This is a live mirror of the Perl 5 development currently hosted at https://github.com/perl/perl5
[perl #111638] fix -p on File::stat objects
[perl5.git] / pod / perlfunc.pod
1 =head1 NAME
2 X<function>
3
4 perlfunc - Perl builtin functions
5
6 =head1 DESCRIPTION
7
8 The functions in this section can serve as terms in an expression.
9 They fall into two major categories: list operators and named unary
10 operators.  These differ in their precedence relationship with a
11 following comma.  (See the precedence table in L<perlop>.)  List
12 operators take more than one argument, while unary operators can never
13 take more than one argument.  Thus, a comma terminates the argument of
14 a unary operator, but merely separates the arguments of a list
15 operator.  A unary operator generally provides scalar context to its
16 argument, while a list operator may provide either scalar or list
17 contexts for its arguments.  If it does both, scalar arguments 
18 come first and list argument follow, and there can only ever
19 be one such list argument.  For instance, splice() has three scalar
20 arguments followed by a list, whereas gethostbyname() has four scalar
21 arguments.
22
23 In the syntax descriptions that follow, list operators that expect a
24 list (and provide list context for elements of the list) are shown
25 with LIST as an argument.  Such a list may consist of any combination
26 of scalar arguments or list values; the list values will be included
27 in the list as if each individual element were interpolated at that
28 point in the list, forming a longer single-dimensional list value.
29 Commas should separate literal elements of the LIST.
30
31 Any function in the list below may be used either with or without
32 parentheses around its arguments.  (The syntax descriptions omit the
33 parentheses.)  If you use parentheses, the simple but occasionally 
34 surprising rule is this: It I<looks> like a function, therefore it I<is> a
35 function, and precedence doesn't matter.  Otherwise it's a list
36 operator or unary operator, and precedence does matter.  Whitespace
37 between the function and left parenthesis doesn't count, so sometimes
38 you need to be careful:
39
40     print 1+2+4;      # Prints 7.
41     print(1+2) + 4;   # Prints 3.
42     print (1+2)+4;    # Also prints 3!
43     print +(1+2)+4;   # Prints 7.
44     print ((1+2)+4);  # Prints 7.
45
46 If you run Perl with the B<-w> switch it can warn you about this.  For
47 example, the third line above produces:
48
49     print (...) interpreted as function at - line 1.
50     Useless use of integer addition in void context at - line 1.
51
52 A few functions take no arguments at all, and therefore work as neither
53 unary nor list operators.  These include such functions as C<time>
54 and C<endpwent>.  For example, C<time+86_400> always means
55 C<time() + 86_400>.
56
57 For functions that can be used in either a scalar or list context,
58 nonabortive failure is generally indicated in scalar context by
59 returning the undefined value, and in list context by returning the
60 empty list.
61
62 Remember the following important rule: There is B<no rule> that relates
63 the behavior of an expression in list context to its behavior in scalar
64 context, or vice versa.  It might do two totally different things.
65 Each operator and function decides which sort of value would be most
66 appropriate to return in scalar context.  Some operators return the
67 length of the list that would have been returned in list context.  Some
68 operators return the first value in the list.  Some operators return the
69 last value in the list.  Some operators return a count of successful
70 operations.  In general, they do what you want, unless you want
71 consistency.
72 X<context>
73
74 A named array in scalar context is quite different from what would at
75 first glance appear to be a list in scalar context.  You can't get a list
76 like C<(1,2,3)> into being in scalar context, because the compiler knows
77 the context at compile time.  It would generate the scalar comma operator
78 there, not the list construction version of the comma.  That means it
79 was never a list to start with.
80
81 In general, functions in Perl that serve as wrappers for system calls ("syscalls")
82 of the same name (like chown(2), fork(2), closedir(2), etc.) return
83 true when they succeed and C<undef> otherwise, as is usually mentioned
84 in the descriptions below.  This is different from the C interfaces,
85 which return C<-1> on failure.  Exceptions to this rule include C<wait>,
86 C<waitpid>, and C<syscall>.  System calls also set the special C<$!>
87 variable on failure.  Other functions do not, except accidentally.
88
89 Extension modules can also hook into the Perl parser to define new
90 kinds of keyword-headed expression.  These may look like functions, but
91 may also look completely different.  The syntax following the keyword
92 is defined entirely by the extension.  If you are an implementor, see
93 L<perlapi/PL_keyword_plugin> for the mechanism.  If you are using such
94 a module, see the module's documentation for details of the syntax that
95 it defines.
96
97 =head2 Perl Functions by Category
98 X<function>
99
100 Here are Perl's functions (including things that look like
101 functions, like some keywords and named operators)
102 arranged by category.  Some functions appear in more
103 than one place.
104
105 =over 4
106
107 =item Functions for SCALARs or strings
108 X<scalar> X<string> X<character>
109
110 =for Pod::Functions =String
111
112 C<chomp>, C<chop>, C<chr>, C<crypt>, C<fc>, C<hex>, C<index>, C<lc>,
113 C<lcfirst>, C<length>, C<oct>, C<ord>, C<pack>, C<q//>, C<qq//>, C<reverse>,
114 C<rindex>, C<sprintf>, C<substr>, C<tr///>, C<uc>, C<ucfirst>, C<y///>
115
116 C<fc> is available only if the C<"fc"> feature is enabled or if it is
117 prefixed with C<CORE::>.  The C<"fc"> feature is enabled automatically
118 with a C<use v5.16> (or higher) declaration in the current scope.
119
120
121 =item Regular expressions and pattern matching
122 X<regular expression> X<regex> X<regexp>
123
124 =for Pod::Functions =Regexp
125
126 C<m//>, C<pos>, C<qr//>, C<quotemeta>, C<s///>, C<split>, C<study>
127
128 =item Numeric functions
129 X<numeric> X<number> X<trigonometric> X<trigonometry>
130
131 =for Pod::Functions =Math
132
133 C<abs>, C<atan2>, C<cos>, C<exp>, C<hex>, C<int>, C<log>, C<oct>, C<rand>,
134 C<sin>, C<sqrt>, C<srand>
135
136 =item Functions for real @ARRAYs
137 X<array>
138
139 =for Pod::Functions =ARRAY
140
141 C<each>, C<keys>, C<pop>, C<push>, C<shift>, C<splice>, C<unshift>, C<values>
142
143 =item Functions for list data
144 X<list>
145
146 =for Pod::Functions =LIST
147
148 C<grep>, C<join>, C<map>, C<qw//>, C<reverse>, C<sort>, C<unpack>
149
150 =item Functions for real %HASHes
151 X<hash>
152
153 =for Pod::Functions =HASH
154
155 C<delete>, C<each>, C<exists>, C<keys>, C<values>
156
157 =item Input and output functions
158 X<I/O> X<input> X<output> X<dbm>
159
160 =for Pod::Functions =I/O
161
162 C<binmode>, C<close>, C<closedir>, C<dbmclose>, C<dbmopen>, C<die>, C<eof>,
163 C<fileno>, C<flock>, C<format>, C<getc>, C<print>, C<printf>, C<read>,
164 C<readdir>, C<readline> C<rewinddir>, C<say>, C<seek>, C<seekdir>, C<select>,
165 C<syscall>, C<sysread>, C<sysseek>, C<syswrite>, C<tell>, C<telldir>,
166 C<truncate>, C<warn>, C<write>
167
168 C<say> is available only if the C<"say"> feature is enabled or if it is
169 prefixed with C<CORE::>.  The C<"say"> feature is enabled automatically
170 with a C<use v5.10> (or higher) declaration in the current scope.
171
172 =item Functions for fixed-length data or records
173
174 =for Pod::Functions =Binary
175
176 C<pack>, C<read>, C<syscall>, C<sysread>, C<sysseek>, C<syswrite>, C<unpack>,
177 C<vec>
178
179 =item Functions for filehandles, files, or directories
180 X<file> X<filehandle> X<directory> X<pipe> X<link> X<symlink>
181
182 =for Pod::Functions =File
183
184 C<-I<X>>, C<chdir>, C<chmod>, C<chown>, C<chroot>, C<fcntl>, C<glob>,
185 C<ioctl>, C<link>, C<lstat>, C<mkdir>, C<open>, C<opendir>,
186 C<readlink>, C<rename>, C<rmdir>, C<stat>, C<symlink>, C<sysopen>,
187 C<umask>, C<unlink>, C<utime>
188
189 =item Keywords related to the control flow of your Perl program
190 X<control flow>
191
192 =for Pod::Functions =Flow
193
194 C<break>, C<caller>, C<continue>, C<die>, C<do>,
195 C<dump>, C<eval>, C<evalbytes> C<exit>,
196 C<__FILE__>, C<goto>, C<last>, C<__LINE__>, C<next>, C<__PACKAGE__>,
197 C<redo>, C<return>, C<sub>, C<__SUB__>, C<wantarray>
198
199 C<break> is available only if you enable the experimental C<"switch">
200 feature or use the C<CORE::> prefix. The C<"switch"> feature also enables
201 the C<default>, C<given> and C<when> statements, which are documented in
202 L<perlsyn/"Switch Statements">. The C<"switch"> feature is enabled
203 automatically with a C<use v5.10> (or higher) declaration in the current
204 scope. In Perl v5.14 and earlier, C<continue> required the C<"switch">
205 feature, like the other keywords.
206
207 C<evalbytes> is only available with with the C<"evalbytes"> feature (see
208 L<feature>) or if prefixed with C<CORE::>.  C<__SUB__> is only available
209 with with the C<"current_sub"> feature or if prefixed with C<CORE::>. Both
210 the C<"evalbytes"> and C<"current_sub"> features are enabled automatically
211 with a C<use v5.16> (or higher) declaration in the current scope.
212
213 =item Keywords related to scoping
214
215 =for Pod::Functions =Namespace
216
217 C<caller>, C<import>, C<local>, C<my>, C<our>, C<package>, C<state>, C<use>
218
219 C<state> is available only if the C<"state"> feature is enabled or if it is
220 prefixed with C<CORE::>.  The C<"state"> feature is enabled automatically
221 with a C<use v5.10> (or higher) declaration in the current scope.
222
223 =item Miscellaneous functions
224
225 =for Pod::Functions =Misc
226
227 C<defined>, C<formline>, C<lock>, C<prototype>, C<reset>, C<scalar>, C<undef>
228
229 =item Functions for processes and process groups
230 X<process> X<pid> X<process id>
231
232 =for Pod::Functions =Process
233
234 C<alarm>, C<exec>, C<fork>, C<getpgrp>, C<getppid>, C<getpriority>, C<kill>,
235 C<pipe>, C<qx//>, C<readpipe>, C<setpgrp>,
236 C<setpriority>, C<sleep>, C<system>,
237 C<times>, C<wait>, C<waitpid>
238
239 =item Keywords related to Perl modules
240 X<module>
241
242 =for Pod::Functions =Modules
243
244 C<do>, C<import>, C<no>, C<package>, C<require>, C<use>
245
246 =item Keywords related to classes and object-orientation
247 X<object> X<class> X<package>
248
249 =for Pod::Functions =Objects
250
251 C<bless>, C<dbmclose>, C<dbmopen>, C<package>, C<ref>, C<tie>, C<tied>,
252 C<untie>, C<use>
253
254 =item Low-level socket functions
255 X<socket> X<sock>
256
257 =for Pod::Functions =Socket
258
259 C<accept>, C<bind>, C<connect>, C<getpeername>, C<getsockname>,
260 C<getsockopt>, C<listen>, C<recv>, C<send>, C<setsockopt>, C<shutdown>,
261 C<socket>, C<socketpair>
262
263 =item System V interprocess communication functions
264 X<IPC> X<System V> X<semaphore> X<shared memory> X<memory> X<message>
265
266 =for Pod::Functions =SysV
267
268 C<msgctl>, C<msgget>, C<msgrcv>, C<msgsnd>, C<semctl>, C<semget>, C<semop>,
269 C<shmctl>, C<shmget>, C<shmread>, C<shmwrite>
270
271 =item Fetching user and group info
272 X<user> X<group> X<password> X<uid> X<gid>  X<passwd> X</etc/passwd>
273
274 =for Pod::Functions =User
275
276 C<endgrent>, C<endhostent>, C<endnetent>, C<endpwent>, C<getgrent>,
277 C<getgrgid>, C<getgrnam>, C<getlogin>, C<getpwent>, C<getpwnam>,
278 C<getpwuid>, C<setgrent>, C<setpwent>
279
280 =item Fetching network info
281 X<network> X<protocol> X<host> X<hostname> X<IP> X<address> X<service>
282
283 =for Pod::Functions =Network
284
285 C<endprotoent>, C<endservent>, C<gethostbyaddr>, C<gethostbyname>,
286 C<gethostent>, C<getnetbyaddr>, C<getnetbyname>, C<getnetent>,
287 C<getprotobyname>, C<getprotobynumber>, C<getprotoent>,
288 C<getservbyname>, C<getservbyport>, C<getservent>, C<sethostent>,
289 C<setnetent>, C<setprotoent>, C<setservent>
290
291 =item Time-related functions
292 X<time> X<date>
293
294 =for Pod::Functions =Time
295
296 C<gmtime>, C<localtime>, C<time>, C<times>
297
298 =item Non-function keywords
299
300 =for Pod::Functions =!Non-functions
301
302 C<and>, C<AUTOLOAD>, C<BEGIN>, C<CHECK>, C<cmp>, C<CORE>, C<__DATA__>,
303 C<default>, C<DESTROY>, C<else>, C<elseif>, C<elsif>, C<END>, C<__END__>,
304 C<eq>, C<for>, C<foreach>, C<ge>, C<given>, C<gt>, C<if>, C<INIT>, C<le>,
305 C<lt>, C<ne>, C<not>, C<or>, C<UNITCHECK>, C<unless>, C<until>, C<when>,
306 C<while>, C<x>, C<xor>
307
308 =back
309
310 =head2 Portability
311 X<portability> X<Unix> X<portable>
312
313 Perl was born in Unix and can therefore access all common Unix
314 system calls.  In non-Unix environments, the functionality of some
315 Unix system calls may not be available or details of the available
316 functionality may differ slightly.  The Perl functions affected
317 by this are:
318
319 C<-X>, C<binmode>, C<chmod>, C<chown>, C<chroot>, C<crypt>,
320 C<dbmclose>, C<dbmopen>, C<dump>, C<endgrent>, C<endhostent>,
321 C<endnetent>, C<endprotoent>, C<endpwent>, C<endservent>, C<exec>,
322 C<fcntl>, C<flock>, C<fork>, C<getgrent>, C<getgrgid>, C<gethostbyname>,
323 C<gethostent>, C<getlogin>, C<getnetbyaddr>, C<getnetbyname>, C<getnetent>,
324 C<getppid>, C<getpgrp>, C<getpriority>, C<getprotobynumber>,
325 C<getprotoent>, C<getpwent>, C<getpwnam>, C<getpwuid>,
326 C<getservbyport>, C<getservent>, C<getsockopt>, C<glob>, C<ioctl>,
327 C<kill>, C<link>, C<lstat>, C<msgctl>, C<msgget>, C<msgrcv>,
328 C<msgsnd>, C<open>, C<pipe>, C<readlink>, C<rename>, C<select>, C<semctl>,
329 C<semget>, C<semop>, C<setgrent>, C<sethostent>, C<setnetent>,
330 C<setpgrp>, C<setpriority>, C<setprotoent>, C<setpwent>,
331 C<setservent>, C<setsockopt>, C<shmctl>, C<shmget>, C<shmread>,
332 C<shmwrite>, C<socket>, C<socketpair>,
333 C<stat>, C<symlink>, C<syscall>, C<sysopen>, C<system>,
334 C<times>, C<truncate>, C<umask>, C<unlink>,
335 C<utime>, C<wait>, C<waitpid>
336
337 For more information about the portability of these functions, see
338 L<perlport> and other available platform-specific documentation.
339
340 =head2 Alphabetical Listing of Perl Functions
341
342 =over 
343
344 =item -X FILEHANDLE
345 X<-r>X<-w>X<-x>X<-o>X<-R>X<-W>X<-X>X<-O>X<-e>X<-z>X<-s>X<-f>X<-d>X<-l>X<-p>
346 X<-S>X<-b>X<-c>X<-t>X<-u>X<-g>X<-k>X<-T>X<-B>X<-M>X<-A>X<-C>
347
348 =item -X EXPR
349
350 =item -X DIRHANDLE
351
352 =item -X
353
354 =for Pod::Functions a file test (-r, -x, etc)
355
356 A file test, where X is one of the letters listed below.  This unary
357 operator takes one argument, either a filename, a filehandle, or a dirhandle, 
358 and tests the associated file to see if something is true about it.  If the
359 argument is omitted, tests C<$_>, except for C<-t>, which tests STDIN.
360 Unless otherwise documented, it returns C<1> for true and C<''> for false, or
361 the undefined value if the file doesn't exist.  Despite the funny
362 names, precedence is the same as any other named unary operator.  The
363 operator may be any of:
364
365     -r  File is readable by effective uid/gid.
366     -w  File is writable by effective uid/gid.
367     -x  File is executable by effective uid/gid.
368     -o  File is owned by effective uid.
369
370     -R  File is readable by real uid/gid.
371     -W  File is writable by real uid/gid.
372     -X  File is executable by real uid/gid.
373     -O  File is owned by real uid.
374
375     -e  File exists.
376     -z  File has zero size (is empty).
377     -s  File has nonzero size (returns size in bytes).
378
379     -f  File is a plain file.
380     -d  File is a directory.
381     -l  File is a symbolic link.
382     -p  File is a named pipe (FIFO), or Filehandle is a pipe.
383     -S  File is a socket.
384     -b  File is a block special file.
385     -c  File is a character special file.
386     -t  Filehandle is opened to a tty.
387
388     -u  File has setuid bit set.
389     -g  File has setgid bit set.
390     -k  File has sticky bit set.
391
392     -T  File is an ASCII text file (heuristic guess).
393     -B  File is a "binary" file (opposite of -T).
394
395     -M  Script start time minus file modification time, in days.
396     -A  Same for access time.
397     -C  Same for inode change time (Unix, may differ for other platforms)
398
399 Example:
400
401     while (<>) {
402         chomp;
403         next unless -f $_;  # ignore specials
404         #...
405     }
406
407 Note that C<-s/a/b/> does not do a negated substitution.  Saying
408 C<-exp($foo)> still works as expected, however: only single letters
409 following a minus are interpreted as file tests.
410
411 These operators are exempt from the "looks like a function rule" described
412 above.  That is, an opening parenthesis after the operator does not affect
413 how much of the following code constitutes the argument.  Put the opening
414 parentheses before the operator to separate it from code that follows (this
415 applies only to operators with higher precedence than unary operators, of
416 course):
417
418     -s($file) + 1024   # probably wrong; same as -s($file + 1024)
419     (-s $file) + 1024  # correct
420
421 The interpretation of the file permission operators C<-r>, C<-R>,
422 C<-w>, C<-W>, C<-x>, and C<-X> is by default based solely on the mode
423 of the file and the uids and gids of the user.  There may be other
424 reasons you can't actually read, write, or execute the file: for
425 example network filesystem access controls, ACLs (access control lists),
426 read-only filesystems, and unrecognized executable formats.  Note
427 that the use of these six specific operators to verify if some operation
428 is possible is usually a mistake, because it may be open to race
429 conditions.
430
431 Also note that, for the superuser on the local filesystems, the C<-r>,
432 C<-R>, C<-w>, and C<-W> tests always return 1, and C<-x> and C<-X> return 1
433 if any execute bit is set in the mode.  Scripts run by the superuser
434 may thus need to do a stat() to determine the actual mode of the file,
435 or temporarily set their effective uid to something else.
436
437 If you are using ACLs, there is a pragma called C<filetest> that may
438 produce more accurate results than the bare stat() mode bits.
439 When under C<use filetest 'access'> the above-mentioned filetests
440 test whether the permission can(not) be granted using the
441 access(2) family of system calls.  Also note that the C<-x> and C<-X> may
442 under this pragma return true even if there are no execute permission
443 bits set (nor any extra execute permission ACLs).  This strangeness is
444 due to the underlying system calls' definitions.  Note also that, due to
445 the implementation of C<use filetest 'access'>, the C<_> special
446 filehandle won't cache the results of the file tests when this pragma is
447 in effect.  Read the documentation for the C<filetest> pragma for more
448 information.
449
450 The C<-T> and C<-B> switches work as follows.  The first block or so of the
451 file is examined for odd characters such as strange control codes or
452 characters with the high bit set.  If too many strange characters (>30%)
453 are found, it's a C<-B> file; otherwise it's a C<-T> file.  Also, any file
454 containing a zero byte in the first block is considered a binary file.  If C<-T>
455 or C<-B> is used on a filehandle, the current IO buffer is examined
456 rather than the first block.  Both C<-T> and C<-B> return true on an empty
457 file, or a file at EOF when testing a filehandle.  Because you have to
458 read a file to do the C<-T> test, on most occasions you want to use a C<-f>
459 against the file first, as in C<next unless -f $file && -T $file>.
460
461 If any of the file tests (or either the C<stat> or C<lstat> operator) is given
462 the special filehandle consisting of a solitary underline, then the stat
463 structure of the previous file test (or stat operator) is used, saving
464 a system call.  (This doesn't work with C<-t>, and you need to remember
465 that lstat() and C<-l> leave values in the stat structure for the
466 symbolic link, not the real file.)  (Also, if the stat buffer was filled by
467 an C<lstat> call, C<-T> and C<-B> will reset it with the results of C<stat _>).
468 Example:
469
470     print "Can do.\n" if -r $a || -w _ || -x _;
471
472     stat($filename);
473     print "Readable\n" if -r _;
474     print "Writable\n" if -w _;
475     print "Executable\n" if -x _;
476     print "Setuid\n" if -u _;
477     print "Setgid\n" if -g _;
478     print "Sticky\n" if -k _;
479     print "Text\n" if -T _;
480     print "Binary\n" if -B _;
481
482 As of Perl 5.9.1, as a form of purely syntactic sugar, you can stack file
483 test operators, in a way that C<-f -w -x $file> is equivalent to
484 C<-x $file && -w _ && -f _>.  (This is only fancy fancy: if you use
485 the return value of C<-f $file> as an argument to another filetest
486 operator, no special magic will happen.)
487
488 Portability issues: L<perlport/-X>.
489
490 To avoid confusing would-be users of your code with mysterious
491 syntax errors, put something like this at the top of your script:
492
493     use 5.010;  # so filetest ops can stack
494
495 =item abs VALUE
496 X<abs> X<absolute>
497
498 =item abs
499
500 =for Pod::Functions absolute value function
501
502 Returns the absolute value of its argument.
503 If VALUE is omitted, uses C<$_>.
504
505 =item accept NEWSOCKET,GENERICSOCKET
506 X<accept>
507
508 =for Pod::Functions accept an incoming socket connect
509
510 Accepts an incoming socket connect, just as accept(2) 
511 does.  Returns the packed address if it succeeded, false otherwise.
512 See the example in L<perlipc/"Sockets: Client/Server Communication">.
513
514 On systems that support a close-on-exec flag on files, the flag will
515 be set for the newly opened file descriptor, as determined by the
516 value of $^F.  See L<perlvar/$^F>.
517
518 =item alarm SECONDS
519 X<alarm>
520 X<SIGALRM>
521 X<timer>
522
523 =item alarm
524
525 =for Pod::Functions schedule a SIGALRM
526
527 Arranges to have a SIGALRM delivered to this process after the
528 specified number of wallclock seconds has elapsed.  If SECONDS is not
529 specified, the value stored in C<$_> is used.  (On some machines,
530 unfortunately, the elapsed time may be up to one second less or more
531 than you specified because of how seconds are counted, and process
532 scheduling may delay the delivery of the signal even further.)
533
534 Only one timer may be counting at once.  Each call disables the
535 previous timer, and an argument of C<0> may be supplied to cancel the
536 previous timer without starting a new one.  The returned value is the
537 amount of time remaining on the previous timer.
538
539 For delays of finer granularity than one second, the Time::HiRes module
540 (from CPAN, and starting from Perl 5.8 part of the standard
541 distribution) provides ualarm().  You may also use Perl's four-argument
542 version of select() leaving the first three arguments undefined, or you
543 might be able to use the C<syscall> interface to access setitimer(2) if
544 your system supports it.  See L<perlfaq8> for details.
545
546 It is usually a mistake to intermix C<alarm> and C<sleep> calls, because
547 C<sleep> may be internally implemented on your system with C<alarm>.
548
549 If you want to use C<alarm> to time out a system call you need to use an
550 C<eval>/C<die> pair.  You can't rely on the alarm causing the system call to
551 fail with C<$!> set to C<EINTR> because Perl sets up signal handlers to
552 restart system calls on some systems.  Using C<eval>/C<die> always works,
553 modulo the caveats given in L<perlipc/"Signals">.
