3 * Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 * 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
12 * "That only makes eleven (plus one mislaid) and not fourteen,
13 * unless wizards count differently to other people." --Beorn
15 * [p.115 of _The Hobbit_: "Queer Lodgings"]
19 =head1 Numeric functions
23 This file contains all the stuff needed by perl for manipulating numeric
24 values, including such things as replacements for the OS's atof() function
29 #define PERL_IN_NUMERIC_C
36 return f < I32_MIN ? (U32) I32_MIN : (U32)(I32) f;
39 if (f < U32_MAX_P1_HALF)
42 return ((U32) f) | (1 + U32_MAX >> 1);
47 return f > 0 ? U32_MAX : 0 /* NaN */;
54 return f < I32_MIN ? I32_MIN : (I32) f;
57 if (f < U32_MAX_P1_HALF)
60 return (I32)(((U32) f) | (1 + U32_MAX >> 1));
65 return f > 0 ? (I32)U32_MAX : 0 /* NaN */;
72 return f < IV_MIN ? IV_MIN : (IV) f;
75 /* For future flexibility allowing for sizeof(UV) >= sizeof(IV) */
76 if (f < UV_MAX_P1_HALF)
79 return (IV)(((UV) f) | (1 + UV_MAX >> 1));
84 return f > 0 ? (IV)UV_MAX : 0 /* NaN */;
91 return f < IV_MIN ? (UV) IV_MIN : (UV)(IV) f;
94 if (f < UV_MAX_P1_HALF)
97 return ((UV) f) | (1 + UV_MAX >> 1);
102 return f > 0 ? UV_MAX : 0 /* NaN */;
108 converts a string representing a binary number to numeric form.
110 On entry I<start> and I<*len> give the string to scan, I<*flags> gives
111 conversion flags, and I<result> should be NULL or a pointer to an NV.
112 The scan stops at the end of the string, or the first invalid character.
113 Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an
114 invalid character will also trigger a warning.
115 On return I<*len> is set to the length of the scanned string,
116 and I<*flags> gives output flags.
118 If the value is <= C<UV_MAX> it is returned as a UV, the output flags are clear,
119 and nothing is written to I<*result>. If the value is > UV_MAX C<grok_bin>
120 returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
121 and writes the value to I<*result> (or the value is discarded if I<result>
124 The binary number may optionally be prefixed with "0b" or "b" unless
125 C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If
126 C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the binary
127 number may use '_' characters to separate digits.
131 Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE
132 which suppresses any message for non-portable numbers that are still valid
137 Perl_grok_bin(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
139 const char *s = start;
144 const UV max_div_2 = UV_MAX / 2;
145 const bool allow_underscores = cBOOL(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
146 bool overflowed = FALSE;
149 PERL_ARGS_ASSERT_GROK_BIN;
151 if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) {
152 /* strip off leading b or 0b.
153 for compatibility silently suffer "b" and "0b" as valid binary
156 if (isALPHA_FOLD_EQ(s[0], 'b')) {
160 else if (len >= 2 && s[0] == '0' && (isALPHA_FOLD_EQ(s[1], 'b'))) {
167 for (; len-- && (bit = *s); s++) {
168 if (bit == '0' || bit == '1') {
169 /* Write it in this wonky order with a goto to attempt to get the
170 compiler to make the common case integer-only loop pretty tight.
171 With gcc seems to be much straighter code than old scan_bin. */
174 if (value <= max_div_2) {
175 value = (value << 1) | (bit - '0');
178 /* Bah. We're just overflowed. */
179 /* diag_listed_as: Integer overflow in %s number */
180 Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
181 "Integer overflow in binary number");
183 value_nv = (NV) value;
186 /* If an NV has not enough bits in its mantissa to
187 * represent a UV this summing of small low-order numbers
188 * is a waste of time (because the NV cannot preserve
189 * the low-order bits anyway): we could just remember when
190 * did we overflow and in the end just multiply value_nv by the
192 value_nv += (NV)(bit - '0');
195 if (bit == '_' && len && allow_underscores && (bit = s[1])
196 && (bit == '0' || bit == '1'))
202 if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT))
203 Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
204 "Illegal binary digit '%c' ignored", *s);
208 if ( ( overflowed && value_nv > 4294967295.0)
210 || (!overflowed && value > 0xffffffff
211 && ! (*flags & PERL_SCAN_SILENT_NON_PORTABLE))
214 Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE),
215 "Binary number > 0b11111111111111111111111111111111 non-portable");
222 *flags = PERL_SCAN_GREATER_THAN_UV_MAX;
231 converts a string representing a hex number to numeric form.
233 On entry I<start> and I<*len_p> give the string to scan, I<*flags> gives
234 conversion flags, and I<result> should be NULL or a pointer to an NV.
235 The scan stops at the end of the string, or the first invalid character.
236 Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an
237 invalid character will also trigger a warning.
238 On return I<*len> is set to the length of the scanned string,
239 and I<*flags> gives output flags.
241 If the value is <= UV_MAX it is returned as a UV, the output flags are clear,
242 and nothing is written to I<*result>. If the value is > UV_MAX C<grok_hex>
243 returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
244 and writes the value to I<*result> (or the value is discarded if I<result>
247 The hex number may optionally be prefixed with "0x" or "x" unless
248 C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If
249 C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the hex
250 number may use '_' characters to separate digits.
254 Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE
255 which suppresses any message for non-portable numbers, but which are valid
260 Perl_grok_hex(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
262 const char *s = start;
266 const UV max_div_16 = UV_MAX / 16;
267 const bool allow_underscores = cBOOL(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
268 bool overflowed = FALSE;
270 PERL_ARGS_ASSERT_GROK_HEX;
272 if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) {
273 /* strip off leading x or 0x.
274 for compatibility silently suffer "x" and "0x" as valid hex numbers.
277 if (isALPHA_FOLD_EQ(s[0], 'x')) {
281 else if (len >= 2 && s[0] == '0' && (isALPHA_FOLD_EQ(s[1], 'x'))) {
288 for (; len-- && *s; s++) {
290 /* Write it in this wonky order with a goto to attempt to get the
291 compiler to make the common case integer-only loop pretty tight.
