3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
12 * 'It all comes from here, the stench and the peril.' --Frodo
14 * [p.719 of _The Lord of the Rings_, IV/ix: "Shelob's Lair"]
18 * This file is the lexer for Perl. It's closely linked to the
21 * The main routine is yylex(), which returns the next token.
25 =head1 Lexer interface
26 This is the lower layer of the Perl parser, managing characters and tokens.
28 =for apidoc AmU|yy_parser *|PL_parser
30 Pointer to a structure encapsulating the state of the parsing operation
31 currently in progress. The pointer can be locally changed to perform
32 a nested parse without interfering with the state of an outer parse.
33 Individual members of C<PL_parser> have their own documentation.
39 #define PERL_IN_TOKE_C
41 #include "dquote_inline.h"
42 #include "invlist_inline.h"
44 #define new_constant(a,b,c,d,e,f,g, h) \
45 S_new_constant(aTHX_ a,b,STR_WITH_LEN(c),d,e,f, g, h)
47 #define pl_yylval (PL_parser->yylval)
49 /* XXX temporary backwards compatibility */
50 #define PL_lex_brackets (PL_parser->lex_brackets)
51 #define PL_lex_allbrackets (PL_parser->lex_allbrackets)
52 #define PL_lex_fakeeof (PL_parser->lex_fakeeof)
53 #define PL_lex_brackstack (PL_parser->lex_brackstack)
54 #define PL_lex_casemods (PL_parser->lex_casemods)
55 #define PL_lex_casestack (PL_parser->lex_casestack)
56 #define PL_lex_dojoin (PL_parser->lex_dojoin)
57 #define PL_lex_formbrack (PL_parser->lex_formbrack)
58 #define PL_lex_inpat (PL_parser->lex_inpat)
59 #define PL_lex_inwhat (PL_parser->lex_inwhat)
60 #define PL_lex_op (PL_parser->lex_op)
61 #define PL_lex_repl (PL_parser->lex_repl)
62 #define PL_lex_starts (PL_parser->lex_starts)
63 #define PL_lex_stuff (PL_parser->lex_stuff)
64 #define PL_multi_start (PL_parser->multi_start)
65 #define PL_multi_open (PL_parser->multi_open)
66 #define PL_multi_close (PL_parser->multi_close)
67 #define PL_preambled (PL_parser->preambled)
68 #define PL_linestr (PL_parser->linestr)
69 #define PL_expect (PL_parser->expect)
70 #define PL_copline (PL_parser->copline)
71 #define PL_bufptr (PL_parser->bufptr)
72 #define PL_oldbufptr (PL_parser->oldbufptr)
73 #define PL_oldoldbufptr (PL_parser->oldoldbufptr)
74 #define PL_linestart (PL_parser->linestart)
75 #define PL_bufend (PL_parser->bufend)
76 #define PL_last_uni (PL_parser->last_uni)
77 #define PL_last_lop (PL_parser->last_lop)
78 #define PL_last_lop_op (PL_parser->last_lop_op)
79 #define PL_lex_state (PL_parser->lex_state)
80 #define PL_rsfp (PL_parser->rsfp)
81 #define PL_rsfp_filters (PL_parser->rsfp_filters)
82 #define PL_in_my (PL_parser->in_my)
83 #define PL_in_my_stash (PL_parser->in_my_stash)
84 #define PL_tokenbuf (PL_parser->tokenbuf)
85 #define PL_multi_end (PL_parser->multi_end)
86 #define PL_error_count (PL_parser->error_count)
88 # define PL_nexttoke (PL_parser->nexttoke)
89 # define PL_nexttype (PL_parser->nexttype)
90 # define PL_nextval (PL_parser->nextval)
93 #define SvEVALED(sv) \
94 (SvTYPE(sv) >= SVt_PVNV \
95 && ((XPVIV*)SvANY(sv))->xiv_u.xivu_eval_seen)
97 static const char* const ident_too_long = "Identifier too long";
99 # define NEXTVAL_NEXTTOKE PL_nextval[PL_nexttoke]
101 #define XENUMMASK 0x3f
102 #define XFAKEEOF 0x40
103 #define XFAKEBRACK 0x80
105 #ifdef USE_UTF8_SCRIPTS
106 # define UTF cBOOL(!IN_BYTES)
108 # define UTF cBOOL((PL_linestr && DO_UTF8(PL_linestr)) || ( !(PL_parser->lex_flags & LEX_IGNORE_UTF8_HINTS) && (PL_hints & HINT_UTF8)))
111 /* The maximum number of characters preceding the unrecognized one to display */
112 #define UNRECOGNIZED_PRECEDE_COUNT 10
114 /* In variables named $^X, these are the legal values for X.
115 * 1999-02-27 mjd-perl-patch@plover.com */
116 #define isCONTROLVAR(x) (isUPPER(x) || strchr("[\\]^_?", (x)))
118 #define SPACE_OR_TAB(c) isBLANK_A(c)
120 #define HEXFP_PEEK(s) \
122 (isXDIGIT(s[1]) || isALPHA_FOLD_EQ(s[1], 'p'))) || \
123 isALPHA_FOLD_EQ(s[0], 'p'))
125 /* LEX_* are values for PL_lex_state, the state of the lexer.
126 * They are arranged oddly so that the guard on the switch statement
127 * can get by with a single comparison (if the compiler is smart enough).
129 * These values refer to the various states within a sublex parse,
130 * i.e. within a double quotish string
133 /* #define LEX_NOTPARSING 11 is done in perl.h. */
135 #define LEX_NORMAL 10 /* normal code (ie not within "...") */
136 #define LEX_INTERPNORMAL 9 /* code within a string, eg "$foo[$x+1]" */
137 #define LEX_INTERPCASEMOD 8 /* expecting a \U, \Q or \E etc */
138 #define LEX_INTERPPUSH 7 /* starting a new sublex parse level */
139 #define LEX_INTERPSTART 6 /* expecting the start of a $var */
141 /* at end of code, eg "$x" followed by: */
142 #define LEX_INTERPEND 5 /* ... eg not one of [, { or -> */
143 #define LEX_INTERPENDMAYBE 4 /* ... eg one of [, { or -> */
145 #define LEX_INTERPCONCAT 3 /* expecting anything, eg at start of
146 string or after \E, $foo, etc */
147 #define LEX_INTERPCONST 2 /* NOT USED */
148 #define LEX_FORMLINE 1 /* expecting a format line */
152 static const char* const lex_state_names[] = {
167 #include "keywords.h"
169 /* CLINE is a macro that ensures PL_copline has a sane value */
171 #define CLINE (PL_copline = (CopLINE(PL_curcop) < PL_copline ? CopLINE(PL_curcop) : PL_copline))
174 * Convenience functions to return different tokens and prime the
175 * lexer for the next token. They all take an argument.
177 * TOKEN : generic token (used for '(', DOLSHARP, etc)
178 * OPERATOR : generic operator
179 * AOPERATOR : assignment operator
180 * PREBLOCK : beginning the block after an if, while, foreach, ...
181 * PRETERMBLOCK : beginning a non-code-defining {} block (eg, hash ref)
182 * PREREF : *EXPR where EXPR is not a simple identifier
183 * TERM : expression term
184 * POSTDEREF : postfix dereference (->$* ->@[...] etc.)
185 * LOOPX : loop exiting command (goto, last, dump, etc)
186 * FTST : file test operator
187 * FUN0 : zero-argument function
188 * FUN0OP : zero-argument function, with its op created in this file
189 * FUN1 : not used, except for not, which isn't a UNIOP
190 * BOop : bitwise or or xor
192 * BCop : bitwise complement
193 * SHop : shift operator
194 * PWop : power operator
195 * PMop : pattern-matching operator
196 * Aop : addition-level operator
197 * AopNOASSIGN : addition-level operator that is never part of .=
198 * Mop : multiplication-level operator
199 * Eop : equality-testing operator
200 * Rop : relational operator <= != gt
202 * Also see LOP and lop() below.
205 #ifdef DEBUGGING /* Serve -DT. */
206 # define REPORT(retval) tokereport((I32)retval, &pl_yylval)
208 # define REPORT(retval) (retval)
211 #define TOKEN(retval) return ( PL_bufptr = s, REPORT(retval))
212 #define OPERATOR(retval) return (PL_expect = XTERM, PL_bufptr = s, REPORT(retval))
213 #define AOPERATOR(retval) return ao((PL_expect = XTERM, PL_bufptr = s, retval))
214 #define PREBLOCK(retval) return (PL_expect = XBLOCK,PL_bufptr = s, REPORT(retval))
215 #define PRETERMBLOCK(retval) return (PL_expect = XTERMBLOCK,PL_bufptr = s, REPORT(retval))
216 #define PREREF(retval) return (PL_expect = XREF,PL_bufptr = s, REPORT(retval))
217 #define TERM(retval) return (CLINE, PL_expect = XOPERATOR, PL_bufptr = s, REPORT(retval))
218 #define POSTDEREF(f) return (PL_bufptr = s, S_postderef(aTHX_ REPORT(f),s[1]))
219 #define LOOPX(f) return (PL_bufptr = force_word(s,BAREWORD,TRUE,FALSE), \
221 PL_expect = PL_nexttoke ? XOPERATOR : XTERM, \
223 #define FTST(f) return (pl_yylval.ival=f, PL_expect=XTERMORDORDOR, PL_bufptr=s, REPORT((int)UNIOP))
224 #define FUN0(f) return (pl_yylval.ival=f, PL_expect=XOPERATOR, PL_bufptr=s, REPORT((int)FUNC0))
225 #define FUN0OP(f) return (pl_yylval.opval=f, CLINE, PL_expect=XOPERATOR, PL_bufptr=s, REPORT((int)FUNC0OP))
226 #define FUN1(f) return (pl_yylval.ival=f, PL_expect=XOPERATOR, PL_bufptr=s, REPORT((int)FUNC1))
227 #define BOop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)BITOROP))
228 #define BAop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)BITANDOP))
229 #define BCop(f) return pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr = s, \
231 #define SHop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)SHIFTOP))
232 #define PWop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)POWOP))
233 #define PMop(f) return(pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, REPORT((int)MATCHOP))
234 #define Aop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)ADDOP))
235 #define AopNOASSIGN(f) return (pl_yylval.ival=f, PL_bufptr=s, REPORT((int)ADDOP))
236 #define Mop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)MULOP))
237 #define Eop(f) return (pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, REPORT((int)EQOP))
238 #define Rop(f) return (pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, REPORT((int)RELOP))
240 /* This bit of chicanery makes a unary function followed by
241 * a parenthesis into a function with one argument, highest precedence.
242 * The UNIDOR macro is for unary functions that can be followed by the //
243 * operator (such as C<shift // 0>).
245 #define UNI3(f,x,have_x) { \
246 pl_yylval.ival = f; \
247 if (have_x) PL_expect = x; \
249 PL_last_uni = PL_oldbufptr; \
250 PL_last_lop_op = (f) < 0 ? -(f) : (f); \
252 return REPORT( (int)FUNC1 ); \
254 return REPORT( *s=='(' ? (int)FUNC1 : (int)UNIOP ); \
256 #define UNI(f) UNI3(f,XTERM,1)
257 #define UNIDOR(f) UNI3(f,XTERMORDORDOR,1)
258 #define UNIPROTO(f,optional) { \
259 if (optional) PL_last_uni = PL_oldbufptr; \
263 #define UNIBRACK(f) UNI3(f,0,0)
265 /* grandfather return to old style */
268 if (!PL_lex_allbrackets && PL_lex_fakeeof > LEX_FAKEEOF_LOWLOGIC) \
269 PL_lex_fakeeof = LEX_FAKEEOF_LOWLOGIC; \
270 pl_yylval.ival = (f); \
276 #define COPLINE_INC_WITH_HERELINES \
278 CopLINE_inc(PL_curcop); \
279 if (PL_parser->herelines) \
280 CopLINE(PL_curcop) += PL_parser->herelines, \
281 PL_parser->herelines = 0; \
283 /* Called after scan_str to update CopLINE(PL_curcop), but only when there
284 * is no sublex_push to follow. */
285 #define COPLINE_SET_FROM_MULTI_END \
287 CopLINE_set(PL_curcop, PL_multi_end); \
288 if (PL_multi_end != PL_multi_start) \
289 PL_parser->herelines = 0; \
295 /* how to interpret the pl_yylval associated with the token */
299 TOKENTYPE_OPNUM, /* pl_yylval.ival contains an opcode number */
304 static struct debug_tokens {
306 enum token_type type;
308 } const debug_tokens[] =
310 { ADDOP, TOKENTYPE_OPNUM, "ADDOP" },
311 { ANDAND, TOKENTYPE_NONE, "ANDAND" },
312 { ANDOP, TOKENTYPE_NONE, "ANDOP" },
313 { ANONSUB, TOKENTYPE_IVAL, "ANONSUB" },
314 { ANON_SIGSUB, TOKENTYPE_IVAL, "ANON_SIGSUB" },
315 { ARROW, TOKENTYPE_NONE, "ARROW" },
316 { ASSIGNOP, TOKENTYPE_OPNUM, "ASSIGNOP" },
317 { BITANDOP, TOKENTYPE_OPNUM, "BITANDOP" },
318 { BITOROP, TOKENTYPE_OPNUM, "BITOROP" },
319 { COLONATTR, TOKENTYPE_NONE, "COLONATTR" },
320 { CONTINUE, TOKENTYPE_NONE, "CONTINUE" },
321 { DEFAULT, TOKENTYPE_NONE, "DEFAULT" },
322 { DO, TOKENTYPE_NONE, "DO" },
323 { DOLSHARP, TOKENTYPE_NONE, "DOLSHARP" },
324 { DORDOR, TOKENTYPE_NONE, "DORDOR" },
325 { DOROP, TOKENTYPE_OPNUM, "DOROP" },
326 { DOTDOT, TOKENTYPE_IVAL, "DOTDOT" },
327 { ELSE, TOKENTYPE_NONE, "ELSE" },
328 { ELSIF, TOKENTYPE_IVAL, "ELSIF" },
329 { EQOP, TOKENTYPE_OPNUM, "EQOP" },
330 { FOR, TOKENTYPE_IVAL, "FOR" },
331 { FORMAT, TOKENTYPE_NONE, "FORMAT" },
332 { FORMLBRACK, TOKENTYPE_NONE, "FORMLBRACK" },
333 { FORMRBRACK, TOKENTYPE_NONE, "FORMRBRACK" },
334 { FUNC, TOKENTYPE_OPNUM, "FUNC" },
335 { FUNC0, TOKENTYPE_OPNUM, "FUNC0" },
336 { FUNC0OP, TOKENTYPE_OPVAL, "FUNC0OP" },
337 { FUNC0SUB, TOKENTYPE_OPVAL, "FUNC0SUB" },
338 { FUNC1, TOKENTYPE_OPNUM, "FUNC1" },
339 { FUNCMETH, TOKENTYPE_OPVAL, "FUNCMETH" },
340 { GIVEN, TOKENTYPE_IVAL, "GIVEN" },
341 { HASHBRACK, TOKENTYPE_NONE, "HASHBRACK" },
342 { IF, TOKENTYPE_IVAL, "IF" },
343 { LABEL, TOKENTYPE_PVAL, "LABEL" },
344 { LOCAL, TOKENTYPE_IVAL, "LOCAL" },
345 { LOOPEX, TOKENTYPE_OPNUM, "LOOPEX" },
346 { LSTOP, TOKENTYPE_OPNUM, "LSTOP" },
347 { LSTOPSUB, TOKENTYPE_OPVAL, "LSTOPSUB" },
348 { MATCHOP, TOKENTYPE_OPNUM, "MATCHOP" },
349 { METHOD, TOKENTYPE_OPVAL, "METHOD" },
350 { MULOP, TOKENTYPE_OPNUM, "MULOP" },
351 { MY, TOKENTYPE_IVAL, "MY" },
352 { NOAMP, TOKENTYPE_NONE, "NOAMP" },
353 { NOTOP, TOKENTYPE_NONE, "NOTOP" },
354 { OROP, TOKENTYPE_IVAL, "OROP" },
355 { OROR, TOKENTYPE_NONE, "OROR" },
356 { PACKAGE, TOKENTYPE_NONE, "PACKAGE" },
357 { PLUGEXPR, TOKENTYPE_OPVAL, "PLUGEXPR" },
358 { PLUGSTMT, TOKENTYPE_OPVAL, "PLUGSTMT" },
359 { PMFUNC, TOKENTYPE_OPVAL, "PMFUNC" },
360 { POSTJOIN, TOKENTYPE_NONE, "POSTJOIN" },
361 { POSTDEC, TOKENTYPE_NONE, "POSTDEC" },
362 { POSTINC, TOKENTYPE_NONE, "POSTINC" },
363 { POWOP, TOKENTYPE_OPNUM, "POWOP" },
364 { PREDEC, TOKENTYPE_NONE, "PREDEC" },
365 { PREINC, TOKENTYPE_NONE, "PREINC" },
366 { PRIVATEREF, TOKENTYPE_OPVAL, "PRIVATEREF" },
367 { QWLIST, TOKENTYPE_OPVAL, "QWLIST" },
368 { REFGEN, TOKENTYPE_NONE, "REFGEN" },
369 { RELOP, TOKENTYPE_OPNUM, "RELOP" },
370 { REQUIRE, TOKENTYPE_NONE, "REQUIRE" },
371 { SHIFTOP, TOKENTYPE_OPNUM, "SHIFTOP" },
372 { SIGSUB, TOKENTYPE_NONE, "SIGSUB" },
373 { SUB, TOKENTYPE_NONE, "SUB" },
374 { THING, TOKENTYPE_OPVAL, "THING" },
375 { UMINUS, TOKENTYPE_NONE, "UMINUS" },
376 { UNIOP, TOKENTYPE_OPNUM, "UNIOP" },
377 { UNIOPSUB, TOKENTYPE_OPVAL, "UNIOPSUB" },
378 { UNLESS, TOKENTYPE_IVAL, "UNLESS" },
379 { UNTIL, TOKENTYPE_IVAL, "UNTIL" },
380 { USE, TOKENTYPE_IVAL, "USE" },
381 { WHEN, TOKENTYPE_IVAL, "WHEN" },
382 { WHILE, TOKENTYPE_IVAL, "WHILE" },
383 { BAREWORD, TOKENTYPE_OPVAL, "BAREWORD" },
384 { YADAYADA, TOKENTYPE_IVAL, "YADAYADA" },
385 { 0, TOKENTYPE_NONE, NULL }
388 /* dump the returned token in rv, plus any optional arg in pl_yylval */
391 S_tokereport(pTHX_ I32 rv, const YYSTYPE* lvalp)
393 PERL_ARGS_ASSERT_TOKEREPORT;
396 const char *name = NULL;
397 enum token_type type = TOKENTYPE_NONE;
398 const struct debug_tokens *p;
399 SV* const report = newSVpvs("<== ");
401 for (p = debug_tokens; p->token; p++) {
402 if (p->token == (int)rv) {
409 Perl_sv_catpv(aTHX_ report, name);
410 else if (isGRAPH(rv))
412 Perl_sv_catpvf(aTHX_ report, "'%c'", (char)rv);
414 sv_catpvs(report, " (pending identifier)");
417 sv_catpvs(report, "EOF");
419 Perl_sv_catpvf(aTHX_ report, "?? %" IVdf, (IV)rv);
424 Perl_sv_catpvf(aTHX_ report, "(ival=%" IVdf ")", (IV)lvalp->ival);
426 case TOKENTYPE_OPNUM:
427 Perl_sv_catpvf(aTHX_ report, "(ival=op_%s)",
428 PL_op_name[lvalp->ival]);
431 Perl_sv_catpvf(aTHX_ report, "(pval=\"%s\")", lvalp->pval);
433 case TOKENTYPE_OPVAL:
435 Perl_sv_catpvf(aTHX_ report, "(opval=op_%s)",
436 PL_op_name[lvalp->opval->op_type]);
437 if (lvalp->opval->op_type == OP_CONST) {
438 Perl_sv_catpvf(aTHX_ report, " %s",
439 SvPEEK(cSVOPx_sv(lvalp->opval)));
444 sv_catpvs(report, "(opval=null)");
447 PerlIO_printf(Perl_debug_log, "### %s\n\n", SvPV_nolen_const(report));
453 /* print the buffer with suitable escapes */
456 S_printbuf(pTHX_ const char *const fmt, const char *const s)
458 SV* const tmp = newSVpvs("");
460 PERL_ARGS_ASSERT_PRINTBUF;
462 GCC_DIAG_IGNORE_STMT(-Wformat-nonliteral); /* fmt checked by caller */
463 PerlIO_printf(Perl_debug_log, fmt, pv_display(tmp, s, strlen(s), 0, 60));
464 GCC_DIAG_RESTORE_STMT;
473 * This subroutine looks for an '=' next to the operator that has just been
474 * parsed and turns it into an ASSIGNOP if it finds one.