554
555     eval {
556         local $SIG{ALRM} = sub { die "alarm\n" }; # NB: \n required
557         alarm $timeout;
558         $nread = sysread SOCKET, $buffer, $size;
559         alarm 0;
560     };
561     if ($@) {
562         die unless $@ eq "alarm\n";   # propagate unexpected errors
563         # timed out
564     }
565     else {
566         # didn't
567     }
568
569 For more information see L<perlipc>.
570
571 Portability issues: L<perlport/alarm>.
572
573 =item atan2 Y,X
574 X<atan2> X<arctangent> X<tan> X<tangent>
575
576 =for Pod::Functions arctangent of Y/X in the range -PI to PI
577
578 Returns the arctangent of Y/X in the range -PI to PI.
579
580 For the tangent operation, you may use the C<Math::Trig::tan>
581 function, or use the familiar relation:
582
583     sub tan { sin($_[0]) / cos($_[0])  }
584
585 The return value for C<atan2(0,0)> is implementation-defined; consult
586 your atan2(3) manpage for more information.
587
588 Portability issues: L<perlport/atan2>.
589
590 =item bind SOCKET,NAME
591 X<bind>
592
593 =for Pod::Functions binds an address to a socket
594
595 Binds a network address to a socket, just as bind(2)
596 does.  Returns true if it succeeded, false otherwise.  NAME should be a
597 packed address of the appropriate type for the socket.  See the examples in
598 L<perlipc/"Sockets: Client/Server Communication">.
599
600 =item binmode FILEHANDLE, LAYER
601 X<binmode> X<binary> X<text> X<DOS> X<Windows>
602
603 =item binmode FILEHANDLE
604
605 =for Pod::Functions prepare binary files for I/O
606
607 Arranges for FILEHANDLE to be read or written in "binary" or "text"
608 mode on systems where the run-time libraries distinguish between
609 binary and text files.  If FILEHANDLE is an expression, the value is
610 taken as the name of the filehandle.  Returns true on success,
611 otherwise it returns C<undef> and sets C<$!> (errno).
612
613 On some systems (in general, DOS- and Windows-based systems) binmode()
614 is necessary when you're not working with a text file.  For the sake
615 of portability it is a good idea always to use it when appropriate,
616 and never to use it when it isn't appropriate.  Also, people can
617 set their I/O to be by default UTF8-encoded Unicode, not bytes.
618
619 In other words: regardless of platform, use binmode() on binary data,
620 like images, for example.
621
622 If LAYER is present it is a single string, but may contain multiple
623 directives.  The directives alter the behaviour of the filehandle.
624 When LAYER is present, using binmode on a text file makes sense.
625
626 If LAYER is omitted or specified as C<:raw> the filehandle is made
627 suitable for passing binary data.  This includes turning off possible CRLF
628 translation and marking it as bytes (as opposed to Unicode characters).
629 Note that, despite what may be implied in I<"Programming Perl"> (the
630 Camel, 3rd edition) or elsewhere, C<:raw> is I<not> simply the inverse of C<:crlf>.
631 Other layers that would affect the binary nature of the stream are
632 I<also> disabled.  See L<PerlIO>, L<perlrun>, and the discussion about the
633 PERLIO environment variable.
634
635 The C<:bytes>, C<:crlf>, C<:utf8>, and any other directives of the
636 form C<:...>, are called I/O I<layers>.  The C<open> pragma can be used to
637 establish default I/O layers.  See L<open>.
638
639 I<The LAYER parameter of the binmode() function is described as "DISCIPLINE"
640 in "Programming Perl, 3rd Edition".  However, since the publishing of this
641 book, by many known as "Camel III", the consensus of the naming of this
642 functionality has moved from "discipline" to "layer".  All documentation
643 of this version of Perl therefore refers to "layers" rather than to
644 "disciplines".  Now back to the regularly scheduled documentation...>
645
646 To mark FILEHANDLE as UTF-8, use C<:utf8> or C<:encoding(UTF-8)>.
647 C<:utf8> just marks the data as UTF-8 without further checking,
648 while C<:encoding(UTF-8)> checks the data for actually being valid
649 UTF-8.  More details can be found in L<PerlIO::encoding>.
650
651 In general, binmode() should be called after open() but before any I/O
652 is done on the filehandle.  Calling binmode() normally flushes any
653 pending buffered output data (and perhaps pending input data) on the
654 handle.  An exception to this is the C<:encoding> layer that
655 changes the default character encoding of the handle; see L</open>.
656 The C<:encoding> layer sometimes needs to be called in
657 mid-stream, and it doesn't flush the stream.  The C<:encoding>
658 also implicitly pushes on top of itself the C<:utf8> layer because
659 internally Perl operates on UTF8-encoded Unicode characters.
660
661 The operating system, device drivers, C libraries, and Perl run-time
662 system all conspire to let the programmer treat a single
663 character (C<\n>) as the line terminator, irrespective of external
664 representation.  On many operating systems, the native text file
665 representation matches the internal representation, but on some
666 platforms the external representation of C<\n> is made up of more than
667 one character.
668
669 All variants of Unix, Mac OS (old and new), and Stream_LF files on VMS use
670 a single character to end each line in the external representation of text
671 (even though that single character is CARRIAGE RETURN on old, pre-Darwin
672 flavors of Mac OS, and is LINE FEED on Unix and most VMS files).  In other
673 systems like OS/2, DOS, and the various flavors of MS-Windows, your program
674 sees a C<\n> as a simple C<\cJ>, but what's stored in text files are the
675 two characters C<\cM\cJ>.  That means that if you don't use binmode() on
676 these systems, C<\cM\cJ> sequences on disk will be converted to C<\n> on
677 input, and any C<\n> in your program will be converted back to C<\cM\cJ> on
678 output.  This is what you want for text files, but it can be disastrous for
679 binary files.
680
681 Another consequence of using binmode() (on some systems) is that
682 special end-of-file markers will be seen as part of the data stream.
683 For systems from the Microsoft family this means that, if your binary
684 data contain C<\cZ>, the I/O subsystem will regard it as the end of
685 the file, unless you use binmode().
686
687 binmode() is important not only for readline() and print() operations,
688 but also when using read(), seek(), sysread(), syswrite() and tell()
689 (see L<perlport> for more details).  See the C<$/> and C<$\> variables
690 in L<perlvar> for how to manually set your input and output
691 line-termination sequences.
692
693 Portability issues: L<perlport/binmode>.
694
695 =item bless REF,CLASSNAME
696 X<bless>
697
698 =item bless REF
699
700 =for Pod::Functions create an object
701
702 This function tells the thingy referenced by REF that it is now an object
703 in the CLASSNAME package.  If CLASSNAME is omitted, the current package
704 is used.  Because a C<bless> is often the last thing in a constructor,
705 it returns the reference for convenience.  Always use the two-argument
706 version if a derived class might inherit the function doing the blessing.
707 SeeL<perlobj> for more about the blessing (and blessings) of objects.
708
709 Consider always blessing objects in CLASSNAMEs that are mixed case.
710 Namespaces with all lowercase names are considered reserved for
711 Perl pragmata.  Builtin types have all uppercase names.  To prevent
712 confusion, you may wish to avoid such package names as well.  Make sure
713 that CLASSNAME is a true value.
714
715 See L<perlmod/"Perl Modules">.
716
717 =item break
718
719 =for Pod::Functions +switch break out of a C<given> block
720
721 Break out of a C<given()> block.
722
723 This keyword is enabled by the C<"switch"> feature: see
724 L<feature> for more information.  You can also access it by
725 prefixing it with C<CORE::>.  Alternately, include a C<use
726 v5.10> or later to the current scope.
727
728 =item caller EXPR
729 X<caller> X<call stack> X<stack> X<stack trace>
730
731 =item caller
732
733 =for Pod::Functions get context of the current subroutine call
734
735 Returns the context of the current subroutine call.  In scalar context,
736 returns the caller's package name if there I<is> a caller (that is, if
737 we're in a subroutine or C<eval> or C<require>) and the undefined value
738 otherwise.  In list context, returns
739
740     # 0         1          2
741     ($package, $filename, $line) = caller;
742
743 With EXPR, it returns some extra information that the debugger uses to
744 print a stack trace.  The value of EXPR indicates how many call frames
745 to go back before the current one.
746
747     #  0         1          2      3            4
748     ($package, $filename, $line, $subroutine, $hasargs,
749
750     #  5          6          7            8       9         10
751     $wantarray, $evaltext, $is_require, $hints, $bitmask, $hinthash)
752      = caller($i);
753
754 Here $subroutine may be C<(eval)> if the frame is not a subroutine
755 call, but an C<eval>.  In such a case additional elements $evaltext and
756 C<$is_require> are set: C<$is_require> is true if the frame is created by a
757 C<require> or C<use> statement, $evaltext contains the text of the
758 C<eval EXPR> statement.  In particular, for an C<eval BLOCK> statement,
759 $subroutine is C<(eval)>, but $evaltext is undefined.  (Note also that
760 each C<use> statement creates a C<require> frame inside an C<eval EXPR>
761 frame.)  $subroutine may also be C<(unknown)> if this particular
762 subroutine happens to have been deleted from the symbol table.
763 C<$hasargs> is true if a new instance of C<@_> was set up for the frame.
764 C<$hints> and C<$bitmask> contain pragmatic hints that the caller was
765 compiled with.  The C<$hints> and C<$bitmask> values are subject to change
766 between versions of Perl, and are not meant for external use.
767
768 C<$hinthash> is a reference to a hash containing the value of C<%^H> when the
769 caller was compiled, or C<undef> if C<%^H> was empty.  Do not modify the values
770 of this hash, as they are the actual values stored in the optree.
771
772 Furthermore, when called from within the DB package in
773 list context, and with an argument, caller returns more
774 detailed information: it sets the list variable C<@DB::args> to be the
775 arguments with which the subroutine was invoked.
776
777 Be aware that the optimizer might have optimized call frames away before
778 C<caller> had a chance to get the information.  That means that C<caller(N)>
779 might not return information about the call frame you expect it to, for
780 C<< N > 1 >>.  In particular, C<@DB::args> might have information from the
781 previous time C<caller> was called.
782
783 Be aware that setting C<@DB::args> is I<best effort>, intended for
784 debugging or generating backtraces, and should not be relied upon.  In
785 particular, as C<@_> contains aliases to the caller's arguments, Perl does
786 not take a copy of C<@_>, so C<@DB::args> will contain modifications the
787 subroutine makes to C<@_> or its contents, not the original values at call
788 time.  C<@DB::args>, like C<@_>, does not hold explicit references to its
789 elements, so under certain cases its elements may have become freed and
790 reallocated for other variables or temporary values.  Finally, a side effect
791 of the current implementation is that the effects of C<shift @_> can
792 I<normally> be undone (but not C<pop @_> or other splicing, I<and> not if a
793 reference to C<@_> has been taken, I<and> subject to the caveat about reallocated
794 elements), so C<@DB::args> is actually a hybrid of the current state and
795 initial state of C<@_>.  Buyer beware.
796
797 =item chdir EXPR
798 X<chdir>
799 X<cd>
800 X<directory, change>
801
802 =item chdir FILEHANDLE
803
804 =item chdir DIRHANDLE
805
806 =item chdir
807
808 =for Pod::Functions change your current working directory
809
810 Changes the working directory to EXPR, if possible.  If EXPR is omitted,
811 changes to the directory specified by C<$ENV{HOME}>, if set; if not,
812 changes to the directory specified by C<$ENV{LOGDIR}>.  (Under VMS, the
813 variable C<$ENV{SYS$LOGIN}> is also checked, and used if it is set.)  If
814 neither is set, C<chdir> does nothing.  It returns true on success,
815 false otherwise.  See the example under C<die>.
816
817 On systems that support fchdir(2), you may pass a filehandle or
818 directory handle as the argument.  On systems that don't support fchdir(2),
819 passing handles raises an exception.
820
821 =item chmod LIST
822 X<chmod> X<permission> X<mode>
823
824 =for Pod::Functions changes the permissions on a list of files
825
826 Changes the permissions of a list of files.  The first element of the
827 list must be the numeric mode, which should probably be an octal
828 number, and which definitely should I<not> be a string of octal digits:
829 C<0644> is okay, but C<"0644"> is not.  Returns the number of files
830 successfully changed.  See also L</oct> if all you have is a string.
831
832     $cnt = chmod 0755, "foo", "bar";
833     chmod 0755, @executables;
834     $mode = "0644"; chmod $mode, "foo";      # !!! sets mode to
835                                              # --w----r-T
836     $mode = "0644"; chmod oct($mode), "foo"; # this is better
837     $mode = 0644;   chmod $mode, "foo";      # this is best
838
839 On systems that support fchmod(2), you may pass filehandles among the
840 files.  On systems that don't support fchmod(2), passing filehandles raises
841 an exception.  Filehandles must be passed as globs or glob references to be
842 recognized; barewords are considered filenames.
843
844     open(my $fh, "<", "foo");
845     my $perm = (stat $fh)[2] & 07777;
846     chmod($perm | 0600, $fh);
847
848 You can also import the symbolic C<S_I*> constants from the C<Fcntl>
849 module:
850
851     use Fcntl qw( :mode );
852     chmod S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH, @executables;
853     # Identical to the chmod 0755 of the example above.
854
855 Portability issues: L<perlport/chmod>.
856
857 =item chomp VARIABLE
858 X<chomp> X<INPUT_RECORD_SEPARATOR> X<$/> X<newline> X<eol>
859
860 =item chomp( LIST )
861
862 =item chomp
863
864 =for Pod::Functions remove a trailing record separator from a string
865
866 This safer version of L</chop> removes any trailing string
867 that corresponds to the current value of C<$/> (also known as
868 $INPUT_RECORD_SEPARATOR in the C<English> module).  It returns the total
869 number of characters removed from all its arguments.  It's often used to
870 remove the newline from the end of an input record when you're worried
871 that the final record may be missing its newline.  When in paragraph
872 mode (C<$/ = "">), it removes all trailing newlines from the string.
873 When in slurp mode (C<$/ = undef>) or fixed-length record mode (C<$/> is
874 a reference to an integer or the like; see L<perlvar>) chomp() won't
875 remove anything.
876 If VARIABLE is omitted, it chomps C<$_>.  Example:
877
878     while (<>) {
879         chomp;  # avoid \n on last field
880         @array = split(/:/);
881         # ...
882     }
883
884 If VARIABLE is a hash, it chomps the hash's values, but not its keys.
885
886 You can actually chomp anything that's an lvalue, including an assignment:
887
888     chomp($cwd = `pwd`);
889     chomp($answer = <STDIN>);
890
891 If you chomp a list, each element is chomped, and the total number of
892 characters removed is returned.
893
894 Note that parentheses are necessary when you're chomping anything
895 that is not a simple variable.  This is because C<chomp $cwd = `pwd`;>
896 is interpreted as C<(chomp $cwd) = `pwd`;>, rather than as
897 C<chomp( $cwd = `pwd` )> which you might expect.  Similarly,
898 C<chomp $a, $b> is interpreted as C<chomp($a), $b> rather than
899 as C<chomp($a, $b)>.
900
901 =item chop VARIABLE
902 X<chop>
903
904 =item chop( LIST )
905
906 =item chop
907
908 =for Pod::Functions remove the last character from a string
909
910 Chops off the last character of a string and returns the character
911 chopped.  It is much more efficient than C<s/.$//s> because it neither
912 scans nor copies the string.  If VARIABLE is omitted, chops C<$_>.
913 If VARIABLE is a hash, it chops the hash's values, but not its keys.
914
915 You can actually chop anything that's an lvalue, including an assignment.
916
917 If you chop a list, each element is chopped.  Only the value of the
918 last C<chop> is returned.
919
920 Note that C<chop> returns the last character.  To return all but the last
921 character, use C<substr($string, 0, -1)>.
922
923 See also L</chomp>.
924
925 =item chown LIST
926 X<chown> X<owner> X<user> X<group>
927
928 =for Pod::Functions change the ownership on a list of files
929
930 Changes the owner (and group) of a list of files.  The first two
931 elements of the list must be the I<numeric> uid and gid, in that
932 order.  A value of -1 in either position is interpreted by most
933 systems to leave that value unchanged.  Returns the number of files
934 successfully changed.
935
936     $cnt = chown $uid, $gid, 'foo', 'bar';
937     chown $uid, $gid, @filenames;
938
939 On systems that support fchown(2), you may pass filehandles among the
940 files.  On systems that don't support fchown(2), passing filehandles raises
941 an exception.  Filehandles must be passed as globs or glob references to be
942 recognized; barewords are considered filenames.
943
944 Here's an example that looks up nonnumeric uids in the passwd file:
945
946     print "User: ";
947     chomp($user = <STDIN>);
948     print "Files: ";
949     chomp($pattern = <STDIN>);
950
951     ($login,$pass,$uid,$gid) = getpwnam($user)
952         or die "$user not in passwd file";
953
954     @ary = glob($pattern);  # expand filenames
955     chown $uid, $gid, @ary;
956
957 On most systems, you are not allowed to change the ownership of the
958 file unless you're the superuser, although you should be able to change
959 the group to any of your secondary groups.  On insecure systems, these
960 restrictions may be relaxed, but this is not a portable assumption.
961 On POSIX systems, you can detect this condition this way:
962
963     use POSIX qw(sysconf _PC_CHOWN_RESTRICTED);
964     $can_chown_giveaway = not sysconf(_PC_CHOWN_RESTRICTED);
965
966 Portability issues: L<perlport/chmod>.
967
968 =item chr NUMBER
969 X<chr> X<character> X<ASCII> X<Unicode>
970
971 =item chr
972
973 =for Pod::Functions get character this number represents
974
975 Returns the character represented by that NUMBER in the character set.
976 For example, C<chr(65)> is C<"A"> in either ASCII or Unicode, and
977 chr(0x263a) is a Unicode smiley face.  
978
979 Negative values give the Unicode replacement character (chr(0xfffd)),
980 except under the L<bytes> pragma, where the low eight bits of the value
981 (truncated to an integer) are used.
982
983 If NUMBER is omitted, uses C<$_>.
984
985 For the reverse, use L</ord>.
986
987 Note that characters from 128 to 255 (inclusive) are by default
988 internally not encoded as UTF-8 for backward compatibility reasons.
989
990 See L<perlunicode> for more about Unicode.
991
992 =item chroot FILENAME
993 X<chroot> X<root>
994
995 =item chroot
996
997 =for Pod::Functions make directory new root for path lookups
998
999 This function works like the system call by the same name: it makes the
1000 named directory the new root directory for all further pathnames that
1001 begin with a C</> by your process and all its children.  (It doesn't
1002 change your current working directory, which is unaffected.)  For security
1003 reasons, this call is restricted to the superuser.  If FILENAME is
1004 omitted, does a C<chroot> to C<$_>.
1005
1006 Portability issues: L<perlport/chroot>.
1007
1008 =item close FILEHANDLE
1009 X<close>
1010
1011 =item close
1012
1013 =for Pod::Functions close file (or pipe or socket) handle
1014
1015 Closes the file or pipe associated with the filehandle, flushes the IO
1016 buffers, and closes the system file descriptor.  Returns true if those
1017 operations succeed and if no error was reported by any PerlIO
1018 layer.  Closes the currently selected filehandle if the argument is
1019 omitted.
1020
1021 You don't have to close FILEHANDLE if you are immediately going to do
1022 another C<open> on it, because C<open> closes it for you.  (See
1023 L<open|/open FILEHANDLE>.)  However, an explicit C<close> on an input file resets the line
1024 counter (C<$.>), while the implicit close done by C<open> does not.
1025
1026 If the filehandle came from a piped open, C<close> returns false if one of
1027 the other syscalls involved fails or if its program exits with non-zero
1028 status.  If the only problem was that the program exited non-zero, C<$!>
1029 will be set to C<0>.  Closing a pipe also waits for the process executing
1030 on the pipe to exit--in case you wish to look at the output of the pipe
1031 afterwards--and implicitly puts the exit status value of that command into
1032 C<$?> and C<${^CHILD_ERROR_NATIVE}>.
1033
1034 If there are multiple threads running, C<close> on a filehandle from a
1035 piped open returns true without waiting for the child process to terminate,
1036 if the filehandle is still open in another thread.
1037
1038 Closing the read end of a pipe before the process writing to it at the
1039 other end is done writing results in the writer receiving a SIGPIPE.  If
1040 the other end can't handle that, be sure to read all the data before
1041 closing the pipe.
1042
1043 Example:
1044
1045     open(OUTPUT, '|sort >foo')  # pipe to sort
1046         or die "Can't start sort: $!";
1047     #...                        # print stuff to output
1048     close OUTPUT                # wait for sort to finish
1049         or warn $! ? "Error closing sort pipe: $!"
1050                    : "Exit status $? from sort";
1051     open(INPUT, 'foo')          # get sort's results
1052         or die "Can't open 'foo' for input: $!";
1053
1054 FILEHANDLE may be an expression whose value can be used as an indirect
1055 filehandle, usually the real filehandle name or an autovivified handle.
1056
1057 =item closedir DIRHANDLE
1058 X<closedir>
1059
1060 =for Pod::Functions close directory handle
1061
1062 Closes a directory opened by C<opendir> and returns the success of that
1063 system call.
1064
1065 =item connect SOCKET,NAME
1066 X<connect>
1067
1068 =for Pod::Functions connect to a remote socket
1069
1070 Attempts to connect to a remote socket, just like connect(2).
1071 Returns true if it succeeded, false otherwise.  NAME should be a
1072 packed address of the appropriate type for the socket.  See the examples in
1073 L<perlipc/"Sockets: Client/Server Communication">.
1074
1075 =item continue BLOCK
1076 X<continue>
1077
1078 =item continue
1079
1080 =for Pod::Functions optional trailing block in a while or foreach
1081
1082 When followed by a BLOCK, C<continue> is actually a
1083 flow control statement rather than a function.  If
1084 there is a C<continue> BLOCK attached to a BLOCK (typically in a C<while> or
1085 C<foreach>), it is always executed just before the conditional is about to
1086 be evaluated again, just like the third part of a C<for> loop in C.  Thus
1087 it can be used to increment a loop variable, even when the loop has been
1088 continued via the C<next> statement (which is similar to the C C<continue>
1089 statement).
1090
1091 C<last>, C<next>, or C<redo> may appear within a C<continue>
1092 block; C<last> and C<redo> behave as if they had been executed within
1093 the main block.  So will C<next>, but since it will execute a C<continue>
1094 block, it may be more entertaining.
1095
1096     while (EXPR) {
1097         ### redo always comes here
1098         do_something;
1099     } continue {
1100         ### next always comes here
1101         do_something_else;
1102         # then back the top to re-check EXPR
1103     }
1104     ### last always comes here
1105
1106 Omitting the C<continue> section is equivalent to using an
1107 empty one, logically enough, so C<next> goes directly back
1108 to check the condition at the top of the loop.
1109
1110 When there is no BLOCK, C<continue> is a function that
1111 falls through the current C<when> or C<default> block instead of iterating
1112 a dynamically enclosing C<foreach> or exiting a lexically enclosing C<given>.
1113 In Perl 5.14 and earlier, this form of C<continue> was
1114 only available when the C<"switch"> feature was enabled.
1115 See L<feature> and L<perlsyn/"Switch Statements"> for more
1116 information.
1117
1118 =item cos EXPR
1119 X<cos> X<cosine> X<acos> X<arccosine>
1120
1121 =item cos
1122
1123 =for Pod::Functions cosine function
1124
1125 Returns the cosine of EXPR (expressed in radians).  If EXPR is omitted,
1126 takes the cosine of C<$_>.
1127
1128 For the inverse cosine operation, you may use the C<Math::Trig::acos()>
1129 function, or use this relation:
1130
1131     sub acos { atan2( sqrt(1 - $_[0] * $_[0]), $_[0] ) }
1132
1133 =item crypt PLAINTEXT,SALT
1134 X<crypt> X<digest> X<hash> X<salt> X<plaintext> X<password>
1135 X<decrypt> X<cryptography> X<passwd> X<encrypt>
1136
1137 =for Pod::Functions one-way passwd-style encryption
1138
1139 Creates a digest string exactly like the crypt(3) function in the C
1140 library (assuming that you actually have a version there that has not
1141 been extirpated as a potential munition).
1142
1143 crypt() is a one-way hash function.  The PLAINTEXT and SALT are turned
1144 into a short string, called a digest, which is returned.  The same
1145 PLAINTEXT and SALT will always return the same string, but there is no
1146 (known) way to get the original PLAINTEXT from the hash.  Small
1147 changes in the PLAINTEXT or SALT will result in large changes in the
1148 digest.