292 With gcc seems to be much straighter code than old scan_hex. */
295 if (value <= max_div_16) {
296 value = (value << 4) | XDIGIT_VALUE(*s);
299 /* Bah. We're just overflowed. */
300 /* diag_listed_as: Integer overflow in %s number */
301 Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
302 "Integer overflow in hexadecimal number");
304 value_nv = (NV) value;
307 /* If an NV has not enough bits in its mantissa to
308 * represent a UV this summing of small low-order numbers
309 * is a waste of time (because the NV cannot preserve
310 * the low-order bits anyway): we could just remember when
311 * did we overflow and in the end just multiply value_nv by the
312 * right amount of 16-tuples. */
313 value_nv += (NV) XDIGIT_VALUE(*s);
316 if (*s == '_' && len && allow_underscores && s[1]
323 if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT))
324 Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
325 "Illegal hexadecimal digit '%c' ignored", *s);
329 if ( ( overflowed && value_nv > 4294967295.0)
331 || (!overflowed && value > 0xffffffff
332 && ! (*flags & PERL_SCAN_SILENT_NON_PORTABLE))
335 Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE),
336 "Hexadecimal number > 0xffffffff non-portable");
343 *flags = PERL_SCAN_GREATER_THAN_UV_MAX;
352 converts a string representing an octal number to numeric form.
354 On entry I<start> and I<*len> give the string to scan, I<*flags> gives
355 conversion flags, and I<result> should be NULL or a pointer to an NV.
356 The scan stops at the end of the string, or the first invalid character.
357 Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an
358 8 or 9 will also trigger a warning.
359 On return I<*len> is set to the length of the scanned string,
360 and I<*flags> gives output flags.
362 If the value is <= UV_MAX it is returned as a UV, the output flags are clear,
363 and nothing is written to I<*result>. If the value is > UV_MAX C<grok_oct>
364 returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags,
365 and writes the value to I<*result> (or the value is discarded if I<result>
368 If C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the octal
369 number may use '_' characters to separate digits.
373 Not documented yet because experimental is C<PERL_SCAN_SILENT_NON_PORTABLE>
374 which suppresses any message for non-portable numbers, but which are valid
379 Perl_grok_oct(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result)
381 const char *s = start;
385 const UV max_div_8 = UV_MAX / 8;
386 const bool allow_underscores = cBOOL(*flags & PERL_SCAN_ALLOW_UNDERSCORES);
387 bool overflowed = FALSE;
389 PERL_ARGS_ASSERT_GROK_OCT;
391 for (; len-- && *s; s++) {
393 /* Write it in this wonky order with a goto to attempt to get the
394 compiler to make the common case integer-only loop pretty tight.
398 if (value <= max_div_8) {
399 value = (value << 3) | OCTAL_VALUE(*s);
402 /* Bah. We're just overflowed. */
403 /* diag_listed_as: Integer overflow in %s number */
404 Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
405 "Integer overflow in octal number");
407 value_nv = (NV) value;
410 /* If an NV has not enough bits in its mantissa to
411 * represent a UV this summing of small low-order numbers
412 * is a waste of time (because the NV cannot preserve
413 * the low-order bits anyway): we could just remember when
414 * did we overflow and in the end just multiply value_nv by the
415 * right amount of 8-tuples. */
416 value_nv += (NV) OCTAL_VALUE(*s);
419 if (*s == '_' && len && allow_underscores && isOCTAL(s[1])) {
424 /* Allow \octal to work the DWIM way (that is, stop scanning
425 * as soon as non-octal characters are seen, complain only if
426 * someone seems to want to use the digits eight and nine. Since we
427 * know it is not octal, then if isDIGIT, must be an 8 or 9). */
429 if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT))
430 Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
431 "Illegal octal digit '%c' ignored", *s);
436 if ( ( overflowed && value_nv > 4294967295.0)
438 || (!overflowed && value > 0xffffffff
439 && ! (*flags & PERL_SCAN_SILENT_NON_PORTABLE))
442 Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE),
443 "Octal number > 037777777777 non-portable");
450 *flags = PERL_SCAN_GREATER_THAN_UV_MAX;
459 For backwards compatibility. Use C<grok_bin> instead.
463 For backwards compatibility. Use C<grok_hex> instead.
467 For backwards compatibility. Use C<grok_oct> instead.
473 Perl_scan_bin(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
476 I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
477 const UV ruv = grok_bin (start, &len, &flags, &rnv);
479 PERL_ARGS_ASSERT_SCAN_BIN;
482 return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
486 Perl_scan_oct(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
489 I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
490 const UV ruv = grok_oct (start, &len, &flags, &rnv);
492 PERL_ARGS_ASSERT_SCAN_OCT;
495 return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
499 Perl_scan_hex(pTHX_ const char *start, STRLEN len, STRLEN *retlen)
502 I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0;
503 const UV ruv = grok_hex (start, &len, &flags, &rnv);
505 PERL_ARGS_ASSERT_SCAN_HEX;
508 return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv;
512 =for apidoc grok_numeric_radix
514 Scan and skip for a numeric decimal separator (radix).
519 Perl_grok_numeric_radix(pTHX_ const char **sp, const char *send)
521 #ifdef USE_LOCALE_NUMERIC
522 PERL_ARGS_ASSERT_GROK_NUMERIC_RADIX;
524 if (IN_LC(LC_NUMERIC)) {
525 DECLARE_STORE_LC_NUMERIC_SET_TO_NEEDED();
526 if (PL_numeric_radix_sv) {
528 const char * const radix = SvPV(PL_numeric_radix_sv, len);
529 if (*sp + len <= send && memEQ(*sp, radix, len)) {
531 RESTORE_LC_NUMERIC();
535 RESTORE_LC_NUMERIC();
537 /* always try "." if numeric radix didn't match because
538 * we may have data from different locales mixed */
541 PERL_ARGS_ASSERT_GROK_NUMERIC_RADIX;
543 if (*sp < send && **sp == '.') {
556 /* Remember that NVSIZE may include garbage bytes, the most
557 * notable case being the x86 80-bit extended precision long doubles,
558 * which have 6 or 2 unused bytes (NVSIZE = 16 or NVSIZE = 12). */
559 for (i = 0; i < NVSIZE; i++) {
560 PerlIO_printf(Perl_debug_log, "%02x ", ((U8*)&nv)[i]);
562 PerlIO_printf(Perl_debug_log, "\n");
567 =for apidoc nan_hibyte
569 Given an NV, returns pointer to the byte containing the most
570 significant bit of the NaN, this bit is most commonly the
571 quiet/signaling bit of the NaN. The mask will contain a mask
572 appropriate for manipulating the most significant bit.
