3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
12 * 'It all comes from here, the stench and the peril.' --Frodo
14 * [p.719 of _The Lord of the Rings_, IV/ix: "Shelob's Lair"]
18 * This file is the lexer for Perl. It's closely linked to the
21 * The main routine is yylex(), which returns the next token.
25 =head1 Lexer interface
26 This is the lower layer of the Perl parser, managing characters and tokens.
28 =for apidoc AmU|yy_parser *|PL_parser
30 Pointer to a structure encapsulating the state of the parsing operation
31 currently in progress. The pointer can be locally changed to perform
32 a nested parse without interfering with the state of an outer parse.
33 Individual members of C<PL_parser> have their own documentation.
39 #define PERL_IN_TOKE_C
41 #include "dquote_inline.h"
43 #define new_constant(a,b,c,d,e,f,g) \
44 S_new_constant(aTHX_ a,b,STR_WITH_LEN(c),d,e,f, g)
46 #define pl_yylval (PL_parser->yylval)
48 /* XXX temporary backwards compatibility */
49 #define PL_lex_brackets (PL_parser->lex_brackets)
50 #define PL_lex_allbrackets (PL_parser->lex_allbrackets)
51 #define PL_lex_fakeeof (PL_parser->lex_fakeeof)
52 #define PL_lex_brackstack (PL_parser->lex_brackstack)
53 #define PL_lex_casemods (PL_parser->lex_casemods)
54 #define PL_lex_casestack (PL_parser->lex_casestack)
55 #define PL_lex_dojoin (PL_parser->lex_dojoin)
56 #define PL_lex_formbrack (PL_parser->lex_formbrack)
57 #define PL_lex_inpat (PL_parser->lex_inpat)
58 #define PL_lex_inwhat (PL_parser->lex_inwhat)
59 #define PL_lex_op (PL_parser->lex_op)
60 #define PL_lex_repl (PL_parser->lex_repl)
61 #define PL_lex_starts (PL_parser->lex_starts)
62 #define PL_lex_stuff (PL_parser->lex_stuff)
63 #define PL_multi_start (PL_parser->multi_start)
64 #define PL_multi_open (PL_parser->multi_open)
65 #define PL_multi_close (PL_parser->multi_close)
66 #define PL_preambled (PL_parser->preambled)
67 #define PL_linestr (PL_parser->linestr)
68 #define PL_expect (PL_parser->expect)
69 #define PL_copline (PL_parser->copline)
70 #define PL_bufptr (PL_parser->bufptr)
71 #define PL_oldbufptr (PL_parser->oldbufptr)
72 #define PL_oldoldbufptr (PL_parser->oldoldbufptr)
73 #define PL_linestart (PL_parser->linestart)
74 #define PL_bufend (PL_parser->bufend)
75 #define PL_last_uni (PL_parser->last_uni)
76 #define PL_last_lop (PL_parser->last_lop)
77 #define PL_last_lop_op (PL_parser->last_lop_op)
78 #define PL_lex_state (PL_parser->lex_state)
79 #define PL_rsfp (PL_parser->rsfp)
80 #define PL_rsfp_filters (PL_parser->rsfp_filters)
81 #define PL_in_my (PL_parser->in_my)
82 #define PL_in_my_stash (PL_parser->in_my_stash)
83 #define PL_tokenbuf (PL_parser->tokenbuf)
84 #define PL_multi_end (PL_parser->multi_end)
85 #define PL_error_count (PL_parser->error_count)
87 # define PL_nexttoke (PL_parser->nexttoke)
88 # define PL_nexttype (PL_parser->nexttype)
89 # define PL_nextval (PL_parser->nextval)
92 #define SvEVALED(sv) \
93 (SvTYPE(sv) >= SVt_PVNV \
94 && ((XPVIV*)SvANY(sv))->xiv_u.xivu_eval_seen)
96 static const char* const ident_too_long = "Identifier too long";
98 # define NEXTVAL_NEXTTOKE PL_nextval[PL_nexttoke]
100 #define XENUMMASK 0x3f
101 #define XFAKEEOF 0x40
102 #define XFAKEBRACK 0x80
104 #ifdef USE_UTF8_SCRIPTS
105 # define UTF cBOOL(!IN_BYTES)
107 # define UTF cBOOL((PL_linestr && DO_UTF8(PL_linestr)) || ( !(PL_parser->lex_flags & LEX_IGNORE_UTF8_HINTS) && (PL_hints & HINT_UTF8)))
110 /* The maximum number of characters preceding the unrecognized one to display */
111 #define UNRECOGNIZED_PRECEDE_COUNT 10
113 /* In variables named $^X, these are the legal values for X.
114 * 1999-02-27 mjd-perl-patch@plover.com */
115 #define isCONTROLVAR(x) (isUPPER(x) || strchr("[\\]^_?", (x)))
117 #define SPACE_OR_TAB(c) isBLANK_A(c)
119 #define HEXFP_PEEK(s) \
121 (isXDIGIT(s[1]) || isALPHA_FOLD_EQ(s[1], 'p'))) || \
122 isALPHA_FOLD_EQ(s[0], 'p'))
124 /* LEX_* are values for PL_lex_state, the state of the lexer.
125 * They are arranged oddly so that the guard on the switch statement
126 * can get by with a single comparison (if the compiler is smart enough).
128 * These values refer to the various states within a sublex parse,
129 * i.e. within a double quotish string
132 /* #define LEX_NOTPARSING 11 is done in perl.h. */
134 #define LEX_NORMAL 10 /* normal code (ie not within "...") */
135 #define LEX_INTERPNORMAL 9 /* code within a string, eg "$foo[$x+1]" */
136 #define LEX_INTERPCASEMOD 8 /* expecting a \U, \Q or \E etc */
137 #define LEX_INTERPPUSH 7 /* starting a new sublex parse level */
138 #define LEX_INTERPSTART 6 /* expecting the start of a $var */
140 /* at end of code, eg "$x" followed by: */
141 #define LEX_INTERPEND 5 /* ... eg not one of [, { or -> */
142 #define LEX_INTERPENDMAYBE 4 /* ... eg one of [, { or -> */
144 #define LEX_INTERPCONCAT 3 /* expecting anything, eg at start of
145 string or after \E, $foo, etc */
146 #define LEX_INTERPCONST 2 /* NOT USED */
147 #define LEX_FORMLINE 1 /* expecting a format line */
151 static const char* const lex_state_names[] = {
166 #include "keywords.h"
168 /* CLINE is a macro that ensures PL_copline has a sane value */
170 #define CLINE (PL_copline = (CopLINE(PL_curcop) < PL_copline ? CopLINE(PL_curcop) : PL_copline))
173 * Convenience functions to return different tokens and prime the
174 * lexer for the next token. They all take an argument.
176 * TOKEN : generic token (used for '(', DOLSHARP, etc)
177 * OPERATOR : generic operator
178 * AOPERATOR : assignment operator
179 * PREBLOCK : beginning the block after an if, while, foreach, ...
180 * PRETERMBLOCK : beginning a non-code-defining {} block (eg, hash ref)
181 * PREREF : *EXPR where EXPR is not a simple identifier
182 * TERM : expression term
183 * POSTDEREF : postfix dereference (->$* ->@[...] etc.)
184 * LOOPX : loop exiting command (goto, last, dump, etc)
185 * FTST : file test operator
186 * FUN0 : zero-argument function
187 * FUN0OP : zero-argument function, with its op created in this file
188 * FUN1 : not used, except for not, which isn't a UNIOP
189 * BOop : bitwise or or xor
191 * BCop : bitwise complement
192 * SHop : shift operator
193 * PWop : power operator
194 * PMop : pattern-matching operator
195 * Aop : addition-level operator
196 * AopNOASSIGN : addition-level operator that is never part of .=
197 * Mop : multiplication-level operator
198 * Eop : equality-testing operator
199 * Rop : relational operator <= != gt
201 * Also see LOP and lop() below.
204 #ifdef DEBUGGING /* Serve -DT. */
205 # define REPORT(retval) tokereport((I32)retval, &pl_yylval)
207 # define REPORT(retval) (retval)
210 #define TOKEN(retval) return ( PL_bufptr = s, REPORT(retval))
211 #define OPERATOR(retval) return (PL_expect = XTERM, PL_bufptr = s, REPORT(retval))
212 #define AOPERATOR(retval) return ao((PL_expect = XTERM, PL_bufptr = s, retval))
213 #define PREBLOCK(retval) return (PL_expect = XBLOCK,PL_bufptr = s, REPORT(retval))
214 #define PRETERMBLOCK(retval) return (PL_expect = XTERMBLOCK,PL_bufptr = s, REPORT(retval))
215 #define PREREF(retval) return (PL_expect = XREF,PL_bufptr = s, REPORT(retval))
216 #define TERM(retval) return (CLINE, PL_expect = XOPERATOR, PL_bufptr = s, REPORT(retval))
217 #define POSTDEREF(f) return (PL_bufptr = s, S_postderef(aTHX_ REPORT(f),s[1]))
218 #define LOOPX(f) return (PL_bufptr = force_word(s,BAREWORD,TRUE,FALSE), \
220 PL_expect = PL_nexttoke ? XOPERATOR : XTERM, \
222 #define FTST(f) return (pl_yylval.ival=f, PL_expect=XTERMORDORDOR, PL_bufptr=s, REPORT((int)UNIOP))
223 #define FUN0(f) return (pl_yylval.ival=f, PL_expect=XOPERATOR, PL_bufptr=s, REPORT((int)FUNC0))
224 #define FUN0OP(f) return (pl_yylval.opval=f, CLINE, PL_expect=XOPERATOR, PL_bufptr=s, REPORT((int)FUNC0OP))
225 #define FUN1(f) return (pl_yylval.ival=f, PL_expect=XOPERATOR, PL_bufptr=s, REPORT((int)FUNC1))
226 #define BOop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)BITOROP))
227 #define BAop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)BITANDOP))
228 #define BCop(f) return pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr = s, \
230 #define SHop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)SHIFTOP))
231 #define PWop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)POWOP))
232 #define PMop(f) return(pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, REPORT((int)MATCHOP))
233 #define Aop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)ADDOP))
234 #define AopNOASSIGN(f) return (pl_yylval.ival=f, PL_bufptr=s, REPORT((int)ADDOP))
235 #define Mop(f) return ao((pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, (int)MULOP))
236 #define Eop(f) return (pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, REPORT((int)EQOP))
237 #define Rop(f) return (pl_yylval.ival=f, PL_expect=XTERM, PL_bufptr=s, REPORT((int)RELOP))
239 /* This bit of chicanery makes a unary function followed by
240 * a parenthesis into a function with one argument, highest precedence.
241 * The UNIDOR macro is for unary functions that can be followed by the //
242 * operator (such as C<shift // 0>).
244 #define UNI3(f,x,have_x) { \
245 pl_yylval.ival = f; \
246 if (have_x) PL_expect = x; \
248 PL_last_uni = PL_oldbufptr; \
249 PL_last_lop_op = (f) < 0 ? -(f) : (f); \
251 return REPORT( (int)FUNC1 ); \
253 return REPORT( *s=='(' ? (int)FUNC1 : (int)UNIOP ); \
255 #define UNI(f) UNI3(f,XTERM,1)
256 #define UNIDOR(f) UNI3(f,XTERMORDORDOR,1)
257 #define UNIPROTO(f,optional) { \
258 if (optional) PL_last_uni = PL_oldbufptr; \
262 #define UNIBRACK(f) UNI3(f,0,0)
264 /* grandfather return to old style */
267 if (!PL_lex_allbrackets && PL_lex_fakeeof > LEX_FAKEEOF_LOWLOGIC) \
268 PL_lex_fakeeof = LEX_FAKEEOF_LOWLOGIC; \
269 pl_yylval.ival = (f); \
275 #define COPLINE_INC_WITH_HERELINES \
277 CopLINE_inc(PL_curcop); \
278 if (PL_parser->herelines) \
279 CopLINE(PL_curcop) += PL_parser->herelines, \
280 PL_parser->herelines = 0; \
282 /* Called after scan_str to update CopLINE(PL_curcop), but only when there
283 * is no sublex_push to follow. */
284 #define COPLINE_SET_FROM_MULTI_END \
286 CopLINE_set(PL_curcop, PL_multi_end); \
287 if (PL_multi_end != PL_multi_start) \
288 PL_parser->herelines = 0; \
294 /* how to interpret the pl_yylval associated with the token */
298 TOKENTYPE_OPNUM, /* pl_yylval.ival contains an opcode number */
303 static struct debug_tokens {
305 enum token_type type;
307 } const debug_tokens[] =
309 { ADDOP, TOKENTYPE_OPNUM, "ADDOP" },
310 { ANDAND, TOKENTYPE_NONE, "ANDAND" },
311 { ANDOP, TOKENTYPE_NONE, "ANDOP" },
312 { ANONSUB, TOKENTYPE_IVAL, "ANONSUB" },
313 { ARROW, TOKENTYPE_NONE, "ARROW" },
314 { ASSIGNOP, TOKENTYPE_OPNUM, "ASSIGNOP" },
315 { BITANDOP, TOKENTYPE_OPNUM, "BITANDOP" },
316 { BITOROP, TOKENTYPE_OPNUM, "BITOROP" },
317 { COLONATTR, TOKENTYPE_NONE, "COLONATTR" },
318 { CONTINUE, TOKENTYPE_NONE, "CONTINUE" },
319 { DEFAULT, TOKENTYPE_NONE, "DEFAULT" },
320 { DO, TOKENTYPE_NONE, "DO" },
321 { DOLSHARP, TOKENTYPE_NONE, "DOLSHARP" },
322 { DORDOR, TOKENTYPE_NONE, "DORDOR" },
323 { DOROP, TOKENTYPE_OPNUM, "DOROP" },
324 { DOTDOT, TOKENTYPE_IVAL, "DOTDOT" },
325 { ELSE, TOKENTYPE_NONE, "ELSE" },
326 { ELSIF, TOKENTYPE_IVAL, "ELSIF" },
327 { EQOP, TOKENTYPE_OPNUM, "EQOP" },
328 { FOR, TOKENTYPE_IVAL, "FOR" },
329 { FORMAT, TOKENTYPE_NONE, "FORMAT" },
330 { FORMLBRACK, TOKENTYPE_NONE, "FORMLBRACK" },
331 { FORMRBRACK, TOKENTYPE_NONE, "FORMRBRACK" },
332 { FUNC, TOKENTYPE_OPNUM, "FUNC" },
333 { FUNC0, TOKENTYPE_OPNUM, "FUNC0" },
334 { FUNC0OP, TOKENTYPE_OPVAL, "FUNC0OP" },
335 { FUNC0SUB, TOKENTYPE_OPVAL, "FUNC0SUB" },
336 { FUNC1, TOKENTYPE_OPNUM, "FUNC1" },
337 { FUNCMETH, TOKENTYPE_OPVAL, "FUNCMETH" },
338 { GIVEN, TOKENTYPE_IVAL, "GIVEN" },
339 { HASHBRACK, TOKENTYPE_NONE, "HASHBRACK" },
340 { IF, TOKENTYPE_IVAL, "IF" },
341 { LABEL, TOKENTYPE_PVAL, "LABEL" },
342 { LOCAL, TOKENTYPE_IVAL, "LOCAL" },
343 { LOOPEX, TOKENTYPE_OPNUM, "LOOPEX" },
344 { LSTOP, TOKENTYPE_OPNUM, "LSTOP" },
345 { LSTOPSUB, TOKENTYPE_OPVAL, "LSTOPSUB" },
346 { MATCHOP, TOKENTYPE_OPNUM, "MATCHOP" },
347 { METHOD, TOKENTYPE_OPVAL, "METHOD" },
348 { MULOP, TOKENTYPE_OPNUM, "MULOP" },
349 { MY, TOKENTYPE_IVAL, "MY" },
350 { NOAMP, TOKENTYPE_NONE, "NOAMP" },
351 { NOTOP, TOKENTYPE_NONE, "NOTOP" },
352 { OROP, TOKENTYPE_IVAL, "OROP" },
353 { OROR, TOKENTYPE_NONE, "OROR" },
354 { PACKAGE, TOKENTYPE_NONE, "PACKAGE" },
355 { PLUGEXPR, TOKENTYPE_OPVAL, "PLUGEXPR" },
356 { PLUGSTMT, TOKENTYPE_OPVAL, "PLUGSTMT" },
357 { PMFUNC, TOKENTYPE_OPVAL, "PMFUNC" },
358 { POSTJOIN, TOKENTYPE_NONE, "POSTJOIN" },
359 { POSTDEC, TOKENTYPE_NONE, "POSTDEC" },
360 { POSTINC, TOKENTYPE_NONE, "POSTINC" },
361 { POWOP, TOKENTYPE_OPNUM, "POWOP" },
362 { PREDEC, TOKENTYPE_NONE, "PREDEC" },
363 { PREINC, TOKENTYPE_NONE, "PREINC" },
364 { PRIVATEREF, TOKENTYPE_OPVAL, "PRIVATEREF" },
365 { QWLIST, TOKENTYPE_OPVAL, "QWLIST" },
366 { REFGEN, TOKENTYPE_NONE, "REFGEN" },
367 { RELOP, TOKENTYPE_OPNUM, "RELOP" },
368 { REQUIRE, TOKENTYPE_NONE, "REQUIRE" },
369 { SHIFTOP, TOKENTYPE_OPNUM, "SHIFTOP" },
370 { SUB, TOKENTYPE_NONE, "SUB" },
371 { THING, TOKENTYPE_OPVAL, "THING" },
372 { UMINUS, TOKENTYPE_NONE, "UMINUS" },
373 { UNIOP, TOKENTYPE_OPNUM, "UNIOP" },
374 { UNIOPSUB, TOKENTYPE_OPVAL, "UNIOPSUB" },
375 { UNLESS, TOKENTYPE_IVAL, "UNLESS" },
376 { UNTIL, TOKENTYPE_IVAL, "UNTIL" },
377 { USE, TOKENTYPE_IVAL, "USE" },
378 { WHEN, TOKENTYPE_IVAL, "WHEN" },
379 { WHILE, TOKENTYPE_IVAL, "WHILE" },
380 { BAREWORD, TOKENTYPE_OPVAL, "BAREWORD" },
381 { YADAYADA, TOKENTYPE_IVAL, "YADAYADA" },
382 { 0, TOKENTYPE_NONE, NULL }
385 /* dump the returned token in rv, plus any optional arg in pl_yylval */
388 S_tokereport(pTHX_ I32 rv, const YYSTYPE* lvalp)
390 PERL_ARGS_ASSERT_TOKEREPORT;
393 const char *name = NULL;
394 enum token_type type = TOKENTYPE_NONE;
395 const struct debug_tokens *p;
396 SV* const report = newSVpvs("<== ");
398 for (p = debug_tokens; p->token; p++) {
399 if (p->token == (int)rv) {
406 Perl_sv_catpv(aTHX_ report, name);
407 else if (isGRAPH(rv))
409 Perl_sv_catpvf(aTHX_ report, "'%c'", (char)rv);
411 sv_catpvs(report, " (pending identifier)");
414 sv_catpvs(report, "EOF");
416 Perl_sv_catpvf(aTHX_ report, "?? %" IVdf, (IV)rv);
421 Perl_sv_catpvf(aTHX_ report, "(ival=%" IVdf ")", (IV)lvalp->ival);
423 case TOKENTYPE_OPNUM:
424 Perl_sv_catpvf(aTHX_ report, "(ival=op_%s)",
425 PL_op_name[lvalp->ival]);
428 Perl_sv_catpvf(aTHX_ report, "(pval=\"%s\")", lvalp->pval);
430 case TOKENTYPE_OPVAL:
432 Perl_sv_catpvf(aTHX_ report, "(opval=op_%s)",
433 PL_op_name[lvalp->opval->op_type]);
434 if (lvalp->opval->op_type == OP_CONST) {
435 Perl_sv_catpvf(aTHX_ report, " %s",
436 SvPEEK(cSVOPx_sv(lvalp->opval)));
441 sv_catpvs(report, "(opval=null)");
444 PerlIO_printf(Perl_debug_log, "### %s\n\n", SvPV_nolen_const(report));
450 /* print the buffer with suitable escapes */
453 S_printbuf(pTHX_ const char *const fmt, const char *const s)
455 SV* const tmp = newSVpvs("");
457 PERL_ARGS_ASSERT_PRINTBUF;
459 GCC_DIAG_IGNORE(-Wformat-nonliteral); /* fmt checked by caller */
460 PerlIO_printf(Perl_debug_log, fmt, pv_display(tmp, s, strlen(s), 0, 60));
468 S_deprecate_commaless_var_list(pTHX) {
470 deprecate_fatal_in("5.28", "Use of comma-less variable list is deprecated");
471 return REPORT(','); /* grandfather non-comma-format format */
477 * This subroutine looks for an '=' next to the operator that has just been
478 * parsed and turns it into an ASSIGNOP if it finds one.