1149
1150 There is no decrypt function.  This function isn't all that useful for
1151 cryptography (for that, look for F<Crypt> modules on your nearby CPAN
1152 mirror) and the name "crypt" is a bit of a misnomer.  Instead it is
1153 primarily used to check if two pieces of text are the same without
1154 having to transmit or store the text itself.  An example is checking
1155 if a correct password is given.  The digest of the password is stored,
1156 not the password itself.  The user types in a password that is
1157 crypt()'d with the same salt as the stored digest.  If the two digests
1158 match, the password is correct.
1159
1160 When verifying an existing digest string you should use the digest as
1161 the salt (like C<crypt($plain, $digest) eq $digest>).  The SALT used
1162 to create the digest is visible as part of the digest.  This ensures
1163 crypt() will hash the new string with the same salt as the digest.
1164 This allows your code to work with the standard L<crypt|/crypt> and
1165 with more exotic implementations.  In other words, assume
1166 nothing about the returned string itself nor about how many bytes 
1167 of SALT may matter.
1168
1169 Traditionally the result is a string of 13 bytes: two first bytes of
1170 the salt, followed by 11 bytes from the set C<[./0-9A-Za-z]>, and only
1171 the first eight bytes of PLAINTEXT mattered.  But alternative
1172 hashing schemes (like MD5), higher level security schemes (like C2),
1173 and implementations on non-Unix platforms may produce different
1174 strings.
1175
1176 When choosing a new salt create a random two character string whose
1177 characters come from the set C<[./0-9A-Za-z]> (like C<join '', ('.',
1178 '/', 0..9, 'A'..'Z', 'a'..'z')[rand 64, rand 64]>).  This set of
1179 characters is just a recommendation; the characters allowed in
1180 the salt depend solely on your system's crypt library, and Perl can't
1181 restrict what salts C<crypt()> accepts.
1182
1183 Here's an example that makes sure that whoever runs this program knows
1184 their password:
1185
1186     $pwd = (getpwuid($<))[1];
1187
1188     system "stty -echo";
1189     print "Password: ";
1190     chomp($word = <STDIN>);
1191     print "\n";
1192     system "stty echo";
1193
1194     if (crypt($word, $pwd) ne $pwd) {
1195         die "Sorry...\n";
1196     } else {
1197         print "ok\n";
1198     }
1199
1200 Of course, typing in your own password to whoever asks you
1201 for it is unwise.
1202
1203 The L<crypt|/crypt> function is unsuitable for hashing large quantities
1204 of data, not least of all because you can't get the information
1205 back.  Look at the L<Digest> module for more robust algorithms.
1206
1207 If using crypt() on a Unicode string (which I<potentially> has
1208 characters with codepoints above 255), Perl tries to make sense
1209 of the situation by trying to downgrade (a copy of)
1210 the string back to an eight-bit byte string before calling crypt()
1211 (on that copy).  If that works, good.  If not, crypt() dies with
1212 C<Wide character in crypt>.
1213
1214 Portability issues: L<perlport/crypt>.
1215
1216 =item dbmclose HASH
1217 X<dbmclose>
1218
1219 =for Pod::Functions breaks binding on a tied dbm file
1220
1221 [This function has been largely superseded by the C<untie> function.]
1222
1223 Breaks the binding between a DBM file and a hash.
1224
1225 Portability issues: L<perlport/dbmclose>.
1226
1227 =item dbmopen HASH,DBNAME,MASK
1228 X<dbmopen> X<dbm> X<ndbm> X<sdbm> X<gdbm>
1229
1230 =for Pod::Functions create binding on a tied dbm file
1231
1232 [This function has been largely superseded by the
1233 L<tie|/tie VARIABLE,CLASSNAME,LIST> function.]
1234
1235 This binds a dbm(3), ndbm(3), sdbm(3), gdbm(3), or Berkeley DB file to a
1236 hash.  HASH is the name of the hash.  (Unlike normal C<open>, the first
1237 argument is I<not> a filehandle, even though it looks like one).  DBNAME
1238 is the name of the database (without the F<.dir> or F<.pag> extension if
1239 any).  If the database does not exist, it is created with protection
1240 specified by MASK (as modified by the C<umask>).  To prevent creation of
1241 the database if it doesn't exist, you may specify a MODE
1242 of 0, and the function will return a false value if it
1243 can't find an existing database.  If your system supports
1244 only the older DBM functions, you may make only one C<dbmopen> call in your
1245 program.  In older versions of Perl, if your system had neither DBM nor
1246 ndbm, calling C<dbmopen> produced a fatal error; it now falls back to
1247 sdbm(3).
1248
1249 If you don't have write access to the DBM file, you can only read hash
1250 variables, not set them.  If you want to test whether you can write,
1251 either use file tests or try setting a dummy hash entry inside an C<eval> 
1252 to trap the error.
1253
1254 Note that functions such as C<keys> and C<values> may return huge lists
1255 when used on large DBM files.  You may prefer to use the C<each>
1256 function to iterate over large DBM files.  Example:
1257
1258     # print out history file offsets
1259     dbmopen(%HIST,'/usr/lib/news/history',0666);
1260     while (($key,$val) = each %HIST) {
1261         print $key, ' = ', unpack('L',$val), "\n";
1262     }
1263     dbmclose(%HIST);
1264
1265 See also L<AnyDBM_File> for a more general description of the pros and
1266 cons of the various dbm approaches, as well as L<DB_File> for a particularly
1267 rich implementation.
1268
1269 You can control which DBM library you use by loading that library
1270 before you call dbmopen():
1271
1272     use DB_File;
1273     dbmopen(%NS_Hist, "$ENV{HOME}/.netscape/history.db")
1274         or die "Can't open netscape history file: $!";
1275
1276 Portability issues: L<perlport/dbmopen>.
1277
1278 =item defined EXPR
1279 X<defined> X<undef> X<undefined>
1280
1281 =item defined
1282
1283 =for Pod::Functions test whether a value, variable, or function is defined
1284
1285 Returns a Boolean value telling whether EXPR has a value other than
1286 the undefined value C<undef>.  If EXPR is not present, C<$_> is
1287 checked.
1288
1289 Many operations return C<undef> to indicate failure, end of file,
1290 system error, uninitialized variable, and other exceptional
1291 conditions.  This function allows you to distinguish C<undef> from
1292 other values.  (A simple Boolean test will not distinguish among
1293 C<undef>, zero, the empty string, and C<"0">, which are all equally
1294 false.)  Note that since C<undef> is a valid scalar, its presence
1295 doesn't I<necessarily> indicate an exceptional condition: C<pop>
1296 returns C<undef> when its argument is an empty array, I<or> when the
1297 element to return happens to be C<undef>.
1298
1299 You may also use C<defined(&func)> to check whether subroutine C<&func>
1300 has ever been defined.  The return value is unaffected by any forward
1301 declarations of C<&func>.  A subroutine that is not defined
1302 may still be callable: its package may have an C<AUTOLOAD> method that
1303 makes it spring into existence the first time that it is called; see
1304 L<perlsub>.
1305
1306 Use of C<defined> on aggregates (hashes and arrays) is deprecated.  It
1307 used to report whether memory for that aggregate had ever been
1308 allocated.  This behavior may disappear in future versions of Perl.
1309 You should instead use a simple test for size:
1310
1311     if (@an_array) { print "has array elements\n" }
1312     if (%a_hash)   { print "has hash members\n"   }
1313
1314 When used on a hash element, it tells you whether the value is defined,
1315 not whether the key exists in the hash.  Use L</exists> for the latter
1316 purpose.
1317
1318 Examples:
1319
1320     print if defined $switch{D};
1321     print "$val\n" while defined($val = pop(@ary));
1322     die "Can't readlink $sym: $!"
1323         unless defined($value = readlink $sym);
1324     sub foo { defined &$bar ? &$bar(@_) : die "No bar"; }
1325     $debugging = 0 unless defined $debugging;
1326
1327 Note:  Many folks tend to overuse C<defined> and are then surprised to
1328 discover that the number C<0> and C<""> (the zero-length string) are, in fact,
1329 defined values.  For example, if you say
1330
1331     "ab" =~ /a(.*)b/;
1332
1333 The pattern match succeeds and C<$1> is defined, although it
1334 matched "nothing".  It didn't really fail to match anything.  Rather, it
1335 matched something that happened to be zero characters long.  This is all
1336 very above-board and honest.  When a function returns an undefined value,
1337 it's an admission that it couldn't give you an honest answer.  So you
1338 should use C<defined> only when questioning the integrity of what
1339 you're trying to do.  At other times, a simple comparison to C<0> or C<""> is
1340 what you want.
1341
1342 See also L</undef>, L</exists>, L</ref>.
1343
1344 =item delete EXPR
1345 X<delete>
1346
1347 =for Pod::Functions deletes a value from a hash
1348
1349 Given an expression that specifies an element or slice of a hash, C<delete>
1350 deletes the specified elements from that hash so that exists() on that element
1351 no longer returns true.  Setting a hash element to the undefined value does
1352 not remove its key, but deleting it does; see L</exists>.
1353
1354 In list context, returns the value or values deleted, or the last such
1355 element in scalar context.  The return list's length always matches that of
1356 the argument list: deleting non-existent elements returns the undefined value
1357 in their corresponding positions.
1358
1359 delete() may also be used on arrays and array slices, but its behavior is less
1360 straightforward.  Although exists() will return false for deleted entries,
1361 deleting array elements never changes indices of existing values; use shift()
1362 or splice() for that.  However, if all deleted elements fall at the end of an
1363 array, the array's size shrinks to the position of the highest element that
1364 still tests true for exists(), or to 0 if none do.
1365
1366 B<WARNING:> Calling delete on array values is deprecated and likely to
1367 be removed in a future version of Perl.
1368
1369 Deleting from C<%ENV> modifies the environment.  Deleting from a hash tied to
1370 a DBM file deletes the entry from the DBM file.  Deleting from a C<tied> hash
1371 or array may not necessarily return anything; it depends on the implementation
1372 of the C<tied> package's DELETE method, which may do whatever it pleases.
1373
1374 The C<delete local EXPR> construct localizes the deletion to the current
1375 block at run time.  Until the block exits, elements locally deleted
1376 temporarily no longer exist.  See L<perlsub/"Localized deletion of elements
1377 of composite types">.
1378
1379     %hash = (foo => 11, bar => 22, baz => 33);
1380     $scalar = delete $hash{foo};             # $scalar is 11
1381     $scalar = delete @hash{qw(foo bar)};     # $scalar is 22
1382     @array  = delete @hash{qw(foo bar baz)}; # @array  is (undef,undef,33)
1383
1384 The following (inefficiently) deletes all the values of %HASH and @ARRAY:
1385
1386     foreach $key (keys %HASH) {
1387         delete $HASH{$key};
1388     }
1389
1390     foreach $index (0 .. $#ARRAY) {
1391         delete $ARRAY[$index];
1392     }
1393
1394 And so do these:
1395
1396     delete @HASH{keys %HASH};
1397
1398     delete @ARRAY[0 .. $#ARRAY];
1399
1400 But both are slower than assigning the empty list
1401 or undefining %HASH or @ARRAY, which is the customary 
1402 way to empty out an aggregate:
1403
1404     %HASH = ();     # completely empty %HASH
1405     undef %HASH;    # forget %HASH ever existed
1406
1407     @ARRAY = ();    # completely empty @ARRAY
1408     undef @ARRAY;   # forget @ARRAY ever existed
1409
1410 The EXPR can be arbitrarily complicated provided its
1411 final operation is an element or slice of an aggregate:
1412
1413     delete $ref->[$x][$y]{$key};
1414     delete @{$ref->[$x][$y]}{$key1, $key2, @morekeys};
1415
1416     delete $ref->[$x][$y][$index];
1417     delete @{$ref->[$x][$y]}[$index1, $index2, @moreindices];
1418
1419 =item die LIST
1420 X<die> X<throw> X<exception> X<raise> X<$@> X<abort>
1421
1422 =for Pod::Functions raise an exception or bail out
1423
1424 C<die> raises an exception.  Inside an C<eval> the error message is stuffed
1425 into C<$@> and the C<eval> is terminated with the undefined value.
1426 If the exception is outside of all enclosing C<eval>s, then the uncaught
1427 exception prints LIST to C<STDERR> and exits with a non-zero value.  If you
1428 need to exit the process with a specific exit code, see L</exit>.
1429
1430 Equivalent examples:
1431
1432     die "Can't cd to spool: $!\n" unless chdir '/usr/spool/news';
1433     chdir '/usr/spool/news' or die "Can't cd to spool: $!\n"
1434
1435 If the last element of LIST does not end in a newline, the current
1436 script line number and input line number (if any) are also printed,
1437 and a newline is supplied.  Note that the "input line number" (also
1438 known as "chunk") is subject to whatever notion of "line" happens to
1439 be currently in effect, and is also available as the special variable
1440 C<$.>.  See L<perlvar/"$/"> and L<perlvar/"$.">.
1441
1442 Hint: sometimes appending C<", stopped"> to your message will cause it
1443 to make better sense when the string C<"at foo line 123"> is appended.
1444 Suppose you are running script "canasta".
1445
1446     die "/etc/games is no good";
1447     die "/etc/games is no good, stopped";
1448
1449 produce, respectively
1450
1451     /etc/games is no good at canasta line 123.
1452     /etc/games is no good, stopped at canasta line 123.
1453
1454 If the output is empty and C<$@> already contains a value (typically from a
1455 previous eval) that value is reused after appending C<"\t...propagated">.
1456 This is useful for propagating exceptions:
1457
1458     eval { ... };
1459     die unless $@ =~ /Expected exception/;
1460
1461 If the output is empty and C<$@> contains an object reference that has a
1462 C<PROPAGATE> method, that method will be called with additional file
1463 and line number parameters.  The return value replaces the value in
1464 C<$@>;  i.e., as if C<< $@ = eval { $@->PROPAGATE(__FILE__, __LINE__) }; >>
1465 were called.
1466
1467 If C<$@> is empty then the string C<"Died"> is used.
1468
1469 If an uncaught exception results in interpreter exit, the exit code is
1470 determined from the values of C<$!> and C<$?> with this pseudocode:
1471
1472     exit $! if $!;              # errno
1473     exit $? >> 8 if $? >> 8;    # child exit status
1474     exit 255;                   # last resort
1475
1476 The intent is to squeeze as much possible information about the likely cause
1477 into the limited space of the system exit
1478 code.  However, as C<$!> is the value
1479 of C's C<errno>, which can be set by any system call, this means that the value
1480 of the exit code used by C<die> can be non-predictable, so should not be relied
1481 upon, other than to be non-zero.
1482
1483 You can also call C<die> with a reference argument, and if this is trapped
1484 within an C<eval>, C<$@> contains that reference.  This permits more
1485 elaborate exception handling using objects that maintain arbitrary state
1486 about the exception.  Such a scheme is sometimes preferable to matching
1487 particular string values of C<$@> with regular expressions.  Because C<$@> 
1488 is a global variable and C<eval> may be used within object implementations,
1489 be careful that analyzing the error object doesn't replace the reference in
1490 the global variable.  It's easiest to make a local copy of the reference
1491 before any manipulations.  Here's an example:
1492
1493     use Scalar::Util "blessed";
1494
1495     eval { ... ; die Some::Module::Exception->new( FOO => "bar" ) };
1496     if (my $ev_err = $@) {
1497         if (blessed($ev_err) && $ev_err->isa("Some::Module::Exception")) {
1498             # handle Some::Module::Exception
1499         }
1500         else {
1501             # handle all other possible exceptions
1502         }
1503     }
1504
1505 Because Perl stringifies uncaught exception messages before display,
1506 you'll probably want to overload stringification operations on
1507 exception objects.  See L<overload> for details about that.
1508
1509 You can arrange for a callback to be run just before the C<die>
1510 does its deed, by setting the C<$SIG{__DIE__}> hook.  The associated
1511 handler is called with the error text and can change the error
1512 message, if it sees fit, by calling C<die> again.  See
1513 L<perlvar/%SIG> for details on setting C<%SIG> entries, and
1514 L<"eval BLOCK"> for some examples.  Although this feature was 
1515 to be run only right before your program was to exit, this is not
1516 currently so: the C<$SIG{__DIE__}> hook is currently called
1517 even inside eval()ed blocks/strings!  If one wants the hook to do
1518 nothing in such situations, put
1519
1520     die @_ if $^S;
1521
1522 as the first line of the handler (see L<perlvar/$^S>).  Because
1523 this promotes strange action at a distance, this counterintuitive
1524 behavior may be fixed in a future release.
1525
1526 See also exit(), warn(), and the Carp module.
1527
1528 =item do BLOCK
1529 X<do> X<block>
1530
1531 =for Pod::Functions turn a BLOCK into a TERM
1532
1533 Not really a function.  Returns the value of the last command in the
1534 sequence of commands indicated by BLOCK.  When modified by the C<while> or
1535 C<until> loop modifier, executes the BLOCK once before testing the loop
1536 condition.  (On other statements the loop modifiers test the conditional
1537 first.)
1538
1539 C<do BLOCK> does I<not> count as a loop, so the loop control statements
1540 C<next>, C<last>, or C<redo> cannot be used to leave or restart the block.
1541 See L<perlsyn> for alternative strategies.
1542
1543 =item do SUBROUTINE(LIST)
1544 X<do>
1545
1546 This form of subroutine call is deprecated.  SUBROUTINE can be a bareword,
1547 a scalar variable or a subroutine beginning with C<&>.
1548
1549 =item do EXPR
1550 X<do>
1551
1552 Uses the value of EXPR as a filename and executes the contents of the
1553 file as a Perl script.
1554
1555     do 'stat.pl';
1556
1557 is just like
1558
1559     eval `cat stat.pl`;
1560
1561 except that it's more efficient and concise, keeps track of the current
1562 filename for error messages, searches the C<@INC> directories, and updates
1563 C<%INC> if the file is found.  See L<perlvar/@INC> and L<perlvar/%INC> for
1564 these variables.  It also differs in that code evaluated with C<do FILENAME>
1565 cannot see lexicals in the enclosing scope; C<eval STRING> does.  It's the
1566 same, however, in that it does reparse the file every time you call it,
1567 so you probably don't want to do this inside a loop.
1568
1569 If C<do> can read the file but cannot compile it, it returns C<undef> and sets
1570 an error message in C<$@>.  If C<do> cannot read the file, it returns undef
1571 and sets C<$!> to the error.  Always check C<$@> first, as compilation
1572 could fail in a way that also sets C<$!>.  If the file is successfully
1573 compiled, C<do> returns the value of the last expression evaluated.
1574
1575 Inclusion of library modules is better done with the
1576 C<use> and C<require> operators, which also do automatic error checking
1577 and raise an exception if there's a problem.
1578
1579 You might like to use C<do> to read in a program configuration
1580 file.  Manual error checking can be done this way:
1581
1582     # read in config files: system first, then user
1583     for $file ("/share/prog/defaults.rc",
1584                "$ENV{HOME}/.someprogrc")
1585     {
1586         unless ($return = do $file) {
1587             warn "couldn't parse $file: $@" if $@;
1588             warn "couldn't do $file: $!"    unless defined $return;
1589             warn "couldn't run $file"       unless $return;
1590         }
1591     }
1592
1593 =item dump LABEL
1594 X<dump> X<core> X<undump>
1595
1596 =item dump
1597
1598 =for Pod::Functions create an immediate core dump
1599
1600 This function causes an immediate core dump.  See also the B<-u>
1601 command-line switch in L<perlrun>, which does the same thing.
1602 Primarily this is so that you can use the B<undump> program (not
1603 supplied) to turn your core dump into an executable binary after
1604 having initialized all your variables at the beginning of the
1605 program.  When the new binary is executed it will begin by executing
1606 a C<goto LABEL> (with all the restrictions that C<goto> suffers).
1607 Think of it as a goto with an intervening core dump and reincarnation.
1608 If C<LABEL> is omitted, restarts the program from the top.
1609
1610 B<WARNING>: Any files opened at the time of the dump will I<not>
1611 be open any more when the program is reincarnated, with possible
1612 resulting confusion by Perl.
1613
1614 This function is now largely obsolete, mostly because it's very hard to
1615 convert a core file into an executable.  That's why you should now invoke
1616 it as C<CORE::dump()>, if you don't want to be warned against a possible
1617 typo.
1618
1619 Portability issues: L<perlport/dump>.
1620
1621 =item each HASH
1622 X<each> X<hash, iterator>
1623
1624 =item each ARRAY
1625 X<array, iterator>
1626
1627 =item each EXPR
1628
1629 =for Pod::Functions retrieve the next key/value pair from a hash
1630
1631 When called on a hash in list context, returns a 2-element list
1632 consisting of the key and value for the next element of a hash.  In Perl
1633 5.12 and later only, it will also return the index and value for the next
1634 element of an array so that you can iterate over it; older Perls consider
1635 this a syntax error.  When called in scalar context, returns only the key
1636 (not the value) in a hash, or the index in an array.
1637
1638 Hash entries are returned in an apparently random order.  The actual random
1639 order is subject to change in future versions of Perl, but it is
1640 guaranteed to be in the same order as either the C<keys> or C<values>
1641 function would produce on the same (unmodified) hash.  Since Perl
1642 5.8.2 the ordering can be different even between different runs of Perl
1643 for security reasons (see L<perlsec/"Algorithmic Complexity Attacks">).
1644
1645 After C<each> has returned all entries from the hash or array, the next
1646 call to C<each> returns the empty list in list context and C<undef> in
1647 scalar context; the next call following I<that> one restarts iteration.
1648 Each hash or array has its own internal iterator, accessed by C<each>,
1649 C<keys>, and C<values>.  The iterator is implicitly reset when C<each> has
1650 reached the end as just described; it can be explicitly reset by calling
1651 C<keys> or C<values> on the hash or array.  If you add or delete a hash's
1652 elements while iterating over it, entries may be skipped or duplicated--so
1653 don't do that.  Exception: In the current implementation, it is always safe
1654 to delete the item most recently returned by C<each()>, so the following
1655 code works properly:
1656
1657         while (($key, $value) = each %hash) {
1658           print $key, "\n";
1659           delete $hash{$key};   # This is safe
1660         }
1661
1662 This prints out your environment like the printenv(1) program,
1663 but in a different order:
1664
1665     while (($key,$value) = each %ENV) {
1666         print "$key=$value\n";
1667     }
1668
1669 Starting with Perl 5.14, C<each> can take a scalar EXPR, which must hold
1670 reference to an unblessed hash or array.  The argument will be dereferenced
1671 automatically.  This aspect of C<each> is considered highly experimental.
1672 The exact behaviour may change in a future version of Perl.
1673
1674     while (($key,$value) = each $hashref) { ... }
1675
1676 To avoid confusing would-be users of your code who are running earlier
1677 versions of Perl with mysterious syntax errors, put this sort of thing at
1678 the top of your file to signal that your code will work I<only> on Perls of
1679 a recent vintage:
1680
1681     use 5.012;  # so keys/values/each work on arrays
1682     use 5.014;  # so keys/values/each work on scalars (experimental)
1683
1684 See also C<keys>, C<values>, and C<sort>.
1685
1686 =item eof FILEHANDLE
1687 X<eof>
1688 X<end of file>
1689 X<end-of-file>
1690
1691 =item eof ()
1692
1693 =item eof
1694
1695 =for Pod::Functions test a filehandle for its end
1696
1697 Returns 1 if the next read on FILEHANDLE will return end of file I<or> if
1698 FILEHANDLE is not open.  FILEHANDLE may be an expression whose value
1699 gives the real filehandle.  (Note that this function actually
1700 reads a character and then C<ungetc>s it, so isn't useful in an
1701 interactive context.)  Do not read from a terminal file (or call
1702 C<eof(FILEHANDLE)> on it) after end-of-file is reached.  File types such
1703 as terminals may lose the end-of-file condition if you do.
1704
1705 An C<eof> without an argument uses the last file read.  Using C<eof()>
1706 with empty parentheses is different.  It refers to the pseudo file
1707 formed from the files listed on the command line and accessed via the
1708 C<< <> >> operator.  Since C<< <> >> isn't explicitly opened,
1709 as a normal filehandle is, an C<eof()> before C<< <> >> has been
1710 used will cause C<@ARGV> to be examined to determine if input is
1711 available.   Similarly, an C<eof()> after C<< <> >> has returned
1712 end-of-file will assume you are processing another C<@ARGV> list,
1713 and if you haven't set C<@ARGV>, will read input from C<STDIN>;
1714 see L<perlop/"I/O Operators">.