573 Note that this bit may not be the highest bit of the byte.
575 If the NV is not a NaN, returns NULL.
577 Most platforms have "high bit is one" -> quiet nan.
578 The known opposite exceptions are older MIPS and HPPA platforms.
580 Some platforms do not differentiate between quiet and signaling NaNs.
585 Perl_nan_hibyte(NV *nvp, U8* mask)
587 STRLEN i = (NV_MANT_REAL_DIG - 1) / 8;
589 PERL_ARGS_ASSERT_NAN_HIBYTE;
591 #if defined(USE_LONG_DOUBLE) && (LONG_DOUBLEKIND == LONG_DOUBLE_IS_X86_80_BIT_LITTLE_ENDIAN)
592 /* See the definition of NV_NAN_BITS. */
596 STRLEN j = (NV_MANT_REAL_DIG - 1) % 8;
601 return (U8*) nvp + NVSIZE - 1 - i;
603 #ifdef NV_LITTLE_ENDIAN
604 return (U8*) nvp + i;
609 =for apidoc nan_signaling_set
611 Set or unset the NaN signaling-ness.
613 Of those platforms that differentiate between quiet and signaling
614 platforms the majority has the semantics of the most significant bit
615 being on meaning quiet NaN, so for signaling we need to clear the bit.
617 Some platforms (older MIPS, and HPPA) have the opposite
618 semantics, and we set the bit for a signaling NaN.
623 Perl_nan_signaling_set(pTHX_ NV *nvp, bool signaling)
628 PERL_ARGS_ASSERT_NAN_SIGNALING_SET;
630 hibyte = nan_hibyte(nvp, &mask);
632 const NV nan = NV_NAN;
633 /* Decent optimizers should make the irrelevant branch to disappear.
634 * XXX Configure scan */
635 if ((((U8*)&nan)[hibyte - (U8*)nvp] & mask)) {
636 /* x86 style: the most significant bit of the NaN is off
637 * for a signaling NaN, and on for a quiet NaN. */
644 /* MIPS/HPPA style: the most significant bit of the NaN is on
645 * for a signaling NaN, and off for a quiet NaN. */
656 =for apidoc nan_is_signaling
658 Returns true if the nv is a NaN is a signaling NaN.
663 Perl_nan_is_signaling(NV nv)
665 /* Quiet NaN bit pattern (64-bit doubles, ignore endianness):
666 * x86 00 00 00 00 00 00 f8 7f
667 * sparc 7f ff ff ff ff ff ff ff
668 * mips 7f f7 ff ff ff ff ff ff
669 * hppa 7f f4 00 00 00 00 00 00
670 * The "7ff" is the exponent. The most significant bit of the NaN
671 * (note: here, not the most significant bit of the byte) is of
672 * interest: in the x86 style (also in sparc) the bit on means
673 * 'quiet', in the mips/hppa style the bit off means 'quiet'. */
674 #ifdef Perl_fp_classify_snan
675 return Perl_fp_classify_snan(nv);
677 if (Perl_isnan(nv)) {
679 U8 *hibyte = nan_hibyte(&nv, &mask);
681 /* Hoping NV_NAN is a quiet nan - this might be a false hope.
682 * XXX Configure test */
683 const NV nan = NV_NAN;
684 return (*hibyte & mask) != (((U8*)&nan)[hibyte - (U8*)&nv] & mask);
691 /* The largest known floating point numbers are the IEEE quadruple
692 * precision of 128 bits. */
693 #define MAX_NV_BYTES (128/8)
695 static const char nan_payload_error[] = "NaN payload error";
699 =for apidoc nan_payload_set
701 Set the NaN payload of the nv.
703 The first byte is the highest order byte of the payload (big-endian).
705 The signaling flag, if true, turns the generated NaN into a signaling one.
706 In most platforms this means turning _off_ the most significant bit of the
707 NaN. Note the _most_ - some platforms have the opposite semantics.
708 Do not assume any portability of the NaN semantics.
713 Perl_nan_payload_set(pTHX_ NV *nvp, const void *bytes, STRLEN byten, bool signaling)
715 /* How many bits we can set in the payload.
717 * Note that whether the most signicant bit is a quiet or
718 * signaling NaN is actually unstandardized. Most platforms use
719 * it as the 'quiet' bit. The known exceptions to this are older
722 * Yet another unstandardized area is what does the difference
723 * actually mean - if it exists: some platforms do not even have
726 * C99 nan() is supposed to generate quiet NaNs. */
727 int bits = NV_NAN_BITS;
735 /* XXX None of this works for doubledouble platforms, or for mixendians. */
737 PERL_ARGS_ASSERT_NAN_PAYLOAD_SET;
740 hibyte = nan_hibyte(nvp, &mask);
741 hibit = *hibyte & mask;
746 #ifdef NV_LITTLE_ENDIAN
750 if (byten > MAX_NV_BYTES) {
751 byten = MAX_NV_BYTES;
754 for (i = 0; bits > 0; i++) {
755 U8 b = i < byten ? ((U8*) bytes)[i] : 0;
756 if (bits > 0 && bits < 8) {
757 U8 m = (1 << bits) - 1;
758 ((U8*)nvp)[nvi] &= ~m;
759 ((U8*)nvp)[nvi] |= b & m;
768 #ifdef NV_LITTLE_ENDIAN
778 Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
781 nan_signaling_set(nvp, signaling);
