3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 * 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
9 * "I wonder what the Entish is for 'yes' and 'no'," he thought.
12 * This file contains the code that creates, manipulates and destroys
13 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
14 * structure of an SV, so their creation and destruction is handled
15 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
16 * level functions (eg. substr, split, join) for each of the types are
28 /* Missing proto on LynxOS */
29 char *gconvert(double, int, int, char *);
32 #ifdef PERL_UTF8_CACHE_ASSERT
33 /* if adding more checks watch out for the following tests:
34 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
35 * lib/utf8.t lib/Unicode/Collate/t/index.t
38 # define ASSERT_UTF8_CACHE(cache) \
39 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
40 assert((cache)[2] <= (cache)[3]); \
41 assert((cache)[3] <= (cache)[1]);} \
44 # define ASSERT_UTF8_CACHE(cache) NOOP
47 #ifdef PERL_OLD_COPY_ON_WRITE
48 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
49 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
50 /* This is a pessimistic view. Scalar must be purely a read-write PV to copy-
54 /* ============================================================================
56 =head1 Allocation and deallocation of SVs.
58 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
59 sv, av, hv...) contains type and reference count information, and for
60 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
61 contains fields specific to each type. Some types store all they need
62 in the head, so don't have a body.
64 In all but the most memory-paranoid configuations (ex: PURIFY), heads
65 and bodies are allocated out of arenas, which by default are
66 approximately 4K chunks of memory parcelled up into N heads or bodies.
67 Sv-bodies are allocated by their sv-type, guaranteeing size
68 consistency needed to allocate safely from arrays.
70 For SV-heads, the first slot in each arena is reserved, and holds a
71 link to the next arena, some flags, and a note of the number of slots.
72 Snaked through each arena chain is a linked list of free items; when
73 this becomes empty, an extra arena is allocated and divided up into N
74 items which are threaded into the free list.
76 SV-bodies are similar, but they use arena-sets by default, which
77 separate the link and info from the arena itself, and reclaim the 1st
78 slot in the arena. SV-bodies are further described later.
80 The following global variables are associated with arenas:
82 PL_sv_arenaroot pointer to list of SV arenas
83 PL_sv_root pointer to list of free SV structures
85 PL_body_arenas head of linked-list of body arenas
86 PL_body_roots[] array of pointers to list of free bodies of svtype
87 arrays are indexed by the svtype needed
89 A few special SV heads are not allocated from an arena, but are
90 instead directly created in the interpreter structure, eg PL_sv_undef.
91 The size of arenas can be changed from the default by setting
92 PERL_ARENA_SIZE appropriately at compile time.
94 The SV arena serves the secondary purpose of allowing still-live SVs
95 to be located and destroyed during final cleanup.
97 At the lowest level, the macros new_SV() and del_SV() grab and free
98 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
99 to return the SV to the free list with error checking.) new_SV() calls
100 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
101 SVs in the free list have their SvTYPE field set to all ones.
103 At the time of very final cleanup, sv_free_arenas() is called from
104 perl_destruct() to physically free all the arenas allocated since the
105 start of the interpreter.
107 The function visit() scans the SV arenas list, and calls a specified
108 function for each SV it finds which is still live - ie which has an SvTYPE
109 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
110 following functions (specified as [function that calls visit()] / [function
111 called by visit() for each SV]):
113 sv_report_used() / do_report_used()
114 dump all remaining SVs (debugging aid)
116 sv_clean_objs() / do_clean_objs(),do_clean_named_objs()
117 Attempt to free all objects pointed to by RVs,
118 and, unless DISABLE_DESTRUCTOR_KLUDGE is defined,
119 try to do the same for all objects indirectly
120 referenced by typeglobs too. Called once from
121 perl_destruct(), prior to calling sv_clean_all()
124 sv_clean_all() / do_clean_all()
125 SvREFCNT_dec(sv) each remaining SV, possibly
126 triggering an sv_free(). It also sets the
127 SVf_BREAK flag on the SV to indicate that the
128 refcnt has been artificially lowered, and thus
129 stopping sv_free() from giving spurious warnings
130 about SVs which unexpectedly have a refcnt
131 of zero. called repeatedly from perl_destruct()
132 until there are no SVs left.
134 =head2 Arena allocator API Summary
136 Private API to rest of sv.c
140 new_XIV(), del_XIV(),
141 new_XNV(), del_XNV(),
146 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
150 ============================================================================ */
153 * "A time to plant, and a time to uproot what was planted..."
157 Perl_offer_nice_chunk(pTHX_ void *const chunk, const U32 chunk_size)
163 PERL_ARGS_ASSERT_OFFER_NICE_CHUNK;
165 new_chunk = (void *)(chunk);
166 new_chunk_size = (chunk_size);
167 if (new_chunk_size > PL_nice_chunk_size) {
168 Safefree(PL_nice_chunk);
169 PL_nice_chunk = (char *) new_chunk;
170 PL_nice_chunk_size = new_chunk_size;
176 #ifdef DEBUG_LEAKING_SCALARS
177 # define FREE_SV_DEBUG_FILE(sv) Safefree((sv)->sv_debug_file)
179 # define FREE_SV_DEBUG_FILE(sv)
183 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
184 /* Whilst I'd love to do this, it seems that things like to check on
186 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
188 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
189 PoisonNew(&SvREFCNT(sv), 1, U32)
191 # define SvARENA_CHAIN(sv) SvANY(sv)
192 # define POSION_SV_HEAD(sv)
195 #define plant_SV(p) \
197 FREE_SV_DEBUG_FILE(p); \
199 SvARENA_CHAIN(p) = (void *)PL_sv_root; \
200 SvFLAGS(p) = SVTYPEMASK; \
205 #define uproot_SV(p) \
208 PL_sv_root = (SV*)SvARENA_CHAIN(p); \
213 /* make some more SVs by adding another arena */
222 sv_add_arena(PL_nice_chunk, PL_nice_chunk_size, 0);
223 PL_nice_chunk = NULL;
224 PL_nice_chunk_size = 0;
227 char *chunk; /* must use New here to match call to */
228 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
229 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
235 /* new_SV(): return a new, empty SV head */
237 #ifdef DEBUG_LEAKING_SCALARS
238 /* provide a real function for a debugger to play with */
247 sv = S_more_sv(aTHX);
251 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
252 sv->sv_debug_line = (U16) (PL_parser
253 ? PL_parser->copline == NOLINE
259 sv->sv_debug_inpad = 0;
260 sv->sv_debug_cloned = 0;
261 sv->sv_debug_file = PL_curcop ? savepv(CopFILE(PL_curcop)): NULL;
265 # define new_SV(p) (p)=S_new_SV(aTHX)
273 (p) = S_more_sv(aTHX); \
281 /* del_SV(): return an empty SV head to the free list */
294 S_del_sv(pTHX_ SV *p)
298 PERL_ARGS_ASSERT_DEL_SV;
303 for (sva = PL_sv_arenaroot; sva; sva = (SV *) SvANY(sva)) {
304 const SV * const sv = sva + 1;
305 const SV * const svend = &sva[SvREFCNT(sva)];
306 if (p >= sv && p < svend) {
312 if (ckWARN_d(WARN_INTERNAL))
313 Perl_warner(aTHX_ packWARN(WARN_INTERNAL),
314 "Attempt to free non-arena SV: 0x%"UVxf
315 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
322 #else /* ! DEBUGGING */
324 #define del_SV(p) plant_SV(p)
326 #endif /* DEBUGGING */
330 =head1 SV Manipulation Functions
332 =for apidoc sv_add_arena
334 Given a chunk of memory, link it to the head of the list of arenas,
335 and split it into a list of free SVs.
341 Perl_sv_add_arena(pTHX_ char *const ptr, const U32 size, const U32 flags)
344 SV* const sva = (SV*)ptr;
348 PERL_ARGS_ASSERT_SV_ADD_ARENA;
350 /* The first SV in an arena isn't an SV. */
351 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
352 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
353 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
355 PL_sv_arenaroot = sva;
356 PL_sv_root = sva + 1;
358 svend = &sva[SvREFCNT(sva) - 1];
361 SvARENA_CHAIN(sv) = (void *)(SV*)(sv + 1);
365 /* Must always set typemask because it's always checked in on cleanup
366 when the arenas are walked looking for objects. */
367 SvFLAGS(sv) = SVTYPEMASK;
370 SvARENA_CHAIN(sv) = 0;
374 SvFLAGS(sv) = SVTYPEMASK;
377 /* visit(): call the named function for each non-free SV in the arenas
378 * whose flags field matches the flags/mask args. */
381 S_visit(pTHX_ SVFUNC_t f, const U32 flags, const U32 mask)
387 PERL_ARGS_ASSERT_VISIT;
389 for (sva = PL_sv_arenaroot; sva; sva = (SV*)SvANY(sva)) {
390 register const SV * const svend = &sva[SvREFCNT(sva)];
392 for (sv = sva + 1; sv < svend; ++sv) {
393 if (SvTYPE(sv) != SVTYPEMASK
394 && (sv->sv_flags & mask) == flags
407 /* called by sv_report_used() for each live SV */
410 do_report_used(pTHX_ SV *const sv)
412 if (SvTYPE(sv) != SVTYPEMASK) {
413 PerlIO_printf(Perl_debug_log, "****\n");
420 =for apidoc sv_report_used
422 Dump the contents of all SVs not yet freed. (Debugging aid).
428 Perl_sv_report_used(pTHX)
431 visit(do_report_used, 0, 0);
437 /* called by sv_clean_objs() for each live SV */
440 do_clean_objs(pTHX_ SV *const ref)
445 SV * const target = SvRV(ref);
446 if (SvOBJECT(target)) {
447 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
448 if (SvWEAKREF(ref)) {
449 sv_del_backref(target, ref);
455 SvREFCNT_dec(target);
460 /* XXX Might want to check arrays, etc. */
463 /* called by sv_clean_objs() for each live SV */
465 #ifndef DISABLE_DESTRUCTOR_KLUDGE
467 do_clean_named_objs(pTHX_ SV *const sv)
470 assert(SvTYPE(sv) == SVt_PVGV);
471 assert(isGV_with_GP(sv));
474 #ifdef PERL_DONT_CREATE_GVSV
477 SvOBJECT(GvSV(sv))) ||
478 (GvAV(sv) && SvOBJECT(GvAV(sv))) ||
479 (GvHV(sv) && SvOBJECT(GvHV(sv))) ||
480 /* In certain rare cases GvIOp(sv) can be NULL, which would make SvOBJECT(GvIO(sv)) dereference NULL. */
481 (GvIO(sv) ? (SvFLAGS(GvIOp(sv)) & SVs_OBJECT) : 0) ||
482 (GvCV(sv) && SvOBJECT(GvCV(sv))) )
484 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning named glob object:\n "), sv_dump(sv)));
485 SvFLAGS(sv) |= SVf_BREAK;
493 =for apidoc sv_clean_objs
495 Attempt to destroy all objects not yet freed
501 Perl_sv_clean_objs(pTHX)
504 PL_in_clean_objs = TRUE;
505 visit(do_clean_objs, SVf_ROK, SVf_ROK);
506 #ifndef DISABLE_DESTRUCTOR_KLUDGE
507 /* some barnacles may yet remain, clinging to typeglobs */
508 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
510 PL_in_clean_objs = FALSE;
513 /* called by sv_clean_all() for each live SV */
516 do_clean_all(pTHX_ SV *const sv)
519 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
520 SvFLAGS(sv) |= SVf_BREAK;
525 =for apidoc sv_clean_all
527 Decrement the refcnt of each remaining SV, possibly triggering a
528 cleanup. This function may have to be called multiple times to free
529 SVs which are in complex self-referential hierarchies.
535 Perl_sv_clean_all(pTHX)
539 PL_in_clean_all = TRUE;
540 cleaned = visit(do_clean_all, 0,0);
541 PL_in_clean_all = FALSE;
546 ARENASETS: a meta-arena implementation which separates arena-info
547 into struct arena_set, which contains an array of struct
548 arena_descs, each holding info for a single arena. By separating
549 the meta-info from the arena, we recover the 1st slot, formerly
550 borrowed for list management. The arena_set is about the size of an
551 arena, avoiding the needless malloc overhead of a naive linked-list.
553 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
554 memory in the last arena-set (1/2 on average). In trade, we get
555 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
556 smaller types). The recovery of the wasted space allows use of
557 small arenas for large, rare body types, by changing array* fields
558 in body_details_by_type[] below.
561 char *arena; /* the raw storage, allocated aligned */
562 size_t size; /* its size ~4k typ */
563 U32 misc; /* type, and in future other things. */
568 /* Get the maximum number of elements in set[] such that struct arena_set
569 will fit within PERL_ARENA_SIZE, which is probably just under 4K, and
570 therefore likely to be 1 aligned memory page. */
572 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
573 - 2 * sizeof(int)) / sizeof (struct arena_desc))
576 struct arena_set* next;
577 unsigned int set_size; /* ie ARENAS_PER_SET */
578 unsigned int curr; /* index of next available arena-desc */
579 struct arena_desc set[ARENAS_PER_SET];
583 =for apidoc sv_free_arenas
585 Deallocate the memory used by all arenas. Note that all the individual SV
586 heads and bodies within the arenas must already have been freed.
591 Perl_sv_free_arenas(pTHX)
598 /* Free arenas here, but be careful about fake ones. (We assume
599 contiguity of the fake ones with the corresponding real ones.) */
601 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
602 svanext = (SV*) SvANY(sva);
603 while (svanext && SvFAKE(svanext))
604 svanext = (SV*) SvANY(svanext);
611 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
614 struct arena_set *current = aroot;
617 assert(aroot->set[i].arena);
618 Safefree(aroot->set[i].arena);
626 i = PERL_ARENA_ROOTS_SIZE;
628 PL_body_roots[i] = 0;
630 Safefree(PL_nice_chunk);
631 PL_nice_chunk = NULL;
632 PL_nice_chunk_size = 0;
638 Here are mid-level routines that manage the allocation of bodies out
639 of the various arenas. There are 5 kinds of arenas:
641 1. SV-head arenas, which are discussed and handled above
642 2. regular body arenas
643 3. arenas for reduced-size bodies
645 5. pte arenas (thread related)
647 Arena types 2 & 3 are chained by body-type off an array of
648 arena-root pointers, which is indexed by svtype. Some of the
649 larger/less used body types are malloced singly, since a large
650 unused block of them is wasteful. Also, several svtypes dont have
651 bodies; the data fits into the sv-head itself. The arena-root
652 pointer thus has a few unused root-pointers (which may be hijacked
653 later for arena types 4,5)
655 3 differs from 2 as an optimization; some body types have several
656 unused fields in the front of the structure (which are kept in-place
657 for consistency). These bodies can be allocated in smaller chunks,
658 because the leading fields arent accessed. Pointers to such bodies
659 are decremented to point at the unused 'ghost' memory, knowing that
660 the pointers are used with offsets to the real memory.
662 HE, HEK arenas are managed separately, with separate code, but may
663 be merge-able later..