1715
1716 In a C<< while (<>) >> loop, C<eof> or C<eof(ARGV)> can be used to
1717 detect the end of each file, whereas C<eof()> will detect the end 
1718 of the very last file only.  Examples:
1719
1720     # reset line numbering on each input file
1721     while (<>) {
1722         next if /^\s*#/;  # skip comments
1723         print "$.\t$_";
1724     } continue {
1725         close ARGV if eof;  # Not eof()!
1726     }
1727
1728     # insert dashes just before last line of last file
1729     while (<>) {
1730         if (eof()) {  # check for end of last file
1731             print "--------------\n";
1732         }
1733         print;
1734         last if eof();      # needed if we're reading from a terminal
1735     }
1736
1737 Practical hint: you almost never need to use C<eof> in Perl, because the
1738 input operators typically return C<undef> when they run out of data or 
1739 encounter an error.
1740
1741 =item eval EXPR
1742 X<eval> X<try> X<catch> X<evaluate> X<parse> X<execute>
1743 X<error, handling> X<exception, handling>
1744
1745 =item eval BLOCK
1746
1747 =item eval
1748
1749 =for Pod::Functions catch exceptions or compile and run code
1750
1751 In the first form, the return value of EXPR is parsed and executed as if it
1752 were a little Perl program.  The value of the expression (which is itself
1753 determined within scalar context) is first parsed, and if there were no
1754 errors, executed as a block within the lexical context of the current Perl
1755 program.  This means, that in particular, any outer lexical variables are
1756 visible to it, and any package variable settings or subroutine and format
1757 definitions remain afterwards.
1758
1759 Note that the value is parsed every time the C<eval> executes.
1760 If EXPR is omitted, evaluates C<$_>.  This form is typically used to
1761 delay parsing and subsequent execution of the text of EXPR until run time.
1762
1763 If the C<unicode_eval> feature is enabled (which is the default under a
1764 C<use 5.16> or higher declaration), EXPR or C<$_> is treated as a string of
1765 characters, so C<use utf8> declarations have no effect, and source filters
1766 are forbidden.  In the absence of the C<unicode_eval> feature, the string
1767 will sometimes be treated as characters and sometimes as bytes, depending
1768 on the internal encoding, and source filters activated within the C<eval>
1769 exhibit the erratic, but historical, behaviour of affecting some outer file
1770 scope that is still compiling.  See also the L</evalbytes> keyword, which
1771 always treats its input as a byte stream and works properly with source
1772 filters, and the L<feature> pragma.
1773
1774 In the second form, the code within the BLOCK is parsed only once--at the
1775 same time the code surrounding the C<eval> itself was parsed--and executed
1776 within the context of the current Perl program.  This form is typically
1777 used to trap exceptions more efficiently than the first (see below), while
1778 also providing the benefit of checking the code within BLOCK at compile
1779 time.
1780
1781 The final semicolon, if any, may be omitted from the value of EXPR or within
1782 the BLOCK.
1783
1784 In both forms, the value returned is the value of the last expression
1785 evaluated inside the mini-program; a return statement may be also used, just
1786 as with subroutines.  The expression providing the return value is evaluated
1787 in void, scalar, or list context, depending on the context of the C<eval> 
1788 itself.  See L</wantarray> for more on how the evaluation context can be 
1789 determined.
1790
1791 If there is a syntax error or runtime error, or a C<die> statement is
1792 executed, C<eval> returns C<undef> in scalar context
1793 or an empty list in list context, and C<$@> is set to the error
1794 message.  (Prior to 5.16, a bug caused C<undef> to be returned
1795 in list context for syntax errors, but not for runtime errors.)
1796 If there was no error, C<$@> is set to the empty string.  A
1797 control flow operator like C<last> or C<goto> can bypass the setting of
1798 C<$@>.  Beware that using C<eval> neither silences Perl from printing
1799 warnings to STDERR, nor does it stuff the text of warning messages into C<$@>.
1800 To do either of those, you have to use the C<$SIG{__WARN__}> facility, or
1801 turn off warnings inside the BLOCK or EXPR using S<C<no warnings 'all'>>.
1802 See L</warn>, L<perlvar>, L<warnings> and L<perllexwarn>.
1803
1804 Note that, because C<eval> traps otherwise-fatal errors, it is useful for
1805 determining whether a particular feature (such as C<socket> or C<symlink>)
1806 is implemented.  It is also Perl's exception-trapping mechanism, where
1807 the die operator is used to raise exceptions.
1808
1809 If you want to trap errors when loading an XS module, some problems with
1810 the binary interface (such as Perl version skew) may be fatal even with
1811 C<eval> unless C<$ENV{PERL_DL_NONLAZY}> is set.  See L<perlrun>.
1812
1813 If the code to be executed doesn't vary, you may use the eval-BLOCK
1814 form to trap run-time errors without incurring the penalty of
1815 recompiling each time.  The error, if any, is still returned in C<$@>.
1816 Examples:
1817
1818     # make divide-by-zero nonfatal
1819     eval { $answer = $a / $b; }; warn $@ if $@;
1820
1821     # same thing, but less efficient
1822     eval '$answer = $a / $b'; warn $@ if $@;
1823
1824     # a compile-time error
1825     eval { $answer = }; # WRONG
1826
1827     # a run-time error
1828     eval '$answer =';   # sets $@
1829
1830 Using the C<eval{}> form as an exception trap in libraries does have some
1831 issues.  Due to the current arguably broken state of C<__DIE__> hooks, you
1832 may wish not to trigger any C<__DIE__> hooks that user code may have installed.
1833 You can use the C<local $SIG{__DIE__}> construct for this purpose,
1834 as this example shows:
1835
1836     # a private exception trap for divide-by-zero
1837     eval { local $SIG{'__DIE__'}; $answer = $a / $b; };
1838     warn $@ if $@;
1839
1840 This is especially significant, given that C<__DIE__> hooks can call
1841 C<die> again, which has the effect of changing their error messages:
1842
1843     # __DIE__ hooks may modify error messages
1844     {
1845        local $SIG{'__DIE__'} =
1846               sub { (my $x = $_[0]) =~ s/foo/bar/g; die $x };
1847        eval { die "foo lives here" };
1848        print $@ if $@;                # prints "bar lives here"
1849     }
1850
1851 Because this promotes action at a distance, this counterintuitive behavior
1852 may be fixed in a future release.
1853
1854 With an C<eval>, you should be especially careful to remember what's
1855 being looked at when:
1856
1857     eval $x;        # CASE 1
1858     eval "$x";      # CASE 2
1859
1860     eval '$x';      # CASE 3
1861     eval { $x };    # CASE 4
1862
1863     eval "\$$x++";  # CASE 5
1864     $$x++;          # CASE 6
1865
1866 Cases 1 and 2 above behave identically: they run the code contained in
1867 the variable $x.  (Although case 2 has misleading double quotes making
1868 the reader wonder what else might be happening (nothing is).)  Cases 3
1869 and 4 likewise behave in the same way: they run the code C<'$x'>, which
1870 does nothing but return the value of $x.  (Case 4 is preferred for
1871 purely visual reasons, but it also has the advantage of compiling at
1872 compile-time instead of at run-time.)  Case 5 is a place where
1873 normally you I<would> like to use double quotes, except that in this
1874 particular situation, you can just use symbolic references instead, as
1875 in case 6.
1876
1877 Before Perl 5.14, the assignment to C<$@> occurred before restoration 
1878 of localized variables, which means that for your code to run on older
1879 versions, a temporary is required if you want to mask some but not all
1880 errors:
1881
1882     # alter $@ on nefarious repugnancy only
1883     {
1884        my $e;
1885        {
1886           local $@; # protect existing $@
1887           eval { test_repugnancy() };
1888           # $@ =~ /nefarious/ and die $@; # Perl 5.14 and higher only
1889           $@ =~ /nefarious/ and $e = $@;
1890        }
1891        die $e if defined $e
1892     }
1893
1894 C<eval BLOCK> does I<not> count as a loop, so the loop control statements
1895 C<next>, C<last>, or C<redo> cannot be used to leave or restart the block.
1896
1897 An C<eval ''> executed within the C<DB> package doesn't see the usual
1898 surrounding lexical scope, but rather the scope of the first non-DB piece
1899 of code that called it.  You don't normally need to worry about this unless
1900 you are writing a Perl debugger.
1901
1902 =item evalbytes EXPR
1903 X<evalbytes>
1904
1905 =item evalbytes
1906
1907 =for Pod::Functions +evalbytes similar to string eval, but intend to parse a bytestream
1908
1909 This function is like L</eval> with a string argument, except it always
1910 parses its argument, or C<$_> if EXPR is omitted, as a string of bytes.  A
1911 string containing characters whose ordinal value exceeds 255 results in an
1912 error.  Source filters activated within the evaluated code apply to the
1913 code itself.
1914
1915 This function is only available under the C<evalbytes> feature, a
1916 C<use v5.16> (or higher) declaration, or with a C<CORE::> prefix.  See
1917 L<feature> for more information.
1918
1919 =item exec LIST
1920 X<exec> X<execute>
1921
1922 =item exec PROGRAM LIST
1923
1924 =for Pod::Functions abandon this program to run another
1925
1926 The C<exec> function executes a system command I<and never returns>;
1927 use C<system> instead of C<exec> if you want it to return.  It fails and
1928 returns false only if the command does not exist I<and> it is executed
1929 directly instead of via your system's command shell (see below).
1930
1931 Since it's a common mistake to use C<exec> instead of C<system>, Perl
1932 warns you if C<exec> is called in void context and if there is a following
1933 statement that isn't C<die>, C<warn>, or C<exit> (if C<-w> is set--but
1934 you always do that, right?).  If you I<really> want to follow an C<exec>
1935 with some other statement, you can use one of these styles to avoid the warning:
1936
1937     exec ('foo')   or print STDERR "couldn't exec foo: $!";
1938     { exec ('foo') }; print STDERR "couldn't exec foo: $!";
1939
1940 If there is more than one argument in LIST, or if LIST is an array
1941 with more than one value, calls execvp(3) with the arguments in LIST.
1942 If there is only one scalar argument or an array with one element in it,
1943 the argument is checked for shell metacharacters, and if there are any,
1944 the entire argument is passed to the system's command shell for parsing
1945 (this is C</bin/sh -c> on Unix platforms, but varies on other platforms).
1946 If there are no shell metacharacters in the argument, it is split into
1947 words and passed directly to C<execvp>, which is more efficient.
1948 Examples:
1949
1950     exec '/bin/echo', 'Your arguments are: ', @ARGV;
1951     exec "sort $outfile | uniq";
1952
1953 If you don't really want to execute the first argument, but want to lie
1954 to the program you are executing about its own name, you can specify
1955 the program you actually want to run as an "indirect object" (without a
1956 comma) in front of the LIST.  (This always forces interpretation of the
1957 LIST as a multivalued list, even if there is only a single scalar in
1958 the list.)  Example:
1959
1960     $shell = '/bin/csh';
1961     exec $shell '-sh';    # pretend it's a login shell
1962
1963 or, more directly,
1964
1965     exec {'/bin/csh'} '-sh';  # pretend it's a login shell
1966
1967 When the arguments get executed via the system shell, results are
1968 subject to its quirks and capabilities.  See L<perlop/"`STRING`">
1969 for details.
1970
1971 Using an indirect object with C<exec> or C<system> is also more
1972 secure.  This usage (which also works fine with system()) forces
1973 interpretation of the arguments as a multivalued list, even if the
1974 list had just one argument.  That way you're safe from the shell
1975 expanding wildcards or splitting up words with whitespace in them.
1976
1977     @args = ( "echo surprise" );
1978
1979     exec @args;               # subject to shell escapes
1980                                 # if @args == 1
1981     exec { $args[0] } @args;  # safe even with one-arg list
1982
1983 The first version, the one without the indirect object, ran the I<echo>
1984 program, passing it C<"surprise"> an argument.  The second version didn't;
1985 it tried to run a program named I<"echo surprise">, didn't find it, and set
1986 C<$?> to a non-zero value indicating failure.
1987
1988 Beginning with v5.6.0, Perl attempts to flush all files opened for
1989 output before the exec, but this may not be supported on some platforms
1990 (see L<perlport>).  To be safe, you may need to set C<$|> ($AUTOFLUSH
1991 in English) or call the C<autoflush()> method of C<IO::Handle> on any
1992 open handles to avoid lost output.
1993
1994 Note that C<exec> will not call your C<END> blocks, nor will it invoke
1995 C<DESTROY> methods on your objects.
1996
1997 Portability issues: L<perlport/exec>.
1998
1999 =item exists EXPR
2000 X<exists> X<autovivification>
2001
2002 =for Pod::Functions test whether a hash key is present
2003
2004 Given an expression that specifies an element of a hash, returns true if the
2005 specified element in the hash has ever been initialized, even if the
2006 corresponding value is undefined.
2007
2008     print "Exists\n"    if exists $hash{$key};
2009     print "Defined\n"   if defined $hash{$key};
2010     print "True\n"      if $hash{$key};
2011
2012 exists may also be called on array elements, but its behavior is much less
2013 obvious and is strongly tied to the use of L</delete> on arrays.  B<Be aware>
2014 that calling exists on array values is deprecated and likely to be removed in
2015 a future version of Perl.
2016
2017     print "Exists\n"    if exists $array[$index];
2018     print "Defined\n"   if defined $array[$index];
2019     print "True\n"      if $array[$index];
2020
2021 A hash or array element can be true only if it's defined and defined only if
2022 it exists, but the reverse doesn't necessarily hold true.
2023
2024 Given an expression that specifies the name of a subroutine,
2025 returns true if the specified subroutine has ever been declared, even
2026 if it is undefined.  Mentioning a subroutine name for exists or defined
2027 does not count as declaring it.  Note that a subroutine that does not
2028 exist may still be callable: its package may have an C<AUTOLOAD>
2029 method that makes it spring into existence the first time that it is
2030 called; see L<perlsub>.
2031
2032     print "Exists\n"  if exists &subroutine;
2033     print "Defined\n" if defined &subroutine;
2034
2035 Note that the EXPR can be arbitrarily complicated as long as the final
2036 operation is a hash or array key lookup or subroutine name:
2037
2038     if (exists $ref->{A}->{B}->{$key})  { }
2039     if (exists $hash{A}{B}{$key})       { }
2040
2041     if (exists $ref->{A}->{B}->[$ix])   { }
2042     if (exists $hash{A}{B}[$ix])        { }
2043
2044     if (exists &{$ref->{A}{B}{$key}})   { }
2045
2046 Although the most deeply nested array or hash element will not spring into
2047 existence just because its existence was tested, any intervening ones will.
2048 Thus C<< $ref->{"A"} >> and C<< $ref->{"A"}->{"B"} >> will spring
2049 into existence due to the existence test for the $key element above.
2050 This happens anywhere the arrow operator is used, including even here:
2051
2052     undef $ref;
2053     if (exists $ref->{"Some key"})    { }
2054     print $ref;  # prints HASH(0x80d3d5c)
2055
2056 This surprising autovivification in what does not at first--or even
2057 second--glance appear to be an lvalue context may be fixed in a future
2058 release.
2059
2060 Use of a subroutine call, rather than a subroutine name, as an argument
2061 to exists() is an error.
2062
2063     exists &sub;    # OK
2064     exists &sub();  # Error
2065
2066 =item exit EXPR
2067 X<exit> X<terminate> X<abort>
2068
2069 =item exit
2070
2071 =for Pod::Functions terminate this program
2072
2073 Evaluates EXPR and exits immediately with that value.    Example:
2074
2075     $ans = <STDIN>;
2076     exit 0 if $ans =~ /^[Xx]/;
2077
2078 See also C<die>.  If EXPR is omitted, exits with C<0> status.  The only
2079 universally recognized values for EXPR are C<0> for success and C<1>
2080 for error; other values are subject to interpretation depending on the
2081 environment in which the Perl program is running.  For example, exiting
2082 69 (EX_UNAVAILABLE) from a I<sendmail> incoming-mail filter will cause
2083 the mailer to return the item undelivered, but that's not true everywhere.
2084
2085 Don't use C<exit> to abort a subroutine if there's any chance that
2086 someone might want to trap whatever error happened.  Use C<die> instead,
2087 which can be trapped by an C<eval>.
2088
2089 The exit() function does not always exit immediately.  It calls any
2090 defined C<END> routines first, but these C<END> routines may not
2091 themselves abort the exit.  Likewise any object destructors that need to
2092 be called are called before the real exit.  C<END> routines and destructors
2093 can change the exit status by modifying C<$?>.  If this is a problem, you
2094 can call C<POSIX::_exit($status)> to avoid END and destructor processing.
2095 See L<perlmod> for details.
2096
2097 Portability issues: L<perlport/exit>.
2098
2099 =item exp EXPR
2100 X<exp> X<exponential> X<antilog> X<antilogarithm> X<e>
2101
2102 =item exp
2103
2104 =for Pod::Functions raise I<e> to a power
2105
2106 Returns I<e> (the natural logarithm base) to the power of EXPR.
2107 If EXPR is omitted, gives C<exp($_)>.
2108
2109 =item fc EXPR
2110 X<fc> X<foldcase> X<casefold> X<fold-case> X<case-fold>
2111
2112 =item fc
2113
2114 =for Pod::Functions +fc return casefolded version of a string
2115
2116 Returns the casefolded version of EXPR.  This is the internal function
2117 implementing the C<\F> escape in double-quoted strings.
2118
2119 Casefolding is the process of mapping strings to a form where case
2120 differences are erased; comparing two strings in their casefolded
2121 form is effectively a way of asking if two strings are equal,
2122 regardless of case.
2123
2124 Roughly, if you ever found yourself writing this
2125
2126     lc($this) eq lc($that)  # Wrong!
2127         # or
2128     uc($this) eq uc($that)  # Also wrong!
2129         # or
2130     $this =~ /\Q$that/i     # Right!
2131
2132 Now you can write
2133
2134     fc($this) eq fc($that)
2135
2136 And get the correct results.
2137
2138 Perl only implements the full form of casefolding.
2139 For further information on casefolding, refer to
2140 the Unicode Standard, specifically sections 3.13 C<Default Case Operations>,
2141 4.2 C<Case-Normative>, and 5.18 C<Case Mappings>,
2142 available at L<http://www.unicode.org/versions/latest/>, as well as the
2143 Case Charts available at L<http://www.unicode.org/charts/case/>.
2144
2145 If EXPR is omitted, uses C<$_>.
2146
2147 This function behaves the same way under various pragma, such as in a locale,
2148 as L</lc> does.
2149
2150 While the Unicode Standard defines two additional forms of casefolding,
2151 one for Turkic languages and one that never maps one character into multiple
2152 characters, these are not provided by the Perl core; However, the CPAN module
2153 C<Unicode::Casing> may be used to provide an implementation.
2154
2155 This keyword is available only when the C<"fc"> feature is enabled,
2156 or when prefixed with C<CORE::>; See L<feature>. Alternately,
2157 include a C<use v5.16> or later to the current scope.
2158
2159 =item fcntl FILEHANDLE,FUNCTION,SCALAR
2160 X<fcntl>
2161
2162 =for Pod::Functions file control system call
2163
2164 Implements the fcntl(2) function.  You'll probably have to say
2165
2166     use Fcntl;
2167
2168 first to get the correct constant definitions.  Argument processing and
2169 value returned work just like C<ioctl> below.
2170 For example:
2171
2172     use Fcntl;
2173     fcntl($filehandle, F_GETFL, $packed_return_buffer)
2174         or die "can't fcntl F_GETFL: $!";
2175
2176 You don't have to check for C<defined> on the return from C<fcntl>.
2177 Like C<ioctl>, it maps a C<0> return from the system call into
2178 C<"0 but true"> in Perl.  This string is true in boolean context and C<0>
2179 in numeric context.  It is also exempt from the normal B<-w> warnings
2180 on improper numeric conversions.
2181
2182 Note that C<fcntl> raises an exception if used on a machine that
2183 doesn't implement fcntl(2).  See the Fcntl module or your fcntl(2)
2184 manpage to learn what functions are available on your system.
2185
2186 Here's an example of setting a filehandle named C<REMOTE> to be
2187 non-blocking at the system level.  You'll have to negotiate C<$|>
2188 on your own, though.
2189
2190     use Fcntl qw(F_GETFL F_SETFL O_NONBLOCK);
2191
2192     $flags = fcntl(REMOTE, F_GETFL, 0)
2193                 or die "Can't get flags for the socket: $!\n";
2194
2195     $flags = fcntl(REMOTE, F_SETFL, $flags | O_NONBLOCK)
2196                 or die "Can't set flags for the socket: $!\n";
2197
2198 Portability issues: L<perlport/fcntl>.
2199
2200 =item __FILE__
2201 X<__FILE__>
2202
2203 =for Pod::Functions the name of the current source file
2204
2205 A special token that returns the name of the file in which it occurs.
2206
2207 =item fileno FILEHANDLE
2208 X<fileno>
2209
2210 =for Pod::Functions return file descriptor from filehandle
2211
2212 Returns the file descriptor for a filehandle, or undefined if the
2213 filehandle is not open.  If there is no real file descriptor at the OS
2214 level, as can happen with filehandles connected to memory objects via
2215 C<open> with a reference for the third argument, -1 is returned.
2216
2217 This is mainly useful for constructing
2218 bitmaps for C<select> and low-level POSIX tty-handling operations.
2219 If FILEHANDLE is an expression, the value is taken as an indirect
2220 filehandle, generally its name.
2221
2222 You can use this to find out whether two handles refer to the
2223 same underlying descriptor:
2224
2225     if (fileno(THIS) == fileno(THAT)) {
2226         print "THIS and THAT are dups\n";
2227     }
2228
2229 =item flock FILEHANDLE,OPERATION
2230 X<flock> X<lock> X<locking>
2231
2232 =for Pod::Functions lock an entire file with an advisory lock
2233
2234 Calls flock(2), or an emulation of it, on FILEHANDLE.  Returns true
2235 for success, false on failure.  Produces a fatal error if used on a
2236 machine that doesn't implement flock(2), fcntl(2) locking, or lockf(3).
2237 C<flock> is Perl's portable file-locking interface, although it locks
2238 entire files only, not records.
2239
2240 Two potentially non-obvious but traditional C<flock> semantics are
2241 that it waits indefinitely until the lock is granted, and that its locks
2242 are B<merely advisory>.  Such discretionary locks are more flexible, but
2243 offer fewer guarantees.  This means that programs that do not also use
2244 C<flock> may modify files locked with C<flock>.  See L<perlport>, 
2245 your port's specific documentation, and your system-specific local manpages
2246 for details.  It's best to assume traditional behavior if you're writing
2247 portable programs.  (But if you're not, you should as always feel perfectly
2248 free to write for your own system's idiosyncrasies (sometimes called
2249 "features").  Slavish adherence to portability concerns shouldn't get
2250 in the way of your getting your job done.)
2251
2252 OPERATION is one of LOCK_SH, LOCK_EX, or LOCK_UN, possibly combined with
2253 LOCK_NB.  These constants are traditionally valued 1, 2, 8 and 4, but
2254 you can use the symbolic names if you import them from the L<Fcntl> module,
2255 either individually, or as a group using the C<:flock> tag.  LOCK_SH
2256 requests a shared lock, LOCK_EX requests an exclusive lock, and LOCK_UN
2257 releases a previously requested lock.  If LOCK_NB is bitwise-or'ed with
2258 LOCK_SH or LOCK_EX, then C<flock> returns immediately rather than blocking
2259 waiting for the lock; check the return status to see if you got it.
2260
2261 To avoid the possibility of miscoordination, Perl now flushes FILEHANDLE
2262 before locking or unlocking it.
2263
2264 Note that the emulation built with lockf(3) doesn't provide shared
2265 locks, and it requires that FILEHANDLE be open with write intent.  These
2266 are the semantics that lockf(3) implements.  Most if not all systems
2267 implement lockf(3) in terms of fcntl(2) locking, though, so the
2268 differing semantics shouldn't bite too many people.
2269
2270 Note that the fcntl(2) emulation of flock(3) requires that FILEHANDLE
2271 be open with read intent to use LOCK_SH and requires that it be open
2272 with write intent to use LOCK_EX.
2273
2274 Note also that some versions of C<flock> cannot lock things over the
2275 network; you would need to use the more system-specific C<fcntl> for
2276 that.  If you like you can force Perl to ignore your system's flock(2)
2277 function, and so provide its own fcntl(2)-based emulation, by passing
2278 the switch C<-Ud_flock> to the F<Configure> program when you configure
2279 and build a new Perl.