482 S_ao(pTHX_ int toketype)
484 if (*PL_bufptr == '=') {
486 if (toketype == ANDAND)
487 pl_yylval.ival = OP_ANDASSIGN;
488 else if (toketype == OROR)
489 pl_yylval.ival = OP_ORASSIGN;
490 else if (toketype == DORDOR)
491 pl_yylval.ival = OP_DORASSIGN;
494 return REPORT(toketype);
499 * When Perl expects an operator and finds something else, no_op
500 * prints the warning. It always prints "<something> found where
501 * operator expected. It prints "Missing semicolon on previous line?"
502 * if the surprise occurs at the start of the line. "do you need to
503 * predeclare ..." is printed out for code like "sub bar; foo bar $x"
504 * where the compiler doesn't know if foo is a method call or a function.
505 * It prints "Missing operator before end of line" if there's nothing
506 * after the missing operator, or "... before <...>" if there is something
507 * after the missing operator.
509 * PL_bufptr is expected to point to the start of the thing that was found,
510 * and s after the next token or partial token.
514 S_no_op(pTHX_ const char *const what, char *s)
516 char * const oldbp = PL_bufptr;
517 const bool is_first = (PL_oldbufptr == PL_linestart);
519 PERL_ARGS_ASSERT_NO_OP;
525 yywarn(Perl_form(aTHX_ "%s found where operator expected", what), UTF ? SVf_UTF8 : 0);
526 if (ckWARN_d(WARN_SYNTAX)) {
528 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
529 "\t(Missing semicolon on previous line?)\n");
530 else if (PL_oldoldbufptr && isIDFIRST_lazy_if_safe(PL_oldoldbufptr,
535 for (t = PL_oldoldbufptr;
536 (isWORDCHAR_lazy_if_safe(t, PL_bufend, UTF) || *t == ':');
537 t += UTF ? UTF8SKIP(t) : 1)
541 if (t < PL_bufptr && isSPACE(*t))
542 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
543 "\t(Do you need to predeclare %" UTF8f "?)\n",
544 UTF8fARG(UTF, t - PL_oldoldbufptr, PL_oldoldbufptr));
548 Perl_warner(aTHX_ packWARN(WARN_SYNTAX),
549 "\t(Missing operator before %" UTF8f "?)\n",
550 UTF8fARG(UTF, s - oldbp, oldbp));
558 * Complain about missing quote/regexp/heredoc terminator.
559 * If it's called with NULL then it cauterizes the line buffer.
560 * If we're in a delimited string and the delimiter is a control
561 * character, it's reformatted into a two-char sequence like ^C.
566 S_missingterm(pTHX_ char *s)
568 char tmpbuf[UTF8_MAXBYTES + 1];
573 char * const nl = strrchr(s,'\n');
578 else if (PL_multi_close < 32) {
580 tmpbuf[1] = (char)toCTRL(PL_multi_close);
585 if (LIKELY(PL_multi_close < 256)) {
586 *tmpbuf = (char)PL_multi_close;
591 *uvchr_to_utf8((U8 *)tmpbuf, PL_multi_close) = 0;
595 q = strchr(s,'"') ? '\'' : '"';
596 sv = sv_2mortal(newSVpv(s,0));
599 Perl_croak(aTHX_ "Can't find string terminator %c%" SVf
600 "%c anywhere before EOF",q,SVfARG(sv),q);
606 * Check whether the named feature is enabled.
609 Perl_feature_is_enabled(pTHX_ const char *const name, STRLEN namelen)
611 char he_name[8 + MAX_FEATURE_LEN] = "feature_";
613 PERL_ARGS_ASSERT_FEATURE_IS_ENABLED;
615 assert(CURRENT_FEATURE_BUNDLE == FEATURE_BUNDLE_CUSTOM);
617 if (namelen > MAX_FEATURE_LEN)
619 memcpy(&he_name[8], name, namelen);
621 return cBOOL(cop_hints_fetch_pvn(PL_curcop, he_name, 8 + namelen, 0,
622 REFCOUNTED_HE_EXISTS));
626 * experimental text filters for win32 carriage-returns, utf16-to-utf8 and
627 * utf16-to-utf8-reversed.
630 #ifdef PERL_CR_FILTER
634 const char *s = SvPVX_const(sv);
635 const char * const e = s + SvCUR(sv);
637 PERL_ARGS_ASSERT_STRIP_RETURN;
639 /* outer loop optimized to do nothing if there are no CR-LFs */
641 if (*s++ == '\r' && *s == '\n') {
642 /* hit a CR-LF, need to copy the rest */
646 if (*s == '\r' && s[1] == '\n')
657 S_cr_textfilter(pTHX_ int idx, SV *sv, int maxlen)
659 const I32 count = FILTER_READ(idx+1, sv, maxlen);
660 if (count > 0 && !maxlen)
667 =for apidoc Amx|void|lex_start|SV *line|PerlIO *rsfp|U32 flags
669 Creates and initialises a new lexer/parser state object, supplying
670 a context in which to lex and parse from a new source of Perl code.
671 A pointer to the new state object is placed in L</PL_parser>. An entry
672 is made on the save stack so that upon unwinding, the new state object
673 will be destroyed and the former value of L</PL_parser> will be restored.
674 Nothing else need be done to clean up the parsing context.
676 The code to be parsed comes from C<line> and C<rsfp>. C<line>, if
677 non-null, provides a string (in SV form) containing code to be parsed.
678 A copy of the string is made, so subsequent modification of C<line>
679 does not affect parsing. C<rsfp>, if non-null, provides an input stream
680 from which code will be read to be parsed. If both are non-null, the
681 code in C<line> comes first and must consist of complete lines of input,
682 and C<rsfp> supplies the remainder of the source.
684 The C<flags> parameter is reserved for future use. Currently it is only
685 used by perl internally, so extensions should always pass zero.
690 /* LEX_START_SAME_FILTER indicates that this is not a new file, so it
691 can share filters with the current parser.
692 LEX_START_DONT_CLOSE indicates that the file handle wasn't opened by the
693 caller, hence isn't owned by the parser, so shouldn't be closed on parser
694 destruction. This is used to handle the case of defaulting to reading the
695 script from the standard input because no filename was given on the command
696 line (without getting confused by situation where STDIN has been closed, so
697 the script handle is opened on fd 0) */
700 Perl_lex_start(pTHX_ SV *line, PerlIO *rsfp, U32 flags)
702 const char *s = NULL;
703 yy_parser *parser, *oparser;
705 if (flags && flags & ~LEX_START_FLAGS)
706 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_start");
708 /* create and initialise a parser */
710 Newxz(parser, 1, yy_parser);
711 parser->old_parser = oparser = PL_parser;
714 parser->stack = NULL;
715 parser->stack_max1 = NULL;
718 /* on scope exit, free this parser and restore any outer one */
720 parser->saved_curcop = PL_curcop;
722 /* initialise lexer state */
724 parser->nexttoke = 0;
725 parser->error_count = oparser ? oparser->error_count : 0;
726 parser->copline = parser->preambling = NOLINE;
727 parser->lex_state = LEX_NORMAL;
728 parser->expect = XSTATE;
730 parser->recheck_utf8_validity = FALSE;
731 parser->rsfp_filters =
732 !(flags & LEX_START_SAME_FILTER) || !oparser
734 : MUTABLE_AV(SvREFCNT_inc(
735 oparser->rsfp_filters
736 ? oparser->rsfp_filters
737 : (oparser->rsfp_filters = newAV())
740 Newx(parser->lex_brackstack, 120, char);
741 Newx(parser->lex_casestack, 12, char);
742 *parser->lex_casestack = '\0';
743 Newxz(parser->lex_shared, 1, LEXSHARED);
747 const U8* first_bad_char_loc;
749 s = SvPV_const(line, len);
752 && UNLIKELY(! is_utf8_string_loc((U8 *) s,
754 &first_bad_char_loc)))
756 _force_out_malformed_utf8_message(first_bad_char_loc,
757 (U8 *) s + SvCUR(line),
759 1 /* 1 means die */ );
760 NOT_REACHED; /* NOTREACHED */
763 parser->linestr = flags & LEX_START_COPIED
764 ? SvREFCNT_inc_simple_NN(line)
765 : newSVpvn_flags(s, len, SvUTF8(line));
767 sv_catpvs(parser->linestr, "\n;");
769 parser->linestr = newSVpvn("\n;", rsfp ? 1 : 2);
772 parser->oldoldbufptr =
775 parser->linestart = SvPVX(parser->linestr);
776 parser->bufend = parser->bufptr + SvCUR(parser->linestr);
777 parser->last_lop = parser->last_uni = NULL;
779 STATIC_ASSERT_STMT(FITS_IN_8_BITS(LEX_IGNORE_UTF8_HINTS|LEX_EVALBYTES
780 |LEX_DONT_CLOSE_RSFP));
781 parser->lex_flags = (U8) (flags & (LEX_IGNORE_UTF8_HINTS|LEX_EVALBYTES
782 |LEX_DONT_CLOSE_RSFP));
784 parser->in_pod = parser->filtered = 0;
788 /* delete a parser object */
791 Perl_parser_free(pTHX_ const yy_parser *parser)
793 PERL_ARGS_ASSERT_PARSER_FREE;
795 PL_curcop = parser->saved_curcop;
796 SvREFCNT_dec(parser->linestr);
798 if (PL_parser->lex_flags & LEX_DONT_CLOSE_RSFP)
799 PerlIO_clearerr(parser->rsfp);
800 else if (parser->rsfp && (!parser->old_parser
801 || (parser->old_parser && parser->rsfp != parser->old_parser->rsfp)))
802 PerlIO_close(parser->rsfp);
803 SvREFCNT_dec(parser->rsfp_filters);
804 SvREFCNT_dec(parser->lex_stuff);
805 SvREFCNT_dec(parser->lex_sub_repl);
807 Safefree(parser->lex_brackstack);
808 Safefree(parser->lex_casestack);
809 Safefree(parser->lex_shared);
810 PL_parser = parser->old_parser;
815 Perl_parser_free_nexttoke_ops(pTHX_ yy_parser *parser, OPSLAB *slab)
817 I32 nexttoke = parser->nexttoke;
818 PERL_ARGS_ASSERT_PARSER_FREE_NEXTTOKE_OPS;
820 if (S_is_opval_token(parser->nexttype[nexttoke] & 0xffff)
821 && parser->nextval[nexttoke].opval
822 && parser->nextval[nexttoke].opval->op_slabbed
823 && OpSLAB(parser->nextval[nexttoke].opval) == slab) {
824 op_free(parser->nextval[nexttoke].opval);
825 parser->nextval[nexttoke].opval = NULL;
832 =for apidoc AmxU|SV *|PL_parser-E<gt>linestr
834 Buffer scalar containing the chunk currently under consideration of the
835 text currently being lexed. This is always a plain string scalar (for
836 which C<SvPOK> is true). It is not intended to be used as a scalar by
837 normal scalar means; instead refer to the buffer directly by the pointer
838 variables described below.
840 The lexer maintains various C<char*> pointers to things in the
841 C<PL_parser-E<gt>linestr> buffer. If C<PL_parser-E<gt>linestr> is ever
842 reallocated, all of these pointers must be updated. Don't attempt to
843 do this manually, but rather use L</lex_grow_linestr> if you need to
844 reallocate the buffer.
846 The content of the text chunk in the buffer is commonly exactly one
847 complete line of input, up to and including a newline terminator,
848 but there are situations where it is otherwise. The octets of the
849 buffer may be intended to be interpreted as either UTF-8 or Latin-1.
850 The function L</lex_bufutf8> tells you which. Do not use the C<SvUTF8>
851 flag on this scalar, which may disagree with it.
853 For direct examination of the buffer, the variable
854 L</PL_parser-E<gt>bufend> points to the end of the buffer. The current
855 lexing position is pointed to by L</PL_parser-E<gt>bufptr>. Direct use
856 of these pointers is usually preferable to examination of the scalar
857 through normal scalar means.
859 =for apidoc AmxU|char *|PL_parser-E<gt>bufend
861 Direct pointer to the end of the chunk of text currently being lexed, the
862 end of the lexer buffer. This is equal to C<SvPVX(PL_parser-E<gt>linestr)
863 + SvCUR(PL_parser-E<gt>linestr)>. A C<NUL> character (zero octet) is
864 always located at the end of the buffer, and does not count as part of
865 the buffer's contents.
867 =for apidoc AmxU|char *|PL_parser-E<gt>bufptr
869 Points to the current position of lexing inside the lexer buffer.
870 Characters around this point may be freely examined, within
871 the range delimited by C<SvPVX(L</PL_parser-E<gt>linestr>)> and
872 L</PL_parser-E<gt>bufend>. The octets of the buffer may be intended to be
873 interpreted as either UTF-8 or Latin-1, as indicated by L</lex_bufutf8>.
875 Lexing code (whether in the Perl core or not) moves this pointer past
876 the characters that it consumes. It is also expected to perform some
877 bookkeeping whenever a newline character is consumed. This movement
878 can be more conveniently performed by the function L</lex_read_to>,
879 which handles newlines appropriately.
881 Interpretation of the buffer's octets can be abstracted out by
882 using the slightly higher-level functions L</lex_peek_unichar> and
883 L</lex_read_unichar>.
885 =for apidoc AmxU|char *|PL_parser-E<gt>linestart
887 Points to the start of the current line inside the lexer buffer.
888 This is useful for indicating at which column an error occurred, and
889 not much else. This must be updated by any lexing code that consumes
890 a newline; the function L</lex_read_to> handles this detail.