665 PTE arenas are not sv-bodies, but they share these mid-level
666 mechanics, so are considered here. The new mid-level mechanics rely
667 on the sv_type of the body being allocated, so we just reserve one
668 of the unused body-slots for PTEs, then use it in those (2) PTE
669 contexts below (line ~10k)
672 /* get_arena(size): this creates custom-sized arenas
673 TBD: export properly for hv.c: S_more_he().
676 Perl_get_arena(pTHX_ const size_t arena_size, const U32 misc)
679 struct arena_desc* adesc;
680 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
683 /* shouldnt need this
684 if (!arena_size) arena_size = PERL_ARENA_SIZE;
687 /* may need new arena-set to hold new arena */
688 if (!aroot || aroot->curr >= aroot->set_size) {
689 struct arena_set *newroot;
690 Newxz(newroot, 1, struct arena_set);
691 newroot->set_size = ARENAS_PER_SET;
692 newroot->next = aroot;
694 PL_body_arenas = (void *) newroot;
695 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
698 /* ok, now have arena-set with at least 1 empty/available arena-desc */
699 curr = aroot->curr++;
700 adesc = &(aroot->set[curr]);
701 assert(!adesc->arena);
703 Newx(adesc->arena, arena_size, char);
704 adesc->size = arena_size;
706 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %"UVuf"\n",
707 curr, (void*)adesc->arena, (UV)arena_size));
713 /* return a thing to the free list */
715 #define del_body(thing, root) \
717 void ** const thing_copy = (void **)thing;\
718 *thing_copy = *root; \
719 *root = (void*)thing_copy; \
724 =head1 SV-Body Allocation
726 Allocation of SV-bodies is similar to SV-heads, differing as follows;
727 the allocation mechanism is used for many body types, so is somewhat
728 more complicated, it uses arena-sets, and has no need for still-live
731 At the outermost level, (new|del)_X*V macros return bodies of the
732 appropriate type. These macros call either (new|del)_body_type or
733 (new|del)_body_allocated macro pairs, depending on specifics of the
734 type. Most body types use the former pair, the latter pair is used to
735 allocate body types with "ghost fields".
737 "ghost fields" are fields that are unused in certain types, and
738 consequently dont need to actually exist. They are declared because
739 they're part of a "base type", which allows use of functions as
740 methods. The simplest examples are AVs and HVs, 2 aggregate types
741 which don't use the fields which support SCALAR semantics.
743 For these types, the arenas are carved up into *_allocated size
744 chunks, we thus avoid wasted memory for those unaccessed members.
745 When bodies are allocated, we adjust the pointer back in memory by the
746 size of the bit not allocated, so it's as if we allocated the full
747 structure. (But things will all go boom if you write to the part that
748 is "not there", because you'll be overwriting the last members of the
749 preceding structure in memory.)
751 We calculate the correction using the STRUCT_OFFSET macro. For
752 example, if xpv_allocated is the same structure as XPV then the two
753 OFFSETs sum to zero, and the pointer is unchanged. If the allocated
754 structure is smaller (no initial NV actually allocated) then the net
755 effect is to subtract the size of the NV from the pointer, to return a
756 new pointer as if an initial NV were actually allocated.
758 This is the same trick as was used for NV and IV bodies. Ironically it
759 doesn't need to be used for NV bodies any more, because NV is now at
760 the start of the structure. IV bodies don't need it either, because
761 they are no longer allocated.
763 In turn, the new_body_* allocators call S_new_body(), which invokes
764 new_body_inline macro, which takes a lock, and takes a body off the
765 linked list at PL_body_roots[sv_type], calling S_more_bodies() if
766 necessary to refresh an empty list. Then the lock is released, and
767 the body is returned.
769 S_more_bodies calls get_arena(), and carves it up into an array of N
770 bodies, which it strings into a linked list. It looks up arena-size
771 and body-size from the body_details table described below, thus
772 supporting the multiple body-types.
774 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
775 the (new|del)_X*V macros are mapped directly to malloc/free.
781 For each sv-type, struct body_details bodies_by_type[] carries
782 parameters which control these aspects of SV handling:
784 Arena_size determines whether arenas are used for this body type, and if
785 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
786 zero, forcing individual mallocs and frees.
788 Body_size determines how big a body is, and therefore how many fit into
789 each arena. Offset carries the body-pointer adjustment needed for
790 *_allocated body types, and is used in *_allocated macros.
792 But its main purpose is to parameterize info needed in
793 Perl_sv_upgrade(). The info here dramatically simplifies the function
794 vs the implementation in 5.8.7, making it table-driven. All fields
795 are used for this, except for arena_size.
797 For the sv-types that have no bodies, arenas are not used, so those
798 PL_body_roots[sv_type] are unused, and can be overloaded. In
799 something of a special case, SVt_NULL is borrowed for HE arenas;
800 PL_body_roots[HE_SVSLOT=SVt_NULL] is filled by S_more_he, but the
801 bodies_by_type[SVt_NULL] slot is not used, as the table is not
804 PTEs also use arenas, but are never seen in Perl_sv_upgrade. Nonetheless,
805 they get their own slot in bodies_by_type[PTE_SVSLOT =SVt_IV], so they can
806 just use the same allocation semantics. At first, PTEs were also
807 overloaded to a non-body sv-type, but this yielded hard-to-find malloc
808 bugs, so was simplified by claiming a new slot. This choice has no
809 consequence at this time.
813 struct body_details {
814 U8 body_size; /* Size to allocate */
815 U8 copy; /* Size of structure to copy (may be shorter) */
817 unsigned int type : 4; /* We have space for a sanity check. */
818 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
819 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
820 unsigned int arena : 1; /* Allocated from an arena */
821 size_t arena_size; /* Size of arena to allocate */
829 /* With -DPURFIY we allocate everything directly, and don't use arenas.
830 This seems a rather elegant way to simplify some of the code below. */
831 #define HASARENA FALSE
833 #define HASARENA TRUE
835 #define NOARENA FALSE
837 /* Size the arenas to exactly fit a given number of bodies. A count
838 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
839 simplifying the default. If count > 0, the arena is sized to fit
840 only that many bodies, allowing arenas to be used for large, rare
841 bodies (XPVFM, XPVIO) without undue waste. The arena size is
842 limited by PERL_ARENA_SIZE, so we can safely oversize the
845 #define FIT_ARENA0(body_size) \
846 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
847 #define FIT_ARENAn(count,body_size) \
848 ( count * body_size <= PERL_ARENA_SIZE) \
849 ? count * body_size \
850 : FIT_ARENA0 (body_size)
851 #define FIT_ARENA(count,body_size) \
853 ? FIT_ARENAn (count, body_size) \
854 : FIT_ARENA0 (body_size)
856 /* A macro to work out the offset needed to subtract from a pointer to (say)
863 to make its members accessible via a pointer to (say)
873 #define relative_STRUCT_OFFSET(longer, shorter, member) \
874 (STRUCT_OFFSET(shorter, member) - STRUCT_OFFSET(longer, member))
876 /* Calculate the length to copy. Specifically work out the length less any
877 final padding the compiler needed to add. See the comment in sv_upgrade
878 for why copying the padding proved to be a bug. */
880 #define copy_length(type, last_member) \
881 STRUCT_OFFSET(type, last_member) \
882 + sizeof (((type*)SvANY((SV*)0))->last_member)
884 static const struct body_details bodies_by_type[] = {
885 { sizeof(HE), 0, 0, SVt_NULL,
886 FALSE, NONV, NOARENA, FIT_ARENA(0, sizeof(HE)) },
888 /* The bind placeholder pretends to be an RV for now.
889 Also it's marked as "can't upgrade" to stop anyone using it before it's
891 { 0, 0, 0, SVt_BIND, TRUE, NONV, NOARENA, 0 },
893 /* IVs are in the head, so the allocation size is 0.
894 However, the slot is overloaded for PTEs. */
895 { sizeof(struct ptr_tbl_ent), /* This is used for PTEs. */
896 sizeof(IV), /* This is used to copy out the IV body. */
897 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
898 NOARENA /* IVS don't need an arena */,
899 /* But PTEs need to know the size of their arena */
900 FIT_ARENA(0, sizeof(struct ptr_tbl_ent))
903 /* 8 bytes on most ILP32 with IEEE doubles */
904 { sizeof(NV), sizeof(NV), 0, SVt_NV, FALSE, HADNV, HASARENA,
905 FIT_ARENA(0, sizeof(NV)) },
907 /* 8 bytes on most ILP32 with IEEE doubles */
908 { sizeof(xpv_allocated),
909 copy_length(XPV, xpv_len)
910 - relative_STRUCT_OFFSET(xpv_allocated, XPV, xpv_cur),
911 + relative_STRUCT_OFFSET(xpv_allocated, XPV, xpv_cur),
912 SVt_PV, FALSE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpv_allocated)) },
915 { sizeof(xpviv_allocated),
916 copy_length(XPVIV, xiv_u)
917 - relative_STRUCT_OFFSET(xpviv_allocated, XPVIV, xpv_cur),
918 + relative_STRUCT_OFFSET(xpviv_allocated, XPVIV, xpv_cur),
919 SVt_PVIV, FALSE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpviv_allocated)) },
922 { sizeof(XPVNV), copy_length(XPVNV, xiv_u), 0, SVt_PVNV, FALSE, HADNV,
923 HASARENA, FIT_ARENA(0, sizeof(XPVNV)) },
926 { sizeof(XPVMG), copy_length(XPVMG, xmg_stash), 0, SVt_PVMG, FALSE, HADNV,
927 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
930 { sizeof(struct regexp_allocated), sizeof(struct regexp_allocated),
931 + relative_STRUCT_OFFSET(struct regexp_allocated, regexp, xpv_cur),
932 SVt_REGEXP, FALSE, NONV, HASARENA,
933 FIT_ARENA(0, sizeof(struct regexp_allocated))
937 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
938 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
941 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
942 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
944 { sizeof(xpvav_allocated),
945 copy_length(XPVAV, xmg_stash)
946 - relative_STRUCT_OFFSET(xpvav_allocated, XPVAV, xav_fill),
947 + relative_STRUCT_OFFSET(xpvav_allocated, XPVAV, xav_fill),
948 SVt_PVAV, TRUE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpvav_allocated)) },
950 { sizeof(xpvhv_allocated),
951 copy_length(XPVHV, xmg_stash)
952 - relative_STRUCT_OFFSET(xpvhv_allocated, XPVHV, xhv_fill),
953 + relative_STRUCT_OFFSET(xpvhv_allocated, XPVHV, xhv_fill),
954 SVt_PVHV, TRUE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpvhv_allocated)) },
957 { sizeof(xpvcv_allocated), sizeof(xpvcv_allocated),
958 + relative_STRUCT_OFFSET(xpvcv_allocated, XPVCV, xpv_cur),
959 SVt_PVCV, TRUE, NONV, HASARENA, FIT_ARENA(0, sizeof(xpvcv_allocated)) },
961 { sizeof(xpvfm_allocated), sizeof(xpvfm_allocated),
962 + relative_STRUCT_OFFSET(xpvfm_allocated, XPVFM, xpv_cur),
963 SVt_PVFM, TRUE, NONV, NOARENA, FIT_ARENA(20, sizeof(xpvfm_allocated)) },
965 /* XPVIO is 84 bytes, fits 48x */
966 { sizeof(xpvio_allocated), sizeof(xpvio_allocated),
967 + relative_STRUCT_OFFSET(xpvio_allocated, XPVIO, xpv_cur),
968 SVt_PVIO, TRUE, NONV, HASARENA, FIT_ARENA(24, sizeof(xpvio_allocated)) },
971 #define new_body_type(sv_type) \
972 (void *)((char *)S_new_body(aTHX_ sv_type))
974 #define del_body_type(p, sv_type) \
975 del_body(p, &PL_body_roots[sv_type])
978 #define new_body_allocated(sv_type) \
979 (void *)((char *)S_new_body(aTHX_ sv_type) \
980 - bodies_by_type[sv_type].offset)
982 #define del_body_allocated(p, sv_type) \
983 del_body(p + bodies_by_type[sv_type].offset, &PL_body_roots[sv_type])
986 #define my_safemalloc(s) (void*)safemalloc(s)
987 #define my_safecalloc(s) (void*)safecalloc(s, 1)
988 #define my_safefree(p) safefree((char*)p)
992 #define new_XNV() my_safemalloc(sizeof(XPVNV))
993 #define del_XNV(p) my_safefree(p)
995 #define new_XPVNV() my_safemalloc(sizeof(XPVNV))
996 #define del_XPVNV(p) my_safefree(p)
998 #define new_XPVAV() my_safemalloc(sizeof(XPVAV))
999 #define del_XPVAV(p) my_safefree(p)
1001 #define new_XPVHV() my_safemalloc(sizeof(XPVHV))
1002 #define del_XPVHV(p) my_safefree(p)
1004 #define new_XPVMG() my_safemalloc(sizeof(XPVMG))
1005 #define del_XPVMG(p) my_safefree(p)
1007 #define new_XPVGV() my_safemalloc(sizeof(XPVGV))
1008 #define del_XPVGV(p) my_safefree(p)
1012 #define new_XNV() new_body_type(SVt_NV)
1013 #define del_XNV(p) del_body_type(p, SVt_NV)
1015 #define new_XPVNV() new_body_type(SVt_PVNV)
1016 #define del_XPVNV(p) del_body_type(p, SVt_PVNV)
1018 #define new_XPVAV() new_body_allocated(SVt_PVAV)
1019 #define del_XPVAV(p) del_body_allocated(p, SVt_PVAV)
1021 #define new_XPVHV() new_body_allocated(SVt_PVHV)
1022 #define del_XPVHV(p) del_body_allocated(p, SVt_PVHV)
1024 #define new_XPVMG() new_body_type(SVt_PVMG)
1025 #define del_XPVMG(p) del_body_type(p, SVt_PVMG)
1027 #define new_XPVGV() new_body_type(SVt_PVGV)
1028 #define del_XPVGV(p) del_body_type(p, SVt_PVGV)
1032 /* no arena for you! */
1034 #define new_NOARENA(details) \
1035 my_safemalloc((details)->body_size + (details)->offset)
1036 #define new_NOARENAZ(details) \
1037 my_safecalloc((details)->body_size + (details)->offset)
1040 S_more_bodies (pTHX_ const svtype sv_type)
1043 void ** const root = &PL_body_roots[sv_type];
1044 const struct body_details * const bdp = &bodies_by_type[sv_type];
1045 const size_t body_size = bdp->body_size;
1048 const size_t arena_size = Perl_malloc_good_size(bdp->arena_size);
1049 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1050 static bool done_sanity_check;
1052 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1053 * variables like done_sanity_check. */
1054 if (!done_sanity_check) {
1055 unsigned int i = SVt_LAST;
1057 done_sanity_check = TRUE;
1060 assert (bodies_by_type[i].type == i);
1064 assert(bdp->arena_size);
1066 start = (char*) Perl_get_arena(aTHX_ arena_size, sv_type);
1068 end = start + arena_size - 2 * body_size;
1070 /* computed count doesnt reflect the 1st slot reservation */
1071 #if defined(MYMALLOC) || defined(HAS_MALLOC_GOOD_SIZE)
1072 DEBUG_m(PerlIO_printf(Perl_debug_log,
1073 "arena %p end %p arena-size %d (from %d) type %d "
1075 (void*)start, (void*)end, (int)arena_size,
1076 (int)bdp->arena_size, sv_type, (int)body_size,
1077 (int)arena_size / (int)body_size));
1079 DEBUG_m(PerlIO_printf(Perl_debug_log,
1080 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1081 (void*)start, (void*)end,
1082 (int)bdp->arena_size, sv_type, (int)body_size,
1083 (int)bdp->arena_size / (int)body_size));
1085 *root = (void *)start;
1087 while (start <= end) {
1088 char * const next = start + body_size;
1089 *(void**) start = (void *)next;
1092 *(void **)start = 0;
1097 /* grab a new thing from the free list, allocating more if necessary.