2280
2281 Here's a mailbox appender for BSD systems.
2282
2283     use Fcntl qw(:flock SEEK_END); # import LOCK_* and SEEK_END constants
2284
2285     sub lock {
2286         my ($fh) = @_;
2287         flock($fh, LOCK_EX) or die "Cannot lock mailbox - $!\n";
2288
2289         # and, in case someone appended while we were waiting...
2290         seek($fh, 0, SEEK_END) or die "Cannot seek - $!\n";
2291     }
2292
2293     sub unlock {
2294         my ($fh) = @_;
2295         flock($fh, LOCK_UN) or die "Cannot unlock mailbox - $!\n";
2296     }
2297
2298     open(my $mbox, ">>", "/usr/spool/mail/$ENV{'USER'}")
2299         or die "Can't open mailbox: $!";
2300
2301     lock($mbox);
2302     print $mbox $msg,"\n\n";
2303     unlock($mbox);
2304
2305 On systems that support a real flock(2), locks are inherited across fork()
2306 calls, whereas those that must resort to the more capricious fcntl(2)
2307 function lose their locks, making it seriously harder to write servers.
2308
2309 See also L<DB_File> for other flock() examples.
2310
2311 Portability issues: L<perlport/flock>.
2312
2313 =item fork
2314 X<fork> X<child> X<parent>
2315
2316 =for Pod::Functions create a new process just like this one
2317
2318 Does a fork(2) system call to create a new process running the
2319 same program at the same point.  It returns the child pid to the
2320 parent process, C<0> to the child process, or C<undef> if the fork is
2321 unsuccessful.  File descriptors (and sometimes locks on those descriptors)
2322 are shared, while everything else is copied.  On most systems supporting
2323 fork(), great care has gone into making it extremely efficient (for
2324 example, using copy-on-write technology on data pages), making it the
2325 dominant paradigm for multitasking over the last few decades.
2326
2327 Beginning with v5.6.0, Perl attempts to flush all files opened for
2328 output before forking the child process, but this may not be supported
2329 on some platforms (see L<perlport>).  To be safe, you may need to set
2330 C<$|> ($AUTOFLUSH in English) or call the C<autoflush()> method of
2331 C<IO::Handle> on any open handles to avoid duplicate output.
2332
2333 If you C<fork> without ever waiting on your children, you will
2334 accumulate zombies.  On some systems, you can avoid this by setting
2335 C<$SIG{CHLD}> to C<"IGNORE">.  See also L<perlipc> for more examples of
2336 forking and reaping moribund children.
2337
2338 Note that if your forked child inherits system file descriptors like
2339 STDIN and STDOUT that are actually connected by a pipe or socket, even
2340 if you exit, then the remote server (such as, say, a CGI script or a
2341 backgrounded job launched from a remote shell) won't think you're done.
2342 You should reopen those to F</dev/null> if it's any issue.
2343
2344 On some platforms such as Windows, where the fork() system call is not available,
2345 Perl can be built to emulate fork() in the Perl interpreter.
2346 The emulation is designed, at the level of the Perl program,
2347 to be as compatible as possible with the "Unix" fork().
2348 However it has limitations that have to be considered in code intended to be portable.
2349 See L<perlfork> for more details.
2350
2351 Portability issues: L<perlport/fork>.
2352
2353 =item format
2354 X<format>
2355
2356 =for Pod::Functions declare a picture format with use by the write() function
2357
2358 Declare a picture format for use by the C<write> function.  For
2359 example:
2360
2361     format Something =
2362         Test: @<<<<<<<< @||||| @>>>>>
2363               $str,     $%,    '$' . int($num)
2364     .
2365
2366     $str = "widget";
2367     $num = $cost/$quantity;
2368     $~ = 'Something';
2369     write;
2370
2371 See L<perlform> for many details and examples.
2372
2373 =item formline PICTURE,LIST
2374 X<formline>
2375
2376 =for Pod::Functions internal function used for formats
2377
2378 This is an internal function used by C<format>s, though you may call it,
2379 too.  It formats (see L<perlform>) a list of values according to the
2380 contents of PICTURE, placing the output into the format output
2381 accumulator, C<$^A> (or C<$ACCUMULATOR> in English).
2382 Eventually, when a C<write> is done, the contents of
2383 C<$^A> are written to some filehandle.  You could also read C<$^A>
2384 and then set C<$^A> back to C<"">.  Note that a format typically
2385 does one C<formline> per line of form, but the C<formline> function itself
2386 doesn't care how many newlines are embedded in the PICTURE.  This means
2387 that the C<~> and C<~~> tokens treat the entire PICTURE as a single line.
2388 You may therefore need to use multiple formlines to implement a single
2389 record format, just like the C<format> compiler.
2390
2391 Be careful if you put double quotes around the picture, because an C<@>
2392 character may be taken to mean the beginning of an array name.
2393 C<formline> always returns true.  See L<perlform> for other examples.
2394
2395 If you are trying to use this instead of C<write> to capture the output,
2396 you may find it easier to open a filehandle to a scalar
2397 (C<< open $fh, ">", \$output >>) and write to that instead.
2398
2399 =item getc FILEHANDLE
2400 X<getc> X<getchar> X<character> X<file, read>
2401
2402 =item getc
2403
2404 =for Pod::Functions get the next character from the filehandle
2405
2406 Returns the next character from the input file attached to FILEHANDLE,
2407 or the undefined value at end of file or if there was an error (in
2408 the latter case C<$!> is set).  If FILEHANDLE is omitted, reads from
2409 STDIN.  This is not particularly efficient.  However, it cannot be
2410 used by itself to fetch single characters without waiting for the user
2411 to hit enter.  For that, try something more like:
2412
2413     if ($BSD_STYLE) {
2414         system "stty cbreak </dev/tty >/dev/tty 2>&1";
2415     }
2416     else {
2417         system "stty", '-icanon', 'eol', "\001";
2418     }
2419
2420     $key = getc(STDIN);
2421
2422     if ($BSD_STYLE) {
2423         system "stty -cbreak </dev/tty >/dev/tty 2>&1";
2424     }
2425     else {
2426         system 'stty', 'icanon', 'eol', '^@'; # ASCII NUL
2427     }
2428     print "\n";
2429
2430 Determination of whether $BSD_STYLE should be set
2431 is left as an exercise to the reader.
2432
2433 The C<POSIX::getattr> function can do this more portably on
2434 systems purporting POSIX compliance.  See also the C<Term::ReadKey>
2435 module from your nearest CPAN site; details on CPAN can be found under
2436 L<perlmodlib/CPAN>.
2437
2438 =item getlogin
2439 X<getlogin> X<login>
2440
2441 =for Pod::Functions return who logged in at this tty
2442
2443 This implements the C library function of the same name, which on most
2444 systems returns the current login from F</etc/utmp>, if any.  If it
2445 returns the empty string, use C<getpwuid>.
2446
2447     $login = getlogin || getpwuid($<) || "Kilroy";
2448
2449 Do not consider C<getlogin> for authentication: it is not as
2450 secure as C<getpwuid>.
2451
2452 Portability issues: L<perlport/getlogin>.
2453
2454 =item getpeername SOCKET
2455 X<getpeername> X<peer>
2456
2457 =for Pod::Functions find the other end of a socket connection
2458
2459 Returns the packed sockaddr address of the other end of the SOCKET
2460 connection.
2461
2462     use Socket;
2463     $hersockaddr    = getpeername(SOCK);
2464     ($port, $iaddr) = sockaddr_in($hersockaddr);
2465     $herhostname    = gethostbyaddr($iaddr, AF_INET);
2466     $herstraddr     = inet_ntoa($iaddr);
2467
2468 =item getpgrp PID
2469 X<getpgrp> X<group>
2470
2471 =for Pod::Functions get process group
2472
2473 Returns the current process group for the specified PID.  Use
2474 a PID of C<0> to get the current process group for the
2475 current process.  Will raise an exception if used on a machine that
2476 doesn't implement getpgrp(2).  If PID is omitted, returns the process
2477 group of the current process.  Note that the POSIX version of C<getpgrp>
2478 does not accept a PID argument, so only C<PID==0> is truly portable.
2479
2480 Portability issues: L<perlport/getpgrp>.
2481
2482 =item getppid
2483 X<getppid> X<parent> X<pid>
2484
2485 =for Pod::Functions get parent process ID
2486
2487 Returns the process id of the parent process.
2488
2489 Note for Linux users: Between v5.8.1 and v5.16.0 Perl would work
2490 around non-POSIX thread semantics the minority of Linux systems (and
2491 Debian GNU/kFreeBSD systems) that used LinuxThreads, this emulation
2492 has since been removed. See the documentation for L<$$|perlvar/$$> for
2493 details.
2494
2495 Portability issues: L<perlport/getppid>.
2496
2497 =item getpriority WHICH,WHO
2498 X<getpriority> X<priority> X<nice>
2499
2500 =for Pod::Functions get current nice value
2501
2502 Returns the current priority for a process, a process group, or a user.
2503 (See L<getpriority(2)>.)  Will raise a fatal exception if used on a
2504 machine that doesn't implement getpriority(2).
2505
2506 Portability issues: L<perlport/getpriority>.
2507
2508 =item getpwnam NAME
2509 X<getpwnam> X<getgrnam> X<gethostbyname> X<getnetbyname> X<getprotobyname>
2510 X<getpwuid> X<getgrgid> X<getservbyname> X<gethostbyaddr> X<getnetbyaddr>
2511 X<getprotobynumber> X<getservbyport> X<getpwent> X<getgrent> X<gethostent>
2512 X<getnetent> X<getprotoent> X<getservent> X<setpwent> X<setgrent> X<sethostent>
2513 X<setnetent> X<setprotoent> X<setservent> X<endpwent> X<endgrent> X<endhostent>
2514 X<endnetent> X<endprotoent> X<endservent> 
2515
2516 =for Pod::Functions get passwd record given user login name
2517
2518 =item getgrnam NAME
2519
2520 =for Pod::Functions get group record given group name
2521
2522 =item gethostbyname NAME
2523
2524 =for Pod::Functions get host record given name
2525
2526 =item getnetbyname NAME
2527
2528 =for Pod::Functions get networks record given name
2529
2530 =item getprotobyname NAME
2531
2532 =for Pod::Functions get protocol record given name
2533
2534 =item getpwuid UID
2535
2536 =for Pod::Functions get passwd record given user ID
2537
2538 =item getgrgid GID
2539
2540 =for Pod::Functions get group record given group user ID
2541
2542 =item getservbyname NAME,PROTO
2543
2544 =for Pod::Functions get services record given its name
2545
2546 =item gethostbyaddr ADDR,ADDRTYPE
2547
2548 =for Pod::Functions get host record given its address
2549
2550 =item getnetbyaddr ADDR,ADDRTYPE
2551
2552 =for Pod::Functions get network record given its address
2553
2554 =item getprotobynumber NUMBER
2555
2556 =for Pod::Functions get protocol record numeric protocol
2557
2558 =item getservbyport PORT,PROTO
2559
2560 =for Pod::Functions get services record given numeric port
2561
2562 =item getpwent
2563
2564 =for Pod::Functions get next passwd record
2565
2566 =item getgrent
2567
2568 =for Pod::Functions get next group record
2569
2570 =item gethostent
2571
2572 =for Pod::Functions get next hosts record
2573
2574 =item getnetent
2575
2576 =for Pod::Functions get next networks record
2577
2578 =item getprotoent
2579
2580 =for Pod::Functions get next protocols record
2581
2582 =item getservent
2583
2584 =for Pod::Functions get next services record
2585
2586 =item setpwent
2587
2588 =for Pod::Functions prepare passwd file for use
2589
2590 =item setgrent
2591
2592 =for Pod::Functions prepare group file for use
2593
2594 =item sethostent STAYOPEN
2595
2596 =for Pod::Functions prepare hosts file for use
2597
2598 =item setnetent STAYOPEN
2599
2600 =for Pod::Functions prepare networks file for use
2601
2602 =item setprotoent STAYOPEN
2603
2604 =for Pod::Functions prepare protocols file for use
2605
2606 =item setservent STAYOPEN
2607
2608 =for Pod::Functions prepare services file for use
2609
2610 =item endpwent
2611
2612 =for Pod::Functions be done using passwd file
2613
2614 =item endgrent
2615
2616 =for Pod::Functions be done using group file
2617
2618 =item endhostent
2619
2620 =for Pod::Functions be done using hosts file
2621
2622 =item endnetent
2623
2624 =for Pod::Functions be done using networks file
2625
2626 =item endprotoent
2627
2628 =for Pod::Functions be done using protocols file
2629
2630 =item endservent
2631
2632 =for Pod::Functions be done using services file
2633
2634 These routines are the same as their counterparts in the
2635 system C library.  In list context, the return values from the
2636 various get routines are as follows:
2637
2638     ($name,$passwd,$uid,$gid,
2639        $quota,$comment,$gcos,$dir,$shell,$expire) = getpw*
2640     ($name,$passwd,$gid,$members) = getgr*
2641     ($name,$aliases,$addrtype,$length,@addrs) = gethost*
2642     ($name,$aliases,$addrtype,$net) = getnet*
2643     ($name,$aliases,$proto) = getproto*
2644     ($name,$aliases,$port,$proto) = getserv*
2645
2646 (If the entry doesn't exist you get an empty list.)
2647
2648 The exact meaning of the $gcos field varies but it usually contains
2649 the real name of the user (as opposed to the login name) and other
2650 information pertaining to the user.  Beware, however, that in many
2651 system users are able to change this information and therefore it
2652 cannot be trusted and therefore the $gcos is tainted (see
2653 L<perlsec>).  The $passwd and $shell, user's encrypted password and
2654 login shell, are also tainted, for the same reason.
2655
2656 In scalar context, you get the name, unless the function was a
2657 lookup by name, in which case you get the other thing, whatever it is.
2658 (If the entry doesn't exist you get the undefined value.)  For example:
2659
2660     $uid   = getpwnam($name);
2661     $name  = getpwuid($num);
2662     $name  = getpwent();
2663     $gid   = getgrnam($name);
2664     $name  = getgrgid($num);
2665     $name  = getgrent();
2666     #etc.
2667
2668 In I<getpw*()> the fields $quota, $comment, and $expire are special
2669 in that they are unsupported on many systems.  If the
2670 $quota is unsupported, it is an empty scalar.  If it is supported, it
2671 usually encodes the disk quota.  If the $comment field is unsupported,
2672 it is an empty scalar.  If it is supported it usually encodes some
2673 administrative comment about the user.  In some systems the $quota
2674 field may be $change or $age, fields that have to do with password
2675 aging.  In some systems the $comment field may be $class.  The $expire
2676 field, if present, encodes the expiration period of the account or the
2677 password.  For the availability and the exact meaning of these fields
2678 in your system, please consult getpwnam(3) and your system's 
2679 F<pwd.h> file.  You can also find out from within Perl what your
2680 $quota and $comment fields mean and whether you have the $expire field
2681 by using the C<Config> module and the values C<d_pwquota>, C<d_pwage>,
2682 C<d_pwchange>, C<d_pwcomment>, and C<d_pwexpire>.  Shadow password
2683 files are supported only if your vendor has implemented them in the
2684 intuitive fashion that calling the regular C library routines gets the
2685 shadow versions if you're running under privilege or if there exists
2686 the shadow(3) functions as found in System V (this includes Solaris
2687 and Linux).  Those systems that implement a proprietary shadow password
2688 facility are unlikely to be supported.
2689
2690 The $members value returned by I<getgr*()> is a space-separated list of
2691 the login names of the members of the group.
2692
2693 For the I<gethost*()> functions, if the C<h_errno> variable is supported in
2694 C, it will be returned to you via C<$?> if the function call fails.  The
2695 C<@addrs> value returned by a successful call is a list of raw
2696 addresses returned by the corresponding library call.  In the
2697 Internet domain, each address is four bytes long; you can unpack it
2698 by saying something like:
2699
2700     ($a,$b,$c,$d) = unpack('W4',$addr[0]);
2701
2702 The Socket library makes this slightly easier:
2703
2704     use Socket;
2705     $iaddr = inet_aton("127.1"); # or whatever address
2706     $name  = gethostbyaddr($iaddr, AF_INET);
2707
2708     # or going the other way
2709     $straddr = inet_ntoa($iaddr);
2710
2711 In the opposite way, to resolve a hostname to the IP address
2712 you can write this:
2713
2714     use Socket;
2715     $packed_ip = gethostbyname("www.perl.org");
2716     if (defined $packed_ip) {
2717         $ip_address = inet_ntoa($packed_ip);
2718     }
2719
2720 Make sure C<gethostbyname()> is called in SCALAR context and that
2721 its return value is checked for definedness.
2722
2723 The C<getprotobynumber> function, even though it only takes one argument,
2724 has the precedence of a list operator, so beware:
2725
2726     getprotobynumber $number eq 'icmp'   # WRONG
2727     getprotobynumber($number eq 'icmp')  # actually means this
2728     getprotobynumber($number) eq 'icmp'  # better this way
2729
2730 If you get tired of remembering which element of the return list
2731 contains which return value, by-name interfaces are provided
2732 in standard modules: C<File::stat>, C<Net::hostent>, C<Net::netent>,
2733 C<Net::protoent>, C<Net::servent>, C<Time::gmtime>, C<Time::localtime>,
2734 and C<User::grent>.  These override the normal built-ins, supplying
2735 versions that return objects with the appropriate names
2736 for each field.  For example:
2737
2738    use File::stat;
2739    use User::pwent;
2740    $is_his = (stat($filename)->uid == pwent($whoever)->uid);
2741
2742 Even though it looks as though they're the same method calls (uid),
2743 they aren't, because a C<File::stat> object is different from
2744 a C<User::pwent> object.
2745
2746 Portability issues: L<perlport/getpwnam> to L<perlport/endservent>.
2747
2748 =item getsockname SOCKET
2749 X<getsockname>
2750
2751 =for Pod::Functions retrieve the sockaddr for a given socket
2752
2753 Returns the packed sockaddr address of this end of the SOCKET connection,
2754 in case you don't know the address because you have several different
2755 IPs that the connection might have come in on.
2756
2757     use Socket;
2758     $mysockaddr = getsockname(SOCK);
2759     ($port, $myaddr) = sockaddr_in($mysockaddr);
2760     printf "Connect to %s [%s]\n",
2761        scalar gethostbyaddr($myaddr, AF_INET),
2762        inet_ntoa($myaddr);
2763
2764 =item getsockopt SOCKET,LEVEL,OPTNAME
2765 X<getsockopt>
2766
2767 =for Pod::Functions get socket options on a given socket
2768
2769 Queries the option named OPTNAME associated with SOCKET at a given LEVEL.
2770 Options may exist at multiple protocol levels depending on the socket
2771 type, but at least the uppermost socket level SOL_SOCKET (defined in the
2772 C<Socket> module) will exist.  To query options at another level the
2773 protocol number of the appropriate protocol controlling the option
2774 should be supplied.  For example, to indicate that an option is to be
2775 interpreted by the TCP protocol, LEVEL should be set to the protocol
2776 number of TCP, which you can get using C<getprotobyname>.
2777
2778 The function returns a packed string representing the requested socket
2779 option, or C<undef> on error, with the reason for the error placed in
2780 C<$!>.  Just what is in the packed string depends on LEVEL and OPTNAME;
2781 consult getsockopt(2) for details.  A common case is that the option is an
2782 integer, in which case the result is a packed integer, which you can decode
2783 using C<unpack> with the C<i> (or C<I>) format.
2784
2785 Here's an example to test whether Nagle's algorithm is enabled on a socket:
2786
2787     use Socket qw(:all);
2788
2789     defined(my $tcp = getprotobyname("tcp"))
2790         or die "Could not determine the protocol number for tcp";
2791     # my $tcp = IPPROTO_TCP; # Alternative
2792     my $packed = getsockopt($socket, $tcp, TCP_NODELAY)
2793         or die "getsockopt TCP_NODELAY: $!";
2794     my $nodelay = unpack("I", $packed);
2795     print "Nagle's algorithm is turned ", $nodelay ? "off\n" : "on\n";
2796
2797 Portability issues: L<perlport/getsockopt>.
2798
2799 =item glob EXPR
2800 X<glob> X<wildcard> X<filename, expansion> X<expand>
2801
2802 =item glob
2803
2804 =for Pod::Functions expand filenames using wildcards
2805
2806 In list context, returns a (possibly empty) list of filename expansions on
2807 the value of EXPR such as the standard Unix shell F</bin/csh> would do.  In
2808 scalar context, glob iterates through such filename expansions, returning
2809 undef when the list is exhausted.  This is the internal function
2810 implementing the C<< <*.c> >> operator, but you can use it directly.  If
2811 EXPR is omitted, C<$_> is used.  The C<< <*.c> >> operator is discussed in
2812 more detail in L<perlop/"I/O Operators">.
2813
2814 Note that C<glob> splits its arguments on whitespace and treats
2815 each segment as separate pattern.  As such, C<glob("*.c *.h")> 
2816 matches all files with a F<.c> or F<.h> extension.  The expression
2817 C<glob(".* *")> matches all files in the current working directory.
2818 If you want to glob filenames that might contain whitespace, you'll
2819 have to use extra quotes around the spacey filename to protect it.
2820 For example, to glob filenames that have an C<e> followed by a space
2821 followed by an C<f>, use either of:
2822
2823     @spacies = <"*e f*">;
2824     @spacies = glob '"*e f*"';
2825     @spacies = glob q("*e f*");
2826
2827 If you had to get a variable through, you could do this:
2828
2829     @spacies = glob "'*${var}e f*'";
2830     @spacies = glob qq("*${var}e f*");
2831
2832 If non-empty braces are the only wildcard characters used in the
2833 C<glob>, no filenames are matched, but potentially many strings
2834 are returned.  For example, this produces nine strings, one for
2835 each pairing of fruits and colors:
2836
2837     @many =  glob "{apple,tomato,cherry}={green,yellow,red}";
2838
2839 Beginning with v5.6.0, this operator is implemented using the standard
2840 C<File::Glob> extension.  See L<File::Glob> for details, including
2841 C<bsd_glob> which does not treat whitespace as a pattern separator.
2842
2843 Portability issues: L<perlport/glob>.
2844
2845 =item gmtime EXPR
2846 X<gmtime> X<UTC> X<Greenwich>
2847
2848 =item gmtime
2849
2850 =for Pod::Functions convert UNIX time into record or string using Greenwich time
2851
2852 Works just like L</localtime> but the returned values are
2853 localized for the standard Greenwich time zone.
2854
2855 Note: When called in list context, $isdst, the last value
2856 returned by gmtime, is always C<0>.  There is no
2857 Daylight Saving Time in GMT.
2858
2859 Portability issues: L<perlport/gmtime>.
2860
2861 =item goto LABEL
2862 X<goto> X<jump> X<jmp>
2863
2864 =item goto EXPR
2865
2866 =item goto &NAME
2867
2868 =for Pod::Functions create spaghetti code
2869
2870 The C<goto-LABEL> form finds the statement labeled with LABEL and
2871 resumes execution there.  It can't be used to get out of a block or
2872 subroutine given to C<sort>.  It can be used to go almost anywhere
2873 else within the dynamic scope, including out of subroutines, but it's
2874 usually better to use some other construct such as C<last> or C<die>.
2875 The author of Perl has never felt the need to use this form of C<goto>
2876 (in Perl, that is; C is another matter).  (The difference is that C
2877 does not offer named loops combined with loop control.  Perl does, and
2878 this replaces most structured uses of C<goto> in other languages.)
2879
2880 The C<goto-EXPR> form expects a label name, whose scope will be resolved
2881 dynamically.  This allows for computed C<goto>s per FORTRAN, but isn't
2882 necessarily recommended if you're optimizing for maintainability:
2883
2884     goto ("FOO", "BAR", "GLARCH")[$i];
2885
2886 As shown in this example, C<goto-EXPR> is exempt from the "looks like a
2887 function" rule.  A pair of parentheses following it does not (necessarily)
2888 delimit its argument.  C<goto("NE")."XT"> is equivalent to C<goto NEXT>.
2889
2890 Use of C<goto-LABEL> or C<goto-EXPR> to jump into a construct is
2891 deprecated and will issue a warning.  Even then, it may not be used to
2892 go into any construct that requires initialization, such as a
2893 subroutine or a C<foreach> loop.  It also can't be used to go into a
2894 construct that is optimized away.
2895
2896 The C<goto-&NAME> form is quite different from the other forms of
2897 C<goto>.  In fact, it isn't a goto in the normal sense at all, and
2898 doesn't have the stigma associated with other gotos.  Instead, it
2899 exits the current subroutine (losing any changes set by local()) and
2900 immediately calls in its place the named subroutine using the current
2901 value of @_.  This is used by C<AUTOLOAD> subroutines that wish to
2902 load another subroutine and then pretend that the other subroutine had
2903 been called in the first place (except that any modifications to C<@_>
2904 in the current subroutine are propagated to the other subroutine.)
2905 After the C<goto>, not even C<caller> will be able to tell that this
2906 routine was called first.
2907
2908 NAME needn't be the name of a subroutine; it can be a scalar variable
2909 containing a code reference or a block that evaluates to a code
2910 reference.
2911
2912 =item grep BLOCK LIST
2913 X<grep>
2914
2915 =item grep EXPR,LIST
2916
2917 =for Pod::Functions locate elements in a list test true against a given criterion
2918
2919 This is similar in spirit to, but not the same as, grep(1) and its
2920 relatives.  In particular, it is not limited to using regular expressions.
2921
2922 Evaluates the BLOCK or EXPR for each element of LIST (locally setting
2923 C<$_> to each element) and returns the list value consisting of those
2924 elements for which the expression evaluated to true.  In scalar
2925 context, returns the number of times the expression was true.
2926
2927     @foo = grep(!/^#/, @bar);    # weed out comments
2928
2929 or equivalently,
2930
2931     @foo = grep {!/^#/} @bar;    # weed out comments
2932
2933 Note that C<$_> is an alias to the list value, so it can be used to
2934 modify the elements of the LIST.  While this is useful and supported,
2935 it can cause bizarre results if the elements of LIST are not variables.
2936 Similarly, grep returns aliases into the original list, much as a for
2937 loop's index variable aliases the list elements.  That is, modifying an
2938 element of a list returned by grep (for example, in a C<foreach>, C<map>
2939 or another C<grep>) actually modifies the element in the original list.
2940 This is usually something to be avoided when writing clear code.
2941
2942 If C<$_> is lexical in the scope where the C<grep> appears (because it has
2943 been declared with C<my $_>) then, in addition to being locally aliased to
2944 the list elements, C<$_> keeps being lexical inside the block; i.e., it
2945 can't be seen from the outside, avoiding any potential side-effects.
2946
2947 See also L</map> for a list composed of the results of the BLOCK or EXPR.
2948
2949 =item hex EXPR
2950 X<hex> X<hexadecimal>
2951
2952 =item hex
2953
2954 =for Pod::Functions convert a string to a hexadecimal number
2955
2956 Interprets EXPR as a hex string and returns the corresponding value.
2957 (To convert strings that might start with either C<0>, C<0x>, or C<0b>, see
2958 L</oct>.)  If EXPR is omitted, uses C<$_>.
2959
2960     print hex '0xAf'; # prints '175'
2961     print hex 'aF';   # same
2962
2963 Hex strings may only represent integers.  Strings that would cause
2964 integer overflow trigger a warning.  Leading whitespace is not stripped,
2965 unlike oct().  To present something as hex, look into L</printf>,
2966 L</sprintf>, and L</unpack>.
2967
2968 =item import LIST
2969 X<import>
2970
2971 =for Pod::Functions patch a module's namespace into your own
2972
2973 There is no builtin C<import> function.  It is just an ordinary
2974 method (subroutine) defined (or inherited) by modules that wish to export
2975 names to another module.  The C<use> function calls the C<import> method
2976 for the package used.  See also L</use>, L<perlmod>, and L<Exporter>.
2977
2978 =item index STR,SUBSTR,POSITION
2979 X<index> X<indexOf> X<InStr>
2980
2981 =item index STR,SUBSTR
2982
2983 =for Pod::Functions find a substring within a string
2984
2985 The index function searches for one string within another, but without
2986 the wildcard-like behavior of a full regular-expression pattern match.
2987 It returns the position of the first occurrence of SUBSTR in STR at
2988 or after POSITION.  If POSITION is omitted, starts searching from the
2989 beginning of the string.  POSITION before the beginning of the string
2990 or after its end is treated as if it were the beginning or the end,
2991 respectively.  POSITION and the return value are based at zero.
2992 If the substring is not found, C<index> returns -1.
2993
2994 =item int EXPR
2995 X<int> X<integer> X<truncate> X<trunc> X<floor>
2996
2997 =item int
2998
2999 =for Pod::Functions get the integer portion of a number
3000
3001 Returns the integer portion of EXPR.  If EXPR is omitted, uses C<$_>.
3002 You should not use this function for rounding: one because it truncates
3003 towards C<0>, and two because machine representations of floating-point
3004 numbers can sometimes produce counterintuitive results.  For example,
3005 C<int(-6.725/0.025)> produces -268 rather than the correct -269; that's
3006 because it's really more like -268.99999999999994315658 instead.  Usually,
3007 the C<sprintf>, C<printf>, or the C<POSIX::floor> and C<POSIX::ceil>
3008 functions will serve you better than will int().
3009
3010 =item ioctl FILEHANDLE,FUNCTION,SCALAR
3011 X<ioctl>
3012
3013 =for Pod::Functions system-dependent device control system call
3014
3015 Implements the ioctl(2) function.  You'll probably first have to say
3016
3017     require "sys/ioctl.ph";  # probably in $Config{archlib}/sys/ioctl.ph
3018
3019 to get the correct function definitions.  If F<sys/ioctl.ph> doesn't
3020 exist or doesn't have the correct definitions you'll have to roll your
3021 own, based on your C header files such as F<< <sys/ioctl.h> >>.
3022 (There is a Perl script called B<h2ph> that comes with the Perl kit that
3023 may help you in this, but it's nontrivial.)  SCALAR will be read and/or
3024 written depending on the FUNCTION; a C pointer to the string value of SCALAR
3025 will be passed as the third argument of the actual C<ioctl> call.  (If SCALAR
3026 has no string value but does have a numeric value, that value will be
3027 passed rather than a pointer to the string value.  To guarantee this to be
3028 true, add a C<0> to the scalar before using it.)  The C<pack> and C<unpack>
3029 functions may be needed to manipulate the values of structures used by
3030 C<ioctl>.
3031
3032 The return value of C<ioctl> (and C<fcntl>) is as follows:
3033
3034     if OS returns:      then Perl returns:
3035         -1               undefined value
3036          0              string "0 but true"
3037     anything else           that number
3038
3039 Thus Perl returns true on success and false on failure, yet you can
3040 still easily determine the actual value returned by the operating
3041 system:
3042
3043     $retval = ioctl(...) || -1;
3044     printf "System returned %d\n", $retval;
3045
3046 The special string C<"0 but true"> is exempt from B<-w> complaints
3047 about improper numeric conversions.
3048
3049 Portability issues: L<perlport/ioctl>.
3050
3051 =item join EXPR,LIST
3052 X<join>
3053
3054 =for Pod::Functions join a list into a string using a separator
3055
3056 Joins the separate strings of LIST into a single string with fields
3057 separated by the value of EXPR, and returns that new string.  Example:
3058
3059     $rec = join(':', $login,$passwd,$uid,$gid,$gcos,$home,$shell);
3060
3061 Beware that unlike C<split>, C<join> doesn't take a pattern as its
3062 first argument.  Compare L</split>.
3063
3064 =item keys HASH
3065 X<keys> X<key>
3066
3067 =item keys ARRAY
3068
3069 =item keys EXPR
3070
3071 =for Pod::Functions retrieve list of indices from a hash
3072
3073 Called in list context, returns a list consisting of all the keys of the
3074 named hash, or in Perl 5.12 or later only, the indices of an array.  Perl
3075 releases prior to 5.12 will produce a syntax error if you try to use an
3076 array argument.  In scalar context, returns the number of keys or indices.
3077
3078 The keys of a hash are returned in an apparently random order.  The actual
3079 random order is subject to change in future versions of Perl, but it
3080 is guaranteed to be the same order as either the C<values> or C<each>
3081 function produces (given that the hash has not been modified).  Since
3082 Perl 5.8.1 the ordering can be different even between different runs of
3083 Perl for security reasons (see L<perlsec/"Algorithmic Complexity
3084 Attacks">).
3085
3086 As a side effect, calling keys() resets the internal interator of the HASH or ARRAY
3087 (see L</each>).  In particular, calling keys() in void context resets
3088 the iterator with no other overhead.
3089
3090 Here is yet another way to print your environment:
3091
3092     @keys = keys %ENV;
3093     @values = values %ENV;
3094     while (@keys) {
3095         print pop(@keys), '=', pop(@values), "\n";
3096     }
3097
3098 or how about sorted by key:
3099
3100     foreach $key (sort(keys %ENV)) {
3101         print $key, '=', $ENV{$key}, "\n";
3102     }
3103
3104 The returned values are copies of the original keys in the hash, so
3105 modifying them will not affect the original hash.  Compare L</values>.
3106
3107 To sort a hash by value, you'll need to use a C<sort> function.
3108 Here's a descending numeric sort of a hash by its values:
3109
3110     foreach $key (sort { $hash{$b} <=> $hash{$a} } keys %hash) {
3111         printf "%4d %s\n", $hash{$key}, $key;
3112     }
3113
3114 Used as an lvalue, C<keys> allows you to increase the number of hash buckets
3115 allocated for the given hash.  This can gain you a measure of efficiency if
3116 you know the hash is going to get big.  (This is similar to pre-extending
3117 an array by assigning a larger number to $#array.)  If you say
3118
3119     keys %hash = 200;
3120
3121 then C<%hash> will have at least 200 buckets allocated for it--256 of them,
3122 in fact, since it rounds up to the next power of two.  These
3123 buckets will be retained even if you do C<%hash = ()>, use C<undef
3124 %hash> if you want to free the storage while C<%hash> is still in scope.
3125 You can't shrink the number of buckets allocated for the hash using
3126 C<keys> in this way (but you needn't worry about doing this by accident,
3127 as trying has no effect).  C<keys @array> in an lvalue context is a syntax
3128 error.
3129
3130 Starting with Perl 5.14, C<keys> can take a scalar EXPR, which must contain
3131 a reference to an unblessed hash or array.  The argument will be
3132 dereferenced automatically.  This aspect of C<keys> is considered highly
3133 experimental.  The exact behaviour may change in a future version of Perl.
3134
3135     for (keys $hashref) { ... }
3136     for (keys $obj->get_arrayref) { ... }
3137
3138 To avoid confusing would-be users of your code who are running earlier
3139 versions of Perl with mysterious syntax errors, put this sort of thing at
3140 the top of your file to signal that your code will work I<only> on Perls of
3141 a recent vintage:
3142
3143     use 5.012;  # so keys/values/each work on arrays
3144     use 5.014;  # so keys/values/each work on scalars (experimental)
3145
3146 See also C<each>, C<values>, and C<sort>.
3147
3148 =item kill SIGNAL, LIST
3149
3150 =item kill SIGNAL
3151 X<kill> X<signal>
3152
3153 =for Pod::Functions send a signal to a process or process group
3154
3155 Sends a signal to a list of processes.  Returns the number of
3156 processes successfully signaled (which is not necessarily the
3157 same as the number actually killed).
3158
3159     $cnt = kill 1, $child1, $child2;
3160     kill 9, @goners;
3161
3162 If SIGNAL is zero, no signal is sent to the process, but C<kill>
3163 checks whether it's I<possible> to send a signal to it (that
3164 means, to be brief, that the process is owned by the same user, or we are
3165 the super-user).  This is useful to check that a child process is still
3166 alive (even if only as a zombie) and hasn't changed its UID.  See
3167 L<perlport> for notes on the portability of this construct.
3168
3169 Unlike in the shell, if SIGNAL is negative, it kills process groups instead
3170 of processes.  That means you usually
3171 want to use positive not negative signals.
3172 You may also use a signal name in quotes.
3173
3174 The behavior of kill when a I<PROCESS> number is zero or negative depends on
3175 the operating system.  For example, on POSIX-conforming systems, zero will
3176 signal the current process group and -1 will signal all processes.
3177
3178 See L<perlipc/"Signals"> for more details.
3179
3180 On some platforms such as Windows where the fork() system call is not available.
3181 Perl can be built to emulate fork() at the interpreter level.
3182 This emulation has limitations related to kill that have to be considered,
3183 for code running on Windows and in code intended to be portable.
3184
3185 See L<perlfork> for more details.
3186
3187 If there is no I<LIST> of processes, no signal is sent, and the return
3188 value is 0.  This form is sometimes used, however, because it causes
3189 tainting checks to be run.  But see
3190 L<perlsec/Laundering and Detecting Tainted Data>.
3191
3192 Portability issues: L<perlport/kill>.
3193
3194 =item last LABEL
3195 X<last> X<break>
3196
3197 =item last
3198
3199 =for Pod::Functions exit a block prematurely
3200
3201 The C<last> command is like the C<break> statement in C (as used in
3202 loops); it immediately exits the loop in question.  If the LABEL is
3203 omitted, the command refers to the innermost enclosing loop.  The
3204 C<continue> block, if any, is not executed:
3205
3206     LINE: while (<STDIN>) {
3207         last LINE if /^$/;  # exit when done with header
3208         #...
3209     }
3210
3211 C<last> cannot be used to exit a block that returns a value such as
3212 C<eval {}>, C<sub {}>, or C<do {}>, and should not be used to exit
3213 a grep() or map() operation.
3214
3215 Note that a block by itself is semantically identical to a loop
3216 that executes once.  Thus C<last> can be used to effect an early
3217 exit out of such a block.
3218
3219 See also L</continue> for an illustration of how C<last>, C<next>, and
3220 C<redo> work.
3221
3222 =item lc EXPR
3223 X<lc> X<lowercase>
3224
3225 =item lc
3226
3227 =for Pod::Functions return lower-case version of a string
3228
3229 Returns a lowercased version of EXPR.  This is the internal function
3230 implementing the C<\L> escape in double-quoted strings.
3231
3232 If EXPR is omitted, uses C<$_>.
3233
3234 What gets returned depends on several factors:
3235
3236 =over
3237
3238 =item If C<use bytes> is in effect:
3239
3240 =over
3241
3242 =item On EBCDIC platforms
3243
3244 The results are what the C language system call C<tolower()> returns.
3245
3246 =item On ASCII platforms
3247
3248 The results follow ASCII semantics.  Only characters C<A-Z> change, to C<a-z>
3249 respectively.
3250
3251 =back
3252
3253 =item Otherwise, if C<use locale> (but not C<use locale ':not_characters'>) is in effect:
3254
3255 Respects current LC_CTYPE locale for code points < 256; and uses Unicode
3256 semantics for the remaining code points (this last can only happen if
3257 the UTF8 flag is also set).  See L<perllocale>.
3258
3259 A deficiency in this is that case changes that cross the 255/256
3260 boundary are not well-defined.  For example, the lower case of LATIN CAPITAL
3261 LETTER SHARP S (U+1E9E) in Unicode semantics is U+00DF (on ASCII
3262 platforms).   But under C<use locale>, the lower case of U+1E9E is
3263 itself, because 0xDF may not be LATIN SMALL LETTER SHARP S in the
3264 current locale, and Perl has no way of knowing if that character even
3265 exists in the locale, much less what code point it is.  Perl returns
3266 the input character unchanged, for all instances (and there aren't
3267 many) where the 255/256 boundary would otherwise be crossed.
3268
3269 =item Otherwise, If EXPR has the UTF8 flag set:
3270
3271 Unicode semantics are used for the case change.
3272
3273 =item Otherwise, if C<use feature 'unicode_strings'> or C<use locale ':not_characters'>) is in effect:
3274
3275 Unicode semantics are used for the case change.
3276
3277 =item Otherwise:
3278
3279 =over
3280
3281 =item On EBCDIC platforms
3282
3283 The results are what the C language system call C<tolower()> returns.
3284
3285 =item On ASCII platforms
3286
3287 ASCII semantics are used for the case change.  The lowercase of any character
3288 outside the ASCII range is the character itself.
3289
3290 =back
3291
3292 =back
3293
3294 =item lcfirst EXPR
3295 X<lcfirst> X<lowercase>
3296
3297 =item lcfirst
3298
3299 =for Pod::Functions return a string with just the next letter in lower case
3300
3301 Returns the value of EXPR with the first character lowercased.  This
3302 is the internal function implementing the C<\l> escape in
3303 double-quoted strings.
3304
3305 If EXPR is omitted, uses C<$_>.
3306
3307 This function behaves the same way under various pragmata, such as in a locale,
3308 as L</lc> does.
3309
3310 =item length EXPR
3311 X<length> X<size>
3312
3313 =item length
3314
3315 =for Pod::Functions return the number of bytes in a string
3316
3317 Returns the length in I<characters> of the value of EXPR.  If EXPR is
3318 omitted, returns the length of C<$_>.  If EXPR is undefined, returns
3319 C<undef>.
3320
3321 This function cannot be used on an entire array or hash to find out how
3322 many elements these have.  For that, use C<scalar @array> and C<scalar keys
3323 %hash>, respectively.
3324
3325 Like all Perl character operations, length() normally deals in logical
3326 characters, not physical bytes.  For how many bytes a string encoded as
3327 UTF-8 would take up, use C<length(Encode::encode_utf8(EXPR))> (you'll have
3328 to C<use Encode> first).  See L<Encode> and L<perlunicode>.
3329
3330 =item __LINE__
3331 X<__LINE__>
3332
3333 =for Pod::Functions the current source line number
3334
3335 A special token that compiles to the current line number.
3336
3337 =item link OLDFILE,NEWFILE
3338 X<link>
3339
3340 =for Pod::Functions create a hard link in the filesystem
3341
3342 Creates a new filename linked to the old filename.  Returns true for
3343 success, false otherwise.
3344
3345 Portability issues: L<perlport/link>.
3346
3347 =item listen SOCKET,QUEUESIZE
3348 X<listen>
3349
3350 =for Pod::Functions register your socket as a server
3351
3352 Does the same thing that the listen(2) system call does.  Returns true if
3353 it succeeded, false otherwise.  See the example in
3354 L<perlipc/"Sockets: Client/Server Communication">.
3355
3356 =item local EXPR
3357 X<local>
3358
3359 =for Pod::Functions create a temporary value for a global variable (dynamic scoping)
3360
3361 You really probably want to be using C<my> instead, because C<local> isn't
3362 what most people think of as "local".  See
3363 L<perlsub/"Private Variables via my()"> for details.
3364
3365 A local modifies the listed variables to be local to the enclosing
3366 block, file, or eval.  If more than one value is listed, the list must
3367 be placed in parentheses.  See L<perlsub/"Temporary Values via local()">
3368 for details, including issues with tied arrays and hashes.
3369
3370 The C<delete local EXPR> construct can also be used to localize the deletion
3371 of array/hash elements to the current block.
3372 See L<perlsub/"Localized deletion of elements of composite types">.
3373
3374 =item localtime EXPR
3375 X<localtime> X<ctime>
3376
3377 =item localtime
3378
3379 =for Pod::Functions convert UNIX time into record or string using local time
3380
3381 Converts a time as returned by the time function to a 9-element list
3382 with the time analyzed for the local time zone.  Typically used as
3383 follows:
3384
3385     #  0    1    2     3     4    5     6     7     8
3386     ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =
3387                                                 localtime(time);
3388
3389 All list elements are numeric and come straight out of the C `struct
3390 tm'.  C<$sec>, C<$min>, and C<$hour> are the seconds, minutes, and hours
3391 of the specified time.
3392
3393 C<$mday> is the day of the month and C<$mon> the month in
3394 the range C<0..11>, with 0 indicating January and 11 indicating December.
3395 This makes it easy to get a month name from a list:
3396
3397     my @abbr = qw( Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec );
3398     print "$abbr[$mon] $mday";
3399     # $mon=9, $mday=18 gives "Oct 18"
3400
3401 C<$year> contains the number of years since 1900.  To get a 4-digit
3402 year write:
3403
3404     $year += 1900;
3405
3406 To get the last two digits of the year (e.g., "01" in 2001) do:
3407
3408     $year = sprintf("%02d", $year % 100);
3409
3410 C<$wday> is the day of the week, with 0 indicating Sunday and 3 indicating
3411 Wednesday.  C<$yday> is the day of the year, in the range C<0..364>
3412 (or C<0..365> in leap years.)
3413
3414 C<$isdst> is true if the specified time occurs during Daylight Saving
3415 Time, false otherwise.
3416
3417 If EXPR is omitted, C<localtime()> uses the current time (as returned
3418 by time(3)).
3419
3420 In scalar context, C<localtime()> returns the ctime(3) value:
3421
3422     $now_string = localtime;  # e.g., "Thu Oct 13 04:54:34 1994"
3423
3424 The format of this scalar value is B<not> locale-dependent
3425 but built into Perl.  For GMT instead of local
3426 time use the L</gmtime> builtin.  See also the
3427 C<Time::Local> module (for converting seconds, minutes, hours, and such back to
3428 the integer value returned by time()), and the L<POSIX> module's strftime(3)
3429 and mktime(3) functions.
3430
3431 To get somewhat similar but locale-dependent date strings, set up your
3432 locale environment variables appropriately (please see L<perllocale>) and
3433 try for example:
3434
3435     use POSIX qw(strftime);
3436     $now_string = strftime "%a %b %e %H:%M:%S %Y", localtime;
3437     # or for GMT formatted appropriately for your locale:
3438     $now_string = strftime "%a %b %e %H:%M:%S %Y", gmtime;
3439
3440 Note that the C<%a> and C<%b>, the short forms of the day of the week
3441 and the month of the year, may not necessarily be three characters wide.
3442
3443 The L<Time::gmtime> and L<Time::localtime> modules provide a convenient,
3444 by-name access mechanism to the gmtime() and localtime() functions,
3445 respectively.
3446
3447 For a comprehensive date and time representation look at the
3448 L<DateTime> module on CPAN.
3449
3450 Portability issues: L<perlport/localtime>.
3451
3452 =item lock THING
3453 X<lock>
3454
3455 =for Pod::Functions +5.005 get a thread lock on a variable, subroutine, or method
3456
3457 This function places an advisory lock on a shared variable or referenced
3458 object contained in I<THING> until the lock goes out of scope.
3459
3460 The value returned is the scalar itself, if the argument is a scalar, or a
3461 reference, if the argument is a hash, array or subroutine.
3462
3463 lock() is a "weak keyword" : this means that if you've defined a function
3464 by this name (before any calls to it), that function will be called
3465 instead.  If you are not under C<use threads::shared> this does nothing.
3466 See L<threads::shared>.
3467
3468 =item log EXPR
3469 X<log> X<logarithm> X<e> X<ln> X<base>
3470
3471 =item log
3472
3473 =for Pod::Functions retrieve the natural logarithm for a number
3474
3475 Returns the natural logarithm (base I<e>) of EXPR.  If EXPR is omitted,
3476 returns the log of C<$_>.  To get the
3477 log of another base, use basic algebra:
3478 The base-N log of a number is equal to the natural log of that number
3479 divided by the natural log of N.  For example:
3480
3481     sub log10 {
3482         my $n = shift;
3483         return log($n)/log(10);
3484     }
3485
3486 See also L</exp> for the inverse operation.
3487
3488 =item lstat FILEHANDLE
3489 X<lstat>
3490
3491 =item lstat EXPR
3492
3493 =item lstat DIRHANDLE
3494
3495 =item lstat
3496
3497 =for Pod::Functions stat a symbolic link
3498
3499 Does the same thing as the C<stat> function (including setting the
3500 special C<_> filehandle) but stats a symbolic link instead of the file
3501 the symbolic link points to.  If symbolic links are unimplemented on
3502 your system, a normal C<stat> is done.  For much more detailed
3503 information, please see the documentation for C<stat>.
3504
3505 If EXPR is omitted, stats C<$_>.
3506
3507 Portability issues: L<perlport/lstat>.
3508
3509 =item m//
3510
3511 =for Pod::Functions match a string with a regular expression pattern
3512
3513 The match operator.  See L<perlop/"Regexp Quote-Like Operators">.
3514
3515 =item map BLOCK LIST
3516 X<map>
3517
3518 =item map EXPR,LIST
3519
3520 =for Pod::Functions apply a change to a list to get back a new list with the changes
3521
3522 Evaluates the BLOCK or EXPR for each element of LIST (locally setting
3523 C<$_> to each element) and returns the list value composed of the
3524 results of each such evaluation.  In scalar context, returns the
3525 total number of elements so generated.  Evaluates BLOCK or EXPR in
3526 list context, so each element of LIST may produce zero, one, or
3527 more elements in the returned value.
3528
3529     @chars = map(chr, @numbers);
3530
3531 translates a list of numbers to the corresponding characters.
3532
3533     my @squares = map { $_ * $_ } @numbers;
3534
3535 translates a list of numbers to their squared values.
3536
3537     my @squares = map { $_ > 5 ? ($_ * $_) : () } @numbers;
3538
3539 shows that number of returned elements can differ from the number of
3540 input elements.  To omit an element, return an empty list ().
3541 This could also be achieved by writing
3542
3543     my @squares = map { $_ * $_ } grep { $_ > 5 } @numbers;
3544
3545 which makes the intention more clear.
3546
3547 Map always returns a list, which can be
3548 assigned to a hash such that the elements
3549 become key/value pairs.  See L<perldata> for more details.
3550
3551     %hash = map { get_a_key_for($_) => $_ } @array;
3552
3553 is just a funny way to write
3554
3555     %hash = ();
3556     foreach (@array) {
3557         $hash{get_a_key_for($_)} = $_;
3558     }
3559
3560 Note that C<$_> is an alias to the list value, so it can be used to
3561 modify the elements of the LIST.  While this is useful and supported,
3562 it can cause bizarre results if the elements of LIST are not variables.
3563 Using a regular C<foreach> loop for this purpose would be clearer in
3564 most cases.  See also L</grep> for an array composed of those items of
3565 the original list for which the BLOCK or EXPR evaluates to true.
3566
3567 If C<$_> is lexical in the scope where the C<map> appears (because it has
3568 been declared with C<my $_>), then, in addition to being locally aliased to
3569 the list elements, C<$_> keeps being lexical inside the block; that is, it
3570 can't be seen from the outside, avoiding any potential side-effects.
3571
3572 C<{> starts both hash references and blocks, so C<map { ...> could be either
3573 the start of map BLOCK LIST or map EXPR, LIST.  Because Perl doesn't look
3574 ahead for the closing C<}> it has to take a guess at which it's dealing with
3575 based on what it finds just after the
3576 C<{>.  Usually it gets it right, but if it
3577 doesn't it won't realize something is wrong until it gets to the C<}> and
3578 encounters the missing (or unexpected) comma.  The syntax error will be
3579 reported close to the C<}>, but you'll need to change something near the C<{>
3580 such as using a unary C<+> to give Perl some help:
3581
3582     %hash = map {  "\L$_" => 1  } @array  # perl guesses EXPR.  wrong
3583     %hash = map { +"\L$_" => 1  } @array  # perl guesses BLOCK. right
3584     %hash = map { ("\L$_" => 1) } @array  # this also works
3585     %hash = map {  lc($_) => 1  } @array  # as does this.
3586     %hash = map +( lc($_) => 1 ), @array  # this is EXPR and works!
3587
3588     %hash = map  ( lc($_), 1 ),   @array  # evaluates to (1, @array)
3589
3590 or to force an anon hash constructor use C<+{>:
3591
3592    @hashes = map +{ lc($_) => 1 }, @array # EXPR, so needs comma at end
3593
3594 to get a list of anonymous hashes each with only one entry apiece.
3595
3596 =item mkdir FILENAME,MASK
3597 X<mkdir> X<md> X<directory, create>
3598
3599 =item mkdir FILENAME
3600
3601 =item mkdir
3602
3603 =for Pod::Functions create a directory
3604
3605 Creates the directory specified by FILENAME, with permissions
3606 specified by MASK (as modified by C<umask>).  If it succeeds it
3607 returns true; otherwise it returns false and sets C<$!> (errno).
3608 MASK defaults to 0777 if omitted, and FILENAME defaults
3609 to C<$_> if omitted.
3610
3611 In general, it is better to create directories with a permissive MASK
3612 and let the user modify that with their C<umask> than it is to supply
3613 a restrictive MASK and give the user no way to be more permissive.
3614 The exceptions to this rule are when the file or directory should be
3615 kept private (mail files, for instance).  The perlfunc(1) entry on
3616 C<umask> discusses the choice of MASK in more detail.
3617
3618 Note that according to the POSIX 1003.1-1996 the FILENAME may have any
3619 number of trailing slashes.  Some operating and filesystems do not get
3620 this right, so Perl automatically removes all trailing slashes to keep
3621 everyone happy.
3622
3623 To recursively create a directory structure, look at
3624 the C<mkpath> function of the L<File::Path> module.
3625
3626 =item msgctl ID,CMD,ARG
3627 X<msgctl>
3628
3629 =for Pod::Functions SysV IPC message control operations
3630
3631 Calls the System V IPC function msgctl(2).  You'll probably have to say
3632
3633     use IPC::SysV;
3634
3635 first to get the correct constant definitions.  If CMD is C<IPC_STAT>,
3636 then ARG must be a variable that will hold the returned C<msqid_ds>
3637 structure.  Returns like C<ioctl>: the undefined value for error,
3638 C<"0 but true"> for zero, or the actual return value otherwise.  See also
3639 L<perlipc/"SysV IPC"> and the documentation for C<IPC::SysV> and
3640 C<IPC::Semaphore>.
3641
3642 Portability issues: L<perlport/msgctl>.
3643
3644 =item msgget KEY,FLAGS
3645 X<msgget>
3646
3647 =for Pod::Functions get SysV IPC message queue
3648
3649 Calls the System V IPC function msgget(2).  Returns the message queue
3650 id, or C<undef> on error.  See also
3651 L<perlipc/"SysV IPC"> and the documentation for C<IPC::SysV> and
3652 C<IPC::Msg>.
3653
3654 Portability issues: L<perlport/msgget>.
3655
3656 =item msgrcv ID,VAR,SIZE,TYPE,FLAGS
3657 X<msgrcv>
3658
3659 =for Pod::Functions receive a SysV IPC message from a message queue
3660
3661 Calls the System V IPC function msgrcv to receive a message from
3662 message queue ID into variable VAR with a maximum message size of
3663 SIZE.  Note that when a message is received, the message type as a
3664 native long integer will be the first thing in VAR, followed by the
3665 actual message.  This packing may be opened with C<unpack("l! a*")>.
3666 Taints the variable.  Returns true if successful, false 
3667 on error.  See also L<perlipc/"SysV IPC"> and the documentation for
3668 C<IPC::SysV> and C<IPC::SysV::Msg>.
3669
3670 Portability issues: L<perlport/msgrcv>.
3671
3672 =item msgsnd ID,MSG,FLAGS
3673 X<msgsnd>
3674
3675 =for Pod::Functions send a SysV IPC message to a message queue
3676
3677 Calls the System V IPC function msgsnd to send the message MSG to the
3678 message queue ID.  MSG must begin with the native long integer message
3679 type, be followed by the length of the actual message, and then finally
3680 the message itself.  This kind of packing can be achieved with
3681 C<pack("l! a*", $type, $message)>.  Returns true if successful,
3682 false on error.  See also the C<IPC::SysV>
3683 and C<IPC::SysV::Msg> documentation.
3684
3685 Portability issues: L<perlport/msgsnd>.
3686
3687 =item my EXPR
3688 X<my>
3689
3690 =item my TYPE EXPR
3691
3692 =item my EXPR : ATTRS
3693
3694 =item my TYPE EXPR : ATTRS
3695
3696 =for Pod::Functions declare and assign a local variable (lexical scoping)
3697
3698 A C<my> declares the listed variables to be local (lexically) to the
3699 enclosing block, file, or C<eval>.  If more than one value is listed,
3700 the list must be placed in parentheses.
3701
3702 The exact semantics and interface of TYPE and ATTRS are still
3703 evolving.  TYPE is currently bound to the use of the C<fields> pragma,
3704 and attributes are handled using the C<attributes> pragma, or starting
3705 from Perl 5.8.0 also via the C<Attribute::Handlers> module.  See
3706 L<perlsub/"Private Variables via my()"> for details, and L<fields>,
3707 L<attributes>, and L<Attribute::Handlers>.
3708
3709 =item next LABEL
3710 X<next> X<continue>
3711
3712 =item next
3713
3714 =for Pod::Functions iterate a block prematurely
3715
3716 The C<next> command is like the C<continue> statement in C; it starts
3717 the next iteration of the loop:
3718
3719     LINE: while (<STDIN>) {
3720         next LINE if /^#/;  # discard comments
3721         #...
3722     }
3723
3724 Note that if there were a C<continue> block on the above, it would get
3725 executed even on discarded lines.  If LABEL is omitted, the command
3726 refers to the innermost enclosing loop.
3727
3728 C<next> cannot be used to exit a block which returns a value such as
3729 C<eval {}>, C<sub {}>, or C<do {}>, and should not be used to exit
3730 a grep() or map() operation.
3731
3732 Note that a block by itself is semantically identical to a loop
3733 that executes once.  Thus C<next> will exit such a block early.
3734
3735 See also L</continue> for an illustration of how C<last>, C<next>, and
3736 C<redo> work.
3737
3738 =item no MODULE VERSION LIST
3739 X<no declarations>
3740 X<unimporting>
3741
3742 =item no MODULE VERSION
3743
3744 =item no MODULE LIST
3745
3746 =item no MODULE
3747
3748 =item no VERSION
3749
3750 =for Pod::Functions unimport some module symbols or semantics at compile time
3751
3752 See the C<use> function, of which C<no> is the opposite.
3753
3754 =item oct EXPR
3755 X<oct> X<octal> X<hex> X<hexadecimal> X<binary> X<bin>
3756
3757 =item oct
3758
3759 =for Pod::Functions convert a string to an octal number
3760
3761 Interprets EXPR as an octal string and returns the corresponding
3762 value.  (If EXPR happens to start off with C<0x>, interprets it as a
3763 hex string.  If EXPR starts off with C<0b>, it is interpreted as a
3764 binary string.  Leading whitespace is ignored in all three cases.)
3765 The following will handle decimal, binary, octal, and hex in standard
3766 Perl notation:
3767
3768     $val = oct($val) if $val =~ /^0/;
3769
3770 If EXPR is omitted, uses C<$_>.   To go the other way (produce a number
3771 in octal), use sprintf() or printf():
3772
3773     $dec_perms = (stat("filename"))[2] & 07777;
3774     $oct_perm_str = sprintf "%o", $perms;
3775
3776 The oct() function is commonly used when a string such as C<644> needs
3777 to be converted into a file mode, for example.  Although Perl 
3778 automatically converts strings into numbers as needed, this automatic
3779 conversion assumes base 10.
3780
3781 Leading white space is ignored without warning, as too are any trailing 
3782 non-digits, such as a decimal point (C<oct> only handles non-negative
3783 integers, not negative integers or floating point).
3784
3785 =item open FILEHANDLE,EXPR
3786 X<open> X<pipe> X<file, open> X<fopen>
3787
3788 =item open FILEHANDLE,MODE,EXPR
3789
3790 =item open FILEHANDLE,MODE,EXPR,LIST
3791
3792 =item open FILEHANDLE,MODE,REFERENCE
3793
3794 =item open FILEHANDLE
3795
3796 =for Pod::Functions open a file, pipe, or descriptor
3797
3798 Opens the file whose filename is given by EXPR, and associates it with
3799 FILEHANDLE.
3800
3801 Simple examples to open a file for reading:
3802
3803     open(my $fh, "<", "input.txt") 
3804         or die "cannot open < input.txt: $!";
3805
3806 and for writing:
3807
3808     open(my $fh, ">", "output.txt") 
3809         or die "cannot open > output.txt: $!";
3810
3811 (The following is a comprehensive reference to open(): for a gentler
3812 introduction you may consider L<perlopentut>.)
3813
3814 If FILEHANDLE is an undefined scalar variable (or array or hash element), a
3815 new filehandle is autovivified, meaning that the variable is assigned a
3816 reference to a newly allocated anonymous filehandle.  Otherwise if
3817 FILEHANDLE is an expression, its value is the real filehandle.  (This is
3818 considered a symbolic reference, so C<use strict "refs"> should I<not> be
3819 in effect.)
3820
3821 If EXPR is omitted, the global (package) scalar variable of the same
3822 name as the FILEHANDLE contains the filename.  (Note that lexical 
3823 variables--those declared with C<my> or C<state>--will not work for this
3824 purpose; so if you're using C<my> or C<state>, specify EXPR in your
3825 call to open.)
3826
3827 If three (or more) arguments are specified, the open mode (including
3828 optional encoding) in the second argument are distinct from the filename in
3829 the third.  If MODE is C<< < >> or nothing, the file is opened for input.
3830 If MODE is C<< > >>, the file is opened for output, with existing files
3831 first being truncated ("clobbered") and nonexisting files newly created.
3832 If MODE is C<<< >> >>>, the file is opened for appending, again being
3833 created if necessary.
3834
3835 You can put a C<+> in front of the C<< > >> or C<< < >> to
3836 indicate that you want both read and write access to the file; thus
3837 C<< +< >> is almost always preferred for read/write updates--the 
3838 C<< +> >> mode would clobber the file first.  You can't usually use
3839 either read-write mode for updating textfiles, since they have
3840 variable-length records.  See the B<-i> switch in L<perlrun> for a
3841 better approach.  The file is created with permissions of C<0666>
3842 modified by the process's C<umask> value.
3843
3844 These various prefixes correspond to the fopen(3) modes of C<r>,
3845 C<r+>, C<w>, C<w+>, C<a>, and C<a+>.
3846
3847 In the one- and two-argument forms of the call, the mode and filename
3848 should be concatenated (in that order), preferably separated by white
3849 space.  You can--but shouldn't--omit the mode in these forms when that mode
3850 is C<< < >>.  It is always safe to use the two-argument form of C<open> if
3851 the filename argument is a known literal.
3852
3853 For three or more arguments if MODE is C<|->, the filename is
3854 interpreted as a command to which output is to be piped, and if MODE
3855 is C<-|>, the filename is interpreted as a command that pipes
3856 output to us.  In the two-argument (and one-argument) form, one should
3857 replace dash (C<->) with the command.
3858 See L<perlipc/"Using open() for IPC"> for more examples of this.
3859 (You are not allowed to C<open> to a command that pipes both in I<and>
3860 out, but see L<IPC::Open2>, L<IPC::Open3>, and
3861 L<perlipc/"Bidirectional Communication with Another Process"> for
3862 alternatives.)
3863
3864 In the form of pipe opens taking three or more arguments, if LIST is specified
3865 (extra arguments after the command name) then LIST becomes arguments
3866 to the command invoked if the platform supports it.  The meaning of
3867 C<open> with more than three arguments for non-pipe modes is not yet
3868 defined, but experimental "layers" may give extra LIST arguments
3869 meaning.
3870
3871 In the two-argument (and one-argument) form, opening C<< <- >> 
3872 or C<-> opens STDIN and opening C<< >- >> opens STDOUT.
3873
3874 You may (and usually should) use the three-argument form of open to specify
3875 I/O layers (sometimes referred to as "disciplines") to apply to the handle
3876 that affect how the input and output are processed (see L<open> and
3877 L<PerlIO> for more details).  For example:
3878
3879   open(my $fh, "<:encoding(UTF-8)", "filename")
3880     || die "can't open UTF-8 encoded filename: $!";
3881
3882 opens the UTF8-encoded file containing Unicode characters;
3883 see L<perluniintro>.  Note that if layers are specified in the
3884 three-argument form, then default layers stored in ${^OPEN} (see L<perlvar>;
3885 usually set by the B<open> pragma or the switch B<-CioD>) are ignored.
3886 Those layers will also be ignored if you specifying a colon with no name
3887 following it.  In that case the default layer for the operating system
3888 (:raw on Unix, :crlf on Windows) is used.
3889
3890 Open returns nonzero on success, the undefined value otherwise.  If
3891 the C<open> involved a pipe, the return value happens to be the pid of
3892 the subprocess.
3893
3894 If you're running Perl on a system that distinguishes between text
3895 files and binary files, then you should check out L</binmode> for tips
3896 for dealing with this.  The key distinction between systems that need
3897 C<binmode> and those that don't is their text file formats.  Systems
3898 like Unix, Mac OS, and Plan 9, that end lines with a single
3899 character and encode that character in C as C<"\n"> do not
3900 need C<binmode>.  The rest need it.
3901
3902 When opening a file, it's seldom a good idea to continue 
3903 if the request failed, so C<open> is frequently used with
3904 C<die>.  Even if C<die> won't do what you want (say, in a CGI script,
3905 where you want to format a suitable error message (but there are
3906 modules that can help with that problem)) always check
3907 the return value from opening a file.  
3908
3909 As a special case the three-argument form with a read/write mode and the third
3910 argument being C<undef>:
3911
3912     open(my $tmp, "+>", undef) or die ...
3913
3914 opens a filehandle to an anonymous temporary file.  Also using C<< +< >>
3915 works for symmetry, but you really should consider writing something
3916 to the temporary file first.  You will need to seek() to do the
3917 reading.
3918
3919 Since v5.8.0, Perl has built using PerlIO by default.  Unless you've
3920 changed this (such as building Perl with C<Configure -Uuseperlio>), you can
3921 open filehandles directly to Perl scalars via:
3922
3923     open($fh, ">", \$variable) || ..
3924
3925 To (re)open C<STDOUT> or C<STDERR> as an in-memory file, close it first:
3926
3927     close STDOUT;
3928     open(STDOUT, ">", \$variable)
3929         or die "Can't open STDOUT: $!";
3930
3931 General examples:
3932
3933     $ARTICLE = 100;
3934     open(ARTICLE) or die "Can't find article $ARTICLE: $!\n";
3935     while (<ARTICLE>) {...
3936
3937     open(LOG, ">>/usr/spool/news/twitlog");  # (log is reserved)
3938     # if the open fails, output is discarded
3939
3940     open(my $dbase, "+<", "dbase.mine")      # open for update
3941         or die "Can't open 'dbase.mine' for update: $!";
3942
3943     open(my $dbase, "+<dbase.mine")          # ditto
3944         or die "Can't open 'dbase.mine' for update: $!";
3945
3946     open(ARTICLE, "-|", "caesar <$article")  # decrypt article
3947         or die "Can't start caesar: $!";
3948
3949     open(ARTICLE, "caesar <$article |")      # ditto
3950         or die "Can't start caesar: $!";
3951
3952     open(EXTRACT, "|sort >Tmp$$")            # $$ is our process id
3953         or die "Can't start sort: $!";
3954
3955     # in-memory files
3956     open(MEMORY, ">", \$var)
3957         or die "Can't open memory file: $!";
3958     print MEMORY "foo!\n";                   # output will appear in $var
3959
3960     # process argument list of files along with any includes
3961
3962     foreach $file (@ARGV) {
3963         process($file, "fh00");
3964     }
3965
3966     sub process {
3967         my($filename, $input) = @_;
3968         $input++;    # this is a string increment
3969         unless (open($input, "<", $filename)) {
3970             print STDERR "Can't open $filename: $!\n";
3971             return;
3972         }
3973
3974         local $_;
3975         while (<$input>) {    # note use of indirection
3976             if (/^#include "(.*)"/) {
3977                 process($1, $input);
3978                 next;
3979             }
3980             #...          # whatever
3981         }
3982     }
3983
3984 See L<perliol> for detailed info on PerlIO.
3985
3986 You may also, in the Bourne shell tradition, specify an EXPR beginning
3987 with C<< >& >>, in which case the rest of the string is interpreted
3988 as the name of a filehandle (or file descriptor, if numeric) to be
3989 duped (as C<dup(2)>) and opened.  You may use C<&> after C<< > >>,
3990 C<<< >> >>>, C<< < >>, C<< +> >>, C<<< +>> >>>, and C<< +< >>.
3991 The mode you specify should match the mode of the original filehandle.
3992 (Duping a filehandle does not take into account any existing contents
3993 of IO buffers.)  If you use the three-argument
3994 form, then you can pass either a
3995 number, the name of a filehandle, or the normal "reference to a glob".
3996
3997 Here is a script that saves, redirects, and restores C<STDOUT> and
3998 C<STDERR> using various methods:
3999
4000     #!/usr/bin/perl
4001     open(my $oldout, ">&STDOUT")     or die "Can't dup STDOUT: $!";
4002     open(OLDERR,     ">&", \*STDERR) or die "Can't dup STDERR: $!";
4003
4004     open(STDOUT, '>', "foo.out") or die "Can't redirect STDOUT: $!";
4005     open(STDERR, ">&STDOUT")     or die "Can't dup STDOUT: $!";
4006
4007     select STDERR; $| = 1;  # make unbuffered
4008     select STDOUT; $| = 1;  # make unbuffered
4009
4010     print STDOUT "stdout 1\n";  # this works for
4011     print STDERR "stderr 1\n";  # subprocesses too
4012
4013     open(STDOUT, ">&", $oldout) or die "Can't dup \$oldout: $!";
4014     open(STDERR, ">&OLDERR")    or die "Can't dup OLDERR: $!";
4015
4016     print STDOUT "stdout 2\n";
4017     print STDERR "stderr 2\n";
4018
4019 If you specify C<< '<&=X' >>, where C<X> is a file descriptor number
4020 or a filehandle, then Perl will do an equivalent of C's C<fdopen> of
4021 that file descriptor (and not call C<dup(2)>); this is more
4022 parsimonious of file descriptors.  For example:
4023
4024     # open for input, reusing the fileno of $fd
4025     open(FILEHANDLE, "<&=$fd")
4026
4027 or
4028
4029     open(FILEHANDLE, "<&=", $fd)
4030
4031 or
4032
4033     # open for append, using the fileno of OLDFH
4034     open(FH, ">>&=", OLDFH)
4035
4036 or
4037
4038     open(FH, ">>&=OLDFH")
4039
4040 Being parsimonious on filehandles is also useful (besides being
4041 parsimonious) for example when something is dependent on file
4042 descriptors, like for example locking using flock().  If you do just
4043 C<< open(A, ">>&B") >>, the filehandle A will not have the same file
4044 descriptor as B, and therefore flock(A) will not flock(B) nor vice
4045 versa.  But with C<< open(A, ">>&=B") >>, the filehandles will share
4046 the same underlying system file descriptor.
4047
4048 Note that under Perls older than 5.8.0, Perl uses the standard C library's'
4049 fdopen() to implement the C<=> functionality.  On many Unix systems,
4050 fdopen() fails when file descriptors exceed a certain value, typically 255.
4051 For Perls 5.8.0 and later, PerlIO is (most often) the default.
4052
4053 You can see whether your Perl was built with PerlIO by running C<perl -V>
4054 and looking for the C<useperlio=> line.  If C<useperlio> is C<define>, you
4055 have PerlIO; otherwise you don't.
4056
4057 If you open a pipe on the command C<-> (that is, specify either C<|-> or C<-|>
4058 with the one- or two-argument forms of C<open>), 
4059 an implicit C<fork> is done, so C<open> returns twice: in the parent
4060 process it returns the pid
4061 of the child process, and in the child process it returns (a defined) C<0>.
4062 Use C<defined($pid)> or C<//> to determine whether the open was successful.
4063
4064 For example, use either
4065
4066     $child_pid = open(FROM_KID, "-|")   // die "can't fork: $!";
4067
4068 or
4069
4070     $child_pid = open(TO_KID,   "|-")   // die "can't fork: $!";
4071
4072 followed by 
4073
4074     if ($child_pid) {
4075         # am the parent:
4076         # either write TO_KID or else read FROM_KID
4077         ...
4078         wait $child_pid;
4079     } else {
4080         # am the child; use STDIN/STDOUT normally
4081         ...
4082         exit;
4083     } 
4084
4085 The filehandle behaves normally for the parent, but I/O to that
4086 filehandle is piped from/to the STDOUT/STDIN of the child process.
4087 In the child process, the filehandle isn't opened--I/O happens from/to
4088 the new STDOUT/STDIN.  Typically this is used like the normal
4089 piped open when you want to exercise more control over just how the
4090 pipe command gets executed, such as when running setuid and
4091 you don't want to have to scan shell commands for metacharacters.
4092
4093 The following blocks are more or less equivalent:
4094
4095     open(FOO, "|tr '[a-z]' '[A-Z]'");
4096     open(FOO, "|-", "tr '[a-z]' '[A-Z]'");
4097     open(FOO, "|-") || exec 'tr', '[a-z]', '[A-Z]';
4098     open(FOO, "|-", "tr", '[a-z]', '[A-Z]');
4099
4100     open(FOO, "cat -n '$file'|");
4101     open(FOO, "-|", "cat -n '$file'");
4102     open(FOO, "-|") || exec "cat", "-n", $file;
4103     open(FOO, "-|", "cat", "-n", $file);
4104
4105 The last two examples in each block show the pipe as "list form", which is
4106 not yet supported on all platforms.  A good rule of thumb is that if
4107 your platform has a real C<fork()> (in other words, if your platform is
4108 Unix, including Linux and MacOS X), you can use the list form.  You would 
4109 want to use the list form of the pipe so you can pass literal arguments
4110 to the command without risk of the shell interpreting any shell metacharacters
4111 in them.  However, this also bars you from opening pipes to commands
4112 that intentionally contain shell metacharacters, such as:
4113
4114     open(FOO, "|cat -n | expand -4 | lpr")
4115         // die "Can't open pipeline to lpr: $!";
4116
4117 See L<perlipc/"Safe Pipe Opens"> for more examples of this.
4118
4119 Beginning with v5.6.0, Perl will attempt to flush all files opened for
4120 output before any operation that may do a fork, but this may not be
4121 supported on some platforms (see L<perlport>).  To be safe, you may need
4122 to set C<$|> ($AUTOFLUSH in English) or call the C<autoflush()> method
4123 of C<IO::Handle> on any open handles.
4124
4125 On systems that support a close-on-exec flag on files, the flag will
4126 be set for the newly opened file descriptor as determined by the value
4127 of C<$^F>.  See L<perlvar/$^F>.
4128
4129 Closing any piped filehandle causes the parent process to wait for the
4130 child to finish, then returns the status value in C<$?> and
4131 C<${^CHILD_ERROR_NATIVE}>.
4132
4133 The filename passed to the one- and two-argument forms of open() will
4134 have leading and trailing whitespace deleted and normal
4135 redirection characters honored.  This property, known as "magic open",
4136 can often be used to good effect.  A user could specify a filename of
4137 F<"rsh cat file |">, or you could change certain filenames as needed:
4138
4139     $filename =~ s/(.*\.gz)\s*$/gzip -dc < $1|/;
4140     open(FH, $filename) or die "Can't open $filename: $!";
4141
4142 Use the three-argument form to open a file with arbitrary weird characters in it,
4143
4144     open(FOO, "<", $file)
4145         || die "can't open < $file: $!";
4146
4147 otherwise it's necessary to protect any leading and trailing whitespace:
4148
4149     $file =~ s#^(\s)#./$1#;
4150     open(FOO, "< $file\0")
4151         || die "open failed: $!";
4152
4153 (this may not work on some bizarre filesystems).  One should
4154 conscientiously choose between the I<magic> and I<three-argument> form
4155 of open():
4156
4157     open(IN, $ARGV[0]) || die "can't open $ARGV[0]: $!";
4158
4159 will allow the user to specify an argument of the form C<"rsh cat file |">,
4160 but will not work on a filename that happens to have a trailing space, while
4161
4162     open(IN, "<", $ARGV[0])
4163         || die "can't open < $ARGV[0]: $!";
4164
4165 will have exactly the opposite restrictions.
4166
4167 If you want a "real" C C<open> (see L<open(2)> on your system), then you
4168 should use the C<sysopen> function, which involves no such magic (but may
4169 use subtly different filemodes than Perl open(), which is mapped to C
4170 fopen()).  This is another way to protect your filenames from
4171 interpretation.  For example:
4172
4173     use IO::Handle;
4174     sysopen(HANDLE, $path, O_RDWR|O_CREAT|O_EXCL)
4175         or die "sysopen $path: $!";
4176     $oldfh = select(HANDLE); $| = 1; select($oldfh);
4177     print HANDLE "stuff $$\n";
4178     seek(HANDLE, 0, 0);
4179     print "File contains: ", <HANDLE>;
4180
4181 Using the constructor from the C<IO::Handle> package (or one of its
4182 subclasses, such as C<IO::File> or C<IO::Socket>), you can generate anonymous
4183 filehandles that have the scope of the variables used to hold them, then
4184 automatically (but silently) close once their reference counts become
4185 zero, typically at scope exit:
4186
4187     use IO::File;
4188     #...
4189     sub read_myfile_munged {
4190         my $ALL = shift;
4191         # or just leave it undef to autoviv
4192         my $handle = IO::File->new;
4193         open($handle, "<", "myfile") or die "myfile: $!";
4194         $first = <$handle>
4195             or return ();     # Automatically closed here.
4196         mung($first) or die "mung failed";  # Or here.
4197         return (first, <$handle>) if $ALL;  # Or here.
4198         return $first;                      # Or here.
4199     }
4200
4201 B<WARNING:> The previous example has a bug because the automatic
4202 close that happens when the refcount on C<handle> does not
4203 properly detect and report failures.  I<Always> close the handle
4204 yourself and inspect the return value.
4205
4206     close($handle) 
4207         || warn "close failed: $!";
4208
4209 See L</seek> for some details about mixing reading and writing.
4210
4211 Portability issues: L<perlport/open>.
4212
4213 =item opendir DIRHANDLE,EXPR
4214 X<opendir>
4215
4216 =for Pod::Functions open a directory
4217
4218 Opens a directory named EXPR for processing by C<readdir>, C<telldir>,
4219 C<seekdir>, C<rewinddir>, and C<closedir>.  Returns true if successful.
4220 DIRHANDLE may be an expression whose value can be used as an indirect
4221 dirhandle, usually the real dirhandle name.  If DIRHANDLE is an undefined
4222 scalar variable (or array or hash element), the variable is assigned a
4223 reference to a new anonymous dirhandle; that is, it's autovivified.
4224 DIRHANDLEs have their own namespace separate from FILEHANDLEs.
4225
4226 See the example at C<readdir>.
4227
4228 =item ord EXPR
4229 X<ord> X<encoding>
4230
4231 =item ord
4232
4233 =for Pod::Functions find a character's numeric representation
4234
4235 Returns the numeric value of the first character of EXPR.
4236 If EXPR is an empty string, returns 0.  If EXPR is omitted, uses C<$_>.
4237 (Note I<character>, not byte.)
4238
4239 For the reverse, see L</chr>.
4240 See L<perlunicode> for more about Unicode.
4241
4242 =item our EXPR
4243 X<our> X<global>
4244
4245 =item our TYPE EXPR
4246
4247 =item our EXPR : ATTRS
4248
4249 =item our TYPE EXPR : ATTRS
4250
4251 =for Pod::Functions +5.6.0 declare and assign a package variable (lexical scoping)
4252
4253 C<our> associates a simple name with a package variable in the current
4254 package for use within the current scope.  When C<use strict 'vars'> is in
4255 effect, C<our> lets you use declared global variables without qualifying
4256 them with package names, within the lexical scope of the C<our> declaration.
4257 In this way C<our> differs from C<use vars>, which is package-scoped.
4258
4259 Unlike C<my> or C<state>, which allocates storage for a variable and
4260 associates a simple name with that storage for use within the current
4261 scope, C<our> associates a simple name with a package (read: global)
4262 variable in the current package, for use within the current lexical scope.
4263 In other words, C<our> has the same scoping rules as C<my> or C<state>, but
4264 does not necessarily create a variable.
4265
4266 If more than one value is listed, the list must be placed
4267 in parentheses.
4268
4269     our $foo;
4270     our($bar, $baz);
4271
4272 An C<our> declaration declares a global variable that will be visible
4273 across its entire lexical scope, even across package boundaries.  The
4274 package in which the variable is entered is determined at the point
4275 of the declaration, not at the point of use.  This means the following
4276 behavior holds:
4277
4278     package Foo;
4279     our $bar;      # declares $Foo::bar for rest of lexical scope
4280     $bar = 20;
4281
4282     package Bar;
4283     print $bar;    # prints 20, as it refers to $Foo::bar
4284
4285 Multiple C<our> declarations with the same name in the same lexical
4286 scope are allowed if they are in different packages.  If they happen
4287 to be in the same package, Perl will emit warnings if you have asked
4288 for them, just like multiple C<my> declarations.  Unlike a second
4289 C<my> declaration, which will bind the name to a fresh variable, a
4290 second C<our> declaration in the same package, in the same scope, is
4291 merely redundant.
4292
4293     use warnings;
4294     package Foo;
4295     our $bar;      # declares $Foo::bar for rest of lexical scope
4296     $bar = 20;
4297
4298     package Bar;
4299     our $bar = 30; # declares $Bar::bar for rest of lexical scope
4300     print $bar;    # prints 30
4301
4302     our $bar;      # emits warning but has no other effect
4303     print $bar;    # still prints 30
4304
4305 An C<our> declaration may also have a list of attributes associated
4306 with it.
4307
4308 The exact semantics and interface of TYPE and ATTRS are still
4309 evolving.  TYPE is currently bound to the use of the C<fields> pragma,
4310 and attributes are handled using the C<attributes> pragma, or, starting
4311 from Perl 5.8.0, also via the C<Attribute::Handlers> module.  See
4312 L<perlsub/"Private Variables via my()"> for details, and L<fields>,
4313 L<attributes>, and L<Attribute::Handlers>.
4314
4315 =item pack TEMPLATE,LIST
4316 X<pack>
4317
4318 =for Pod::Functions convert a list into a binary representation
4319
4320 Takes a LIST of values and converts it into a string using the rules
4321 given by the TEMPLATE.  The resulting string is the concatenation of
4322 the converted values.  Typically, each converted value looks
4323 like its machine-level representation.  For example, on 32-bit machines
4324 an integer may be represented by a sequence of 4 bytes, which  will in
4325 Perl be presented as a string that's 4 characters long. 
4326
4327 See L<perlpacktut> for an introduction to this function.
4328
4329 The TEMPLATE is a sequence of characters that give the order and type
4330 of values, as follows:
4331
4332     a  A string with arbitrary binary data, will be null padded.
4333     A  A text (ASCII) string, will be space padded.
4334     Z  A null-terminated (ASCIZ) string, will be null padded.
4335
4336     b  A bit string (ascending bit order inside each byte,
4337        like vec()).
4338     B  A bit string (descending bit order inside each byte).
4339     h  A hex string (low nybble first).
4340     H  A hex string (high nybble first).
4341
4342     c  A signed char (8-bit) value.
4343     C  An unsigned char (octet) value.
4344     W  An unsigned char value (can be greater than 255).
4345
4346     s  A signed short (16-bit) value.
4347     S  An unsigned short value.
4348
4349     l  A signed long (32-bit) value.
4350     L  An unsigned long value.
4351
4352     q  A signed quad (64-bit) value.
4353     Q  An unsigned quad value.
4354          (Quads are available only if your system supports 64-bit
4355           integer values _and_ if Perl has been compiled to support
4356           those.  Raises an exception otherwise.)
4357
4358     i  A signed integer value.
4359     I  A unsigned integer value.
4360          (This 'integer' is _at_least_ 32 bits wide.  Its exact
4361           size depends on what a local C compiler calls 'int'.)
4362
4363     n  An unsigned short (16-bit) in "network" (big-endian) order.
4364     N  An unsigned long (32-bit) in "network" (big-endian) order.
4365     v  An unsigned short (16-bit) in "VAX" (little-endian) order.
4366     V  An unsigned long (32-bit) in "VAX" (little-endian) order.
4367
4368     j  A Perl internal signed integer value (IV).
4369     J  A Perl internal unsigned integer value (UV).
4370
4371     f  A single-precision float in native format.
4372     d  A double-precision float in native format.
4373
4374     F  A Perl internal floating-point value (NV) in native format
4375     D  A float of long-double precision in native format.
4376          (Long doubles are available only if your system supports
4377           long double values _and_ if Perl has been compiled to
4378           support those.  Raises an exception otherwise.)
4379
4380     p  A pointer to a null-terminated string.
4381     P  A pointer to a structure (fixed-length string).
4382
4383     u  A uuencoded string.
4384     U  A Unicode character number.  Encodes to a character in char-
4385        acter mode and UTF-8 (or UTF-EBCDIC in EBCDIC platforms) in
4386        byte mode.
4387
4388     w  A BER compressed integer (not an ASN.1 BER, see perlpacktut
4389        for details).  Its bytes represent an unsigned integer in
4390        base 128, most significant digit first, with as few digits
4391        as possible.  Bit eight (the high bit) is set on each byte
4392        except the last.
4393
4394     x  A null byte (a.k.a ASCII NUL, "\000", chr(0))
4395     X  Back up a byte.
4396     @  Null-fill or truncate to absolute position, counted from the
4397        start of the innermost ()-group.
4398     .  Null-fill or truncate to absolute position specified by
4399        the value.
4400     (  Start of a ()-group.
4401
4402 One or more modifiers below may optionally follow certain letters in the
4403 TEMPLATE (the second column lists letters for which the modifier is valid):
4404
4405     !   sSlLiI     Forces native (short, long, int) sizes instead
4406                    of fixed (16-/32-bit) sizes.
4407
4408         xX         Make x and X act as alignment commands.
4409
4410         nNvV       Treat integers as signed instead of unsigned.
4411
4412         @.         Specify position as byte offset in the internal
4413                    representation of the packed string.  Efficient
4414                    but dangerous.
4415
4416     >   sSiIlLqQ   Force big-endian byte-order on the type.
4417         jJfFdDpP   (The "big end" touches the construct.)
4418
4419     <   sSiIlLqQ   Force little-endian byte-order on the type.
4420         jJfFdDpP   (The "little end" touches the construct.)
4421
4422 The C<< > >> and C<< < >> modifiers can also be used on C<()> groups 
4423 to force a particular byte-order on all components in that group, 
4424 including all its subgroups.
4425
4426 The following rules apply:
4427
4428 =over 
4429
4430 =item *
4431
4432 Each letter may optionally be followed by a number indicating the repeat
4433 count.  A numeric repeat count may optionally be enclosed in brackets, as
4434 in C<pack("C[80]", @arr)>.  The repeat count gobbles that many values from
4435 the LIST when used with all format types other than C<a>, C<A>, C<Z>, C<b>,
4436 C<B>, C<h>, C<H>, C<@>, C<.>, C<x>, C<X>, and C<P>, where it means
4437 something else, described below.  Supplying a C<*> for the repeat count
4438 instead of a number means to use however many items are left, except for:
4439
4440 =over 
4441
4442 =item * 
4443
4444 C<@>, C<x>, and C<X>, where it is equivalent to C<0>.
4445
4446 =item * 
4447
4448 <.>, where it means relative to the start of the string.
4449
4450 =item * 
4451
4452 C<u>, where it is equivalent to 1 (or 45, which here is equivalent).
4453
4454 =back 
4455
4456 One can replace a numeric repeat count with a template letter enclosed in
4457 brackets to use the packed byte length of the bracketed template for the
4458 repeat count.
4459
4460 For example, the template C<x[L]> skips as many bytes as in a packed long,
4461 and the template C<"$t X[$t] $t"> unpacks twice whatever $t (when
4462 variable-expanded) unpacks.  If the template in brackets contains alignment
4463 commands (such as C<x![d]>), its packed length is calculated as if the
4464 start of the template had the maximal possible alignment.
4465
4466 When used with C<Z>, a C<*> as the repeat count is guaranteed to add a
4467 trailing null byte, so the resulting string is always one byte longer than
4468 the byte length of the item itself.
4469
4470 When used with C<@>, the repeat count represents an offset from the start
4471 of the innermost C<()> group.
4472
4473 When used with C<.>, the repeat count determines the starting position to
4474 calculate the value offset as follows:
4475
4476 =over 
4477
4478 =item *
4479
4480 If the repeat count is C<0>, it's relative to the current position.
4481
4482 =item *
4483
4484 If the repeat count is C<*>, the offset is relative to the start of the
4485 packed string.
4486
4487 =item *
4488
4489 And if it's an integer I<n>, the offset is relative to the start of the
4490 I<n>th innermost C<( )> group, or to the start of the string if I<n> is
4491 bigger then the group level.
4492
4493 =back
4494
4495 The repeat count for C<u> is interpreted as the maximal number of bytes
4496 to encode per line of output, with 0, 1 and 2 replaced by 45.  The repeat 
4497 count should not be more than 65.
4498
4499 =item *
4500
4501 The C<a>, C<A>, and C<Z> types gobble just one value, but pack it as a
4502 string of length count, padding with nulls or spaces as needed.  When
4503 unpacking, C<A> strips trailing whitespace and nulls, C<Z> strips everything
4504 after the first null, and C<a> returns data with no stripping at all.
4505
4506 If the value to pack is too long, the result is truncated.  If it's too
4507 long and an explicit count is provided, C<Z> packs only C<$count-1> bytes,
4508 followed by a null byte.  Thus C<Z> always packs a trailing null, except
4509 when the count is 0.
4510
4511 =item *
4512
4513 Likewise, the C<b> and C<B> formats pack a string that's that many bits long.
4514 Each such format generates 1 bit of the result.  These are typically followed
4515 by a repeat count like C<B8> or C<B64>.
4516
4517 Each result bit is based on the least-significant bit of the corresponding
4518 input character, i.e., on C<ord($char)%2>.  In particular, characters C<"0">
4519 and C<"1"> generate bits 0 and 1, as do characters C<"\000"> and C<"\001">.
4520
4521 Starting from the beginning of the input string, each 8-tuple
4522 of characters is converted to 1 character of output.  With format C<b>,
4523 the first character of the 8-tuple determines the least-significant bit of a
4524 character; with format C<B>, it determines the most-significant bit of
4525 a character.
4526
4527 If the length of the input string is not evenly divisible by 8, the
4528 remainder is packed as if the input string were padded by null characters
4529 at the end.  Similarly during unpacking, "extra" bits are ignored.
4530
4531 If the input string is longer than needed, remaining characters are ignored.
4532
4533 A C<*> for the repeat count uses all characters of the input field.  
4534 On unpacking, bits are converted to a string of C<0>s and C<1>s.
4535
4536 =item *
4537
4538 The C<h> and C<H> formats pack a string that many nybbles (4-bit groups,
4539 representable as hexadecimal digits, C<"0".."9"> C<"a".."f">) long.
4540
4541 For each such format, pack() generates 4 bits of result.
4542 With non-alphabetical characters, the result is based on the 4 least-significant
4543 bits of the input character, i.e., on C<ord($char)%16>.  In particular,
4544 characters C<"0"> and C<"1"> generate nybbles 0 and 1, as do bytes
4545 C<"\000"> and C<"\001">.  For characters C<"a".."f"> and C<"A".."F">, the result
4546 is compatible with the usual hexadecimal digits, so that C<"a"> and
4547 C<"A"> both generate the nybble C<0xA==10>.  Use only these specific hex 
4548 characters with this format.
4549
4550 Starting from the beginning of the template to pack(), each pair
4551 of characters is converted to 1 character of output.  With format C<h>, the
4552 first character of the pair determines the least-significant nybble of the
4553 output character; with format C<H>, it determines the most-significant
4554 nybble.
4555
4556 If the length of the input string is not even, it behaves as if padded by
4557 a null character at the end.  Similarly, "extra" nybbles are ignored during
4558 unpacking.
4559
4560 If the input string is longer than needed, extra characters are ignored.
4561
4562 A C<*> for the repeat count uses all characters of the input field.  For
4563 unpack(), nybbles are converted to a string of hexadecimal digits.
4564
4565 =item *
4566
4567 The C<p> format packs a pointer to a null-terminated string.  You are
4568 responsible for ensuring that the string is not a temporary value, as that
4569 could potentially get deallocated before you got around to using the packed
4570 result.  The C<P> format packs a pointer to a structure of the size indicated
4571 by the length.  A null pointer is created if the corresponding value for
4572 C<p> or C<P> is C<undef>; similarly with unpack(), where a null pointer
4573 unpacks into C<undef>.
4574
4575 If your system has a strange pointer size--meaning a pointer is neither as
4576 big as an int nor as big as a long--it may not be possible to pack or
4577 unpack pointers in big- or little-endian byte order.  Attempting to do
4578 so raises an exception.
4579
4580 =item *
4581
4582 The C</> template character allows packing and unpacking of a sequence of
4583 items where the packed structure contains a packed item count followed by
4584 the packed items themselves.  This is useful when the structure you're
4585 unpacking has encoded the sizes or repeat counts for some of its fields
4586 within the structure itself as separate fields.
4587
4588 For C<pack>, you write I<length-item>C</>I<sequence-item>, and the
4589 I<length-item> describes how the length value is packed.  Formats likely
4590 to be of most use are integer-packing ones like C<n> for Java strings,
4591 C<w> for ASN.1 or SNMP, and C<N> for Sun XDR.
4592
4593 For C<pack>, I<sequence-item> may have a repeat count, in which case
4594 the minimum of that and the number of available items is used as the argument
4595 for I<length-item>.  If it has no repeat count or uses a '*', the number
4596 of available items is used.
4597
4598 For C<unpack>, an internal stack of integer arguments unpacked so far is
4599 used.  You write C</>I<sequence-item> and the repeat count is obtained by
4600 popping off the last element from the stack.  The I<sequence-item> must not
4601 have a repeat count.
4602
4603 If I<sequence-item> refers to a string type (C<"A">, C<"a">, or C<"Z">),
4604 the I<length-item> is the string length, not the number of strings.  With
4605 an explicit repeat count for pack, the packed string is adjusted to that
4606 length.  For example:
4607
4608  This code:                              gives this result:
4609  
4610   unpack("W/a", "\004Gurusamy")          ("Guru")
4611   unpack("a3/A A*", "007 Bond  J ")      (" Bond", "J")
4612   unpack("a3 x2 /A A*", "007: Bond, J.") ("Bond, J", ".")
4613
4614   pack("n/a* w/a","hello,","world")     "\000\006hello,\005world"
4615   pack("a/W2", ord("a") .. ord("z"))    "2ab"
4616
4617 The I<length-item> is not returned explicitly from C<unpack>.
4618
4619 Supplying a count to the I<length-item> format letter is only useful with
4620 C<A>, C<a>, or C<Z>.  Packing with a I<length-item> of C<a> or C<Z> may
4621 introduce C<"\000"> characters, which Perl does not regard as legal in
4622 numeric strings.
4623
4624 =item *
4625
4626 The integer types C<s>, C<S>, C<l>, and C<L> may be
4627 followed by a C<!> modifier to specify native shorts or
4628 longs.  As shown in the example above, a bare C<l> means
4629 exactly 32 bits, although the native C<long> as seen by the local C compiler
4630 may be larger.  This is mainly an issue on 64-bit platforms.  You can
4631 see whether using C<!> makes any difference this way:
4632
4633     printf "format s is %d, s! is %d\n", 
4634         length pack("s"), length pack("s!");
4635
4636     printf "format l is %d, l! is %d\n", 
4637         length pack("l"), length pack("l!");
4638
4639
4640 C<i!> and C<I!> are also allowed, but only for completeness' sake:
4641 they are identical to C<i> and C<I>.
4642
4643 The actual sizes (in bytes) of native shorts, ints, longs, and long
4644 longs on the platform where Perl was built are also available from
4645 the command line:
4646
4647     $ perl -V:{short,int,long{,long}}size
4648     shortsize='2';
4649     intsize='4';
4650     longsize='4';
4651     longlongsize='8';
4652
4653 or programmatically via the C<Config> module:
4654
4655        use Config;
4656        print $Config{shortsize},    "\n";
4657        print $Config{intsize},      "\n";
4658        print $Config{longsize},     "\n";
4659        print $Config{longlongsize}, "\n";
4660
4661 C<$Config{longlongsize}> is undefined on systems without 
4662 long long support.
4663
4664 =item *
4665
4666 The integer formats C<s>, C<S>, C<i>, C<I>, C<l>, C<L>, C<j>, and C<J> are
4667 inherently non-portable between processors and operating systems because
4668 they obey native byteorder and endianness.  For example, a 4-byte integer
4669 0x12345678 (305419896 decimal) would be ordered natively (arranged in and
4670 handled by the CPU registers) into bytes as
4671
4672     0x12 0x34 0x56 0x78  # big-endian
4673     0x78 0x56 0x34 0x12  # little-endian
4674
4675 Basically, Intel and VAX CPUs are little-endian, while everybody else,
4676 including Motorola m68k/88k, PPC, Sparc, HP PA, Power, and Cray, are
4677 big-endian.  Alpha and MIPS can be either: Digital/Compaq uses (well, used) 
4678 them in little-endian mode, but SGI/Cray uses them in big-endian mode.
4679
4680 The names I<big-endian> and I<little-endian> are comic references to the
4681 egg-eating habits of the little-endian Lilliputians and the big-endian
4682 Blefuscudians from the classic Jonathan Swift satire, I<Gulliver's Travels>.
4683 This entered computer lingo via the paper "On Holy Wars and a Plea for
4684 Peace" by Danny Cohen, USC/ISI IEN 137, April 1, 1980.
4685
4686 Some systems may have even weirder byte orders such as
4687
4688    0x56 0x78 0x12 0x34
4689    0x34 0x12 0x78 0x56
4690
4691 You can determine your system endianness with this incantation:
4692
4693    printf("%#02x ", $_) for unpack("W*", pack L=>0x12345678); 
4694
4695 The byteorder on the platform where Perl was built is also available
4696 via L<Config>:
4697
4698     use Config;
4699     print "$Config{byteorder}\n";
4700
4701 or from the command line:
4702
4703     $ perl -V:byteorder
4704
4705 Byteorders C<"1234"> and C<"12345678"> are little-endian; C<"4321">
4706 and C<"87654321"> are big-endian.
4707
4708 For portably packed integers, either use the formats C<n>, C<N>, C<v>, 
4709 and&nbs