896 =for apidoc Amx|bool|lex_bufutf8
898 Indicates whether the octets in the lexer buffer
899 (L</PL_parser-E<gt>linestr>) should be interpreted as the UTF-8 encoding
900 of Unicode characters. If not, they should be interpreted as Latin-1
901 characters. This is analogous to the C<SvUTF8> flag for scalars.
903 In UTF-8 mode, it is not guaranteed that the lexer buffer actually
904 contains valid UTF-8. Lexing code must be robust in the face of invalid
907 The actual C<SvUTF8> flag of the L</PL_parser-E<gt>linestr> scalar
908 is significant, but not the whole story regarding the input character
909 encoding. Normally, when a file is being read, the scalar contains octets
910 and its C<SvUTF8> flag is off, but the octets should be interpreted as
911 UTF-8 if the C<use utf8> pragma is in effect. During a string eval,
912 however, the scalar may have the C<SvUTF8> flag on, and in this case its
913 octets should be interpreted as UTF-8 unless the C<use bytes> pragma
914 is in effect. This logic may change in the future; use this function
915 instead of implementing the logic yourself.
921 Perl_lex_bufutf8(pTHX)
927 =for apidoc Amx|char *|lex_grow_linestr|STRLEN len
929 Reallocates the lexer buffer (L</PL_parser-E<gt>linestr>) to accommodate
930 at least C<len> octets (including terminating C<NUL>). Returns a
931 pointer to the reallocated buffer. This is necessary before making
932 any direct modification of the buffer that would increase its length.
933 L</lex_stuff_pvn> provides a more convenient way to insert text into
936 Do not use C<SvGROW> or C<sv_grow> directly on C<PL_parser-E<gt>linestr>;
937 this function updates all of the lexer's variables that point directly
944 Perl_lex_grow_linestr(pTHX_ STRLEN len)
948 STRLEN bufend_pos, bufptr_pos, oldbufptr_pos, oldoldbufptr_pos;
949 STRLEN linestart_pos, last_uni_pos, last_lop_pos, re_eval_start_pos;
952 linestr = PL_parser->linestr;
953 buf = SvPVX(linestr);
954 if (len <= SvLEN(linestr))
957 /* Is the lex_shared linestr SV the same as the current linestr SV?
958 * Only in this case does re_eval_start need adjusting, since it
959 * points within lex_shared->ls_linestr's buffer */
960 current = ( !PL_parser->lex_shared->ls_linestr
961 || linestr == PL_parser->lex_shared->ls_linestr);
963 bufend_pos = PL_parser->bufend - buf;
964 bufptr_pos = PL_parser->bufptr - buf;
965 oldbufptr_pos = PL_parser->oldbufptr - buf;
966 oldoldbufptr_pos = PL_parser->oldoldbufptr - buf;
967 linestart_pos = PL_parser->linestart - buf;
968 last_uni_pos = PL_parser->last_uni ? PL_parser->last_uni - buf : 0;
969 last_lop_pos = PL_parser->last_lop ? PL_parser->last_lop - buf : 0;
970 re_eval_start_pos = (current && PL_parser->lex_shared->re_eval_start) ?
971 PL_parser->lex_shared->re_eval_start - buf : 0;
973 buf = sv_grow(linestr, len);
975 PL_parser->bufend = buf + bufend_pos;
976 PL_parser->bufptr = buf + bufptr_pos;
977 PL_parser->oldbufptr = buf + oldbufptr_pos;
978 PL_parser->oldoldbufptr = buf + oldoldbufptr_pos;
979 PL_parser->linestart = buf + linestart_pos;
980 if (PL_parser->last_uni)
981 PL_parser->last_uni = buf + last_uni_pos;
982 if (PL_parser->last_lop)
983 PL_parser->last_lop = buf + last_lop_pos;
984 if (current && PL_parser->lex_shared->re_eval_start)
985 PL_parser->lex_shared->re_eval_start = buf + re_eval_start_pos;
990 =for apidoc Amx|void|lex_stuff_pvn|const char *pv|STRLEN len|U32 flags
992 Insert characters into the lexer buffer (L</PL_parser-E<gt>linestr>),
993 immediately after the current lexing point (L</PL_parser-E<gt>bufptr>),
994 reallocating the buffer if necessary. This means that lexing code that
995 runs later will see the characters as if they had appeared in the input.
996 It is not recommended to do this as part of normal parsing, and most
997 uses of this facility run the risk of the inserted characters being
998 interpreted in an unintended manner.
1000 The string to be inserted is represented by C<len> octets starting
1001 at C<pv>. These octets are interpreted as either UTF-8 or Latin-1,
1002 according to whether the C<LEX_STUFF_UTF8> flag is set in C<flags>.
1003 The characters are recoded for the lexer buffer, according to how the
1004 buffer is currently being interpreted (L</lex_bufutf8>). If a string
1005 to be inserted is available as a Perl scalar, the L</lex_stuff_sv>
1006 function is more convenient.
1012 Perl_lex_stuff_pvn(pTHX_ const char *pv, STRLEN len, U32 flags)
1016 PERL_ARGS_ASSERT_LEX_STUFF_PVN;
1017 if (flags & ~(LEX_STUFF_UTF8))
1018 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_stuff_pvn");
1020 if (flags & LEX_STUFF_UTF8) {
1023 STRLEN highhalf = 0; /* Count of variants */
1024 const char *p, *e = pv+len;
1025 for (p = pv; p != e; p++) {
1026 if (! UTF8_IS_INVARIANT(*p)) {
1032 lex_grow_linestr(SvCUR(PL_parser->linestr)+1+len+highhalf);
1033 bufptr = PL_parser->bufptr;
1034 Move(bufptr, bufptr+len+highhalf, PL_parser->bufend+1-bufptr, char);
1035 SvCUR_set(PL_parser->linestr,
1036 SvCUR(PL_parser->linestr) + len+highhalf);
1037 PL_parser->bufend += len+highhalf;
1038 for (p = pv; p != e; p++) {
1040 if (! UTF8_IS_INVARIANT(c)) {
1041 *bufptr++ = UTF8_TWO_BYTE_HI(c);
1042 *bufptr++ = UTF8_TWO_BYTE_LO(c);
1044 *bufptr++ = (char)c;
1049 if (flags & LEX_STUFF_UTF8) {
1050 STRLEN highhalf = 0;
1051 const char *p, *e = pv+len;
1052 for (p = pv; p != e; p++) {
1054 if (UTF8_IS_ABOVE_LATIN1(c)) {
1055 Perl_croak(aTHX_ "Lexing code attempted to stuff "
1056 "non-Latin-1 character into Latin-1 input");
1057 } else if (UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(p, e)) {
1060 } else assert(UTF8_IS_INVARIANT(c));
1064 lex_grow_linestr(SvCUR(PL_parser->linestr)+1+len-highhalf);
1065 bufptr = PL_parser->bufptr;
1066 Move(bufptr, bufptr+len-highhalf, PL_parser->bufend+1-bufptr, char);
1067 SvCUR_set(PL_parser->linestr,
1068 SvCUR(PL_parser->linestr) + len-highhalf);
1069 PL_parser->bufend += len-highhalf;
1072 if (UTF8_IS_INVARIANT(*p)) {
1078 *bufptr++ = EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1));
1084 lex_grow_linestr(SvCUR(PL_parser->linestr)+1+len);
1085 bufptr = PL_parser->bufptr;
1086 Move(bufptr, bufptr+len, PL_parser->bufend+1-bufptr, char);
1087 SvCUR_set(PL_parser->linestr, SvCUR(PL_parser->linestr) + len);
1088 PL_parser->bufend += len;
1089 Copy(pv, bufptr, len, char);
1095 =for apidoc Amx|void|lex_stuff_pv|const char *pv|U32 flags
1097 Insert characters into the lexer buffer (L</PL_parser-E<gt>linestr>),
1098 immediately after the current lexing point (L</PL_parser-E<gt>bufptr>),
1099 reallocating the buffer if necessary. This means that lexing code that
1100 runs later will see the characters as if they had appeared in the input.
1101 It is not recommended to do this as part of normal parsing, and most
1102 uses of this facility run the risk of the inserted characters being
1103 interpreted in an unintended manner.
1105 The string to be inserted is represented by octets starting at C<pv>
1106 and continuing to the first nul. These octets are interpreted as either
1107 UTF-8 or Latin-1, according to whether the C<LEX_STUFF_UTF8> flag is set
1108 in C<flags>. The characters are recoded for the lexer buffer, according
1109 to how the buffer is currently being interpreted (L</lex_bufutf8>).
1110 If it is not convenient to nul-terminate a string to be inserted, the
1111 L</lex_stuff_pvn> function is more appropriate.
1117 Perl_lex_stuff_pv(pTHX_ const char *pv, U32 flags)
1119 PERL_ARGS_ASSERT_LEX_STUFF_PV;
1120 lex_stuff_pvn(pv, strlen(pv), flags);
1124 =for apidoc Amx|void|lex_stuff_sv|SV *sv|U32 flags
1126 Insert characters into the lexer buffer (L</PL_parser-E<gt>linestr>),
1127 immediately after the current lexing point (L</PL_parser-E<gt>bufptr>),
1128 reallocating the buffer if necessary. This means that lexing code that
1129 runs later will see the characters as if they had appeared in the input.
1130 It is not recommended to do this as part of normal parsing, and most
1131 uses of this facility run the risk of the inserted characters being
1132 interpreted in an unintended manner.
1134 The string to be inserted is the string value of C<sv>. The characters
1135 are recoded for the lexer buffer, according to how the buffer is currently
1136 being interpreted (L</lex_bufutf8>). If a string to be inserted is
1137 not already a Perl scalar, the L</lex_stuff_pvn> function avoids the
1138 need to construct a scalar.
1144 Perl_lex_stuff_sv(pTHX_ SV *sv, U32 flags)
1148 PERL_ARGS_ASSERT_LEX_STUFF_SV;
1150 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_stuff_sv");
1152 lex_stuff_pvn(pv, len, flags | (SvUTF8(sv) ? LEX_STUFF_UTF8 : 0));
1156 =for apidoc Amx|void|lex_unstuff|char *ptr
1158 Discards text about to be lexed, from L</PL_parser-E<gt>bufptr> up to
1159 C<ptr>. Text following C<ptr> will be moved, and the buffer shortened.
1160 This hides the discarded text from any lexing code that runs later,
1161 as if the text had never appeared.
1163 This is not the normal way to consume lexed text. For that, use
1170 Perl_lex_unstuff(pTHX_ char *ptr)
1174 PERL_ARGS_ASSERT_LEX_UNSTUFF;
1175 buf = PL_parser->bufptr;
1177 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_unstuff");
1180 bufend = PL_parser->bufend;
1182 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_unstuff");
1183 unstuff_len = ptr - buf;
1184 Move(ptr, buf, bufend+1-ptr, char);
1185 SvCUR_set(PL_parser->linestr, SvCUR(PL_parser->linestr) - unstuff_len);
1186 PL_parser->bufend = bufend - unstuff_len;
1190 =for apidoc Amx|void|lex_read_to|char *ptr
1192 Consume text in the lexer buffer, from L</PL_parser-E<gt>bufptr> up
1193 to C<ptr>. This advances L</PL_parser-E<gt>bufptr> to match C<ptr>,
1194 performing the correct bookkeeping whenever a newline character is passed.
1195 This is the normal way to consume lexed text.
1197 Interpretation of the buffer's octets can be abstracted out by
1198 using the slightly higher-level functions L</lex_peek_unichar> and
1199 L</lex_read_unichar>.
1205 Perl_lex_read_to(pTHX_ char *ptr)
1208 PERL_ARGS_ASSERT_LEX_READ_TO;
1209 s = PL_parser->bufptr;
1210 if (ptr < s || ptr > PL_parser->bufend)
1211 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_read_to");
1212 for (; s != ptr; s++)
1214 COPLINE_INC_WITH_HERELINES;
1215 PL_parser->linestart = s+1;
1217 PL_parser->bufptr = ptr;
1221 =for apidoc Amx|void|lex_discard_to|char *ptr
1223 Discards the first part of the L</PL_parser-E<gt>linestr> buffer,
1224 up to C<ptr>. The remaining content of the buffer will be moved, and
1225 all pointers into the buffer updated appropriately. C<ptr> must not
1226 be later in the buffer than the position of L</PL_parser-E<gt>bufptr>:
1227 it is not permitted to discard text that has yet to be lexed.
1229 Normally it is not necessarily to do this directly, because it suffices to
1230 use the implicit discarding behaviour of L</lex_next_chunk> and things
1231 based on it. However, if a token stretches across multiple lines,
1232 and the lexing code has kept multiple lines of text in the buffer for
1233 that purpose, then after completion of the token it would be wise to
1234 explicitly discard the now-unneeded earlier lines, to avoid future
1235 multi-line tokens growing the buffer without bound.
1241 Perl_lex_discard_to(pTHX_ char *ptr)
1245 PERL_ARGS_ASSERT_LEX_DISCARD_TO;
1246 buf = SvPVX(PL_parser->linestr);
1248 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_discard_to");
1251 if (ptr > PL_parser->bufptr)
1252 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_discard_to");
1253 discard_len = ptr - buf;
1254 if (PL_parser->oldbufptr < ptr)
1255 PL_parser->oldbufptr = ptr;
1256 if (PL_parser->oldoldbufptr < ptr)
1257 PL_parser->oldoldbufptr = ptr;
1258 if (PL_parser->last_uni && PL_parser->last_uni < ptr)
1259 PL_parser->last_uni = NULL;
1260 if (PL_parser->last_lop && PL_parser->last_lop < ptr)
1261 PL_parser->last_lop = NULL;
1262 Move(ptr, buf, PL_parser->bufend+1-ptr, char);
1263 SvCUR_set(PL_parser->linestr, SvCUR(PL_parser->linestr) - discard_len);
1264 PL_parser->bufend -= discard_len;
1265 PL_parser->bufptr -= discard_len;
1266 PL_parser->oldbufptr -= discard_len;
1267 PL_parser->oldoldbufptr -= discard_len;
1268 if (PL_parser->last_uni)
1269 PL_parser->last_uni -= discard_len;
1270 if (PL_parser->last_lop)
1271 PL_parser->last_lop -= discard_len;
1275 Perl_notify_parser_that_changed_to_utf8(pTHX)
1277 /* Called when $^H is changed to indicate that HINT_UTF8 has changed from
1278 * off to on. At compile time, this has the effect of entering a 'use
1279 * utf8' section. This means that any input was not previously checked for
1280 * UTF-8 (because it was off), but now we do need to check it, or our
1281 * assumptions about the input being sane could be wrong, and we could
1282 * segfault. This routine just sets a flag so that the next time we look
1283 * at the input we do the well-formed UTF-8 check. If we aren't in the
1284 * proper phase, there may not be a parser object, but if there is, setting
1285 * the flag is harmless */
1288 PL_parser->recheck_utf8_validity = TRUE;
1293 =for apidoc Amx|bool|lex_next_chunk|U32 flags
1295 Reads in the next chunk of text to be lexed, appending it to
1296 L</PL_parser-E<gt>linestr>. This should be called when lexing code has
1297 looked to the end of the current chunk and wants to know more. It is
1298 usual, but not necessary, for lexing to have consumed the entirety of
1299 the current chunk at this time.
1301 If L</PL_parser-E<gt>bufptr> is pointing to the very end of the current
1302 chunk (i.e., the current chunk has been entirely consumed), normally the
1303 current chunk will be discarded at the same time that the new chunk is
1304 read in. If C<flags> has the C<LEX_KEEP_PREVIOUS> bit set, the current chunk
1305 will not be discarded. If the current chunk has not been entirely
1306 consumed, then it will not be discarded regardless of the flag.
1308 Returns true if some new text was added to the buffer, or false if the
1309 buffer has reached the end of the input text.
1314 #define LEX_FAKE_EOF 0x80000000
1315 #define LEX_NO_TERM 0x40000000 /* here-doc */
1318 Perl_lex_next_chunk(pTHX_ U32 flags)
1322 STRLEN old_bufend_pos, new_bufend_pos;
1323 STRLEN bufptr_pos, oldbufptr_pos, oldoldbufptr_pos;
1324 STRLEN linestart_pos, last_uni_pos, last_lop_pos;
1325 bool got_some_for_debugger = 0;
1328 if (flags & ~(LEX_KEEP_PREVIOUS|LEX_FAKE_EOF|LEX_NO_TERM))
1329 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_next_chunk");
1330 if (!(flags & LEX_NO_TERM) && PL_lex_inwhat)
1332 linestr = PL_parser->linestr;
1333 buf = SvPVX(linestr);
1334 if (!(flags & LEX_KEEP_PREVIOUS)
1335 && PL_parser->bufptr == PL_parser->bufend)
1337 old_bufend_pos = bufptr_pos = oldbufptr_pos = oldoldbufptr_pos = 0;
1339 if (PL_parser->last_uni != PL_parser->bufend)
1340 PL_parser->last_uni = NULL;
1341 if (PL_parser->last_lop != PL_parser->bufend)
1342 PL_parser->last_lop = NULL;
1343 last_uni_pos = last_lop_pos = 0;
1347 old_bufend_pos = PL_parser->bufend - buf;
1348 bufptr_pos = PL_parser->bufptr - buf;
1349 oldbufptr_pos = PL_parser->oldbufptr - buf;
1350 oldoldbufptr_pos = PL_parser->oldoldbufptr - buf;
1351 linestart_pos = PL_parser->linestart - buf;
1352 last_uni_pos = PL_parser->last_uni ? PL_parser->last_uni - buf : 0;
1353 last_lop_pos = PL_parser->last_lop ? PL_parser->last_lop - buf : 0;
1355 if (flags & LEX_FAKE_EOF) {
1357 } else if (!PL_parser->rsfp && !PL_parser->filtered) {
1359 } else if (filter_gets(linestr, old_bufend_pos)) {
1361 got_some_for_debugger = 1;
1362 } else if (flags & LEX_NO_TERM) {
1365 if (!SvPOK(linestr)) /* can get undefined by filter_gets */
1368 /* End of real input. Close filehandle (unless it was STDIN),
1369 * then add implicit termination.