785 =for apidoc grok_nan_payload
787 Helper for grok_nan().
789 Parses the "..." in C99-style "nan(...)" strings, and sets the nvp accordingly.
791 If you want the parse the "nan" part you need to use grok_nan().
796 Perl_grok_nan_payload(pTHX_ const char* s, const char* send, bool signaling, int *flags, NV* nvp)
798 U8 bytes[MAX_NV_BYTES];
800 const char *t = send - 1; /* minus one for ')' */
803 PERL_ARGS_ASSERT_GROK_NAN_PAYLOAD;
805 /* XXX: legacy nan payload formats like "nan123",
806 * "nan0xabc", or "nan(s123)" ("s" for signaling). */
808 while (t > s && isSPACE(*t)) t--;
814 *flags |= IS_NUMBER_TRAILING;
818 while (s < t && byten < MAX_NV_BYTES) {
822 if (s[0] == '0' && s + 2 < t &&
823 isALPHA_FOLD_EQ(s[1], 'x') &&
825 const char *u = s + 3;
829 while (isXDIGIT(*u)) u++;
831 uvflags = PERL_SCAN_ALLOW_UNDERSCORES;
832 uv = grok_hex(s, &len, &uvflags, NULL);
833 if ((uvflags & PERL_SCAN_GREATER_THAN_UV_MAX)) {
836 nantype = IS_NUMBER_IN_UV;
839 } else if (s[0] == '0' && s + 2 < t &&
840 isALPHA_FOLD_EQ(s[1], 'b') &&
841 (s[2] == '0' || s[2] == '1')) {
842 const char *u = s + 3;
846 while (*u == '0' || *u == '1') u++;
848 uvflags = PERL_SCAN_ALLOW_UNDERSCORES;
849 uv = grok_bin(s, &len, &uvflags, NULL);
850 if ((uvflags & PERL_SCAN_GREATER_THAN_UV_MAX)) {
853 nantype = IS_NUMBER_IN_UV;
856 } else if ((s[0] == '\'' || s[0] == '"') &&
857 s + 2 < t && t[-1] == s[0]) {
858 /* Perl extension: if the input looks like a string
859 * constant ('' or ""), read its bytes as-they-come. */
860 STRLEN n = t - s - 2;
862 if ((n > MAX_NV_BYTES - byten) ||
863 (n * 8 > NV_MANT_REAL_DIG)) {
867 /* Copy the bytes in reverse so that \x41\x42 ('AB')
868 * is equivalent to 0x4142. In other words, the bytes
869 * are in big-endian order. */
870 for (i = 0; i < n; i++) {
871 bytes[n - i - 1] = s[i + 1];
875 } else if (s < t && isDIGIT(*s)) {
878 grok_number_flags(s, (STRLEN)(t - s), &uv,
880 PERL_SCAN_ALLOW_UNDERSCORES);
881 /* Unfortunately grok_number_flags() doesn't
882 * tell how far we got and the ')' will always
883 * be "trailing", so we need to double-check
884 * whether we had something dubious. */
885 for (u = s; u < send - 1; u++) {
887 *flags |= IS_NUMBER_TRAILING;
896 /* XXX Doesn't do octal: nan("0123").
897 * Probably not a big loss. */
899 if (!(nantype & IS_NUMBER_IN_UV)) {
905 while (uv && byten < MAX_NV_BYTES) {
906 bytes[byten++] = (U8) (uv & 0xFF);
917 Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW),
922 *flags |= IS_NUMBER_TRAILING;
927 nan_payload_set(nvp, bytes, byten, signaling);
936 Helper for grok_infnan().
938 Parses the C99-style "nan(...)" strings, and sets the nvp accordingly.
940 *sp points to the beginning of "nan", which can be also "qnan", "nanq",
941 or "snan", "nans", and case is ignored.
943 The "..." is parsed with grok_nan_payload().
948 Perl_grok_nan(pTHX_ const char* s, const char* send, int *flags, NV* nvp)
950 bool signaling = FALSE;
952 PERL_ARGS_ASSERT_GROK_NAN;
954 if (isALPHA_FOLD_EQ(*s, 'S')) {
956 s++; if (s == send) return s;
957 } else if (isALPHA_FOLD_EQ(*s, 'Q')) {
958 s++; if (s == send) return s;
961 if (isALPHA_FOLD_EQ(*s, 'N')) {
962 s++; if (s == send || isALPHA_FOLD_NE(*s, 'A')) return s;
963 s++; if (s == send || isALPHA_FOLD_NE(*s, 'N')) return s;
966 *flags |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT;
968 /* NaN can be followed by various stuff (NaNQ, NaNS), while
969 * some legacy implementations have weird stuff like "NaN%"
970 * (no idea what that means). */
971 if (isALPHA_FOLD_EQ(*s, 's')) {
974 } else if (isALPHA_FOLD_EQ(*s, 'q')) {
979 const char *n = grok_nan_payload(s, send, signaling, flags, nvp);
980 if (n == send) return NULL;
983 *flags |= IS_NUMBER_TRAILING;
989 nan_payload_set(nvp, bytes, 1, signaling);
992 while (s < send && isSPACE(*s)) s++;
994 if (s < send && *s) {
995 /* Note that we here implicitly accept (parse as
996 * "nan", but with warnings) also any other weird
997 * trailing stuff for "nan". In the above we just
998 * check that if we got the C99-style "nan(...)",
999 * the "..." looks sane. If in future we accept
1000 * more ways of specifying the nan payload (like
1001 * "nan123" or "nan0xabc"), the accepting would
1002 * happen around here. */
1003 *flags |= IS_NUMBER_TRAILING;
1016 =for apidoc grok_infnan
1018 Helper for grok_number(), accepts various ways of spelling "infinity"
1019 or "not a number", and returns one of the following flag combinations:
1023 IS_NUMBER_INFINITE | IS_NUMBER_NEG
1024 IS_NUMBER_NAN | IS_NUMBER_NEG
1027 possibly |-ed with IS_NUMBER_TRAILING.
1029 If an infinity or a not-a-number is recognized, the *sp will point to
1030 one byte past the end of the recognized string. If the recognition fails,
1031 zero is returned, and the *sp will not move.