478 S_ao(pTHX_ int toketype)
480 if (*PL_bufptr == '=') {
482 if (toketype == ANDAND)
483 pl_yylval.ival = OP_ANDASSIGN;
484 else if (toketype == OROR)
485 pl_yylval.ival = OP_ORASSIGN;
486 else if (toketype == DORDOR)
487 pl_yylval.ival = OP_DORASSIGN;
490 return REPORT(toketype);
495 * When Perl expects an operator and finds something else, no_op
496 * prints the warning. It always prints "<something> found where
497 * operator expected. It prints "Missing semicolon on previous line?"
498 * if the surprise occurs at the start of the line. "do you need to
499 * predeclare ..." is printed out for code like "sub bar; foo bar $x"
500 * where the compiler doesn't know if foo is a method call or a function.
501 * It prints "Missing operator before end of line" if there's nothing
502 * after the missing operator, or "... before <...>" if there is something
503 * after the missing operator.
505 * PL_bufptr is expected to point to the start of the thing that was found,
506 * and s after the next token or partial token.
510 S_no_op(pTHX_ const char *const what, char *s)
512 char * const oldbp = PL_bufptr;
513 const bool is_first = (PL_oldbufptr == PL_linestart);
515 PERL_ARGS_ASSERT_NO_OP;
521 yywarn(Perl_form(aTHX_ "%s found where operator expected", what), UTF ? SVf_UTF8 : 0);
522 if (ckWARN_d(WARN_SYNTAX)) {
524 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
525 "\t(Missing semicolon on previous line?)\n");
526 else if (PL_oldoldbufptr && isIDFIRST_lazy_if_safe(PL_oldoldbufptr,
531 for (t = PL_oldoldbufptr;
532 (isWORDCHAR_lazy_if_safe(t, PL_bufend, UTF) || *t == ':');
533 t += UTF ? UTF8SKIP(t) : 1)
537 if (t < PL_bufptr && isSPACE(*t))
538 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
539 "\t(Do you need to predeclare %" UTF8f "?)\n",
540 UTF8fARG(UTF, t - PL_oldoldbufptr, PL_oldoldbufptr));
544 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
545 "\t(Missing operator before %" UTF8f "?)\n",
546 UTF8fARG(UTF, s - oldbp, oldbp));
554 * Complain about missing quote/regexp/heredoc terminator.
555 * If it's called with NULL then it cauterizes the line buffer.
556 * If we're in a delimited string and the delimiter is a control
557 * character, it's reformatted into a two-char sequence like ^C.
562 S_missingterm(pTHX_ char *s, STRLEN len)
564 char tmpbuf[UTF8_MAXBYTES + 1];
569 char * const nl = (char *) my_memrchr(s, '\n', len);
576 else if (PL_multi_close < 32) {
578 tmpbuf[1] = (char)toCTRL(PL_multi_close);
584 if (LIKELY(PL_multi_close < 256)) {
585 *tmpbuf = (char)PL_multi_close;
590 char *end = (char *)uvchr_to_utf8((U8 *)tmpbuf, PL_multi_close);
597 q = memchr(s, '"', len) ? '\'' : '"';
598 sv = sv_2mortal(newSVpvn(s, len));
601 Perl_croak(aTHX_ "Can't find string terminator %c%" SVf "%c"
602 " anywhere before EOF", q, SVfARG(sv), q);
608 * Check whether the named feature is enabled.
611 Perl_feature_is_enabled(pTHX_ const char *const name, STRLEN namelen)
613 char he_name[8 + MAX_FEATURE_LEN] = "feature_";
615 PERL_ARGS_ASSERT_FEATURE_IS_ENABLED;
617 assert(CURRENT_FEATURE_BUNDLE == FEATURE_BUNDLE_CUSTOM);
619 if (namelen > MAX_FEATURE_LEN)
621 memcpy(&he_name[8], name, namelen);
623 return cBOOL(cop_hints_fetch_pvn(PL_curcop, he_name, 8 + namelen, 0,
624 REFCOUNTED_HE_EXISTS));
628 * experimental text filters for win32 carriage-returns, utf16-to-utf8 and
629 * utf16-to-utf8-reversed.
632 #ifdef PERL_CR_FILTER
636 const char *s = SvPVX_const(sv);
637 const char * const e = s + SvCUR(sv);
639 PERL_ARGS_ASSERT_STRIP_RETURN;
641 /* outer loop optimized to do nothing if there are no CR-LFs */
643 if (*s++ == '\r' && *s == '\n') {
644 /* hit a CR-LF, need to copy the rest */
648 if (*s == '\r' && s[1] == '\n')
659 S_cr_textfilter(pTHX_ int idx, SV *sv, int maxlen)
661 const I32 count = FILTER_READ(idx+1, sv, maxlen);
662 if (count > 0 && !maxlen)
669 =for apidoc Amx|void|lex_start|SV *line|PerlIO *rsfp|U32 flags
671 Creates and initialises a new lexer/parser state object, supplying
672 a context in which to lex and parse from a new source of Perl code.
673 A pointer to the new state object is placed in L</PL_parser>. An entry
674 is made on the save stack so that upon unwinding, the new state object
675 will be destroyed and the former value of L</PL_parser> will be restored.
676 Nothing else need be done to clean up the parsing context.
678 The code to be parsed comes from C<line> and C<rsfp>. C<line>, if
679 non-null, provides a string (in SV form) containing code to be parsed.
680 A copy of the string is made, so subsequent modification of C<line>
681 does not affect parsing. C<rsfp>, if non-null, provides an input stream
682 from which code will be read to be parsed. If both are non-null, the
683 code in C<line> comes first and must consist of complete lines of input,
684 and C<rsfp> supplies the remainder of the source.
686 The C<flags> parameter is reserved for future use. Currently it is only
687 used by perl internally, so extensions should always pass zero.
692 /* LEX_START_SAME_FILTER indicates that this is not a new file, so it
693 can share filters with the current parser.
694 LEX_START_DONT_CLOSE indicates that the file handle wasn't opened by the
695 caller, hence isn't owned by the parser, so shouldn't be closed on parser
696 destruction. This is used to handle the case of defaulting to reading the
697 script from the standard input because no filename was given on the command
698 line (without getting confused by situation where STDIN has been closed, so
699 the script handle is opened on fd 0) */
702 Perl_lex_start(pTHX_ SV *line, PerlIO *rsfp, U32 flags)
704 const char *s = NULL;
705 yy_parser *parser, *oparser;
707 if (flags && flags & ~LEX_START_FLAGS)
708 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_start");
710 /* create and initialise a parser */
712 Newxz(parser, 1, yy_parser);
713 parser->old_parser = oparser = PL_parser;
716 parser->stack = NULL;
717 parser->stack_max1 = NULL;
720 /* on scope exit, free this parser and restore any outer one */
722 parser->saved_curcop = PL_curcop;
724 /* initialise lexer state */
726 parser->nexttoke = 0;
727 parser->error_count = oparser ? oparser->error_count : 0;
728 parser->copline = parser->preambling = NOLINE;
729 parser->lex_state = LEX_NORMAL;
730 parser->expect = XSTATE;
732 parser->recheck_utf8_validity = FALSE;
733 parser->rsfp_filters =
734 !(flags & LEX_START_SAME_FILTER) || !oparser
736 : MUTABLE_AV(SvREFCNT_inc(
737 oparser->rsfp_filters
738 ? oparser->rsfp_filters
739 : (oparser->rsfp_filters = newAV())
742 Newx(parser->lex_brackstack, 120, char);
743 Newx(parser->lex_casestack, 12, char);
744 *parser->lex_casestack = '\0';
745 Newxz(parser->lex_shared, 1, LEXSHARED);
749 const U8* first_bad_char_loc;
751 s = SvPV_const(line, len);
754 && UNLIKELY(! is_utf8_string_loc((U8 *) s,
756 &first_bad_char_loc)))
758 _force_out_malformed_utf8_message(first_bad_char_loc,
759 (U8 *) s + SvCUR(line),
761 1 /* 1 means die */ );
762 NOT_REACHED; /* NOTREACHED */
765 parser->linestr = flags & LEX_START_COPIED
766 ? SvREFCNT_inc_simple_NN(line)
767 : newSVpvn_flags(s, len, SvUTF8(line));
769 sv_catpvs(parser->linestr, "\n;");
771 parser->linestr = newSVpvn("\n;", rsfp ? 1 : 2);
774 parser->oldoldbufptr =
777 parser->linestart = SvPVX(parser->linestr);
778 parser->bufend = parser->bufptr + SvCUR(parser->linestr);
779 parser->last_lop = parser->last_uni = NULL;
781 STATIC_ASSERT_STMT(FITS_IN_8_BITS(LEX_IGNORE_UTF8_HINTS|LEX_EVALBYTES
782 |LEX_DONT_CLOSE_RSFP));
783 parser->lex_flags = (U8) (flags & (LEX_IGNORE_UTF8_HINTS|LEX_EVALBYTES
784 |LEX_DONT_CLOSE_RSFP));
786 parser->in_pod = parser->filtered = 0;
790 /* delete a parser object */
793 Perl_parser_free(pTHX_ const yy_parser *parser)
795 PERL_ARGS_ASSERT_PARSER_FREE;
797 PL_curcop = parser->saved_curcop;
798 SvREFCNT_dec(parser->linestr);
800 if (PL_parser->lex_flags & LEX_DONT_CLOSE_RSFP)
801 PerlIO_clearerr(parser->rsfp);
802 else if (parser->rsfp && (!parser->old_parser
803 || (parser->old_parser && parser->rsfp != parser->old_parser->rsfp)))
804 PerlIO_close(parser->rsfp);
805 SvREFCNT_dec(parser->rsfp_filters);
806 SvREFCNT_dec(parser->lex_stuff);
807 SvREFCNT_dec(parser->lex_sub_repl);
809 Safefree(parser->lex_brackstack);
810 Safefree(parser->lex_casestack);
811 Safefree(parser->lex_shared);
812 PL_parser = parser->old_parser;
817 Perl_parser_free_nexttoke_ops(pTHX_ yy_parser *parser, OPSLAB *slab)
819 I32 nexttoke = parser->nexttoke;
820 PERL_ARGS_ASSERT_PARSER_FREE_NEXTTOKE_OPS;
822 if (S_is_opval_token(parser->nexttype[nexttoke] & 0xffff)
823 && parser->nextval[nexttoke].opval
824 && parser->nextval[nexttoke].opval->op_slabbed
825 && OpSLAB(parser->nextval[nexttoke].opval) == slab) {
826 op_free(parser->nextval[nexttoke].opval);
827 parser->nextval[nexttoke].opval = NULL;
834 =for apidoc AmxU|SV *|PL_parser-E<gt>linestr
836 Buffer scalar containing the chunk currently under consideration of the
837 text currently being lexed. This is always a plain string scalar (for
838 which C<SvPOK> is true). It is not intended to be used as a scalar by
839 normal scalar means; instead refer to the buffer directly by the pointer
840 variables described below.
842 The lexer maintains various C<char*> pointers to things in the
843 C<PL_parser-E<gt>linestr> buffer. If C<PL_parser-E<gt>linestr> is ever
844 reallocated, all of these pointers must be updated. Don't attempt to
845 do this manually, but rather use L</lex_grow_linestr> if you need to
846 reallocate the buffer.
848 The content of the text chunk in the buffer is commonly exactly one
849 complete line of input, up to and including a newline terminator,
850 but there are situations where it is otherwise. The octets of the
851 buffer may be intended to be interpreted as either UTF-8 or Latin-1.
852 The function L</lex_bufutf8> tells you which. Do not use the C<SvUTF8>
853 flag on this scalar, which may disagree with it.
855 For direct examination of the buffer, the variable
856 L</PL_parser-E<gt>bufend> points to the end of the buffer. The current
857 lexing position is pointed to by L</PL_parser-E<gt>bufptr>. Direct use
858 of these pointers is usually preferable to examination of the scalar
859 through normal scalar means.
861 =for apidoc AmxU|char *|PL_parser-E<gt>bufend
863 Direct pointer to the end of the chunk of text currently being lexed, the
864 end of the lexer buffer. This is equal to C<SvPVX(PL_parser-E<gt>linestr)
865 + SvCUR(PL_parser-E<gt>linestr)>. A C<NUL> character (zero octet) is
866 always located at the end of the buffer, and does not count as part of
867 the buffer's contents.
869 =for apidoc AmxU|char *|PL_parser-E<gt>bufptr
871 Points to the current position of lexing inside the lexer buffer.
872 Characters around this point may be freely examined, within
873 the range delimited by C<SvPVX(L</PL_parser-E<gt>linestr>)> and
874 L</PL_parser-E<gt>bufend>. The octets of the buffer may be intended to be
875 interpreted as either UTF-8 or Latin-1, as indicated by L</lex_bufutf8>.
877 Lexing code (whether in the Perl core or not) moves this pointer past
878 the characters that it consumes. It is also expected to perform some
879 bookkeeping whenever a newline character is consumed. This movement
880 can be more conveniently performed by the function L</lex_read_to>,
881 which handles newlines appropriately.
883 Interpretation of the buffer's octets can be abstracted out by
884 using the slightly higher-level functions L</lex_peek_unichar> and
885 L</lex_read_unichar>.
887 =for apidoc AmxU|char *|PL_parser-E<gt>linestart
889 Points to the start of the current line inside the lexer buffer.
890 This is useful for indicating at which column an error occurred, and
891 not much else. This must be updated by any lexing code that consumes
892 a newline; the function L</lex_read_to> handles this detail.
898 =for apidoc Amx|bool|lex_bufutf8
900 Indicates whether the octets in the lexer buffer
901 (L</PL_parser-E<gt>linestr>) should be interpreted as the UTF-8 encoding
902 of Unicode characters. If not, they should be interpreted as Latin-1
903 characters. This is analogous to the C<SvUTF8> flag for scalars.