1371 if (PL_parser->lex_flags & LEX_DONT_CLOSE_RSFP)
1372 PerlIO_clearerr(PL_parser->rsfp);
1373 else if (PL_parser->rsfp)
1374 (void)PerlIO_close(PL_parser->rsfp);
1375 PL_parser->rsfp = NULL;
1376 PL_parser->in_pod = PL_parser->filtered = 0;
1377 if (!PL_in_eval && PL_minus_p) {
1379 /*{*/";}continue{print or die qq(-p destination: $!\\n);}");
1380 PL_minus_n = PL_minus_p = 0;
1381 } else if (!PL_in_eval && PL_minus_n) {
1382 sv_catpvs(linestr, /*{*/";}");
1385 sv_catpvs(linestr, ";");
1388 buf = SvPVX(linestr);
1389 new_bufend_pos = SvCUR(linestr);
1390 PL_parser->bufend = buf + new_bufend_pos;
1391 PL_parser->bufptr = buf + bufptr_pos;
1394 const U8* first_bad_char_loc;
1395 if (UNLIKELY(! is_utf8_string_loc(
1396 (U8 *) PL_parser->bufptr,
1397 PL_parser->bufend - PL_parser->bufptr,
1398 &first_bad_char_loc)))
1400 _force_out_malformed_utf8_message(first_bad_char_loc,
1401 (U8 *) PL_parser->bufend,
1403 1 /* 1 means die */ );
1404 NOT_REACHED; /* NOTREACHED */
1408 PL_parser->oldbufptr = buf + oldbufptr_pos;
1409 PL_parser->oldoldbufptr = buf + oldoldbufptr_pos;
1410 PL_parser->linestart = buf + linestart_pos;
1411 if (PL_parser->last_uni)
1412 PL_parser->last_uni = buf + last_uni_pos;
1413 if (PL_parser->last_lop)
1414 PL_parser->last_lop = buf + last_lop_pos;
1415 if (PL_parser->preambling != NOLINE) {
1416 CopLINE_set(PL_curcop, PL_parser->preambling + 1);
1417 PL_parser->preambling = NOLINE;
1419 if ( got_some_for_debugger
1420 && PERLDB_LINE_OR_SAVESRC
1421 && PL_curstash != PL_debstash)
1423 /* debugger active and we're not compiling the debugger code,
1424 * so store the line into the debugger's array of lines
1426 update_debugger_info(NULL, buf+old_bufend_pos,
1427 new_bufend_pos-old_bufend_pos);
1433 =for apidoc Amx|I32|lex_peek_unichar|U32 flags
1435 Looks ahead one (Unicode) character in the text currently being lexed.
1436 Returns the codepoint (unsigned integer value) of the next character,
1437 or -1 if lexing has reached the end of the input text. To consume the
1438 peeked character, use L</lex_read_unichar>.
1440 If the next character is in (or extends into) the next chunk of input
1441 text, the next chunk will be read in. Normally the current chunk will be
1442 discarded at the same time, but if C<flags> has the C<LEX_KEEP_PREVIOUS>
1443 bit set, then the current chunk will not be discarded.
1445 If the input is being interpreted as UTF-8 and a UTF-8 encoding error
1446 is encountered, an exception is generated.
1452 Perl_lex_peek_unichar(pTHX_ U32 flags)
1456 if (flags & ~(LEX_KEEP_PREVIOUS))
1457 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_peek_unichar");
1458 s = PL_parser->bufptr;
1459 bufend = PL_parser->bufend;
1465 if (!lex_next_chunk(flags))
1467 s = PL_parser->bufptr;
1468 bufend = PL_parser->bufend;
1471 if (UTF8_IS_INVARIANT(head))
1473 if (UTF8_IS_START(head)) {
1474 len = UTF8SKIP(&head);
1475 while ((STRLEN)(bufend-s) < len) {
1476 if (!lex_next_chunk(flags | LEX_KEEP_PREVIOUS))
1478 s = PL_parser->bufptr;
1479 bufend = PL_parser->bufend;
1482 unichar = utf8n_to_uvchr((U8*)s, bufend-s, &retlen, UTF8_CHECK_ONLY);
1483 if (retlen == (STRLEN)-1) {
1484 _force_out_malformed_utf8_message((U8 *) s,
1487 1 /* 1 means die */ );
1488 NOT_REACHED; /* NOTREACHED */
1493 if (!lex_next_chunk(flags))
1495 s = PL_parser->bufptr;
1502 =for apidoc Amx|I32|lex_read_unichar|U32 flags
1504 Reads the next (Unicode) character in the text currently being lexed.
1505 Returns the codepoint (unsigned integer value) of the character read,
1506 and moves L</PL_parser-E<gt>bufptr> past the character, or returns -1
1507 if lexing has reached the end of the input text. To non-destructively
1508 examine the next character, use L</lex_peek_unichar> instead.
1510 If the next character is in (or extends into) the next chunk of input
1511 text, the next chunk will be read in. Normally the current chunk will be
1512 discarded at the same time, but if C<flags> has the C<LEX_KEEP_PREVIOUS>
1513 bit set, then the current chunk will not be discarded.
1515 If the input is being interpreted as UTF-8 and a UTF-8 encoding error
1516 is encountered, an exception is generated.
1522 Perl_lex_read_unichar(pTHX_ U32 flags)
1525 if (flags & ~(LEX_KEEP_PREVIOUS))
1526 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_read_unichar");
1527 c = lex_peek_unichar(flags);
1530 COPLINE_INC_WITH_HERELINES;
1532 PL_parser->bufptr += UTF8SKIP(PL_parser->bufptr);
1534 ++(PL_parser->bufptr);
1540 =for apidoc Amx|void|lex_read_space|U32 flags
1542 Reads optional spaces, in Perl style, in the text currently being
1543 lexed. The spaces may include ordinary whitespace characters and
1544 Perl-style comments. C<#line> directives are processed if encountered.
1545 L</PL_parser-E<gt>bufptr> is moved past the spaces, so that it points
1546 at a non-space character (or the end of the input text).
1548 If spaces extend into the next chunk of input text, the next chunk will
1549 be read in. Normally the current chunk will be discarded at the same
1550 time, but if C<flags> has the C<LEX_KEEP_PREVIOUS> bit set, then the current
1551 chunk will not be discarded.
1556 #define LEX_NO_INCLINE 0x40000000
1557 #define LEX_NO_NEXT_CHUNK 0x80000000
1560 Perl_lex_read_space(pTHX_ U32 flags)
1563 const bool can_incline = !(flags & LEX_NO_INCLINE);
1564 bool need_incline = 0;
1565 if (flags & ~(LEX_KEEP_PREVIOUS|LEX_NO_NEXT_CHUNK|LEX_NO_INCLINE))
1566 Perl_croak(aTHX_ "Lexing code internal error (%s)", "lex_read_space");
1567 s = PL_parser->bufptr;
1568 bufend = PL_parser->bufend;
1574 } while (!(c == '\n' || (c == 0 && s == bufend)));
1575 } else if (c == '\n') {
1578 PL_parser->linestart = s;
1584 } else if (isSPACE(c)) {
1586 } else if (c == 0 && s == bufend) {
1589 if (flags & LEX_NO_NEXT_CHUNK)
1591 PL_parser->bufptr = s;
1592 l = CopLINE(PL_curcop);
1593 CopLINE(PL_curcop) += PL_parser->herelines + 1;
1594 got_more = lex_next_chunk(flags);
1595 CopLINE_set(PL_curcop, l);
1596 s = PL_parser->bufptr;
1597 bufend = PL_parser->bufend;
1600 if (can_incline && need_incline && PL_parser->rsfp) {
1610 PL_parser->bufptr = s;
1615 =for apidoc EXMp|bool|validate_proto|SV *name|SV *proto|bool warn
1617 This function performs syntax checking on a prototype, C<proto>.
1618 If C<warn> is true, any illegal characters or mismatched brackets
1619 will trigger illegalproto warnings, declaring that they were
1620 detected in the prototype for C<name>.
1622 The return value is C<true> if this is a valid prototype, and
1623 C<false> if it is not, regardless of whether C<warn> was C<true> or
1626 Note that C<NULL> is a valid C<proto> and will always return C<true>.
1633 Perl_validate_proto(pTHX_ SV *name, SV *proto, bool warn)
1635 STRLEN len, origlen;
1637 bool bad_proto = FALSE;
1638 bool in_brackets = FALSE;
1639 bool after_slash = FALSE;
1640 char greedy_proto = ' ';
1641 bool proto_after_greedy_proto = FALSE;
1642 bool must_be_last = FALSE;
1643 bool underscore = FALSE;
1644 bool bad_proto_after_underscore = FALSE;
1646 PERL_ARGS_ASSERT_VALIDATE_PROTO;
1651 p = SvPV(proto, len);
1653 for (; len--; p++) {
1656 proto_after_greedy_proto = TRUE;
1658 if (!strchr(";@%", *p))
1659 bad_proto_after_underscore = TRUE;
1662 if (!strchr("$@%*;[]&\\_+", *p) || *p == '\0') {
1669 in_brackets = FALSE;
1670 else if ((*p == '@' || *p == '%')
1674 must_be_last = TRUE;
1683 after_slash = FALSE;
1688 SV *tmpsv = newSVpvs_flags("", SVs_TEMP);
1691 ? sv_uni_display(tmpsv, newSVpvn_flags(p, origlen, SVs_TEMP | SVf_UTF8),
1692 origlen, UNI_DISPLAY_ISPRINT)
1693 : pv_pretty(tmpsv, p, origlen, 60, NULL, NULL, PERL_PV_ESCAPE_NONASCII);
1695 if (proto_after_greedy_proto)
1696 Perl_warner(aTHX_ packWARN(WARN_ILLEGALPROTO),
1697 "Prototype after '%c' for %" SVf " : %s",
1698 greedy_proto, SVfARG(name), p);
1700 Perl_warner(aTHX_ packWARN(WARN_ILLEGALPROTO),
1701 "Missing ']' in prototype for %" SVf " : %s",
1704 Perl_warner(aTHX_ packWARN(WARN_ILLEGALPROTO),
1705 "Illegal character in prototype for %" SVf " : %s",
1707 if (bad_proto_after_underscore)
1708 Perl_warner(aTHX_ packWARN(WARN_ILLEGALPROTO),
1709 "Illegal character after '_' in prototype for %" SVf " : %s",
1713 return (! (proto_after_greedy_proto || bad_proto) );
1718 * This subroutine has nothing to do with tilting, whether at windmills
1719 * or pinball tables. Its name is short for "increment line". It
1720 * increments the current line number in CopLINE(PL_curcop) and checks
1721 * to see whether the line starts with a comment of the form
1722 * # line 500 "foo.pm"
1723 * If so, it sets the current line number and file to the values in the comment.
1727 S_incline(pTHX_ const char *s)
1735 PERL_ARGS_ASSERT_INCLINE;
1737 COPLINE_INC_WITH_HERELINES;
1738 if (!PL_rsfp && !PL_parser->filtered && PL_lex_state == LEX_NORMAL
1739 && s+1 == PL_bufend && *s == ';') {
1740 /* fake newline in string eval */
1741 CopLINE_dec(PL_curcop);
1746 while (SPACE_OR_TAB(*s))
1748 if (strEQs(s, "line"))
1752 if (SPACE_OR_TAB(*s))
1756 while (SPACE_OR_TAB(*s))
1764 if (!SPACE_OR_TAB(*s) && *s != '\r' && *s != '\n' && *s != '\0')
1766 while (SPACE_OR_TAB(*s))
1768 if (*s == '"' && (t = strchr(s+1, '"'))) {
1774 while (*t && !isSPACE(*t))
1778 while (SPACE_OR_TAB(*e) || *e == '\r' || *e == '\f')
1780 if (*e != '\n' && *e != '\0')
1781 return; /* false alarm */
1783 if (!grok_atoUV(n, &uv, &e))
1785 line_num = ((line_t)uv) - 1;
1788 const STRLEN len = t - s;
1790 if (!PL_rsfp && !PL_parser->filtered) {
1791 /* must copy *{"::_<(eval N)[oldfilename:L]"}
1792 * to *{"::_<newfilename"} */
1793 /* However, the long form of evals is only turned on by the
1794 debugger - usually they're "(eval %lu)" */
1795 GV * const cfgv = CopFILEGV(PL_curcop);
1798 STRLEN tmplen2 = len;
1802 if (tmplen2 + 2 <= sizeof smallbuf)
1805 Newx(tmpbuf2, tmplen2 + 2, char);
1810 memcpy(tmpbuf2 + 2, s, tmplen2);
1813 gv2 = *(GV**)hv_fetch(PL_defstash, tmpbuf2, tmplen2, TRUE);
1815 gv_init(gv2, PL_defstash, tmpbuf2, tmplen2, FALSE);
1816 /* adjust ${"::_<newfilename"} to store the new file name */
1817 GvSV(gv2) = newSVpvn(tmpbuf2 + 2, tmplen2 - 2);
1818 /* The line number may differ. If that is the case,
1819 alias the saved lines that are in the array.
1820 Otherwise alias the whole array. */
1821 if (CopLINE(PL_curcop) == line_num) {
1822 GvHV(gv2) = MUTABLE_HV(SvREFCNT_inc(GvHV(cfgv)));
1823 GvAV(gv2) = MUTABLE_AV(SvREFCNT_inc(GvAV(cfgv)));
1825 else if (GvAV(cfgv)) {
1826 AV * const av = GvAV(cfgv);
1827 const I32 start = CopLINE(PL_curcop)+1;
1828 I32 items = AvFILLp(av) - start;
1830 AV * const av2 = GvAVn(gv2);
1831 SV **svp = AvARRAY(av) + start;
1832 I32 l = (I32)line_num+1;
1834 av_store(av2, l++, SvREFCNT_inc(*svp++));
1839 if (tmpbuf2 != smallbuf) Safefree(tmpbuf2);
1842 CopFILE_free(PL_curcop);
1843 CopFILE_setn(PL_curcop, s, len);
1845 CopLINE_set(PL_curcop, line_num);
1849 S_update_debugger_info(pTHX_ SV *orig_sv, const char *const buf, STRLEN len)
1851 AV *av = CopFILEAVx(PL_curcop);
1854 if (PL_parser->preambling == NOLINE) sv = newSV_type(SVt_PVMG);
1856 sv = *av_fetch(av, 0, 1);
1857 SvUPGRADE(sv, SVt_PVMG);
1859 if (!SvPOK(sv)) SvPVCLEAR(sv);
1861 sv_catsv(sv, orig_sv);
1863 sv_catpvn(sv, buf, len);
1868 if (PL_parser->preambling == NOLINE)
1869 av_store(av, CopLINE(PL_curcop), sv);
1875 * Called to gobble the appropriate amount and type of whitespace.
1876 * Skips comments as well.
1877 * Returns the next character after the whitespace that is skipped.
1880 * Same thing, but look ahead without incrementing line numbers or
1881 * adjusting PL_linestart.
1884 #define skipspace(s) skipspace_flags(s, 0)
1885 #define peekspace(s) skipspace_flags(s, LEX_NO_INCLINE)
1888 S_skipspace_flags(pTHX_ char *s, U32 flags)
1890 PERL_ARGS_ASSERT_SKIPSPACE_FLAGS;
1891 if (PL_lex_formbrack && PL_lex_brackets <= PL_lex_formbrack) {
1892 while (s < PL_bufend && (SPACE_OR_TAB(*s) || !*s))
1895 STRLEN bufptr_pos = PL_bufptr - SvPVX(PL_linestr);
1897 lex_read_space(flags | LEX_KEEP_PREVIOUS |
1898 (PL_lex_inwhat || PL_lex_state == LEX_FORMLINE ?
1899 LEX_NO_NEXT_CHUNK : 0));
1901 PL_bufptr = SvPVX(PL_linestr) + bufptr_pos;
1902 if (PL_linestart > PL_bufptr)
1903 PL_bufptr = PL_linestart;
1911 * Check the unary operators to ensure there's no ambiguity in how they're
1912 * used. An ambiguous piece of code would be:
1914 * This doesn't mean rand() + 5. Because rand() is a unary operator,
1915 * the +5 is its argument.