1098 The inline version is used for speed in hot routines, and the
1099 function using it serves the rest (unless PURIFY).
1101 #define new_body_inline(xpv, sv_type) \
1103 void ** const r3wt = &PL_body_roots[sv_type]; \
1104 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1105 ? *((void **)(r3wt)) : more_bodies(sv_type)); \
1106 *(r3wt) = *(void**)(xpv); \
1112 S_new_body(pTHX_ const svtype sv_type)
1116 new_body_inline(xpv, sv_type);
1122 static const struct body_details fake_rv =
1123 { 0, 0, 0, SVt_IV, FALSE, NONV, NOARENA, 0 };
1126 =for apidoc sv_upgrade
1128 Upgrade an SV to a more complex form. Generally adds a new body type to the
1129 SV, then copies across as much information as possible from the old body.
1130 You generally want to use the C<SvUPGRADE> macro wrapper. See also C<svtype>.
1136 Perl_sv_upgrade(pTHX_ register SV *const sv, svtype new_type)
1141 const svtype old_type = SvTYPE(sv);
1142 const struct body_details *new_type_details;
1143 const struct body_details *old_type_details
1144 = bodies_by_type + old_type;
1145 SV *referant = NULL;
1147 PERL_ARGS_ASSERT_SV_UPGRADE;
1149 if (new_type != SVt_PV && SvIsCOW(sv)) {
1150 sv_force_normal_flags(sv, 0);
1153 if (old_type == new_type)
1156 old_body = SvANY(sv);
1158 /* Copying structures onto other structures that have been neatly zeroed
1159 has a subtle gotcha. Consider XPVMG
1161 +------+------+------+------+------+-------+-------+
1162 | NV | CUR | LEN | IV | MAGIC | STASH |
1163 +------+------+------+------+------+-------+-------+
1164 0 4 8 12 16 20 24 28
1166 where NVs are aligned to 8 bytes, so that sizeof that structure is
1167 actually 32 bytes long, with 4 bytes of padding at the end:
1169 +------+------+------+------+------+-------+-------+------+
1170 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1171 +------+------+------+------+------+-------+-------+------+
1172 0 4 8 12 16 20 24 28 32
1174 so what happens if you allocate memory for this structure:
1176 +------+------+------+------+------+-------+-------+------+------+...
1177 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1178 +------+------+------+------+------+-------+-------+------+------+...
1179 0 4 8 12 16 20 24 28 32 36
1181 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1182 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1183 started out as zero once, but it's quite possible that it isn't. So now,
1184 rather than a nicely zeroed GP, you have it pointing somewhere random.
1187 (In fact, GP ends up pointing at a previous GP structure, because the
1188 principle cause of the padding in XPVMG getting garbage is a copy of
1189 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1190 this happens to be moot because XPVGV has been re-ordered, with GP
1191 no longer after STASH)
1193 So we are careful and work out the size of used parts of all the
1201 referant = SvRV(sv);
1202 old_type_details = &fake_rv;
1203 if (new_type == SVt_NV)
1204 new_type = SVt_PVNV;
1206 if (new_type < SVt_PVIV) {
1207 new_type = (new_type == SVt_NV)
1208 ? SVt_PVNV : SVt_PVIV;
1213 if (new_type < SVt_PVNV) {
1214 new_type = SVt_PVNV;
1218 assert(new_type > SVt_PV);
1219 assert(SVt_IV < SVt_PV);
1220 assert(SVt_NV < SVt_PV);
1227 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1228 there's no way that it can be safely upgraded, because perl.c
1229 expects to Safefree(SvANY(PL_mess_sv)) */
1230 assert(sv != PL_mess_sv);
1231 /* This flag bit is used to mean other things in other scalar types.
1232 Given that it only has meaning inside the pad, it shouldn't be set
1233 on anything that can get upgraded. */
1234 assert(!SvPAD_TYPED(sv));
1237 if (old_type_details->cant_upgrade)
1238 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1239 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1242 if (old_type > new_type)
1243 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1244 (int)old_type, (int)new_type);
1246 new_type_details = bodies_by_type + new_type;
1248 SvFLAGS(sv) &= ~SVTYPEMASK;
1249 SvFLAGS(sv) |= new_type;
1251 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1252 the return statements above will have triggered. */
1253 assert (new_type != SVt_NULL);
1256 assert(old_type == SVt_NULL);
1257 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1261 assert(old_type == SVt_NULL);
1262 SvANY(sv) = new_XNV();
1267 assert(new_type_details->body_size);
1270 assert(new_type_details->arena);
1271 assert(new_type_details->arena_size);
1272 /* This points to the start of the allocated area. */
1273 new_body_inline(new_body, new_type);
1274 Zero(new_body, new_type_details->body_size, char);
1275 new_body = ((char *)new_body) - new_type_details->offset;
1277 /* We always allocated the full length item with PURIFY. To do this
1278 we fake things so that arena is false for all 16 types.. */
1279 new_body = new_NOARENAZ(new_type_details);
1281 SvANY(sv) = new_body;
1282 if (new_type == SVt_PVAV) {
1286 if (old_type_details->body_size) {
1289 /* It will have been zeroed when the new body was allocated.
1290 Lets not write to it, in case it confuses a write-back
1296 #ifndef NODEFAULT_SHAREKEYS
1297 HvSHAREKEYS_on(sv); /* key-sharing on by default */
1299 HvMAX(sv) = 7; /* (start with 8 buckets) */
1300 if (old_type_details->body_size) {
1303 /* It will have been zeroed when the new body was allocated.
1304 Lets not write to it, in case it confuses a write-back
1309 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1310 The target created by newSVrv also is, and it can have magic.
1311 However, it never has SvPVX set.
1313 if (old_type == SVt_IV) {
1315 } else if (old_type >= SVt_PV) {
1316 assert(SvPVX_const(sv) == 0);
1319 if (old_type >= SVt_PVMG) {
1320 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1321 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1323 sv->sv_u.svu_array = NULL; /* or svu_hash */
1329 /* XXX Is this still needed? Was it ever needed? Surely as there is
1330 no route from NV to PVIV, NOK can never be true */
1331 assert(!SvNOKp(sv));
1343 assert(new_type_details->body_size);
1344 /* We always allocated the full length item with PURIFY. To do this
1345 we fake things so that arena is false for all 16 types.. */
1346 if(new_type_details->arena) {
1347 /* This points to the start of the allocated area. */
1348 new_body_inline(new_body, new_type);
1349 Zero(new_body, new_type_details->body_size, char);
1350 new_body = ((char *)new_body) - new_type_details->offset;
1352 new_body = new_NOARENAZ(new_type_details);
1354 SvANY(sv) = new_body;
1356 if (old_type_details->copy) {
1357 /* There is now the potential for an upgrade from something without
1358 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1359 int offset = old_type_details->offset;
1360 int length = old_type_details->copy;
1362 if (new_type_details->offset > old_type_details->offset) {
1363 const int difference
1364 = new_type_details->offset - old_type_details->offset;
1365 offset += difference;
1366 length -= difference;
1368 assert (length >= 0);
1370 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1374 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1375 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1376 * correct 0.0 for us. Otherwise, if the old body didn't have an
1377 * NV slot, but the new one does, then we need to initialise the
1378 * freshly created NV slot with whatever the correct bit pattern is
1380 if (old_type_details->zero_nv && !new_type_details->zero_nv
1381 && !isGV_with_GP(sv))
1385 if (new_type == SVt_PVIO)
1386 IoPAGE_LEN(sv) = 60;
1387 if (old_type < SVt_PV) {
1388 /* referant will be NULL unless the old type was SVt_IV emulating
1390 sv->sv_u.svu_rv = referant;
1394 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1395 (unsigned long)new_type);
1398 if (old_type_details->arena) {
1399 /* If there was an old body, then we need to free it.
1400 Note that there is an assumption that all bodies of types that
1401 can be upgraded came from arenas. Only the more complex non-
1402 upgradable types are allowed to be directly malloc()ed. */
1404 my_safefree(old_body);
1406 del_body((void*)((char*)old_body + old_type_details->offset),
1407 &PL_body_roots[old_type]);
1413 =for apidoc sv_backoff
1415 Remove any string offset. You should normally use the C<SvOOK_off> macro
1422 Perl_sv_backoff(pTHX_ register SV *const sv)
1425 const char * const s = SvPVX_const(sv);
1427 PERL_ARGS_ASSERT_SV_BACKOFF;
1428 PERL_UNUSED_CONTEXT;
1431 assert(SvTYPE(sv) != SVt_PVHV);
1432 assert(SvTYPE(sv) != SVt_PVAV);
1434 SvOOK_offset(sv, delta);
1436 SvLEN_set(sv, SvLEN(sv) + delta);
1437 SvPV_set(sv, SvPVX(sv) - delta);
1438 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1439 SvFLAGS(sv) &= ~SVf_OOK;
1446 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1447 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1448 Use the C<SvGROW> wrapper instead.
1454 Perl_sv_grow(pTHX_ register SV *const sv, register STRLEN newlen)
1458 PERL_ARGS_ASSERT_SV_GROW;
1460 if (PL_madskills && newlen >= 0x100000) {
1461 PerlIO_printf(Perl_debug_log,
1462 "Allocation too large: %"UVxf"\n", (UV)newlen);
1464 #ifdef HAS_64K_LIMIT
1465 if (newlen >= 0x10000) {
1466 PerlIO_printf(Perl_debug_log,
1467 "Allocation too large: %"UVxf"\n", (UV)newlen);
1470 #endif /* HAS_64K_LIMIT */
1473 if (SvTYPE(sv) < SVt_PV) {
1474 sv_upgrade(sv, SVt_PV);
1475 s = SvPVX_mutable(sv);
1477 else if (SvOOK(sv)) { /* pv is offset? */
1479 s = SvPVX_mutable(sv);
1480 if (newlen > SvLEN(sv))
1481 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1482 #ifdef HAS_64K_LIMIT
1483 if (newlen >= 0x10000)
1488 s = SvPVX_mutable(sv);
1490 if (newlen > SvLEN(sv)) { /* need more room? */
1492 newlen = PERL_STRLEN_ROUNDUP(newlen);
1494 if (SvLEN(sv) && s) {
1495 s = (char*)saferealloc(s, newlen);
1498 s = (char*)safemalloc(newlen);
1499 if (SvPVX_const(sv) && SvCUR(sv)) {
1500 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1504 #ifdef Perl_safesysmalloc_size
1505 /* Do this here, do it once, do it right, and then we will never get
1506 called back into sv_grow() unless there really is some growing
1508 SvLEN_set(sv, Perl_safesysmalloc_size(s));
1510 SvLEN_set(sv, newlen);
1517 =for apidoc sv_setiv
1519 Copies an integer into the given SV, upgrading first if necessary.
1520 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1526 Perl_sv_setiv(pTHX_ register SV *const sv, const IV i)
1530 PERL_ARGS_ASSERT_SV_SETIV;
1532 SV_CHECK_THINKFIRST_COW_DROP(sv);
1533 switch (SvTYPE(sv)) {
1536 sv_upgrade(sv, SVt_IV);
1539 sv_upgrade(sv, SVt_PVIV);
1548 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1552 (void)SvIOK_only(sv); /* validate number */
1558 =for apidoc sv_setiv_mg
1560 Like C<sv_setiv>, but also handles 'set' magic.
1566 Perl_sv_setiv_mg(pTHX_ register SV *const sv, const IV i)
1568 PERL_ARGS_ASSERT_SV_SETIV_MG;
1575 =for apidoc sv_setuv
1577 Copies an unsigned integer into the given SV, upgrading first if necessary.
1578 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1584 Perl_sv_setuv(pTHX_ register SV *const sv, const UV u)
1586 PERL_ARGS_ASSERT_SV_SETUV;
1588 /* With these two if statements:
1589 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1592 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1594 If you wish to remove them, please benchmark to see what the effect is
1596 if (u <= (UV)IV_MAX) {
1597 sv_setiv(sv, (IV)u);
1606 =for apidoc sv_setuv_mg
1608 Like C<sv_setuv>, but also handles 'set' magic.
1614 Perl_sv_setuv_mg(pTHX_ register SV *const sv, const UV u)
1616 PERL_ARGS_ASSERT_SV_SETUV_MG;
1623 =for apidoc sv_setnv
1625 Copies a double into the given SV, upgrading first if necessary.
1626 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1632 Perl_sv_setnv(pTHX_ register SV *const sv, const NV num)
1636 PERL_ARGS_ASSERT_SV_SETNV;
1638 SV_CHECK_THINKFIRST_COW_DROP(sv);
1639 switch (SvTYPE(sv)) {
1642 sv_upgrade(sv, SVt_NV);
1646 sv_upgrade(sv, SVt_PVNV);
1655 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1660 (void)SvNOK_only(sv); /* validate number */
1665 =for apidoc sv_setnv_mg
1667 Like C<sv_setnv>, but also handles 'set' magic.
1673 Perl_sv_setnv_mg(pTHX_ register SV *const sv, const NV num)
1675 PERL_ARGS_ASSERT_SV_SETNV_MG;
1681 /* Print an "isn't numeric" warning, using a cleaned-up,
1682 * printable version of the offending string
1686 S_not_a_number(pTHX_ SV *const sv)
1693 PERL_ARGS_ASSERT_NOT_A_NUMBER;
1696 dsv = newSVpvs_flags("", SVs_TEMP);
1697 pv = sv_uni_display(dsv, sv, 10, 0);
1700 const char * const limit = tmpbuf + sizeof(tmpbuf) - 8;
1701 /* each *s can expand to 4 chars + "...\0",
1702 i.e. need room for 8 chars */
1704 const char *s = SvPVX_const(sv);
1705 const char * const end = s + SvCUR(sv);
1706 for ( ; s < end && d < limit; s++ ) {
1708 if (ch & 128 && !isPRINT_LC(ch)) {
1717 else if (ch == '\r') {
1721 else if (ch == '\f') {
1725 else if (ch == '\\') {
1729 else if (ch == '\0') {
1733 else if (isPRINT_LC(ch))
1750 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1751 "Argument \"%s\" isn't numeric in %s", pv,
1754 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1755 "Argument \"%s\" isn't numeric", pv);
1759 =for apidoc looks_like_number
1761 Test if the content of an SV looks like a number (or is a number).
1762 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1763 non-numeric warning), even if your atof() doesn't grok them.
1769 Perl_looks_like_number(pTHX_ SV *const sv)
1771 register const char *sbegin;
1774 PERL_ARGS_ASSERT_LOOKS_LIKE_NUMBER;
1777 sbegin = SvPVX_const(sv);
1780 else if (SvPOKp(sv))
1781 sbegin = SvPV_const(sv, len);
1783 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1784 return grok_number(sbegin, len, NULL);
1788 S_glob_2number(pTHX_ GV * const gv)
1790 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1791 SV *const buffer = sv_newmortal();
1793 PERL_ARGS_ASSERT_GLOB_2NUMBER;
1795 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1798 gv_efullname3(buffer, gv, "*");
1799 SvFLAGS(gv) |= wasfake;
1801 /* We know that all GVs stringify to something that is not-a-number,
1802 so no need to test that. */
1803 if (ckWARN(WARN_NUMERIC))
1804 not_a_number(buffer);
1805 /* We just want something true to return, so that S_sv_2iuv_common
1806 can tail call us and return true. */
1811 S_glob_2pv(pTHX_ GV * const gv, STRLEN * const len)
1813 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1814 SV *const buffer = sv_newmortal();
1816 PERL_ARGS_ASSERT_GLOB_2PV;
1818 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1821 gv_efullname3(buffer, gv, "*");
1822 SvFLAGS(gv) |= wasfake;
1824 assert(SvPOK(buffer));
1826 *len = SvCUR(buffer);
1828 return SvPVX(buffer);
1831 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1832 until proven guilty, assume that things are not that bad... */
1837 As 64 bit platforms often have an NV that doesn't preserve all bits of
1838 an IV (an assumption perl has been based on to date) it becomes necessary
1839 to remove the assumption that the NV always carries enough precision to
1840 recreate the IV whenever needed, and that the NV is the canonical form.