905 In UTF-8 mode, it is not guaranteed that the lexer buffer actually
906 contains valid UTF-8. Lexing code must be robust in the face of invalid
909 The actual C<SvUTF8> flag of the L</PL_parser-E<gt>linestr> scalar
910 is significant, but not the whole story regarding the input character
911 encoding. Normally, when a file is being read, the scalar contains octets
912 and its C<SvUTF8> flag is off, but the octets should be interpreted as
913 UTF-8 if the C<use utf8> pragma is in effect. During a string eval,
914 however, the scalar may have the C<SvUTF8> flag on, and in this case its
915 octets should be interpreted as UTF-8 unless the C<use bytes> pragma
916 is in effect. This logic may change in the future; use this function
917 instead of implementing the logic yourself.
923 Perl_lex_bufutf8(pTHX)
929 =for apidoc Amx|char *|lex_grow_linestr|STRLEN len
931 Reallocates the lexer buffer (L</PL_parser-E<gt>linestr>) to accommodate
932 at least C<len> octets (including terminating C<NUL>). Returns a
933 pointer to the reallocated buffer. This is necessary before making
934 any direct modification of the buffer that would increase its length.
935 L</lex_stuff_pvn> provides a more convenient way to insert text into
938 Do not use C<SvGROW> or C<sv_grow> directly on C<PL_parser-E<gt>linestr>;
939 this function updates all of the lexer's variables that point directly
946 Perl_lex_grow_linestr(pTHX_ STRLEN len)
950 STRLEN bufend_pos, bufptr_pos, oldbufptr_pos, oldoldbufptr_pos;
951 STRLEN linestart_pos, last_uni_pos, last_lop_pos, re_eval_start_pos;
954 linestr = PL_parser->linestr;
955 buf = SvPVX(linestr);
956 if (len <= SvLEN(linestr))
959 /* Is the lex_shared linestr SV the same as the current linestr SV?
960 * Only in this case does re_eval_start need adjusting, since it
961 * points within lex_shared->ls_linestr's buffer */
962 current = ( !PL_parser->lex_shared->ls_linestr
963 || linestr == PL_parser->lex_shared->ls_linestr);
965 bufend_pos = PL_parser->bufend - buf;
966 bufptr_pos = PL_parser->bufptr - buf;
967 oldbufptr_pos = PL_parser->oldbufptr - buf;
968 oldoldbufptr_pos = PL_parser->oldoldbufptr - buf;
969 linestart_pos = PL_parser->linestart - buf;
970 last_uni_pos = PL_parser->last_uni ? PL_parser->last_uni - buf : 0;
971 last_lop_pos = PL_parser->last_lop ? PL_parser->last_lop - buf : 0;
972 re_eval_start_pos = (current && PL_parser->lex_shared->re_eval_start) ?
973 PL_parser->lex_shared->re_eval_start - buf : 0;
975 buf = sv_grow(linestr, len);
977 PL_parser->bufend = buf + bufend_pos;
978 PL_parser->bufptr = buf + bufptr_pos;
979 PL_parser->oldbufptr = buf + oldbufptr_pos;
980 PL_parser->oldoldbufptr = buf + oldoldbufptr_pos;
981 PL_parser->linestart = buf + linestart_pos;
982 if (PL_parser->last_uni)
983 PL_parser->last_uni = buf + last_uni_pos;
984 if (PL_parser->last_lop)
985 PL_parser->last_lop = buf + last_lop_pos;
986 if (current && PL_parser->lex_shared->re_eval_start)
987 PL_parser->lex_shared->re_eval_start = buf + re_eval_start_pos;
992 =for apidoc Amx|void|lex_stuff_pvn|const char *pv|STRLEN len|U32 flags
994 Insert characters into the lexer buffer (L</PL_parser-E<gt>linestr>),
995 immediately after the current lexing point (L</PL_parser-E<gt>bufptr>),
996 reallocating the buffer if necessary. This means that lexing code that
997 runs later will see the characters as if they had appeared in the input.
998 It is not recommended to do this as part of normal parsing, and most
999 uses of this facility run the risk of the inserted characters being
1000 interpreted in an unintended manner.
1002 The string to be inserted is represented by C<len> octets starting
1003 at C<pv>. These octets are interpreted as either UTF-8 or Latin-1,
1004 according to whether the C<LEX_STUFF_UTF8> flag is set in C<flags>.
1005 The characters are recoded for the lexer buffer, according to how the
1006 buffer is currently being interpreted (L</lex_bufutf8>). If a string
1007 to be inserted is available as a Perl scalar, the L</lex_stuff_sv>
1008 function is more convenient.
1014 Perl_lex_stuff_pvn(pTHX_ const char *pv, STRLEN len, U32 flags)
1018 PERL_ARGS_ASSERT_LEX_STUFF_PVN;
1019 if (flags & ~(LEX_STUFF_UTF8))
1020 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_stuff_pvn");
1022 if (flags & LEX_STUFF_UTF8) {
1025 STRLEN highhalf = 0; /* Count of variants */
1026 const char *p, *e = pv+len;
1027 for (p = pv; p != e; p++) {
1028 if (! UTF8_IS_INVARIANT(*p)) {
1034 lex_grow_linestr(SvCUR(PL_parser->linestr)+1+len+highhalf);
1035 bufptr = PL_parser->bufptr;
1036 Move(bufptr, bufptr+len+highhalf, PL_parser->bufend+1-bufptr, char);
1037 SvCUR_set(PL_parser->linestr,
1038 SvCUR(PL_parser->linestr) + len+highhalf);
1039 PL_parser->bufend += len+highhalf;
1040 for (p = pv; p != e; p++) {
1041 append_utf8_from_native_byte(*p, (U8 **) &bufptr);
1045 if (flags & LEX_STUFF_UTF8) {
1046 STRLEN highhalf = 0;
1047 const char *p, *e = pv+len;
1048 for (p = pv; p != e; p++) {
1050 if (UTF8_IS_ABOVE_LATIN1(c)) {
1051 Perl_croak(aTHX_ "Lexing code attempted to stuff "
1052 "non-Latin-1 character into Latin-1 input");
1053 } else if (UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(p, e)) {
1056 } else assert(UTF8_IS_INVARIANT(c));
1060 lex_grow_linestr(SvCUR(PL_parser->linestr)+1+len-highhalf);
1061 bufptr = PL_parser->bufptr;
1062 Move(bufptr, bufptr+len-highhalf, PL_parser->bufend+1-bufptr, char);
1063 SvCUR_set(PL_parser->linestr,
1064 SvCUR(PL_parser->linestr) + len-highhalf);
1065 PL_parser->bufend += len-highhalf;
1068 if (UTF8_IS_INVARIANT(*p)) {
1074 *bufptr++ = EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1));
1080 lex_grow_linestr(SvCUR(PL_parser->linestr)+1+len);
1081 bufptr = PL_parser->bufptr;
1082 Move(bufptr, bufptr+len, PL_parser->bufend+1-bufptr, char);
1083 SvCUR_set(PL_parser->linestr, SvCUR(PL_parser->linestr) + len);
1084 PL_parser->bufend += len;
1085 Copy(pv, bufptr, len, char);
1091 =for apidoc Amx|void|lex_stuff_pv|const char *pv|U32 flags
1093 Insert characters into the lexer buffer (L</PL_parser-E<gt>linestr>),
1094 immediately after the current lexing point (L</PL_parser-E<gt>bufptr>),
1095 reallocating the buffer if necessary. This means that lexing code that
1096 runs later will see the characters as if they had appeared in the input.
1097 It is not recommended to do this as part of normal parsing, and most
1098 uses of this facility run the risk of the inserted characters being
1099 interpreted in an unintended manner.
1101 The string to be inserted is represented by octets starting at C<pv>
1102 and continuing to the first nul. These octets are interpreted as either
1103 UTF-8 or Latin-1, according to whether the C<LEX_STUFF_UTF8> flag is set
1104 in C<flags>. The characters are recoded for the lexer buffer, according
1105 to how the buffer is currently being interpreted (L</lex_bufutf8>).
1106 If it is not convenient to nul-terminate a string to be inserted, the
1107 L</lex_stuff_pvn> function is more appropriate.
1113 Perl_lex_stuff_pv(pTHX_ const char *pv, U32 flags)
1115 PERL_ARGS_ASSERT_LEX_STUFF_PV;
1116 lex_stuff_pvn(pv, strlen(pv), flags);
1120 =for apidoc Amx|void|lex_stuff_sv|SV *sv|U32 flags
1122 Insert characters into the lexer buffer (L</PL_parser-E<gt>linestr>),
1123 immediately after the current lexing point (L</PL_parser-E<gt>bufptr>),
1124 reallocating the buffer if necessary. This means that lexing code that
1125 runs later will see the characters as if they had appeared in the input.
1126 It is not recommended to do this as part of normal parsing, and most
1127 uses of this facility run the risk of the inserted characters being
1128 interpreted in an unintended manner.
1130 The string to be inserted is the string value of C<sv>. The characters
1131 are recoded for the lexer buffer, according to how the buffer is currently
1132 being interpreted (L</lex_bufutf8>). If a string to be inserted is
1133 not already a Perl scalar, the L</lex_stuff_pvn> function avoids the
1134 need to construct a scalar.
1140 Perl_lex_stuff_sv(pTHX_ SV *sv, U32 flags)
1144 PERL_ARGS_ASSERT_LEX_STUFF_SV;
1146 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_stuff_sv");
1148 lex_stuff_pvn(pv, len, flags | (SvUTF8(sv) ? LEX_STUFF_UTF8 : 0));
1152 =for apidoc Amx|void|lex_unstuff|char *ptr
1154 Discards text about to be lexed, from L</PL_parser-E<gt>bufptr> up to
1155 C<ptr>. Text following C<ptr> will be moved, and the buffer shortened.
1156 This hides the discarded text from any lexing code that runs later,
1157 as if the text had never appeared.
1159 This is not the normal way to consume lexed text. For that, use
1166 Perl_lex_unstuff(pTHX_ char *ptr)
1170 PERL_ARGS_ASSERT_LEX_UNSTUFF;
1171 buf = PL_parser->bufptr;
1173 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_unstuff");
1176 bufend = PL_parser->bufend;
1178 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_unstuff");
1179 unstuff_len = ptr - buf;
1180 Move(ptr, buf, bufend+1-ptr, char);
1181 SvCUR_set(PL_parser->linestr, SvCUR(PL_parser->linestr) - unstuff_len);
1182 PL_parser->bufend = bufend - unstuff_len;
1186 =for apidoc Amx|void|lex_read_to|char *ptr
1188 Consume text in the lexer buffer, from L</PL_parser-E<gt>bufptr> up
1189 to C<ptr>. This advances L</PL_parser-E<gt>bufptr> to match C<ptr>,
1190 performing the correct bookkeeping whenever a newline character is passed.
1191 This is the normal way to consume lexed text.
1193 Interpretation of the buffer's octets can be abstracted out by
1194 using the slightly higher-level functions L</lex_peek_unichar> and
1195 L</lex_read_unichar>.
1201 Perl_lex_read_to(pTHX_ char *ptr)
1204 PERL_ARGS_ASSERT_LEX_READ_TO;
1205 s = PL_parser->bufptr;
1206 if (ptr < s || ptr > PL_parser->bufend)
1207 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_read_to");
1208 for (; s != ptr; s++)
1210 COPLINE_INC_WITH_HERELINES;
1211 PL_parser->linestart = s+1;
1213 PL_parser->bufptr = ptr;
1217 =for apidoc Amx|void|lex_discard_to|char *ptr
1219 Discards the first part of the L</PL_parser-E<gt>linestr> buffer,
1220 up to C<ptr>. The remaining content of the buffer will be moved, and
1221 all pointers into the buffer updated appropriately. C<ptr> must not
1222 be later in the buffer than the position of L</PL_parser-E<gt>bufptr>:
1223 it is not permitted to discard text that has yet to be lexed.
1225 Normally it is not necessarily to do this directly, because it suffices to
1226 use the implicit discarding behaviour of L</lex_next_chunk> and things
1227 based on it. However, if a token stretches across multiple lines,
1228 and the lexing code has kept multiple lines of text in the buffer for
1229 that purpose, then after completion of the token it would be wise to
1230 explicitly discard the now-unneeded earlier lines, to avoid future
1231 multi-line tokens growing the buffer without bound.
1237 Perl_lex_discard_to(pTHX_ char *ptr)
1241 PERL_ARGS_ASSERT_LEX_DISCARD_TO;
1242 buf = SvPVX(PL_parser->linestr);
1244 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_discard_to");
1247 if (ptr > PL_parser->bufptr)
1248 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_discard_to");
1249 discard_len = ptr - buf;
1250 if (PL_parser->oldbufptr < ptr)
1251 PL_parser->oldbufptr = ptr;
1252 if (PL_parser->oldoldbufptr < ptr)
1253 PL_parser->oldoldbufptr = ptr;
1254 if (PL_parser->last_uni && PL_parser->last_uni < ptr)
1255 PL_parser->last_uni = NULL;
1256 if (PL_parser->last_lop && PL_parser->last_lop < ptr)
1257 PL_parser->last_lop = NULL;
1258 Move(ptr, buf, PL_parser->bufend+1-ptr, char);
1259 SvCUR_set(PL_parser->linestr, SvCUR(PL_parser->linestr) - discard_len);
1260 PL_parser->bufend -= discard_len;
1261 PL_parser->bufptr -= discard_len;
1262 PL_parser->oldbufptr -= discard_len;
1263 PL_parser->oldoldbufptr -= discard_len;
1264 if (PL_parser->last_uni)
1265 PL_parser->last_uni -= discard_len;
1266 if (PL_parser->last_lop)
1267 PL_parser->last_lop -= discard_len;
1271 Perl_notify_parser_that_changed_to_utf8(pTHX)
1273 /* Called when $^H is changed to indicate that HINT_UTF8 has changed from
1274 * off to on. At compile time, this has the effect of entering a 'use
1275 * utf8' section. This means that any input was not previously checked for
1276 * UTF-8 (because it was off), but now we do need to check it, or our
1277 * assumptions about the input being sane could be wrong, and we could
1278 * segfault. This routine just sets a flag so that the next time we look
1279 * at the input we do the well-formed UTF-8 check. If we aren't in the
1280 * proper phase, there may not be a parser object, but if there is, setting
1281 * the flag is harmless */
1284 PL_parser->recheck_utf8_validity = TRUE;
1289 =for apidoc Amx|bool|lex_next_chunk|U32 flags
1291 Reads in the next chunk of text to be lexed, appending it to
1292 L</PL_parser-E<gt>linestr>. This should be called when lexing code has
1293 looked to the end of the current chunk and wants to know more. It is
1294 usual, but not necessary, for lexing to have consumed the entirety of
1295 the current chunk at this time.
1297 If L</PL_parser-E<gt>bufptr> is pointing to the very end of the current
1298 chunk (i.e., the current chunk has been entirely consumed), normally the
1299 current chunk will be discarded at the same time that the new chunk is
1300 read in. If C<flags> has the C<LEX_KEEP_PREVIOUS> bit set, the current chunk
1301 will not be discarded. If the current chunk has not been entirely
1302 consumed, then it will not be discarded regardless of the flag.
1304 Returns true if some new text was added to the buffer, or false if the
1305 buffer has reached the end of the input text.
1310 #define LEX_FAKE_EOF 0x80000000
1311 #define LEX_NO_TERM 0x40000000 /* here-doc */
1314 Perl_lex_next_chunk(pTHX_ U32 flags)
1318 STRLEN old_bufend_pos, new_bufend_pos;
1319 STRLEN bufptr_pos, oldbufptr_pos, oldoldbufptr_pos;
1320 STRLEN linestart_pos, last_uni_pos, last_lop_pos;
1321 bool got_some_for_debugger = 0;
1324 if (flags & ~(LEX_KEEP_PREVIOUS|LEX_FAKE_EOF|LEX_NO_TERM))
1325 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_next_chunk");
1326 if (!(flags & LEX_NO_TERM) && PL_lex_inwhat)
1328 linestr = PL_parser->linestr;
1329 buf = SvPVX(linestr);
1330 if (!(flags & LEX_KEEP_PREVIOUS)
1331 && PL_parser->bufptr == PL_parser->bufend)
1333 old_bufend_pos = bufptr_pos = oldbufptr_pos = oldoldbufptr_pos = 0;
1335 if (PL_parser->last_uni != PL_parser->bufend)
1336 PL_parser->last_uni = NULL;
1337 if (PL_parser->last_lop != PL_parser->bufend)
1338 PL_parser->last_lop = NULL;
1339 last_uni_pos = last_lop_pos = 0;
1343 old_bufend_pos = PL_parser->bufend - buf;
1344 bufptr_pos = PL_parser->bufptr - buf;
1345 oldbufptr_pos = PL_parser->oldbufptr - buf;
1346 oldoldbufptr_pos = PL_parser->oldoldbufptr - buf;
1347 linestart_pos = PL_parser->linestart - buf;
1348 last_uni_pos = PL_parser->last_uni ? PL_parser->last_uni - buf : 0;
1349 last_lop_pos = PL_parser->last_lop ? PL_parser->last_lop - buf : 0;
1351 if (flags & LEX_FAKE_EOF) {
1353 } else if (!PL_parser->rsfp && !PL_parser->filtered) {
1355 } else if (filter_gets(linestr, old_bufend_pos)) {
1357 got_some_for_debugger = 1;
1358 } else if (flags & LEX_NO_TERM) {
1361 if (!SvPOK(linestr)) /* can get undefined by filter_gets */
1364 /* End of real input. Close filehandle (unless it was STDIN),
1365 * then add implicit termination.