1924 if (PL_oldoldbufptr != PL_last_uni)
1926 while (isSPACE(*PL_last_uni))
1929 while (isWORDCHAR_lazy_if_safe(s, PL_bufend, UTF) || *s == '-')
1930 s += UTF ? UTF8SKIP(s) : 1;
1931 if ((t = strchr(s, '(')) && t < PL_bufptr)
1934 Perl_ck_warner_d(aTHX_ packWARN(WARN_AMBIGUOUS),
1935 "Warning: Use of \"%" UTF8f "\" without parentheses is ambiguous",
1936 UTF8fARG(UTF, (int)(s - PL_last_uni), PL_last_uni));
1940 * LOP : macro to build a list operator. Its behaviour has been replaced
1941 * with a subroutine, S_lop() for which LOP is just another name.
1944 #define LOP(f,x) return lop(f,x,s)
1948 * Build a list operator (or something that might be one). The rules:
1949 * - if we have a next token, then it's a list operator (no parens) for
1950 * which the next token has already been parsed; e.g.,
1953 * - if the next thing is an opening paren, then it's a function
1954 * - else it's a list operator
1958 S_lop(pTHX_ I32 f, U8 x, char *s)
1960 PERL_ARGS_ASSERT_LOP;
1965 PL_last_lop = PL_oldbufptr;
1966 PL_last_lop_op = (OPCODE)f;
1971 return REPORT(FUNC);
1974 return REPORT(FUNC);
1977 if (!PL_lex_allbrackets && PL_lex_fakeeof > LEX_FAKEEOF_LOWLOGIC)
1978 PL_lex_fakeeof = LEX_FAKEEOF_LOWLOGIC;
1979 return REPORT(LSTOP);
1985 * When the lexer realizes it knows the next token (for instance,
1986 * it is reordering tokens for the parser) then it can call S_force_next
1987 * to know what token to return the next time the lexer is called. Caller
1988 * will need to set PL_nextval[] and possibly PL_expect to ensure
1989 * the lexer handles the token correctly.
1993 S_force_next(pTHX_ I32 type)
1997 PerlIO_printf(Perl_debug_log, "### forced token:\n");
1998 tokereport(type, &NEXTVAL_NEXTTOKE);
2001 assert(PL_nexttoke < C_ARRAY_LENGTH(PL_nexttype));
2002 PL_nexttype[PL_nexttoke] = type;
2009 * This subroutine handles postfix deref syntax after the arrow has already
2010 * been emitted. @* $* etc. are emitted as two separate token right here.
2011 * @[ @{ %[ %{ *{ are emitted also as two tokens, but this function emits
2012 * only the first, leaving yylex to find the next.
2016 S_postderef(pTHX_ int const funny, char const next)
2018 assert(funny == DOLSHARP || strchr("$@%&*", funny));
2020 PL_expect = XOPERATOR;
2021 if (PL_lex_state == LEX_INTERPNORMAL && !PL_lex_brackets) {
2022 assert('@' == funny || '$' == funny || DOLSHARP == funny);
2023 PL_lex_state = LEX_INTERPEND;
2025 force_next(POSTJOIN);
2031 if ('@' == funny && PL_lex_state == LEX_INTERPNORMAL
2032 && !PL_lex_brackets)
2034 PL_expect = XOPERATOR;
2043 int yyc = PL_parser->yychar;
2044 if (yyc != YYEMPTY) {
2046 NEXTVAL_NEXTTOKE = PL_parser->yylval;
2047 if (yyc == '{'/*}*/ || yyc == HASHBRACK || yyc == '['/*]*/) {
2048 PL_lex_allbrackets--;
2050 yyc |= (3<<24) | (PL_lex_brackstack[PL_lex_brackets] << 16);
2051 } else if (yyc == '('/*)*/) {
2052 PL_lex_allbrackets--;
2057 PL_parser->yychar = YYEMPTY;
2062 S_newSV_maybe_utf8(pTHX_ const char *const start, STRLEN len)
2064 SV * const sv = newSVpvn_utf8(start, len,
2067 && !is_utf8_invariant_string((const U8*)start, len)
2068 && is_utf8_string((const U8*)start, len));
2074 * When the lexer knows the next thing is a word (for instance, it has
2075 * just seen -> and it knows that the next char is a word char, then
2076 * it calls S_force_word to stick the next word into the PL_nexttoke/val
2080 * char *start : buffer position (must be within PL_linestr)
2081 * int token : PL_next* will be this type of bare word
2082 * (e.g., METHOD,BAREWORD)
2083 * int check_keyword : if true, Perl checks to make sure the word isn't
2084 * a keyword (do this if the word is a label, e.g. goto FOO)
2085 * int allow_pack : if true, : characters will also be allowed (require,
2086 * use, etc. do this)
2090 S_force_word(pTHX_ char *start, int token, int check_keyword, int allow_pack)
2095 PERL_ARGS_ASSERT_FORCE_WORD;
2097 start = skipspace(start);
2099 if ( isIDFIRST_lazy_if_safe(s, PL_bufend, UTF)
2100 || (allow_pack && *s == ':' && s[1] == ':') )
2102 s = scan_word(s, PL_tokenbuf, sizeof PL_tokenbuf, allow_pack, &len);
2103 if (check_keyword) {
2104 char *s2 = PL_tokenbuf;
2106 if (allow_pack && len > 6 && strEQs(s2, "CORE::"))
2108 if (keyword(s2, len2, 0))
2111 if (token == METHOD) {
2116 PL_expect = XOPERATOR;
2119 NEXTVAL_NEXTTOKE.opval
2120 = newSVOP(OP_CONST,0,
2121 S_newSV_maybe_utf8(aTHX_ PL_tokenbuf, len));
2122 NEXTVAL_NEXTTOKE.opval->op_private |= OPpCONST_BARE;
2130 * Called when the lexer wants $foo *foo &foo etc, but the program
2131 * text only contains the "foo" portion. The first argument is a pointer
2132 * to the "foo", and the second argument is the type symbol to prefix.
2133 * Forces the next token to be a "BAREWORD".
2134 * Creates the symbol if it didn't already exist (via gv_fetchpv()).
2138 S_force_ident(pTHX_ const char *s, int kind)
2140 PERL_ARGS_ASSERT_FORCE_IDENT;
2143 const STRLEN len = s[1] ? strlen(s) : 1; /* s = "\"" see yylex */
2144 OP* const o = newSVOP(OP_CONST, 0, newSVpvn_flags(s, len,
2145 UTF ? SVf_UTF8 : 0));
2146 NEXTVAL_NEXTTOKE.opval = o;
2147 force_next(BAREWORD);
2149 o->op_private = OPpCONST_ENTERED;
2150 /* XXX see note in pp_entereval() for why we forgo typo
2151 warnings if the symbol must be introduced in an eval.
2153 gv_fetchpvn_flags(s, len,
2154 (PL_in_eval ? GV_ADDMULTI
2155 : GV_ADD) | ( UTF ? SVf_UTF8 : 0 ),
2156 kind == '$' ? SVt_PV :
2157 kind == '@' ? SVt_PVAV :
2158 kind == '%' ? SVt_PVHV :
2166 S_force_ident_maybe_lex(pTHX_ char pit)
2168 NEXTVAL_NEXTTOKE.ival = pit;
2173 Perl_str_to_version(pTHX_ SV *sv)
2178 const char *start = SvPV_const(sv,len);
2179 const char * const end = start + len;
2180 const bool utf = cBOOL(SvUTF8(sv));
2182 PERL_ARGS_ASSERT_STR_TO_VERSION;
2184 while (start < end) {
2188 n = utf8n_to_uvchr((U8*)start, len, &skip, 0);
2193 retval += ((NV)n)/nshift;
2202 * Forces the next token to be a version number.
2203 * If the next token appears to be an invalid version number, (e.g. "v2b"),
2204 * and if "guessing" is TRUE, then no new token is created (and the caller
2205 * must use an alternative parsing method).
2209 S_force_version(pTHX_ char *s, int guessing)
2214 PERL_ARGS_ASSERT_FORCE_VERSION;
2222 while (isDIGIT(*d) || *d == '_' || *d == '.')
2224 if (*d == ';' || isSPACE(*d) || *d == '{' || *d == '}' || !*d) {
2226 s = scan_num(s, &pl_yylval);
2227 version = pl_yylval.opval;
2228 ver = cSVOPx(version)->op_sv;
2229 if (SvPOK(ver) && !SvNIOK(ver)) {
2230 SvUPGRADE(ver, SVt_PVNV);
2231 SvNV_set(ver, str_to_version(ver));
2232 SvNOK_on(ver); /* hint that it is a version */
2235 else if (guessing) {
2240 /* NOTE: The parser sees the package name and the VERSION swapped */
2241 NEXTVAL_NEXTTOKE.opval = version;
2242 force_next(BAREWORD);
2248 * S_force_strict_version
2249 * Forces the next token to be a version number using strict syntax rules.
2253 S_force_strict_version(pTHX_ char *s)
2256 const char *errstr = NULL;
2258 PERL_ARGS_ASSERT_FORCE_STRICT_VERSION;
2260 while (isSPACE(*s)) /* leading whitespace */
2263 if (is_STRICT_VERSION(s,&errstr)) {
2265 s = (char *)scan_version(s, ver, 0);
2266 version = newSVOP(OP_CONST, 0, ver);
2268 else if ((*s != ';' && *s != '{' && *s != '}' )
2269 && (s = skipspace(s), (*s != ';' && *s != '{' && *s != '}' )))
2273 yyerror(errstr); /* version required */
2277 /* NOTE: The parser sees the package name and the VERSION swapped */
2278 NEXTVAL_NEXTTOKE.opval = version;
2279 force_next(BAREWORD);
2286 * Turns any \\ into \ in a quoted string passed in in 'sv', returning 'sv',
2287 * modified as necessary. However, if HINT_NEW_STRING is on, 'sv' is
2288 * unchanged, and a new SV containing the modified input is returned.
2292 S_tokeq(pTHX_ SV *sv)
2299 PERL_ARGS_ASSERT_TOKEQ;
2303 assert (!SvIsCOW(sv));
2304 if (SvTYPE(sv) >= SVt_PVIV && SvIVX(sv) == -1) /* <<'heredoc' */
2308 /* This is relying on the SV being "well formed" with a trailing '\0' */
2309 while (s < send && !(*s == '\\' && s[1] == '\\'))
2314 if ( PL_hints & HINT_NEW_STRING ) {
2315 pv = newSVpvn_flags(SvPVX_const(pv), SvCUR(sv),
2316 SVs_TEMP | SvUTF8(sv));
2320 if (s + 1 < send && (s[1] == '\\'))
2321 s++; /* all that, just for this */
2326 SvCUR_set(sv, d - SvPVX_const(sv));
2328 if ( PL_hints & HINT_NEW_STRING )
2329 return new_constant(NULL, 0, "q", sv, pv, "q", 1);
2334 * Now come three functions related to double-quote context,
2335 * S_sublex_start, S_sublex_push, and S_sublex_done. They're used when
2336 * converting things like "\u\Lgnat" into ucfirst(lc("gnat")). They
2337 * interact with PL_lex_state, and create fake ( ... ) argument lists
2338 * to handle functions and concatenation.
2342 * stringify ( const[foo] concat lcfirst ( const[bar] ) )
2347 * Assumes that pl_yylval.ival is the op we're creating (e.g. OP_LCFIRST).
2349 * Pattern matching will set PL_lex_op to the pattern-matching op to
2350 * make (we return THING if pl_yylval.ival is OP_NULL, PMFUNC otherwise).
2352 * OP_CONST is easy--just make the new op and return.
2354 * Everything else becomes a FUNC.
2356 * Sets PL_lex_state to LEX_INTERPPUSH unless ival was OP_NULL or we
2357 * had an OP_CONST. This just sets us up for a
2358 * call to S_sublex_push().
2362 S_sublex_start(pTHX)
2364 const I32 op_type = pl_yylval.ival;
2366 if (op_type == OP_NULL) {
2367 pl_yylval.opval = PL_lex_op;
2371 if (op_type == OP_CONST) {
2372 SV *sv = PL_lex_stuff;
2373 PL_lex_stuff = NULL;
2376 if (SvTYPE(sv) == SVt_PVIV) {
2377 /* Overloaded constants, nothing fancy: Convert to SVt_PV: */
2379 const char * const p = SvPV_const(sv, len);
2380 SV * const nsv = newSVpvn_flags(p, len, SvUTF8(sv));
2384 pl_yylval.opval = newSVOP(op_type, 0, sv);
2388 PL_parser->lex_super_state = PL_lex_state;
2389 PL_parser->lex_sub_inwhat = (U16)op_type;
2390 PL_parser->lex_sub_op = PL_lex_op;
2391 PL_lex_state = LEX_INTERPPUSH;
2395 pl_yylval.opval = PL_lex_op;
2405 * Create a new scope to save the lexing state. The scope will be
2406 * ended in S_sublex_done. Returns a '(', starting the function arguments
2407 * to the uc, lc, etc. found before.
2408 * Sets PL_lex_state to LEX_INTERPCONCAT.
2415 const bool is_heredoc = PL_multi_close == '<';
2418 PL_lex_state = PL_parser->lex_super_state;
2419 SAVEI8(PL_lex_dojoin);
2420 SAVEI32(PL_lex_brackets);
2421 SAVEI32(PL_lex_allbrackets);
2422 SAVEI32(PL_lex_formbrack);
2423 SAVEI8(PL_lex_fakeeof);
2424 SAVEI32(PL_lex_casemods);
2425 SAVEI32(PL_lex_starts);
2426 SAVEI8(PL_lex_state);
2427 SAVESPTR(PL_lex_repl);
2428 SAVEVPTR(PL_lex_inpat);
2429 SAVEI16(PL_lex_inwhat);
2432 SAVECOPLINE(PL_curcop);
2433 SAVEI32(PL_multi_end);
2434 SAVEI32(PL_parser->herelines);
2435 PL_parser->herelines = 0;
2437 SAVEIV(PL_multi_close);
2438 SAVEPPTR(PL_bufptr);
2439 SAVEPPTR(PL_bufend);
2440 SAVEPPTR(PL_oldbufptr);
2441 SAVEPPTR(PL_oldoldbufptr);
2442 SAVEPPTR(PL_last_lop);
2443 SAVEPPTR(PL_last_uni);
2444 SAVEPPTR(PL_linestart);
2445 SAVESPTR(PL_linestr);
2446 SAVEGENERICPV(PL_lex_brackstack);
2447 SAVEGENERICPV(PL_lex_casestack);
2448 SAVEGENERICPV(PL_parser->lex_shared);
2449 SAVEBOOL(PL_parser->lex_re_reparsing);
2450 SAVEI32(PL_copline);
2452 /* The here-doc parser needs to be able to peek into outer lexing
2453 scopes to find the body of the here-doc. So we put PL_linestr and
2454 PL_bufptr into lex_shared, to ‘share’ those values.
2456 PL_parser->lex_shared->ls_linestr = PL_linestr;
2457 PL_parser->lex_shared->ls_bufptr = PL_bufptr;
2459 PL_linestr = PL_lex_stuff;
2460 PL_lex_repl = PL_parser->lex_sub_repl;
2461 PL_lex_stuff = NULL;
2462 PL_parser->lex_sub_repl = NULL;
2464 /* Arrange for PL_lex_stuff to be freed on scope exit, in case it gets
2465 set for an inner quote-like operator and then an error causes scope-
2466 popping. We must not have a PL_lex_stuff value left dangling, as
2467 that breaks assumptions elsewhere. See bug #123617. */
2468 SAVEGENERICSV(PL_lex_stuff);
2469 SAVEGENERICSV(PL_parser->lex_sub_repl);
2471 PL_bufend = PL_bufptr = PL_oldbufptr = PL_oldoldbufptr = PL_linestart
2472 = SvPVX(PL_linestr);
2473 PL_bufend += SvCUR(PL_linestr);
2474 PL_last_lop = PL_last_uni = NULL;
2475 SAVEFREESV(PL_linestr);
2476 if (PL_lex_repl) SAVEFREESV(PL_lex_repl);
2478 PL_lex_dojoin = FALSE;
2479 PL_lex_brackets = PL_lex_formbrack = 0;
2480 PL_lex_allbrackets = 0;
2481 PL_lex_fakeeof = LEX_FAKEEOF_NEVER;
2482 Newx(PL_lex_brackstack, 120, char);
2483 Newx(PL_lex_casestack, 12, char);
2484 PL_lex_casemods = 0;
2485 *PL_lex_casestack = '\0';
2487 PL_lex_state = LEX_INTERPCONCAT;
2489 CopLINE_set(PL_curcop, (line_t)PL_multi_start);
2490 PL_copline = NOLINE;
2492 Newxz(shared, 1, LEXSHARED);
2493 shared->ls_prev = PL_parser->lex_shared;
2494 PL_parser->lex_shared = shared;
2496 PL_lex_inwhat = PL_parser->lex_sub_inwhat;
2497 if (PL_lex_inwhat == OP_TRANSR) PL_lex_inwhat = OP_TRANS;
2498 if (PL_lex_inwhat == OP_MATCH || PL_lex_inwhat == OP_QR || PL_lex_inwhat == OP_SUBST)
2499 PL_lex_inpat = PL_parser->lex_sub_op;
2501 PL_lex_inpat = NULL;
2503 PL_parser->lex_re_reparsing = cBOOL(PL_in_eval & EVAL_RE_REPARSING);
2504 PL_in_eval &= ~EVAL_RE_REPARSING;
2511 * Restores lexer state after a S_sublex_push.