1037 Perl_grok_infnan(pTHX_ const char** sp, const char* send, NV* nvp)
1039 const char* s = *sp;
1041 bool odh = FALSE; /* one-dot-hash: 1.#INF */
1043 PERL_ARGS_ASSERT_GROK_INFNAN;
1045 /* XXX there are further legacy formats like HP-UX "++" for Inf
1046 * and "--" for -Inf. While we might be able to grok those in
1047 * string numification, having those in source code might open
1048 * up too much golfing: ++++;
1052 s++; if (s == send) return 0;
1054 else if (*s == '-') {
1055 flags |= IS_NUMBER_NEG; /* Yes, -NaN happens. Incorrect but happens. */
1056 s++; if (s == send) return 0;
1060 /* Visual C: 1.#SNAN, -1.#QNAN, 1#INF, 1.#IND (maybe also 1.#NAN)
1061 * Let's keep the dot optional. */
1062 s++; if (s == send) return 0;
1064 s++; if (s == send) return 0;
1067 s++; if (s == send) return 0;
1073 if (isALPHA_FOLD_EQ(*s, 'I')) {
1074 /* INF or IND (1.#IND is "indeterminate", a certain type of NAN) */
1076 s++; if (s == send || isALPHA_FOLD_NE(*s, 'N')) return 0;
1077 s++; if (s == send) return 0;
1078 if (isALPHA_FOLD_EQ(*s, 'F')) {
1080 if (s < send && (isALPHA_FOLD_EQ(*s, 'I'))) {
1082 flags | IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT | IS_NUMBER_TRAILING;
1083 s++; if (s == send || isALPHA_FOLD_NE(*s, 'N')) return fail;
1084 s++; if (s == send || isALPHA_FOLD_NE(*s, 'I')) return fail;
1085 s++; if (s == send || isALPHA_FOLD_NE(*s, 'T')) return fail;
1086 s++; if (s == send || isALPHA_FOLD_NE(*s, 'Y')) return fail;
1089 while (*s == '0') { /* 1.#INF00 */
1093 while (s < send && isSPACE(*s))
1095 if (s < send && *s) {
1096 flags |= IS_NUMBER_TRAILING;
1098 flags |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT;
1100 *nvp = (flags & IS_NUMBER_NEG) ? -NV_INF: NV_INF;
1103 else if (isALPHA_FOLD_EQ(*s, 'D') && odh) { /* 1.#IND */
1105 flags |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT;
1109 while (*s == '0') { /* 1.#IND00 */
1113 flags |= IS_NUMBER_TRAILING;
1119 /* Maybe NAN of some sort */
1120 const char *n = grok_nan(s, send, &flags, nvp);
1121 if (n == NULL) return 0;
1125 while (s < send && isSPACE(*s))
1133 =for apidoc grok_number2_flags
1135 Recognise (or not) a number. The type of the number is returned
1136 (0 if unrecognised), otherwise it is a bit-ORed combination of
1137 IS_NUMBER_IN_UV, IS_NUMBER_GREATER_THAN_UV_MAX, IS_NUMBER_NOT_INT,
1138 IS_NUMBER_NEG, IS_NUMBER_INFINITY, IS_NUMBER_NAN (defined in perl.h).
1140 If the value of the number can fit in a UV, it is returned in the *valuep
1141 IS_NUMBER_IN_UV will be set to indicate that *valuep is valid, IS_NUMBER_IN_UV
1142 will never be set unless *valuep is valid, but *valuep may have been assigned
1143 to during processing even though IS_NUMBER_IN_UV is not set on return.
1144 If valuep is NULL, IS_NUMBER_IN_UV will be set for the same cases as when
1145 valuep is non-NULL, but no actual assignment (or SEGV) will occur.
1147 The nvp is used to directly set the value for infinities (Inf) and
1148 not-a-numbers (NaN).
1150 IS_NUMBER_NOT_INT will be set with IS_NUMBER_IN_UV if trailing decimals were
1151 seen (in which case *valuep gives the true value truncated to an integer), and
1152 IS_NUMBER_NEG if the number is negative (in which case *valuep holds the
1153 absolute value). IS_NUMBER_IN_UV is not set if e notation was used or the
1154 number is larger than a UV.
1156 C<flags> allows only C<PERL_SCAN_TRAILING>, which allows for trailing
1157 non-numeric text on an otherwise successful I<grok>, setting
1158 C<IS_NUMBER_TRAILING> on the result.
1160 =for apidoc grok_number_flags
1162 Identical to grok_number2_flags() with nvp and flags set to zero.
1164 =for apidoc grok_number
1166 Identical to grok_number_flags() with flags set to zero.
1171 Perl_grok_number(pTHX_ const char *pv, STRLEN len, UV *valuep)
1173 PERL_ARGS_ASSERT_GROK_NUMBER;
1175 return grok_number_flags(pv, len, valuep, 0);
1179 Perl_grok_number_flags(pTHX_ const char *pv, STRLEN len, UV *valuep, U32 flags)
1181 PERL_ARGS_ASSERT_GROK_NUMBER_FLAGS;
1183 return grok_number2_flags(pv, len, valuep, NULL, flags);
1186 static const UV uv_max_div_10 = UV_MAX / 10;
1187 static const U8 uv_max_mod_10 = UV_MAX % 10;
1190 Perl_grok_number2_flags(pTHX_ const char *pv, STRLEN len, UV *valuep, NV *nvp, U32 flags)
1193 const char * const send = pv + len;
1197 PERL_ARGS_ASSERT_GROK_NUMBER2_FLAGS;
1199 while (s < send && isSPACE(*s))
1203 } else if (*s == '-') {
1205 numtype = IS_NUMBER_NEG;
1213 /* The first digit (after optional sign): note that might
1214 * also point to "infinity" or "nan", or "1.#INF". */
1217 /* next must be digit or the radix separator or beginning of infinity/nan */
1219 /* UVs are at least 32 bits, so the first 9 decimal digits cannot
1221 UV value = *s - '0';
1222 /* This construction seems to be more optimiser friendly.
1223 (without it gcc does the isDIGIT test and the *s - '0' separately)
1224 With it gcc on arm is managing 6 instructions (6 cycles) per digit.
1225 In theory the optimiser could deduce how far to unroll the loop
1226 before checking for overflow. */
1228 int digit = *s - '0';
1229 if (digit >= 0 && digit <= 9) {
1230 value = value * 10 + digit;
1233 if (digit >= 0 && digit <= 9) {
1234 value = value * 10 + digit;
1237 if (digit >= 0 && digit <= 9) {
1238 value = value * 10 + digit;
1241 if (digit >= 0 && digit <= 9) {
1242 value = value * 10 + digit;
1245 if (digit >= 0 && digit <= 9) {
1246 value = value * 10 + digit;
1249 if (digit >= 0 && digit <= 9) {
1250 value = value * 10 + digit;
1253 if (digit >= 0 && digit <= 9) {
1254 value = value * 10 + digit;
1257 if (digit >= 0 && digit <= 9) {
1258 value = value * 10 + digit;
1260 /* Now got 9 digits, so need to check
1261 each time for overflow. */
1263 while (digit >= 0 && digit <= 9
1264 && (value < uv_max_div_10
1265 || (value == uv_max_div_10
1266 && digit <= uv_max_mod_10))) {
1267 value = value * 10 + digit;
1273 if (digit >= 0 && digit <= 9
1275 /* value overflowed.