1367 if (PL_parser->lex_flags & LEX_DONT_CLOSE_RSFP)
1368 PerlIO_clearerr(PL_parser->rsfp);
1369 else if (PL_parser->rsfp)
1370 (void)PerlIO_close(PL_parser->rsfp);
1371 PL_parser->rsfp = NULL;
1372 PL_parser->in_pod = PL_parser->filtered = 0;
1373 if (!PL_in_eval && PL_minus_p) {
1375 /*{*/";}continue{print or die qq(-p destination: $!\\n);}");
1376 PL_minus_n = PL_minus_p = 0;
1377 } else if (!PL_in_eval && PL_minus_n) {
1378 sv_catpvs(linestr, /*{*/";}");
1381 sv_catpvs(linestr, ";");
1384 buf = SvPVX(linestr);
1385 new_bufend_pos = SvCUR(linestr);
1386 PL_parser->bufend = buf + new_bufend_pos;
1387 PL_parser->bufptr = buf + bufptr_pos;
1390 const U8* first_bad_char_loc;
1391 if (UNLIKELY(! is_utf8_string_loc(
1392 (U8 *) PL_parser->bufptr,
1393 PL_parser->bufend - PL_parser->bufptr,
1394 &first_bad_char_loc)))
1396 _force_out_malformed_utf8_message(first_bad_char_loc,
1397 (U8 *) PL_parser->bufend,
1399 1 /* 1 means die */ );
1400 NOT_REACHED; /* NOTREACHED */
1404 PL_parser->oldbufptr = buf + oldbufptr_pos;
1405 PL_parser->oldoldbufptr = buf + oldoldbufptr_pos;
1406 PL_parser->linestart = buf + linestart_pos;
1407 if (PL_parser->last_uni)
1408 PL_parser->last_uni = buf + last_uni_pos;
1409 if (PL_parser->last_lop)
1410 PL_parser->last_lop = buf + last_lop_pos;
1411 if (PL_parser->preambling != NOLINE) {
1412 CopLINE_set(PL_curcop, PL_parser->preambling + 1);
1413 PL_parser->preambling = NOLINE;
1415 if ( got_some_for_debugger
1416 && PERLDB_LINE_OR_SAVESRC
1417 && PL_curstash != PL_debstash)
1419 /* debugger active and we're not compiling the debugger code,
1420 * so store the line into the debugger's array of lines
1422 update_debugger_info(NULL, buf+old_bufend_pos,
1423 new_bufend_pos-old_bufend_pos);
1429 =for apidoc Amx|I32|lex_peek_unichar|U32 flags
1431 Looks ahead one (Unicode) character in the text currently being lexed.
1432 Returns the codepoint (unsigned integer value) of the next character,
1433 or -1 if lexing has reached the end of the input text. To consume the
1434 peeked character, use L</lex_read_unichar>.
1436 If the next character is in (or extends into) the next chunk of input
1437 text, the next chunk will be read in. Normally the current chunk will be
1438 discarded at the same time, but if C<flags> has the C<LEX_KEEP_PREVIOUS>
1439 bit set, then the current chunk will not be discarded.
1441 If the input is being interpreted as UTF-8 and a UTF-8 encoding error
1442 is encountered, an exception is generated.
1448 Perl_lex_peek_unichar(pTHX_ U32 flags)
1452 if (flags & ~(LEX_KEEP_PREVIOUS))
1453 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_peek_unichar");
1454 s = PL_parser->bufptr;
1455 bufend = PL_parser->bufend;
1461 if (!lex_next_chunk(flags))
1463 s = PL_parser->bufptr;
1464 bufend = PL_parser->bufend;
1467 if (UTF8_IS_INVARIANT(head))
1469 if (UTF8_IS_START(head)) {
1470 len = UTF8SKIP(&head);
1471 while ((STRLEN)(bufend-s) < len) {
1472 if (!lex_next_chunk(flags | LEX_KEEP_PREVIOUS))
1474 s = PL_parser->bufptr;
1475 bufend = PL_parser->bufend;
1478 unichar = utf8n_to_uvchr((U8*)s, bufend-s, &retlen, UTF8_CHECK_ONLY);
1479 if (retlen == (STRLEN)-1) {
1480 _force_out_malformed_utf8_message((U8 *) s,
1483 1 /* 1 means die */ );
1484 NOT_REACHED; /* NOTREACHED */
1489 if (!lex_next_chunk(flags))
1491 s = PL_parser->bufptr;
1498 =for apidoc Amx|I32|lex_read_unichar|U32 flags
1500 Reads the next (Unicode) character in the text currently being lexed.
1501 Returns the codepoint (unsigned integer value) of the character read,
1502 and moves L</PL_parser-E<gt>bufptr> past the character, or returns -1
1503 if lexing has reached the end of the input text. To non-destructively
1504 examine the next character, use L</lex_peek_unichar> instead.
1506 If the next character is in (or extends into) the next chunk of input
1507 text, the next chunk will be read in. Normally the current chunk will be
1508 discarded at the same time, but if C<flags> has the C<LEX_KEEP_PREVIOUS>
1509 bit set, then the current chunk will not be discarded.
1511 If the input is being interpreted as UTF-8 and a UTF-8 encoding error
1512 is encountered, an exception is generated.
1518 Perl_lex_read_unichar(pTHX_ U32 flags)
1521 if (flags & ~(LEX_KEEP_PREVIOUS))
1522 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_read_unichar");
1523 c = lex_peek_unichar(flags);
1526 COPLINE_INC_WITH_HERELINES;
1528 PL_parser->bufptr += UTF8SKIP(PL_parser->bufptr);
1530 ++(PL_parser->bufptr);
1536 =for apidoc Amx|void|lex_read_space|U32 flags
1538 Reads optional spaces, in Perl style, in the text currently being
1539 lexed. The spaces may include ordinary whitespace characters and
1540 Perl-style comments. C<#line> directives are processed if encountered.
1541 L</PL_parser-E<gt>bufptr> is moved past the spaces, so that it points
1542 at a non-space character (or the end of the input text).
1544 If spaces extend into the next chunk of input text, the next chunk will
1545 be read in. Normally the current chunk will be discarded at the same
1546 time, but if C<flags> has the C<LEX_KEEP_PREVIOUS> bit set, then the current
1547 chunk will not be discarded.
1552 #define LEX_NO_INCLINE 0x40000000
1553 #define LEX_NO_NEXT_CHUNK 0x80000000
1556 Perl_lex_read_space(pTHX_ U32 flags)
1559 const bool can_incline = !(flags & LEX_NO_INCLINE);
1560 bool need_incline = 0;
1561 if (flags & ~(LEX_KEEP_PREVIOUS|LEX_NO_NEXT_CHUNK|LEX_NO_INCLINE))
1562 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_read_space");
1563 s = PL_parser->bufptr;
1564 bufend = PL_parser->bufend;
1570 } while (!(c == '\n' || (c == 0 && s == bufend)));
1571 } else if (c == '\n') {
1574 PL_parser->linestart = s;
1580 } else if (isSPACE(c)) {
1582 } else if (c == 0 && s == bufend) {
1585 if (flags & LEX_NO_NEXT_CHUNK)
1587 PL_parser->bufptr = s;
1588 l = CopLINE(PL_curcop);
1589 CopLINE(PL_curcop) += PL_parser->herelines + 1;
1590 got_more = lex_next_chunk(flags);
1591 CopLINE_set(PL_curcop, l);
1592 s = PL_parser->bufptr;
1593 bufend = PL_parser->bufend;
1596 if (can_incline && need_incline && PL_parser->rsfp) {
1606 PL_parser->bufptr = s;
1611 =for apidoc EXMp|bool|validate_proto|SV *name|SV *proto|bool warn
1613 This function performs syntax checking on a prototype, C<proto>.
1614 If C<warn> is true, any illegal characters or mismatched brackets
1615 will trigger illegalproto warnings, declaring that they were
1616 detected in the prototype for C<name>.
1618 The return value is C<true> if this is a valid prototype, and
1619 C<false> if it is not, regardless of whether C<warn> was C<true> or
1622 Note that C<NULL> is a valid C<proto> and will always return C<true>.
1629 Perl_validate_proto(pTHX_ SV *name, SV *proto, bool warn, bool curstash)
1631 STRLEN len, origlen;
1633 bool bad_proto = FALSE;
1634 bool in_brackets = FALSE;
1635 bool after_slash = FALSE;
1636 char greedy_proto = ' ';
1637 bool proto_after_greedy_proto = FALSE;
1638 bool must_be_last = FALSE;
1639 bool underscore = FALSE;
1640 bool bad_proto_after_underscore = FALSE;
1642 PERL_ARGS_ASSERT_VALIDATE_PROTO;
1647 p = SvPV(proto, len);
1649 for (; len--; p++) {
1652 proto_after_greedy_proto = TRUE;
1654 if (!strchr(";@%", *p))
1655 bad_proto_after_underscore = TRUE;
1658 if (!strchr("$@%*;[]&\\_+", *p) || *p == '\0') {
1665 in_brackets = FALSE;
1666 else if ((*p == '@' || *p == '%')
1670 must_be_last = TRUE;
1679 after_slash = FALSE;
1684 SV *tmpsv = newSVpvs_flags("", SVs_TEMP);
1687 ? sv_uni_display(tmpsv, newSVpvn_flags(p, origlen, SVs_TEMP | SVf_UTF8),
1688 origlen, UNI_DISPLAY_ISPRINT)
1689 : pv_pretty(tmpsv, p, origlen, 60, NULL, NULL, PERL_PV_ESCAPE_NONASCII);
1691 if (curstash && !memchr(SvPVX(name), ':', SvCUR(name))) {
1692 SV *name2 = sv_2mortal(newSVsv(PL_curstname));
1693 sv_catpvs(name2, "::");
1694 sv_catsv(name2, (SV *)name);
1698 if (proto_after_greedy_proto)
1699 Perl_warner(aTHX_ packWARN(WARN_ILLEGALPROTO),
1700 "Prototype after '%c' for %" SVf " : %s",
1701 greedy_proto, SVfARG(name), p);
1703 Perl_warner(aTHX_ packWARN(WARN_ILLEGALPROTO),
1704 "Missing ']' in prototype for %" SVf " : %s",
1707 Perl_warner(aTHX_ packWARN(WARN_ILLEGALPROTO),
1708 "Illegal character in prototype for %" SVf " : %s",
1710 if (bad_proto_after_underscore)
1711 Perl_warner(aTHX_ packWARN(WARN_ILLEGALPROTO),
1712 "Illegal character after '_' in prototype for %" SVf " : %s",
1716 return (! (proto_after_greedy_proto || bad_proto) );
1721 * This subroutine has nothing to do with tilting, whether at windmills
1722 * or pinball tables. Its name is short for "increment line". It
1723 * increments the current line number in CopLINE(PL_curcop) and checks
1724 * to see whether the line starts with a comment of the form
1725 * # line 500 "foo.pm"
1726 * If so, it sets the current line number and file to the values in the comment.
1730 S_incline(pTHX_ const char *s, const char *end)
1738 PERL_ARGS_ASSERT_INCLINE;
1742 COPLINE_INC_WITH_HERELINES;
1743 if (!PL_rsfp && !PL_parser->filtered && PL_lex_state == LEX_NORMAL
1744 && s+1 == PL_bufend && *s == ';') {
1745 /* fake newline in string eval */
1746 CopLINE_dec(PL_curcop);
1751 while (SPACE_OR_TAB(*s))
1753 if (memBEGINs(s, (STRLEN) (end - s), "line"))
1754 s += sizeof("line") - 1;
1757 if (SPACE_OR_TAB(*s))
1761 while (SPACE_OR_TAB(*s))
1769 if (!SPACE_OR_TAB(*s) && *s != '\r' && *s != '\n' && *s != '\0')
1771 while (SPACE_OR_TAB(*s))
1773 if (*s == '"' && (t = (char *) memchr(s+1, '"', end - s))) {
1779 while (*t && !isSPACE(*t))
1783 while (SPACE_OR_TAB(*e) || *e == '\r' || *e == '\f')
1785 if (*e != '\n' && *e != '\0')
1786 return; /* false alarm */
1788 if (!grok_atoUV(n, &uv, &e))
1790 line_num = ((line_t)uv) - 1;
1793 const STRLEN len = t - s;
1795 if (!PL_rsfp && !PL_parser->filtered) {
1796 /* must copy *{"::_<(eval N)[oldfilename:L]"}
1797 * to *{"::_<newfilename"} */
1798 /* However, the long form of evals is only turned on by the
1799 debugger - usually they're "(eval %lu)" */
1800 GV * const cfgv = CopFILEGV(PL_curcop);
1803 STRLEN tmplen2 = len;
1807 if (tmplen2 + 2 <= sizeof smallbuf)
1810 Newx(tmpbuf2, tmplen2 + 2, char);
1815 memcpy(tmpbuf2 + 2, s, tmplen2);
1818 gv2 = *(GV**)hv_fetch(PL_defstash, tmpbuf2, tmplen2, TRUE);
1820 gv_init(gv2, PL_defstash, tmpbuf2, tmplen2, FALSE);
1821 /* adjust ${"::_<newfilename"} to store the new file name */
1822 GvSV(gv2) = newSVpvn(tmpbuf2 + 2, tmplen2 - 2);
1823 /* The line number may differ. If that is the case,
1824 alias the saved lines that are in the array.
1825 Otherwise alias the whole array. */
1826 if (CopLINE(PL_curcop) == line_num) {
1827 GvHV(gv2) = MUTABLE_HV(SvREFCNT_inc(GvHV(cfgv)));
1828 GvAV(gv2) = MUTABLE_AV(SvREFCNT_inc(GvAV(cfgv)));
1830 else if (GvAV(cfgv)) {
1831 AV * const av = GvAV(cfgv);
1832 const line_t start = CopLINE(PL_curcop)+1;
1833 SSize_t items = AvFILLp(av) - start;
1835 AV * const av2 = GvAVn(gv2);
1836 SV **svp = AvARRAY(av) + start;
1837 Size_t l = line_num+1;
1838 while (items-- && l < SSize_t_MAX && l == (line_t)l)
1839 av_store(av2, (SSize_t)l++, SvREFCNT_inc(*svp++));
1844 if (tmpbuf2 != smallbuf) Safefree(tmpbuf2);
1847 CopFILE_free(PL_curcop);
1848 CopFILE_setn(PL_curcop, s, len);
1850 CopLINE_set(PL_curcop, line_num);
1854 S_update_debugger_info(pTHX_ SV *orig_sv, const char *const buf, STRLEN len)
1856 AV *av = CopFILEAVx(PL_curcop);
1859 if (PL_parser->preambling == NOLINE) sv = newSV_type(SVt_PVMG);
1861 sv = *av_fetch(av, 0, 1);
1862 SvUPGRADE(sv, SVt_PVMG);
1864 if (!SvPOK(sv)) SvPVCLEAR(sv);
1866 sv_catsv(sv, orig_sv);
1868 sv_catpvn(sv, buf, len);
1873 if (PL_parser->preambling == NOLINE)
1874 av_store(av, CopLINE(PL_curcop), sv);
1880 * Called to gobble the appropriate amount and type of whitespace.
1881 * Skips comments as well.
1882 * Returns the next character after the whitespace that is skipped.
1885 * Same thing, but look ahead without incrementing line numbers or
1886 * adjusting PL_linestart.
1889 #define skipspace(s) skipspace_flags(s, 0)
1890 #define peekspace(s) skipspace_flags(s, LEX_NO_INCLINE)
1893 S_skipspace_flags(pTHX_ char *s, U32 flags)
1895 PERL_ARGS_ASSERT_SKIPSPACE_FLAGS;
1896 if (PL_lex_formbrack && PL_lex_brackets <= PL_lex_formbrack) {
1897 while (s < PL_bufend && (SPACE_OR_TAB(*s) || !*s))
1900 STRLEN bufptr_pos = PL_bufptr - SvPVX(PL_linestr);
1902 lex_read_space(flags | LEX_KEEP_PREVIOUS |
1903 (PL_lex_inwhat || PL_lex_state == LEX_FORMLINE ?
1904 LEX_NO_NEXT_CHUNK : 0));
1906 PL_bufptr = SvPVX(PL_linestr) + bufptr_pos;
1907 if (PL_linestart > PL_bufptr)
1908 PL_bufptr = PL_linestart;
1916 * Check the unary operators to ensure there's no ambiguity in how they're
1917 * used. An ambiguous piece of code would be:
1919 * This doesn't mean rand() + 5. Because rand() is a unary operator,
1920 * the +5 is its argument.
1928 if (PL_oldoldbufptr != PL_last_uni)
1930 while (isSPACE(*PL_last_uni))
1933 while (isWORDCHAR_lazy_if_safe(s, PL_bufend, UTF) || *s == '-')
1934 s += UTF ? UTF8SKIP(s) : 1;
1935 if (s < PL_bufptr && memchr(s, '(', PL_bufptr - s))
1938 Perl_ck_warner_d(aTHX_ packWARN(WARN_AMBIGUOUS),
1939 "Warning: Use of \"%" UTF8f "\" without parentheses is ambiguous",
1940 UTF8fARG(UTF, (int)(s - PL_last_uni), PL_last_uni));
1944 * LOP : macro to build a list operator. Its behaviour has been replaced
1945 * with a subroutine, S_lop() for which LOP is just another name.