2517 if (!PL_lex_starts++) {
2518 SV * const sv = newSVpvs("");
2519 if (SvUTF8(PL_linestr))
2521 PL_expect = XOPERATOR;
2522 pl_yylval.opval = newSVOP(OP_CONST, 0, sv);
2526 if (PL_lex_casemods) { /* oops, we've got some unbalanced parens */
2527 PL_lex_state = LEX_INTERPCASEMOD;
2531 /* Is there a right-hand side to take care of? (s//RHS/ or tr//RHS/) */
2532 assert(PL_lex_inwhat != OP_TRANSR);
2534 assert (PL_lex_inwhat == OP_SUBST || PL_lex_inwhat == OP_TRANS);
2535 PL_linestr = PL_lex_repl;
2537 PL_bufend = PL_bufptr = PL_oldbufptr = PL_oldoldbufptr = PL_linestart = SvPVX(PL_linestr);
2538 PL_bufend += SvCUR(PL_linestr);
2539 PL_last_lop = PL_last_uni = NULL;
2540 PL_lex_dojoin = FALSE;
2541 PL_lex_brackets = 0;
2542 PL_lex_allbrackets = 0;
2543 PL_lex_fakeeof = LEX_FAKEEOF_NEVER;
2544 PL_lex_casemods = 0;
2545 *PL_lex_casestack = '\0';
2547 if (SvEVALED(PL_lex_repl)) {
2548 PL_lex_state = LEX_INTERPNORMAL;
2550 /* we don't clear PL_lex_repl here, so that we can check later
2551 whether this is an evalled subst; that means we rely on the
2552 logic to ensure sublex_done() is called again only via the
2553 branch (in yylex()) that clears PL_lex_repl, else we'll loop */
2556 PL_lex_state = LEX_INTERPCONCAT;
2559 if (SvTYPE(PL_linestr) >= SVt_PVNV) {
2560 CopLINE(PL_curcop) +=
2561 ((XPVNV*)SvANY(PL_linestr))->xnv_u.xnv_lines
2562 + PL_parser->herelines;
2563 PL_parser->herelines = 0;
2568 const line_t l = CopLINE(PL_curcop);
2570 if (PL_multi_close == '<')
2571 PL_parser->herelines += l - PL_multi_end;
2572 PL_bufend = SvPVX(PL_linestr);
2573 PL_bufend += SvCUR(PL_linestr);
2574 PL_expect = XOPERATOR;
2580 S_get_and_check_backslash_N_name(pTHX_ const char* s, const char* const e)
2582 /* <s> points to first character of interior of \N{}, <e> to one beyond the
2583 * interior, hence to the "}". Finds what the name resolves to, returning
2584 * an SV* containing it; NULL if no valid one found */
2586 SV* res = newSVpvn_flags(s, e - s, UTF ? SVf_UTF8 : 0);
2593 const char* backslash_ptr = s - 3; /* Points to the <\> of \N{... */
2595 PERL_ARGS_ASSERT_GET_AND_CHECK_BACKSLASH_N_NAME;
2598 deprecate_fatal_in("5.28", "Unknown charname '' is deprecated");
2602 res = new_constant( NULL, 0, "charnames", res, NULL, backslash_ptr,
2603 /* include the <}> */
2604 e - backslash_ptr + 1);
2606 SvREFCNT_dec_NN(res);
2610 /* See if the charnames handler is the Perl core's, and if so, we can skip
2611 * the validation needed for a user-supplied one, as Perl's does its own
2613 table = GvHV(PL_hintgv); /* ^H */
2614 cvp = hv_fetchs(table, "charnames", FALSE);
2615 if (cvp && (cv = *cvp) && SvROK(cv) && (rv = SvRV(cv),
2616 SvTYPE(rv) == SVt_PVCV) && ((stash = CvSTASH(rv)) != NULL))
2618 const char * const name = HvNAME(stash);
2619 if (HvNAMELEN(stash) == sizeof("_charnames")-1
2620 && strEQ(name, "_charnames")) {
2625 /* Here, it isn't Perl's charname handler. We can't rely on a
2626 * user-supplied handler to validate the input name. For non-ut8 input,
2627 * look to see that the first character is legal. Then loop through the
2628 * rest checking that each is a continuation */
2630 /* This code makes the reasonable assumption that the only Latin1-range
2631 * characters that begin a character name alias are alphabetic, otherwise
2632 * would have to create a isCHARNAME_BEGIN macro */
2635 if (! isALPHAU(*s)) {
2640 if (! isCHARNAME_CONT(*s)) {
2643 if (*s == ' ' && *(s-1) == ' ') {
2650 /* Similarly for utf8. For invariants can check directly; for other
2651 * Latin1, can calculate their code point and check; otherwise use a
2653 if (UTF8_IS_INVARIANT(*s)) {
2654 if (! isALPHAU(*s)) {
2658 } else if (UTF8_IS_DOWNGRADEABLE_START(*s)) {
2659 if (! isALPHAU(EIGHT_BIT_UTF8_TO_NATIVE(*s, *(s+1)))) {
2665 if (! PL_utf8_charname_begin) {
2666 U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
2667 PL_utf8_charname_begin = _core_swash_init("utf8",
2668 "_Perl_Charname_Begin",
2670 1, 0, NULL, &flags);
2672 if (! swash_fetch(PL_utf8_charname_begin, (U8 *) s, TRUE)) {
2679 if (UTF8_IS_INVARIANT(*s)) {
2680 if (! isCHARNAME_CONT(*s)) {
2683 if (*s == ' ' && *(s-1) == ' ') {
2688 else if (UTF8_IS_DOWNGRADEABLE_START(*s)) {
2689 if (! isCHARNAME_CONT(EIGHT_BIT_UTF8_TO_NATIVE(*s, *(s+1))))
2696 if (! PL_utf8_charname_continue) {
2697 U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
2698 PL_utf8_charname_continue = _core_swash_init("utf8",
2699 "_Perl_Charname_Continue",
2701 1, 0, NULL, &flags);
2703 if (! swash_fetch(PL_utf8_charname_continue, (U8 *) s, TRUE)) {
2710 if (*(s-1) == ' ') {
2713 "charnames alias definitions may not contain trailing "
2714 "white-space; marked by <-- HERE in %.*s<-- HERE %.*s",
2715 (int)(s - backslash_ptr + 1), backslash_ptr,
2716 (int)(e - s + 1), s + 1
2718 UTF ? SVf_UTF8 : 0);
2722 if (SvUTF8(res)) { /* Don't accept malformed input */
2723 const U8* first_bad_char_loc;
2725 const char* const str = SvPV_const(res, len);
2726 if (UNLIKELY(! is_utf8_string_loc((U8 *) str, len,
2727 &first_bad_char_loc)))
2729 _force_out_malformed_utf8_message(first_bad_char_loc,
2730 (U8 *) PL_parser->bufend,
2732 0 /* 0 means don't die */ );
2735 "Malformed UTF-8 returned by %.*s immediately after '%.*s'",
2736 (int) (e - backslash_ptr + 1), backslash_ptr,
2737 (int) ((char *) first_bad_char_loc - str), str
2748 /* The final %.*s makes sure that should the trailing NUL be missing
2749 * that this print won't run off the end of the string */
2752 "Invalid character in \\N{...}; marked by <-- HERE in %.*s<-- HERE %.*s",
2753 (int)(s - backslash_ptr + 1), backslash_ptr,
2754 (int)(e - s + 1), s + 1
2756 UTF ? SVf_UTF8 : 0);
2763 "charnames alias definitions may not contain a sequence of "
2764 "multiple spaces; marked by <-- HERE in %.*s<-- HERE %.*s",
2765 (int)(s - backslash_ptr + 1), backslash_ptr,
2766 (int)(e - s + 1), s + 1
2768 UTF ? SVf_UTF8 : 0);
2775 Extracts the next constant part of a pattern, double-quoted string,
2776 or transliteration. This is terrifying code.
2778 For example, in parsing the double-quoted string "ab\x63$d", it would
2779 stop at the '$' and return an OP_CONST containing 'abc'.
2781 It looks at PL_lex_inwhat and PL_lex_inpat to find out whether it's
2782 processing a pattern (PL_lex_inpat is true), a transliteration
2783 (PL_lex_inwhat == OP_TRANS is true), or a double-quoted string.
2785 Returns a pointer to the character scanned up to. If this is
2786 advanced from the start pointer supplied (i.e. if anything was
2787 successfully parsed), will leave an OP_CONST for the substring scanned
2788 in pl_yylval. Caller must intuit reason for not parsing further
2789 by looking at the next characters herself.
2793 \N{FOO} => \N{U+hex_for_character_FOO}
2794 (if FOO expands to multiple characters, expands to \N{U+xx.XX.yy ...})
2797 all other \-char, including \N and \N{ apart from \N{ABC}
2800 @ and $ where it appears to be a var, but not for $ as tail anchor
2804 In transliterations:
2805 characters are VERY literal, except for - not at the start or end
2806 of the string, which indicates a range. However some backslash sequences
2807 are recognized: \r, \n, and the like
2808 \007 \o{}, \x{}, \N{}
2809 If all elements in the transliteration are below 256,
2810 scan_const expands the range to the full set of intermediate
2811 characters. If the range is in utf8, the hyphen is replaced with
2812 a certain range mark which will be handled by pmtrans() in op.c.
2814 In double-quoted strings:
2816 all those recognized in transliterations
2817 deprecated backrefs: \1 (in substitution replacements)
2818 case and quoting: \U \Q \E
2821 scan_const does *not* construct ops to handle interpolated strings.
2822 It stops processing as soon as it finds an embedded $ or @ variable
2823 and leaves it to the caller to work out what's going on.
2825 embedded arrays (whether in pattern or not) could be:
2826 @foo, @::foo, @'foo, @{foo}, @$foo, @+, @-.
2828 $ in double-quoted strings must be the symbol of an embedded scalar.
2830 $ in pattern could be $foo or could be tail anchor. Assumption:
2831 it's a tail anchor if $ is the last thing in the string, or if it's
2832 followed by one of "()| \r\n\t"
2834 \1 (backreferences) are turned into $1 in substitutions
2836 The structure of the code is
2837 while (there's a character to process) {
2838 handle transliteration ranges
2839 skip regexp comments /(?#comment)/ and codes /(?{code})/
2840 skip #-initiated comments in //x patterns
2841 check for embedded arrays
2842 check for embedded scalars
2844 deprecate \1 in substitution replacements
2845 handle string-changing backslashes \l \U \Q \E, etc.
2846 switch (what was escaped) {
2847 handle \- in a transliteration (becomes a literal -)
2848 if a pattern and not \N{, go treat as regular character
2849 handle \132 (octal characters)
2850 handle \x15 and \x{1234} (hex characters)
2851 handle \N{name} (named characters, also \N{3,5} in a pattern)
2852 handle \cV (control characters)
2853 handle printf-style backslashes (\f, \r, \n, etc)
2856 } (end if backslash)
2857 handle regular character
2858 } (end while character to read)
2863 S_scan_const(pTHX_ char *start)
2865 char *send = PL_bufend; /* end of the constant */
2866 SV *sv = newSV(send - start); /* sv for the constant. See note below
2868 char *s = start; /* start of the constant */
2869 char *d = SvPVX(sv); /* destination for copies */
2870 bool dorange = FALSE; /* are we in a translit range? */
2871 bool didrange = FALSE; /* did we just finish a range? */
2872 bool in_charclass = FALSE; /* within /[...]/ */
2873 bool has_utf8 = FALSE; /* Output constant is UTF8 */
2874 bool this_utf8 = cBOOL(UTF); /* Is the source string assumed to be
2875 UTF8? But, this can show as true
2876 when the source isn't utf8, as for
2877 example when it is entirely composed
2879 STRLEN utf8_variant_count = 0; /* When not in UTF-8, this counts the
2880 number of characters found so far
2881 that will expand (into 2 bytes)
2882 should we have to convert to
2884 SV *res; /* result from charnames */
2885 STRLEN offset_to_max; /* The offset in the output to where the range
2886 high-end character is temporarily placed */
2888 /* Does something require special handling in tr/// ? This avoids extra
2889 * work in a less likely case. As such, khw didn't feel it was worth
2890 * adding any branches to the more mainline code to handle this, which
2891 * means that this doesn't get set in some circumstances when things like
2892 * \x{100} get expanded out. As a result there needs to be extra testing
2893 * done in the tr code */
2894 bool has_above_latin1 = FALSE;
2896 /* Note on sizing: The scanned constant is placed into sv, which is
2897 * initialized by newSV() assuming one byte of output for every byte of
2898 * input. This routine expects newSV() to allocate an extra byte for a
2899 * trailing NUL, which this routine will append if it gets to the end of
2900 * the input. There may be more bytes of input than output (eg., \N{LATIN
2901 * CAPITAL LETTER A}), or more output than input if the constant ends up
2902 * recoded to utf8, but each time a construct is found that might increase
2903 * the needed size, SvGROW() is called. Its size parameter each time is
2904 * based on the best guess estimate at the time, namely the length used so
2905 * far, plus the length the current construct will occupy, plus room for
2906 * the trailing NUL, plus one byte for every input byte still unscanned */
2908 UV uv = UV_MAX; /* Initialize to weird value to try to catch any uses
2911 int backslash_N = 0; /* ? was the character from \N{} */
2912 int non_portable_endpoint = 0; /* ? In a range is an endpoint
2913 platform-specific like \x65 */
2916 PERL_ARGS_ASSERT_SCAN_CONST;
2918 assert(PL_lex_inwhat != OP_TRANSR);
2919 if (PL_lex_inwhat == OP_TRANS && PL_parser->lex_sub_op) {
2920 /* If we are doing a trans and we know we want UTF8 set expectation */
2921 has_utf8 = PL_parser->lex_sub_op->op_private & (OPpTRANS_FROM_UTF|OPpTRANS_TO_UTF);
2922 this_utf8 = PL_parser->lex_sub_op->op_private & (PL_lex_repl ? OPpTRANS_FROM_UTF : OPpTRANS_TO_UTF);
2925 /* Protect sv from errors and fatal warnings. */
2926 ENTER_with_name("scan_const");
2930 || dorange /* Handle tr/// range at right edge of input */
2933 /* get transliterations out of the way (they're most literal) */
2934 if (PL_lex_inwhat == OP_TRANS) {
2936 /* But there isn't any special handling necessary unless there is a
2937 * range, so for most cases we just drop down and handle the value
2938 * as any other. There are two exceptions.
2940 * 1. A hyphen indicates that we are actually going to have a
2941 * range. In this case, skip the '-', set a flag, then drop
2942 * down to handle what should be the end range value.
2943 * 2. After we've handled that value, the next time through, that
2944 * flag is set and we fix up the range.
2946 * Ranges entirely within Latin1 are expanded out entirely, in
2947 * order to make the transliteration a simple table look-up.
2948 * Ranges that extend above Latin1 have to be done differently, so
2949 * there is no advantage to expanding them here, so they are
2950 * stored here as Min, ILLEGAL_UTF8_BYTE, Max. The illegal byte
2951 * signifies a hyphen without any possible ambiguity. On EBCDIC
2952 * machines, if the range is expressed as Unicode, the Latin1
2953 * portion is expanded out even if the range extends above
2954 * Latin1. This is because each code point in it has to be
2955 * processed here individually to get its native translation */
2959 /* Here, we don't think we're in a range. If the new character
2960 * is not a hyphen; or if it is a hyphen, but it's too close to
2961 * either edge to indicate a range, then it's a regular
2963 if (*s != '-' || s >= send - 1 || s == start) {
2965 /* A regular character. Process like any other, but first
2966 * clear any flags */
2970 non_portable_endpoint = 0;
2973 /* The tests here for being above Latin1 and similar ones
2974 * in the following 'else' suffice to find all such
2975 * occurences in the constant, except those added by a
2976 * backslash escape sequence, like \x{100}. Mostly, those
2977 * set 'has_above_latin1' as appropriate */
2978 if (this_utf8 && UTF8_IS_ABOVE_LATIN1(*s)) {
2979 has_above_latin1 = TRUE;
2982 /* Drops down to generic code to process current byte */
2984 else { /* Is a '-' in the context where it means a range */
2985 if (didrange) { /* Something like y/A-C-Z// */
2986 Perl_croak(aTHX_ "Ambiguous range in transliteration"
2992 s++; /* Skip past the hyphen */
2994 /* d now points to where the end-range character will be
2995 * placed. Save it so won't have to go finding it later,
2996 * and drop down to get that character. (Actually we
2997 * instead save the offset, to handle the case where a
2998 * realloc in the meantime could change the actual
2999 * pointer). We'll finish processing the range the next
3000 * time through the loop */
3001 offset_to_max = d - SvPVX_const(sv);
3003 if (this_utf8 && UTF8_IS_ABOVE_LATIN1(*s)) {
3004 has_above_latin1 = TRUE;
3007 /* Drops down to generic code to process current byte */
3009 } /* End of not a range */
3011 /* Here we have parsed a range. Now must handle it. At this
3013 * 'sv' is a SV* that contains the output string we are
3014 * constructing. The final two characters in that string
3015 * are the range start and range end, in order.
3016 * 'd' points to just beyond the range end in the 'sv' string,
3017 * where we would next place something
3018 * 'offset_to_max' is the offset in 'sv' at which the character
3019 * (the range's maximum end point) before 'd' begins.
3021 char * max_ptr = SvPVX(sv) + offset_to_max;
3024 IV range_max; /* last character in range */
3026 Size_t offset_to_min = 0;
3029 bool convert_unicode;
3030 IV real_range_max = 0;
3032 /* Get the code point values of the range ends. */
3034 /* We know the utf8 is valid, because we just constructed
3035 * it ourselves in previous loop iterations */
3036 min_ptr = (char*) utf8_hop( (U8*) max_ptr, -1);
3037 range_min = valid_utf8_to_uvchr( (U8*) min_ptr, NULL);
3038 range_max = valid_utf8_to_uvchr( (U8*) max_ptr, NULL);
3040 /* This compensates for not all code setting
3041 * 'has_above_latin1', so that we don't skip stuff that
3042 * should be executed */
3043 if (range_max > 255) {
3044 has_above_latin1 = TRUE;
3048 min_ptr = max_ptr - 1;
3049 range_min = * (U8*) min_ptr;
3050 range_max = * (U8*) max_ptr;
3053 /* If the range is just a single code point, like tr/a-a/.../,
3054 * that code point is already in the output, twice. We can
3055 * just back up over the second instance and avoid all the rest
3056 * of the work. But if it is a variant character, it's been
3057 * counted twice, so decrement. (This unlikely scenario is
3058 * special cased, like the one for a range of 2 code points
3059 * below, only because the main-line code below needs a range
3060 * of 3 or more to work without special casing. Might as well
3061 * get it out of the way now.) */
3062 if (UNLIKELY(range_max == range_min)) {
3064 if (! has_utf8 && ! UVCHR_IS_INVARIANT(range_max)) {
3065 utf8_variant_count--;
3071 /* On EBCDIC platforms, we may have to deal with portable
3072 * ranges. These happen if at least one range endpoint is a
3073 * Unicode value (\N{...}), or if the range is a subset of
3074 * [A-Z] or [a-z], and both ends are literal characters,
3075 * like 'A', and not like \x{C1} */
3077 cBOOL(backslash_N) /* \N{} forces Unicode,
3078 hence portable range */
3079 || ( ! non_portable_endpoint
3080 && (( isLOWER_A(range_min) && isLOWER_A(range_max))
3081 || (isUPPER_A(range_min) && isUPPER_A(range_max))));
3082 if (convert_unicode) {
3084 /* Special handling is needed for these portable ranges.
3085 * They are defined to be in Unicode terms, which includes
3086 * all the Unicode code points between the end points.
3087 * Convert to Unicode to get the Unicode range. Later we
3088 * will convert each code point in the range back to
3090 range_min = NATIVE_TO_UNI(range_min);
3091 range_max = NATIVE_TO_UNI(range_max);
3095 if (range_min > range_max) {
3097 if (convert_unicode) {
3098 /* Need to convert back to native for meaningful
3099 * messages for this platform */
3100 range_min = UNI_TO_NATIVE(range_min);
3101 range_max = UNI_TO_NATIVE(range_max);
3104 /* Use the characters themselves for the error message if
3105 * ASCII printables; otherwise some visible representation
3107 if (isPRINT_A(range_min) && isPRINT_A(range_max)) {
3109 "Invalid range \"%c-%c\" in transliteration operator",
3110 (char)range_min, (char)range_max);
3113 else if (convert_unicode) {
3114 /* diag_listed_as: Invalid range "%s" in transliteration operator */
3116 "Invalid range \"\\N{U+%04" UVXf "}-\\N{U+%04"
3117 UVXf "}\" in transliteration operator",
3118 range_min, range_max);
3122 /* diag_listed_as: Invalid range "%s" in transliteration operator */
3124 "Invalid range \"\\x{%04" UVXf "}-\\x{%04" UVXf "}\""
3125 " in transliteration operator",
3126 range_min, range_max);
3130 /* If the range is exactly two code points long, they are
3131 * already both in the output */
3132 if (UNLIKELY(range_min + 1 == range_max)) {
3136 /* Here the range contains at least 3 code points */
3140 /* If everything in the transliteration is below 256, we
3141 * can avoid special handling later. A translation table
3142 * for each of those bytes is created by op.c. So we
3143 * expand out all ranges to their constituent code points.
3144 * But if we've encountered something above 255, the
3145 * expanding won't help, so skip doing that. But if it's
3146 * EBCDIC, we may have to look at each character below 256
3147 * if we have to convert to/from Unicode values */
3148 if ( has_above_latin1
3150 && (range_min > 255 || ! convert_unicode)
3153 /* Move the high character one byte to the right; then
3154 * insert between it and the range begin, an illegal
3155 * byte which serves to indicate this is a range (using
3156 * a '-' would be ambiguous). */
3158 while (e-- > max_ptr) {
3161 *(e + 1) = (char) ILLEGAL_UTF8_BYTE;
3165 /* Here, we're going to expand out the range. For EBCDIC
3166 * the range can extend above 255 (not so in ASCII), so
3167 * for EBCDIC, split it into the parts above and below
3170 if (range_max > 255) {
3171 real_range_max = range_max;
3177 /* Here we need to expand out the string to contain each
3178 * character in the range. Grow the output to handle this.
3179 * For non-UTF8, we need a byte for each code point in the
3180 * range, minus the three that we've already allocated for: the
3181 * hyphen, the min, and the max. For UTF-8, we need this
3182 * plus an extra byte for each code point that occupies two
3183 * bytes (is variant) when in UTF-8 (except we've already
3184 * allocated for the end points, including if they are
3185 * variants). For ASCII platforms and Unicode ranges on EBCDIC
3186 * platforms, it's easy to calculate a precise number. To
3187 * start, we count the variants in the range, which we need
3188 * elsewhere in this function anyway. (For the case where it
3189 * isn't easy to calculate, 'extras' has been initialized to 0,
3190 * and the calculation is done in a loop further down.) */
3192 if (convert_unicode)
3195 /* This is executed unconditionally on ASCII, and for
3196 * Unicode ranges on EBCDIC. Under these conditions, all
3197 * code points above a certain value are variant; and none
3198 * under that value are. We just need to find out how much
3199 * of the range is above that value. We don't count the
3200 * end points here, as they will already have been counted
3201 * as they were parsed. */
3202 if (range_min >= UTF_CONTINUATION_MARK) {
3204 /* The whole range is made up of variants */
3205 extras = (range_max - 1) - (range_min + 1) + 1;
3207 else if (range_max >= UTF_CONTINUATION_MARK) {
3209 /* Only the higher portion of the range is variants */
3210 extras = (range_max - 1) - UTF_CONTINUATION_MARK + 1;
3213 utf8_variant_count += extras;
3216 /* The base growth is the number of code points in the range,
3217 * not including the endpoints, which have already been sized
3218 * for (and output). We don't subtract for the hyphen, as it
3219 * has been parsed but not output, and the SvGROW below is
3220 * based only on what's been output plus what's left to parse.
3222 grow = (range_max - 1) - (range_min + 1) + 1;
3226 /* In some cases in EBCDIC, we haven't yet calculated a
3227 * precise amount needed for the UTF-8 variants. Just
3228 * assume the worst case, that everything will expand by a
3230 if (! convert_unicode) {
3236 /* Otherwise we know exactly how many variants there
3237 * are in the range. */
3242 /* Grow, but position the output to overwrite the range min end
3243 * point, because in some cases we overwrite that */
3244 SvCUR_set(sv, d - SvPVX_const(sv));
3245 offset_to_min = min_ptr - SvPVX_const(sv);
3247 /* See Note on sizing above. */
3248 d = offset_to_min + SvGROW(sv, SvCUR(sv)
3251 + 1 /* Trailing NUL */ );
3253 /* Now, we can expand out the range. */
3255 if (convert_unicode) {
3258 /* Recall that the min and max are now in Unicode terms, so
3259 * we have to convert each character to its native
3262 for (i = range_min; i <= range_max; i++) {
3263 append_utf8_from_native_byte(
3264 LATIN1_TO_NATIVE((U8) i),
3269 for (i = range_min; i <= range_max; i++) {
3270 *d++ = (char)LATIN1_TO_NATIVE((U8) i);
3276 /* Always gets run for ASCII, and sometimes for EBCDIC. */
3278 /* Here, no conversions are necessary, which means that the
3279 * first character in the range is already in 'd' and
3280 * valid, so we can skip overwriting it */
3284 for (i = range_min + 1; i <= range_max; i++) {
3285 append_utf8_from_native_byte((U8) i, (U8 **) &d);
3291 assert(range_min + 1 <= range_max);
3292 for (i = range_min + 1; i < range_max; i++) {
3294 /* In this case on EBCDIC, we haven't calculated
3295 * the variants. Do it here, as we go along */
3296 if (! UVCHR_IS_INVARIANT(i)) {
3297 utf8_variant_count++;
3303 /* The range_max is done outside the loop so as to
3304 * avoid having to special case not incrementing
3305 * 'utf8_variant_count' on EBCDIC (it's already been
3306 * counted when originally parsed) */
3307 *d++ = (char) range_max;
3312 /* If the original range extended above 255, add in that
3314 if (real_range_max) {
3315 *d++ = (char) UTF8_TWO_BYTE_HI(0x100);
3316 *d++ = (char) UTF8_TWO_BYTE_LO(0x100);
3317 if (real_range_max > 0x100) {
3318 if (real_range_max > 0x101) {
3319 *d++ = (char) ILLEGAL_UTF8_BYTE;
3321 d = (char*)uvchr_to_utf8((U8*)d, real_range_max);
3327 /* mark the range as done, and continue */
3331 non_portable_endpoint = 0;
3335 } /* End of is a range */
3336 } /* End of transliteration. Joins main code after these else's */
3337 else if (*s == '[' && PL_lex_inpat && !in_charclass) {
3340 while (s1 >= start && *s1-- == '\\')
3343 in_charclass = TRUE;
3345 else if (*s == ']' && PL_lex_inpat && in_charclass) {
3348 while (s1 >= start && *s1-- == '\\')
3351 in_charclass = FALSE;
3353 /* skip for regexp comments /(?#comment)/, except for the last
3354 * char, which will be done separately. Stop on (?{..}) and
3356 else if (*s == '(' && PL_lex_inpat && s[1] == '?' && !in_charclass) {
3358 while (s+1 < send && *s != ')')
3361 else if (!PL_lex_casemods
3362 && ( s[2] == '{' /* This should match regcomp.c */
3363 || (s[2] == '?' && s[3] == '{')))
3368 /* likewise skip #-initiated comments in //x patterns */
3372 && ((PMOP*)PL_lex_inpat)->op_pmflags & RXf_PMf_EXTENDED)
3374 while (s < send && *s != '\n')
3377 /* no further processing of single-quoted regex */
3378 else if (PL_lex_inpat && SvIVX(PL_linestr) == '\'')
3379 goto default_action;
3381 /* check for embedded arrays
3382 * (@foo, @::foo, @'foo, @{foo}, @$foo, @+, @-)
3384 else if (*s == '@' && s[1]) {
3386 ? isIDFIRST_utf8_safe(s+1, send)
3387 : isWORDCHAR_A(s[1]))
3391 if (strchr(":'{$", s[1]))
3393 if (!PL_lex_inpat && (s[1] == '+' || s[1] == '-'))
3394 break; /* in regexp, neither @+ nor @- are interpolated */
3396 /* check for embedded scalars. only stop if we're sure it's a
3398 else if (*s == '$') {
3399 if (!PL_lex_inpat) /* not a regexp, so $ must be var */
3401 if (s + 1 < send && !strchr("()| \r\n\t", s[1])) {
3403 Perl_ck_warner(aTHX_ packWARN(WARN_AMBIGUOUS),
3404 "Possible unintended interpolation of $\\ in regex");
3406 break; /* in regexp, $ might be tail anchor */
3410 /* End of else if chain - OP_TRANS rejoin rest */
3412 if (UNLIKELY(s >= send)) {
3418 if (*s == '\\' && s+1 < send) {
3419 char* e; /* Can be used for ending '}', etc. */
3423 /* warn on \1 - \9 in substitution replacements, but note that \11
3424 * is an octal; and \19 is \1 followed by '9' */
3425 if (PL_lex_inwhat == OP_SUBST
3431 /* diag_listed_as: \%d better written as $%d */
3432 Perl_ck_warner(aTHX_ packWARN(WARN_SYNTAX), "\\%c better written as $%c", *s, *s);
3437 /* string-change backslash escapes */
3438 if (PL_lex_inwhat != OP_TRANS && *s && strchr("lLuUEQF", *s)) {
3442 /* In a pattern, process \N, but skip any other backslash escapes.
3443 * This is because we don't want to translate an escape sequence
3444 * into a meta symbol and have the regex compiler use the meta
3445 * symbol meaning, e.g. \x{2E} would be confused with a dot. But
3446 * in spite of this, we do have to process \N here while the proper
3447 * charnames handler is in scope. See bugs #56444 and #62056.
3449 * There is a complication because \N in a pattern may also stand
3450 * for 'match a non-nl', and not mean a charname, in which case its
3451 * processing should be deferred to the regex compiler. To be a
3452 * charname it must be followed immediately by a '{', and not look
3453 * like \N followed by a curly quantifier, i.e., not something like
3454 * \N{3,}. regcurly returns a boolean indicating if it is a legal
3456 else if (PL_lex_inpat
3459 || regcurly(s + 1)))
3462 goto default_action;
3468 if ((isALPHANUMERIC(*s)))
3469 Perl_ck_warner(aTHX_ packWARN(WARN_MISC),
3470 "Unrecognized escape \\%c passed through",
3472 /* default action is to copy the quoted character */
3473 goto default_action;
3476 /* eg. \132 indicates the octal constant 0132 */
3477 case '0': case '1': case '2': case '3':
3478 case '4': case '5': case '6': case '7':
3480 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
3482 uv = grok_oct(s, &len, &flags, NULL);
3484 if (len < 3 && s < send && isDIGIT(*s)
3485 && ckWARN(WARN_MISC))
3487 Perl_warner(aTHX_ packWARN(WARN_MISC),
3488 "%s", form_short_octal_warning(s, len));
3491 goto NUM_ESCAPE_INSERT;
3493 /* eg. \o{24} indicates the octal constant \024 */
3498 bool valid = grok_bslash_o(&s, &uv, &error,
3499 TRUE, /* Output warning */
3500 FALSE, /* Not strict */
3501 TRUE, /* Output warnings for
3506 uv = 0; /* drop through to ensure range ends are set */
3508 goto NUM_ESCAPE_INSERT;
3511 /* eg. \x24 indicates the hex constant 0x24 */
3516 bool valid = grok_bslash_x(&s, &uv, &error,
3517 TRUE, /* Output warning */
3518 FALSE, /* Not strict */
3519 TRUE, /* Output warnings for
3524 uv = 0; /* drop through to ensure range ends are set */
3529 /* Insert oct or hex escaped character. */
3531 /* Here uv is the ordinal of the next character being added */
3532 if (UVCHR_IS_INVARIANT(uv)) {
3536 if (!has_utf8 && uv > 255) {
3538 /* Here, 'uv' won't fit unless we convert to UTF-8.
3539 * If we've only seen invariants so far, all we have to
3540 * do is turn on the flag */
3541 if (utf8_variant_count == 0) {
3545 SvCUR_set(sv, d - SvPVX_const(sv));
3549 sv_utf8_upgrade_flags_grow(
3551 SV_GMAGIC|SV_FORCE_UTF8_UPGRADE,
3553 /* Since we're having to grow here,
3554 * make sure we have enough room for
3555 * this escape and a NUL, so the
3556 * code immediately below won't have
3557 * to actually grow again */
3559 + (STRLEN)(send - s) + 1);
3560 d = SvPVX(sv) + SvCUR(sv);
3563 has_above_latin1 = TRUE;
3569 utf8_variant_count++;
3572 /* Usually, there will already be enough room in 'sv'
3573 * since such escapes are likely longer than any UTF-8
3574 * sequence they can end up as. This isn't the case on
3575 * EBCDIC where \x{40000000} contains 12 bytes, and the
3576 * UTF-8 for it contains 14. And, we have to allow for
3577 * a trailing NUL. It probably can't happen on ASCII
3578 * platforms, but be safe. See Note on sizing above. */
3579 const STRLEN needed = d - SvPVX(sv)
3583 if (UNLIKELY(needed > SvLEN(sv))) {
3584 SvCUR_set(sv, d - SvPVX_const(sv));
3585 d = SvCUR(sv) + SvGROW(sv, needed);
3588 d = (char*)uvchr_to_utf8((U8*)d, uv);
3589 if (PL_lex_inwhat == OP_TRANS
3590 && PL_parser->lex_sub_op)
3592 PL_parser->lex_sub_op->op_private |=
3593 (PL_lex_repl ? OPpTRANS_FROM_UTF
3599 non_portable_endpoint++;
3604 /* In a non-pattern \N must be like \N{U+0041}, or it can be a
3605 * named character, like \N{LATIN SMALL LETTER A}, or a named
3606 * sequence, like \N{LATIN CAPITAL LETTER A WITH MACRON AND
3607 * GRAVE} (except y/// can't handle the latter, croaking). For
3608 * convenience all three forms are referred to as "named
3609 * characters" below.
3611 * For patterns, \N also can mean to match a non-newline. Code
3612 * before this 'switch' statement should already have handled
3613 * this situation, and hence this code only has to deal with
3614 * the named character cases.
3616 * For non-patterns, the named characters are converted to
3617 * their string equivalents. In patterns, named characters are
3618 * not converted to their ultimate forms for the same reasons
3619 * that other escapes aren't. Instead, they are converted to
3620 * the \N{U+...} form to get the value from the charnames that
3621 * is in effect right now, while preserving the fact that it
3622 * was a named character, so that the regex compiler knows
3625 * The structure of this section of code (besides checking for
3626 * errors and upgrading to utf8) is:
3627 * If the named character is of the form \N{U+...}, pass it
3628 * through if a pattern; otherwise convert the code point
3630 * Otherwise must be some \N{NAME}: convert to
3631 * \N{U+c1.c2...} if a pattern; otherwise convert to utf8
3633 * Transliteration is an exception. The conversion to utf8 is
3634 * only done if the code point requires it to be representable.
3636 * Here, 's' points to the 'N'; the test below is guaranteed to
3637 * succeed if we are being called on a pattern, as we already
3638 * know from a test above that the next character is a '{'. A
3639 * non-pattern \N must mean 'named character', which requires
3643 yyerror("Missing braces on \\N{}");
3649 /* If there is no matching '}', it is an error. */
3650 if (! (e = strchr(s, '}'))) {
3651 if (! PL_lex_inpat) {
3652 yyerror("Missing right brace on \\N{}");
3654 yyerror("Missing right brace on \\N{} or unescaped left brace after \\N");
3656 yyquit(); /* Have exhausted the input. */
3659 /* Here it looks like a named character */
3661 if (*s == 'U' && s[1] == '+') { /* \N{U+...} */
3662 s += 2; /* Skip to next char after the 'U+' */
3665 /* In patterns, we can have \N{U+xxxx.yyyy.zzzz...} */
3666 /* Check the syntax. */
3669 if (!isXDIGIT(*s)) {
3672 "Invalid hexadecimal number in \\N{U+...}"
3681 else if ((*s == '.' || *s == '_')
3687 /* Pass everything through unchanged.
3688 * +1 is for the '}' */
3689 Copy(orig_s, d, e - orig_s + 1, char);
3690 d += e - orig_s + 1;
3692 else { /* Not a pattern: convert the hex to string */
3693 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
3694 | PERL_SCAN_SILENT_ILLDIGIT
3695 | PERL_SCAN_DISALLOW_PREFIX;
3697 uv = grok_hex(s, &len, &flags, NULL);
3698 if (len == 0 || (len != (STRLEN)(e - s)))
3701 /* For non-tr///, if the destination is not in utf8,
3702 * unconditionally recode it to be so. This is
3703 * because \N{} implies Unicode semantics, and scalars
3704 * have to be in utf8 to guarantee those semantics.
3705 * tr/// doesn't care about Unicode rules, so no need
3706 * there to upgrade to UTF-8 for small enough code
3708 if (! has_utf8 && ( uv > 0xFF
3709 || PL_lex_inwhat != OP_TRANS))
3711 /* See Note on sizing above. */
3712 const STRLEN extra = OFFUNISKIP(uv) + (send - e) + 1;
3714 SvCUR_set(sv, d - SvPVX_const(sv));
3718 if (utf8_variant_count == 0) {
3720 d = SvCUR(sv) + SvGROW(sv, SvCUR(sv) + extra);
3723 sv_utf8_upgrade_flags_grow(
3725 SV_GMAGIC|SV_FORCE_UTF8_UPGRADE,
3727 d = SvPVX(sv) + SvCUR(sv);
3731 has_above_latin1 = TRUE;
3734 /* Add the (Unicode) code point to the output. */
3735 if (! has_utf8 || OFFUNI_IS_INVARIANT(uv)) {
3736 *d++ = (char) LATIN1_TO_NATIVE(uv);
3739 d = (char*) uvoffuni_to_utf8_flags((U8*)d, uv, 0);
3743 else /* Here is \N{NAME} but not \N{U+...}. */
3744 if ((res = get_and_check_backslash_N_name(s, e)))
3747 const char *str = SvPV_const(res, len);
3750 if (! len) { /* The name resolved to an empty string */
3751 Copy("\\N{}", d, 4, char);
3755 /* In order to not lose information for the regex
3756 * compiler, pass the result in the specially made
3757 * syntax: \N{U+c1.c2.c3...}, where c1 etc. are
3758 * the code points in hex of each character
3759 * returned by charnames */
3761 const char *str_end = str + len;
3762 const STRLEN off = d - SvPVX_const(sv);
3764 if (! SvUTF8(res)) {
3765 /* For the non-UTF-8 case, we can determine the
3766 * exact length needed without having to parse
3767 * through the string. Each character takes up
3768 * 2 hex digits plus either a trailing dot or
3770 const char initial_text[] = "\\N{U+";
3771 const STRLEN initial_len = sizeof(initial_text)
3773 d = off + SvGROW(sv, off
3776 /* +1 for trailing NUL */
3779 + (STRLEN)(send - e));
3780 Copy(initial_text, d, initial_len, char);
3782 while (str < str_end) {
3785 my_snprintf(hex_string,
3789 /* The regex compiler is
3790 * expecting Unicode, not
3792 NATIVE_TO_LATIN1(*str));
3793 PERL_MY_SNPRINTF_POST_GUARD(len,
3794 sizeof(hex_string));
3795 Copy(hex_string, d, 3, char);
3799 d--; /* Below, we will overwrite the final
3800 dot with a right brace */
3803 STRLEN char_length; /* cur char's byte length */
3805 /* and the number of bytes after this is
3806 * translated into hex digits */
3807 STRLEN output_length;
3809 /* 2 hex per byte; 2 chars for '\N'; 2 chars
3810 * for max('U+', '.'); and 1 for NUL */
3811 char hex_string[2 * UTF8_MAXBYTES + 5];
3813 /* Get the first character of the result. */
3814 U32 uv = utf8n_to_uvchr((U8 *) str,
3818 /* Convert first code point to Unicode hex,
3819 * including the boiler plate before it. */
3821 my_snprintf(hex_string, sizeof(hex_string),
3823 (unsigned int) NATIVE_TO_UNI(uv));
3825 /* Make sure there is enough space to hold it */
3826 d = off + SvGROW(sv, off
3828 + (STRLEN)(send - e)
3829 + 2); /* '}' + NUL */
3831 Copy(hex_string, d, output_length, char);
3834 /* For each subsequent character, append dot and
3835 * its Unicode code point in hex */
3836 while ((str += char_length) < str_end) {
3837 const STRLEN off = d - SvPVX_const(sv);
3838 U32 uv = utf8n_to_uvchr((U8 *) str,
3843 my_snprintf(hex_string,
3846 (unsigned int) NATIVE_TO_UNI(uv));
3848 d = off + SvGROW(sv, off
3850 + (STRLEN)(send - e)
3851 + 2); /* '}' + NUL */
3852 Copy(hex_string, d, output_length, char);
3857 *d++ = '}'; /* Done. Add the trailing brace */
3860 else { /* Here, not in a pattern. Convert the name to a
3863 if (PL_lex_inwhat == OP_TRANS) {
3864 str = SvPV_const(res, len);
3865 if (len > ((SvUTF8(res))
3869 yyerror(Perl_form(aTHX_
3870 "%.*s must not be a named sequence"
3871 " in transliteration operator",
3872 /* +1 to include the "}" */
3873 (int) (e + 1 - start), start));
3875 goto end_backslash_N;
3878 if (SvUTF8(res) && UTF8_IS_ABOVE_LATIN1(*str)) {
3879 has_above_latin1 = TRUE;
3883 else if (! SvUTF8(res)) {
3884 /* Make sure \N{} return is UTF-8. This is because
3885 * \N{} implies Unicode semantics, and scalars have
3886 * to be in utf8 to guarantee those semantics; but
3887 * not needed in tr/// */
3888 sv_utf8_upgrade_flags(res, 0);
3889 str = SvPV_const(res, len);
3892 /* Upgrade destination to be utf8 if this new
3894 if (! has_utf8 && SvUTF8(res)) {
3895 /* See Note on sizing above. */
3896 const STRLEN extra = len + (send - s) + 1;
3898 SvCUR_set(sv, d - SvPVX_const(sv));
3902 if (utf8_variant_count == 0) {
3904 d = SvCUR(sv) + SvGROW(sv, SvCUR(sv) + extra);
3907 sv_utf8_upgrade_flags_grow(sv,
3908 SV_GMAGIC|SV_FORCE_UTF8_UPGRADE,
3910 d = SvPVX(sv) + SvCUR(sv);
3913 } else if (len > (STRLEN)(e - s + 4)) { /* I _guess_ 4 is \N{} --jhi */
3915 /* See Note on sizing above. (NOTE: SvCUR() is not
3916 * set correctly here). */
3917 const STRLEN extra = len + (send - e) + 1;
3918 const STRLEN off = d - SvPVX_const(sv);
3919 d = off + SvGROW(sv, off + extra);
3921 Copy(str, d, len, char);
3927 } /* End \N{NAME} */
3931 backslash_N++; /* \N{} is defined to be Unicode */
3933 s = e + 1; /* Point to just after the '}' */
3936 /* \c is a control character */
3940 *d++ = grok_bslash_c(*s, 1);
3943 yyerror("Missing control char name in \\c");
3944 yyquit(); /* Are at end of input, no sense continuing */
3947 non_portable_endpoint++;
3951 /* printf-style backslashes, formfeeds, newlines, etc */
3977 } /* end if (backslash) */
3980 /* Just copy the input to the output, though we may have to convert
3983 * If the input has the same representation in UTF-8 as not, it will be
3984 * a single byte, and we don't care about UTF8ness; just copy the byte */
3985 if (NATIVE_BYTE_IS_INVARIANT((U8)(*s))) {
3988 else if (! this_utf8 && ! has_utf8) {
3989 /* If neither source nor output is UTF-8, is also a single byte,
3990 * just copy it; but this byte counts should we later have to
3991 * convert to UTF-8 */
3993 utf8_variant_count++;
3995 else if (this_utf8 && has_utf8) { /* Both UTF-8, can just copy */
3996 const STRLEN len = UTF8SKIP(s);
3998 /* We expect the source to have already been checked for
4000 assert(isUTF8_CHAR((U8 *) s, (U8 *) send));
4002 Copy(s, d, len, U8);
4006 else { /* UTF8ness matters and doesn't match, need to convert */
4008 const UV nextuv = (this_utf8)
4009 ? utf8n_to_uvchr((U8*)s, send - s, &len, 0)
4011 STRLEN need = UVCHR_SKIP(nextuv);
4014 SvCUR_set(sv, d - SvPVX_const(sv));
4018 /* See Note on sizing above. */
4019 need += (STRLEN)(send - s) + 1;
4021 if (utf8_variant_count == 0) {
4023 d = SvCUR(sv) + SvGROW(sv, SvCUR(sv) + need);
4026 sv_utf8_upgrade_flags_grow(sv,
4027 SV_GMAGIC|SV_FORCE_UTF8_UPGRADE,
4029 d = SvPVX(sv) + SvCUR(sv);
4032 } else if (need > len) {
4033 /* encoded value larger than old, may need extra space (NOTE:
4034 * SvCUR() is not set correctly here). See Note on sizing
4036 const STRLEN extra = need + (send - s) + 1;
4037 const STRLEN off = d - SvPVX_const(sv);
4038 d = off + SvGROW(sv, off + extra);
4042 d = (char*)uvchr_to_utf8((U8*)d, nextuv);
4044 } /* while loop to process each character */
4046 /* terminate the string and set up the sv */
4048 SvCUR_set(sv, d - SvPVX_const(sv));
4049 if (SvCUR(sv) >= SvLEN(sv))
4050 Perl_croak(aTHX_ "panic: constant overflowed allocated space, %" UVuf
4051 " >= %" UVuf, (UV)SvCUR(sv), (UV)SvLEN(sv));
4056 if (PL_lex_inwhat == OP_TRANS && PL_parser->lex_sub_op) {
4057 PL_parser->lex_sub_op->op_private |=
4058 (PL_lex_repl ? OPpTRANS_FROM_UTF : OPpTRANS_TO_UTF);
4062 /* shrink the sv if we allocated more than we used */
4063 if (SvCUR(sv) + 5 < SvLEN(sv)) {
4064 SvPV_shrink_to_cur(sv);
4067 /* return the substring (via pl_yylval) only if we parsed anything */
4070 for (; s2 < s; s2++) {
4072 COPLINE_INC_WITH_HERELINES;
4074 SvREFCNT_inc_simple_void_NN(sv);
4075 if ( (PL_hints & ( PL_lex_inpat ? HINT_NEW_RE : HINT_NEW_STRING ))
4076 && ! PL_parser->lex_re_reparsing)
4078 const char *const key = PL_lex_inpat ? "qr" : "q";
4079 const STRLEN keylen = PL_lex_inpat ? 2 : 1;
4083 if (PL_lex_inwhat == OP_TRANS) {
4086 } else if (PL_lex_inwhat == OP_SUBST && !PL_lex_inpat) {
4089 } else if (PL_lex_inpat && SvIVX(PL_linestr) == '\'') {
4097 sv = S_new_constant(aTHX_ start, s - start, key, keylen, sv, NULL,
4100 pl_yylval.opval = newSVOP(OP_CONST, 0, sv);
4102 LEAVE_with_name("scan_const");
4107 * Returns TRUE if there's more to the expression (e.g., a subscript),
4110 * It deals with "$foo[3]" and /$foo[3]/ and /$foo[0123456789$]+/
4112 * ->[ and ->{ return TRUE
4113 * ->$* ->$#* ->@* ->@[ ->@{ return TRUE if postderef_qq is enabled
4114 * { and [ outside a pattern are always subscripts, so return TRUE
4115 * if we're outside a pattern and it's not { or [, then return FALSE
4116 * if we're in a pattern and the first char is a {
4117 * {4,5} (any digits around the comma) returns FALSE
4118 * if we're in a pattern and the first char is a [
4120 * [SOMETHING] has a funky algorithm to decide whether it's a
4121 * character class or not. It has to deal with things like
4122 * /$foo[-3]/ and /$foo[$bar]/ as well as /$foo[$\d]+/
4123 * anything else returns TRUE
4126 /* This is the one truly awful dwimmer necessary to conflate C and sed. */
4129 S_intuit_more(pTHX_ char *s)
4131 PERL_ARGS_ASSERT_INTUIT_MORE;
4133 if (PL_lex_brackets)
4135 if (*s == '-' && s[1] == '>' && (s[2] == '[' || s[2] == '{'))
4137 if (*s == '-' && s[1] == '>'
4138 && FEATURE_POSTDEREF_QQ_IS_ENABLED
4139 && ( (s[2] == '$' && (s[3] == '*' || (s[3] == '#' && s[4] == '*')))
4140 ||(s[2] == '@' && strchr("*[{",s[3])) ))
4142 if (*s != '{' && *s != '[')
4147 /* In a pattern, so maybe we have {n,m}. */
4155 /* On the other hand, maybe we have a character class */
4158 if (*s == ']' || *s == '^')
4161 /* this is terrifying, and it works */
4164 const char * const send = strchr(s,']');
4165 unsigned char un_char, last_un_char;
4166 char tmpbuf[sizeof PL_tokenbuf * 4];
4168 if (!send) /* has to be an expression */
4170 weight = 2; /* let's weigh the evidence */
4174 else if (isDIGIT(*s)) {
4176 if (isDIGIT(s[1]) && s[2] == ']')
4182 Zero(seen,256,char);
4184 for (; s < send; s++) {
4185 last_un_char = un_char;
4186 un_char = (unsigned char)*s;
4191 weight -= seen[un_char] * 10;
4192 if (isWORDCHAR_lazy_if_safe(s+1, PL_bufend, UTF)) {
4194 scan_ident(s, tmpbuf, sizeof tmpbuf, FALSE);
4195 len = (int)strlen(tmpbuf);
4196 if (len > 1 && gv_fetchpvn_flags(tmpbuf, len,
4197 UTF ? SVf_UTF8 : 0, SVt_PV))
4204 && strchr("[#!%*<>()-=",s[1]))
4206 if (/*{*/ strchr("])} =",s[2]))
4215 if (strchr("wds]",s[1]))
4217 else if (seen[(U8)'\''] || seen[(U8)'"'])
4219 else if (strchr("rnftbxcav",s[1]))
4221 else if (isDIGIT(s[1])) {
4223 while (s[1] && isDIGIT(s[1]))
4233 if (strchr("aA01! ",last_un_char))
4235 if (strchr("zZ79~",s[1]))
4237 if (last_un_char == 255 && (isDIGIT(s[1]) || s[1] == '$'))
4238 weight -= 5; /* cope with negative subscript */
4241 if (!isWORDCHAR(last_un_char)
4242 && !(last_un_char == '$' || last_un_char == '@'
4243 || last_un_char == '&')
4244 && isALPHA(*s) && s[1] && isALPHA(s[1])) {
4248 if (keyword(d, s - d, 0))
4251 if (un_char == last_un_char + 1)
4253 weight -= seen[un_char];