1276 skip the remaining digits, don't
1277 worry about setting *valuep. */
1280 } while (s < send && isDIGIT(*s));
1282 IS_NUMBER_GREATER_THAN_UV_MAX;
1302 numtype |= IS_NUMBER_IN_UV;
1307 if (GROK_NUMERIC_RADIX(&s, send)) {
1308 numtype |= IS_NUMBER_NOT_INT;
1309 while (s < send && isDIGIT(*s)) /* optional digits after the radix */
1313 else if (GROK_NUMERIC_RADIX(&s, send)) {
1314 numtype |= IS_NUMBER_NOT_INT | IS_NUMBER_IN_UV; /* valuep assigned below */
1315 /* no digits before the radix means we need digits after it */
1316 if (s < send && isDIGIT(*s)) {
1319 } while (s < send && isDIGIT(*s));
1321 /* integer approximation is valid - it's 0. */
1329 if (s > d && s < send) {
1330 /* we can have an optional exponent part */
1331 if (isALPHA_FOLD_EQ(*s, 'e')) {
1333 if (s < send && (*s == '-' || *s == '+'))
1335 if (s < send && isDIGIT(*s)) {
1338 } while (s < send && isDIGIT(*s));
1340 else if (flags & PERL_SCAN_TRAILING)
1341 return numtype | IS_NUMBER_TRAILING;
1345 /* The only flag we keep is sign. Blow away any "it's UV" */
1346 numtype &= IS_NUMBER_NEG;
1347 numtype |= IS_NUMBER_NOT_INT;
1350 while (s < send && isSPACE(*s))
1354 if (len == 10 && memEQ(pv, "0 but true", 10)) {
1357 return IS_NUMBER_IN_UV;
1359 /* We could be e.g. at "Inf" or "NaN", or at the "#" of "1.#INF". */
1360 if ((s + 2 < send) && strchr("inqs#", toFOLD(*s))) {
1361 /* Really detect inf/nan. Start at d, not s, since the above
1362 * code might have already consumed the "1." or "1". */
1364 int infnan = Perl_grok_infnan(aTHX_ &d, send, &nanv);
1365 if ((infnan & IS_NUMBER_INFINITY)) {
1367 *nvp = (numtype & IS_NUMBER_NEG) ? -NV_INF : NV_INF;
1369 return (numtype | infnan); /* Keep sign for infinity. */
1371 else if ((infnan & IS_NUMBER_NAN)) {
1375 return (numtype | infnan) & ~IS_NUMBER_NEG; /* Clear sign for nan. */
1378 else if (flags & PERL_SCAN_TRAILING) {
1379 return numtype | IS_NUMBER_TRAILING;
1386 =for apidoc grok_atou
1388 grok_atou is a safer replacement for atoi and strtol.
1390 grok_atou parses a C-style zero-byte terminated string, looking for
1391 a decimal unsigned integer.
1393 Returns the unsigned integer, if a valid value can be parsed
1394 from the beginning of the string.
1396 Accepts only the decimal digits '0'..'9'.
1398 As opposed to atoi or strtol, grok_atou does NOT allow optional
1399 leading whitespace, or negative inputs. If such features are
1400 required, the calling code needs to explicitly implement those.
1402 If a valid value cannot be parsed, returns either zero (if non-digits
1403 are met before any digits) or UV_MAX (if the value overflows).
1405 Note that extraneous leading zeros also count as an overflow
1406 (meaning that only "0" is the zero).
1408 On failure, the *endptr is also set to NULL, unless endptr is NULL.
1410 Trailing non-digit bytes are allowed if the endptr is non-NULL.
1411 On return the *endptr will contain the pointer to the first non-digit byte.
1413 If the endptr is NULL, the first non-digit byte MUST be
1414 the zero byte terminating the pv, or zero will be returned.
1416 Background: atoi has severe problems with illegal inputs, it cannot be
1417 used for incremental parsing, and therefore should be avoided
1418 atoi and strtol are also affected by locale settings, which can also be
1419 seen as a bug (global state controlled by user environment).
1425 Perl_grok_atou(const char *pv, const char** endptr)
1429 const char* end2; /* Used in case endptr is NULL. */
1430 UV val = 0; /* The return value. */
1432 PERL_ARGS_ASSERT_GROK_ATOU;
1434 eptr = endptr ? endptr : &end2;
1436 /* Single-digit inputs are quite common. */
1439 /* Extra leading zeros cause overflow. */
1444 while (isDIGIT(*s)) {
1445 /* This could be unrolled like in grok_number(), but
1446 * the expected uses of this are not speed-needy, and
1447 * unlikely to need full 64-bitness. */
1448 U8 digit = *s++ - '0';
1449 if (val < uv_max_div_10 ||
1450 (val == uv_max_div_10 && digit <= uv_max_mod_10)) {
1451 val = val * 10 + digit;
1460 *eptr = NULL; /* If no progress, failed to parse anything. */
1463 if (endptr == NULL && *s) {
1464 return 0; /* If endptr is NULL, no trailing non-digits allowed. */
1470 #ifndef USE_QUADMATH
1472 S_mulexp10(NV value, I32 exponent)
1484 /* On OpenVMS VAX we by default use the D_FLOAT double format,
1485 * and that format does not have *easy* capabilities [1] for
1486 * overflowing doubles 'silently' as IEEE fp does. We also need
1487 * to support G_FLOAT on both VAX and Alpha, and though the exponent
1488 * range is much larger than D_FLOAT it still doesn't do silent
1489 * overflow. Therefore we need to detect early whether we would
1490 * overflow (this is the behaviour of the native string-to-float
1491 * conversion routines, and therefore of native applications, too).
1493 * [1] Trying to establish a condition handler to trap floating point
1494 * exceptions is not a good idea. */
1496 /* In UNICOS and in certain Cray models (such as T90) there is no
1497 * IEEE fp, and no way at all from C to catch fp overflows gracefully.