1948 #define LOP(f,x) return lop(f,x,s)
1952 * Build a list operator (or something that might be one). The rules:
1953 * - if we have a next token, then it's a list operator (no parens) for
1954 * which the next token has already been parsed; e.g.,
1957 * - if the next thing is an opening paren, then it's a function
1958 * - else it's a list operator
1962 S_lop(pTHX_ I32 f, U8 x, char *s)
1964 PERL_ARGS_ASSERT_LOP;
1969 PL_last_lop = PL_oldbufptr;
1970 PL_last_lop_op = (OPCODE)f;
1975 return REPORT(FUNC);
1978 return REPORT(FUNC);
1981 if (!PL_lex_allbrackets && PL_lex_fakeeof > LEX_FAKEEOF_LOWLOGIC)
1982 PL_lex_fakeeof = LEX_FAKEEOF_LOWLOGIC;
1983 return REPORT(LSTOP);
1989 * When the lexer realizes it knows the next token (for instance,
1990 * it is reordering tokens for the parser) then it can call S_force_next
1991 * to know what token to return the next time the lexer is called. Caller
1992 * will need to set PL_nextval[] and possibly PL_expect to ensure
1993 * the lexer handles the token correctly.
1997 S_force_next(pTHX_ I32 type)
2001 PerlIO_printf(Perl_debug_log, "### forced token:\n");
2002 tokereport(type, &NEXTVAL_NEXTTOKE);
2005 assert(PL_nexttoke < C_ARRAY_LENGTH(PL_nexttype));
2006 PL_nexttype[PL_nexttoke] = type;
2013 * This subroutine handles postfix deref syntax after the arrow has already
2014 * been emitted. @* $* etc. are emitted as two separate tokens right here.
2015 * @[ @{ %[ %{ *{ are emitted also as two tokens, but this function emits
2016 * only the first, leaving yylex to find the next.
2020 S_postderef(pTHX_ int const funny, char const next)
2022 assert(funny == DOLSHARP || strchr("$@%&*", funny));
2024 PL_expect = XOPERATOR;
2025 if (PL_lex_state == LEX_INTERPNORMAL && !PL_lex_brackets) {
2026 assert('@' == funny || '$' == funny || DOLSHARP == funny);
2027 PL_lex_state = LEX_INTERPEND;
2029 force_next(POSTJOIN);
2035 if ('@' == funny && PL_lex_state == LEX_INTERPNORMAL
2036 && !PL_lex_brackets)
2038 PL_expect = XOPERATOR;
2047 int yyc = PL_parser->yychar;
2048 if (yyc != YYEMPTY) {
2050 NEXTVAL_NEXTTOKE = PL_parser->yylval;
2051 if (yyc == '{'/*}*/ || yyc == HASHBRACK || yyc == '['/*]*/) {
2052 PL_lex_allbrackets--;
2054 yyc |= (3<<24) | (PL_lex_brackstack[PL_lex_brackets] << 16);
2055 } else if (yyc == '('/*)*/) {
2056 PL_lex_allbrackets--;
2061 PL_parser->yychar = YYEMPTY;
2066 S_newSV_maybe_utf8(pTHX_ const char *const start, STRLEN len)
2068 SV * const sv = newSVpvn_utf8(start, len,
2072 && is_utf8_non_invariant_string((const U8*)start, len));
2078 * When the lexer knows the next thing is a word (for instance, it has
2079 * just seen -> and it knows that the next char is a word char, then
2080 * it calls S_force_word to stick the next word into the PL_nexttoke/val
2084 * char *start : buffer position (must be within PL_linestr)
2085 * int token : PL_next* will be this type of bare word
2086 * (e.g., METHOD,BAREWORD)
2087 * int check_keyword : if true, Perl checks to make sure the word isn't
2088 * a keyword (do this if the word is a label, e.g. goto FOO)
2089 * int allow_pack : if true, : characters will also be allowed (require,
2090 * use, etc. do this)
2094 S_force_word(pTHX_ char *start, int token, int check_keyword, int allow_pack)
2099 PERL_ARGS_ASSERT_FORCE_WORD;
2101 start = skipspace(start);
2103 if ( isIDFIRST_lazy_if_safe(s, PL_bufend, UTF)
2104 || (allow_pack && *s == ':' && s[1] == ':') )
2106 s = scan_word(s, PL_tokenbuf, sizeof PL_tokenbuf, allow_pack, &len);
2107 if (check_keyword) {
2108 char *s2 = PL_tokenbuf;
2110 if (allow_pack && memBEGINPs(s2, len, "CORE::")) {
2111 s2 += sizeof("CORE::") - 1;
2112 len2 -= sizeof("CORE::") - 1;
2114 if (keyword(s2, len2, 0))
2117 if (token == METHOD) {
2122 PL_expect = XOPERATOR;
2125 NEXTVAL_NEXTTOKE.opval
2126 = newSVOP(OP_CONST,0,
2127 S_newSV_maybe_utf8(aTHX_ PL_tokenbuf, len));
2128 NEXTVAL_NEXTTOKE.opval->op_private |= OPpCONST_BARE;
2136 * Called when the lexer wants $foo *foo &foo etc, but the program
2137 * text only contains the "foo" portion. The first argument is a pointer
2138 * to the "foo", and the second argument is the type symbol to prefix.
2139 * Forces the next token to be a "BAREWORD".
2140 * Creates the symbol if it didn't already exist (via gv_fetchpv()).
2144 S_force_ident(pTHX_ const char *s, int kind)
2146 PERL_ARGS_ASSERT_FORCE_IDENT;
2149 const STRLEN len = s[1] ? strlen(s) : 1; /* s = "\"" see yylex */
2150 OP* const o = newSVOP(OP_CONST, 0, newSVpvn_flags(s, len,
2151 UTF ? SVf_UTF8 : 0));
2152 NEXTVAL_NEXTTOKE.opval = o;
2153 force_next(BAREWORD);
2155 o->op_private = OPpCONST_ENTERED;
2156 /* XXX see note in pp_entereval() for why we forgo typo
2157 warnings if the symbol must be introduced in an eval.
2159 gv_fetchpvn_flags(s, len,
2160 (PL_in_eval ? GV_ADDMULTI
2161 : GV_ADD) | ( UTF ? SVf_UTF8 : 0 ),
2162 kind == '$' ? SVt_PV :
2163 kind == '@' ? SVt_PVAV :
2164 kind == '%' ? SVt_PVHV :
2172 S_force_ident_maybe_lex(pTHX_ char pit)
2174 NEXTVAL_NEXTTOKE.ival = pit;
2179 Perl_str_to_version(pTHX_ SV *sv)
2184 const char *start = SvPV_const(sv,len);
2185 const char * const end = start + len;
2186 const bool utf = cBOOL(SvUTF8(sv));
2188 PERL_ARGS_ASSERT_STR_TO_VERSION;
2190 while (start < end) {
2194 n = utf8n_to_uvchr((U8*)start, len, &skip, 0);
2199 retval += ((NV)n)/nshift;
2208 * Forces the next token to be a version number.
2209 * If the next token appears to be an invalid version number, (e.g. "v2b"),
2210 * and if "guessing" is TRUE, then no new token is created (and the caller
2211 * must use an alternative parsing method).
2215 S_force_version(pTHX_ char *s, int guessing)
2220 PERL_ARGS_ASSERT_FORCE_VERSION;
2228 while (isDIGIT(*d) || *d == '_' || *d == '.')
2230 if (*d == ';' || isSPACE(*d) || *d == '{' || *d == '}' || !*d) {
2232 s = scan_num(s, &pl_yylval);
2233 version = pl_yylval.opval;
2234 ver = cSVOPx(version)->op_sv;
2235 if (SvPOK(ver) && !SvNIOK(ver)) {
2236 SvUPGRADE(ver, SVt_PVNV);
2237 SvNV_set(ver, str_to_version(ver));
2238 SvNOK_on(ver); /* hint that it is a version */
2241 else if (guessing) {
2246 /* NOTE: The parser sees the package name and the VERSION swapped */
2247 NEXTVAL_NEXTTOKE.opval = version;
2248 force_next(BAREWORD);
2254 * S_force_strict_version
2255 * Forces the next token to be a version number using strict syntax rules.
2259 S_force_strict_version(pTHX_ char *s)
2262 const char *errstr = NULL;
2264 PERL_ARGS_ASSERT_FORCE_STRICT_VERSION;
2266 while (isSPACE(*s)) /* leading whitespace */
2269 if (is_STRICT_VERSION(s,&errstr)) {
2271 s = (char *)scan_version(s, ver, 0);
2272 version = newSVOP(OP_CONST, 0, ver);
2274 else if ((*s != ';' && *s != '{' && *s != '}' )
2275 && (s = skipspace(s), (*s != ';' && *s != '{' && *s != '}' )))
2279 yyerror(errstr); /* version required */
2283 /* NOTE: The parser sees the package name and the VERSION swapped */
2284 NEXTVAL_NEXTTOKE.opval = version;
2285 force_next(BAREWORD);
2292 * Turns any \\ into \ in a quoted string passed in in 'sv', returning 'sv',
2293 * modified as necessary. However, if HINT_NEW_STRING is on, 'sv' is
2294 * unchanged, and a new SV containing the modified input is returned.
2298 S_tokeq(pTHX_ SV *sv)
2305 PERL_ARGS_ASSERT_TOKEQ;
2309 assert (!SvIsCOW(sv));
2310 if (SvTYPE(sv) >= SVt_PVIV && SvIVX(sv) == -1) /* <<'heredoc' */
2314 /* This is relying on the SV being "well formed" with a trailing '\0' */
2315 while (s < send && !(*s == '\\' && s[1] == '\\'))
2320 if ( PL_hints & HINT_NEW_STRING ) {
2321 pv = newSVpvn_flags(SvPVX_const(pv), SvCUR(sv),
2322 SVs_TEMP | SvUTF8(sv));
2326 if (s + 1 < send && (s[1] == '\\'))
2327 s++; /* all that, just for this */
2332 SvCUR_set(sv, d - SvPVX_const(sv));
2334 if ( PL_hints & HINT_NEW_STRING )
2335 return new_constant(NULL, 0, "q", sv, pv, "q", 1, NULL);
2340 * Now come three functions related to double-quote context,
2341 * S_sublex_start, S_sublex_push, and S_sublex_done. They're used when
2342 * converting things like "\u\Lgnat" into ucfirst(lc("gnat")). They
2343 * interact with PL_lex_state, and create fake ( ... ) argument lists
2344 * to handle functions and concatenation.
2348 * stringify ( const[foo] concat lcfirst ( const[bar] ) )
2353 * Assumes that pl_yylval.ival is the op we're creating (e.g. OP_LCFIRST).
2355 * Pattern matching will set PL_lex_op to the pattern-matching op to
2356 * make (we return THING if pl_yylval.ival is OP_NULL, PMFUNC otherwise).
2358 * OP_CONST is easy--just make the new op and return.
2360 * Everything else becomes a FUNC.
2362 * Sets PL_lex_state to LEX_INTERPPUSH unless ival was OP_NULL or we
2363 * had an OP_CONST. This just sets us up for a
2364 * call to S_sublex_push().
2368 S_sublex_start(pTHX)
2370 const I32 op_type = pl_yylval.ival;
2372 if (op_type == OP_NULL) {
2373 pl_yylval.opval = PL_lex_op;
2377 if (op_type == OP_CONST) {
2378 SV *sv = PL_lex_stuff;
2379 PL_lex_stuff = NULL;
2382 if (SvTYPE(sv) == SVt_PVIV) {
2383 /* Overloaded constants, nothing fancy: Convert to SVt_PV: */
2385 const char * const p = SvPV_const(sv, len);
2386 SV * const nsv = newSVpvn_flags(p, len, SvUTF8(sv));
2390 pl_yylval.opval = newSVOP(op_type, 0, sv);
2394 PL_parser->lex_super_state = PL_lex_state;
2395 PL_parser->lex_sub_inwhat = (U16)op_type;
2396 PL_parser->lex_sub_op = PL_lex_op;
2397 PL_parser->sub_no_recover = FALSE;
2398 PL_parser->sub_error_count = PL_error_count;
2399 PL_lex_state = LEX_INTERPPUSH;
2403 pl_yylval.opval = PL_lex_op;
2413 * Create a new scope to save the lexing state. The scope will be
2414 * ended in S_sublex_done. Returns a '(', starting the function arguments
2415 * to the uc, lc, etc. found before.
2416 * Sets PL_lex_state to LEX_INTERPCONCAT.
2423 const bool is_heredoc = PL_multi_close == '<';
2426 PL_lex_state = PL_parser->lex_super_state;
2427 SAVEI8(PL_lex_dojoin);
2428 SAVEI32(PL_lex_brackets);
2429 SAVEI32(PL_lex_allbrackets);
2430 SAVEI32(PL_lex_formbrack);
2431 SAVEI8(PL_lex_fakeeof);
2432 SAVEI32(PL_lex_casemods);
2433 SAVEI32(PL_lex_starts);
2434 SAVEI8(PL_lex_state);
2435 SAVESPTR(PL_lex_repl);
2436 SAVEVPTR(PL_lex_inpat);
2437 SAVEI16(PL_lex_inwhat);
2440 SAVECOPLINE(PL_curcop);
2441 SAVEI32(PL_multi_end);
2442 SAVEI32(PL_parser->herelines);
2443 PL_parser->herelines = 0;
2445 SAVEIV(PL_multi_close);
2446 SAVEPPTR(PL_bufptr);
2447 SAVEPPTR(PL_bufend);
2448 SAVEPPTR(PL_oldbufptr);
2449 SAVEPPTR(PL_oldoldbufptr);
2450 SAVEPPTR(PL_last_lop);
2451 SAVEPPTR(PL_last_uni);
2452 SAVEPPTR(PL_linestart);
2453 SAVESPTR(PL_linestr);
2454 SAVEGENERICPV(PL_lex_brackstack);
2455 SAVEGENERICPV(PL_lex_casestack);
2456 SAVEGENERICPV(PL_parser->lex_shared);
2457 SAVEBOOL(PL_parser->lex_re_reparsing);
2458 SAVEI32(PL_copline);
2460 /* The here-doc parser needs to be able to peek into outer lexing
2461 scopes to find the body of the here-doc. So we put PL_linestr and
2462 PL_bufptr into lex_shared, to ‘share’ those values.
2464 PL_parser->lex_shared->ls_linestr = PL_linestr;
2465 PL_parser->lex_shared->ls_bufptr = PL_bufptr;
2467 PL_linestr = PL_lex_stuff;
2468 PL_lex_repl = PL_parser->lex_sub_repl;
2469 PL_lex_stuff = NULL;
2470 PL_parser->lex_sub_repl = NULL;
2472 /* Arrange for PL_lex_stuff to be freed on scope exit, in case it gets
2473 set for an inner quote-like operator and then an error causes scope-
2474 popping. We must not have a PL_lex_stuff value left dangling, as
2475 that breaks assumptions elsewhere. See bug #123617. */
2476 SAVEGENERICSV(PL_lex_stuff);
2477 SAVEGENERICSV(PL_parser->lex_sub_repl);
2479 PL_bufend = PL_bufptr = PL_oldbufptr = PL_oldoldbufptr = PL_linestart
2480 = SvPVX(PL_linestr);
2481 PL_bufend += SvCUR(PL_linestr);
2482 PL_last_lop = PL_last_uni = NULL;
2483 SAVEFREESV(PL_linestr);
2484 if (PL_lex_repl) SAVEFREESV(PL_lex_repl);
2486 PL_lex_dojoin = FALSE;
2487 PL_lex_brackets = PL_lex_formbrack = 0;
2488 PL_lex_allbrackets = 0;
2489 PL_lex_fakeeof = LEX_FAKEEOF_NEVER;
2490 Newx(PL_lex_brackstack, 120, char);
2491 Newx(PL_lex_casestack, 12, char);
2492 PL_lex_casemods = 0;
2493 *PL_lex_casestack = '\0';
2495 PL_lex_state = LEX_INTERPCONCAT;
2497 CopLINE_set(PL_curcop, (line_t)PL_multi_start);
2498 PL_copline = NOLINE;
2500 Newxz(shared, 1, LEXSHARED);
2501 shared->ls_prev = PL_parser->lex_shared;
2502 PL_parser->lex_shared = shared;
2504 PL_lex_inwhat = PL_parser->lex_sub_inwhat;
2505 if (PL_lex_inwhat == OP_TRANSR) PL_lex_inwhat = OP_TRANS;
2506 if (PL_lex_inwhat == OP_MATCH || PL_lex_inwhat == OP_QR || PL_lex_inwhat == OP_SUBST)
2507 PL_lex_inpat = PL_parser->lex_sub_op;
2509 PL_lex_inpat = NULL;
2511 PL_parser->lex_re_reparsing = cBOOL(PL_in_eval & EVAL_RE_REPARSING);
2512 PL_in_eval &= ~EVAL_RE_REPARSING;
2519 * Restores lexer state after a S_sublex_push.