1841 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1842 precision as a side effect of conversion (which would lead to insanity
1843 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1844 1) to distinguish between IV/UV/NV slots that have cached a valid
1845 conversion where precision was lost and IV/UV/NV slots that have a
1846 valid conversion which has lost no precision
1847 2) to ensure that if a numeric conversion to one form is requested that
1848 would lose precision, the precise conversion (or differently
1849 imprecise conversion) is also performed and cached, to prevent
1850 requests for different numeric formats on the same SV causing
1851 lossy conversion chains. (lossless conversion chains are perfectly
1856 SvIOKp is true if the IV slot contains a valid value
1857 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1858 SvNOKp is true if the NV slot contains a valid value
1859 SvNOK is true only if the NV value is accurate
1862 while converting from PV to NV, check to see if converting that NV to an
1863 IV(or UV) would lose accuracy over a direct conversion from PV to
1864 IV(or UV). If it would, cache both conversions, return NV, but mark
1865 SV as IOK NOKp (ie not NOK).
1867 While converting from PV to IV, check to see if converting that IV to an
1868 NV would lose accuracy over a direct conversion from PV to NV. If it
1869 would, cache both conversions, flag similarly.
1871 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1872 correctly because if IV & NV were set NV *always* overruled.
1873 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1874 changes - now IV and NV together means that the two are interchangeable:
1875 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1877 The benefit of this is that operations such as pp_add know that if
1878 SvIOK is true for both left and right operands, then integer addition
1879 can be used instead of floating point (for cases where the result won't
1880 overflow). Before, floating point was always used, which could lead to
1881 loss of precision compared with integer addition.
1883 * making IV and NV equal status should make maths accurate on 64 bit
1885 * may speed up maths somewhat if pp_add and friends start to use
1886 integers when possible instead of fp. (Hopefully the overhead in
1887 looking for SvIOK and checking for overflow will not outweigh the
1888 fp to integer speedup)
1889 * will slow down integer operations (callers of SvIV) on "inaccurate"
1890 values, as the change from SvIOK to SvIOKp will cause a call into
1891 sv_2iv each time rather than a macro access direct to the IV slot
1892 * should speed up number->string conversion on integers as IV is
1893 favoured when IV and NV are equally accurate
1895 ####################################################################
1896 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1897 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1898 On the other hand, SvUOK is true iff UV.
1899 ####################################################################
1901 Your mileage will vary depending your CPU's relative fp to integer
1905 #ifndef NV_PRESERVES_UV
1906 # define IS_NUMBER_UNDERFLOW_IV 1
1907 # define IS_NUMBER_UNDERFLOW_UV 2
1908 # define IS_NUMBER_IV_AND_UV 2
1909 # define IS_NUMBER_OVERFLOW_IV 4
1910 # define IS_NUMBER_OVERFLOW_UV 5
1912 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1914 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1916 S_sv_2iuv_non_preserve(pTHX_ register SV *const sv
1924 PERL_ARGS_ASSERT_SV_2IUV_NON_PRESERVE;
1926 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1927 if (SvNVX(sv) < (NV)IV_MIN) {
1928 (void)SvIOKp_on(sv);
1930 SvIV_set(sv, IV_MIN);
1931 return IS_NUMBER_UNDERFLOW_IV;
1933 if (SvNVX(sv) > (NV)UV_MAX) {
1934 (void)SvIOKp_on(sv);
1937 SvUV_set(sv, UV_MAX);
1938 return IS_NUMBER_OVERFLOW_UV;
1940 (void)SvIOKp_on(sv);
1942 /* Can't use strtol etc to convert this string. (See truth table in
1944 if (SvNVX(sv) <= (UV)IV_MAX) {
1945 SvIV_set(sv, I_V(SvNVX(sv)));
1946 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1947 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1949 /* Integer is imprecise. NOK, IOKp */
1951 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
1954 SvUV_set(sv, U_V(SvNVX(sv)));
1955 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
1956 if (SvUVX(sv) == UV_MAX) {
1957 /* As we know that NVs don't preserve UVs, UV_MAX cannot
1958 possibly be preserved by NV. Hence, it must be overflow.
1960 return IS_NUMBER_OVERFLOW_UV;
1962 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
1964 /* Integer is imprecise. NOK, IOKp */
1966 return IS_NUMBER_OVERFLOW_IV;
1968 #endif /* !NV_PRESERVES_UV*/
1971 S_sv_2iuv_common(pTHX_ SV *const sv)
1975 PERL_ARGS_ASSERT_SV_2IUV_COMMON;
1978 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
1979 * without also getting a cached IV/UV from it at the same time
1980 * (ie PV->NV conversion should detect loss of accuracy and cache
1981 * IV or UV at same time to avoid this. */
1982 /* IV-over-UV optimisation - choose to cache IV if possible */
1984 if (SvTYPE(sv) == SVt_NV)
1985 sv_upgrade(sv, SVt_PVNV);
1987 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
1988 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
1989 certainly cast into the IV range at IV_MAX, whereas the correct
1990 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
1992 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
1993 if (Perl_isnan(SvNVX(sv))) {
1999 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2000 SvIV_set(sv, I_V(SvNVX(sv)));
2001 if (SvNVX(sv) == (NV) SvIVX(sv)
2002 #ifndef NV_PRESERVES_UV
2003 && (((UV)1 << NV_PRESERVES_UV_BITS) >
2004 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
2005 /* Don't flag it as "accurately an integer" if the number
2006 came from a (by definition imprecise) NV operation, and
2007 we're outside the range of NV integer precision */
2011 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
2013 /* scalar has trailing garbage, eg "42a" */
2015 DEBUG_c(PerlIO_printf(Perl_debug_log,
2016 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
2022 /* IV not precise. No need to convert from PV, as NV
2023 conversion would already have cached IV if it detected
2024 that PV->IV would be better than PV->NV->IV
2025 flags already correct - don't set public IOK. */
2026 DEBUG_c(PerlIO_printf(Perl_debug_log,
2027 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
2032 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
2033 but the cast (NV)IV_MIN rounds to a the value less (more
2034 negative) than IV_MIN which happens to be equal to SvNVX ??
2035 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
2036 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
2037 (NV)UVX == NVX are both true, but the values differ. :-(
2038 Hopefully for 2s complement IV_MIN is something like
2039 0x8000000000000000 which will be exact. NWC */
2042 SvUV_set(sv, U_V(SvNVX(sv)));
2044 (SvNVX(sv) == (NV) SvUVX(sv))
2045 #ifndef NV_PRESERVES_UV
2046 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
2047 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
2048 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
2049 /* Don't flag it as "accurately an integer" if the number
2050 came from a (by definition imprecise) NV operation, and
2051 we're outside the range of NV integer precision */
2057 DEBUG_c(PerlIO_printf(Perl_debug_log,
2058 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
2064 else if (SvPOKp(sv) && SvLEN(sv)) {
2066 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2067 /* We want to avoid a possible problem when we cache an IV/ a UV which
2068 may be later translated to an NV, and the resulting NV is not
2069 the same as the direct translation of the initial string
2070 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
2071 be careful to ensure that the value with the .456 is around if the
2072 NV value is requested in the future).
2074 This means that if we cache such an IV/a UV, we need to cache the
2075 NV as well. Moreover, we trade speed for space, and do not
2076 cache the NV if we are sure it's not needed.
2079 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
2080 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2081 == IS_NUMBER_IN_UV) {
2082 /* It's definitely an integer, only upgrade to PVIV */
2083 if (SvTYPE(sv) < SVt_PVIV)
2084 sv_upgrade(sv, SVt_PVIV);
2086 } else if (SvTYPE(sv) < SVt_PVNV)
2087 sv_upgrade(sv, SVt_PVNV);
2089 /* If NVs preserve UVs then we only use the UV value if we know that
2090 we aren't going to call atof() below. If NVs don't preserve UVs
2091 then the value returned may have more precision than atof() will
2092 return, even though value isn't perfectly accurate. */
2093 if ((numtype & (IS_NUMBER_IN_UV
2094 #ifdef NV_PRESERVES_UV
2097 )) == IS_NUMBER_IN_UV) {
2098 /* This won't turn off the public IOK flag if it was set above */
2099 (void)SvIOKp_on(sv);
2101 if (!(numtype & IS_NUMBER_NEG)) {
2103 if (value <= (UV)IV_MAX) {
2104 SvIV_set(sv, (IV)value);
2106 /* it didn't overflow, and it was positive. */
2107 SvUV_set(sv, value);
2111 /* 2s complement assumption */
2112 if (value <= (UV)IV_MIN) {
2113 SvIV_set(sv, -(IV)value);
2115 /* Too negative for an IV. This is a double upgrade, but
2116 I'm assuming it will be rare. */
2117 if (SvTYPE(sv) < SVt_PVNV)
2118 sv_upgrade(sv, SVt_PVNV);
2122 SvNV_set(sv, -(NV)value);
2123 SvIV_set(sv, IV_MIN);
2127 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2128 will be in the previous block to set the IV slot, and the next
2129 block to set the NV slot. So no else here. */
2131 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2132 != IS_NUMBER_IN_UV) {
2133 /* It wasn't an (integer that doesn't overflow the UV). */
2134 SvNV_set(sv, Atof(SvPVX_const(sv)));
2136 if (! numtype && ckWARN(WARN_NUMERIC))
2139 #if defined(USE_LONG_DOUBLE)
2140 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2141 PTR2UV(sv), SvNVX(sv)));
2143 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2144 PTR2UV(sv), SvNVX(sv)));
2147 #ifdef NV_PRESERVES_UV
2148 (void)SvIOKp_on(sv);
2150 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2151 SvIV_set(sv, I_V(SvNVX(sv)));
2152 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2155 NOOP; /* Integer is imprecise. NOK, IOKp */
2157 /* UV will not work better than IV */
2159 if (SvNVX(sv) > (NV)UV_MAX) {
2161 /* Integer is inaccurate. NOK, IOKp, is UV */
2162 SvUV_set(sv, UV_MAX);
2164 SvUV_set(sv, U_V(SvNVX(sv)));
2165 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2166 NV preservse UV so can do correct comparison. */
2167 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2170 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2175 #else /* NV_PRESERVES_UV */
2176 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2177 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2178 /* The IV/UV slot will have been set from value returned by
2179 grok_number above. The NV slot has just been set using
2182 assert (SvIOKp(sv));
2184 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2185 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2186 /* Small enough to preserve all bits. */
2187 (void)SvIOKp_on(sv);
2189 SvIV_set(sv, I_V(SvNVX(sv)));
2190 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2192 /* Assumption: first non-preserved integer is < IV_MAX,
2193 this NV is in the preserved range, therefore: */
2194 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2196 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2200 0 0 already failed to read UV.
2201 0 1 already failed to read UV.
2202 1 0 you won't get here in this case. IV/UV
2203 slot set, public IOK, Atof() unneeded.
2204 1 1 already read UV.
2205 so there's no point in sv_2iuv_non_preserve() attempting
2206 to use atol, strtol, strtoul etc. */
2208 sv_2iuv_non_preserve (sv, numtype);
2210 sv_2iuv_non_preserve (sv);
2214 #endif /* NV_PRESERVES_UV */
2215 /* It might be more code efficient to go through the entire logic above
2216 and conditionally set with SvIOKp_on() rather than SvIOK(), but it
2217 gets complex and potentially buggy, so more programmer efficient
2218 to do it this way, by turning off the public flags: */
2220 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2224 if (isGV_with_GP(sv))
2225 return glob_2number((GV *)sv);
2227 if (!(SvFLAGS(sv) & SVs_PADTMP)) {
2228 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2231 if (SvTYPE(sv) < SVt_IV)
2232 /* Typically the caller expects that sv_any is not NULL now. */
2233 sv_upgrade(sv, SVt_IV);
2234 /* Return 0 from the caller. */
2241 =for apidoc sv_2iv_flags
2243 Return the integer value of an SV, doing any necessary string
2244 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2245 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2251 Perl_sv_2iv_flags(pTHX_ register SV *const sv, const I32 flags)
2256 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2257 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2258 cache IVs just in case. In practice it seems that they never
2259 actually anywhere accessible by user Perl code, let alone get used
2260 in anything other than a string context. */
2261 if (flags & SV_GMAGIC)
2266 return I_V(SvNVX(sv));
2268 if (SvPOKp(sv) && SvLEN(sv)) {
2271 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2273 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2274 == IS_NUMBER_IN_UV) {
2275 /* It's definitely an integer */
2276 if (numtype & IS_NUMBER_NEG) {
2277 if (value < (UV)IV_MIN)
2280 if (value < (UV)IV_MAX)
2285 if (ckWARN(WARN_NUMERIC))
2288 return I_V(Atof(SvPVX_const(sv)));
2293 assert(SvTYPE(sv) >= SVt_PVMG);
2294 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2295 } else if (SvTHINKFIRST(sv)) {
2299 SV * const tmpstr=AMG_CALLun(sv,numer);
2300 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2301 return SvIV(tmpstr);
2304 return PTR2IV(SvRV(sv));
2307 sv_force_normal_flags(sv, 0);
2309 if (SvREADONLY(sv) && !SvOK(sv)) {
2310 if (ckWARN(WARN_UNINITIALIZED))
2316 if (S_sv_2iuv_common(aTHX_ sv))
2319 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2320 PTR2UV(sv),SvIVX(sv)));
2321 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2325 =for apidoc sv_2uv_flags
2327 Return the unsigned integer value of an SV, doing any necessary string
2328 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2329 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2335 Perl_sv_2uv_flags(pTHX_ register SV *const sv, const I32 flags)
2340 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2341 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2342 cache IVs just in case. */
2343 if (flags & SV_GMAGIC)
2348 return U_V(SvNVX(sv));
2349 if (SvPOKp(sv) && SvLEN(sv)) {
2352 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2354 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2355 == IS_NUMBER_IN_UV) {
2356 /* It's definitely an integer */
2357 if (!(numtype & IS_NUMBER_NEG))
2361 if (ckWARN(WARN_NUMERIC))
2364 return U_V(Atof(SvPVX_const(sv)));
2369 assert(SvTYPE(sv) >= SVt_PVMG);
2370 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2371 } else if (SvTHINKFIRST(sv)) {
2375 SV *const tmpstr = AMG_CALLun(sv,numer);
2376 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2377 return SvUV(tmpstr);
2380 return PTR2UV(SvRV(sv));
2383 sv_force_normal_flags(sv, 0);
2385 if (SvREADONLY(sv) && !SvOK(sv)) {
2386 if (ckWARN(WARN_UNINITIALIZED))
2392 if (S_sv_2iuv_common(aTHX_ sv))
2396 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2397 PTR2UV(sv),SvUVX(sv)));
2398 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2404 Return the num value of an SV, doing any necessary string or integer
2405 conversion, magic etc. Normally used via the C<SvNV(sv)> and C<SvNVx(sv)>
2412 Perl_sv_2nv(pTHX_ register SV *const sv)
2417 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2418 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2419 cache IVs just in case. */
2423 if ((SvPOKp(sv) && SvLEN(sv)) && !SvIOKp(sv)) {
2424 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2425 !grok_number(SvPVX_const(sv), SvCUR(sv), NULL))
2427 return Atof(SvPVX_const(sv));
2431 return (NV)SvUVX(sv);
2433 return (NV)SvIVX(sv);
2438 assert(SvTYPE(sv) >= SVt_PVMG);
2439 /* This falls through to the report_uninit near the end of the
2441 } else if (SvTHINKFIRST(sv)) {
2445 SV *const tmpstr = AMG_CALLun(sv,numer);
2446 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2447 return SvNV(tmpstr);
2450 return PTR2NV(SvRV(sv));
2453 sv_force_normal_flags(sv, 0);
2455 if (SvREADONLY(sv) && !SvOK(sv)) {
2456 if (ckWARN(WARN_UNINITIALIZED))
2461 if (SvTYPE(sv) < SVt_NV) {
2462 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2463 sv_upgrade(sv, SVt_NV);
2464 #ifdef USE_LONG_DOUBLE
2466 STORE_NUMERIC_LOCAL_SET_STANDARD();
2467 PerlIO_printf(Perl_debug_log,
2468 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2469 PTR2UV(sv), SvNVX(sv));
2470 RESTORE_NUMERIC_LOCAL();
2474 STORE_NUMERIC_LOCAL_SET_STANDARD();
2475 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2476 PTR2UV(sv), SvNVX(sv));
2477 RESTORE_NUMERIC_LOCAL();
2481 else if (SvTYPE(sv) < SVt_PVNV)
2482 sv_upgrade(sv, SVt_PVNV);
2487 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2488 #ifdef NV_PRESERVES_UV
2494 /* Only set the public NV OK flag if this NV preserves the IV */
2495 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2497 SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2498 : (SvIVX(sv) == I_V(SvNVX(sv))))
2504 else if (SvPOKp(sv) && SvLEN(sv)) {
2506 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2507 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2509 #ifdef NV_PRESERVES_UV
2510 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2511 == IS_NUMBER_IN_UV) {
2512 /* It's definitely an integer */
2513 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2515 SvNV_set(sv, Atof(SvPVX_const(sv)));
2521 SvNV_set(sv, Atof(SvPVX_const(sv)));
2522 /* Only set the public NV OK flag if this NV preserves the value in
2523 the PV at least as well as an IV/UV would.