1498 * There is something you can do if you are willing to use some
1499 * inline assembler: the instruction is called DFI-- but that will
1500 * disable *all* floating point interrupts, a little bit too large
1501 * a hammer. Therefore we need to catch potential overflows before
1504 #if ((defined(VMS) && !defined(_IEEE_FP)) || defined(_UNICOS)) && defined(NV_MAX_10_EXP)
1506 const NV exp_v = log10(value);
1507 if (exponent >= NV_MAX_10_EXP || exponent + exp_v >= NV_MAX_10_EXP)
1510 if (-(exponent + exp_v) >= NV_MAX_10_EXP)
1512 while (-exponent >= NV_MAX_10_EXP) {
1513 /* combination does not overflow, but 10^(-exponent) does */
1523 exponent = -exponent;
1524 #ifdef NV_MAX_10_EXP
1525 /* for something like 1234 x 10^-309, the action of calculating
1526 * the intermediate value 10^309 then returning 1234 / (10^309)
1527 * will fail, since 10^309 becomes infinity. In this case try to
1528 * refactor it as 123 / (10^308) etc.
1530 while (value && exponent > NV_MAX_10_EXP) {
1538 #if defined(__osf__)
1539 /* Even with cc -ieee + ieee_set_fp_control(IEEE_TRAP_ENABLE_INV)
1540 * Tru64 fp behavior on inf/nan is somewhat broken. Another way
1541 * to do this would be ieee_set_fp_control(IEEE_TRAP_ENABLE_OVF)
1542 * but that breaks another set of infnan.t tests. */
1543 # define FP_OVERFLOWS_TO_ZERO
1545 for (bit = 1; exponent; bit <<= 1) {
1546 if (exponent & bit) {
1549 #ifdef FP_OVERFLOWS_TO_ZERO
1551 return value < 0 ? -NV_INF : NV_INF;
1553 /* Floating point exceptions are supposed to be turned off,
1554 * but if we're obviously done, don't risk another iteration.
1556 if (exponent == 0) break;
1560 return negative ? value / result : value * result;
1562 #endif /* #ifndef USE_QUADMATH */
1565 Perl_my_atof(pTHX_ const char* s)
1569 Perl_my_atof2(aTHX_ s, &x);
1572 # ifdef USE_LOCALE_NUMERIC
1573 PERL_ARGS_ASSERT_MY_ATOF;
1576 DECLARE_STORE_LC_NUMERIC_SET_TO_NEEDED();
1577 if (PL_numeric_radix_sv && IN_LC(LC_NUMERIC)) {
1578 const char *standard = NULL, *local = NULL;
1579 bool use_standard_radix;
1581 /* Look through the string for the first thing that looks like a
1582 * decimal point: either the value in the current locale or the
1583 * standard fallback of '.'. The one which appears earliest in the
1584 * input string is the one that we should have atof look for. Note
1585 * that we have to determine this beforehand because on some
1586 * systems, Perl_atof2 is just a wrapper around the system's atof.
1588 standard = strchr(s, '.');
1589 local = strstr(s, SvPV_nolen(PL_numeric_radix_sv));
1591 use_standard_radix = standard && (!local || standard < local);
1593 if (use_standard_radix)
1594 SET_NUMERIC_STANDARD();
1598 if (use_standard_radix)
1599 SET_NUMERIC_LOCAL();
1603 RESTORE_LC_NUMERIC();
1614 # pragma warning(push)
1615 # pragma warning(disable:4756;disable:4056)
1618 S_my_atof_infnan(pTHX_ const char* s, bool negative, const char* send, NV* value)
1620 const char *p0 = negative ? s - 1 : s;
1622 int infnan = grok_infnan(&p, send, value);
1623 if (infnan && p != p0) {
1624 /* If we can generate inf/nan directly, let's do so. */
1626 if ((infnan & IS_NUMBER_INFINITY)) {
1627 /* grok_infnan() already set the value. */
1632 if ((infnan & IS_NUMBER_NAN)) {
1633 /* grok_infnan() already set the value. */
1638 /* If still here, we didn't have either NV_INF or NV_NAN,
1639 * and can try falling back to native strtod/strtold.
1641 * (Though, are our NV_INF or NV_NAN ever not defined?)
1643 * The native interface might not recognize all the possible
1644 * inf/nan strings Perl recognizes. What we can try
1645 * is to try faking the input. We will try inf/-inf/nan
1646 * as the most promising/portable input. */
1648 const char* fake = NULL;
1651 if ((infnan & IS_NUMBER_INFINITY)) {
1652 fake = ((infnan & IS_NUMBER_NEG)) ? "-inf" : "inf";
1654 else if ((infnan & IS_NUMBER_NAN)) {
1658 nv = Perl_strtod(fake, &endp);
1660 if ((infnan & IS_NUMBER_INFINITY)) {
1665 /* last resort, may generate SIGFPE */
1666 *value = Perl_exp((NV)1e9);
1667 if ((infnan & IS_NUMBER_NEG))
1670 return (char*)p; /* p, not endp */
1672 else if ((infnan & IS_NUMBER_NAN)) {
1677 /* last resort, may generate SIGFPE */
1678 *value = Perl_log((NV)-1.0);
1680 return (char*)p; /* p, not endp */
1684 #endif /* #ifdef Perl_strtod */
1689 # pragma warning(pop)
1693 Perl_my_atof2(pTHX_ const char* orig, NV* value)
1695 const char* s = orig;
1696 NV result[3] = {0.0, 0.0, 0.0};
1697 #if defined(USE_PERL_ATOF) || defined(USE_QUADMATH)
1698 const char* send = s + strlen(orig); /* one past the last */
1701 #if defined(USE_PERL_ATOF) && !defined(USE_QUADMATH)
1702 UV accumulator[2] = {0,0}; /* before/after dp */
1703 bool seen_digit = 0;
1704 I32 exp_adjust[2] = {0,0};
1705 I32 exp_acc[2] = {-1, -1};
1706 /* the current exponent adjust for the accumulators */
1711 I32 sig_digits = 0; /* noof significant digits seen so far */
1714 #if defined(USE_PERL_ATOF) || defined(USE_QUADMATH)
1715 PERL_ARGS_ASSERT_MY_ATOF2;
1717 /* leading whitespace */
1734 if ((endp = S_my_atof_infnan(s, negative, send, value)))
1736 result[2] = strtoflt128(s, &endp);
1738 *value = negative ? -result[2] : result[2];
1743 #elif defined(USE_PERL_ATOF)
1745 /* There is no point in processing more significant digits
1746 * than the NV can hold. Note that NV_DIG is a lower-bound value,
1747 * while we need an upper-bound value. We add 2 to account for this;
1748 * since it will have been conservative on both the first and last digit.