2525 if (!PL_lex_starts++) {
2526 SV * const sv = newSVpvs("");
2527 if (SvUTF8(PL_linestr))
2529 PL_expect = XOPERATOR;
2530 pl_yylval.opval = newSVOP(OP_CONST, 0, sv);
2534 if (PL_lex_casemods) { /* oops, we've got some unbalanced parens */
2535 PL_lex_state = LEX_INTERPCASEMOD;
2539 /* Is there a right-hand side to take care of? (s//RHS/ or tr//RHS/) */
2540 assert(PL_lex_inwhat != OP_TRANSR);
2542 assert (PL_lex_inwhat == OP_SUBST || PL_lex_inwhat == OP_TRANS);
2543 PL_linestr = PL_lex_repl;
2545 PL_bufend = PL_bufptr = PL_oldbufptr = PL_oldoldbufptr = PL_linestart = SvPVX(PL_linestr);
2546 PL_bufend += SvCUR(PL_linestr);
2547 PL_last_lop = PL_last_uni = NULL;
2548 PL_lex_dojoin = FALSE;
2549 PL_lex_brackets = 0;
2550 PL_lex_allbrackets = 0;
2551 PL_lex_fakeeof = LEX_FAKEEOF_NEVER;
2552 PL_lex_casemods = 0;
2553 *PL_lex_casestack = '\0';
2555 if (SvEVALED(PL_lex_repl)) {
2556 PL_lex_state = LEX_INTERPNORMAL;
2558 /* we don't clear PL_lex_repl here, so that we can check later
2559 whether this is an evalled subst; that means we rely on the
2560 logic to ensure sublex_done() is called again only via the
2561 branch (in yylex()) that clears PL_lex_repl, else we'll loop */
2564 PL_lex_state = LEX_INTERPCONCAT;
2567 if (SvTYPE(PL_linestr) >= SVt_PVNV) {
2568 CopLINE(PL_curcop) +=
2569 ((XPVNV*)SvANY(PL_linestr))->xnv_u.xnv_lines
2570 + PL_parser->herelines;
2571 PL_parser->herelines = 0;
2576 const line_t l = CopLINE(PL_curcop);
2578 if (PL_parser->sub_error_count != PL_error_count) {
2579 if (PL_parser->sub_no_recover) {
2584 if (PL_multi_close == '<')
2585 PL_parser->herelines += l - PL_multi_end;
2586 PL_bufend = SvPVX(PL_linestr);
2587 PL_bufend += SvCUR(PL_linestr);
2588 PL_expect = XOPERATOR;
2594 S_get_and_check_backslash_N_name_wrapper(pTHX_ const char* s, const char* const e)
2596 /* This justs wraps get_and_check_backslash_N_name() to output any error
2597 * message it returns. */
2599 const char * error_msg = NULL;
2600 SV * result = get_and_check_backslash_N_name(s, e, &error_msg);
2602 PERL_ARGS_ASSERT_GET_AND_CHECK_BACKSLASH_N_NAME_WRAPPER;
2605 yyerror_pv(error_msg, UTF ? SVf_UTF8 : 0);
2612 S_get_and_check_backslash_N_name(pTHX_ const char* s, const char* const e, const char ** error_msg)
2614 /* <s> points to first character of interior of \N{}, <e> to one beyond the
2615 * interior, hence to the "}". Finds what the name resolves to, returning
2616 * an SV* containing it; NULL if no valid one found */
2619 SV* res = newSVpvn_flags(s, e - s, UTF ? SVf_UTF8 : 0);
2626 const char* backslash_ptr = s - 3; /* Points to the <\> of \N{... */
2628 PERL_ARGS_ASSERT_GET_AND_CHECK_BACKSLASH_N_NAME;
2631 SvREFCNT_dec_NN(res);
2632 /* diag_listed_as: Unknown charname '%s' */
2633 *error_msg = Perl_form(aTHX_ "Unknown charname ''");
2637 res = new_constant( NULL, 0, "charnames", res, NULL, backslash_ptr,
2638 /* include the <}> */
2639 e - backslash_ptr + 1, error_msg);
2641 SvREFCNT_dec_NN(res);
2645 /* See if the charnames handler is the Perl core's, and if so, we can skip
2646 * the validation needed for a user-supplied one, as Perl's does its own
2648 table = GvHV(PL_hintgv); /* ^H */
2649 cvp = hv_fetchs(table, "charnames", FALSE);
2650 if (cvp && (cv = *cvp) && SvROK(cv) && (rv = SvRV(cv),
2651 SvTYPE(rv) == SVt_PVCV) && ((stash = CvSTASH(rv)) != NULL))
2653 const char * const name = HvNAME(stash);
2654 if (memEQs(name, HvNAMELEN(stash), "_charnames")) {
2659 /* Here, it isn't Perl's charname handler. We can't rely on a
2660 * user-supplied handler to validate the input name. For non-ut8 input,
2661 * look to see that the first character is legal. Then loop through the
2662 * rest checking that each is a continuation */
2664 /* This code makes the reasonable assumption that the only Latin1-range
2665 * characters that begin a character name alias are alphabetic, otherwise
2666 * would have to create a isCHARNAME_BEGIN macro */
2669 if (! isALPHAU(*s)) {
2674 if (! isCHARNAME_CONT(*s)) {
2677 if (*s == ' ' && *(s-1) == ' ') {
2684 /* Similarly for utf8. For invariants can check directly; for other
2685 * Latin1, can calculate their code point and check; otherwise use a
2687 if (UTF8_IS_INVARIANT(*s)) {
2688 if (! isALPHAU(*s)) {
2692 } else if (UTF8_IS_DOWNGRADEABLE_START(*s)) {
2693 if (! isALPHAU(EIGHT_BIT_UTF8_TO_NATIVE(*s, *(s+1)))) {
2699 if (! _invlist_contains_cp(PL_utf8_charname_begin,
2700 utf8_to_uvchr_buf((U8 *) s,
2710 if (UTF8_IS_INVARIANT(*s)) {
2711 if (! isCHARNAME_CONT(*s)) {
2714 if (*s == ' ' && *(s-1) == ' ') {
2719 else if (UTF8_IS_DOWNGRADEABLE_START(*s)) {
2720 if (! isCHARNAME_CONT(EIGHT_BIT_UTF8_TO_NATIVE(*s, *(s+1))))
2727 if (! _invlist_contains_cp(PL_utf8_charname_continue,
2728 utf8_to_uvchr_buf((U8 *) s,
2738 if (*(s-1) == ' ') {
2739 /* diag_listed_as: charnames alias definitions may not contain
2740 trailing white-space; marked by <-- HERE in %s
2742 *error_msg = Perl_form(aTHX_
2743 "charnames alias definitions may not contain trailing "
2744 "white-space; marked by <-- HERE in %.*s<-- HERE %.*s",
2745 (int)(s - backslash_ptr + 1), backslash_ptr,
2746 (int)(e - s + 1), s + 1);
2750 if (SvUTF8(res)) { /* Don't accept malformed charname value */
2751 const U8* first_bad_char_loc;
2753 const char* const str = SvPV_const(res, len);
2754 if (UNLIKELY(! is_utf8_string_loc((U8 *) str, len,
2755 &first_bad_char_loc)))
2757 _force_out_malformed_utf8_message(first_bad_char_loc,
2758 (U8 *) PL_parser->bufend,
2760 0 /* 0 means don't die */ );
2761 /* diag_listed_as: Malformed UTF-8 returned by \N{%s}
2762 immediately after '%s' */
2763 *error_msg = Perl_form(aTHX_
2764 "Malformed UTF-8 returned by %.*s immediately after '%.*s'",
2765 (int) (e - backslash_ptr + 1), backslash_ptr,
2766 (int) ((char *) first_bad_char_loc - str), str);
2775 /* The final %.*s makes sure that should the trailing NUL be missing
2776 * that this print won't run off the end of the string */
2777 /* diag_listed_as: Invalid character in \N{...}; marked by <-- HERE
2779 *error_msg = Perl_form(aTHX_
2780 "Invalid character in \\N{...}; marked by <-- HERE in %.*s<-- HERE %.*s",
2781 (int)(s - backslash_ptr + 1), backslash_ptr,
2782 (int)(e - s + 1), s + 1);
2787 /* diag_listed_as: charnames alias definitions may not contain a
2788 sequence of multiple spaces; marked by <-- HERE
2790 *error_msg = Perl_form(aTHX_
2791 "charnames alias definitions may not contain a sequence of "
2792 "multiple spaces; marked by <-- HERE in %.*s<-- HERE %.*s",
2793 (int)(s - backslash_ptr + 1), backslash_ptr,
2794 (int)(e - s + 1), s + 1);
2801 Extracts the next constant part of a pattern, double-quoted string,
2802 or transliteration. This is terrifying code.
2804 For example, in parsing the double-quoted string "ab\x63$d", it would
2805 stop at the '$' and return an OP_CONST containing 'abc'.
2807 It looks at PL_lex_inwhat and PL_lex_inpat to find out whether it's
2808 processing a pattern (PL_lex_inpat is true), a transliteration
2809 (PL_lex_inwhat == OP_TRANS is true), or a double-quoted string.
2811 Returns a pointer to the character scanned up to. If this is
2812 advanced from the start pointer supplied (i.e. if anything was
2813 successfully parsed), will leave an OP_CONST for the substring scanned
2814 in pl_yylval. Caller must intuit reason for not parsing further
2815 by looking at the next characters herself.
2819 \N{FOO} => \N{U+hex_for_character_FOO}
2820 (if FOO expands to multiple characters, expands to \N{U+xx.XX.yy ...})
2823 all other \-char, including \N and \N{ apart from \N{ABC}
2826 @ and $ where it appears to be a var, but not for $ as tail anchor
2830 In transliterations:
2831 characters are VERY literal, except for - not at the start or end
2832 of the string, which indicates a range. However some backslash sequences
2833 are recognized: \r, \n, and the like
2834 \007 \o{}, \x{}, \N{}
2835 If all elements in the transliteration are below 256,
2836 scan_const expands the range to the full set of intermediate
2837 characters. If the range is in utf8, the hyphen is replaced with
2838 a certain range mark which will be handled by pmtrans() in op.c.
2840 In double-quoted strings:
2842 all those recognized in transliterations
2843 deprecated backrefs: \1 (in substitution replacements)
2844 case and quoting: \U \Q \E
2847 scan_const does *not* construct ops to handle interpolated strings.
2848 It stops processing as soon as it finds an embedded $ or @ variable
2849 and leaves it to the caller to work out what's going on.
2851 embedded arrays (whether in pattern or not) could be:
2852 @foo, @::foo, @'foo, @{foo}, @$foo, @+, @-.
2854 $ in double-quoted strings must be the symbol of an embedded scalar.
2856 $ in pattern could be $foo or could be tail anchor. Assumption:
2857 it's a tail anchor if $ is the last thing in the string, or if it's
2858 followed by one of "()| \r\n\t"
2860 \1 (backreferences) are turned into $1 in substitutions
2862 The structure of the code is
2863 while (there's a character to process) {
2864 handle transliteration ranges
2865 skip regexp comments /(?#comment)/ and codes /(?{code})/
2866 skip #-initiated comments in //x patterns
2867 check for embedded arrays
2868 check for embedded scalars
2870 deprecate \1 in substitution replacements
2871 handle string-changing backslashes \l \U \Q \E, etc.
2872 switch (what was escaped) {
2873 handle \- in a transliteration (becomes a literal -)
2874 if a pattern and not \N{, go treat as regular character
2875 handle \132 (octal characters)
2876 handle \x15 and \x{1234} (hex characters)
2877 handle \N{name} (named characters, also \N{3,5} in a pattern)
2878 handle \cV (control characters)
2879 handle printf-style backslashes (\f, \r, \n, etc)
2882 } (end if backslash)
2883 handle regular character
2884 } (end while character to read)
2889 S_scan_const(pTHX_ char *start)
2891 char *send = PL_bufend; /* end of the constant */
2892 SV *sv = newSV(send - start); /* sv for the constant. See note below
2894 char *s = start; /* start of the constant */
2895 char *d = SvPVX(sv); /* destination for copies */
2896 bool dorange = FALSE; /* are we in a translit range? */
2897 bool didrange = FALSE; /* did we just finish a range? */
2898 bool in_charclass = FALSE; /* within /[...]/ */
2899 bool has_utf8 = FALSE; /* Output constant is UTF8 */
2900 bool this_utf8 = cBOOL(UTF); /* Is the source string assumed to be
2901 UTF8? But, this can show as true
2902 when the source isn't utf8, as for
2903 example when it is entirely composed
2905 STRLEN utf8_variant_count = 0; /* When not in UTF-8, this counts the
2906 number of characters found so far
2907 that will expand (into 2 bytes)
2908 should we have to convert to
2910 SV *res; /* result from charnames */
2911 STRLEN offset_to_max = 0; /* The offset in the output to where the range
2912 high-end character is temporarily placed */
2914 /* Does something require special handling in tr/// ? This avoids extra
2915 * work in a less likely case. As such, khw didn't feel it was worth
2916 * adding any branches to the more mainline code to handle this, which
2917 * means that this doesn't get set in some circumstances when things like
2918 * \x{100} get expanded out. As a result there needs to be extra testing
2919 * done in the tr code */
2920 bool has_above_latin1 = FALSE;
2922 /* Note on sizing: The scanned constant is placed into sv, which is
2923 * initialized by newSV() assuming one byte of output for every byte of
2924 * input. This routine expects newSV() to allocate an extra byte for a
2925 * trailing NUL, which this routine will append if it gets to the end of
2926 * the input. There may be more bytes of input than output (eg., \N{LATIN
2927 * CAPITAL LETTER A}), or more output than input if the constant ends up
2928 * recoded to utf8, but each time a construct is found that might increase
2929 * the needed size, SvGROW() is called. Its size parameter each time is
2930 * based on the best guess estimate at the time, namely the length used so
2931 * far, plus the length the current construct will occupy, plus room for
2932 * the trailing NUL, plus one byte for every input byte still unscanned */
2934 UV uv = UV_MAX; /* Initialize to weird value to try to catch any uses
2937 int backslash_N = 0; /* ? was the character from \N{} */
2938 int non_portable_endpoint = 0; /* ? In a range is an endpoint
2939 platform-specific like \x65 */
2942 PERL_ARGS_ASSERT_SCAN_CONST;
2944 assert(PL_lex_inwhat != OP_TRANSR);
2945 if (PL_lex_inwhat == OP_TRANS && PL_parser->lex_sub_op) {
2946 /* If we are doing a trans and we know we want UTF8 set expectation */
2947 has_utf8 = PL_parser->lex_sub_op->op_private & (OPpTRANS_FROM_UTF|OPpTRANS_TO_UTF);
2948 this_utf8 = PL_parser->lex_sub_op->op_private & (PL_lex_repl ? OPpTRANS_FROM_UTF : OPpTRANS_TO_UTF);
2951 /* Protect sv from errors and fatal warnings. */
2952 ENTER_with_name("scan_const");
2956 || dorange /* Handle tr/// range at right edge of input */
2959 /* get transliterations out of the way (they're most literal) */
2960 if (PL_lex_inwhat == OP_TRANS) {
2962 /* But there isn't any special handling necessary unless there is a
2963 * range, so for most cases we just drop down and handle the value
2964 * as any other. There are two exceptions.
2966 * 1. A hyphen indicates that we are actually going to have a
2967 * range. In this case, skip the '-', set a flag, then drop
2968 * down to handle what should be the end range value.
2969 * 2. After we've handled that value, the next time through, that
2970 * flag is set and we fix up the range.
2972 * Ranges entirely within Latin1 are expanded out entirely, in
2973 * order to make the transliteration a simple table look-up.
2974 * Ranges that extend above Latin1 have to be done differently, so
2975 * there is no advantage to expanding them here, so they are
2976 * stored here as Min, ILLEGAL_UTF8_BYTE, Max. The illegal byte
2977 * signifies a hyphen without any possible ambiguity. On EBCDIC
2978 * machines, if the range is expressed as Unicode, the Latin1
2979 * portion is expanded out even if the range extends above
2980 * Latin1. This is because each code point in it has to be
2981 * processed here individually to get its native translation */
2985 /* Here, we don't think we're in a range. If the new character
2986 * is not a hyphen; or if it is a hyphen, but it's too close to
2987 * either edge to indicate a range, or if we haven't output any
2988 * characters yet then it's a regular character. */
2989 if (*s != '-' || s >= send - 1 || s == start || d == SvPVX(sv)) {
2991 /* A regular character. Process like any other, but first
2992 * clear any flags */
2996 non_portable_endpoint = 0;
2999 /* The tests here for being above Latin1 and similar ones
3000 * in the following 'else' suffice to find all such
3001 * occurences in the constant, except those added by a
3002 * backslash escape sequence, like \x{100}. Mostly, those
3003 * set 'has_above_latin1' as appropriate */
3004 if (this_utf8 && UTF8_IS_ABOVE_LATIN1(*s)) {
3005 has_above_latin1 = TRUE;
3008 /* Drops down to generic code to process current byte */
3010 else { /* Is a '-' in the context where it means a range */
3011 if (didrange) { /* Something like y/A-C-Z// */
3012 Perl_croak(aTHX_ "Ambiguous range in transliteration"
3018 s++; /* Skip past the hyphen */
3020 /* d now points to where the end-range character will be
3021 * placed. Save it so won't have to go finding it later,
3022 * and drop down to get that character. (Actually we
3023 * instead save the offset, to handle the case where a
3024 * realloc in the meantime could change the actual
3025 * pointer). We'll finish processing the range the next
3026 * time through the loop */
3027 offset_to_max = d - SvPVX_const(sv);
3029 if (this_utf8 && UTF8_IS_ABOVE_LATIN1(*s)) {
3030 has_above_latin1 = TRUE;
3033 /* Drops down to generic code to process current byte */
3035 } /* End of not a range */
3037 /* Here we have parsed a range. Now must handle it. At this
3039 * 'sv' is a SV* that contains the output string we are
3040 * constructing. The final two characters in that string
3041 * are the range start and range end, in order.
3042 * 'd' points to just beyond the range end in the 'sv' string,
3043 * where we would next place something
3044 * 'offset_to_max' is the offset in 'sv' at which the character
3045 * (the range's maximum end point) before 'd' begins.
3047 char * max_ptr = SvPVX(sv) + offset_to_max;
3050 IV range_max; /* last character in range */
3052 Size_t offset_to_min = 0;
3055 bool convert_unicode;
3056 IV real_range_max = 0;
3058 /* Get the code point values of the range ends. */
3060 /* We know the utf8 is valid, because we just constructed
3061 * it ourselves in previous loop iterations */
3062 min_ptr = (char*) utf8_hop( (U8*) max_ptr, -1);
3063 range_min = valid_utf8_to_uvchr( (U8*) min_ptr, NULL);
3064 range_max = valid_utf8_to_uvchr( (U8*) max_ptr, NULL);
3066 /* This compensates for not all code setting
3067 * 'has_above_latin1', so that we don't skip stuff that
3068 * should be executed */
3069 if (range_max > 255) {
3070 has_above_latin1 = TRUE;
3074 min_ptr = max_ptr - 1;
3075 range_min = * (U8*) min_ptr;
3076 range_max = * (U8*) max_ptr;
3079 /* If the range is just a single code point, like tr/a-a/.../,
3080 * that code point is already in the output, twice. We can
3081 * just back up over the second instance and avoid all the rest
3082 * of the work. But if it is a variant character, it's been
3083 * counted twice, so decrement. (This unlikely scenario is
3084 * special cased, like the one for a range of 2 code points
3085 * below, only because the main-line code below needs a range
3086 * of 3 or more to work without special casing. Might as well
3087 * get it out of the way now.) */
3088 if (UNLIKELY(range_max == range_min)) {
3090 if (! has_utf8 && ! UVCHR_IS_INVARIANT(range_max)) {
3091 utf8_variant_count--;
3097 /* On EBCDIC platforms, we may have to deal with portable
3098 * ranges. These happen if at least one range endpoint is a
3099 * Unicode value (\N{...}), or if the range is a subset of
3100 * [A-Z] or [a-z], and both ends are literal characters,
3101 * like 'A', and not like \x{C1} */
3103 cBOOL(backslash_N) /* \N{} forces Unicode,
3104 hence portable range */
3105 || ( ! non_portable_endpoint
3106 && (( isLOWER_A(range_min) && isLOWER_A(range_max))
3107 || (isUPPER_A(range_min) && isUPPER_A(range_max))));
3108 if (convert_unicode) {
3110 /* Special handling is needed for these portable ranges.
3111 * They are defined to be in Unicode terms, which includes
3112 * all the Unicode code points between the end points.
3113 * Convert to Unicode to get the Unicode range. Later we
3114 * will convert each code point in the range back to
3116 range_min = NATIVE_TO_UNI(range_min);
3117 range_max = NATIVE_TO_UNI(range_max);
3121 if (range_min > range_max) {
3123 if (convert_unicode) {
3124 /* Need to convert back to native for meaningful
3125 * messages for this platform */
3126 range_min = UNI_TO_NATIVE(range_min);
3127 range_max = UNI_TO_NATIVE(range_max);
3130 /* Use the characters themselves for the error message if
3131 * ASCII printables; otherwise some visible representation
3133 if (isPRINT_A(range_min) && isPRINT_A(range_max)) {
3135 "Invalid range \"%c-%c\" in transliteration operator",
3136 (char)range_min, (char)range_max);
3139 else if (convert_unicode) {
3140 /* diag_listed_as: Invalid range "%s" in transliteration operator */
3142 "Invalid range \"\\N{U+%04" UVXf "}-\\N{U+%04"
3143 UVXf "}\" in transliteration operator",
3144 range_min, range_max);
3148 /* diag_listed_as: Invalid range "%s" in transliteration operator */
3150 "Invalid range \"\\x{%04" UVXf "}-\\x{%04" UVXf "}\""
3151 " in transliteration operator",
3152 range_min, range_max);
3156 /* If the range is exactly two code points long, they are
3157 * already both in the output */
3158 if (UNLIKELY(range_min + 1 == range_max)) {
3162 /* Here the range contains at least 3 code points */
3166 /* If everything in the transliteration is below 256, we
3167 * can avoid special handling later. A translation table
3168 * for each of those bytes is created by op.c. So we
3169 * expand out all ranges to their constituent code points.
3170 * But if we've encountered something above 255, the
3171 * expanding won't help, so skip doing that. But if it's
3172 * EBCDIC, we may have to look at each character below 256
3173 * if we have to convert to/from Unicode values */
3174 if ( has_above_latin1
3176 && (range_min > 255 || ! convert_unicode)
3179 /* Move the high character one byte to the right; then
3180 * insert between it and the range begin, an illegal
3181 * byte which serves to indicate this is a range (using
3182 * a '-' would be ambiguous). */
3184 while (e-- > max_ptr) {
3187 *(e + 1) = (char) ILLEGAL_UTF8_BYTE;
3191 /* Here, we're going to expand out the range. For EBCDIC
3192 * the range can extend above 255 (not so in ASCII), so
3193 * for EBCDIC, split it into the parts above and below
3196 if (range_max > 255) {
3197 real_range_max = range_max;
3203 /* Here we need to expand out the string to contain each
3204 * character in the range. Grow the output to handle this.
3205 * For non-UTF8, we need a byte for each code point in the
3206 * range, minus the three that we've already allocated for: the
3207 * hyphen, the min, and the max. For UTF-8, we need this
3208 * plus an extra byte for each code point that occupies two
3209 * bytes (is variant) when in UTF-8 (except we've already
3210 * allocated for the end points, including if they are
3211 * variants). For ASCII platforms and Unicode ranges on EBCDIC
3212 * platforms, it's easy to calculate a precise number. To
3213 * start, we count the variants in the range, which we need
3214 * elsewhere in this function anyway. (For the case where it
3215 * isn't easy to calculate, 'extras' has been initialized to 0,
3216 * and the calculation is done in a loop further down.) */
3218 if (convert_unicode)
3221 /* This is executed unconditionally on ASCII, and for
3222 * Unicode ranges on EBCDIC. Under these conditions, all
3223 * code points above a certain value are variant; and none
3224 * under that value are. We just need to find out how much
3225 * of the range is above that value. We don't count the
3226 * end points here, as they will already have been counted
3227 * as they were parsed. */
3228 if (range_min >= UTF_CONTINUATION_MARK) {
3230 /* The whole range is made up of variants */
3231 extras = (range_max - 1) - (range_min + 1) + 1;
3233 else if (range_max >= UTF_CONTINUATION_MARK) {
3235 /* Only the higher portion of the range is variants */
3236 extras = (range_max - 1) - UTF_CONTINUATION_MARK + 1;
3239 utf8_variant_count += extras;
3242 /* The base growth is the number of code points in the range,
3243 * not including the endpoints, which have already been sized
3244 * for (and output). We don't subtract for the hyphen, as it
3245 * has been parsed but not output, and the SvGROW below is
3246 * based only on what's been output plus what's left to parse.
3248 grow = (range_max - 1) - (range_min + 1) + 1;
3252 /* In some cases in EBCDIC, we haven't yet calculated a
3253 * precise amount needed for the UTF-8 variants. Just
3254 * assume the worst case, that everything will expand by a
3256 if (! convert_unicode) {
3262 /* Otherwise we know exactly how many variants there
3263 * are in the range. */
3268 /* Grow, but position the output to overwrite the range min end
3269 * point, because in some cases we overwrite that */
3270 SvCUR_set(sv, d - SvPVX_const(sv));
3271 offset_to_min = min_ptr - SvPVX_const(sv);
3273 /* See Note on sizing above. */
3274 d = offset_to_min + SvGROW(sv, SvCUR(sv)
3277 + 1 /* Trailing NUL */ );
3279 /* Now, we can expand out the range. */
3281 if (convert_unicode) {
3284 /* Recall that the min and max are now in Unicode terms, so
3285 * we have to convert each character to its native
3288 for (i = range_min; i <= range_max; i++) {
3289 append_utf8_from_native_byte(
3290 LATIN1_TO_NATIVE((U8) i),
3295 for (i = range_min; i <= range_max; i++) {
3296 *d++ = (char)LATIN1_TO_NATIVE((U8) i);
3302 /* Always gets run for ASCII, and sometimes for EBCDIC. */
3304 /* Here, no conversions are necessary, which means that the
3305 * first character in the range is already in 'd' and
3306 * valid, so we can skip overwriting it */
3310 for (i = range_min + 1; i <= range_max; i++) {
3311 append_utf8_from_native_byte((U8) i, (U8 **) &d);
3317 assert(range_min + 1 <= range_max);
3318 for (i = range_min + 1; i < range_max; i++) {
3320 /* In this case on EBCDIC, we haven't calculated
3321 * the variants. Do it here, as we go along */
3322 if (! UVCHR_IS_INVARIANT(i)) {
3323 utf8_variant_count++;
3329 /* The range_max is done outside the loop so as to
3330 * avoid having to special case not incrementing
3331 * 'utf8_variant_count' on EBCDIC (it's already been
3332 * counted when originally parsed) */
3333 *d++ = (char) range_max;
3338 /* If the original range extended above 255, add in that
3340 if (real_range_max) {
3341 *d++ = (char) UTF8_TWO_BYTE_HI(0x100);
3342 *d++ = (char) UTF8_TWO_BYTE_LO(0x100);
3343 if (real_range_max > 0x100) {
3344 if (real_range_max > 0x101) {
3345 *d++ = (char) ILLEGAL_UTF8_BYTE;
3347 d = (char*)uvchr_to_utf8((U8*)d, real_range_max);
3353 /* mark the range as done, and continue */
3357 non_portable_endpoint = 0;
3361 } /* End of is a range */
3362 } /* End of transliteration. Joins main code after these else's */
3363 else if (*s == '[' && PL_lex_inpat && !in_charclass) {
3366 while (s1 >= start && *s1-- == '\\')
3369 in_charclass = TRUE;
3371 else if (*s == ']' && PL_lex_inpat && in_charclass) {
3374 while (s1 >= start && *s1-- == '\\')
3377 in_charclass = FALSE;
3379 /* skip for regexp comments /(?#comment)/, except for the last
3380 * char, which will be done separately. Stop on (?{..}) and
3382 else if (*s == '(' && PL_lex_inpat && s[1] == '?' && !in_charclass) {
3384 while (s+1 < send && *s != ')')
3387 else if (!PL_lex_casemods
3388 && ( s[2] == '{' /* This should match regcomp.c */
3389 || (s[2] == '?' && s[3] == '{')))
3394 /* likewise skip #-initiated comments in //x patterns */
3398 && ((PMOP*)PL_lex_inpat)->op_pmflags & RXf_PMf_EXTENDED)
3400 while (s < send && *s != '\n')
3403 /* no further processing of single-quoted regex */
3404 else if (PL_lex_inpat && SvIVX(PL_linestr) == '\'')
3405 goto default_action;
3407 /* check for embedded arrays
3408 * (@foo, @::foo, @'foo, @{foo}, @$foo, @+, @-)
3410 else if (*s == '@' && s[1]) {
3412 ? isIDFIRST_utf8_safe(s+1, send)
3413 : isWORDCHAR_A(s[1]))
3417 if (strchr(":'{$", s[1]))
3419 if (!PL_lex_inpat && (s[1] == '+' || s[1] == '-'))
3420 break; /* in regexp, neither @+ nor @- are interpolated */
3422 /* check for embedded scalars. only stop if we're sure it's a
3424 else if (*s == '$') {
3425 if (!PL_lex_inpat) /* not a regexp, so $ must be var */
3427 if (s + 1 < send && !strchr("()| \r\n\t", s[1])) {
3429 Perl_ck_warner(aTHX_ packWARN(WARN_AMBIGUOUS),
3430 "Possible unintended interpolation of $\\ in regex");
3432 break; /* in regexp, $ might be tail anchor */
3436 /* End of else if chain - OP_TRANS rejoin rest */
3438 if (UNLIKELY(s >= send)) {
3444 if (*s == '\\' && s+1 < send) {
3445 char* e; /* Can be used for ending '}', etc. */
3449 /* warn on \1 - \9 in substitution replacements, but note that \11
3450 * is an octal; and \19 is \1 followed by '9' */
3451 if (PL_lex_inwhat == OP_SUBST
3457 /* diag_listed_as: \%d better written as $%d */
3458 Perl_ck_warner(aTHX_ packWARN(WARN_SYNTAX), "\\%c better written as $%c", *s, *s);
3463 /* string-change backslash escapes */
3464 if (PL_lex_inwhat != OP_TRANS && *s && strchr("lLuUEQF", *s)) {
3468 /* In a pattern, process \N, but skip any other backslash escapes.
3469 * This is because we don't want to translate an escape sequence
3470 * into a meta symbol and have the regex compiler use the meta
3471 * symbol meaning, e.g. \x{2E} would be confused with a dot. But
3472 * in spite of this, we do have to process \N here while the proper
3473 * charnames handler is in scope. See bugs #56444 and #62056.
3475 * There is a complication because \N in a pattern may also stand
3476 * for 'match a non-nl', and not mean a charname, in which case its
3477 * processing should be deferred to the regex compiler. To be a
3478 * charname it must be followed immediately by a '{', and not look
3479 * like \N followed by a curly quantifier, i.e., not something like
3480 * \N{3,}. regcurly returns a boolean indicating if it is a legal
3482 else if (PL_lex_inpat
3485 || regcurly(s + 1)))
3488 goto default_action;
3494 if ((isALPHANUMERIC(*s)))
3495 Perl_ck_warner(aTHX_ packWARN(WARN_MISC),
3496 "Unrecognized escape \\%c passed through",
3498 /* default action is to copy the quoted character */
3499 goto default_action;
3502 /* eg. \132 indicates the octal constant 0132 */
3503 case '0': case '1': case '2': case '3':
3504 case '4': case '5': case '6': case '7':
3506 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
3508 uv = grok_oct(s, &len, &flags, NULL);
3510 if (len < 3 && s < send && isDIGIT(*s)
3511 && ckWARN(WARN_MISC))
3513 Perl_warner(aTHX_ packWARN(WARN_MISC),
3514 "%s", form_short_octal_warning(s, len));
3517 goto NUM_ESCAPE_INSERT;
3519 /* eg. \o{24} indicates the octal constant \024 */
3524 bool valid = grok_bslash_o(&s, PL_bufend,
3526 TRUE, /* Output warning */
3527 FALSE, /* Not strict */
3528 TRUE, /* Output warnings for
3533 uv = 0; /* drop through to ensure range ends are set */
3535 goto NUM_ESCAPE_INSERT;
3538 /* eg. \x24 indicates the hex constant 0x24 */
3543 bool valid = grok_bslash_x(&s, PL_bufend,
3545 TRUE, /* Output warning */
3546 FALSE, /* Not strict */
3547 TRUE, /* Output warnings for
3552 uv = 0; /* drop through to ensure range ends are set */
3557 /* Insert oct or hex escaped character. */
3559 /* Here uv is the ordinal of the next character being added */
3560 if (UVCHR_IS_INVARIANT(uv)) {
3564 if (!has_utf8 && uv > 255) {
3566 /* Here, 'uv' won't fit unless we convert to UTF-8.
3567 * If we've only seen invariants so far, all we have to
3568 * do is turn on the flag */
3569 if (utf8_variant_count == 0) {
3573 SvCUR_set(sv, d - SvPVX_const(sv));
3577 sv_utf8_upgrade_flags_grow(
3579 SV_GMAGIC|SV_FORCE_UTF8_UPGRADE,
3581 /* Since we're having to grow here,
3582 * make sure we have enough room for
3583 * this escape and a NUL, so the
3584 * code immediately below won't have
3585 * to actually grow again */
3587 + (STRLEN)(send - s) + 1);
3588 d = SvPVX(sv) + SvCUR(sv);
3591 has_above_latin1 = TRUE;
3597 utf8_variant_count++;
3600 /* Usually, there will already be enough room in 'sv'
3601 * since such escapes are likely longer than any UTF-8
3602 * sequence they can end up as. This isn't the case on
3603 * EBCDIC where \x{40000000} contains 12 bytes, and the
3604 * UTF-8 for it contains 14. And, we have to allow for
3605 * a trailing NUL. It probably can't happen on ASCII
3606 * platforms, but be safe. See Note on sizing above. */
3607 const STRLEN needed = d - SvPVX(sv)
3611 if (UNLIKELY(needed > SvLEN(sv))) {
3612 SvCUR_set(sv, d - SvPVX_const(sv));
3613 d = SvCUR(sv) + SvGROW(sv, needed);
3616 d = (char*)uvchr_to_utf8((U8*)d, uv);
3617 if (PL_lex_inwhat == OP_TRANS
3618 && PL_parser->lex_sub_op)
3620 PL_parser->lex_sub_op->op_private |=
3621 (PL_lex_repl ? OPpTRANS_FROM_UTF
3627 non_portable_endpoint++;
3632 /* In a non-pattern \N must be like \N{U+0041}, or it can be a
3633 * named character, like \N{LATIN SMALL LETTER A}, or a named
3634 * sequence, like \N{LATIN CAPITAL LETTER A WITH MACRON AND
3635 * GRAVE} (except y/// can't handle the latter, croaking). For
3636 * convenience all three forms are referred to as "named
3637 * characters" below.
3639 * For patterns, \N also can mean to match a non-newline. Code
3640 * before this 'switch' statement should already have handled
3641 * this situation, and hence this code only has to deal with
3642 * the named character cases.
3644 * For non-patterns, the named characters are converted to
3645 * their string equivalents. In patterns, named characters are
3646 * not converted to their ultimate forms for the same reasons
3647 * that other escapes aren't (mainly that the ultimate
3648 * character could be considered a meta-symbol by the regex
3649 * compiler). Instead, they are converted to the \N{U+...}
3650 * form to get the value from the charnames that is in effect
3651 * right now, while preserving the fact that it was a named
3652 * character, so that the regex compiler knows this.
3654 * The structure of this section of code (besides checking for
3655 * errors and upgrading to utf8) is:
3656 * If the named character is of the form \N{U+...}, pass it
3657 * through if a pattern; otherwise convert the code point
3659 * Otherwise must be some \N{NAME}: convert to
3660 * \N{U+c1.c2...} if a pattern; otherwise convert to utf8
3662 * Transliteration is an exception. The conversion to utf8 is
3663 * only done if the code point requires it to be representable.
3665 * Here, 's' points to the 'N'; the test below is guaranteed to
3666 * succeed if we are being called on a pattern, as we already
3667 * know from a test above that the next character is a '{'. A
3668 * non-pattern \N must mean 'named character', which requires
3672 yyerror("Missing braces on \\N{}");
3678 /* If there is no matching '}', it is an error. */
3679 if (! (e = (char *) memchr(s, '}', send - s))) {
3680 if (! PL_lex_inpat) {
3681 yyerror("Missing right brace on \\N{}");
3683 yyerror("Missing right brace on \\N{} or unescaped left brace after \\N");
3685 yyquit(); /* Have exhausted the input. */
3688 /* Here it looks like a named character */
3690 if (*s == 'U' && s[1] == '+') { /* \N{U+...} */
3691 s += 2; /* Skip to next char after the 'U+' */
3694 /* In patterns, we can have \N{U+xxxx.yyyy.zzzz...} */
3695 /* Check the syntax. */
3698 if (!isXDIGIT(*s)) {
3701 "Invalid hexadecimal number in \\N{U+...}"
3710 else if ((*s == '.' || *s == '_')
3716 /* Pass everything through unchanged.
3717 * +1 is for the '}' */
3718 Copy(orig_s, d, e - orig_s + 1, char);
3719 d += e - orig_s + 1;
3721 else { /* Not a pattern: convert the hex to string */
3722 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
3723 | PERL_SCAN_SILENT_ILLDIGIT
3724 | PERL_SCAN_DISALLOW_PREFIX;
3726 uv = grok_hex(s, &len, &flags, NULL);
3727 if (len == 0 || (len != (STRLEN)(e - s)))
3730 /* For non-tr///, if the destination is not in utf8,
3731 * unconditionally recode it to be so. This is
3732 * because \N{} implies Unicode semantics, and scalars
3733 * have to be in utf8 to guarantee those semantics.
3734 * tr/// doesn't care about Unicode rules, so no need
3735 * there to upgrade to UTF-8 for small enough code
3737 if (! has_utf8 && ( uv > 0xFF
3738 || PL_lex_inwhat != OP_TRANS))
3740 /* See Note on sizing above. */
3741 const STRLEN extra = OFFUNISKIP(uv) + (send - e) + 1;
3743 SvCUR_set(sv, d - SvPVX_const(sv));
3747 if (utf8_variant_count == 0) {
3749 d = SvCUR(sv) + SvGROW(sv, SvCUR(sv) + extra);
3752 sv_utf8_upgrade_flags_grow(
3754 SV_GMAGIC|SV_FORCE_UTF8_UPGRADE,
3756 d = SvPVX(sv) + SvCUR(sv);
3760 has_above_latin1 = TRUE;
3763 /* Add the (Unicode) code point to the output. */
3764 if (! has_utf8 || OFFUNI_IS_INVARIANT(uv)) {
3765 *d++ = (char) LATIN1_TO_NATIVE(uv);
3768 d = (char*) uvoffuni_to_utf8_flags((U8*)d, uv, 0);
3772 else /* Here is \N{NAME} but not \N{U+...}. */
3773 if ((res = get_and_check_backslash_N_name_wrapper(s, e)))
3776 const char *str = SvPV_const(res, len);
3779 if (! len) { /* The name resolved to an empty string */
3780 Copy("\\N{}", d, 4, char);
3784 /* In order to not lose information for the regex
3785 * compiler, pass the result in the specially made
3786 * syntax: \N{U+c1.c2.c3...}, where c1 etc. are
3787 * the code points in hex of each character
3788 * returned by charnames */
3790 const char *str_end = str + len;
3791 const STRLEN off = d - SvPVX_const(sv);
3793 if (! SvUTF8(res)) {
3794 /* For the non-UTF-8 case, we can determine the
3795 * exact length needed without having to parse
3796 * through the string. Each character takes up
3797 * 2 hex digits plus either a trailing dot or
3799 const char initial_text[] = "\\N{U+";
3800 const STRLEN initial_len = sizeof(initial_text)
3802 d = off + SvGROW(sv, off
3805 /* +1 for trailing NUL */
3808 + (STRLEN)(send - e));
3809 Copy(initial_text, d, initial_len, char);
3811 while (str < str_end) {
3814 my_snprintf(hex_string,
3818 /* The regex compiler is
3819 * expecting Unicode, not
3821 NATIVE_TO_LATIN1(*str));
3822 PERL_MY_SNPRINTF_POST_GUARD(len,
3823 sizeof(hex_string));
3824 Copy(hex_string, d, 3, char);
3828 d--; /* Below, we will overwrite the final
3829 dot with a right brace */
3832 STRLEN char_length; /* cur char's byte length */
3834 /* and the number of bytes after this is
3835 * translated into hex digits */
3836 STRLEN output_length;
3838 /* 2 hex per byte; 2 chars for '\N'; 2 chars
3839 * for max('U+', '.'); and 1 for NUL */
3840 char hex_string[2 * UTF8_MAXBYTES + 5];
3842 /* Get the first character of the result. */
3843 U32 uv = utf8n_to_uvchr((U8 *) str,
3847 /* Convert first code point to Unicode hex,
3848 * including the boiler plate before it. */
3850 my_snprintf(hex_string, sizeof(hex_string),
3852 (unsigned int) NATIVE_TO_UNI(uv));
3854 /* Make sure there is enough space to hold it */
3855 d = off + SvGROW(sv, off
3857 + (STRLEN)(send - e)
3858 + 2); /* '}' + NUL */
3860 Copy(hex_string, d, output_length, char);
3863 /* For each subsequent character, append dot and
3864 * its Unicode code point in hex */
3865 while ((str += char_length) < str_end) {
3866 const STRLEN off = d - SvPVX_const(sv);
3867 U32 uv = utf8n_to_uvchr((U8 *) str,
3872 my_snprintf(hex_string,
3875 (unsigned int) NATIVE_TO_UNI(uv));
3877 d = off + SvGROW(sv, off
3879 + (STRLEN)(send - e)
3880 + 2); /* '}' + NUL */
3881 Copy(hex_string, d, output_length, char);
3886 *d++ = '}'; /* Done. Add the trailing brace */
3889 else { /* Here, not in a pattern. Convert the name to a
3892 if (PL_lex_inwhat == OP_TRANS) {
3893 str = SvPV_const(res, len);
3894 if (len > ((SvUTF8(res))
3898 yyerror(Perl_form(aTHX_
3899 "%.*s must not be a named sequence"
3900 " in transliteration operator",
3901 /* +1 to include the "}" */
3902 (int) (e + 1 - start), start));
3904 goto end_backslash_N;
3907 if (SvUTF8(res) && UTF8_IS_ABOVE_LATIN1(*str)) {
3908 has_above_latin1 = TRUE;
3912 else if (! SvUTF8(res)) {
3913 /* Make sure \N{} return is UTF-8. This is because
3914 * \N{} implies Unicode semantics, and scalars have
3915 * to be in utf8 to guarantee those semantics; but
3916 * not needed in tr/// */
3917 sv_utf8_upgrade_flags(res, 0);
3918 str = SvPV_const(res, len);
3921 /* Upgrade destination to be utf8 if this new
3923 if (! has_utf8 && SvUTF8(res)) {
3924 /* See Note on sizing above. */
3925 const STRLEN extra = len + (send - s) + 1;
3927 SvCUR_set(sv, d - SvPVX_const(sv));
3931 if (utf8_variant_count == 0) {
3933 d = SvCUR(sv) + SvGROW(sv, SvCUR(sv) + extra);
3936 sv_utf8_upgrade_flags_grow(sv,
3937 SV_GMAGIC|SV_FORCE_UTF8_UPGRADE,
3939 d = SvPVX(sv) + SvCUR(sv);
3942 } else if (len > (STRLEN)(e - s + 4)) { /* I _guess_ 4 is \N{} --jhi */
3944 /* See Note on sizing above. (NOTE: SvCUR() is not
3945 * set correctly here). */
3946 const STRLEN extra = len + (send - e) + 1;
3947 const STRLEN off = d - SvPVX_const(sv);
3948 d = off + SvGROW(sv, off + extra);
3950 Copy(str, d, len, char);
3956 } /* End \N{NAME} */
3960 backslash_N++; /* \N{} is defined to be Unicode */
3962 s = e + 1; /* Point to just after the '}' */
3965 /* \c is a control character */
3969 *d++ = grok_bslash_c(*s, 1);
3972 yyerror("Missing control char name in \\c");
3973 yyquit(); /* Are at end of input, no sense continuing */
3976 non_portable_endpoint++;
3980 /* printf-style backslashes, formfeeds, newlines, etc */
4006 } /* end if (backslash) */
4009 /* Just copy the input to the output, though we may have to convert
4012 * If the input has the same representation in UTF-8 as not, it will be
4013 * a single byte, and we don't care about UTF8ness; just copy the byte */
4014 if (NATIVE_BYTE_IS_INVARIANT((U8)(*s))) {
4017 else if (! this_utf8 && ! has_utf8) {
4018 /* If neither source nor output is UTF-8, is also a single byte,
4019 * just copy it; but this byte counts should we later have to
4020 * convert to UTF-8 */
4022 utf8_variant_count++;
4024 else if (this_utf8 && has_utf8) { /* Both UTF-8, can just copy */
4025 const STRLEN len = UTF8SKIP(s);
4027 /* We expect the source to have already been checked for
4029 assert(isUTF8_CHAR((U8 *) s, (U8 *) send));
4031 Copy(s, d, len, U8);
4035 else { /* UTF8ness matters and doesn't match, need to convert */
4037 const UV nextuv = (this_utf8)
4038 ? utf8n_to_uvchr((U8*)s, send - s, &len, 0)
4040 STRLEN need = UVCHR_SKIP(nextuv);
4043 SvCUR_set(sv, d - SvPVX_const(sv));
4047 /* See Note on sizing above. */
4048 need += (STRLEN)(send - s) + 1;
4050 if (utf8_variant_count == 0) {
4052 d = SvCUR(sv) + SvGROW(sv, SvCUR(sv) + need);
4055 sv_utf8_upgrade_flags_grow(sv,
4056 SV_GMAGIC|SV_FORCE_UTF8_UPGRADE,
4058 d = SvPVX(sv) + SvCUR(sv);
4061 } else if (need > len) {
4062 /* encoded value larger than old, may need extra space (NOTE:
4063 * SvCUR() is not set correctly here). See Note on sizing
4065 const STRLEN extra = need + (send - s) + 1;
4066 const STRLEN off = d - SvPVX_const(sv);
4067 d = off + SvGROW(sv, off + extra);
4071 d = (char*)uvchr_to_utf8((U8*)d, nextuv);
4073 } /* while loop to process each character */
4075 /* terminate the string and set up the sv */
4077 SvCUR_set(sv, d - SvPVX_const(sv));
4078 if (SvCUR(sv) >= SvLEN(sv))
4079 Perl_croak(aTHX_ "panic: constant overflowed allocated space, %" UVuf
4080 " >= %" UVuf, (UV)SvCUR(sv), (UV)SvLEN(sv));
4085 if (PL_lex_inwhat == OP_TRANS && PL_parser->lex_sub_op) {
4086 PL_parser->lex_sub_op->op_private |=
4087 (PL_lex_repl ? OPpTRANS_FROM_UTF : OPpTRANS_TO_UTF);
4091 /* shrink the sv if we allocated more than we used */
4092 if (SvCUR(sv) + 5 < SvLEN(sv)) {
4093 SvPV_shrink_to_cur(sv);
4096 /* return the substring (via pl_yylval) only if we parsed anything */
4099 for (; s2 < s; s2++) {
4101 COPLINE_INC_WITH_HERELINES;
4103 SvREFCNT_inc_simple_void_NN(sv);
4104 if ( (PL_hints & ( PL_lex_inpat ? HINT_NEW_RE : HINT_NEW_STRING ))
4105 && ! PL_parser->lex_re_reparsing)
4107 const char *const key = PL_lex_inpat ? "qr" : "q";
4108 const STRLEN keylen = PL_lex_inpat ? 2 : 1;
4112 if (PL_lex_inwhat == OP_TRANS) {
4115 } else if (PL_lex_inwhat == OP_SUBST && !PL_lex_inpat) {
4118 } else if (PL_lex_inpat && SvIVX(PL_linestr) == '\'') {
4126 sv = S_new_constant(aTHX_ start, s - start, key, keylen, sv, NULL,
4127 type, typelen, NULL);
4129 pl_yylval.opval = newSVOP(OP_CONST, 0, sv);
4131 LEAVE_with_name("scan_const");
4136 * Returns TRUE if there's more to the expression (e.g., a subscript),
4139 * It deals with "$foo[3]" and /$foo[3]/ and /$foo[0123456789$]+/
4141 * ->[ and ->{ return TRUE
4142 * ->$* ->$#* ->@* ->@[ ->@{ return TRUE if postderef_qq is enabled
4143 * { and [ outside a pattern are always subscripts, so return TRUE
4144 * if we're outside a pattern and it's not { or [, then return FALSE
4145 * if we're in a pattern and the first char is a {
4146 * {4,5} (any digits around the comma) returns FALSE
4147 * if we're in a pattern and the first char is a [
4149 * [SOMETHING] has a funky algorithm to decide whether it's a
4150 * character class or not. It has to deal with things like
4151 * /$foo[-3]/ and /$foo[$bar]/ as well as /$foo[$\d]+/
4152 * anything else returns TRUE
4155 /* This is the one truly awful dwimmer necessary to conflate C and sed. */
4158 S_intuit_more(pTHX_ char *s, char *e)
4160 PERL_ARGS_ASSERT_INTUIT_MORE;
4162 if (PL_lex_brackets)
4164 if (*s == '-' && s[1] == '>' && (s[2] == '[' || s[2] == '{'))
4166 if (*s == '-' && s[1] == '>'
4167 && FEATURE_POSTDEREF_QQ_IS_ENABLED
4168 && ( (s[2] == '$' && (s[3] == '*' || (s[3] == '#' && s[4] == '*')))
4169 ||(s[2] == '@' && strchr("*[{",s[3])) ))
4171 if (*s != '{' && *s != '[')
4173 PL_parser->sub_no_recover = TRUE;
4177 /* In a pattern, so maybe we have {n,m}. */
4185 /* On the other hand, maybe we have a character class */
4188 if (*s == ']' || *s == '^')
4191 /* this is terrifying, and it works */
4194 const char * const send = (char *) memchr(s, ']', e - s);
4195 unsigned char un_char, last_un_char;
4196 char tmpbuf[sizeof PL_tokenbuf * 4];
4198 if (!send) /* has to be an expression */
4200 weight = 2; /* let's weigh the evidence */
4204 else if (isDIGIT(*s)) {
4206 if (isDIGIT(s[1]) && s[2] == ']')
4212 Zero(seen,256,char);
4214 for (; s < send; s++) {
4215 last_un_char = un_char;
4216 un_char = (unsigned char)*s;
4221 weight -= seen[un_char] * 10;
4222 if (isWORDCHAR_lazy_if_safe(s+1, PL_bufend, UTF)) {
4224 scan_ident(s, tmpbuf, sizeof tmpbuf, FALSE);
4225 len = (int)strlen(tmpbuf);
4226 if (len > 1 && gv_fetchpvn_flags(tmpbuf, len,
4227 UTF ? SVf_UTF8 : 0, SVt_PV))
4234 && strchr("[#!%*<>()-=",s[1]))
4236 if (/*{*/ strchr("])} =",s[2]))
4245 if (strchr("wds]",s[1]))
4247 else if (seen[(U8)'\''] || seen[(U8)'"'])
4249 else if (strchr("rnftbxcav",s[1]))
4251 else if (isDIGIT(s[1])) {
4253 while (s[1] && isDIGIT(s[1]))