2524 Not sure how to do this 100% reliably. */
2525 /* if that shift count is out of range then Configure's test is
2526 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2528 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2529 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2530 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2531 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2532 /* Can't use strtol etc to convert this string, so don't try.
2533 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2536 /* value has been set. It may not be precise. */
2537 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2538 /* 2s complement assumption for (UV)IV_MIN */
2539 SvNOK_on(sv); /* Integer is too negative. */
2544 if (numtype & IS_NUMBER_NEG) {
2545 SvIV_set(sv, -(IV)value);
2546 } else if (value <= (UV)IV_MAX) {
2547 SvIV_set(sv, (IV)value);
2549 SvUV_set(sv, value);
2553 if (numtype & IS_NUMBER_NOT_INT) {
2554 /* I believe that even if the original PV had decimals,
2555 they are lost beyond the limit of the FP precision.
2556 However, neither is canonical, so both only get p
2557 flags. NWC, 2000/11/25 */
2558 /* Both already have p flags, so do nothing */
2560 const NV nv = SvNVX(sv);
2561 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2562 if (SvIVX(sv) == I_V(nv)) {
2565 /* It had no "." so it must be integer. */
2569 /* between IV_MAX and NV(UV_MAX).
2570 Could be slightly > UV_MAX */
2572 if (numtype & IS_NUMBER_NOT_INT) {
2573 /* UV and NV both imprecise. */
2575 const UV nv_as_uv = U_V(nv);
2577 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2586 /* It might be more code efficient to go through the entire logic above
2587 and conditionally set with SvNOKp_on() rather than SvNOK(), but it
2588 gets complex and potentially buggy, so more programmer efficient
2589 to do it this way, by turning off the public flags: */
2591 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2592 #endif /* NV_PRESERVES_UV */
2595 if (isGV_with_GP(sv)) {
2596 glob_2number((GV *)sv);
2600 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2602 assert (SvTYPE(sv) >= SVt_NV);
2603 /* Typically the caller expects that sv_any is not NULL now. */
2604 /* XXX Ilya implies that this is a bug in callers that assume this
2605 and ideally should be fixed. */
2608 #if defined(USE_LONG_DOUBLE)
2610 STORE_NUMERIC_LOCAL_SET_STANDARD();
2611 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2612 PTR2UV(sv), SvNVX(sv));
2613 RESTORE_NUMERIC_LOCAL();
2617 STORE_NUMERIC_LOCAL_SET_STANDARD();
2618 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2619 PTR2UV(sv), SvNVX(sv));
2620 RESTORE_NUMERIC_LOCAL();
2629 Return an SV with the numeric value of the source SV, doing any necessary
2630 reference or overload conversion. You must use the C<SvNUM(sv)> macro to
2631 access this function.
2637 Perl_sv_2num(pTHX_ register SV *const sv)
2639 PERL_ARGS_ASSERT_SV_2NUM;
2644 SV * const tmpsv = AMG_CALLun(sv,numer);
2645 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2646 return sv_2num(tmpsv);
2648 return sv_2mortal(newSVuv(PTR2UV(SvRV(sv))));
2651 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2652 * UV as a string towards the end of buf, and return pointers to start and
2655 * We assume that buf is at least TYPE_CHARS(UV) long.
2659 S_uiv_2buf(char *const buf, const IV iv, UV uv, const int is_uv, char **const peob)
2661 char *ptr = buf + TYPE_CHARS(UV);
2662 char * const ebuf = ptr;
2665 PERL_ARGS_ASSERT_UIV_2BUF;
2677 *--ptr = '0' + (char)(uv % 10);
2686 =for apidoc sv_2pv_flags
2688 Returns a pointer to the string value of an SV, and sets *lp to its length.
2689 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a string
2691 Normally invoked via the C<SvPV_flags> macro. C<sv_2pv()> and C<sv_2pv_nomg>
2692 usually end up here too.
2698 Perl_sv_2pv_flags(pTHX_ register SV *const sv, STRLEN *const lp, const I32 flags)
2708 if (SvGMAGICAL(sv)) {
2709 if (flags & SV_GMAGIC)
2714 if (flags & SV_MUTABLE_RETURN)
2715 return SvPVX_mutable(sv);
2716 if (flags & SV_CONST_RETURN)
2717 return (char *)SvPVX_const(sv);
2720 if (SvIOKp(sv) || SvNOKp(sv)) {
2721 char tbuf[64]; /* Must fit sprintf/Gconvert of longest IV/NV */
2726 ? my_snprintf(tbuf, sizeof(tbuf), "%"UVuf, (UV)SvUVX(sv))
2727 : my_snprintf(tbuf, sizeof(tbuf), "%"IVdf, (IV)SvIVX(sv));
2729 Gconvert(SvNVX(sv), NV_DIG, 0, tbuf);
2736 #ifdef FIXNEGATIVEZERO
2737 if (len == 2 && tbuf[0] == '-' && tbuf[1] == '0') {
2743 SvUPGRADE(sv, SVt_PV);
2746 s = SvGROW_mutable(sv, len + 1);
2749 return (char*)memcpy(s, tbuf, len + 1);
2755 assert(SvTYPE(sv) >= SVt_PVMG);
2756 /* This falls through to the report_uninit near the end of the
2758 } else if (SvTHINKFIRST(sv)) {
2762 SV *const tmpstr = AMG_CALLun(sv,string);
2763 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2765 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2769 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2770 if (flags & SV_CONST_RETURN) {
2771 pv = (char *) SvPVX_const(tmpstr);
2773 pv = (flags & SV_MUTABLE_RETURN)
2774 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2777 *lp = SvCUR(tmpstr);
2779 pv = sv_2pv_flags(tmpstr, lp, flags);
2792 const SV *const referent = (SV*)SvRV(sv);
2796 retval = buffer = savepvn("NULLREF", len);
2797 } else if (SvTYPE(referent) == SVt_REGEXP) {
2798 const REGEXP * const re = (REGEXP *)referent;
2803 /* If the regex is UTF-8 we want the containing scalar to
2804 have an UTF-8 flag too */
2810 if ((seen_evals = RX_SEEN_EVALS(re)))
2811 PL_reginterp_cnt += seen_evals;
2814 *lp = RX_WRAPLEN(re);
2816 return RX_WRAPPED(re);
2818 const char *const typestr = sv_reftype(referent, 0);
2819 const STRLEN typelen = strlen(typestr);
2820 UV addr = PTR2UV(referent);
2821 const char *stashname = NULL;
2822 STRLEN stashnamelen = 0; /* hush, gcc */
2823 const char *buffer_end;
2825 if (SvOBJECT(referent)) {
2826 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2829 stashname = HEK_KEY(name);
2830 stashnamelen = HEK_LEN(name);
2832 if (HEK_UTF8(name)) {
2838 stashname = "__ANON__";
2841 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2842 + 2 * sizeof(UV) + 2 /* )\0 */;
2844 len = typelen + 3 /* (0x */
2845 + 2 * sizeof(UV) + 2 /* )\0 */;
2848 Newx(buffer, len, char);
2849 buffer_end = retval = buffer + len;
2851 /* Working backwards */
2855 *--retval = PL_hexdigit[addr & 15];
2856 } while (addr >>= 4);
2862 memcpy(retval, typestr, typelen);
2866 retval -= stashnamelen;
2867 memcpy(retval, stashname, stashnamelen);
2869 /* retval may not neccesarily have reached the start of the
2871 assert (retval >= buffer);
2873 len = buffer_end - retval - 1; /* -1 for that \0 */
2881 if (SvREADONLY(sv) && !SvOK(sv)) {
2884 if (flags & SV_UNDEF_RETURNS_NULL)
2886 if (ckWARN(WARN_UNINITIALIZED))
2891 if (SvIOK(sv) || ((SvIOKp(sv) && !SvNOKp(sv)))) {
2892 /* I'm assuming that if both IV and NV are equally valid then
2893 converting the IV is going to be more efficient */
2894 const U32 isUIOK = SvIsUV(sv);
2895 char buf[TYPE_CHARS(UV)];
2899 if (SvTYPE(sv) < SVt_PVIV)
2900 sv_upgrade(sv, SVt_PVIV);
2901 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2903 /* inlined from sv_setpvn */
2904 s = SvGROW_mutable(sv, len + 1);
2905 Move(ptr, s, len, char);
2909 else if (SvNOKp(sv)) {
2910 const int olderrno = errno;
2911 if (SvTYPE(sv) < SVt_PVNV)
2912 sv_upgrade(sv, SVt_PVNV);
2913 /* The +20 is pure guesswork. Configure test needed. --jhi */
2914 s = SvGROW_mutable(sv, NV_DIG + 20);
2915 /* some Xenix systems wipe out errno here */
2917 if (SvNVX(sv) == 0.0)
2918 my_strlcpy(s, "0", SvLEN(sv));
2922 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2925 #ifdef FIXNEGATIVEZERO
2926 if (*s == '-' && s[1] == '0' && !s[2]) {
2938 if (isGV_with_GP(sv))
2939 return glob_2pv((GV *)sv, lp);
2943 if (flags & SV_UNDEF_RETURNS_NULL)
2945 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2947 if (SvTYPE(sv) < SVt_PV)
2948 /* Typically the caller expects that sv_any is not NULL now. */
2949 sv_upgrade(sv, SVt_PV);
2953 const STRLEN len = s - SvPVX_const(sv);
2959 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
2960 PTR2UV(sv),SvPVX_const(sv)));
2961 if (flags & SV_CONST_RETURN)
2962 return (char *)SvPVX_const(sv);
2963 if (flags & SV_MUTABLE_RETURN)
2964 return SvPVX_mutable(sv);
2969 =for apidoc sv_copypv
2971 Copies a stringified representation of the source SV into the
2972 destination SV. Automatically performs any necessary mg_get and
2973 coercion of numeric values into strings. Guaranteed to preserve
2974 UTF8 flag even from overloaded objects. Similar in nature to
2975 sv_2pv[_flags] but operates directly on an SV instead of just the
2976 string. Mostly uses sv_2pv_flags to do its work, except when that
2977 would lose the UTF-8'ness of the PV.
2983 Perl_sv_copypv(pTHX_ SV *const dsv, register SV *const ssv)
2986 const char * const s = SvPV_const(ssv,len);
2988 PERL_ARGS_ASSERT_SV_COPYPV;
2990 sv_setpvn(dsv,s,len);
2998 =for apidoc sv_2pvbyte
3000 Return a pointer to the byte-encoded representation of the SV, and set *lp
3001 to its length. May cause the SV to be downgraded from UTF-8 as a
3004 Usually accessed via the C<SvPVbyte> macro.
3010 Perl_sv_2pvbyte(pTHX_ register SV *const sv, STRLEN *const lp)
3012 PERL_ARGS_ASSERT_SV_2PVBYTE;
3014 sv_utf8_downgrade(sv,0);
3015 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
3019 =for apidoc sv_2pvutf8
3021 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
3022 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
3024 Usually accessed via the C<SvPVutf8> macro.
3030 Perl_sv_2pvutf8(pTHX_ register SV *const sv, STRLEN *const lp)
3032 PERL_ARGS_ASSERT_SV_2PVUTF8;
3034 sv_utf8_upgrade(sv);
3035 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
3040 =for apidoc sv_2bool
3042 This function is only called on magical items, and is only used by
3043 sv_true() or its macro equivalent.
3049 Perl_sv_2bool(pTHX_ register SV *const sv)
3053 PERL_ARGS_ASSERT_SV_2BOOL;
3061 SV * const tmpsv = AMG_CALLun(sv,bool_);
3062 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
3063 return (bool)SvTRUE(tmpsv);
3065 return SvRV(sv) != 0;
3068 register XPV* const Xpvtmp = (XPV*)SvANY(sv);
3070 (*sv->sv_u.svu_pv > '0' ||
3071 Xpvtmp->xpv_cur > 1 ||
3072 (Xpvtmp->xpv_cur && *sv->sv_u.svu_pv != '0')))
3079 return SvIVX(sv) != 0;
3082 return SvNVX(sv) != 0.0;
3084 if (isGV_with_GP(sv))
3094 =for apidoc sv_utf8_upgrade
3096 Converts the PV of an SV to its UTF-8-encoded form.
3097 Forces the SV to string form if it is not already.
3098 Always sets the SvUTF8 flag to avoid future validity checks even
3099 if all the bytes have hibit clear.
3101 This is not as a general purpose byte encoding to Unicode interface:
3102 use the Encode extension for that.
3104 =for apidoc sv_utf8_upgrade_flags
3106 Converts the PV of an SV to its UTF-8-encoded form.
3107 Forces the SV to string form if it is not already.
3108 Always sets the SvUTF8 flag to avoid future validity checks even
3109 if all the bytes have hibit clear. If C<flags> has C<SV_GMAGIC> bit set,
3110 will C<mg_get> on C<sv> if appropriate, else not. C<sv_utf8_upgrade> and
3111 C<sv_utf8_upgrade_nomg> are implemented in terms of this function.
3113 This is not as a general purpose byte encoding to Unicode interface:
3114 use the Encode extension for that.
3120 Perl_sv_utf8_upgrade_flags(pTHX_ register SV *const sv, const I32 flags)
3124 PERL_ARGS_ASSERT_SV_UTF8_UPGRADE_FLAGS;
3126 if (sv == &PL_sv_undef)
3130 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
3131 (void) sv_2pv_flags(sv,&len, flags);
3135 (void) SvPV_force(sv,len);
3144 sv_force_normal_flags(sv, 0);
3147 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING))
3148 sv_recode_to_utf8(sv, PL_encoding);
3149 else { /* Assume Latin-1/EBCDIC */
3150 /* This function could be much more efficient if we
3151 * had a FLAG in SVs to signal if there are any hibit
3152 * chars in the PV. Given that there isn't such a flag
3153 * make the loop as fast as possible. */
3154 const U8 * const s = (U8 *) SvPVX_const(sv);
3155 const U8 * const e = (U8 *) SvEND(sv);
3160 /* Check for hi bit */
3161 if (!NATIVE_IS_INVARIANT(ch)) {
3162 STRLEN len = SvCUR(sv) + 1; /* Plus the \0 */
3163 U8 * const recoded = bytes_to_utf8((U8*)s, &len);
3165 SvPV_free(sv); /* No longer using what was there before. */
3166 SvPV_set(sv, (char*)recoded);
3167 SvCUR_set(sv, len - 1);
3168 SvLEN_set(sv, len); /* No longer know the real size. */
3172 /* Mark as UTF-8 even if no hibit - saves scanning loop */
3179 =for apidoc sv_utf8_downgrade
3181 Attempts to convert the PV of an SV from characters to bytes.
3182 If the PV contains a character beyond byte, this conversion will fail;
3183 in this case, either returns false or, if C<fail_ok> is not
3186 This is not as a general purpose Unicode to byte encoding interface:
3187 use the Encode extension for that.
3193 Perl_sv_utf8_downgrade(pTHX_ register SV *const sv, const bool fail_ok)
3197 PERL_ARGS_ASSERT_SV_UTF8_DOWNGRADE;
3199 if (SvPOKp(sv) && SvUTF8(sv)) {
3205 sv_force_normal_flags(sv, 0);
3207 s = (U8 *) SvPV(sv, len);
3208 if (!utf8_to_bytes(s, &len)) {
3213 Perl_croak(aTHX_ "Wide character in %s",
3216 Perl_croak(aTHX_ "Wide character");
3227 =for apidoc sv_utf8_encode
3229 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3230 flag off so that it looks like octets again.
3236 Perl_sv_utf8_encode(pTHX_ register SV *const sv)
3238 PERL_ARGS_ASSERT_SV_UTF8_ENCODE;
3241 sv_force_normal_flags(sv, 0);
3243 if (SvREADONLY(sv)) {
3244 Perl_croak(aTHX_ PL_no_modify);
3246 (void) sv_utf8_upgrade(sv);
3251 =for apidoc sv_utf8_decode
3253 If the PV of the SV is an octet sequence in UTF-8
3254 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3255 so that it looks like a character. If the PV contains only single-byte
3256 characters, the C<SvUTF8> flag stays being off.
3257 Scans PV for validity and returns false if the PV is invalid UTF-8.
3263 Perl_sv_utf8_decode(pTHX_ register SV *const sv)
3265 PERL_ARGS_ASSERT_SV_UTF8_DECODE;
3271 /* The octets may have got themselves encoded - get them back as
3274 if (!sv_utf8_downgrade(sv, TRUE))
3277 /* it is actually just a matter of turning the utf8 flag on, but
3278 * we want to make sure everything inside is valid utf8 first.
3280 c = (const U8 *) SvPVX_const(sv);
3281 if (!is_utf8_string(c, SvCUR(sv)+1))
3283 e = (const U8 *) SvEND(sv);
3286 if (!UTF8_IS_INVARIANT(ch)) {
3296 =for apidoc sv_setsv
3298 Copies the contents of the source SV C<ssv> into the destination SV
3299 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3300 function if the source SV needs to be reused. Does not handle 'set' magic.
3301 Loosely speaking, it performs a copy-by-value, obliterating any previous
3302 content of the destination.
3304 You probably want to use one of the assortment of wrappers, such as
3305 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3306 C<SvSetMagicSV_nosteal>.
3308 =for apidoc sv_setsv_flags
3310 Copies the contents of the source SV C<ssv> into the destination SV
3311 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3312 function if the source SV needs to be reused. Does not handle 'set' magic.
3313 Loosely speaking, it performs a copy-by-value, obliterating any previous
3314 content of the destination.
3315 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3316 C<ssv> if appropriate, else not. If the C<flags> parameter has the
3317 C<NOSTEAL> bit set then the buffers of temps will not be stolen. <sv_setsv>
3318 and C<sv_setsv_nomg> are implemented in terms of this function.
3320 You probably want to use one of the assortment of wrappers, such as
3321 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3322 C<SvSetMagicSV_nosteal>.
3324 This is the primary function for copying scalars, and most other
3325 copy-ish functions and macros use this underneath.
3331 S_glob_assign_glob(pTHX_ SV *const dstr, SV *const sstr, const int dtype)
3333 I32 mro_changes = 0; /* 1 = method, 2 = isa */
3335 PERL_ARGS_ASSERT_GLOB_ASSIGN_GLOB;
3337 if (dtype != SVt_PVGV) {
3338 const char * const name = GvNAME(sstr);
3339 const STRLEN len = GvNAMELEN(sstr);
3341 if (dtype >= SVt_PV) {
3347 SvUPGRADE(dstr, SVt_PVGV);
3348 (void)SvOK_off(dstr);
3349 /* FIXME - why are we doing this, then turning it off and on again
3351 isGV_with_GP_on(dstr);
3353 GvSTASH(dstr) = GvSTASH(sstr);
3355 Perl_sv_add_backref(aTHX_ (SV*)GvSTASH(dstr), dstr);
3356 gv_name_set((GV *)dstr, name, len, GV_ADD);
3357 SvFAKE_on(dstr); /* can coerce to non-glob */
3360 #ifdef GV_UNIQUE_CHECK
3361 if (GvUNIQUE((GV*)dstr)) {
3362 Perl_croak(aTHX_ PL_no_modify);
3366 if(GvGP((GV*)sstr)) {
3367 /* If source has method cache entry, clear it */
3369 SvREFCNT_dec(GvCV(sstr));
3373 /* If source has a real method, then a method is
3375 else if(GvCV((GV*)sstr)) {
3380 /* If dest already had a real method, that's a change as well */
3381 if(!mro_changes && GvGP((GV*)dstr) && GvCVu((GV*)dstr)) {
3385 if(strEQ(GvNAME((GV*)dstr),"ISA"))
3389 isGV_with_GP_off(dstr);
3390 (void)SvOK_off(dstr);
3391 isGV_with_GP_on(dstr);
3392 GvINTRO_off(dstr); /* one-shot flag */
3393 GvGP(dstr) = gp_ref(GvGP(sstr));
3394 if (SvTAINTED(sstr))
3396 if (GvIMPORTED(dstr) != GVf_IMPORTED
3397 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3399 GvIMPORTED_on(dstr);
3402 if(mro_changes == 2) mro_isa_changed_in(GvSTASH(dstr));
3403 else if(mro_changes) mro_method_changed_in(GvSTASH(dstr));
3408 S_glob_assign_ref(pTHX_ SV *const dstr, SV *const sstr)
3410 SV * const sref = SvREFCNT_inc(SvRV(sstr));
3412 const int intro = GvINTRO(dstr);
3415 const U32 stype = SvTYPE(sref);
3417 PERL_ARGS_ASSERT_GLOB_ASSIGN_REF;
3419 #ifdef GV_UNIQUE_CHECK
3420 if (GvUNIQUE((GV*)dstr)) {
3421 Perl_croak(aTHX_ PL_no_modify);
3426 GvINTRO_off(dstr); /* one-shot flag */
3427 GvLINE(dstr) = CopLINE(PL_curcop);
3428 GvEGV(dstr) = (GV*)dstr;
3433 location = (SV **) &GvCV(dstr);
3434 import_flag = GVf_IMPORTED_CV;
3437 location = (SV **) &GvHV(dstr);
3438 import_flag = GVf_IMPORTED_HV;
3441 location = (SV **) &GvAV(dstr);
3442 import_flag = GVf_IMPORTED_AV;
3445 location = (SV **) &GvIOp(dstr);
3448 location = (SV **) &GvFORM(dstr);
3450 location = &GvSV(dstr);
3451 import_flag = GVf_IMPORTED_SV;
3454 if (stype == SVt_PVCV) {
3455 /*if (GvCVGEN(dstr) && (GvCV(dstr) != (CV*)sref || GvCVGEN(dstr))) {*/
3456 if (GvCVGEN(dstr)) {
3457 SvREFCNT_dec(GvCV(dstr));
3459 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3462 SAVEGENERICSV(*location);
3466 if (stype == SVt_PVCV && (*location != sref || GvCVGEN(dstr))) {
3467 CV* const cv = (CV*)*location;
3469 if (!GvCVGEN((GV*)dstr) &&
3470 (CvROOT(cv) || CvXSUB(cv)))
3472 /* Redefining a sub - warning is mandatory if
3473 it was a const and its value changed. */
3474 if (CvCONST(cv) && CvCONST((CV*)sref)
3475 && cv_const_sv(cv) == cv_const_sv((CV*)sref)) {
3477 /* They are 2 constant subroutines generated from
3478 the same constant. This probably means that
3479 they are really the "same" proxy subroutine
3480 instantiated in 2 places. Most likely this is
3481 when a constant is exported twice. Don't warn.
3484 else if (ckWARN(WARN_REDEFINE)
3486 && (!CvCONST((CV*)sref)
3487 || sv_cmp(cv_const_sv(cv),
3488 cv_const_sv((CV*)sref))))) {
3489 Perl_warner(aTHX_ packWARN(WARN_REDEFINE),
3492 ? "Constant subroutine %s::%s redefined"
3493 : "Subroutine %s::%s redefined"),
3494 HvNAME_get(GvSTASH((GV*)dstr)),
3495 GvENAME((GV*)dstr));
3499 cv_ckproto_len(cv, (GV*)dstr,
3500 SvPOK(sref) ? SvPVX_const(sref) : NULL,
3501 SvPOK(sref) ? SvCUR(sref) : 0);
3503 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3504 GvASSUMECV_on(dstr);
3505 if(GvSTASH(dstr)) mro_method_changed_in(GvSTASH(dstr)); /* sub foo { 1 } sub bar { 2 } *bar = \&foo */
3508 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3509 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3510 GvFLAGS(dstr) |= import_flag;
3515 if (SvTAINTED(sstr))
3521 Perl_sv_setsv_flags(pTHX_ SV *dstr, register SV* sstr, const I32 flags)
3524 register U32 sflags;
3526 register svtype stype;
3528 PERL_ARGS_ASSERT_SV_SETSV_FLAGS;
3533 if (SvIS_FREED(dstr)) {
3534 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
3535 " to a freed scalar %p", SVfARG(sstr), (void *)dstr);
3537 SV_CHECK_THINKFIRST_COW_DROP(dstr);
3539 sstr = &PL_sv_undef;
3540 if (SvIS_FREED(sstr)) {
3541 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
3542 (void*)sstr, (void*)dstr);
3544 stype = SvTYPE(sstr);
3545 dtype = SvTYPE(dstr);
3547 (void)SvAMAGIC_off(dstr);
3550 /* need to nuke the magic */
3552 SvRMAGICAL_off(dstr);
3555 /* There's a lot of redundancy below but we're going for speed here */
3560 if (dtype != SVt_PVGV) {
3561 (void)SvOK_off(dstr);
3569 sv_upgrade(dstr, SVt_IV);
3573 sv_upgrade(dstr, SVt_PVIV);
3576 goto end_of_first_switch;
3578 (void)SvIOK_only(dstr);
3579 SvIV_set(dstr, SvIVX(sstr));
3582 /* SvTAINTED can only be true if the SV has taint magic, which in
3583 turn means that the SV type is PVMG (or greater). This is the
3584 case statement for SVt_IV, so this cannot be true (whatever gcov
3586 assert(!SvTAINTED(sstr));
3591 if (dtype < SVt_PV && dtype != SVt_IV)
3592 sv_upgrade(dstr, SVt_IV);
3600 sv_upgrade(dstr, SVt_NV);
3604 sv_upgrade(dstr, SVt_PVNV);
3607 goto end_of_first_switch;
3609 SvNV_set(dstr, SvNVX(sstr));
3610 (void)SvNOK_only(dstr);
3611 /* SvTAINTED can only be true if the SV has taint magic, which in
3612 turn means that the SV type is PVMG (or greater). This is the
3613 case statement for SVt_NV, so this cannot be true (whatever gcov
3615 assert(!SvTAINTED(sstr));
3621 #ifdef PERL_OLD_COPY_ON_WRITE
3622 if ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS) {
3623 if (dtype < SVt_PVIV)
3624 sv_upgrade(dstr, SVt_PVIV);
3632 sv_upgrade(dstr, SVt_PV);
3635 if (dtype < SVt_PVIV)
3636 sv_upgrade(dstr, SVt_PVIV);
3639 if (dtype < SVt_PVNV)
3640 sv_upgrade(dstr, SVt_PVNV);
3644 const char * const type = sv_reftype(sstr,0);
3646 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_NAME(PL_op));
3648 Perl_croak(aTHX_ "Bizarre copy of %s", type);
3652 /* case SVt_BIND: */
3655 if (isGV_with_GP(sstr) && dtype <= SVt_PVGV) {
3656 glob_assign_glob(dstr, sstr, dtype);
3659 /* SvVALID means that this PVGV is playing at being an FBM. */
3663 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
3665 if (SvTYPE(sstr) != stype) {
3666 stype = SvTYPE(sstr);
3667 if (isGV_with_GP(sstr) && stype == SVt_PVGV && dtype <= SVt_PVGV) {
3668 glob_assign_glob(dstr, sstr, dtype);
3673 if (stype == SVt_PVLV)
3674 SvUPGRADE(dstr, SVt_PVNV);
3676 SvUPGRADE(dstr, (svtype)stype);
3678 end_of_first_switch:
3680 /* dstr may have been upgraded. */
3681 dtype = SvTYPE(dstr);
3682 sflags = SvFLAGS(sstr);
3684 if (dtype == SVt_PVCV || dtype == SVt_PVFM) {
3685 /* Assigning to a subroutine sets the prototype. */
3688 const char *const ptr = SvPV_const(sstr, len);
3690 SvGROW(dstr, len + 1);
3691 Copy(ptr, SvPVX(dstr), len + 1, char);
3692 SvCUR_set(dstr, len);
3694 SvFLAGS(dstr) |= sflags & SVf_UTF8;
3698 } else if (dtype == SVt_PVAV || dtype == SVt_PVHV) {
3699 const char * const type = sv_reftype(dstr,0);
3701 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_NAME(PL_op));
3703 Perl_croak(aTHX_ "Cannot copy to %s", type);
3704 } else if (sflags & SVf_ROK) {
3705 if (isGV_with_GP(dstr) && dtype == SVt_PVGV
3706 && SvTYPE(SvRV(sstr)) == SVt_PVGV) {
3709 if (GvIMPORTED(dstr) != GVf_IMPORTED
3710 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3712 GvIMPORTED_on(dstr);
3717 glob_assign_glob(dstr, sstr, dtype);
3721 if (dtype >= SVt_PV) {
3722 if (dtype == SVt_PVGV && isGV_with_GP(dstr)) {
3723 glob_assign_ref(dstr, sstr);
3726 if (SvPVX_const(dstr)) {
3732 (void)SvOK_off(dstr);
3733 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
3734 SvFLAGS(dstr) |= sflags & SVf_ROK;
3735 assert(!(sflags & SVp_NOK));
3736 assert(!(sflags & SVp_IOK));
3737 assert(!(sflags & SVf_NOK));
3738 assert(!(sflags & SVf_IOK));
3740 else if (dtype == SVt_PVGV && isGV_with_GP(dstr)) {
3741 if (!(sflags & SVf_OK)) {
3742 if (ckWARN(WARN_MISC))
3743 Perl_warner(aTHX_ packWARN(WARN_MISC),
3744 "Undefined value assigned to typeglob");
3747 GV *gv = gv_fetchsv(sstr, GV_ADD, SVt_PVGV);
3748 if (dstr != (SV*)gv) {
3751 GvGP(dstr) = gp_ref(GvGP(gv));
3755 else if (sflags & SVp_POK) {
3759 * Check to see if we can just swipe the string. If so, it's a
3760 * possible small lose on short strings, but a big win on long ones.
3761 * It might even be a win on short strings if SvPVX_const(dstr)
3762 * has to be allocated and SvPVX_const(sstr) has to be freed.
3763 * Likewise if we can set up COW rather than doing an actual copy, we
3764 * drop to the else clause, as the swipe code and the COW setup code
3765 * have much in common.
3768 /* Whichever path we take through the next code, we want this true,
3769 and doing it now facilitates the COW check. */
3770 (void)SvPOK_only(dstr);
3773 /* If we're already COW then this clause is not true, and if COW
3774 is allowed then we drop down to the else and make dest COW
3775 with us. If caller hasn't said that we're allowed to COW
3776 shared hash keys then we don't do the COW setup, even if the
3777 source scalar is a shared hash key scalar. */
3778 (((flags & SV_COW_SHARED_HASH_KEYS)
3779 ? (sflags & (SVf_FAKE|SVf_READONLY)) != (SVf_FAKE|SVf_READONLY)
3780 : 1 /* If making a COW copy is forbidden then the behaviour we
3781 desire is as if the source SV isn't actually already
3782 COW, even if it is. So we act as if the source flags
3783 are not COW, rather than actually testing them. */
3785 #ifndef PERL_OLD_COPY_ON_WRITE
3786 /* The change that added SV_COW_SHARED_HASH_KEYS makes the logic
3787 when PERL_OLD_COPY_ON_WRITE is defined a little wrong.
3788 Conceptually PERL_OLD_COPY_ON_WRITE being defined should
3789 override SV_COW_SHARED_HASH_KEYS, because it means "always COW"
3790 but in turn, it's somewhat dead code, never expected to go
3791 live, but more kept as a placeholder on how to do it better
3792 in a newer implementation. */
3793 /* If we are COW and dstr is a suitable target then we drop down
3794 into the else and make dest a COW of us. */
3795 || (SvFLAGS(dstr) & CAN_COW_MASK) != CAN_COW_FLAGS
3800 (sflags & SVs_TEMP) && /* slated for free anyway? */
3801 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
3802 (!(flags & SV_NOSTEAL)) &&
3803 /* and we're allowed to steal temps */
3804 SvREFCNT(sstr) == 1 && /* and no other references to it? */
3805 SvLEN(sstr) && /* and really is a string */
3806 /* and won't be needed again, potentially */
3807 !(PL_op && PL_op->op_type == OP_AASSIGN))
3808 #ifdef PERL_OLD_COPY_ON_WRITE
3809 && ((flags & SV_COW_SHARED_HASH_KEYS)
3810 ? (!((sflags & CAN_COW_MASK) == CAN_COW_FLAGS
3811 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
3812 && SvTYPE(sstr) >= SVt_PVIV))
3816 /* Failed the swipe test, and it's not a shared hash key either.
3817 Have to copy the string. */
3818 STRLEN len = SvCUR(sstr);
3819 SvGROW(dstr, len + 1); /* inlined from sv_setpvn */
3820 Move(SvPVX_const(sstr),SvPVX(dstr),len,char);
3821 SvCUR_set(dstr, len);
3822 *SvEND(dstr) = '\0';
3824 /* If PERL_OLD_COPY_ON_WRITE is not defined, then isSwipe will always
3826 /* Either it's a shared hash key, or it's suitable for
3827 copy-on-write or we can swipe the string. */
3829 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
3833 #ifdef PERL_OLD_COPY_ON_WRITE
3835 /* I believe I should acquire a global SV mutex if
3836 it's a COW sv (not a shared hash key) to stop
3837 it going un copy-on-write.
3838 If the source SV has gone un copy on write between up there
3839 and down here, then (assert() that) it is of the correct
3840 form to make it copy on write again */
3841 if ((sflags & (SVf_FAKE | SVf_READONLY))
3842 != (SVf_FAKE | SVf_READONLY)) {
3843 SvREADONLY_on(sstr);
3845 /* Make the source SV into a loop of 1.
3846 (about to become 2) */
3847 SV_COW_NEXT_SV_SET(sstr, sstr);
3851 /* Initial code is common. */
3852 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
3857 /* making another shared SV. */
3858 STRLEN cur = SvCUR(sstr);
3859 STRLEN len = SvLEN(sstr);
3860 #ifdef PERL_OLD_COPY_ON_WRITE
3862 assert (SvTYPE(dstr) >= SVt_PVIV);
3863 /* SvIsCOW_normal */
3864 /* splice us in between source and next-after-source. */
3865 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
3866 SV_COW_NEXT_SV_SET(sstr, dstr);
3867 SvPV_set(dstr, SvPVX_mutable(sstr));
3871 /* SvIsCOW_shared_hash */
3872 DEBUG_C(PerlIO_printf(Perl_debug_log,
3873 "Copy on write: Sharing hash\n"));
3875 assert (SvTYPE(dstr) >= SVt_PV);
3877 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
3879 SvLEN_set(dstr, len);
3880 SvCUR_set(dstr, cur);
3881 SvREADONLY_on(dstr);
3883 /* Relesase a global SV mutex. */
3886 { /* Passes the swipe test. */
3887 SvPV_set(dstr, SvPVX_mutable(sstr));
3888 SvLEN_set(dstr, SvLEN(sstr));
3889 SvCUR_set(dstr, SvCUR(sstr));
3892 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
3893 SvPV_set(sstr, NULL);
3899 if (sflags & SVp_NOK) {
3900 SvNV_set(dstr, SvNVX(sstr));
3902 if (sflags & SVp_IOK) {
3903 SvIV_set(dstr, SvIVX(sstr));
3904 /* Must do this otherwise some other overloaded use of 0x80000000
3905 gets confused. I guess SVpbm_VALID */
3906 if (sflags & SVf_IVisUV)
3909 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8);
3911 const MAGIC * const smg = SvVSTRING_mg(sstr);
3913 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
3914 smg->mg_ptr, smg->mg_len);
3915 SvRMAGICAL_on(dstr);
3919 else if (sflags & (SVp_IOK|SVp_NOK)) {
3920 (void)SvOK_off(dstr);
3921 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK);
3922 if (sflags & SVp_IOK) {
3923 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
3924 SvIV_set(dstr, SvIVX(sstr));
3926 if (sflags & SVp_NOK) {
3927 SvNV_set(dstr, SvNVX(sstr));
3931 if (isGV_with_GP(sstr)) {
3932 /* This stringification rule for globs is spread in 3 places.
3933 This feels bad. FIXME. */
3934 const U32 wasfake = sflags & SVf_FAKE;
3936 /* FAKE globs can get coerced, so need to turn this off
3937 temporarily if it is on. */
3939 gv_efullname3(dstr, (GV *)sstr, "*");
3940 SvFLAGS(sstr) |= wasfake;
3943 (void)SvOK_off(dstr);
3945 if (SvTAINTED(sstr))
3950 =for apidoc sv_setsv_mg
3952 Like C<sv_setsv>, but also handles 'set' magic.
3958 Perl_sv_setsv_mg(pTHX_ SV *const dstr, register SV *const sstr)
3960 PERL_ARGS_ASSERT_SV_SETSV_MG;
3962 sv_setsv(dstr,sstr);
3966 #ifdef PERL_OLD_COPY_ON_WRITE
3968 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
3970 STRLEN cur = SvCUR(sstr);
3971 STRLEN len = SvLEN(sstr);
3972 register char *new_pv;
3974 PERL_ARGS_ASSERT_SV_SETSV_COW;
3977 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
3978 (void*)sstr, (void*)dstr);
3985 if (SvTHINKFIRST(dstr))
3986 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
3987 else if (SvPVX_const(dstr))
3988 Safefree(SvPVX_const(dstr));
3992 SvUPGRADE(dstr, SVt_PVIV);
3994 assert (SvPOK(sstr));
3995 assert (SvPOKp(sstr));
3996 assert (!SvIOK(sstr));
3997 assert (!SvIOKp(sstr));
3998 assert (!SvNOK(sstr));
3999 assert (!SvNOKp(sstr));
4001 if (SvIsCOW(sstr)) {
4003 if (SvLEN(sstr) == 0) {
4004 /* source is a COW shared hash key. */
4005 DEBUG_C(PerlIO_printf(Perl_debug_log,
4006 "Fast copy on write: Sharing hash\n"));
4007 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
4010 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4012 assert ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS);
4013 SvUPGRADE(sstr, SVt_PVIV);
4014 SvREADONLY_on(sstr);
4016 DEBUG_C(PerlIO_printf(Perl_debug_log,
4017 "Fast copy on write: Converting sstr to COW\n"));
4018 SV_COW_NEXT_SV_SET(dstr, sstr);
4020 SV_COW_NEXT_SV_SET(sstr, dstr);
4021 new_pv = SvPVX_mutable(sstr);
4024 SvPV_set(dstr, new_pv);
4025 SvFLAGS(dstr) = (SVt_PVIV|SVf_POK|SVp_POK|SVf_FAKE|SVf_READONLY);
4028 SvLEN_set(dstr, len);
4029 SvCUR_set(dstr, cur);
4038 =for apidoc sv_setpvn
4040 Copies a string into an SV. The C<len> parameter indicates the number of
4041 bytes to be copied. If the C<ptr> argument is NULL the SV will become
4042 undefined. Does not handle 'set' magic. See C<sv_setpvn_mg>.
4048 Perl_sv_setpvn(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4051 register char *dptr;
4053 PERL_ARGS_ASSERT_SV_SETPVN;
4055 SV_CHECK_THINKFIRST_COW_DROP(sv);
4061 /* len is STRLEN which is unsigned, need to copy to signed */
4064 Perl_croak(aTHX_ "panic: sv_setpvn called with negative strlen");
4066 SvUPGRADE(sv, SVt_PV);
4068 dptr = SvGROW(sv, len + 1);
4069 Move(ptr,dptr,len,char);
4072 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4077 =for apidoc sv_setpvn_mg
4079 Like C<sv_setpvn>, but also handles 'set' magic.
4085 Perl_sv_setpvn_mg(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4087 PERL_ARGS_ASSERT_SV_SETPVN_MG;
4089 sv_setpvn(sv,ptr,len);
4094 =for apidoc sv_setpv
4096 Copies a string into an SV. The string must be null-terminated. Does not
4097 handle 'set' magic. See C<sv_setpv_mg>.
4103 Perl_sv_setpv(pTHX_ register SV *const sv, register const char *const ptr)
4106 register STRLEN len;
4108 PERL_ARGS_ASSERT_SV_SETPV;
4110 SV_CHECK_THINKFIRST_COW_DROP(sv);
4116 SvUPGRADE(sv, SVt_PV);
4118 SvGROW(sv, len + 1);
4119 Move(ptr,SvPVX(sv),len+1,char);
4121 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4126 =for apidoc sv_setpv_mg
4128 Like C<sv_setpv>, but also handles 'set' magic.
4134 Perl_sv_setpv_mg(pTHX_ register SV *const sv, register const char *const ptr)
4136 PERL_ARGS_ASSERT_SV_SETPV_MG;
4143 =for apidoc sv_usepvn_flags
4145 Tells an SV to use C<ptr> to find its string value. Normally the
4146 string is stored inside the SV but sv_usepvn allows the SV to use an
4147 outside string. The C<ptr> should point to memory that was allocated
4148 by C<malloc>. The string length, C<len>, must be supplied. By default
4149 this function will realloc (i.e. move) the memory pointed to by C<ptr>,
4150 so that pointer should not be freed or used by the programmer after
4151 giving it to sv_usepvn, and neither should any pointers from "behind"
4152 that pointer (e.g. ptr + 1) be used.
4154 If C<flags> & SV_SMAGIC is true, will call SvSETMAGIC. If C<flags> &
4155 SV_HAS_TRAILING_NUL is true, then C<ptr[len]> must be NUL, and the realloc
4156 will be skipped. (i.e. the buffer is actually at least 1 byte longer than
4157 C<len>, and already meets the requirements for storing in C<SvPVX>)
4163 Perl_sv_usepvn_flags(pTHX_ SV *const sv, char *ptr, const STRLEN len, const U32 flags)
4168 PERL_ARGS_ASSERT_SV_USEPVN_FLAGS;
4170 SV_CHECK_THINKFIRST_COW_DROP(sv);
4171 SvUPGRADE(sv, SVt_PV);
4174 if (flags & SV_SMAGIC)
4178 if (SvPVX_const(sv))
4182 if (flags & SV_HAS_TRAILING_NUL)
4183 assert(ptr[len] == '\0');
4186 allocate = (flags & SV_HAS_TRAILING_NUL)
4188 #ifdef Perl_safesysmalloc_size
4191 PERL_STRLEN_ROUNDUP(len + 1);
4193 if (flags & SV_HAS_TRAILING_NUL) {
4194 /* It's long enough - do nothing.
4195 Specfically Perl_newCONSTSUB is relying on this. */
4198 /* Force a move to shake out bugs in callers. */
4199 char *new_ptr = (char*)safemalloc(allocate);
4200 Copy(ptr, new_ptr, len, char);
4201 PoisonFree(ptr,len,char);
4205 ptr = (char*) saferealloc (ptr, allocate);
4208 #ifdef Perl_safesysmalloc_size
4209 SvLEN_set(sv, Perl_safesysmalloc_size(ptr));
4211 SvLEN_set(sv, allocate);
4215 if (!(flags & SV_HAS_TRAILING_NUL)) {
4218 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4220 if (flags & SV_SMAGIC)
4224 #ifdef PERL_OLD_COPY_ON_WRITE
4225 /* Need to do this *after* making the SV normal, as we need the buffer
4226 pointer to remain valid until after we've copied it. If we let go too early,
4227 another thread could invalidate it by unsharing last of the same hash key
4228 (which it can do by means other than releasing copy-on-write Svs)
4229 or by changing the other copy-on-write SVs in the loop. */
4231 S_sv_release_COW(pTHX_ register SV *sv, const char *pvx, SV *after)
4233 PERL_ARGS_ASSERT_SV_RELEASE_COW;
4235 { /* this SV was SvIsCOW_normal(sv) */
4236 /* we need to find the SV pointing to us. */
4237 SV *current = SV_COW_NEXT_SV(after);
4239 if (current == sv) {
4240 /* The SV we point to points back to us (there were only two of us
4242 Hence other SV is no longer copy on write either. */
4244 SvREADONLY_off(after);
4246 /* We need to follow the pointers around the loop. */
4248 while ((next = SV_COW_NEXT_SV(current)) != sv) {
4251 /* don't loop forever if the structure is bust, and we have
4252 a pointer into a closed loop. */
4253 assert (current != after);
4254 assert (SvPVX_const(current) == pvx);
4256 /* Make the SV before us point to the SV after us. */
4257 SV_COW_NEXT_SV_SET(current, after);
4263 =for apidoc sv_force_normal_flags
4265 Undo various types of fakery on an SV: if the PV is a shared string, make
4266 a private copy; if we're a ref, stop refing; if we're a glob, downgrade to
4267 an xpvmg; if we're a copy-on-write scalar, this is the on-write time when
4268 we do the copy, and is also used locally. If C<SV_COW_DROP_PV> is set
4269 then a copy-on-write scalar drops its PV buffer (if any) and becomes
4270 SvPOK_off rather than making a copy. (Used where this scalar is about to be
4271 set to some other value.) In addition, the C<flags> parameter gets passed to
4272 C<sv_unref_flags()> when unrefing. C<sv_force_normal> calls this function
4273 with flags set to 0.