1749 * For example a 32-bit mantissa with an exponent of 4 would have
1750 * exact values in the set
1758 * where for the purposes of calculating NV_DIG we would have to discount
1759 * both the first and last digit, since neither can hold all values from
1760 * 0..9; but for calculating the value we must examine those two digits.
1762 #ifdef MAX_SIG_DIG_PLUS
1763 /* It is not necessarily the case that adding 2 to NV_DIG gets all the
1764 possible digits in a NV, especially if NVs are not IEEE compliant
1765 (e.g., long doubles on IRIX) - Allen <allens@cpan.org> */
1766 # define MAX_SIG_DIGITS (NV_DIG+MAX_SIG_DIG_PLUS)
1768 # define MAX_SIG_DIGITS (NV_DIG+2)
1771 /* the max number we can accumulate in a UV, and still safely do 10*N+9 */
1772 #define MAX_ACCUMULATE ( (UV) ((UV_MAX - 9)/10))
1776 if ((endp = S_my_atof_infnan(aTHX_ s, negative, send, value)))
1780 /* we accumulate digits into an integer; when this becomes too
1781 * large, we add the total to NV and start again */
1791 /* don't start counting until we see the first significant
1792 * digit, eg the 5 in 0.00005... */
1793 if (!sig_digits && digit == 0)
1796 if (++sig_digits > MAX_SIG_DIGITS) {
1797 /* limits of precision reached */
1799 ++accumulator[seen_dp];
1800 } else if (digit == 5) {
1801 if (old_digit % 2) { /* round to even - Allen */
1802 ++accumulator[seen_dp];
1810 /* skip remaining digits */
1811 while (isDIGIT(*s)) {
1817 /* warn of loss of precision? */
1820 if (accumulator[seen_dp] > MAX_ACCUMULATE) {
1821 /* add accumulator to result and start again */
1822 result[seen_dp] = S_mulexp10(result[seen_dp],
1824 + (NV)accumulator[seen_dp];
1825 accumulator[seen_dp] = 0;
1826 exp_acc[seen_dp] = 0;
1828 accumulator[seen_dp] = accumulator[seen_dp] * 10 + digit;
1832 else if (!seen_dp && GROK_NUMERIC_RADIX(&s, send)) {
1834 if (sig_digits > MAX_SIG_DIGITS) {
1837 } while (isDIGIT(*s));
1846 result[0] = S_mulexp10(result[0], exp_acc[0]) + (NV)accumulator[0];
1848 result[1] = S_mulexp10(result[1], exp_acc[1]) + (NV)accumulator[1];
1851 if (seen_digit && (isALPHA_FOLD_EQ(*s, 'e'))) {
1852 bool expnegative = 0;
1863 exponent = exponent * 10 + (*s++ - '0');
1865 exponent = -exponent;
1870 /* now apply the exponent */
1873 result[2] = S_mulexp10(result[0],exponent+exp_adjust[0])
1874 + S_mulexp10(result[1],exponent-exp_adjust[1]);
1876 result[2] = S_mulexp10(result[0],exponent+exp_adjust[0]);
1879 /* now apply the sign */
1881 result[2] = -result[2];
1882 #endif /* USE_PERL_ATOF */
1888 =for apidoc isinfnan
1890 Perl_isinfnan() is utility function that returns true if the NV
1891 argument is either an infinity or a NaN, false otherwise. To test
1892 in more detail, use Perl_isinf() and Perl_isnan().
1894 This is also the logical inverse of Perl_isfinite().
1899 Perl_isinfnan(NV nv)
1915 Checks whether the argument would be either an infinity or NaN when used
1916 as a number, but is careful not to trigger non-numeric or uninitialized
1917 warnings. it assumes the caller has done SvGETMAGIC(sv) already.
1923 Perl_isinfnansv(pTHX_ SV *sv)
1925 PERL_ARGS_ASSERT_ISINFNANSV;
1929 return Perl_isinfnan(SvNVX(sv));
1934 const char *s = SvPV_nomg_const(sv, len);
1935 return cBOOL(grok_infnan(&s, s+len, NULL));
1940 /* C99 has truncl, pre-C99 Solaris had aintl. We can use either with
1941 * copysignl to emulate modfl, which is in some platforms missing or
1943 # if defined(HAS_TRUNCL) && defined(HAS_COPYSIGNL)
1945 Perl_my_modfl(long double x, long double *ip)
1948 return (x == *ip ? copysignl(0.0L, x) : x - *ip);
1950 # elif defined(HAS_AINTL) && defined(HAS_COPYSIGNL)
1952 Perl_my_modfl(long double x, long double *ip)
1955 return (x == *ip ? copysignl(0.0L, x) : x - *ip);
1960 /* Similarly, with ilogbl and scalbnl we can emulate frexpl. */
1961 #if ! defined(HAS_FREXPL) && defined(HAS_ILOGBL) && defined(HAS_SCALBNL)
1963 Perl_my_frexpl(long double x, int *e) {
1964 *e = x == 0.0L ? 0 : ilogbl(x) + 1;
1965 return (scalbnl(x, -*e));
1970 =for apidoc Perl_signbit
1972 Return a non-zero integer if the sign bit on an NV is set, and 0 if
1975 If Configure detects this system has a signbit() that will work with
1976 our NVs, then we just use it via the #define in perl.h. Otherwise,
1977 fall back on this implementation. The main use of this function
1980 Configure notes: This function is called 'Perl_signbit' instead of a
1981 plain 'signbit' because it is easy to imagine a system having a signbit()
1982 function or macro that doesn't happen to work with our particular choice
1983 of NVs. We shouldn't just re-#define signbit as Perl_signbit and expect
1984 the standard system headers to be happy. Also, this is a no-context
1985 function (no pTHX_) because Perl_signbit() is usually re-#defined in
1986 perl.h as a simple macro call to the system's signbit().
1987 Users should just always call Perl_signbit().
1991 #if !defined(HAS_SIGNBIT)
1993 Perl_signbit(NV x) {
1994 # ifdef Perl_fp_class_nzero
1996 return Perl_fp_class_nzero(x);
1998 return (x < 0.0) ? 1 : 0;
2004 * c-indentation-style: bsd
2006 * indent-tabs-mode: nil
2009 * ex: set ts=8 sts=4 sw=4 et: