTF8((U8*) s,
2883 (U8*) reginfo->strend);
2884 if (to_complement ^ isLB(before,
2886 (U8*) reginfo->strbeg,
2888 (U8*) reginfo->strend,
2889 1 /* target is utf8 */ )
2890 && (reginfo->intuit || regtry(reginfo, &s)))
2895 s += UTF8_SAFE_SKIP(s, reginfo->strend);
2903 SB_enum before = getSB_VAL_UTF8(reghop3((U8*)s,
2905 (U8*)(reginfo->strbeg)),
2906 (U8*) reginfo->strend);
2907 while (s < strend) {
2908 SB_enum after = getSB_VAL_UTF8((U8*) s,
2909 (U8*) reginfo->strend);
2910 if ((to_complement ^ isSB(before,
2912 (U8*) reginfo->strbeg,
2914 (U8*) reginfo->strend,
2915 1 /* target is utf8 */ ))
2916 && (reginfo->intuit || regtry(reginfo, &s)))
2921 s += UTF8_SAFE_SKIP(s, reginfo->strend);
2929 /* We are at a boundary between char_sub_0 and char_sub_1.
2930 * We also keep track of the value for char_sub_-1 as we
2931 * loop through the line. Context may be needed to make a
2932 * determination, and if so, this can save having to
2934 WB_enum previous = WB_UNKNOWN;
2935 WB_enum before = getWB_VAL_UTF8(
2938 (U8*)(reginfo->strbeg)),
2939 (U8*) reginfo->strend);
2940 while (s < strend) {
2941 WB_enum after = getWB_VAL_UTF8((U8*) s,
2942 (U8*) reginfo->strend);
2943 if ((to_complement ^ isWB(previous,
2946 (U8*) reginfo->strbeg,
2948 (U8*) reginfo->strend,
2949 1 /* target is utf8 */ ))
2950 && (reginfo->intuit || regtry(reginfo, &s)))
2956 s += UTF8_SAFE_SKIP(s, reginfo->strend);
2961 /* Here are at the final position in the target string, which is a
2962 * boundary by definition, so matches, depending on other constraints.
2965 if ( reginfo->intuit
2966 || (s <= reginfo->strend && regtry(reginfo, &s)))
2974 REXEC_FBC_UTF8_CLASS_SCAN(is_LNBREAK_utf8_safe(s, strend));
2979 REXEC_FBC_NON_UTF8_CLASS_SCAN(is_LNBREAK_latin1_safe(s, strend));
2982 /* The argument to all the POSIX node types is the class number to pass
2983 * to _generic_isCC() to build a mask for searching in PL_charclass[] */
2992 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
2993 REXEC_FBC_UTF8_CLASS_SCAN(
2994 to_complement ^ cBOOL(isFOO_utf8_lc(FLAGS(c), (U8 *) s,
3005 _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
3006 REXEC_FBC_NON_UTF8_CLASS_SCAN(
3007 to_complement ^ cBOOL(isFOO_lc(FLAGS(c), *s)));
3012 /* The complement of something that matches only ASCII matches all
3013 * non-ASCII, plus everything in ASCII that isn't in the class. */
3014 REXEC_FBC_UTF8_CLASS_SCAN( ! isASCII_utf8_safe(s, strend)
3015 || ! _generic_isCC_A(*s, FLAGS(c)));
3020 /* Don't need to worry about utf8, as it can match only a single
3021 * byte invariant character. But we do anyway for performance reasons,
3022 * as otherwise we would have to examine all the continuation
3024 REXEC_FBC_UTF8_CLASS_SCAN(_generic_isCC_A(*s, FLAGS(c)));
3038 REXEC_FBC_NON_UTF8_CLASS_SCAN(
3039 to_complement ^ cBOOL(_generic_isCC_A(*s, FLAGS(c))));
3049 REXEC_FBC_NON_UTF8_CLASS_SCAN(
3050 to_complement ^ cBOOL(_generic_isCC(*s,
3065 classnum = (_char_class_number) FLAGS(c);
3068 REXEC_FBC_UTF8_CLASS_SCAN(
3069 to_complement ^ cBOOL(_invlist_contains_cp(
3070 PL_XPosix_ptrs[classnum],
3071 utf8_to_uvchr_buf((U8 *) s,
3076 case _CC_ENUM_SPACE:
3077 REXEC_FBC_UTF8_CLASS_SCAN(
3078 to_complement ^ cBOOL(isSPACE_utf8_safe(s, strend)));
3081 case _CC_ENUM_BLANK:
3082 REXEC_FBC_UTF8_CLASS_SCAN(
3083 to_complement ^ cBOOL(isBLANK_utf8_safe(s, strend)));
3086 case _CC_ENUM_XDIGIT:
3087 REXEC_FBC_UTF8_CLASS_SCAN(
3088 to_complement ^ cBOOL(isXDIGIT_utf8_safe(s, strend)));
3091 case _CC_ENUM_VERTSPACE:
3092 REXEC_FBC_UTF8_CLASS_SCAN(
3093 to_complement ^ cBOOL(isVERTWS_utf8_safe(s, strend)));
3096 case _CC_ENUM_CNTRL:
3097 REXEC_FBC_UTF8_CLASS_SCAN(
3098 to_complement ^ cBOOL(isCNTRL_utf8_safe(s, strend)));
3103 case AHOCORASICKC_tb_pb:
3104 case AHOCORASICKC_tb_p8:
3105 case AHOCORASICKC_t8_pb:
3106 case AHOCORASICKC_t8_p8:
3107 case AHOCORASICK_tb_pb:
3108 case AHOCORASICK_tb_p8:
3109 case AHOCORASICK_t8_pb:
3110 case AHOCORASICK_t8_p8:
3113 /* what trie are we using right now */
3114 reg_ac_data *aho = (reg_ac_data*)progi->data->data[ ARG( c ) ];
3115 reg_trie_data *trie = (reg_trie_data*)progi->data->data[aho->trie];
3116 HV *widecharmap = MUTABLE_HV(progi->data->data[ aho->trie + 1 ]);
3118 const char *last_start = strend - trie->minlen;
3120 const char *real_start = s;
3122 STRLEN maxlen = trie->maxlen;
3124 U8 **points; /* map of where we were in the input string
3125 when reading a given char. For ASCII this
3126 is unnecessary overhead as the relationship
3127 is always 1:1, but for Unicode, especially
3128 case folded Unicode this is not true. */
3129 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
3133 DECLARE_AND_GET_RE_DEBUG_FLAGS;
3135 /* We can't just allocate points here. We need to wrap it in
3136 * an SV so it gets freed properly if there is a croak while
3137 * running the match */
3140 sv_points=newSV(maxlen * sizeof(U8 *));
3141 SvCUR_set(sv_points,
3142 maxlen * sizeof(U8 *));
3143 SvPOK_on(sv_points);
3144 sv_2mortal(sv_points);
3145 points=(U8**)SvPV_nolen(sv_points );
3146 if ( trie_type != trie_utf8_fold
3147 && (trie->bitmap || OP(c)==AHOCORASICKC) )
3150 bitmap=(U8*)trie->bitmap;
3152 bitmap=(U8*)ANYOF_BITMAP(c);
3154 /* this is the Aho-Corasick algorithm modified a touch
3155 to include special handling for long "unknown char" sequences.
3156 The basic idea being that we use AC as long as we are dealing
3157 with a possible matching char, when we encounter an unknown char
3158 (and we have not encountered an accepting state) we scan forward
3159 until we find a legal starting char.
3160 AC matching is basically that of trie matching, except that when
3161 we encounter a failing transition, we fall back to the current
3162 states "fail state", and try the current char again, a process
3163 we repeat until we reach the root state, state 1, or a legal
3164 transition. If we fail on the root state then we can either
3165 terminate if we have reached an accepting state previously, or
3166 restart the entire process from the beginning if we have not.
3169 while (s <= last_start) {
3170 const U32 uniflags = UTF8_ALLOW_DEFAULT;
3178 U8 *uscan = (U8*)NULL;
3179 U8 *leftmost = NULL;
3181 U32 accepted_word= 0;
3185 while ( state && uc <= (U8*)strend ) {
3187 U32 word = aho->states[ state ].wordnum;
3191 DEBUG_TRIE_EXECUTE_r(
3192 if ( uc <= (U8*)last_start
3193 && !BITMAP_TEST(bitmap,*uc) )
3195 dump_exec_pos( (char *)uc, c, strend,
3197 (char *)uc, utf8_target, 0 );
3198 Perl_re_printf( aTHX_
3199 " Scanning for legal start char...\n");
3203 while ( uc <= (U8*)last_start
3204 && !BITMAP_TEST(bitmap,*uc) )
3209 while ( uc <= (U8*)last_start
3210 && ! BITMAP_TEST(bitmap,*uc) )
3217 if (uc >(U8*)last_start) break;
3221 U8 *lpos= points[ (pointpos - trie->wordinfo[word].len)
3223 if (!leftmost || lpos < leftmost) {
3224 DEBUG_r(accepted_word=word);
3230 points[pointpos++ % maxlen]= uc;
3231 if (foldlen || uc < (U8*)strend) {
3232 REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc,
3233 (U8 *) strend, uscan, len, uvc,
3234 charid, foldlen, foldbuf,
3236 DEBUG_TRIE_EXECUTE_r({
3237 dump_exec_pos( (char *)uc, c, strend,
3238 real_start, s, utf8_target, 0);
3239 Perl_re_printf( aTHX_
3240 " Charid:%3u CP:%4" UVxf " ",
3252 word = aho->states[ state ].wordnum;
3254 base = aho->states[ state ].trans.base;
3256 DEBUG_TRIE_EXECUTE_r({
3258 dump_exec_pos((char *)uc, c, strend, real_start,
3259 s, utf8_target, 0 );
3260 Perl_re_printf( aTHX_
3261 "%sState: %4" UVxf ", word=%" UVxf,
3262 failed ? " Fail transition to " : "",
3263 (UV)state, (UV)word);
3269 ( ((offset = base + charid
3270 - 1 - trie->uniquecharcount)) >= 0)
3271 && ((U32)offset < trie->lasttrans)
3272 && trie->trans[offset].check == state
3273 && (tmp=trie->trans[offset].next))
3275 DEBUG_TRIE_EXECUTE_r(
3276 Perl_re_printf( aTHX_ " - legal\n"));
3281 DEBUG_TRIE_EXECUTE_r(
3282 Perl_re_printf( aTHX_ " - fail\n"));
3284 state = aho->fail[state];
3288 /* we must be accepting here */
3289 DEBUG_TRIE_EXECUTE_r(
3290 Perl_re_printf( aTHX_ " - accepting\n"));
3299 if (!state) state = 1;
3302 if ( aho->states[ state ].wordnum ) {
3303 U8 *lpos = points[ (pointpos
3304 - trie->wordinfo[aho->states[ state ]
3305 .wordnum].len) % maxlen ];
3306 if (!leftmost || lpos < leftmost) {
3307 DEBUG_r(accepted_word=aho->states[ state ].wordnum);
3312 s = (char*)leftmost;
3313 DEBUG_TRIE_EXECUTE_r({
3314 Perl_re_printf( aTHX_ "Matches word #%" UVxf
3315 " at position %" IVdf ". Trying full"
3317 (UV)accepted_word, (IV)(s - real_start)
3320 if (reginfo->intuit || regtry(reginfo, &s)) {
3325 if (s < reginfo->strend) {
3328 DEBUG_TRIE_EXECUTE_r({
3329 Perl_re_printf( aTHX_
3330 "Pattern failed. Looking for new start"
3334 DEBUG_TRIE_EXECUTE_r(
3335 Perl_re_printf( aTHX_ "No match.\n"));
3344 case EXACTFU_REQ8_t8_pb:
3345 case EXACTFUP_tb_p8:
3346 case EXACTFUP_t8_p8:
3348 case EXACTF_t8_p8: /* This node only generated for non-utf8 patterns */
3349 case EXACTFAA_NO_TRIE_tb_p8:
3350 case EXACTFAA_NO_TRIE_t8_p8: /* This node only generated for non-utf8
3355 Perl_croak(aTHX_ "panic: unknown regstclass %d", (int)OP(c));
3356 } /* End of switch on node type */
3364 /* set RX_SAVED_COPY, RX_SUBBEG etc.
3365 * flags have same meanings as with regexec_flags() */
3368 S_reg_set_capture_string(pTHX_ REGEXP * const rx,
3375 struct regexp *const prog = ReANY(rx);
3377 if (flags & REXEC_COPY_STR) {
3380 DEBUG_C(Perl_re_printf( aTHX_
3381 "Copy on write: regexp capture, type %d\n",
3383 /* Create a new COW SV to share the match string and store
3384 * in saved_copy, unless the current COW SV in saved_copy
3385 * is valid and suitable for our purpose */
3386 if (( prog->saved_copy
3387 && SvIsCOW(prog->saved_copy)
3388 && SvPOKp(prog->saved_copy)
3391 && SvPVX(sv) == SvPVX(prog->saved_copy)))
3393 /* just reuse saved_copy SV */
3394 if (RXp_MATCH_COPIED(prog)) {
3395 Safefree(prog->subbeg);
3396 RXp_MATCH_COPIED_off(prog);
3400 /* create new COW SV to share string */
3401 RXp_MATCH_COPY_FREE(prog);
3402 prog->saved_copy = sv_setsv_cow(prog->saved_copy, sv);
3404 prog->subbeg = (char *)SvPVX_const(prog->saved_copy);
3405 assert (SvPOKp(prog->saved_copy));
3406 prog->sublen = strend - strbeg;
3407 prog->suboffset = 0;
3408 prog->subcoffset = 0;
3413 SSize_t max = strend - strbeg;
3416 if ( (flags & REXEC_COPY_SKIP_POST)
3417 && !(prog->extflags & RXf_PMf_KEEPCOPY) /* //p */
3418 && !(PL_sawampersand & SAWAMPERSAND_RIGHT)
3419 ) { /* don't copy $' part of string */
3422 /* calculate the right-most part of the string covered
3423 * by a capture. Due to lookahead, this may be to
3424 * the right of $&, so we have to scan all captures */
3425 while (n <= prog->lastparen) {
3426 if (prog->offs[n].end > max)
3427 max = prog->offs[n].end;
3431 max = (PL_sawampersand & SAWAMPERSAND_LEFT)
3432 ? prog->offs[0].start
3434 assert(max >= 0 && max <= strend - strbeg);
3437 if ( (flags & REXEC_COPY_SKIP_PRE)
3438 && !(prog->extflags & RXf_PMf_KEEPCOPY) /* //p */
3439 && !(PL_sawampersand & SAWAMPERSAND_LEFT)
3440 ) { /* don't copy $` part of string */
3443 /* calculate the left-most part of the string covered
3444 * by a capture. Due to lookbehind, this may be to
3445 * the left of $&, so we have to scan all captures */
3446 while (min && n <= prog->lastparen) {
3447 if ( prog->offs[n].start != -1
3448 && prog->offs[n].start < min)
3450 min = prog->offs[n].start;
3454 if ((PL_sawampersand & SAWAMPERSAND_RIGHT)
3455 && min > prog->offs[0].end
3457 min = prog->offs[0].end;
3461 assert(min >= 0 && min <= max && min <= strend - strbeg);
3464 if (RXp_MATCH_COPIED(prog)) {
3465 if (sublen > prog->sublen)
3467 (char*)saferealloc(prog->subbeg, sublen+1);
3470 prog->subbeg = (char*)safemalloc(sublen+1);
3471 Copy(strbeg + min, prog->subbeg, sublen, char);
3472 prog->subbeg[sublen] = '\0';
3473 prog->suboffset = min;
3474 prog->sublen = sublen;
3475 RXp_MATCH_COPIED_on(prog);
3477 prog->subcoffset = prog->suboffset;
3478 if (prog->suboffset && utf8_target) {
3479 /* Convert byte offset to chars.
3480 * XXX ideally should only compute this if @-/@+
3481 * has been seen, a la PL_sawampersand ??? */
3483 /* If there's a direct correspondence between the
3484 * string which we're matching and the original SV,
3485 * then we can use the utf8 len cache associated with
3486 * the SV. In particular, it means that under //g,
3487 * sv_pos_b2u() will use the previously cached
3488 * position to speed up working out the new length of
3489 * subcoffset, rather than counting from the start of
3490 * the string each time. This stops
3491 * $x = "\x{100}" x 1E6; 1 while $x =~ /(.)/g;
3492 * from going quadratic */
3493 if (SvPOKp(sv) && SvPVX(sv) == strbeg)
3494 prog->subcoffset = sv_pos_b2u_flags(sv, prog->subcoffset,
3495 SV_GMAGIC|SV_CONST_RETURN);
3497 prog->subcoffset = utf8_length((U8*)strbeg,
3498 (U8*)(strbeg+prog->suboffset));
3502 RXp_MATCH_COPY_FREE(prog);
3503 prog->subbeg = strbeg;
3504 prog->suboffset = 0;
3505 prog->subcoffset = 0;
3506 prog->sublen = strend - strbeg;
3514 - regexec_flags - match a regexp against a string
3517 Perl_regexec_flags(pTHX_ REGEXP * const rx, char *stringarg, char *strend,
3518 char *strbeg, SSize_t minend, SV *sv, void *data, U32 flags)
3519 /* stringarg: the point in the string at which to begin matching */
3520 /* strend: pointer to null at end of string */
3521 /* strbeg: real beginning of string */
3522 /* minend: end of match must be >= minend bytes after stringarg. */
3523 /* sv: SV being matched: only used for utf8 flag, pos() etc; string
3524 * itself is accessed via the pointers above */
3525 /* data: May be used for some additional optimizations.
3526 Currently unused. */
3527 /* flags: For optimizations. See REXEC_* in regexp.h */
3530 struct regexp *const prog = ReANY(rx);
3534 SSize_t minlen; /* must match at least this many chars */
3535 SSize_t dontbother = 0; /* how many characters not to try at end */
3536 const bool utf8_target = cBOOL(DO_UTF8(sv));
3538 RXi_GET_DECL(prog,progi);
3539 regmatch_info reginfo_buf; /* create some info to pass to regtry etc */
3540 regmatch_info *const reginfo = ®info_buf;
3541 regexp_paren_pair *swap = NULL;
3543 DECLARE_AND_GET_RE_DEBUG_FLAGS;
3545 PERL_ARGS_ASSERT_REGEXEC_FLAGS;
3546 PERL_UNUSED_ARG(data);
3548 /* Be paranoid... */
3550 Perl_croak(aTHX_ "NULL regexp parameter");
3554 debug_start_match(rx, utf8_target, stringarg, strend,
3558 startpos = stringarg;
3560 /* set these early as they may be used by the HOP macros below */
3561 reginfo->strbeg = strbeg;
3562 reginfo->strend = strend;
3563 reginfo->is_utf8_target = cBOOL(utf8_target);
3565 if (prog->intflags & PREGf_GPOS_SEEN) {
3568 /* set reginfo->ganch, the position where \G can match */
3571 (flags & REXEC_IGNOREPOS)
3572 ? stringarg /* use start pos rather than pos() */
3573 : ((mg = mg_find_mglob(sv)) && mg->mg_len >= 0)
3574 /* Defined pos(): */
3575 ? strbeg + MgBYTEPOS(mg, sv, strbeg, strend-strbeg)
3576 : strbeg; /* pos() not defined; use start of string */
3578 DEBUG_GPOS_r(Perl_re_printf( aTHX_
3579 "GPOS ganch set to strbeg[%" IVdf "]\n", (IV)(reginfo->ganch - strbeg)));
3581 /* in the presence of \G, we may need to start looking earlier in
3582 * the string than the suggested start point of stringarg:
3583 * if prog->gofs is set, then that's a known, fixed minimum
3586 * /ab|c\G/: gofs = 1
3587 * or if the minimum offset isn't known, then we have to go back
3588 * to the start of the string, e.g. /w+\G/
3591 if (prog->intflags & PREGf_ANCH_GPOS) {
3593 startpos = HOPBACKc(reginfo->ganch, prog->gofs);
3595 ((flags & REXEC_FAIL_ON_UNDERFLOW) && startpos < stringarg))
3597 DEBUG_GPOS_r(Perl_re_printf( aTHX_
3598 "fail: ganch-gofs before earliest possible start\n"));
3603 startpos = reginfo->ganch;
3605 else if (prog->gofs) {
3606 startpos = HOPBACKc(startpos, prog->gofs);
3610 else if (prog->intflags & PREGf_GPOS_FLOAT)
3614 minlen = prog->minlen;
3615 if ((startpos + minlen) > strend || startpos < strbeg) {
3616 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
3617 "Regex match can't succeed, so not even tried\n"));
3621 /* at the end of this function, we'll do a LEAVE_SCOPE(oldsave),
3622 * which will call destuctors to reset PL_regmatch_state, free higher
3623 * PL_regmatch_slabs, and clean up regmatch_info_aux and
3624 * regmatch_info_aux_eval */
3626 oldsave = PL_savestack_ix;
3630 if ((prog->extflags & RXf_USE_INTUIT)
3631 && !(flags & REXEC_CHECKED))
3633 s = re_intuit_start(rx, sv, strbeg, startpos, strend,
3638 if (prog->extflags & RXf_CHECK_ALL) {
3639 /* we can match based purely on the result of INTUIT.
3640 * Set up captures etc just for $& and $-[0]
3641 * (an intuit-only match wont have $1,$2,..) */
3642 assert(!prog->nparens);
3644 /* s/// doesn't like it if $& is earlier than where we asked it to
3645 * start searching (which can happen on something like /.\G/) */
3646 if ( (flags & REXEC_FAIL_ON_UNDERFLOW)
3649 /* this should only be possible under \G */
3650 assert(prog->intflags & PREGf_GPOS_SEEN);
3651 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
3652 "matched, but failing for REXEC_FAIL_ON_UNDERFLOW\n"));
3656 /* match via INTUIT shouldn't have any captures.
3657 * Let @-, @+, $^N know */
3658 prog->lastparen = prog->lastcloseparen = 0;
3659 RXp_MATCH_UTF8_set(prog, utf8_target);
3660 prog->offs[0].start = s - strbeg;
3661 prog->offs[0].end = utf8_target
3662 ? (char*)utf8_hop_forward((U8*)s, prog->minlenret, (U8 *) strend) - strbeg
3663 : s - strbeg + prog->minlenret;
3664 if ( !(flags & REXEC_NOT_FIRST) )
3665 S_reg_set_capture_string(aTHX_ rx,
3667 sv, flags, utf8_target);
3673 multiline = prog->extflags & RXf_PMf_MULTILINE;
3675 if (strend - s < (minlen+(prog->check_offset_min<0?prog->check_offset_min:0))) {
3676 DEBUG_EXECUTE_r(Perl_re_printf( aTHX_
3677 "String too short [regexec_flags]...\n"));
3681 /* Check validity of program. */
3682 if (UCHARAT(progi->program) != REG_MAGIC) {
3683 Perl_croak(aTHX_ "corrupted regexp program");
3686 RXp_MATCH_TAINTED_off(prog);
3687 RXp_MATCH_UTF8_set(prog, utf8_target);
3689 reginfo->prog = rx; /* Yes, sorry that this is confusing. */
3690 reginfo->intuit = 0;
3691 reginfo->is_utf8_pat = cBOOL(RX_UTF8(rx));
3692 reginfo->warned = FALSE;
3694 reginfo->poscache_maxiter = 0; /* not yet started a countdown */
3695 /* see how far we have to get to not match where we matched before */
3696 reginfo->till = stringarg + minend;
3698 if (prog->extflags & RXf_EVAL_SEEN && SvPADTMP(sv)) {
3699 /* SAVEFREESV, not sv_mortalcopy, as this SV must last until after
3700 S_cleanup_regmatch_info_aux has executed (registered by
3701 SAVEDESTRUCTOR_X below). S_cleanup_regmatch_info_aux modifies
3702 magic belonging to this SV.
3703 Not newSVsv, either, as it does not COW.
3705 reginfo->sv = newSV(0);
3706 SvSetSV_nosteal(reginfo->sv, sv);
3707 SAVEFREESV(reginfo->sv);
3710 /* reserve next 2 or 3 slots in PL_regmatch_state:
3711 * slot N+0: may currently be in use: skip it
3712 * slot N+1: use for regmatch_info_aux struct
3713 * slot N+2: use for regmatch_info_aux_eval struct if we have (?{})'s
3714 * slot N+3: ready for use by regmatch()
3718 regmatch_state *old_regmatch_state;
3719 regmatch_slab *old_regmatch_slab;
3720 int i, max = (prog->extflags & RXf_EVAL_SEEN) ? 2 : 1;
3722 /* on first ever match, allocate first slab */
3723 if (!PL_regmatch_slab) {
3724 Newx(PL_regmatch_slab, 1, regmatch_slab);
3725 PL_regmatch_slab->prev = NULL;
3726 PL_regmatch_slab->next = NULL;
3727 PL_regmatch_state = SLAB_FIRST(PL_regmatch_slab);
3730 old_regmatch_state = PL_regmatch_state;
3731 old_regmatch_slab = PL_regmatch_slab;
3733 for (i=0; i <= max; i++) {
3735 reginfo->info_aux = &(PL_regmatch_state->u.info_aux);
3737 reginfo->info_aux_eval =
3738 reginfo->info_aux->info_aux_eval =
3739 &(PL_regmatch_state->u.info_aux_eval);
3741 if (++PL_regmatch_state > SLAB_LAST(PL_regmatch_slab))
3742 PL_regmatch_state = S_push_slab(aTHX);
3745 /* note initial PL_regmatch_state position; at end of match we'll
3746 * pop back to there and free any higher slabs */
3748 reginfo->info_aux->old_regmatch_state = old_regmatch_state;
3749 reginfo->info_aux->old_regmatch_slab = old_regmatch_slab;
3750 reginfo->info_aux->poscache = NULL;
3752 SAVEDESTRUCTOR_X(S_cleanup_regmatch_info_aux, reginfo->info_aux);
3754 if ((prog->extflags & RXf_EVAL_SEEN))
3755 S_setup_eval_state(aTHX_ reginfo);
3757 reginfo->info_aux_eval = reginfo->info_aux->info_aux_eval = NULL;
3760 /* If there is a "must appear" string, look for it. */
3762 if (PL_curpm && (PM_GETRE(PL_curpm) == rx)) {
3763 /* We have to be careful. If the previous successful match
3764 was from this regex we don't want a subsequent partially
3765 successful match to clobber the old results.
3766 So when we detect this possibility we add a swap buffer
3767 to the re, and switch the buffer each match. If we fail,
3768 we switch it back; otherwise we leave it swapped.
3771 /* avoid leak if we die, or clean up anyway if match completes */
3773 Newxz(prog->offs, (prog->nparens + 1), regexp_paren_pair);
3774 DEBUG_BUFFERS_r(Perl_re_exec_indentf( aTHX_
3775 "rex=0x%" UVxf " saving offs: orig=0x%" UVxf " new=0x%" UVxf "\n",
3783 if (prog->recurse_locinput)
3784 Zero(prog->recurse_locinput,prog->nparens + 1, char *);
3786 /* Simplest case: anchored match need be tried only once, or with
3787 * MBOL, only at the beginning of each line.
3789 * Note that /.*.../ sets PREGf_IMPLICIT|MBOL, while /.*.../s sets
3790 * PREGf_IMPLICIT|SBOL. The idea is that with /.*.../s, if it doesn't
3791 * match at the start of the string then it won't match anywhere else
3792 * either; while with /.*.../, if it doesn't match at the beginning,
3793 * the earliest it could match is at the start of the next line */
3795 if (prog->intflags & (PREGf_ANCH & ~PREGf_ANCH_GPOS)) {
3798 if (regtry(reginfo, &s))
3801 if (!(prog->intflags & PREGf_ANCH_MBOL))
3804 /* didn't match at start, try at other newline positions */
3807 dontbother = minlen - 1;
3808 end = HOP3c(strend, -dontbother, strbeg) - 1;
3810 /* skip to next newline */
3812 while (s <= end) { /* note it could be possible to match at the end of the string */
3813 /* NB: newlines are the same in unicode as they are in latin */
3816 if (prog->check_substr || prog->check_utf8) {
3817 /* note that with PREGf_IMPLICIT, intuit can only fail
3818 * or return the start position, so it's of limited utility.
3819 * Nevertheless, I made the decision that the potential for
3820 * quick fail was still worth it - DAPM */
3821 s = re_intuit_start(rx, sv, strbeg, s, strend, flags, NULL);
3825 if (regtry(reginfo, &s))
3829 } /* end anchored search */
3831 if (prog->intflags & PREGf_ANCH_GPOS)
3833 /* PREGf_ANCH_GPOS should never be true if PREGf_GPOS_SEEN is not true */
3834 assert(prog->intflags & PREGf_GPOS_SEEN);
3835 /* For anchored \G, the only position it can match from is
3836 * (ganch-gofs); we already set startpos to this above; if intuit
3837 * moved us on from there, we can't possibly succeed */
3838 assert(startpos == HOPBACKc(reginfo->ganch, prog->gofs));
3839 if (s == startpos && regtry(reginfo, &s))
3844 /* Messy cases: unanchored match. */
3845 if ((prog->anchored_substr || prog->anchored_utf8) && prog->intflags & PREGf_SKIP) {
3846 /* we have /x+whatever/ */
3847 /* it must be a one character string (XXXX Except is_utf8_pat?) */
3853 if (! prog->anchored_utf8) {
3854 to_utf8_substr(prog);
3856 ch = SvPVX_const(prog->anchored_utf8)[0];
3857 REXEC_FBC_UTF8_SCAN(
3859 DEBUG_EXECUTE_r( did_match = 1 );
3860 if (regtry(reginfo, &s)) goto got_it;
3861 s += UTF8_SAFE_SKIP(s, strend);
3862 while (s < strend && *s == ch)