4279 Perl_sv_force_normal_flags(pTHX_ register SV *const sv, const U32 flags)
4283 PERL_ARGS_ASSERT_SV_FORCE_NORMAL_FLAGS;
4285 #ifdef PERL_OLD_COPY_ON_WRITE
4286 if (SvREADONLY(sv)) {
4287 /* At this point I believe I should acquire a global SV mutex. */
4289 const char * const pvx = SvPVX_const(sv);
4290 const STRLEN len = SvLEN(sv);
4291 const STRLEN cur = SvCUR(sv);
4292 /* next COW sv in the loop. If len is 0 then this is a shared-hash
4293 key scalar, so we mustn't attempt to call SV_COW_NEXT_SV(), as
4294 we'll fail an assertion. */
4295 SV * const next = len ? SV_COW_NEXT_SV(sv) : 0;
4298 PerlIO_printf(Perl_debug_log,
4299 "Copy on write: Force normal %ld\n",
4305 /* This SV doesn't own the buffer, so need to Newx() a new one: */
4308 if (flags & SV_COW_DROP_PV) {
4309 /* OK, so we don't need to copy our buffer. */
4312 SvGROW(sv, cur + 1);
4313 Move(pvx,SvPVX(sv),cur,char);
4318 sv_release_COW(sv, pvx, next);
4320 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4326 else if (IN_PERL_RUNTIME)
4327 Perl_croak(aTHX_ PL_no_modify);
4328 /* At this point I believe that I can drop the global SV mutex. */
4331 if (SvREADONLY(sv)) {
4333 const char * const pvx = SvPVX_const(sv);
4334 const STRLEN len = SvCUR(sv);
4339 SvGROW(sv, len + 1);
4340 Move(pvx,SvPVX(sv),len,char);
4342 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4344 else if (IN_PERL_RUNTIME)
4345 Perl_croak(aTHX_ PL_no_modify);
4349 sv_unref_flags(sv, flags);
4350 else if (SvFAKE(sv) && SvTYPE(sv) == SVt_PVGV)
4357 Efficient removal of characters from the beginning of the string buffer.
4358 SvPOK(sv) must be true and the C<ptr> must be a pointer to somewhere inside
4359 the string buffer. The C<ptr> becomes the first character of the adjusted
4360 string. Uses the "OOK hack".
4361 Beware: after this function returns, C<ptr> and SvPVX_const(sv) may no longer
4362 refer to the same chunk of data.
4368 Perl_sv_chop(pTHX_ register SV *const sv, register const char *const ptr)
4374 const U8 *real_start;
4377 PERL_ARGS_ASSERT_SV_CHOP;
4379 if (!ptr || !SvPOKp(sv))
4381 delta = ptr - SvPVX_const(sv);
4383 /* Nothing to do. */
4386 assert(ptr > SvPVX_const(sv));
4387 SV_CHECK_THINKFIRST(sv);
4390 if (!SvLEN(sv)) { /* make copy of shared string */
4391 const char *pvx = SvPVX_const(sv);
4392 const STRLEN len = SvCUR(sv);
4393 SvGROW(sv, len + 1);
4394 Move(pvx,SvPVX(sv),len,char);
4397 SvFLAGS(sv) |= SVf_OOK;
4400 SvOOK_offset(sv, old_delta);
4402 SvLEN_set(sv, SvLEN(sv) - delta);
4403 SvCUR_set(sv, SvCUR(sv) - delta);
4404 SvPV_set(sv, SvPVX(sv) + delta);
4406 p = (U8 *)SvPVX_const(sv);
4411 real_start = p - delta;
4415 if (delta < 0x100) {
4419 p -= sizeof(STRLEN);
4420 Copy((U8*)&delta, p, sizeof(STRLEN), U8);
4424 /* Fill the preceding buffer with sentinals to verify that no-one is
4426 while (p > real_start) {
4434 =for apidoc sv_catpvn
4436 Concatenates the string onto the end of the string which is in the SV. The
4437 C<len> indicates number of bytes to copy. If the SV has the UTF-8
4438 status set, then the bytes appended should be valid UTF-8.
4439 Handles 'get' magic, but not 'set' magic. See C<sv_catpvn_mg>.
4441 =for apidoc sv_catpvn_flags
4443 Concatenates the string onto the end of the string which is in the SV. The
4444 C<len> indicates number of bytes to copy. If the SV has the UTF-8
4445 status set, then the bytes appended should be valid UTF-8.
4446 If C<flags> has C<SV_GMAGIC> bit set, will C<mg_get> on C<dsv> if
4447 appropriate, else not. C<sv_catpvn> and C<sv_catpvn_nomg> are implemented
4448 in terms of this function.
4454 Perl_sv_catpvn_flags(pTHX_ register SV *const dsv, register const char *sstr, register const STRLEN slen, const I32 flags)
4458 const char * const dstr = SvPV_force_flags(dsv, dlen, flags);
4460 PERL_ARGS_ASSERT_SV_CATPVN_FLAGS;
4462 SvGROW(dsv, dlen + slen + 1);
4464 sstr = SvPVX_const(dsv);
4465 Move(sstr, SvPVX(dsv) + dlen, slen, char);
4466 SvCUR_set(dsv, SvCUR(dsv) + slen);
4468 (void)SvPOK_only_UTF8(dsv); /* validate pointer */
4470 if (flags & SV_SMAGIC)
4475 =for apidoc sv_catsv
4477 Concatenates the string from SV C<ssv> onto the end of the string in
4478 SV C<dsv>. Modifies C<dsv> but not C<ssv>. Handles 'get' magic, but
4479 not 'set' magic. See C<sv_catsv_mg>.
4481 =for apidoc sv_catsv_flags
4483 Concatenates the string from SV C<ssv> onto the end of the string in
4484 SV C<dsv>. Modifies C<dsv> but not C<ssv>. If C<flags> has C<SV_GMAGIC>
4485 bit set, will C<mg_get> on the SVs if appropriate, else not. C<sv_catsv>
4486 and C<sv_catsv_nomg> are implemented in terms of this function.
4491 Perl_sv_catsv_flags(pTHX_ SV *const dsv, register SV *const ssv, const I32 flags)
4495 PERL_ARGS_ASSERT_SV_CATSV_FLAGS;
4499 const char *spv = SvPV_const(ssv, slen);
4501 /* sutf8 and dutf8 were type bool, but under USE_ITHREADS,
4502 gcc version 2.95.2 20000220 (Debian GNU/Linux) for
4503 Linux xxx 2.2.17 on sparc64 with gcc -O2, we erroneously
4504 get dutf8 = 0x20000000, (i.e. SVf_UTF8) even though
4505 dsv->sv_flags doesn't have that bit set.
4506 Andy Dougherty 12 Oct 2001
4508 const I32 sutf8 = DO_UTF8(ssv);
4511 if (SvGMAGICAL(dsv) && (flags & SV_GMAGIC))
4513 dutf8 = DO_UTF8(dsv);
4515 if (dutf8 != sutf8) {
4517 /* Not modifying source SV, so taking a temporary copy. */
4518 SV* const csv = newSVpvn_flags(spv, slen, SVs_TEMP);
4520 sv_utf8_upgrade(csv);
4521 spv = SvPV_const(csv, slen);
4524 sv_utf8_upgrade_nomg(dsv);
4526 sv_catpvn_nomg(dsv, spv, slen);
4529 if (flags & SV_SMAGIC)
4534 =for apidoc sv_catpv
4536 Concatenates the string onto the end of the string which is in the SV.
4537 If the SV has the UTF-8 status set, then the bytes appended should be
4538 valid UTF-8. Handles 'get' magic, but not 'set' magic. See C<sv_catpv_mg>.
4543 Perl_sv_catpv(pTHX_ register SV *sv, register const char *ptr)
4546 register STRLEN len;
4550 PERL_ARGS_ASSERT_SV_CATPV;
4554 junk = SvPV_force(sv, tlen);
4556 SvGROW(sv, tlen + len + 1);
4558 ptr = SvPVX_const(sv);
4559 Move(ptr,SvPVX(sv)+tlen,len+1,char);
4560 SvCUR_set(sv, SvCUR(sv) + len);
4561 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4566 =for apidoc sv_catpv_mg
4568 Like C<sv_catpv>, but also handles 'set' magic.
4574 Perl_sv_catpv_mg(pTHX_ register SV *sv, register const char *ptr)
4576 PERL_ARGS_ASSERT_SV_CATPV_MG;
4585 Creates a new SV. A non-zero C<len> parameter indicates the number of
4586 bytes of preallocated string space the SV should have. An extra byte for a
4587 trailing NUL is also reserved. (SvPOK is not set for the SV even if string
4588 space is allocated.) The reference count for the new SV is set to 1.
4590 In 5.9.3, newSV() replaces the older NEWSV() API, and drops the first
4591 parameter, I<x>, a debug aid which allowed callers to identify themselves.
4592 This aid has been superseded by a new build option, PERL_MEM_LOG (see
4593 L<perlhack/PERL_MEM_LOG>). The older API is still there for use in XS
4594 modules supporting older perls.
4600 Perl_newSV(pTHX_ STRLEN len)
4607 sv_upgrade(sv, SVt_PV);
4608 SvGROW(sv, len + 1);
4613 =for apidoc sv_magicext
4615 Adds magic to an SV, upgrading it if necessary. Applies the
4616 supplied vtable and returns a pointer to the magic added.
4618 Note that C<sv_magicext> will allow things that C<sv_magic> will not.
4619 In particular, you can add magic to SvREADONLY SVs, and add more than
4620 one instance of the same 'how'.
4622 If C<namlen> is greater than zero then a C<savepvn> I<copy> of C<name> is
4623 stored, if C<namlen> is zero then C<name> is stored as-is and - as another
4624 special case - if C<(name && namlen == HEf_SVKEY)> then C<name> is assumed
4625 to contain an C<SV*> and is stored as-is with its REFCNT incremented.
4627 (This is now used as a subroutine by C<sv_magic>.)
4632 Perl_sv_magicext(pTHX_ SV* sv, SV* obj, int how, const MGVTBL *vtable,
4633 const char* name, I32 namlen)
4638 PERL_ARGS_ASSERT_SV_MAGICEXT;
4640 SvUPGRADE(sv, SVt_PVMG);
4641 Newxz(mg, 1, MAGIC);
4642 mg->mg_moremagic = SvMAGIC(sv);
4643 SvMAGIC_set(sv, mg);
4645 /* Sometimes a magic contains a reference loop, where the sv and
4646 object refer to each other. To prevent a reference loop that
4647 would prevent such objects being freed, we look for such loops
4648 and if we find one we avoid incrementing the object refcount.
4650 Note we cannot do this to avoid self-tie loops as intervening RV must
4651 have its REFCNT incremented to keep it in existence.
4654 if (!obj || obj == sv ||
4655 how == PERL_MAGIC_arylen ||
4656 how == PERL_MAGIC_symtab ||
4657 (SvTYPE(obj) == SVt_PVGV &&
4658 (GvSV(obj) == sv || GvHV(obj) == (HV*)sv || GvAV(obj) == (AV*)sv ||
4659 GvCV(obj) == (CV*)sv || GvIOp(obj) == (IO*)sv ||
4660 GvFORM(obj) == (CV*)sv)))
4665 mg->mg_obj = SvREFCNT_inc_simple(obj);
4666 mg->mg_flags |= MGf_REFCOUNTED;
4669 /* Normal self-ties simply pass a null object, and instead of
4670 using mg_obj directly, use the SvTIED_obj macro to produce a
4671 new RV as needed. For glob "self-ties", we are tieing the PVIO
4672 with an RV obj pointing to the glob containing the PVIO. In
4673 this case, to avoid a reference loop, we need to weaken the
4677 if (how == PERL_MAGIC_tiedscalar && SvTYPE(sv) == SVt_PVIO &&
4678 obj && SvROK(obj) && GvIO(SvRV(obj)) == (IO*)sv)
4684 mg->mg_len = namlen;
4687 mg->mg_ptr = savepvn(name, namlen);
4688 else if (namlen == HEf_SVKEY)
4689 mg->mg_ptr = (char*)SvREFCNT_inc_simple_NN((SV*)name);
4691 mg->mg_ptr = (char *) name;
4693 mg->mg_virtual = (MGVTBL *) vtable;
4697 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK|SVf_POK);
4702 =for apidoc sv_magic
4704 Adds magic to an SV. First upgrades C<sv> to type C<SVt_PVMG> if necessary,
4705 then adds a new magic item of type C<how> to the head of the magic list.
4707 See C<sv_magicext> (which C<sv_magic> now calls) for a description of the
4708 handling of the C<name> and C<namlen> arguments.
4710 You need to use C<sv_magicext> to add magic to SvREADONLY SVs and also
4711 to add more than one instance of the same 'how'.
4717 Perl_sv_magic(pTHX_ register SV *sv, SV *obj, int how, const char *name, I32 namlen)
4720 const MGVTBL *vtable;
4723 PERL_ARGS_ASSERT_SV_MAGIC;
4725 #ifdef PERL_OLD_COPY_ON_WRITE
4727 sv_force_normal_flags(sv, 0);
4729 if (SvREADONLY(sv)) {
4731 /* its okay to attach magic to shared strings; the subsequent
4732 * upgrade to PVMG will unshare the string */
4733 !(SvFAKE(sv) && SvTYPE(sv) < SVt_PVMG)
4736 && how != PERL_MAGIC_regex_global
4737 && how != PERL_MAGIC_bm
4738 && how != PERL_MAGIC_fm
4739 && how != PERL_MAGIC_sv
4740 && how != PERL_MAGIC_backref
4743 Perl_croak(aTHX_ PL_no_modify);
4746 if (SvMAGICAL(sv) || (how == PERL_MAGIC_taint && SvTYPE(sv) >= SVt_PVMG)) {
4747 if (SvMAGIC(sv) && (mg = mg_find(sv, how))) {
4748 /* sv_magic() refuses to add a magic of the same 'how' as an
4751 if (how == PERL_MAGIC_taint) {
4753 /* Any scalar which already had taint magic on which someone
4754 (erroneously?) did SvIOK_on() or similar will now be
4755 incorrectly sporting public "OK" flags. */
4756 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK|SVf_POK);
4764 vtable = &PL_vtbl_sv;
4766 case PERL_MAGIC_overload:
4767 vtable = &PL_vtbl_amagic;
4769 case PERL_MAGIC_overload_elem:
4770 vtable = &PL_vtbl_amagicelem;
4772 case PERL_MAGIC_overload_table:
4773 vtable = &PL_vtbl_ovrld;
4776 vtable = &PL_vtbl_bm;
4778 case PERL_MAGIC_regdata: